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Abstract

The High Reso]rtion Radar Branch of the Rome Air Development Center has

developed a tactical target identification (TTI) pulsed-Doppler radar

system which generates two-dimensional "images" of aircraft. The signal

processing technique utilized the fast Fourier transform (FFT) to produce

a slant-range versus cross-range display. If the TTI system is to be

effectively employed in aui aerial warfare environment then real-time

processing is necessary. In an effort to speediip the signal processing

several alternative transforms were studied as possible substitutes

for the FFT. The Karhunen-Loeve, Cosine (Sine), Mellen, and Hanlkel

transforms were investigated Lnd found to be infeasible for use in TTI

imaging. T.e Walsh (Hadamard) transform was studied in detail and

•.-ested in a simulation program and found that it could not be utilized

in the TTI signal processing.

Two methods of converting from the Walsh sequency domain to the

Fourier frequency domain were studied. The first scheme, a recursive

relationship between the arithmetic and logical autocorrelation functions

as presented by Robinson was dis,'overed to be incorrect. The second, a

method of computing the Fourier coefficientk. from the Walsh coefficients

of a function was demonstrated to be too time consuming to be implemented

in TTI signal processing.

Several floating-point FFT imp'lementations were tested using the

simulation program. Also, several fixed-point FFT algorithms were

derived and tested. All of these were evaluat.d on the basis of speed and

memory requirements and one fixed-point FFT algorithm was shown to be

fast enough and accurate enough for implementation on the TTI Mini-

computer.
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COMPARISON OF FAST FOURIER TRANSFORMS

WITH OTHER TRANSFO?.MS IN SIGNAL

PROCESSING FOR TACTICAL RADAR

TARGET IDENTIFICATION

I. Introduction

The High Resolution Radar Branch of the Rome Air Development

Center, Griffiss AFB, New York is interested in developing a

tactical target identification (TTI) radar system which can effectively

respond to the expected WARSAW Pact threat against NATO in the 1980-1990

time frame. Radar target identification of aircraft facilitates'

the effective control of friendly airborne interceptor and close air

support aircraft without active Identification Friend or Foe (IFF)

devices. It also permits the positive identification and determination

of uncooperative or enemy aircraft type and mission without endangering

friendly aircraft and allows the discrimination between actual enemy

aircraft and decoy vehicles (Ref 92).

The objective of the TTI development program is the generation

of two-dimensional "images" of aircraft by processing in real-time

the radar returns of the aircraft using a tactical pulsed-Doppler

wideband radar system. Basic research is being conducted by the

Syracuse Research Corporation (SRC), Syracuse, New York. The target

identification simulation program used in this thesis was written by SRC

and is based on parameters modelled the same as those of the ALCOR* system

which has been used in actual radar imaging studies (Ref 31:1). In

*ARPA (Advance Research Projects Agency)/Lincoln Laboratory C-Band
Observables Radar.



essence, the two-dimensional image can be furmed if a target's aspect

angle changes sufficiently relative to the rad~ar over some time

interval; The integration of the received radar waveform with respect

to aspect A~ngle will yield a slant range vs. Doppler array with

entries of radar cross-section intensity. This array can be displayed

giving an image of the target's highlights. The feasibility of such

an approach using a pulsed-Doppler wideband radar system and associated

signal processing has been established by Rafael (Ref 68) and

Strattan (Ref 83).

The objective of this thesis is to investigate, evaluate, and

-compare other orthogonal transform (FFT) currently being used in the

signal processing portion of th~e target identification system. The

goal is to increase the speed of the signal processing to approach

real-time. Image quality, processing time, and computer memory

requirements must be considered when investigating and evaluating

an alternate transform.

The remainder of this thesis is divided into five sections.

Section II provides the theory, algorithm, and simulation of the

radar target identification system. Section III investigates and

considers alternate orthogonal transforms. Section IV proposes

two methods for converting from the Walsh sequency domain to the

Fourier frequency domain. Section V compares several Fast Fourier

Transform algorithms. Conclusions and recommendations are made in

Section VI. The Appendices contain listings of the computer programs,

subprograms, and radar and target parameter data used in this thesis.

2



II. Radar Target Identification: Theory,

Algorithm, and Signal Processing

This section provides the background material on Radar Cross

Section measurement and estimation. The basic assumptions are given

and the salient features of the imaging algorithm are presented.

Additionally, the simulation program used in this thesis is explained.

Target Radar Cross Section

Radar cross section (RCS), a, is a measure of the energy reflected

from a target toward the receiving antenna (Ref 33:455). The RCS of a

target is the area assumed to intercept the incident radiation, which,

when isotropically reradiated, yields the actual power density at the

receiving aperture (Ref 33:455). This returned euergy varies with

a multitude of parameters such as transmitted wavelength, polarization,

target geometry, orientation, and reflectivity (Ref 58:141).

More precisely, the radar cross sectioni of an object is proportional

to the far-field ratio of reflected to incident power density, that is

a - Power reflected back to receiver/unit solid angle (1)Incident power density/4w

(Ref 58:142). For an example, consider the RCS of a perfectly conducting

isotropic scatterer. The power intercepted by the radiator is the

product of the incident power density, PI, and its geometric projected

area, A,. By the definition of isotropic scattering, this power

is uniformly distributed over 41r steradians (Ref 58:142). For this

isotropic scatterer then

a1 - 4 A (2)



Thus, the RCS of such an 1sotiopic reflector is the geometric projected

area (Ref 58:141).

For a .complex target, such as an aircraft or missle, the RCS car.

be approximated by breaking the body into individual reflectors

(scatterers) and assuming that the parts do not interact. In this case

it can be shown that the total RCS is the vector sum of the individual

cross sections

N JAdk 2CY = v ok- exp (--7) (3)
k=l (

where ak is the RCS of the k th scatterer, dk is the distance between

the k th scatterer and the receiver, and N the total number of

scatterers (Ref 58:144).

Another approach considers the relative phase angles between the

returns from these N scatterers. This approach leads to the following

expression for the RCS of the entire body

N 2(4
N k=1 ' exp(Jik)l (4'

where •k is the relative phase angle associated with the k th component

(Ref 26:974). It has been shown that the RCS of a target is related

to the frequency response of the object, G(jw), by the following

relationship,

( = jG(jw) (5)

(Refs 51:1651; 83:5). The RCS, as, can be thought of as the spectrum

of the complex target. In general, G(jw) will be aspect angle dependent

except for a spherically symmetric object (Ref 51:1651).

Now, if a C4 or pulses radar signal is reflected by a target moving

4



at a velocity, Vr, relative to the radar receiver, the whole spectrum

would be translated in frequency by the Doppler shift, fD' where

2Rf
a - 0

2v
-I.- A (6)

where c is the propagation velocity (speed of light), f is the trans-

mitted carrier frequency, R or vr is the range rate or radial velocity,

and fD is the Doppler sl't*t (Refs 58:5; 47:357).

In a wideband pulsed-Doppler radar system, the received Doppler

frequency spectrum is considered the target's radar cross sectiop which

is aspect angle dependent (Ref 58:173). Figure I shows the effect of

return power from an aircraft where the surface scatterers making

up the composite target echo can create a transition from phase addition

to phase cancellation and change the cross section drastically

(Ref 33:26). The spectra of RCS flucuations can be described in terms

of several effects with the airframe the most important contributer

(Ref 58:173). The airframe spectrum is due to the relative motion

between the various scattering points on the fuselage and wings. This

relative motinn occurs as the aircraft aspect changes (Refs 58:173;

51:1651; 26:973).

Tle resulting spectral width is proportional to the transmitted

frequency (Refs 58:73; 83:3). The frequency domain will give a band-

width, therefore, of

B a lIT (7)

where T is the pulse duration length (Ref 83:4).
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Figure 1. Return Power from an Aircraft as a Function
of Azimuth Angle

RCS Measurement

The measurement of the radar cross section of a target makes use

of Fourier transform theory and it will be shown that IG(jw)1 2 is in

reality the Power Spectral Density (PSD) or Power Spectrum of the

impulse response, g(t), of the target.

Fourier Integral. The Fourier Integral, defining a Fourier

transform pair, is given for f(t) specified on the interval (-cw) as

F(jw) Ff (t)exp(-jwt)dt (8)

6.
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and

f (t) f F(jw)exp(jwt)dw (9)

Power Spectral Density. If f(t) is specified on the interval

(-.,-) and if f(t) and F(jw) are a Fourier transform pair, then, the

Power Spectral Density of the function, f(t) is defined as the abso-

lute value squared of the Fourier transform of f(t). If P(W) is the

Power Spectrum, then

P(W) - IF[f(t)J12

- IF(Jw)1 2  (10)

where F[.] is the Fourier transform operator. Also, Vi the autocor-
/

relation function of f(t), R(T), is Fourier transformed, then the

following relationships will be found to be

R(T) UM f1# f(t)f(t-FT)dt
-T/2

-)f(t) * f(-t) (11d

where * denotes convolution, but

F[f(t)*f(t)] - F(jw)F(-Ji)

- IF(jw)1 2  (12)

7 P



so that

P - F[R(])j (13)

Equation (10) is known as the direct method for obtaining the power

spectrum of a time series and is equal to the Fourier transform

squared of the function (Ref 76:14,15). Equation (13) is known as

the direct method or the Wiener-Khintchine theorem. It states that

the power spectrum is the Fourier transform of the autocorrelation

function (Refs 76:3; 28:128).

Therefore, it can be seen that Equation 5 is in fact :the Power

Spectral Density of g(t), the impulse response of the target. (That

which would be measured at the Doppler filter.)

In this section the power spectrum is defined for an infinitely

long, continuous time function, f(t) or g(t). However, in practical -

situations, only a finite amount of time is even available to

observe the time function, particularly if a monostatic radar system

is used.

Since the signal is in effect truncated, the effects on the

Power Spectral Density resulting from the truncation of the data set

must be considered.

RCS Estimation

Since the RCS of a target cannot be completely determined, it

must be estimated. The Discrete Fourier transform (DFI) can be

used to compute an estimate of the Radar Cross Section of a complex

target.

Discrete Fouri r Transform. Let f(n) be defined by N samples.

The Discrete Fourier transform pair are defined as

8
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N-1
F(k) I f(n)exp(-j27r(kn)/N) (14)

n=O

and

N-I
f(n) = I F(k)exp(j2ii(kn)/N) (15)

k=O

wherc the exponential function is periodic of period N (Ref 60:100).

Discrete Power Spectral Density. The sample power spectral den-

sity function or what is known as the raw periodogram is the DFT of

R(T), the autocorrelation function of f(n) (Ref 88:13). Define

N
P(w) I . R(T)exp(-jrW) (16)

where T is an integer.

Or conversely, the p'2riodogram can be calculated as the modulus of

the DFT of f(n).

N-1 1

P(W) - f(n)exp(-jn/N) (17)
i/2i-rN n1 I

Equation (16) is analogous to the continuous Wiener-Khintchine theorem

only in discrete form.

As it turns out, whichever way is used, the raw periodogram is

an unsatisfactory estimate of the power spectrum unless the signal

is perfectly periodic and noiseless. Therefore, the periodogram of

a stochastic process will be an unstable estimate, erratic in

appearance and behavior (Ref 88:14). The variance of the fluctuation

9
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of the periodogram about the true power spectrum does not decrease

to zero as N approaches infinity, as it should for a well behaved

estimator (Refs 88:14; 30:109). Its variance is independent of N,

and the probability distribution of the sample periodogram is a Chi-

squared distributInn with two degrees of freedom (Ref 88:80). To

bring the variance down and stabilize the estimate, it is necessary

to do some form of spectral averaging (Refs 76:13; 88:82; 62:548).

Currently, the "practice" of power spectral estimation has a

strong empirical basis because most optimum techniques, such as

maximum likelihood estimation, require more information about the

signal t0an is usually available (ReC 62:532). As a result trade-offs

are involved between different techniques such that there is no

general agreement on the best method. The reader is directed to

the literature for a more detailed look at power spectral estimation. /

Davenport and Root (Ref 28), Welch (Ref 90), Webb (Ref 88), Sentman

(Ref 76) and others are excellent references. Oppenheim and Shafer

(Ref 62) provide an excellent overview of the power spectral estima-

tion problem. Deutsch (Ref 30) is a recommended reference for

estimation theory. Blacksmith, et al, (Ref 17) contains an extensive

bibliography on work done on radar cross section measurement.

Estimating Discrete Power Spectrums

Let f(t) be defined on the interval (-oc). If f(t) is truncated

by multiplying by a data or observation window, w(t), (t can be

considered either continuous or discrete) such that

10



{ 1, It! T/2w(t) = (18)

0, Itl > T/2

then the truncated data set becomes

htt) - f(t)-w(t) (19)

as shown in Figure 2 on the next page.

The functj~n h(t) now represents the truncated data set available

from which the power spectrumn is to be calculated. The Power

Spectral Density, Pap(w) of h(t), reprecenting the apparent power

spectrum of f(t), is then

P () = IF[f(t).w(t)J12  (20)

= IF(•w)*W(Jw)1 2  (21)

. IF(jw)1 2* IW(Jw)l 2  (22)

Thus, the PSD, IF(jw)1 2 , is modified by a convolut on with IW(jw)12,

the Fourier transform of the data window. W(jw) is called the

frequency window and is a sin x/x (sinc x) function as shown in

Figure 3.

Convolution by the frequency window causes a certain degree of

smoothing in the calculated PSD, but a small amount of leakage via the

sidelobes from nearby frequency bands into the frequency band of

11
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-T/2 +T/2

Figure 2. Truncated Data Set

interest (Ref 76:12). Normally, this is not serious, but if there

are large veil defined peaks in the power spectrum and when convolved

with the frequency -indow, they act to reproduce the window, producing

spurious peaks in the PSD corresponding z.o the sidelobes of the

frequency window. These spurious peaks may be mistakenly identified

as structural details of the Crue power spectrum when in fact they

are merely artifacts created by the truncation of the original

data set (Ref 76:13).

Several methods exist for sidelobe suppression. Three common
methods include data tapering, sectioning and averaging, and data

weighting (Refs 88:84; 2:548; 90:56). The simplest and most

straight forward method is the use of data weighting. Several types

exist and the most widely used is the Hamming weight function

12



(Sinc x)

Figure 3. Sin x/x (Sinc x) Function

wv(n) & 0.54 - 0.46cos(2wn/(N-1)), (23)

for

0 N-1

where N is the total number of samples (Ref (62:241-242).

The statistical reliability of PSD estimates is discussed by

Webb (Ref 88), Sentman (Ref 76), and Davenport and Root (Ref 28).

Assuptions

The basis of the imaging technique used in this thesis is based

13



on the assumption that the body being observed is rigid, and coasists

of sections that behave as point scatterers (Ref 56:1-4). It is also

assumed that, relative to the observer, the object has some motion about

a fixed set of axes (Ref 56:1-4). Figure 4. shows a typical body with

the axes centered at the center of rotation of the body and with tha

rotation vector normal to the x-y plane (Refa 56:1-4,4; 68:5). The

body i assumed to remain in one range bin. The separation between

transmitted pulses i1 sufficient to prevent overlapping, which is met

by the following condititn
4 Td = N r5/2 Tb (24)

where Td is the duration of the total waveform, Tb is pulse duration

within ?the vaveform, and N is codelength re4uired for PRF staggeringr

(Ref 82:4). The maximum unambiguous range of the radar is determined

by the burst length, Td, so that

M - cTd 2  (25)

and the first Doppler ambiguity is sufficiently removed to correspoud

to double velocity of the fastest target to eliminate foldover, or

1 4f; /c (26)
T aC-

where To is the average interval between subpulses (Ref 83:4).

Additionally, it is assumed the signLC, processing is of first-order,

wh'-ch means that integration intervals are short enough for certain

lGiarities to pervail, that is, the body has linear motion (no acceler-

ation) during the processing interval in which the target is rotating

it-"it some effective rotation center (Ref 68:3). I11 other words,

tCr. Doppler shift produced by the rotating scattering points Is

14
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considered approximately constant during a signal processing interval.

The rotation can be viewed as a changing aspect between the radar line

of sight (LOS) and the target.

Imaging A• gorithm

The radar imaging simulation program models the target as a

collection of scattering points Pi with each point assigned an WkS 0Y

wthich is assumed to be aspect angle independent (Refs 31:1; 57:2).

At equal time increments the RCS is modelled as a function of frequency

according to

N
la -( Va I exp (.-j41rf k.t 1c)(2'

where N represents the number of scatterers, k is the RLOS direction

vector, and ri is the range from an origin on the body to the point

Pi (Ref 31:1). For one image, "flight" continues until the body

has undergone sufficient aspect angle change to give a cross-range

resolution of 1.5 feet or approximately 2.9 degrees of change, as

determined by

f DX/2)

r
e (28)

(X/2)
Aem

uhere AOm is the aspect angle change of the body relative to the RLOS and

Se is the effective vehicle rotation rate (angular velocity) (Ref 68:5).e

The range resolution is shown in Figure 5 is determined by the

radar bandwidth. The dwell time on target needed to produc.: an image with

a given AX is
r

Tdwell - 0.65 /(AXr Ae (29) \

16
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where it can be shown that

ae CL 11v sin 0 (30)

where f is. the instantaneous RLSO angular velocity due to the varying

aspect between the target track and the RLOS and fl sin 0 is the

instantaneous velocity of the A -le perpendicular to the RLOS

(Refs 68:6; 56:1-5).

Since a moving target has many degrees of freedom of motion, the

effective vehicular rotation may be.brought about by changing aspect

between the RLOS and the target track, and by changes in aspect due

"-to target motion abouts its center of mass (Ref 68:6).

The magnitude of fl is used to scale the image from Doppler toe

cross-range units, and the image projection plane is the plane

perpendicular to fl (Ref 68:6). This assumes that ne is essentially
e e

constant in both magnitude and direction over the processing interval

(Ref 68:6).

Signal Processing

Data from a total time span T, where total angular change is

given by.

4\

-eX i (31)

and a range window R centered on the target are sampled and collected

and stored in an array. Both the amplitude and phase of the 2eturns

are stored. The sampling increment in range is R and in time, At,

where

At l 1/radar pulse repetition frequency (32)

17
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To put the data into the assumed form of a collection of points

rotating about a rotation center, it is necessary to compensate

for the motion of the rotation of the rotation center with respect to

the radar since if the target is rotated slightly, the phase of the

center will change (Ref 68:7).. This can be done by obtaining the

distance to the rotation center as a function of time with radar

tracking data, and then by subtracting the calculated signal phase

at each time from all of the phase values in a pulse return recorded

at that time. Alternately, the phase recorded for an actual discrete

target point in the signal may be used as a reference for compensating

all the phases in the return (Refs 56:1-7; 68:7). This process is

known as aligning or "cohering" the data. Next, the data are Hamming

weighted, as discussed earlier, for sidelobe control and Fourier

transformed along constant slant range lines to produce the image output

(Ref 68:7).

The unambiguous cross-range window XACR is given by

X/2 X/2XACR AO2M QeAt2

The corresponding unambiguous range window, RACRO and the Doppler

window, DACR, are simply

RR " 2 ft/s (34)
ACR At

D (35)
DA(K At

with A in feet and At in seconds (Ref 68:8).

The cross-range grid increment, AX is given by

AX - X.-./(nunmber of output points in the (36)

transform)

18
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In general, AX < AX , the cross-range resolution, in order that the

sampling not be too coarse to miss significant output features (Ref 68:9).

Strattan (Ref 83) points out that the number of profiles (RCS estimates)

integrated should be at least equal to the ratio of the waximum cross-

range dimension of the target to AX and that the transforms should ber

performed at slant-range intervals no larger than the range resolution

AR ' c/2B (37)

where B a l/T, the Doppler bandwidth of the system. The angular interval.

needed for the cross-range scale factor may be determined approximately

from flight path tracking data. Figure 5 shows the resolution relation-

ship necessary for good imaging (Ref 68:5).

Detailed mathemetical first-order range-Doppler processing is

given by Rafael (Ref 68).

Simulation Program TGTID

The Simulation Program TGTID (Appendix A) used in this thesis was

written by researchers at the Syracuse Research Corporation,

Syracuse, New York. The listings of the progran and its supporting

subroutines are located in the Appendices.

The "input data" is coherent radar cross-section data as a

function of frequency. It is inversed Fourier transformed to radar

cross-section as a function of range. This data is first aligned

(cohered) so that the first peak of each range sample occupies the same

range bin and then a phase adjustment is made giving the first peak /

zero phase.

For fixed range, the adjusted data (now radar cross-section as a

function of pulse repetition interval) is Fourier transformed along .7

-9
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Assume fD is constant over rotation

interval T.

Target rotates Aem - n T plitude

Stays within range cell.
Spectral analysis locates fD

therefore X.

Doppler resolution fDr eT =6m

Cross range resolution
x Dr(X/2)-

r ne Oem

Y location given by slant ~X"
range resolution.

Figure 5. Range-Doppler Resoletion Relationships

constant range cells to give the RCS in terms of Doppler frequency

which is then scaled to cross-range. The result is a cross-range

versus range "ridar image" Ohose entries are the associated RCS's

(Ref 56:2). This array is then displayed and "squared up" so that

an undistorted "picture" of the aircraft RCS response is realized. A

block diagram of the processing is shown in Figure 6 (Ref 68:8).

Program TGTID Description

The main program TGTID (Appendix A) reads in the radar (location

and frequency) and target (scatterer) parameters. Subroutine CINIT

(Appendix B) computes the number of samples and order of these samples

as a power of two based on the given parameters. Subroutines SLANTV,

(Appendix B),DOTP (Appendix B), CTRAN (Appendix B), FFT (Appendix C),

20
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Figue 6.Block Diagram of Basic Image Processing
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and ROLL (Appendix B) are used to "generate" the RCS data as a function

of range. Subroutines CIMAGE, (Appendix B), HANWGT (Appendix B),

FFT, and ROLL are used to process the data and Subroutines PLOTID

and BUFOUT (Appendix G) are used to display the synthetic image

created from the RCS data. A complete description of each subroutine is

given with their listing in the Appendices. Radar and Scatterer

parameters used in this thesis are in Appendix H.

For this thesis, four scatterers were simulated and their returns

processed. A representation of the target (four scatterers) and

the radar set is shown in Figure 7. A sample "image" of the four

scatterers as "processed" by the Syracuse Research Corporation's

computing system using this simulation program with FFT6 is shown in

Figure 8 and was used as a standard of comparison for the alternative

forms of processing used in this thesis.

z

Y

(0 9 0, 0)(0,3,0)

t(5,0,0)
Radar

(O,-1,0) Set

(500,0,0)

Figure 7. Simulated Target and Radar Configuration
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Figure 8. Syracuse Research Corporation Generated Sample Image2
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Subroutine PLOTID (Appendix C) was written to display the

generated "image" using a CALCOHP plotter. Each display is

generated by comparing each element in the image matrix and plotting

a symbol if the value exceeds a threshold level. In this way, only

the prominent power spectral pealer or highlights of the scatterers

are plotted. Figures 9 through 14 show the images plotted using the

Simulation Program TGTID with Subroutine PTOTID and Subroutine FFT6.

The threshold set in Figures 9 through 11 are set too "low". The

threshold set in Figures 12 and 13 are in the proper range, where the

threshold set in Figure 14 is too "high". The threshold level in

an actual system would be set dynamically with range information and

signal "strength".

All programming is done in FORTRAN IV Extended on the CDC 6600

CYBER 74 System. The plots are generated using a CALCOMP Plotter.

2
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Figure 1.1. Subroutine FFT6. Threshold = 1000. .
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Figure 12. Subroutine FFT6; Threshold -1200.
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Figure 13. Subroutine FFT6; Threshold'- 2000.
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Figure 14. Subroutine FFT6: Threshold 2500,
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III. Evaluation of Orthogonal Transforms

The use of orthogonal transforms is investigated in this Section.

A transform usually possesses some attributes that make it desirable

to use in a particular application. These characteristics include:
/

applicability to the problem at hand: mean square error, probability

of error, computational advantage, programmable in some computer

language, and computer memory required to compute the transform.

These characteristics are often used as criteria for determining the

acceptability of the transform, especially for implementption on a

digital computer.

The Karhunen-Loeve, Cosine (Sine), lellin, and Hankel transforms

"are investigated and found not to be suitable for this application.

The Walsh (Hadamard) transform is examined in detail because of its

similaraties with the Fourier transform, its computational ease

and speed, and the existence of an analogous Wiener-Khintchine theorem.

Karhunen-Loeve Transform

The optimum transform for data compression and for satlsfyIng the

minimum mean square error criteria iz the Karhunen-loeve transform

(Ref 9:123). Its most common application is found in image and picture

transform coding where data compression is highly desired (Ref 48:64, 65).

The transform is composed of eigenvectors of the correlation matrix of

the original signal, picture, or class of images to be coded (Ref 9:124).

The reader is referred to Andrews (Ref 9) for a detailed treatment of

the Karhunen-Loeve transform.

There are two major problems associated with the use of the

Karhunen-Loeve transform. The first is that a great amount of

computation must be performed (Refs 9:125; 10:41). The correlation

31
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matrix must be estimated if it is not known. Next, the correlation

matrix must be diagonalized to determine its eigenvalues and eigenvectors.

Finally, the transforain itself must be taken. In general, there Is. no

fast computational algorithm for the transform. Since it Is usually

not separa~ble (Ref 9:125) (For examnle: for N data points, the

2 2
computational load is 2(n );for 128 points, tnis is over 500

million multiplications, which is too many to be feasible.) The

second difficulty is that the mean square error is not a valid error

criterion for most applications (Ref 9:125) including this one.

Cosine (Sine) Transform

The Cosine (Sine) transform has been found to compare favorably

with that of the optimal Karhunen-.Loeve transform (Ref s 4:90; 48:71,72).

The Discrete Cosine Transform (DCT) of a data sequence x(n),

n -0,1,29,....,(n-1) is defined as

G (0) I xtn) (38)

N- $a)co (2n+l) kwG (k) 1 j~(~o (39)
X N t0RO 2N

where N is the total number of samples and G (k) is the k th DCTX

coefficient (Ref 4:90). Ahmned et al. state that Equation 39 can be

expressed as

2i)-~R 2N-1 kn
G N W{e exp((-jkn)/2N) Ium x(n)W, Z 40)

where W .- exp(-j2ir/2N), j - Yv'-T, x(n) - 0 for mn - N, (N+l),...,

(2N-1), and Re{-)1 implies the real part of the term enclosed (Ref 4:91).

Frq* Equation 40 it follows that the N DCT coefficients can be computed
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using a 2N-point fast Fourier transform (Ref 4;91). Similarly, if a

discrete Sine transform were desired, the Re{-} in Equation 40 would

be replaced by Im{" }, which denotes the imaginary part of the term

enclosed. It can be seen that the computational speed of the DCT or DST.

is slower as that of the FFT since twice as many points must be

transformed. No other fast transform algorithm curren-iy exists for

the DCT or the DST.

Mellin Transform

The Yellin transform possesses the unique property of "scale"

invariance (Ref 22:78). That is, scale changes in the input do not

produce scale changes in the output. The Mellin transform M(u) of a

function f(x) is defined by

M(u) - f(x) x-U-1 dx (40)

0

and the inverse transform is given by "

M)- j7 M(u) x du (41)
y-ia

where y is chosen so that the integral exists (Ref 83:13). The discrete

Mellin transform is given by

N J
M(kAu) - M f(iAx)(iUx)ikfu- Ax (42)

where N is the number of samples of f(x), and the input and transform

space resolutions are Ax and Au respectively (Ref 22:79).

No fast computational algorithm has yet been found for implementing

the Mellin transform directly. Processing time for a digital computer

can be quite long (Ref 22:80). Casasent and Psaltis point out that a

digital Mellin transform can also be realized by exponantally sampling
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the input and then performing an FFT on this data (Ref 22:78,80)., It

is concluded, therefore, that the Mellin transform offers no

advantage over the FFT processing currently being performed in

the simulation program. For a further comment on this subject see /

Chapter VI.

Hankel Transform

The r..akel transform is useful if symmetry exists about an axis

and if polar coordinates are appropriate (Ref 85:46). The Hankel

transform pair are defined by

F(k) f f(x) Jn(kx) dx (43)

0

and

f(x) - fF(k) JU(xk.) dk (44)
0

where J (kx) is the Bessel function of the first kind of order n

(Ref 85:46). This application can be seen to demonstrate some elements

of symmetry about an axis, say the aspect angle of the body at T12 of the

observation interval, but no metbhd to convert the received Doppler

waveform to polar coordirt'.es could be found. Additionally, this

transform requiree the calculation of certain boundary conditions

which is a very difficult problem (Ref 85:46). It was concluded that

the lankel transform could not be applied to this problem.

Walsh Functions and Walsh Transforms

Walsh functions are a complete orthonormal set of square wave

functlins that are finding increasing use in various digital signal

processing aplications (Ref 29:137, Ref 44). They exhibit similarities

to the trigonometric sine and coslue functions in many of their
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properties (Refs 87; 4; 5). The bivalued characteristic, orthogonality,

and ccmputational advantages of these functions are the basis and

mctivation for their detailed study in this scetion.

DeFinition. Continuous Walsh functions may be defined in several ways

(laf 52:211). They may easilybe defined as products of Rademacher

ftnctions (Refs :)2:212; 84:4).

The Rademacher functions (Refs 29:177; 84:4) are defined by

1,0 < < <.1

R0 (e) - 2 (45)
) -1, 1 < e < 1

S 2

R( 0 + 1) - R (0) (46)

Rn (0) -: R (2no), n - 1,2,3,... (47)

Figure 15 shows the first five Rademacher functions (Ref 55:39).

To form the Walsh function wal(n,0), first, form the binary

representation of n, then form the Gray code version of n, and multiply

together Rademacher functions according to the 1 bits in the Gray code

(Ref 52:212).

If n in binary is

N =b bmb ... b (48)

then n in Gray code is

n mg-~m2'"o(49)

17here

g ,q b (50)

and
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R 2(e) +1

0

-1

R 4 (e) +1

Figure 15. The First Five Rademnacher Functions, R ne)
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9= b bi+l,

(51)

where 0 is modulo-2 addition with no carries (Ref 52:212). The Walsh

functions can now be defined by

wal(o,e) m 1 (52)

Val (ne) - Rmgm() R . R0 go( 0 ) (53)

where n is the order and e is normalized time (Ref 84:4). This can also

be written as

m

wal(n,e) - I g& 1 (e) (54)
k-0

where the summation symbol denotes modulo-2 summing (Ref 29:187).

For example:

610 " 11102 =101 (55)

wal(6,Oe - R21(e)R 0(e)R0 1 (0) (56)

=R2 (elRD (e) (57)

This procedure to find a particular Walsh function is easily

remembered. It should be noted that the first argument of a Walsh

function denotes its "sequency". Sequency, as defined by Harmuth,

is the number of zero crossings or sign changes of the Walsh function

in the half-open interval (0,1) (Ref 44:50).

Harmuth uses the notation Wal(J,O) to define the Walsh function and

further defines
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WalC(0e) = 1 (58)

Cal(n,e) f Wal(2n,e) (59)

Sal(n,e) A Wal(2n-l,O) (60)

where the Cal and Sal nares are used to parallel the cosine and sine

functions (Rei 44:22). Several notation schemes are used in the

literature and are summarized by Neck (Ref 55:11). The first eight

continuous Walsh functions are shown in Figure 16.

Discrete Walsh Functions. Discrete Walsh functions are sampled

versions of the continuous set (Ref 77:457). Shanks assumes that the

discrete functions are infinite in extent, and are periodic with period

N, where N is an integral power of two (Ref 77:457). Thus a complete

orthogonal set will have 11 distinct functions, designated as wal(n,m).

The complete set is represented over the range n - 0,1,...,N-1 and

m - 0,1,...,N-1. The first two discrete Walsh functions are defined

as

wal(O,m) - 1, n - 0,1,2,...,N-1 (61)

walX1,m) - l,m - 0,I,2,...,'N/2)-l (62)

= -l,m - Ni2, (N/2) + 1,...,N-1 (63)

Various iterative equations have been used to generate the remainder of

the set, but Henderson's seens to be the most convenient

wal(n,m) - wal([N12],2m) . wal(N-2[N/2],m) (64)

where [N/2] indicates the integer part of N/2 (Refs 45:51; 77:457).
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Shanks shows that this recursive equation generates a complete

orthogonal set (Ref 77:459). Figure 17, shows the first eight discrete

Walsh functions of length eight generated by Equations 61. 62, and 63

"(Ref 77:457). "

The Walsh functions may also be represented in matrix notations.

)k

Let N - 2 , where k is a positive integer, then the N th order Walsh

matrix is constructed by samplii,.g the first N Walsh functions once

in N equal subintervals of (0,1) (Ref 87:5). The matrix constructed

from sampling the sequency ordered Walsh functions (Figure 16) results

in a sequency ordered NxN Walshmatrix. Figure 18a, shows the sequency

ordered Walsh matrix for N e 8.

11 1 1 1 1 1 1 1 1 1 1

aRf 77 4 7 .
....

y r e . a u al r e

.. Ni

11~1 1-1l1 111-1.1-1-

in N eqa. suneqrvncy orde b01 Re 7 . Nh atural" osrder d.•

Free alhmtigufre 9 as anso re N = 88."
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A second, simpler, method which generates Walsh matrices in what is

termed "natural" order is a Kroneker product of p second o:der Walsh

matrices (Refs 85:5; 78:177). This form or the Walsh matrix is of.'en

referred to as the "Hadamard" matrix. A secoad order Walsh matrix is

defined by

W2 • 2

"(65)

Hadamard matrices of higher order, for N a power of two, are generated by

the Krontker product operation. such that

H 2 N m [ (66)

Figure 18b, shows the natural ordered Walsh matrix or Hadamard matrix for

n - 8.

Both the Walsh matrix and the Hadamard matrix are square arrays,

whose rows and colunns are orthogonal to each other, that is, the

product of Lhe matrix and its transpose is the identity matrix times N,

where N is the order of the matrix (Ref 78:177).

HIHT m N* (67)

Walsh Transform. Since the Walsh functions form a complete,

orthonormal set over the interval (0,1), any absolutely integrable function

defined over the interval can be expanded into a series of Walsh

functions analogous to the Fourier expansion of such a function (Ref 44:45).

The discrete Walsh transform of a function is defined by
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1N- I

F(m) - 1 N f(n) wal (mn) (68)
n-0

m-

and the inverse transform is given by

N-i*
f(n) = • F(m) wal(n,m) (69)

m-0

n 8 !,1,2,...,N-I

where F(m) is the m th normalized Walsh coefficients, f(n) is the

discrete input vector, and wal(m,n) is the m th Walsh function

(RePf 77:457). It should be noted that since the Walsh matrix is

orthogonal, the following relationship holds

wal(n,m) - wal(m,n) (70)

Using matrix notation, the Walsh transform matrix equation is

given by

1
[A] = [W] [F] (71)

where [F] is a column vector of sample values of the input signal,

[W] is the Walsh matrix, and [A] is the column vector or Walsh

coefficients (Ref 84:7).

Similarly, the "Hadamard" transform is given by

1
[A] - • [H] [F] (72)

Where [H] is the Walsh matrix in natural order (Ref 78:178).
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The function F(m) or [A], therefore, represents the "sequency"

spectrum of f(n) in the same sense that a set of Fourier coefficients

represents a frequency spectrum (Ref 44:51,52).

The computational load for either Equation 71 or Equation 72 can be

seen to be N(N-l) additions (multiplication by -1 is not really a

multiplication but just a "sign" change and an addition).

However, Good has developed a matrix factorization technique which

leads to a "fast" transform algorithm (Ref 8:16, 17). Good's technique

can be used to factor Kroneker matrices such as in Figure 18a and b.

Matrices of order N = np can be factored into p matrices of order N

-(Ref 8:17). If the matrix to be factored has been generated by the

Kroneker product of identical matrices, then its factors will also be

identical (Ref 84:8). The factors of a Walsh matrix of order N = 8 =23

are shown in Figure 19 (Ref 84:9). Since the matrix factors include

many zero elements, the number of computations is reduced to Nlog2 N

additions (Ref 84:8).

A flow diagram of the Fast Walsh transform is given in Figure 20

(Ref 84:9). Similarly, a flow diagram for the Hadamard transform

is shown in Figure.21 (Ref 76:178). The recursive structure of the

diagrams leads to an efficient programming of the algorithm on a

digital computer (Refs 78:179; 84:8; 1:276). The coefficients of the

Fast Walsh transform (FWT) are in "bit reflected" order and those of the

Fast Hadamard transform (FHT) are in sequency order. Therefore, the FWT

requires a reordering procedure which adds approximately 15 to 20% more

t-- execution time (Ref 51:204). Several algorithms exist for converting

from bit reflected order to sequency order (Ref 53:16).

f
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Dyadic Convolution. The dyadic convolution of two functions f(t) and

g(t) is defined as

h(t) f 0 g

- f(T)g(tOr)dT (73)
-w

where 0 denotes dyadic or logical convolution and t f t denotes addition

modulo-2 (Ref 41:616-617). The discrete dyadic convolution of two

sequences f(n) and g(n) of length N is defined by

1N-1 ,
h(n) I f(i)g(nei), n

N i-o
(74)

Logical Wiener-Khintchine Theorem. If the Walsh transform of

f(rn) and g(n) is defined as F(s) and G(s), respectively, then the

following property is true

h(n) f 0 g +- F(s) G(s) (75)

where s represents sequency (Ref 55:19). The time-sequency domain

logical Wiener-Khintchine theorem is defined as

R( ) = f Of W F(s).F(s)

- F(s)
2

- P(s) (76)

which is analogous to the "arithmetic" Wiener-Khintchine theorem of the

time-frequency domain (Refs 55:19; 72:271; 1:615).
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Power Spectral Density. The sequency power spectrum, P(s), is

easy to generate from the Hadamard transform and has a physical

interpretation quite similar to the frequency power spectrum (Ref 44:51).

The sequency power spectrum, as defined by Harmuth is given by

A 02 k 0

P() A2 +A2 k = 1,2,..,N/2-1 (77)
P(s) = Akl +A A k...

2k-i

A2 k = N/2

where A 2k- and A2k are the odd and even sequency discrete Walsh

transform coefficients (Refs 44:51; 64:93). However, this spectrum is

not invariant to time shifts (Refs 64:92; 41:617). Polge et al.

state that the variation of the sequency power spectrum with the time

axis position of th input data is a serious drawback in signal processing

activities unless only gross spectral features are desired or the

possibility of time synchronization exists (Ref 64:93). Andrews

and Caspari, in their work on generalized spectral analysis, demonstrate

the "shift variance" of the Walsh transform relative to the "shift

invariant" Fourier transform (Ref 8:24). Figure 22a shows the spectrums

of a block pulse End Figure 22b shows the spectrums of the block pulse

shifted relative to the time origin (Ref 8:24).

A time shift invariant power spectrum can be generated by defining

the power spectrum as the Hadamard transform of the autocorrelation

function (Equation 76) and noting that the autocorrelation function

is invariant to time shifts (Ref 64:93). If F(s), s = 0,1,...,N-1,

is the Hadamard transform of the sequence f(n), then the time invariant
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(a)

(b) (Ref 8:24)

Figurii22. (a) Orthogonal Decomposition of a Block Pulse
(Fourier to Walsh Transition). (b) Orthogonal Decompositioný
of a Shifted Block Pulse (Fourier to Walsh Transition).

power spectrum is

N-1
PTI(s) 10 Qjs F(s) (79)

where the matrix Q, made up of elements QJs, is dependent on F(s)

(Ref 62:93). The computation of the power spectrum using the

autocorrelation function is time consuming, and the high speed

advantage of the Hadamard transform is lost (Ref 62:93).

Simulation Program Test. The possibility of using the Walsh transform

in the simulation program TGTID was investigated by substituting the FFT

subroutine with a fast Walsh transform.
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The test was made with Sbroutine FHTl (Appendix D) substituted

for Subroutine FFT6 (Appendix C). Appropriate iaodifications were made

to Subroutine CIMAGE (Appendix B, Version 2), and Subroutine ROLL

(Appendix B) was replaced by Subroutine WROLL (Appendix B). The

"standard" Walsh power spectrum was computed, and each spectral

element of the resultant image matrix was compared with a threshold and

plotted if it exceeded the threshold. The threshold was varied to

determine its effect on the image. The results of the first test are

shown in Figure 23 - 27, beginning on page 53.* It can be seen that

the image does not look entirely like that of an image generated using

a Fourier transform. The effect of time shifting the Input was tested

by "repositioning" the four point scatterers (Appendix H, Data Set 2).

A new set of images were constructed and are shown in Figures 28 - 32,

beginning on page 58. It can be seen that the scatterer "informati.on"

has changed and that the two sets of images have only little similarity.

The second data set was used with the FFT subroutine reinserted into

the simulation program. It ca be seen that there is no change in the,

image, except in its location in the "viewing field", and the result

is shown In Figure 33, on page 63

This difficulty, as Blachman observes, is attributed to the fact

that after time shifting, a Walsh funxction generally becomes the sum

of an infinite number of Walsh functions while a sinusoid simpl,

turns into the sum of a sine and cosine of the same frequency. Thus

a change in time scale, or a shift of the time origin usually will

grossly alter a Walsh spectrum but has no effect on the Fourier spectrum

(Ref 16:347).



It is concluded that since the Walsh power spectrum computed by the

direct method is not time shift invariant and since no fast algorithm

exists for the second method and since there is little possibility

of time syhchronization, the Walsh transform can not be utilized

in this application.
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Figure 23. Subroutine FHTl, Data Set 1; Threshold - 1.
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Figure 25. Subroutine FHT1, Data Set 1; Threshold -20.
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Figure 26. Subroutine FHTl, Data Set 1, Threshold 50.
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Figure 28. Subroutine FHT1, Data Set 2; Threshold - 1.
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Figure 31. Subroutine FHT1, Data Set 2; Threshold -50.
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Figure 32. Subroutine FHTI, Data Set 2; Threshold - 100.
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Figure 33. Subrct::iI!C rT16; Data Set 2; Threshold - 14)!).
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IV. Walsh Domain to Fourier Domain Conversion

A technique developed by Andrews and Caspari (Ref 9) implements

a fast Fourier transform, a fast Hadamard transform, and a variety

of other orthogonal decompositions suggesting a generalized spectral

analysis. Their results imply that a relationship exists between

the Walsh domain and the Fourier domain. Robinson (Refs 72, 73)

presented a derivation of a recursilve relationship between the arith-

metic and logical autocorrelation functions of a wide sense stationary

process. This work was based on a theorem discovered by Gibbs and

proved by Pichler (Ref 38). Siemens and Kitai (Refs 79, 80) and

Blachman (Refs 15, 16) describe schemes for converting from Walsh

coefficients to Fourier coefficients. Both approaches seem promising

1ecause of the computational speed advantage of the FWT/FHT as compared

to the FFT and will be analyzed in this section. However, it is shown

that Robinson's approach is incorrect and the second approach not

feasible for use in radar target identification.

Walsh Power Spectrum to Fourier Power Spectrum

Robinson defines the Walsh power spectrum of a sequence of rtndom

samples as the Walsh transform of the "logical" autocorrelation

function of the random sequence, where the logical autocorrelation

function is defined in a similar form as the "arithmetic" autocorrela-,

tion function (Ref 72:271). Robinson asserts that the Fourier power

spectrum, which is defined as the Fourier transform of the arithmetic

autocorrelation function, can be obtained from the Walsh power spectrum

by a linear transformation (Ref 72:271). The chain of transformations

can be summarized as
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Fourier Arithmetic

ower jutocorrelatio
F-1

Spectrum Function

SN(7

Walsh Logical
Power Autocorrelation

SW-1

Spectrum Function

BRc-ever, the procedure to find the transformation matrix, T, was

found to'be incorrect. Robinson defines the logical autocorrelation

function as

1N-i
L(m)(k) N x(J * k)x(J)

30
(80)

k - 0,1,29...,N-1

where x(J), j - 0,12,...,N-1, is a random sequence of length N -2n

and represents a window or block of N samples of discrete random pro-

cess. The logical autocorrelation function is then defined as the

expected value of the local logical autocorrelation function of

Equation 80

L(k) E{L(m)(k)} (91)

where the expectation operator E denotes the ensemble average of M

local logical autocorrelation functions (Ref 73:299)

L(k) 1 M L(m)(k)L (k) (82)

k - 0,1,2,...,N-1

6,
7
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Robinson then defines the arithmetic autocorrelation function as

as even function of time difference only

E(x(j+k*)x(j)) = R(k*) (83)

where k* is the time shift (Ref 72:272).

If Equation 81 is written in matrix form using the indices of

Table I, Robinson asserts that a linear combination of R(k) is obtained

for each L(k>. As an example, Robinson presents, for N = 4, the

following

L(O) x(0) x(1) x(2) x(3) x(O)

L(1) E 1 x(1) X(O) x(3) x(2) x(1) (84)

L(2) 4 x(2) x(3) x(O) x(l) x(2)

(3)1 x(3) x(2) x(1) x(O) x(3)

Robinson shows that the first row which corresponds to L(0) yields the

correlation of N samples for zero time shift, thus L(0) - R(O), which

is true. Robinson also states that L(1) - R(1) which is not true.

The standard definition of the arithmetic autocorrelation function is

given as (Ref 88:13) ..

N-1

R(T) - X(n)X(n+ITI) (85)

Using Robinson's relation, Equation 84, L(1) is found to be

L(1) - 1/2[x(1)x(O) + x(3)x(2)] (86)

Using Equation 85, it can be seen that

66



R(1) 1/4[x(O)x(l) -x(1)x(2) + x(2)x(3) + x(3)x(O)] (87)

Table I

Bitwise Modulo 2 Addition, Given by j * k, for
Integers Between 0 and 3

0 1 2 3

k

0 0 1 2 3

1 1 0 2 3

2 2 3 0 1

3 3 2 1 0

(Ref 72:272)

Table II

Time Shift k*, Given by k* - (j * k) - J, for
Integers j and k Between 0 and 3

0 1 2 3

k

0 0 0 0 0

1 1 -l 1 -l

2 2 2 -2 -2
/1

3 3 -1 -3 -3

(Ref 72:272)

therefore,

L(l) 0 R(1) (88)

Robinson's error arises from the confusion of the use of k* in
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Equation 83 as a dummy variable and the use of k* in Table II as the

time shift for computing R(k). This is an incorrect use of the defi-

nition of the arithmetic autocorrelation function given in Equation 85,

that is, the time shift cannot be varied when computing the arithmetic

autocorrelation function for a particular time shift. Robinson uses

Table II to find a specific k* for each j in the summation in com-

puting R(k).

It is concluded that this approach is incorrect and that there

is no linear relationship between the Walsh power spectrum and the

Fourier power spectrum of a signal.

Walsh Series to Fourier Series Coefficeints

Siemens and Kitai, and Blachman have shown that the coeffklients

of the Walsh series of a function can be used to derive the correspon-

ding Fourier series coefficients. The conversion equation for each

Fourier coefficient is in the form of an infinite summation of

products of constants and the Walsh coefficients (Ref 79:295). They

assume that the signal is frequency-limited so that precise evaluation

of the Fourier coefficients in terms of Walsh coefficients is possible

and that the highest normalized frequency component (harmonic) N and

the highest normalized sequency component M are equal. Thus a finite

number of Walsh coefficients can be used for computation of the Fourier

coefficients. The conversion computation is further reduced if M is

a power of two (Ref 79:295).

Let a function f(e) be represented by a sequency-ordered Walsh

series

68

/



f(O) - Ao + [ [Am cal(m,e) + Bm sal(m,O)] (89)
U-0

The coefficients Am and Bm of the even and odd Walsh functions, res-

pectively, are defined by

Am - f(e)cal(m,e)de (90)

0

Bm - f(8)sal(m,G)de (91)

0

The same function f(n) has the corresponding Fourier series

a°
f(e) -- + [ancos27m8 + bnsin27mel (92)

n-i

where

an - 2 f(O) cos 2inO dO (93)

bn- 2 J f(e) siu 27m6 dO (94)

The objective is to use the Walsh coefhicients Am and B. to derive an

and bn.

Siemens and Kitai claim that the even terms, an, of the Fourier

series of a signal are functions only ofthe even terms, Am, of the

corresponding Walsh series (Ref 79:295). Similarly, bn terms depend

only on B. terms. The even, real terms a e derived below; similar

derivations apply for the odd terms.

The Walsh to Fourier series conversion is derived by equating

the terms of each series (Ref 79:296)
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Sancos2Trn8 I Amcal(m,8) (95)
n=1 m=l

The cal functions are expanded into sets of equivalent Fourier series

expressions whose terms have coefficients a wheren~m

a 2 cal(m,O)cos2irnede (96)
anm 

0

If a represents the nx] matrix of the set {an} as n ÷ •, and A repre-

sents the mxl matrix of the set {Am) as m ÷ •, then

a - F'A (93)

If only a finite number M of Walsh coefficients are known, then an can

only be approximated as an, where

M

an I anMAm (99)
m=1

is the n th Fourier coefficient of cal (m,e). The mxn matrix of the

set {an,mJ is denoted FT (Ref 79:296). In the expansion of the right

hand side of Equation 96, terms coi.rairAng cos21fne are grouped,

yeilding an values given by

an = anm Am (97)
M= 1

However, if the function f(n) is either frequency-limited or sequency-

limited, then

an = (100)
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The coefficients a can be considered the Fourier coefficients of tbc "
n

frequency-limited or sequency-limited function (Ref 79:296).

Th e next step is to find the set (a,,, of F T, the Fourier co- I

efficient set of cal(m,6). Siemens and Kitai developed an alternative

expression for the Fourier transform of a Walsh function which differed

from eariler expressions in that it incorporated the Gray code repre-

sentation of the order of the function (Refs 79:81; 15:349).

Additionally, the expression ir nonrecursive. The definition of the

Fourier transform of a Walsh function, val(m,O), is defined as

1'

r[wal(m,e)] - wal(me)exp(i27rfe)de (101)

The even and odd Walsh functions, cal(m,O) and sal(n,e), respectively,

have the Fourier transforms d'V

F[cal(s,e)] - C(fs)

f cal(s,O)cos2irfede 
(102)

where f and s are normalized frequency and (equency. Since the Walsh

functions are discontinuous, evaluation of Equation 101 - Equation 103

would normally involve a summation of integrals (Ref 80:81).

Siemens and Kitai state that it is convenient to view a contin-
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uous Walsh function as the convolution of the sequence of unit im- -

pulses that form the discrete Walsh function over the interval

- 0 se s I with a rectangular pulse of unit magnitude and the width

of 1/ 2M equal to the spacing of the unit impulse, where M 1a the number

of bits in the binary representation of m. The Fourier transform of

the Walsh function is then the product of the trensforms of the discrete

Walsh function and the rectangular pulae (Ref 80:81). This relation -

is then
M-! I n I

F[wal(m,e)] (-l)g°(-l)O.[ 11 Cos 1- gy )]'sinc(f/2M) (104) -..-

x'O 2x

where gx is the xth bit in the Gray code representation of m, and a is 1 ,.

the number of Gray code bits of value ONE, and

sinc(f/2M) A sin( f/ 2 M)/( f/ 2M) (105) I
4 ,

If the cal and sal functions are given, the order m is found from

val(m,e) - cal(s,e),
/

m - 2s (106) ,

or C',

wal(m,e) - sal(s,e), /I-

"m- 2a- 1 (107)

Equation 99 is sufficient to compute the Fourier coefficients of

f(n) assuming the set (A mI has been found and Equation 104 has been

used to determine the FT's necessary to find Fourier coefficients. A

total of 2V Walsh coefficients are necessary to find the complex
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Fourier coefficients. Therefore, to find A requires 2Mlog 2 M real

additions and subtractions. A total of 2M2 storage locations are

required for the Fourier coefficient sets of cal(m,O) and sal(m,e).

The computational load to find the Fourier coefficients of f(n)

can be seen to be 2M2 multiplies and (2M2 + 2mLog 2 M) additions. This

is compared to 4MLog 2 M real multiplies plus 2XI additions to compute

the fast Fourier transform.

It can be seen that the Semes conversion approach requires

greater computational effort than the direct fast Fourier transform

method and a very large storage requirement for the transformation

matrices (FT). It is therefore concluded that this approach is not

feasible for implementation in this problem.
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V. Comparison of FFT Algorithms

It is seen in Section IV that many orthogonal transforms are not

feasible for use in tactical target identification signal processing.

This section provides a brief description of the fast Fourier transform

(FFT) and then selects the optimal implementation of it for this appli-

cation. Performance criteria, based on execution time, memory

requirements, and error size, are developed and serve as a basis of

comparison among the implementations considered. Two general types of

implementations, floating point and fixed-point, are presented, tested,

and evaluated using the criteria.

Several different "floating point" FFT subroutines are tested using

the simulation program TGTID as the "driver" program to determine their

relative utility. Two of these FFT subroutines are modified to

execute more efficiently then one FFT is selected based on the criteria

as the most feasible in the simulation program. The FORTRAN IV code of

the FFT subroutines is listed in kppendix C.

A "fixed-point" FFT implementation is derived and demonstrated to

be feasible in this application. It is considered to be the optimal

approach for this problem. Several variations of the fixed point

FFT are implemented with the FORTRAN IV listings given in Appendix E.

One fixed-point FET suboutine is selected as the best choice for use

in the simulation program.

Background

The FFT algorithm is a highly efficient procedure for computing

the Discrete Fourier transform (DFT)
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X(k) = • x(n)exp(-j2nnk/N) (108)
n=0

for k = 0,1,2,...,N-l, where x(n), n - 0,1,2,...,N-1 is an equally

spaced complex data series (Ref 62:100). It takes advantage of the fact

that the calculation of the Fourier coefficients can be carried out

iteratively, which results in a considerable savings of computational

time (Ref 23:45). The DFT is a reversible mapping or unitary operation

for time series and has the same mathematical properties as those of

the Fourier integral transform given in Equation 8 (Ref 23:45). lI

particular, it defines a frequency spectrum of a time series.

If digital analysis techniques are used for analyzing a continuous

waveform then it is necessary that the data be sampled at equal time

intervals in order to produce a timn series of discrete samples which can

be used in a digital computer. So that the time series conrletely

represents the continuous waveform, it is necessary that the waveform be

band-limited and sampled at twice the highest frequency in the waveform

(Ref 24:45). This rate is known as the Nyquist rate and the equispaced

samples are known as Nyquist samples.

The speed of the FFT algorithm depends on the factorability of N

N - R n (109)
i-l

and then decomposing the transform into M stages with N/n transformations

i

of size ni within each stage (Ref 18:93). The FFT algorithm is most

efficient uhen N 2M or n = 4 M/2 since a compu,-ational ad'rantage is

gained by decomposing the computation of the DFT into successively

smaller DFT's (Refs 54:2; 62:285-287). The improvement in computational

efficiency of the FFT is proportional to N log2 N as opposed to the
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computational load of N2 for the straight DFT approach (Ref 60:287).

There are two basic FFT algorithms. The first, called "Decimation-

in-time", derives its name from the fact that in the process of

arranging the computation into smaller transformations, the sequence

x(n) is decomposed into successively smaller sequences. In the second

general class of algorithm, the sequence of Fourier transform coefficients

of X(k) is decomposed into smaller subsequences, hence the name

"decimation-in-frequency" (Ref 62:286-287). When eitber one of the

two algorithms is used, the ordering of the sequence (either input or

output) must be taken into account. If the decimination-in-frequency

algorithm is used the output coefficients will be in bit-reversed y

order; and if the decimation-in-time algorithm is used, the input samples

must be put into bit-reversed order. Therefore, in addition to

performing the FFT, a reordering procedure must also be implemented which

accounts for approximately 15-20% of the execution time of the FFE

process (Ref 64 :17). Figure 34 and Figure 35 show the signal flow

graphes of the decimation-in-time and decimation-in-frequency algorithms,

respectively.

The literature is rich in material on the FFT: its derivation,

its properties, its uses, and its pitfalls. The reader is referred

particularly to Cooley and Tukey (Ref 25). Bergland (Ref 12),

Cochran et al (Ref 24), Gentleman and Sande (Ref 36), Singleton (Refs 81,

82), and Oppenheim and Schafer (Ref 62). The Bibliography of this

thesis contains several other related and excellent references.

Criteria

The criteria generally applied to the evaluation of an FFT algorithm

include program execution time, accuracy, storage requirement , and
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adaptibility to the digital computer to be used (Ref 34:1) Bergland

points out that the number of variations of the FFT algorithm appears

to be directly proportional to the number of people using it and that

most of these implementations are based on either the Cooley-Tukey or

the Sdnde-Tukcy methods, but are formulated to exploit properties of

the time series being analyzed or the properties of the computer being

used (Ref 12:50). Ferrie states that best accuracy is achieved only

at the expense of increased execution time and storage (Ref 34:10).

In essence, then, no single FFT algorithm represents a "best" choice:

it depends upon the application (Ref 71:25).

For this application, short execution time is considered the most

important criterion, and the next most important is small storage

requirements. Since, only major spectral lines are of interest, then

only coarse calculations are important, therefore, accuracy is not

considered an important criterion. Additionally, the type of digital

computer for implementation is the DEC PDP-11/40, and its high speed

integer arithmetic capability motivated the development of a fixed-

point FFT subroutine.

Floating Point FFT Algorithm Comparison

The eight FFT subroutines evaluated are briefly described in this

section. AP the subprograms are written in FORTRAN IV. In their

original form most were named "FFT"; for this thesis they are designated

FFT1 through FFT6. Two of the subroutines, FFT1 and FFT4, are modified

to improve their efficiency. All the subroutines, except FFT2, perform

the transform in-place. And all har.dle complex exponentials in terms of

sine and cosine functions according to Euler's rule

exp(-JG) = cos e -jsin e (110)
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FFTIA and B (Ref 62:331;. FFYTA and B are ra-ix-2, declimation-

in-time transform subprograms. They can handle N equal a power of two

points. The data are treated as complex, and the trigonometric

functions are computed as they are used. They are simply implemenced

and straightforward. Computations are performed in-place and calcu-

lations use complex arithmetic. Memory storage requiremento depend

only on N. Initial bit reverse ordering is done within the subroutine.

FFT1B is made more efficient by performing the first state

separately from the rest of the stages by exploiting the fact that the

vclue of WNnk - exp(-j2ffnk/N) is zero for the first stage butterflies,

the basic-unit of computation. Therefore, the cosine and sine values

are one and zero, respectively, and the arithmetic operations are

simple additions and subtractions. Figure 34 shows this property.

FFT2 (Ref 71:21). FFT2 is a radix-2 decimation-in-time algorithm.

It uses two arrays to perform the transform, so that no separate

reordering routine is required, but the storage requirement is

doubled. Complex arithmetic is used. It is known for its accuracy

but its execution is slow (Ref 71:25). .

FFT3 (Ref 71:21). FFT3 is a simple, straight forward radix-2

implementation of the decimation-in-frequency algorithm. It uses-

real arithmetic to compute the butterfly. It requires Subroutine

RBITS to reorder the bit-reversed Fourier coefficients. Computations

are performed in-place. Internal storage requirements for this

subroutine are greater than those of the previous subroutines.

FFT4A and B (Ref 62:332). FFT4A performs the transform approx-

imately the same as FFT3 except that the indexing scheme is simpler.

Complex arithmetic is used and calculations are performed in-place.
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Reordering is accomplished within the subroutine. FFT4B is modified

to make it more efficient by perfcrming the last stage separately,

similar in concept to FIMlB.

FFTS.(Ref 52:27). FFT5 is based on the original Cooley-Tukey

FORTRAN subroutine. It is a radix-2 transform subprogram and performs ...

computations in-place. It is neither a fast or efficient implementa-

tion of the FFT algorithm (Ref 54:28).

FFT6 (Ref 45:A-3). FFT6 is a mixed-radix decimation-in-frequency

algorithm. It can handle 213 points vhich can be increased with minor

modification to the subroutine. It requires significantly more inter-

nal storage than any of the other FFT subroutines, but it is also

known for its speed (Ref 82).

Evaluation of the Floating Point FFT Subroutines

The eight FFT subroutines were tested in the simulation program

TGTID with appropriate modifications made to Subroutine CIHAGE

(Appendix B).

Execution times, memory requirements, and the number of FORTRAN IV

statements for each FFT subroutine are summarized in Table III. The

number of FORTRAN IV statements is the total number of statements

required to perform the transform and reordering routines, but does

not include comment cards. Storage requirements were obtained from

the cross-reference maps produced by the CYBER SCOPE Operating System.

Execution time was determined by using the CEC library subroutine "j

SECOND (CP) which returns time in seconds to three decimal places. In

Subroutine CIMAGE, the FFT subroutine is called 256 times (NTm - 2

and MBSZ 128; it is called 128 times for NTh - 1 and 128 times for
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NT1= 2). The FFT size is 128 points (NBSZ = 128 = 2NBORD, where

NBORD 7). Thus each FFT tested performed 256 128-point transforms

to produce the image. The execution time was measured by taking a

time "hack" (STIME) just before the FFT subroutine was called and just

after it returned (ETME) to the calling subprogram. The difference

between the two time hacks was .omputed (RTIME = ET=M - STIME) and

added to the total accumulated execution time (TTIME). The final

value of TT2fE was the total execution time to compute the 256 128-

point FFT subroutines needed to generate one image. The execution

time entry in Table III is an average of the total execution time for

each FFT subroutine to generate at least three separate images.

Results of Floating Point FFT Comparison

From Table III, it can be seen that FFTIB and FFT 6 are the

fastest subroutines. FFTIA required the least amount of memory.

However, it is concluded that FFTIB is the best floating point FFT

subroutine based on its speed and storage requirements. Figures

36-39 show the output images generated by FFTIB for increasing

threshold settings. Images generated using FFT6 are shown in

Figures 9 through 14.

Fixed-Point FFT

The implementation and use of a fixed-point FFT is motivated by

several factors. The DEC PDP-11/40 minicomputer to be used in the

actual applicaticns work of radar target imaging processes an

extremely fast integer arithmetic processor end has no floating

point processor. The 16-bit word is considered sufficient to provide

an adequate resolution since only gross, relative spectral line
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Table III

Summary of Floating Point FFT Performance Statistics

Number of Number of Aux Arrays Executin'
FFT FORTRAN Instruction Words (Words) Time (Sec)

Statements (Total)

FFTIA 36 127 ?N 1.412

FFTIB 40 143 2N 1.367

FFT2 31 142 4N 2.59

FFT3 211 197 2N 1-10 2.007

FFT4A 35 130 2N 1.550

FFT4B 40 148 2N 1.51C

FFT5 54 176 2N +15 2.38

FFT6 112 350 2N +26 1.367

ISubroutine RBITS 32 statements, 120 words
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Figure 36. Subroutine FFTIB; Threshold - 500.
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Figure 37. Sburoutine FFTIB; Threshold = 1000.
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F iurc 33. Subroutine FFTIB; Threshold i00.
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Fi.-ure 39. Subroutine FFTIB, Threshold - 2000.
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magnitudes are really required for this application. Fixed point division

by two is easily performed by shifting the binary point to the left..

The fixed-point FFl is based on the 16-bit word of the DEC PDP-i11/40.

The data word is divided into two parts: the lower 15 bits for the

numbers are scaled so that the binary point lies at the extreme left.

The input data must be put into the proper format. First, each

point is multiplied by 2 -5 1 - 32767 to put i t into a scaled integer

format. Second, each point is divided by the total number of points,

N, in the transform (in this case N - 128) to negate the gain that

is generated as the computation of the FFT progresses from stage to

- stage to prevent the possibility of an overflow when two points are

added together in the butterfly calculation. The real and imaginary

parts of each data set are scaled and are sorted in two separate, real

and imaginary, arrays, respectively.

The trigonometric functions are computed end then multiplied by

32767 to integer scale each sine and cosine value. When the

trigonometric terms are multiplied by the difference of two points in

the computation of a butterfly, the product results in a 31-bit

number plus sign, which is greater than one. To rescale this number,

it is divided by 21 32768 or more simply, the binary point is

shifted 15 ilaces to the left and the 16 least significant bits

are truncated. This, likewise, prevents an overflow condition from

occurring. The basic butterfly computational algorithm (decimation-in-

frequency) is shown in Figure 40, and the corresponding equations are

T1 X (p) - X (qk) (111)

T2 Y (p Y Y(q) (112)
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Figure 40. Flow Graph of Two-Point Integer FFT
Butterfly Using Real Arithmetic

XM+l(p) - Xm(p) + Xm(.q) (113)

YM+l(p) - Y(p) + Y (q) (114)

Xm~l(q) = (cos(2 r)*32767*Tl + sin(2 r)'32767)/32768 (115)

YX (q) (cos(2 r)*32767*T2 + sin(2 r)*32757)/32768 (116)

where X and Y represent the real and imaginary parts, respectively.

The accuracy of the fixed-point power of two FFT algorithm is

addressed by Welch (Ref 91). His error analysis led to approximate

upper and lower bounds on the root-mean-square error. Based on

Welch's findings, it was determined that the theoretical upper bound

for this application (B 16 and N = 128) is (Ref 91:156)
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RMS(error) = 1.5x10-3  (117)

RMS (result)

This bound is considered to be more than adequate for radar target

imaging. Welch further states that if the transform is taken to

-estimate the power spectrum of a signal, averaging over frequency in a

single periodogram, or averaging over time in a sequence of periodograms,

or using simple wieghting will decrease the error (Ref 91:157).

It is concluded that the use of the fixed-point FFT algorithm is

feasible for implementation in radar target imaging signal processing.

Five "simulated" fixed-point FFT subroutines were w-ritten in

FORTRAN IV for this thesis. They are based on the floating point FF!

algorithms previously discussed, excpet Subroutine FFET4. They are

written in sumulated form for use on the CDC 6600 CYBER 74 System

instead of the minicomputer for which they are intended. Shifting of

the binary point is accomplished with the use of the CDC intrinsic

library function SHIFT (A,-N).

FFTIi. FFTIl is based on FFT. It is converted from complex,

floating point arithmetic to real, fixed-point arithmetic. Indexing

and reordering aire not changed.

FFT12. FFTI2 is based on FFT1. It is not as efficient to

implement as the decimation-in-frequency algorithm.

FFTI3. FFTI3 is based on FFT4. Reordering is performed within

the subroutine.

FFTI4. (Ref 34:15-18) FFTI4 is based in part on an algorithm

presented by Fisher (Ref 35). Trigonometric functions are precomputed,

scaled, and stored in a table. The subroutine is called once by the

calling program and passes the table to the main FFTI4 subroutine.
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Subroutine COSINE (Appendix 10 is used to generate the trigonometric

table. It is called by Subroutine CIMAGE (Appendix E, Version 3),

and used in Subroutine FFT14. An address loopup routine is used

to obtain the proper sine/cosine value from the table. Subroutine

UNSCR1 (Appendix J) is called by FFTI4 to reorder the Fourier

coefficients. A complete derivation and floating point implementation

is reported by Fisher (Ref 34).

FFTI5. FFTI5 incorporates the best features of FFT4B and FFTI4.

A cosine table is generated from zero tu two pi. FFTI5 uses a

lookup address routine to obtain the required trigonometric values

for the butterfly computation. The last stage of the transform is

performed separately to eliminate the lookup and unnecessary multiplies.

Subroutine UNSCRi is called to reorder the fixed-point Fourier

coefficients.

Evaluation of the Fixed-point FFT Subroutines

The five "simulated" fixed-point FFT subroutines were tested in the

simulation program TGTID with appropriate modifications made to

Sburoutine CIMAGE (Appendix B, Version 3). They were evaluated in

the same manner as the floating point FFT subroutines. Table IV

summarizes the number of FORTRAN IV statements, the amount of memory

required, and the average execution time (over at least three runs of

program TGTID) for each fixed point FFT subroutines.

The execution time was measured in exactly the same manner as the

floating point FFT subroutines. The first time "hack" (STIME) was taken

just after the data were converted to fixed-point format and just

after the data were converted to fixed-point format and just before the

fixed-point FFT subroutine was called. The second time hack (ETIME)

,; ./• ..1
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"was taken just after the return from the subroutine. The difference

was computed (RTIME) and added to the accumulated total execution time

TTIME) of the fixed-point FFT subroutine. This time included obth

the transform and reordering routines. It does not include the time to

compute the trigonometric functions of Subroutines FFTI4 and FFTI5, which

are only done once.

Results of the Fixed-point FFT Subroutine Comparison

It can be seen in Table IV, that FFTI5 is the fastest fixed-point

FFT subroutine. FFTI3 requires the least amount of memory, while FFTI1

reuqires the most amount of storage. Based on the speed and moderate

storage requirements, FFTI5 is considered to be the best fixed-point F1r

subroutine to use in tactical radar target imaging using the DEC PDP-11/40

minicomputer. Figures 41 through 44 show the image created using FFTI5 for

increasing threshold. It should be noted that the threshold is set too

low in Figure 41 and too high in Figure 44.

92

- II



Table IV

Summary of Fixed Point FFT Performance Statistics

Number of Number of

FFT FORTRAN Instruction Words Array e (ect
Statements (Total) (Uords) Tine (Sec)

FFT1I1 47 1 iC0 : 2.27

FFTI2 36 161 21T 2.5

FFTI3 36 112 2N 2.185

FFTI4 421 1543 2N + N/4 + 12 1.95

FFTI5 312 1263 2N + N/2 - 12 ].20

1 Subroutine COSINE has 10 statements, 29 words

2 Subroutine COSINE has 8 statements, 19 words

3 Suiroutine UNSCRI has 29 statements, 125 memory words

NOTE: Subroutine UNSCRI is faster than Subroutine ITSCR
(Appendix F).
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Figure 41. Subroutine FFTT5; Threshold ,,,30,
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Figure 42% Subroutine FFTI5; Threshold - 90g:
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Figure 43. Subroitrne FFTI5; Threshold 15G.
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Figure 44. Subroutine FFTI5; Thresho1! - 90.
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VI. Conclusions and Recommendations

Conclusions

The major conclusion of this thesis is that no other orthogonal

transform should be oubstituted for the Fourier transform in the

application of digital signal processing techniques in TTI radar

imaging. The Karhunen-Loeve transform has no fast computational

algorithm. The Hankel transform was not usable for implementation

since it is a two-dimensional transform. The Mellin and Cosine (sine)

trdnsforms employ the FFT to compute the transform, thus no speed

advantage would be realized for either of these two transforms. It

was found that the Walsh power spectrum computed using the fast

Walsh (Hadamard) transform, did not isolate the individual scatterers

of a crmplex target as the Fourier spectrum was able to do. The con-

version from the Walsh sequency domain to the Fourier frequency domain

was found to be computationally excessive and more than offset the high

speed advantag- of the FWT/FHT. The assertion made by Robinson that

there exists a linear transformation between the Walsh power spectrum

and the Fourier power spectrum was found and proved to be incorrect.

The fixed-point FFT algorithm was the fastest implementation for

TTI aignal processing. It was considered that the increase in speed

without a significant increase in error was significant. It is

believed that execution will be even faster when programmed on the

DEC PDP-11/40 minicomputer.

Recommendations

It is recommended that the scale-invariance property of the

Mellin transform ueing exponential sampling and the FFT be studied to
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determine if it is feasible for compensatinig for the nonline-arities

of teDoppler shift frequency.

It is recommended that hardware implementations of the Cosine

(Sine) transform be investigated for implementation into the TTI

imaging system.

Although no specific system has yet been designed and built, some

theoretical systems have been designed. They utilize very sophisticated

tactical radars, but well within the state-of-the-art. It is recom-

mended that these or possibly other systems be designed and evialuated

identifying Important parameters and operating characteristics.

Additionally, noise and statistical analysis of such systems should

*be conducted.
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Appendix A

Main Program TGTID

Program TGTID reads in the radar parameters RLOC, PRI,

STARTF, and DELTAF which describe the location of the radar relative

V to the target and the waveform desired. NBURST and NFPEQ are the number

of bursts transmitted to the target and the number of frequencies with

each burst, respectively. Two other parameters NSCAT and SCOR2 describe

the target, where NSCAT is the number of scatterers within the target

and SCPRM is the set of seven parameters of each scatterer. The first

three parameters are the coordinates of the scatterer on the coordinate

system, ai is the fourth parameter, and the last three are cosine

weighting terms.

Program TGTID calls Subroutine CINIT which computes eight additional

parameters based on the input parameters. They determine the size as a

power of two and other characteristics of the time and frequency arrays.

Subroutine SLANTV is called which returns the simulated target Doppler

returns. Then, subroutine CIMA:,E processes the Doppler signal returns

and displays the synthetic image by calling either of the display

subroutines (Appendix G).

Program TGTID finally prints out the radar and scatterer parameters

along with three calculated values: Number of Words/Record, Number of

Records, and the maximum power.
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0Of'orl.M TGTIr9(IJDUT=.,a~,OUTDDUT=/i32,
RATNPU, TANPU~qAJt=oTP!JY'v' T3 Pc, TAPES PLOT)

I!TMULATE RAT)Ak ImaGE 0,T'JPN

M 4 ON /SUCATP/ NTSP9?'~
V~~W/4NGL5/ A,Ai3r,3,~T,qor.G9OT

^VIM401 /tJ!JTTS/ NVLT
~I014Uý /POINTS/ '41MG

IATA t iV' T / 6
93T.A t, fSM/I3o/

TNPIIT PARAP9ETEDS
'ýTHULATE RAIA.R PETLJRN

i nU!TPUT 1MAG7' *ARAMFTrP?9

,r P.LOCPR1,STARtTFq0ELTAF
q-An' t AO0,v90OGO, I 0JT, ROT . nOT.
P EAD 0 J IURST vNFREI
:ýýl NSCAT

CALL CTNIT

PALL SLANTV

AOq,Gc~,AlOT,~flOT,G)OT,
NBURIZTt N~flr,'!

* NSPA T C((SC'RM(TK),I~i,7),K=1NSCAT)
* wprIrC7q±3) RHAX,~W"D)SNRECS'

12 rOD 'T(///,T3Oo,'TM4GE PAR P4PTt-IS',t1vT 309 iS H-) , /it
-1~i0 ,"PAU)R F4AA'1ETE~S 2,*3Fi0. OPl .6t2El~o6,/q

" O:0,ANGLF D~ATA 'vFOz/
* '710,'NO. OF 9tJRSTS "191

* ~ ,~O.OF F"ElENCIE =9,Iio,t',
-t10,*NOo OP SCArTTTFPS 0pit/

* T! 0*0SCATTFRE~l 3ARAMFTFRS 2",(T32,7FJ.O*3))
13 ri"?HýT I//T 1Gt'M 4A XTMtP POWS "ipc2f

*TlCv"Nfl. OF wnR0S/RPY2.oV) =ooIic /p
* Tl0,-'N. OF RECORflS =00,I1W,)

IITOP END
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Appem~ix B

Support Subroutiies

Subroutine CINIT

Subroatine CINIT -zalculates NBORD, NBSZ, NFSZ, NDSZ, NDl, ND2,

ND3, and NTM based on the values of NBURST and NFREQ. NFSZ is the

size of the frequency response data arriy And NBSZ is the size of the

time respc-se data array. They are related to NBORD by the following

relationships

NFSZ- 2NBORD (B.1)

NFSZ 2 -2BORD (B.2)
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Subroutines SLANT'?, CTRAN, and DOTP

Subroutine SLANTV is the driving subroutine that generates the

simulated "slant voltages", that is, the Doppler signal received by the

radar set. Subroutine SIANTV c2lls Subroutines HAMWGT, CTIN, DOTh, FFT6

(Appendix C), and ROLL. The slant voltage values are written to a

temporary file (NVLT) which is returned to Program TGTID for processing.

Subroutine SLANTV uses the radar and target parameters read in by

Program TGTID and computed by Subroutine CINIT. No other input is

required.
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C

r,) TO (319,44) #'('

C 'INIT.IALl'C RHO MATD-!x

C

1=1314 (PHI (7))

r,:O '4 (04T 2) )
rr, r,,3,i (P I(3

Own~(ig 2)
oL4-%( 1 7) = C1I

04 C4, 3) r Cc

c .01 ()4P()~OTK

C
C 4TTYMJTDTýrn

c ý0400T NSWC0,VlTAT



~'J~IiINEDOTP (V1,V2,VAL)
PEAL VI(3)VV2(3)

C
CCOM~PUTE DOT PRODUCT OF 2 VF:TORS

C
VALza.
A=0.
q=o.
nnf 4o 1=1,3

40 VAL =VAL 4 vi(Ijy2cz)
VAL=VAL/SQRT (A~g)

PETUON
S ND
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Subroutines ROLL, WROLL, AND IROLL

Subroutine ROLL rearranges the FFT exit array into normal viewing

in Subroutines SLANTV and CIMAGE. This caxi be done either before or

after the power spectrum is computed. Subroutines WROLL and IROLL perform

the same function for the Fast Walsh/Hadamard transforms (Appendix D)

and the fixed-point FFT's (Appendix E), respectively, in the appropriate

CIMAGE subroutine.
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cUIPUOTP'IF Z'OLL (!157,v)

c )ýLL T4F TmarG.l
C

L="e+NS 72

i4V~t,I)=T(LI

RvAL VU"ES)

C Pn!.L THE PTAGF
c

Nlý'2=4 S7/2

L=C+N'!?2

V (L) =T

10 C14TINUE
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" "VI"ROY) TT'Ir 'rZLL('I,!"9V~,2VT)

c P3LL 1144r
C

W`12=4J qf 12

i1 IVR M~

Tq-V(L) =Tj

TVI(L) :T2
d44 r)jkTI%4UF



Subroutine CIIIAGE

Subroutine CIMAGE constructs the image from the simulated Doppler

returns generated by Subroutine SLANTV. The data are first Hamming

weighted as the sample values are read from the temporary data file

(NVLT). The orthogonal transform is taken along constant range, the

power spectrum computed, and the data are "flipped" by Subroutine ROLL.

The "image" data are then written onto a second temporary file (NIMG).

Subroutines PLOTID or BUFOUT (Appendix G) are then called to display

the image. Subroutine CIMAGE is written in three versions; the first

is used for floating point FFT subroutines, the second is for Walsh

transform subrcutines, and the third is for fixed-point FFT subroutines.
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/ i sNk '!'T / &%L!

C
C
C ~ ONST,!IrT TwEr 7_1
C --- - - - - - - -

C
C P0C'0"ITP LiiM'lTkJ': WE13WT Vc^ZO)

C ~T4DI~tT VOLT11cr
C LTV0T- SL~AM 'ANGE TO ^ý04 Q.ANGr
C FTEkIl "r ALJ n
C -AF r ALfl"ý, CONSTANT P.AsJr,
C
C Cf)-4fý'TE r~)4- DrCTRUJ4
C rOlt'ITr -'A4 LP4~ COWER
C . J! r4p-r- rP r~eIT TI9v'
C 011IPtT 'r~ I,)
C

IALL 04A4WGrY(iJj,W)
C

-'r4MF= C.O0

no 2 NI=1#401

rvM 43 INJ!=j'4J0S

0"fIM! 91013) =V CT(4 ,'V') '41)

VOLTU 91)(l7 VOLC
47 %fp.T f )=

no 44 TTI'4UE
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PL4NI NT

FC

C --- 'J"RT IýIAGE 'IT'CLAY FUDUTN CAL-. (S) HF$7---

CCA

Versioni 1.
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StiqROUTINE CIMAGE (DCPIl0iNO2,ND3,4Tt1)
COIMON /LIMIT/ NOURSTNqOP'ON8SZNF'RE2,NFORONFS!
CV)IION /IMAGE/ R'4AXNWý?ISRECS
C04M0N /UNITS/ NVILT
C04MION tPOIN4TS1 NTH;
Pt~AL P~oR(N~lpN'329ND3)
REAL V3LT(25692)PW(256)
.C041PLEX VOLTC(256)
REAL V3LTR(256) ,VOLTW(256) ,T(256) ,'3'iO)

C
C
C CONSTRUCT THE I'MAGF
c-.- - - - - - - - -

c
C COM~PUTE HAMMIING WEIGHT VECTOR
C INPUT VOLTAGES
C PIVOT -SLANT RANGE TO CROSS RANGE
C EXTEF4O THS AqR4Y
C TAKE FHT/FWT ALONG CONSTANT RANGE
C SWAP HALVFS
C C04iPUTE POWER SPECTRUM
C COMPUTE M4AXIM4UM POWER
C C04¶PUTF FHT /FWT EXECUTION TIME
C OUTPUT THE IMAGE
C

,4q3Zj=4J35Z*j
NRSZ2=48SZ'2

Nc3R~OI:ALOG(FLOAT(NBSZ2) )/ALOG(2.)4.I
CALL 'IAMWGT(NioIW)
TTI'1E=0.0
n0 48 4=19NTM
NS:N039 (ri-1)
00 42 41I±,NOL
PFAO(NVLT) ((VOLT(I,j),IivNFSZ)tJ=1,2)
O0) 41 N3=lN03
P'-(Nl,1,N3) =VOLT(NS4'13,i)

41 P"RH1,2,N3)=VOLT(NSG'13,2)
42 C04TINUE

00 46 N3=1,N03
flO 43 I:ND1,NBSZ
VfOLT (I,1)=C

43 VOLT(1,2)=do
01 44 1=1,NOi
VOLT (191)=P'.R(,iN3)'W(I)

'S4 VOLT(r.2)=PCRCivZN3)*W(I)
00 50 1=IN'9S7
VOLTCCI)=CMPLX(VOLT(ri,),VOLT(192))
VOLTR(t) CAFRS(VOLTC(I) )

5') CONTINUE
DO 55 I=NBSZiN83SZ2
VOLTR(I) =0.0

55 CONTINUE
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STI'4E=SEC0ND (CP)
C--.---INSERT rAST TRANSFD'NH CftLL HERE----- -----

* CALL F'4ri(VoLTRiN9s72,N9ORO1,1)

* E-TrM'E=SECOND (CP)
PTIME=ETImF-STI ME
TTIr1E=TTIKERTI mE

I'(I.Et2.i)GO TO 51
IF(IEQ.NBSZ)GO TO 47
VOLTR(I) =VOLTR(24I) 0'2+VOLTR(2j*1+),F2
GO TO 45

51 V0LTR(1)=VOLTR(1)*'2
GO TO 45

47 VOLTR(48S7)=VOLTR(N93S72)'*2
45 R4AX=APIAXl(RMAXVOLTR(I))
49 rO'4TINUE

CALL WRO3LL(N93SZPVOLTR)
WRrTE(NIPIG) (VOLTP(r), r1i,,NBS!)

46 CONTINUE
48 'EwINO NVLT

RFW4IND NIMG

I4PITE(?, 15)
is1 FOQR4ATU///,iX,-FHT1-)

WRITE(7,1O) TTIMF
10 rtRA~~6*RNFR EXECUTION TIME 1S",F7.4,' SEC*")

C
C--o-TNSERT IMAGE DISPLAY SU90OUTrNE CALL(S) HERE-----

C~ALL 8UFOUr(NI.1GND3vNTP1,N85,Z)
CALL PLOTIO(NIMGN03,NTMNBSZ)

C-------------------------------------------------------

PJWRUS=NBSZ
RSTURN
ENO

Version 2.
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rf).A) . /11-ITT'/ AVLT

C F"'Jq'rRJCT 7WE C
c --- - - - - - - -

C
C t ,4P1J'r 'w A4mI'!', WEIGHT VFT)
C 11610117 -"E PtILTSr,-c
C - ;LA'JT 284'!r TO C~oloS ý4(7r
C EYTrpjn Tlic AOi
C TA~eE TilTrrFr'r ý LONG CONJSTA IT RANS11
C SVJ5.D HALVEZ

C frflA0tITE Tlq'rr:ý r FT EXýCUTO'J 'I14P

rALL :O0kTNF(Tt-,Nq-s7)

C

nn 41 mJ~j,'JTM

fif=Njl 46t 'J31,'

no) 41 IN?=,9I43

VflLT(I ,1)=.O.

nl 50 T~q~S
TIV'LTý I)=V3LTdI9)iAr'-OR/N3S7
T'IXTI MI =VOLT (792) *c'.kV-ORN3S7
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f - ~ si'i:~i*CALL IJýr--- -- --

C. --- -- -- -- ---------- --------- ---------- ---------

nCeý=rT -Tm

rA: '9: (jq7,r~lT7,VLT
'j 7?! T=I rl

4 VILT (191 J VOJR(

C:'-(W~, lL T 1 I tO S

W? T r( T, 15)

1 Ve 'MT ftXqOTo'P,,;C,,, ~rxt ITON4 TTr1 E

C -4.lr "1ý0 'I Ll~~'ItrUTI'4E CAL- () !4-c-r

* ~~"AOL ~O~~it,,9 Z

F04I

Version 3.
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F

Subroutine HAHW4GT

This subroutine generates a Hamming weight vector (Equation (23))

for sidelobe control. Subroutine IAMZ1GT is used in Subroutines

SLANTV and CIlAGE.
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Or N~ 4 4~S( MJIJ

C 1'A'T tiJcfHT VECTORC FIELL PlI'nVF RV~~L E OElCTro-4
c

"=N 2
M=' 0r)2+1

T/ (N-i

y14 1 +):.

W(U.I) =)f
40 Wt*-DI)X

127



Appendix C

Floating Point FFT Subroutines

Subroutines SLANTV and CIMAGE (Version 1) call an FFT subroutine.

The data must be placed into the proper form before the specific FFT

subroutine is called. Each subroutine is documented internally and

will not be discussed further.

Reordering subroutines are listed in Appendix G.
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CA =!'IPIIT aomAY cIuf
k4 = 2 4* mSA4EROrPMPLES

C TS -it FD0'4AD T J"lýORM
C. +19 TNISDI' TmaNv"'OfRM (IJNNODIA'LTZEI))
C TIT4TNt4,L"S(N

C ~ ?%4PN5IOy Ap(N),

J=l
nn 0 I:±9N~41

At ))=A (T)
A (T)=T

I C K41V?
?'0 Tr (K . 3' J) 0O 01 '40

J= J-I

41) To 20

t~l 80 L1,'4

VLEtLr/2

r'). TO 6

60 nnO 80 J~iLFI

Itl.I4+L Ei
T=(I0) 'ti

70 A(T)=A(I)+T
80 Uj=li*4
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S~IPROJTIPr Ti0A,,JS

C -'T-: Cr '4OI)IFD 1FRSIONJ
c n- F=TIA* I- FL!IMT~t- TH= rI&,ST SET Oc
C *1".E(M!JI.TTDLl=S T'J-H-- PEfIMATI)N-I',l-

C '*tjr VýTrLý 14~ T~r elM 4EAN~INS A INJ

MIV ?=M/ 2
W!4 l=N- I.
J~1
n1 30 I,=t,Nhmi

Tr~*'F~b) O TO 10
T= I(J)

10 K= J'V2
T'=!(K,':CJ)rV) 70
J= l-K

nn TO 20
3,1 J:--J +

ml) 50 L=2,P4

r~ Tl) O J45L~

!D=I+L El

TA(TP)=A()U

50 A(T)= AI()

1-30



C

c ')iAwcT 1 L

c .ir~ -. i.10 W ~IC'4 P4 IS

C

r +I* TI1VT'lr '"ANS=OR4

C (2,1'-)t ~l~W~-A O1!. Tt QUTPU- 14J OL 1
c : : ý4V -T:ýANSr~ORM4E3 DATA 1UTOIIT Ti ýOL 2

nn30 J=1,kJSTAGF

W' 1= V(2 J) /

Y'ZIGN= SIGN

T'r":Pi'L4I2J*D42NyTN

"T) 30 VDj) +N

Y'~lvIJ93=(.,;~1N4XIIU2

30R=I

3-1 )(l9R) X(131



"r Vq~ ~1~f~IPUT MrAT
C y tMA'-PjPv r'~JTS Or IN'IJT !JATA
c 4 * 11i'e-r ¶:- IATA POIlrY;
c r Is A &!t% r -OR4

C IIIJST CALL "ITT'ýe(,vtm,N) OR el~'Xj
c ' D0N RLIT7 (Y,N) TI) 'ýrM)ER

FN''c0 Y(4C m

LTY=2* L1"

A r'-=(L M `!

,JI=L.I-LTX.+L'i

T'=Y(Ji)..YCJ2)

Yt I±) = y(Jit)+y (J?)

C(J) C-T + ~ ,

C i o)CT-*I
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C X C 4
DL gY I3'~J')II T 1 PC C~AY

C 0!4 Hl M) t

c Tq (fl!?r'fTT,)N 0T

n0?9 L1,gm

r,'l Tr)

7 rnfl 20 J=19L--i
ml 10 I=J,NgLc'
TO =T+L Fi

Y f trP) = X TI) - Y (T P) I *U
10 Y ) =T

'JV?14/ 2
N4 iN- 1
J=1

!Fr(l.VE.J) 1,0 TO 25

XCT)=T
25 K-:'4V2
2F9 Tc(K,.E.J) 70 TO 31

J= J-K

fJ) To ?E5
.10 J= J4'(

EN 1i
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C 74'S reT tIIPC'IfITT~ T-- 4.MrIFTEr) V:RZT0
C M,= FrT&~ LA,-4- ELT"T"'" "HE LAST SET Or
c r")-*oi-V %4L,3lr)nLjr: r-4 -. ; DECTMATIO'-Im~-
C r3.0'fN^,Y A~-)!LM
C
C f IMOLFX T'1011- nI.T-0 L.ý'IAY
C (RFSULT 77 "F7'RJrJl7 74 X)
c N ý4 ,,r Ic a I 51Air.

C TI ("T:ý'TT'VJ 4C TOA'FF'.)R

-1 , FI I -D A R T R AJ~c r nO

PT3*j459?6;8Ll"q
14 1= %I- I

nn 20 (4+1-L)

5 W=,MPLX((ZOS,(o!/CL1.AT(Lr1)),-SIN(PI/=LIATCLE1)))
r-el TO 7

7 nO) 20 J=ItLr1

10=I4L El

IC X(T)=T

10=T+i

NV'=N/ 2
NP4 1=N- i
J=1
fl) 3C T19iN'41

T=V(J)
x( 1) =X (I)

?5 K='k'V2
26 Tr(Ks.~E*J) GO TO 30

If) TO 26
3C J=Ji;(
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C f"IlLCY-T'JVrY *A-rn Or _n"'IER TrAtl:;-i
C .?%U~ .IZTOJF ýcTNF ýrl-D!JTATION A43)
C Dt-AL~ '~" TO QEFP- lrT

C ~~ rVrfllTr) n~mr-TTI.J T'JOA&~O-, 'EG

C y Ai nr. It!Er r~lTD ANSrOR4 ILO:ZK
C NI = PnrzW nr * TO 30*AIN NAIAX
C N'4 "X =LcP4't-o4 3c %03<~ Y

VrA 4DLFX VCXr,4!)LOX

r" TVA1r 5q r & J F L 3 i (NMAX

M-6(i) =M4AY/2

C Ll !P I VF7 'JDLOW LAYIý(.
C

'V) 50 LAYFR:±.Nt'O4
4NII=NN/2

TT=NNO' T

C C C

W=rLO5 T (NW 177

C'3(D = CIN(W)

C frP'PUTE ELE'1F'4TS ro-' n9-14 HALVES Or E-AC&, l~r

nn 20 J=19NN~
TT=114.
I J=11- NN

?0 YC'J)=X(Ij)+XA
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!)1pUP cP-Tc ')y 2

C
C 'ýIMVJTr r~r3 M~prl
c

'M 30L?,P W

11 '4=LL

Gn TO LO

C 11) VVIAiL E4
C P'L45 I4JLTTDLY 'ly n"LTA ?rTME

1J41WW= (14W

62 Y( )="iOLO'OnTI'4E

001-P~P UJP SFDTF4Z OY j
- rO.AO)IJTF REVJFPFýE A"'RrSS

00nf 7C LO'1=1,'0101

'0 tMW=LL
'2 14-=SK (L'W)r) +N

r00 T0 9 0
74 kl'4=M';< (Lnc+ii
40 rn*ITI'JIJS

91 PT '7=N11A X
mn95 11,#N4A'(

13') RTURJ
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11 V ?r -7T -C T c (IC39S (3))9 T 93 9

9 1 ClJ'1L IFv' S AOIKz )

C L T <- T( L S T) SW C 1 (:E"tc;(3T5

C 1CV4L 'N7 (TLI'fl IS 1O
4 (IVA q AE ~ r )J

C TH!4ItiE )X¶TTJTIt)(TI'1
C * LTJ aC (r'L,!(EO')5) Cl~T.(2

P1 4 4  X 2'JL-OONE

0' 12 S'<=2,LZ1N112
c MTA4l:hqVPAIE OFVr 5:71

c 4 Ppo41L.rrxr)TO T4

c T'i 14 I/"LA;ýODS

,s no 7 j=I4FT

"O0 12 K'4,I,'L2N9

Ji=i4J'1/44

0J 12 J.it

'r4ý',A=F* J-1o



1~(J ) 4-Y (J7)

C 1) 1 Y , 17) ,:

1)[3 + T' ( i ?f

Y( J1 ~ TJ9 = y( 4OU-Y P

Yf( I3)=TzP3-O7 ~ '>c~

1 T r)iT i

y' (3) 04(Ti

V( 1) P I

Y P ) P 30
VtT14) =P-P

18 '14) =/?

1 F, 17 T=Ik

07y( U ) 4 yT
Y (I~J±~.:C -Y TT +I
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nn) ;2 IA=I*TALLIf

"21 1 TA T1LT 1

nj) Z2 I=:1TL, fl
77 L 9 I c)

Y( 2 ! J)YI T7M) '

nL ?2 T -T --
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Appendix D

FWT/FHT Subroutines

The fast Walsh/Hadamard transforms listed in this appendix are

internally documented. Both the input and transformed output arrays

are real and in sequency order. The call statement must list all of

the parameters required by the stbroutine parameter list.
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Appendix E

Fixed-Point FFT SubrOutine3

The fixed-point FFT subroutines are called by Subroutine CIMAGE

(Version 3). The complex input data are integer scaled values placed

into two separate arrays declared in the calling program. All the

subroutine listings contain documentation defining the variables

employed.

TI4 uses the values generated by Subroutine COSINE to perform the

butterfly computations. Subroutine COSINE is called once in the calling

program and the trigunometric values are passed as an array in the call

statement parameter list.

Subroutine FFTI5 uses the values generated by Subroutine COSINE. It

is called once in the calling program and the array passed through the

parameter list in the call statement.

Subroutines FFTIl, FFTI4, and FFTI5 call either Subroutine UNSCR or

Subroutine UNSCRl (Appendix F) tc reorder the scrambled integer Fourier

coefficients.

148



C '' 7NTr~nr: CT T1~" ON FrT4..
C
C 74= VAPAIA., 'Jc~r TP4 T:s., SM"'01T'TI'E
c 8' ryahlrn THeE -- !' TN FFTII.

nn 10 L=19'4

Tl I=TY (T)-4TV (r)

TY( II) = T (1 . T y( T?1T 1 -15)

Ty1 'D=T +T O

Ti r t rn C J)

N"J 1=4/!2

TV rT,=T?

T2'TY A~*i

J=zJ-IK

Gnf TO 26

315



C T'r4TS INJTr~&: FZT IS ON Fc-i.o

T14- 'J-IALr' 'J(Zt" TO) 7ITS S'JRCUTIlE
c Ar #)cFINFn T4 qAM S'ES T"I FFTI11

J= 1
nOr 3(1 T=1,t41
T!.(T~r.J)G3 TO 10

Ti~X(J)=XT

T? IY ( JA
'V (J)=IY (I)

'C!(K'(.'EJ)G3 T3 ?t3
J= I-IC
K= 1/ 2
r,r TO 20

30 J= 4'(
'10 80 L:iM

Lr '=LT /2
Tr'=OS PTI /cL Ml. T (L. Ei) e l CTOR

"10~ 30 I=JPJLF
s i

80 'iJ1T4UE

'Qf VU



rc

INI S~~ ACOSINJF
c T~ IL cnk Tfl -'!V'

133



c n7'I53LVS n T'4C -Zý AS IN P*FTI6qC

'0~ -1S4 I 'T 049-1

in =T + Fl-
TI TX( T) -TX(To)

TY U7):!Y (I) +TY CT'O)

7y 11 ) =TY (1) +TV ( Tm)
TX f 1) rz4TI T(ý ) + - )* 2 1

"C ' t~'L T X()4 + TXO ToO) I

TYfl) T

70 T ( =T

'J'4S-Ol(TX T15.4



Appendix F

Reordering Subroutines

The reordering subroutin ; listed in this appendix unscramble

bit-reversed or scramble into bit-reversed order the output sequence or

the input sequence, respectively. The exchange operations are performed

in-place.

Subroutine RBITS is written to perform bit reversal of real arrays.

It must be called twice-once for the real component and once for the

imaginary component. It can easily be modified to handle complex

FORTRAN arrays.

Subroutines UNSCR and UNSCRI are written to unscramble integer

Fourier coefficients. Subroutine UNSCRI is modified from Subroutine

RBITS. Both subroutines can easily be modified to unscramble real,

complex, or two separate real arrays depending on the need.
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Ippendix G

Display Subroutines

Subroutine PLOTID creates a CALCO0P display of the radar image

processed by Subroutine CIMAGE. It reads data from the temporary image

file (N-UG) and compares each value with a threshold and prints a

symbol if the valur exceeds the threshold.

Subroutine BUFOUT creates a line printer display of the radar

image generated by Subroutine CIMAGE. Tle procedure is the same as

in Subroutine PLOTID, except the display is printed on a hard copy by

an on-line printer.
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Appendix H

Radar/Scatterer Parameters

The radar/scatterer parameters used in this thesis are listed in

this appendix. Data Set 1 is listed on page and Data Set 2 is

listed on the following page.

They are in the Format specified by Program TGTID.
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