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Abs¢ract

The RHigh Resolrtion Radar Branch of the Rome Air Development Center has
developed a tactical target identification (TTI) pulsed-Doppler radar
system which generates two-dimensional "images" of aircraft;” The signal
processing technique utilized the fast Fourier transform (FFT) to produce
a slant-range versus cross-range display. If the TTI system 18 to be
effectively employed in au serial warfare environment then real-time
processing is necessary. In an effort to speedup the signal processing
several alternative transforms were studied as possible substitutes
for the FFT. The Karhunen-Loeve, Cosine (Sine), Mellen, and Hankel
transforms were investigated and found to be infeasible for use in TTI
imaging. Th.e Wzlsh (Hadamard) transform was studied in detail and
ested in a simulation program and found that it could not be utilized
in the TTI signal processing.

Two methods of converting from the Walsh sequency domain to the
Fourier frequency domain were studied. The first scheme. a recursive
- relationship between the arithmetic and logical autocorrelation functions
as presented by Robinson was dis‘overed to be incorrect. The second, a
method of coﬁputing the Fourier coefficienty frog the Walsh coefficients
of a function was demonstrated to be too time consuming to be implemented
in TTI signal processing.,

Several flcating-point FFT im;lementations were tested using the
simulation program. Also, several fixed~point FFT aigorithms were
derivad and tested. All of these were evaluat:d on the basis of speed and
memory requirements and one fixed-point FFT algorithm was shown to be
fast enough and accurate enough for implementation on the TTI Mini~

computer,




COMPARISON OF FAST FOURILR TRANSFORMS

WITH OTHER TRANSFO#MS IN‘SICNAL
PROCESSING FOR TACTICAL RADAR

TARGET IDENTIFICATION

1. Introduct{gg

The High Rasolution Rad;r Branch of the Rome Air Development
Center, Griffiss AFB, New York is interested in developing a
tactical target identification (TTI) radar systémAwhich can effectively
respond to the expected WARSAW Pact threat”against NATO in the 1980-1990
time frame. Radar target identification of aircraft facilitates’
the effective control of friendly airborne interceptor and close air
support aircraft without active Identification Friend or Foe (IFF)
devices. It also permits the positive identification and determination
of uncooperative or enemy aircraft type and mission without endangering
friendly aircratt and allows the discrimination between actual enemy
aircraft and decéy vehicles (Ref 92). | |

The objective of the TTI development program is the generation
of two-dimensional "images" of aircraft by processing in real-time
the radar returns of the aircraft ﬁsing a taétical pulsed-Doppler
wideband radar system. Basic research is being conducted by the
Syracuse Research Corporation (SRC), Syracuse, New York. The target
identification simulation program used in this thesis was written by SRC
and 1s based on parameters modelled the same as those of the ALCOR* system

which has been used in actual radar imaging studies (Ref 31:1). 1In

*ARPA (Advance Research Projects Agency)/Lincoln Laboratory C-Band
Observables Radar.




essence, the two-dimensional image can be formed if a target's aspect

angle changes éufficiently relativé to the radar over some time
interval, The integration of the received rader waveform with respect
to aspect angle will yield a slant range vs. Doppler array with

entries of radar cross-section intensity. This array can be displayed
giving an image of the target's highlights, The feasibility of such
an approach using a pulsed-Doppler wideband radar system and associated
signal processing has been estabiished by Rafael (Ref 68) and

Strattan (Ref 83).

The objective of this thesis is to investigate, evaluate, and
-compare other orthogonal transform (FFT) currently being used in the
signal processing portion of the target identification system. The
goal is to increase the speed of the signal processing to approach
real-time. Image quality, rrocessing time, and computer memory
tequirementé must be considered when investigating and evaluating
an alternate transform.

The remainder of this thesis is divided into five sectioms.
Section II provides the theory, algorithm, and simulation of the
radar target identification system. Section II1 investigates and ~
considers alternate'orthogonal transforms. Section IV proposes
two methods for converting from the Walsh sequency domain to the
Fourier frequency domain. Section V compares several Fast Fourier
Transform algorithms. Conclusions and recommendations are made in
Section VI. The Appendices contain listings of the computer programs,

subprograms, and radar and target parameter data used in this thesis.




II. Radar Target Identification: Theory,

Algorithm, and Signa{ Processing

This section provides the background material on Radar Cros:
Section measurement and estimation. The basic assumptions are given
and the salient features of the imaging algorithm are presen%ed.

Additionally, the simulation program used in this thesis 1s explained.

Target Radar Cross Section

Radar cross section (RCS), o, is a measure of the energy reflected
from a target toward the receiving antenna (Ref 33:455). The RCS of a
target is the area assumed to intercept the incident radiation, which,
when’isotropicaliy reradiatéd, yields the actual power density a; the
receiving aperture (Ref 33:455). This returned eunergy varies with
a multitude of parameters such as transmitted wevelength, polarization,
- target geometry, orientation, and reflectivity (Ref 58:141).

More precisely, the radar cross section of an object is propertional

to the far-field ratio of reflected to incident power dénsity, that is

= Power reflected back to receiver/unit solid angie (1)
Incident power density/é4w

o

(Ref 58:142). For an example, consider the RC§ of a perfectly conducting
. isotropic scatterer. The power intercepted by the radiator is the

|\ product of the incident power density; Prs and its geometric projected
| area, AI' By the definition of isotropic scattering, this ﬁower
is uniformly distributed over 4n steradians (Ref 58:142). For this
isotropic scatterer then

o, = 4n E%fliii -

I

A ' (2)




fhus, the RCS of such an l!sotiropic reflector is the geometric projected
area (Ref 58:141).

For a complex target, such as an aircraft or missle, the RCS can
be approximated by breazking the body into individual reflectors
(scatﬁerers) and ascsuming thatlthe parts do not interact. In this case
it can be shown that the total RCS is the vector sum of the individual

cross sections

N —_— j Aﬂdk 2
g = ,Z Yok  exp( T ) | (3)
k=1

where O is the RCS of the k th scatterer, dk i3 the distance batween
the k th scatterer and the receiver, and N the total number of
scatterers (Ref 58:144).

Another approach considers the relative phase angles between the

returns from these N scatterers. This approach leads to the following

expression for the RCS of the entire body

Yok exp(§,) B ()

vhere ¢k 1s the relative phase angle associated with the k th component
(Ref 26:974). It has been shown that the RCS of a target is related
to the frequency response of the object, G(jw), ﬁyithe following

relationship,
) .
o = leG@w] ()

(Refs 51:1651; 83:5). The RCS, og» can be thought of as the spectrum
of the complex target. In general, G(jw) will be aspect angle dependent
except for a spherically symmetric object (Ref 51:1651),

Now, 1f a CW or pulses radar signal is reflected by a target moving




at a velocity, Yps relative to the radar receiver, the whole spectrum

would be translated in frequency by the Doppler shift, fj, where

2Rf
[}

2v
S ul ©

where ¢ is the propagation velocity (speed of light), fo is the trans-
mitied carrier frequency, R or v, 1s the range rate or radial velocity,
and fD is the Doppler sk°"t (Refs 58:5; 47:357).

In a wideband pulsed-Doppler radar system, the received Doppler
frequency spectrum is considered the target's radar cross sectiop which
ig aspect angle Aependent (Ref 58:173). Figure 1 showsbthe effect of
return power from an aircraft where the surface scatterers making
up the composite target echo can create a transition from phase addition
to phase cancellation and change the cross section drastically
(Ref 33:26). The spectra of RCS flucuations can be described in terms
of several effects with the airframe the most important contributer

(Ref 58:173). The airframe spectrum is due to the relative motion

between thé'varioué scattering points on the fuselage and wings. This .

relative motion occurs as the aircraft aspect changes (Refs 58:173;
51:1651; 26:973).

The resulting spectral width is proportioral to the transmitted
frequency (Refs 58573; 83:3). The frequency domain will give a band-

width, therefore, of
Ba&l/T (7)

where T 18 the pulse duration length (Ref 83:4).




‘Figure 1. Return Power from an Aircraft as a Function '
of Azimuth Angle : ’

RCS Measurement

The measurement of the radar cross section of a target makes use
of Fourier transform theory and it will be shown that |G(jw)|2 1s in
reality the Power Spectral Deusity (PSD) or Power Spectrum of the

impulse response, g(t), of the target.

Fourier Integral. The Fourier Integral, defining a Pourier

transform pair, is given for £(t) specified on the interval (~~,») as

F(jw) = r f(t)exp(-jut)dt (6]




and

f(t) = E%-[a F(jw)exp(Jut)dw (9)

Power Spectral Density. If f(ﬁ) is specified on the interval

(~~,») and if f(t) and F(jw) are a Fourier transform pair, then, the

Power Spectral Density of the function, f(t) is deiined as the abso-

lute value squared of the Fourier transform of f£(t). If P{w) is the

Power Spectrum, then

P(w) = |F[£(t)]]?

= |F(Ju) |2 (10)

where F[-] is the Fourier transform operator. Also, i{i the autocor-

relation function of £(t), R(7), is Fourier transformed,'then the

following relationships will be found to be

gy
R() = im %.f £(t) €(t+r)dt
=T/2 B

= £(t) * £(-t) (11)

where * denotes convolution, but

r[:(:)*f(c)] = F(jw) *F(~jw)

= |P(3w)|2 | (12)




80 tha;

P(w) = F[R(1)] : (13)

Equation (10) is known as the direct method for obtaining the power
spectrum of a time series and is equal to the Fourier transform |
squared of the function (Ref 76:14,15). Equation (13) is known as
' the direct method or the Wiener-Khintchine theorem. It states that
the power spectrum is the Fourier transform of the autocorrelation
function.(Refs 76:3; 28:128). . ' N
Therefore, it can be seen that Equation 5 is in fact?the Power s
Spectral Density of g(t), the impulse response of the tafget. (That
vhich would be measured at the Doppler filter.) |
In this section the power spectrum is defined for an #nfinitely

long, continuous time function, £(t) or g(t). However, 1n5practical

situvations, only a finite amount of time is even availablefto v ‘

observe the time function, particularly if a monostatic ra;ar system ) -
is used. |
"Since the signal is in effect'truncated, the effects én the
Powef'Spectral Density resulting from the truncation of the data set
must be considered.
RCS Estimation
Since the RCS of a target cannot be completely determined, it N
must be estimated. The Discrete Fourier transform (DFT) can be |
used to compute an estimate of the Radar Cross Section of a complex
target. .
e

Discrete Fouri 'r Transform. Let f£(n) be defined by N samples.

The Discrete Fourier transform pair are defined as

T i . K . i . - -z N — i ~




e 2 < o =

N-1
F(k) = ) f(n)exp(=j2n(kn)/N) (14)
n=0
and
N-1
f(n) = ) F(k)exp(j2n(kn)/N) (15)
k=0

wherc the exponential function is periodic of period N (Ref 60:100).

Discrete Power Spectral Density. The sample power spectral den-

sity function or what is known as the raw periodogram is the DFT of

R(1), the autocorrelation function of f(n) (Ref 88:13). Define

27 T

N
P(w) = 1 R(v)exp(-jtw) (16)

N

where T is an integer.

Or conversely, tiae periodogram can be calculated as the modulus of

the DFT of £(n).

1 N-1 2
P(w) - ] f£(n)exp(-3nw/N) (17)
21N n=1
Equation (16) 1s analogous to the continuous Wiener-Khintchine theorem
only in discrete form,
As it turns out, vhichever way is used, the raw periodogram is
an unsatisfactory estimate of the power spectrum unless the signal
15 perfectly periodic and noiseless. Therefore, the periodogram of
a stochastic process will be an unstable estimate, erratic in

appearance and behavior (Ref 88:14)., The variance of the fluctuation

ST




of the periodogram about the true power spectrum does not decrease
to zero as N approaches infinity, as it should for a well behaved
éstimat;r (Refs 88:14; 30:109). Its variance is independent of N,
and the probability distribution of the sample periodogram is a Chi-
squared distribution with two degrees of freedom (Ref 86:80). To
bring the variance down and stabilize the estimate, it is necessary
to do some form of spectral averaging (Refs 76:13; 88:82; 62:548).
Currently, the "practice" of power spectral estimation has a
strong empirical basis because most optimum techniques, such as
maximum likelihood estimition, require mofe information aboﬁt the
signal t*an is usually available (Rei 62:532). As a result trade-offs
are involved between different techniques such that there is no
general agreement on the best method. The reader is directed to
the literature for a more detailéd look at power spectral estimétion.
Davenport and Root (Ref 28), Welch (Ref 90), Webb (Ref 88), Sentman
(Ref 76) and others are excellent reférences. Oppenheim and Shafer
(Ref 62) provide an excellent overview of the power spectral estima-
tion problem. Deutsch (Ref 30) is a recommended reference for
estimation theory. Blacksmith, et al, (Ref 17) contains an extensive

bibliography on work done on radar cross secticn measurement.

Estimating Discrete Power Spectrums

Let £(t) be defined on the interval (~=,»), If £(t) is truncated
by multiplying by a data or observation window, w{t), (t can be

considered either continuous or discrete) such that

10




1, lt! L T/2 '
w(t) = (18)
0, |t] > 1/2

then the tiuncated data set becomes
ht) = £(t) w(t) (19)

as shéwn in Figure 2 on the next page.

The functi-n h(t) now represents the truncated data set available
from which the power spectruia is to be calculated. The Power
| Spectrgl Density, Pap(“) of h(t), reprecenting the apparent power.

spectrum of f(t), 1is then

Pop(@) = [FLE(t)-w(t)]]? (20)
= |F(Ju)*W(juw) |2 ‘ (21)
w |F(Jw)|2* |W(w) |2 - (22)

Thus, the PSD, |F(3jw)|?, is modified by a convolut .on with |W(jw)|Z2,

the Fourier.transform of the data window. W(jw) is called‘the

frequency window and is a sin x/x (sinc x) function as shown in

Figure 3. |
Convolution by the frequency window causes a certain degree of

smoothing in the calculated PSD, but a small amount of leakage via the

sidelobes from nearby frequency bands into the frequency band of

11
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Figure 2.

Truncated Data Set

interest (Ref 76:12). Normally, this is not serious, but if there

are large well defined peaks in the power spectrum and when convolved

with the frequency ' indow, they act to reproduce the window, producing

spurlous peaks in the PSD corresponding .o the sidelobes of the

frequency window. These spurious peaks may be mistakenly identified

as structural details of the true power spectrum when in fact they

are merely artifacts created by the truncation of the original

data set (Ref 76:13).

Several methods exist for
methods include data tapering,
weighting (Refs 88:84; 2:548;
straight forward method is the

exist and the most widely used

sidelobe suppression. Three common
sectioning and averaging, and data
90:56). The simplest and most

use of data weighting. Several typeaA

is the Hamming weight function

12
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Figure 3. Sin x/x (Sinc x) Function
: !

i

w, (n) 5,0.54?- 6;46cos(2nn/(N-l)), (23)

for

where N is the total number of samples (Ref (62:241-242),
The statistical reliability of PSD estimates is discussed by

Webb (Ref 88), Sentman (Ref 76), and Davenport and Root (Ref 28).

Assumptions

The bssis of the imaging technique used in this thesis 1s based

13
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oﬁ the assumption that the body being observed is rigid, and coasists
of sections that behave as point scatterers (Ref 56:1-4). It is also
assumed that, relative to the observer, the object has some motion about
a fixed set of axes (Ref 56:1-4). Figure 4. shows a typical body with
the axes centefed at tlie center of rotation of the budy and with tha
rotation vector normal to the x-y plane (Refs 56:1-4,4; 68:5). The
body 13 assumed to remain in one range bin. The separation between
transmitted pulses is sufficient to prevent ovérlapping, which ie met

by the following conditinn

4T, = N 3/2
r

P T, | (24)

where Td is the duration of the total waveform, '1‘b is pulse duration
éithin the waveform, and Nr is codelength required for PRF staggering
(Ref 82:4). The maximum unambiguous range of the radar is determined

by the burst length, Td’ so that

R, = €T,/2 (25)

and the first Doppler ambiguity is sufficiently removed to correspoud

to double velocity of the fastest target to eliminate foldover, or

.

1 .
T; f 4EY o /; (26)

where Tc is the average interval between subpulses (Ref 83:6);
Additionally, it is assumed the signe” processing is of (irst-order,

whZch means that integration intervals are short enough for certain

lfakarities to pervail, that is, the body has linear motion (no acceler-

atién) during the processing interval in which the target is rotating

& "1t some effective rotation center (Ref 68:3). Iu other words,

tiir. Doppler shift produced by the rotating scattering points is

14




Arbitrary location but point rotater about
fixed x-7 center with radius L

Two-way Doppler shift fo = Vr/(AIZ)
Vr = Radial Velocity
V= ﬂe L = Total velocity of point

ne‘- rotation rate
V =Vsino=Q L sin 0
r e

L sin © = X = position along x-axis

£, =9, X/(1]2)

X= fd(AIZ) /Qé

Range-Doppler Image Relationships
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considered approximately constant during a signal processing interval,
The rotation can be viewed as a changing aspect between the radar line
of sight (LOS) and the target.

Imaging A" zorithm

The radar imaging simulation program models the target as a
collection of scattering pointé ;i, with each point assigned an RUS oy
vhich is assumed to be aspect angle independent (Refs 31:1; 57:2).

At equal time increments the RCS is modelled as a function of frequency
according to

N . | '
o(E) = ] /o exp (~)4nf k-tilc) (27
=) .

s
where N represents the number of scatterers, k is the RLOS direction

-
vector, and r,

; (Ref 31:1). For one image, "flight" continues until the body
i

is the range from an origin on the body to the point

has undergone sufficient aspect angle change to give a cross-range
resolution of 1.5 feet or approximately 2.9 degrees of change, as
determined by
£,(1/2)
A = ————
r n
e (28)
_ /2
AGm
where ACm is the aspect angle change of the body relative to the RLOS and
Qe is the effective vehicle rotation rate (angular velocity) (Ref 68:5).
The range resolution is shown in Figure 5 is determined by the

radar bandwidth. The dwell time on target needed to produc: an image with

a given AX_4s
T

Tive1y ™ 0-65 /(Axrne) (29)
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vhere it can be shown that

where EL is. the instantaneous RLSO angular velocity'due to the varying
aspect between the target track and the RLOS and av sin © 1s the
instantaneous velocity of the 1 :1le perpendicular to the RLOS

(Refs 68:6; 56:1-5).

Since a moving target has many degrees of freedom of motioﬁ, the
effective vehicular rotation may be.brought about by changing aspect
between the RLOS and the target track, andvby changes in aspect due
‘to target motion sbouts its center of mass (Ref 68:6).

The magnitude of Ee 1s used to scale the image from Doppler to
cross-range units, and the image projection plane is the plane
perpendicular to ag(Ref 68:6). This assumes that 5; 1s essentially
constant in both magnitude and direction over the procéssing-;nterval
(Ref 68:6).

Signal Processing
Data from a total time span T, where total angular chaage is

givendby , S - \
-> i
46y = 8,T \\ (31)
"and a range window R centered on the target are sampled and ébllected
and stored in an array. Both the amplitude and phase of the returns

are stored. The sampling increment in range is R and in time, At,

where

At = 1/radar pulse repetition frequency (32)

17
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To put the data into the asspmed form of a collection of points

rotating about a rotation center, it is necessary to compensate

for the motion of the rotation of the rotation center with respect to

the radar since if the target is rotated slightly, the phase of the

center will change (Ref 68:7). This can be done by obtaining the

distance to the rotation center as a fun&tion of time with radar

\ , tracking data, and then by sﬁb;racting the calculated signal phase

| at each time from all of the phase values In a pulse return reccrded
at that time. Alternately, the phase recorded for an actﬁal discrete
target point in the signal may be used as a reference for compensating
all the phases in the return (Refs 56:1-7; 68:7). This process ts
known as aligning or “cohering" the data. Next, the data are Hamming
weighted, ag discussed earlier, for sidelobe control and Fourier
transformed along constant slant range lines to produce the image output
(Ref 68:7).

The unambiguous cross—rangé window X R is giﬁen by

AC
. x/2 A2 .
Xior = h6— T~ RAC : (33)
ACR = TBe, AT

The corresponding unambiguous range window, RACR’ and the Doppler

window, DACR’ are simply

. A2 | (a6
Recr = 50 ft/e

g - (35)
Dyer ™ e

wvith A in feet and At in seconds (Ref 68:8).

The cross-range grid increment, &X is givem by

AX = X, ../ (number of output points in the (36)
Avi
transform)
18
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In general, AX < Axr, the cross-range resolution, in order that the

sampling not be too coarse to miss significant output features (Ref 68:9).
Strattan (Ref 83) points out that the number of profiles (RCS estimates)
integrated should be at least equal ‘o the ratio of the maximum cross-
range dinension of the target to Axr and that the transforms should be

performed at slant-range intervals no laiger than the range resolution
AR & ¢ /2B (37)

where B & 1/T, the Doppler bandwidth of the system. The angular interval.
needed for the cross-range scale factor may be determined approximately
from flight path tracking data. Figure 5 shows the resolution relation-
ship necessary for good imaging (Ref 68:5).
Detailed mathemetical first-order range-Doppler processing is-
- given by Rafael (Ref 68).

Simulation Program TGTID

The Simulation Program TGTID (Appendix A) used in this thesis was
written by researchers at the Syracuée Research Corporation,
Syracuse, New York. The listings of the progran and its supporting

subroutines are iocated in the Appendices.,

Th; Aigéﬁfwdéta" is coherent radar cross-section data as a
function of frequency. It is inversed Fourier transformed to radar
cross-section as a function of range. This data is first aligned
(cochered) so that the first peak of each range sample occupies the same
range bin and then a phase adjustment is made giving the first peak
zero phase.

For fixed range, the adjusted data (now radar cross-section as a

function of pulse repetition interval) is Fourier transformed along

19




Assume fD is constant over rotation .
interval T.

Target rotates A6m = QeT ;?mplitude
Stays within range cell.
-Spectral analysis locates fD
therefore X.

; e

A6m

3]s

Doppler resolution fDr =

Cross range resolution

vy | _042)
T {le Abm

Y location given by slant
range resolution.

X

Figure 5. Range-Doppler Resoletion Relationships

constant range cells to give the RCS in terms of Doppler frequency
which is then scalgd to cross—rangé. The résult is a cross-range
versus range "radar image" whose entries are the associated RCS's
(Refv56:2).. This array is then displayed and "squared up" so that

an undistorted "picture" of the aircraft RCS response is realized, A
block diagram of the processing is shown in Figure 6 (Ref 68:8).

Program TGTID Description

The main program TGTID (Appendix A) reads in the radar (1ocaﬁioﬁ
and frequency) and target (scatterer) parameters, Subroutine CINIT
(Appendix B) computes the number of samples and order of these samples
as a power of two based on the given parameters. Subroutines SLANTV,

(Appendix B),DOTP (Appendix B), CTRAN (Appendix B), FFT (Appendix C),

WY oI




Select Range (R) and Time ({I) Windows

Store Amplitude And Phase in Array

o

AR

T

e —3|

Slant
Range

k T

X

Time

l
|

Compensate for Motion of Vehicle Rotation Cente

Weight Data and Fourier Transform

Along Constant Slant Range Lines

|

e ex

AR
N 7
Slant R
Range \L
>
Cross L d
Range I~ XACR “1

Figure 6.

Block Diagram of Basic Image Processing
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and ROLL (Appendix B) are used to "generate' the RCS data as a funcgion
of range. Subroutines CIMAGE, (Appendix B), HAMWGT (Appendix B),
FFT, and ROLL are used to process the data and Subroutines PLOTID
and BUFOUT (Appendix G) are used to display the synthetic image
created from the RCS data. A complete description of each aubroutiﬁgvis
given with their listing in the Appendices. Radar and Scatterer
parameters used in this thesis are in Appendix H.

For this thesis, four scatterers were simulated and their returns
processed. A representation of the target (four scatterers) and
the radar set is shown in Figure 7; A sample "image" of the four
sc#tcerers as "processed” by the Syracuse Research Corporation'sr
computing systen using this simulation program with FFT6 is shown in

Figure 8 and was used as a standard of comparison for the alternative

forms of processing used in this thesis,

(0,0,0)—-\ «——(0,3,0)

\q \—(s.o,o)

. Radar
-(ol-lio) Set

(500,0,0)

Figure 7, Simulated Target and Radar Configuration
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Figure 8. Syracuse Research Corporation Generated Sample Imagé.
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Subroutine PLOTID (Appendix G) was written to display the
generated "image" using a CALCOMP plotter. Each display is
generated by comparing each element in the image matrix and plotting
a symbol 1f the value exceeds a threshold level. In this wﬁy, only
the prominent power spéctral pealer or highlights of the scatterers
are plotted. Figures 9 through 14 show the imuges plotfed using the
Simulation Program TGTID with'Subroutine PTOTID and Subroutine FFT6.
The threshold set in Figures 9 tkrough 11 are set too "low". The
threshold set in figureé 12 and 13 are in the proper range, where the
threshold set in Figure 14 is too "high". The threshold level in
an actual system would be set dynamically with range information and
bsignal "gtrength”.

All programming is done in FORTRAN IV Extended on the CDC 6600

CYBER 74 System. The plots are generated using a CALCOMP Plotter.
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Figure J1. Subroutine FFTG, Threshold = 1000.
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Figure 12. Subroutine FFT6; Threshold = 1200.
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Figure 13. Subroutine FFT6; Threshold = 2000.

rotee

—




- ‘
few |
& |
Figure 14. Subroutine FFT6: Threshold = 2500,
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III. Evaluaation of Orthogonal Transforms

The use of orthogonal transforms is investigated in this Section.
A transform usually possesses some attributes that make it desirable
to use in é particular application, These charactéristics include:
applicability to the problem at hand. mean square error, probability
of error, computational advantage, programmable in some computer
language, and computer memory required to compute the transform.
These characteristics are often used as criteria for determining the
acceptability of the transform, especially for implementation on a

digital computer.

The Karhunen-Loeve, Cosine (Sine), Mellin, and Hankel transforms
‘are investigated and found not to be suitable for this application.

The Walsh (Hadamard) transform is examined in detail because of its

‘similaraties with the Fourier transform, 1its computational ease

and speed, and the existence of an analogous Wiener-Khintchine theorem.

Rarhunen-Loeve Transform

The optimum transform for data compression and for satlsfying the

minimum mean square error criteria iz the Karhunen-~loeve transform

"~ (Ref 9:123). Ité"ﬁbgtﬁédmhon”appliéationiis found in image and picture

transform coding where data compression is highly desired (Ref 48:64, 65).

The transform is composed of eigenvectors of the correlation matrix of
the original signal, picture, or class of imageg to be coded (Ref 9:124).
The reader is referred to Andrews (Ref 9) for a detailed treatment of
the Karhunen-Loeve transform.

There are two major problems associated with the use of the -
Karhunen-Loeve transform. The first is that a great amount of

computation must be performed (Refs 9:125; 10:41). The correlation
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matrix must be estimated if it is not known. Next, the correlation

matrix must be diagonalized to determine its eigenvalues aud eigenvectors.
Finally, the transforum itself must be taken. In general, there is no
fast computational algorithm for the transform. Since it is usually

not separable (Ref 9:125) (For examnle: for N data points, the
computational load is 2(n2)2; for 128 points, tnis is over 500

million multiplications, which is too many to be feasible.) The

second difficulty is that the mean square error is not a valid error
criterion for most applications (Ref 9:125) including this one.

Cosine (Sine) Transform

The Cosine (Sine) transform has been found to compare favorably
with that of the optimal Karhunen-loeve transform (Refs 4:90; 48:71,72),
The Discrete Cosine Transform (DCT) of a data sequence x(n),

‘n=0,1,2,...,(n-1) 18 defined as

/7 ¥ |
G .(0) » '—= x(n) (38)
x N -E-o '
N-1 .
G, (k) = %-Z %x(n)cos Qotl) ker (39)
n=0 . 2N

k - lgzgoong(N"l}

where N is the total number of samples and Gx(k) is the k th DCT
coefficient (Ref 4:90). Ahmed et al. state that Equation 39 can be
expressed as
9 2N-1 kn )
6 () = 7 Re {exp((~3km)/2N) |  =(n)W, "™} 0)
n=0
where W = exp(-§27/2N), § = /=1, x(n) = 0 for m = N, (+1),...,
(2N-1), and Re{:} implies the real part of the term enclosed (Ref 4:91).
From Equation 40 it follows that the N DCT coefficients can be compnted
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using a 2N-point fast Fourler transform (Ref 4:91). Similarly, if a

discrete Sine transform were desired, the Re{*} in Equation 40 would

be replaced by Im{-}, whicﬁ denotes the imaginary part of the term
enclosed. It can be seen that the computational speed of the DCT or DSf4
is slower as thut of the FFT since twice as many points must bé
transformed. No other fast‘tég;sform algorithm curren-iy exists for

the DCT or the DST.

Mellin Transform

The Mellin transtorm possesses the unique property of "scale"
invariance (Ref 22:78). That is, scale changes in the input do not
produce scale changes in the output, The Mellin transform M(u) of a

function f(x) is defined by

M(u) = I £ (x) x4 lax , (40)
0

and the inverse transform is given by

<00
£(x) = -—%— [Y+ M(u) x Ydu (41)
] vy-ia )

vhere v is chosen so that the integral exists (Ref 83:13). The discrete -

Mellin transform is given by

ydkbu-l o (42)

N
M(kdu) = § f£(1Ax)(iAx
1=1

-where N is the number of samples of f(x), and the input and transform
space resolutions are Ax and Au respectively (Ref 22:79).

No fast computational algorithm has yet been found for implementing
the ﬁellin transform directly. Processing time for a digital computer
can be quite léng (Ref 22:80). Casasent and Psaltis point out tﬁat'a

digital Mellin transform can also be realized by exponentally sampling
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the input and then performing an FFT on this data (Ref 22:78,80). It
is concluded, therefore, that the Mellin transform offers no
advantage over the FFT processing currently being performed in

the simulation program. For a fprther comment on this subject see
Chapter VI.

Hankel Transform

The Ezankel transform is useful if symmetry exists about an axis
and if polar coordinates are appropriate (Ref 85:46). The Hankel

transform pair ara defined by

FOR) = | £(x) I (x) dx (43)

[= e

and

£G) = | F(R) I () dk (44)

0 t
where Jn(kx) is the Bessel function of the first kind of order n

(Ref 85:46). Thisbapplication can be seen to demonstrate some elements

of symmetry about an axis, say the aspect angle of the body at T/2 of the

-observation interval, but no method to convert the received Doppler
waveform to polar coordinztes could be found. Additionally, this
transform requirees the calculgtion of certain boundary conditions
which is a very difficult problem (Ref 85:46). It was concluded that
the Fankel transform could not be applied to this problem,

Walsh Functions and Walsh Transforms

Walsh functions are a complete orthonormal set of square wave
functions that are finding increasing use in various digital signal
processing applications (Ref 29:137, Ref 44). They exhibit similarities

to the trigonometric sine and cosine functions in many of their
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properties (Refs 87; 4; 5). The bivalued characteristic, orthogonality,
and écmputational advantages of these functions are the basis and
metivation for ~their detailed study in this section.

Definition. Continuous Walsh functions may be defined in several ways
(Faf 52:211). They may easilybe defined as products of Rademacher
functions (Refs 52:212; 84:4).

The Rademacher functions (Refs 29:177; 84:4) are defined by

1,0c0<%
R, (6) = (45)
-1, 1<6¢<1
2
R, (@ + 1) = R (0) (46)
R (0) = Rocz“o), n=1,2,3,... . (47)

Figutre 15 shows the first five Rademacher functions (Ref 55:39).
To forn the Walsh function wzl(n,9), first, form the binary

representation of n, then form the Gray code version of n, and multiply

together Rademacher functions according to the 1 bits in the Gray éode

(Ref 52:212).

If n in binary is

N=bb b o b (48)

then n in Gray code 1is

n=ge 182 * 8 (49)
wvhere
g " bm (50)
and
35




Ro (e) +1

Ry(e) 1[

v

-]l

Rz(e) +1

-14

R,(0) 1

“OARARAN
wete () : -

-

ol +
ool L
I o
N

1

Figure 15. The First Five Rademacher Functions, Rn(e).
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gy = by &by,

1=1,2,...,0-1

where © is modulo-2 addition with no carries (Ref 52:212).

functions can aow be defined by

wal(0,9) = 1

val (n,0) = ngm(a) Rm_lg‘“'l(e)nm-zg“"‘z(e).}. R°3°(e)

(51)

The Walsh

(52)

(53)

where n is the order and 6 is normalized time (Ref 84:4). This can also

be written as

m

wal(n,8) = ] g -R.:(6)
LB

(54)

where the summation symbol denotes modulo-2 summing (Ref 29:187).

For example:

610 = 11102 = 101

Loy 9oy !
wal(6,6) = R, (8)R,~(8)R;"(0)

- RZ(e)RO(e)

(55)

(56

(57)

Tﬂis procedure to find a particular Walsh function is easily

remembered. It should be noted that the first argument of a Walsh

function denotes its "sequency". Sequency, as defined by Harmuth,

is the number of zero crossings or sign changes of the Walsh function

in the half-open interval (0,1) (Ref 44:50),

Harmuth uses the notation Wal(j,8) to define the Walsh function and

further defines
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Wal(0,0) = 1 (58)
Cal(n,6) = Wal(2n,6) (59)
sal(n,6) & Wal(2n-1,8) (60)

where the Cal and Sal names are used to parallel the cosine and sine
functions (Re. 44:22). Several notation schemes are used in the
literature and are summarized by Meck (Ref 55:11). The first eight

continuous Walsh functions are shown in Figure 16.

Discrete Walsh Functions. Discrete Walsh functions are sampled

versions of the continuous set (Ref 77:457). Shanks assumes that the
discrete functions are infinite in extent, and are periodic with period
N, where N is an Integral power of two (Ref 77:457). Thus a complete
orthogonal set will have N distinct functions, designated as wal(n,m).

The complete set is represented over the range n = 0,1,...,N-1 and

m=0,1,...,N-1. The first two discrete Walsh functions are defined
as

wal(0,m) = 1, n = 0,1,2,...,N-1 - (61)
wal(l,m) = 1l,m = 0,1,2,...,{N/2)-1 (62)
--l,m=N/2, (N/2) + 1,...,N-1 (63)

Various iterative equations have been used to generate the remainder of

the set, but Henderson's seems to be the most conveniert

wal(n,m) = wal([N]|2],2m) . wal(N-2[N/2],m) (64)

where [N/2] indicates the Integer part of N/2 (Refs 45:51; 77:457).
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The First Eight Discrete Walsh Functions of Length 8.
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Shanks shows that this recursive equation geaerates a complete
orthogonal get (Ref 77:459). Figure 17, shows the first eipght discrete

Walsh functions of length eight generated by Equations 61, 62, and 63

(Ref 77:457),

ordered Walsh matrix for N = 8,

matrix is constructed by sampling the first N Walsh functions once

The Walsh functions may also be represented in matrix notations.

let N = Zk, where k i1s a positive integer, then the N th order Walsh

in N equal subintervals of {0,1) (Ref 87:5). The matrix constructed

from sampling the sequency ordered Walsh functions (Figure 16) results

in a éequency ordered NiN Walsh matrix. Figure 18a, shows the sequency

s

i 0 =B = o

o

-1

1 1
1 -1
-1 -1
-1 1
11
+# -1
-1 1
-1 1

-1 -1 -1 1
<1 1 1 1
1 -1 -1 11
-1 1 1 1

Sequency Order

b. Natural" Order

-1

-1

Figure 19,

Walsh Matrires

of Order N = 8.
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A second, simpler, method which generates Walsh matrices in what is
termed "natural" order is a Kroneker product of p second oxder Walsh
matrices (Refs 85:5; 78:177). This form or the Walsh matrix is of.en
referred to- as the "Hadamard" matrix. A secoad order Walsh matrix is

defined by

W5

1 1 (65)

1 -1

Hadamard matrices of higher order, for N a power of tvo, are generated by

the Kroneker product operation. such that

Rt
HN -H

N

R

2N (66)

Figure 18b, shows the natural ordered Walsh matrix or Had#mard matrix for
n= 8, |

Both the Walsh matrix and the Hadamard matrix are square arrays,
whose rows and columns are o;thogonal to each other, that is, :ﬂ;”wm“m‘“
product of ihe matrix and its transpose is the identity matrix times N,
where N is the order of the matrix (Ref 78:177).

H'H® = N°I | (67)

Walsh Transform. Since the Walsh functions form a complete,

orthonormal set over the interval (0,1), any absolutely integrable function
defined over the interval can be expanded into a series of Walsh
functions analogous to the Fourler expansion of such a function (Ref 44:45).

The discrete Walsh transform of a function is defined by
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p N1
F(m) = N l-o £f(n) wal (m,n) (68)
n

ms= 0,1,2,...',N-1

and the inverse transform 1is given by

N-1 ' .
f(n) =]  F(m) wal(n,m) (69) X /
n=0 o
e
ns= 0,1.2,000,“‘1 '
where F(m) is the m th normalized Walsh cdefficients, f(n) 1is the
discrete input vector, and wal(m,n) is the m th Walsh function
(Ref 77:457). 1t should be noted that since the Walsh matrix is
orthogonal, the following relationship holds
wal(n,m) = wal(m,n) N ' (70)
Using matrix notation, the Walsh transform matrix equation is
given by
, 1 '
[A] = & (W] [F] \ (71) ,
vhere [F] is a columm vector of sample values gf the input signal,
[W] is the Walsh matrix, and [A] is the columm vector or Walsh
coefficients (Ref 84:7).
Similarly, the "Hadamard" transform is given| by
. 7 .
[A] = § [H] [F] - (72)
Where [H] is the Walsh matrix in natural order (Ref 78:178).
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identical (Ref 84:8). The factors of a Walsh matrix of order N = 8 =2

The function F(ﬁ) or [A], therefore, represents the "sequency"
spectrum of f(nﬁ iﬁ the same sense that a set of Fourier coefficients
represents a frequency spectrum (Ref 44:51;52).

The computational load for either Equation 71 or Equation 72 can be
seen to be N(N-1) additions (multiplication by -1 1s not really a
multiplication but just a "sign" change and an addition).

However, Good has developed a matrix factorlzation technique which
leads to a "fast" tréﬁéform algorithm (Ref 8:16, 17). Good's technique
can be usgd to factor Kroneker matrices such as in Figure 18a and b.

P

Matrices of order N = n* can be factored into p matrices of order N

.(Ref 8:17). If the matrix to be factored has been generated by the

Kroneker product of identical matrices,‘then its factors will also be
3
are shown in Figure 19 (Ref 84:9)., Since the matrix factors include
many zero elements, the number of computations is reduced to NlogZN
additions (Ref 84:8),.

A flow diagram of the Fast w&15h transform is given in Figure 20
(Ref 84:9). Similarly, a flow dlagram for the Hadamard transform
is shown in Figure.21 (Ref 76:178). The recursive structure of the
diagrams leﬁds to an efficient programming of the algorithm on a
digital computer (Refs 78:179; 84:8; 1:276). The coefficients of the
Fast Walsh transform (FWT) are in '"bit reflected" order and those of the
Fast Hadamard transform (FHT) are in sequency order, Therefore, the FWI
requires a reordering procedure which adds approximately 15 to 207 more
t> execution time (Ref 51:204). Several algorithms exist for converting

from bit reflected order to sequency order (Ref 53:16).
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Dyadic Convolution. The dyadic convolution of two functions f(t) and

g(t) is defined as

h(t) = f 0 ¢

- )“" £(1)g(tor)dr o (73)

where @ denotes dyadic or logical convolution and t € Tt denotes addition
modulo-2 (Ref 41:616-617). The discrete dyadic convolution of two
sequences f(n) and g(n) of length N is defined by

L M1
h(n) = ¢ ; . £(1)g(n6i), n
(74)

=0,1,...,N-1

Logical Wiener-Khintchine Theorem. If the Walsh transform of
f(r) and g(n) is defined as F(s) and G(s), respectively, then the

following property 1s true
h(n) = £ 8 g +—2— F(s) * G(s) ‘ (75)

vhere s represents sequency (Ref 55:19). The time-sequency domain

logical Wiener-Khintchine theorem is defined as
W
R() =f 0 £ «——> F(s)+F(8)

= F(s)2
= P(8) (76)

which is analogous to the "arithmetic" Wiener-Khintchine theorem of the

time~-frequency domain (Refs 55:19; 72:271; 1:615).
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Power Spectral Density. The sequency power spectrum, P(s), is

easy to generate from the Hadamard transform and has a pnysical
interpretation quite similar to the frequency power spectrum (Ref 44:51),

The sequehcy power speétrum, as defined by Harmuth is given by

»

2
AO k=0
2 2
P(s) = AZk—l + A2k k = 1,2,,..,N/2-1 7
. 7 ‘
Azk-1 k = N/2
where A2k—1 and A2k are the odd and even sequency discrete Walsh

transform coefficients (Refs 44:51; 64:93). However, this spectrum is
not invariant to time shifts (Refs 64:92; 41:617). Polge et al,

state that the variation of the sequency power spectrum with the time
axis position of th input data is a serious drawback in signal processing
activities unless only gross spectral featurss are desired or the
possibility of time synchronization exists (Ref 64:93). Andrews

and Caspari, in their work on generalized spectral analysis, demonstrate
the "shift variance" of the Walsh transform relative to the "shift‘
invarian;" Fourier transform (Ref 8:24). Figure 22a shows the spectrums
of a block pulse and Figure 22b shows the spectrums of the block pulse
ghifted relative to the time origin (Ref 8:24).

A time shift invariant power spectrum can be’generated by defining
thg power spectrum as the Hadamard transform of the autocorrelation
function (Equation 76) and noting that the autocorrelation function
is invarilant to time shifts (Ref 64:93), 1If F(s), s = 0,1,...,N-1,

is the Hadamard transform of the sequence f(n), then the time invariant
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Figure22. (a) Orthogonal Decomposition of a Block Pulse
(Fourier to Walsh Transition). ¢(b) Orthogonal Decomposition
of a Shifted Block Pulse (Fourier to Walsh Transition).

power spectrum is

g—l
P (s) = Q
\ ' TI a=0

jsF(s) (79)

where théimatrix Q, made up of elements st, is dependent on F(s)
(Ref 62:93). The computation of the power spectrum using the -

|
autocorrelation function is time consuming, and the high speed

advantage of the Hadamard transform is lost (Ref 62:93).

Simulation Program Test. The possibility of using the Walsh transform

in the simulation program TCTID was investigated by suBstituting the FFT

subroutine with a fast Walsh transform.
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The test was made with S broutine FHT1 (Appendix D) substituted
for Subroutine FFT6 (Appendi# C). Appropriate aodifications were made
to Subréutine CIMAGE (Appendix B, Version 2), and Suﬁroutine ROLL |
(Appendix B) was replaced by Subroutine WROLL (Appendix B). The
"standard" Walsh power spectrum was computed, and each spectral
element of the resultant image matrix was compared with a threshold and
plotted if it exceeded the threshold. The threshold was varied to
determine its effect oﬁ the image, The results of the first test are
shown in Figure 23 ~ 27, beginning on page 53. It can be seén that
the image does not look entirely like that of an image generated using
" a Fourier transform. The effect of time shifting the input was tested
. by "repositioning"” the'foug point scatterers (Appendix H, Data Set 2).
A new set of images were constructed and are shown in Figures 28 - 32,
beginning on page 58. It can be seen that the scatterer "information"
has changed and that the two sets of images have only little simflarity.
The second data set was used with the FFT subroutine reinserted into

the simulation program. It ca be seen that there is no change in the

image, except in its location in the "viewing field"”, and the result
is shown in Figure 33, on page 63 .

This difficulty, as Blachman observes; is attributed to the fact
that after time shifting, a Walsh function generally becomés the sum
of an infinite number of Walsh functions while a sinusoid simply
turns into the sum of a sine and cosine of the same frequency. Thus
a change in time scale, or a shift of the time origin usually will |

grossly alter a Walsh spectrum but has no effect on the Fourier spectrum

(Ref 16:347).
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It is concluded that since the Walsh power spectrum computed by the
direct method is not time shift invariant and since no fast algorithm
exists fﬁr the second method and since there is little possibility
of time syhchronization, the Walsh transform can not be utilized

in this application.
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Figure 23,

Subroutine FHT1l, Data Set 1;
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Threshold = 1,
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Tigure 24. Subroutine FHT1l, Data Set 1; Threshold = 10.
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Figure 25,

Subroutine FHT1l, Data Set 1;
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Figure 26,

Subroutine FHT1, Data Set 1
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Threshold = 50,
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Figure 28. Subroutine FHT1l, Data Set 2; Threshold = 1.
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Figure 29. Subroutine 29, Datu Set 2; Threshold = 10.
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Figure 30. Subroutine FHT1, Data Set 2; Threshold = 20,
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Figure 31. Subroutine FHT1l, Data Set 2; Threshold = 50,
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Figure 33.

Subreutine FFT6;
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Data Set 2;
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_IV. Walsh Domain to Fourier Domain Conversion

A technique developed by Andrews and Caspari (Ref 9) implements
a fast Fourier transform, a fast Hadamard transform, and a variety
of other orthogonal decompositions suggesting a generalized spectral
analysis. Their results.imply that a relationship exists between
the Walsh domain and the Fourier domain. Robimscn (Refs 72, 73)
presented a derivation of a recursive relationship between the arith-
metic and logical autocorrelation functions of a wide sense stationary
process. This work was based on a theorem discovered by Gibbs and
proved by Pichler (Ref 38). Siemens and Kital (Refs 79, 80) and
Blachman (Refs 15, 16) describe schemes for converting from Walsh
coefficients to Fourier coefficients. Both approaches seem proﬁising
because of the computational speed advantage of the FWT/FHT as compared
to the FFT and will be analyzed in tﬁis section. However, it {s shown
that Robinson's approach 1s incorrect ani the second approach not -

feasible for use in radar target identification.

Walsh Power Spectrum to Fourier Power Spectrum

Robinson defines the Walsh power spectrum of a sequence of rgnde
samples as the Walsh transform of the "logical" autocorrelation %
function of the random sequence, where the logical autocorrelation ‘

\
function is defined in a similar form as the "arithmetic" autocorrelaJ
tion function (Ref 72:271). Robinson asserts that the Fourier power
spectrum, which is‘defined as the Fourier transform of the arithmetic
autocorrelation function, can be obtained from the Walsh power spectrum

by a linear transformation (Ref 72:271). The chain of transformations

can be summarized as
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Fourier Arithmetic
F
Jower -1 , Autocorrelation
F
Spectrum > Function
TL-A‘ 1 TA—L (79)
Walsh Logical
Power ' . Autocorrelation
w
Spectrum Function

Hcvever, the procedure to find the transformation matrix, T, was
found to be incorrect. Robinson defines the logical autocorrelgtion

function as

: N‘l )
Lt® ) =5 I x(1 @ Wx()

J=

| (80)
? k - 0.1.2...0,“‘1

where x(j), 3 = 0,1,2,...,N-1, 1s a random sequence of length N = 2@
and'repreéents a window or block of N samples of discrete random pro-
cess. The logical autocorrelation function is then defined as the

expected value of the local logical autocorrelation function of

Equation 80
Lk) - E{L(®™ (k)} (81)

where the expectation cperator E denotes the ensembl. average of M
local logical autocorrelation functions (Ref 73:299)

M
) =1 (m)
L(k) = 5 uzl L7 (k) 82)

k - 0,1,2,....“—1
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Robinson then defines the arithmetic autocorrelation function as

as even function of time difference only

E{x(3+k*)x(3)} = R(k*) (83)

where k* is the time shift (Ref 72:272).
If Equation 81 is written in matrix form using the inlices of
Table I, Robinson asserts that a linear combination of R(k) is obtained

for each L(k'. As an example, Robinson presents, for N = 4, the

following
- - r -~ -l\
L(0) x(0) x(1) =x(2) =x(3) x(0)
L(1) LX) XM x(3) x(2)  x(1)
L(2) x(2) x(3) x(0) =(1) x(2)
L(3)] x(3) x(2) x(1) x(0) x(3)

Robinson shows that the first row which corresponds to L(0) yields the
correlation of N samples for zeroc time shift, thus L(0) = R(0), which
is true. Robinson also states that L(1) = R(1l) which is not true.

The standard definition of the arithmetic autocorrelation function is

‘given as (Ref 88:13)

N-1
R(T) = I x@xGt]) (85)
n=-

Using Robinson's relation, Equation 84, L{1) is found to be
L(1) = 1/2[x(1)x(0) + x(3)x(2)] (86)

Using Equation 85, it can be seen that
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R(1) = 1/4[x(0)x(1) = x(1)x(2) + x(2)x(3) + x(3)x(0)] (87)

Table 1

Bitwise Modulo 2 Addition, Given by j @ k, for
Integers Between 0 and 3

3 0 1 2 3
k
0 o 1 2 3
1 1 0 2 3
2 2 3 o0 1
3 3 2 1 o

(Ref 72:272)

Table I1I

Time Shift k*, Given by k* = (j @ k) - j, for
Integers j and k Between 0 and 3

3 o 1 2 3
k .
0 0o 0o o o
1 1 -1 1 -1
2 2 2 -2 -2
3 3 -1 -3 -3

(Ref 72:272)

therefore,
L(1) ¢ R(1) (88)

Robinson's error arises from the confusion of the use of k* in
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Equation 83 as a dummy variable end the use of k* in Table II as the
time shift for computing R(k). This is an 1ncorrect'use of the defi-
nition éf the arithmetic autocorrelation function given in Equation 85,
that is, the time shift cannot be varied when coﬁputing the arifhmetic
autocorrelation function for a particular time shift. Robinson uses A
Table II to find a specific k* for each j in the summation in com-
puting R(k). |

It is concluded tﬁat this approach is incorrect and that there
is no linear relationship between the Welsh power spectrum and the

Fourier power spectrum of a signal.

Walsh Series to Fouriler Series Coefficeints

Siemens and Kitai, and Blachman have shown that the coefficients
of the Walsh series of a function can be used to derive the correspon-
ding Fourier series coefficients. The convgrsion eqhation for each
Fourier coefficient is in the form of an infinite summation of _ C
products of cénstants and the Walsh coefficients (Ref 79:295). They ‘?
assume that the signal is frequency-limited so that preciée evaluation '
of the Fourler coefficients in terms of Walsh coefficients is possible ,,,: B
and that the highest normalizedvfrequency component (harmonic) N and

the highest normalized sequency component M are equal. Thus a finite -

number of Walsh coefficients can be used for computation of the Fourier

coefficients. The conversion computation is further reduced if M is
a power of two (Ref 79:295).
Let a function £(6) be represented by a sequency-ordered Walch
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£(8) = A + Zo[Am cal(m,0) + B sal(m,0)] (89)
-

The coefficients Ay and By of the even and odd Walsh functions, res-

pectively, are defined by

1

A= I £(0)cal(m,0)de (90)
0 .
1

B, = [ £(9)sal(m,6)do (91)
0

The same function f(n) has the corresponding Fourier series

a [ ]
£(6) = 5+ ] la;cos2me + bysin2mo) ' (92)
n=1
where
a, =2 ] £(6) cos 26 do (93)
0
1 .
b, =2 I £(8) sin 2w do (94)
0

Tﬁe objective is to use the Walsh coefkieients A.ln eud By to derive a,

1

gnd bn. x

Siemens and Kital claim that the eﬁen terms, a_, of the Fourier
series of a signal are functions only of\the even terms, A, of the
corresponding Walsh series (Ref 79:295). Similarly, b, terms depend
only on B, terms, The even, real terms are derived below; similar
derivations apply for the odd terms.

The Walsh to Fourier series conversion is derived by equating

the terms of each series (Ref 79:296)
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z a,cos2mn@ = Z A cal(m,8) (95)
n=1 m=1
The cal functions are expanded into sets of equivalent Fourier cseries

expressions whose terms have coefficients a where
]

1

an’m'= 2 [o cal(m,8)cos2mnddo (96)

If a represents the nx] matrix of the set {ap} as n + =, and A repre-

sents the mxl matrix of the set {A } as m + =, then

a=FA . %0

—

If only a finite number M of Walsh coefficients are known, then a, can

only ve approximated as én, where
M
a, = 1 a5 g (59)

m=1

{8 the n th Fourier coefficient of cal (m,8). The mxn matriz of the

set {an m} is denoted E? (Ref 79:296). In the expansion of the right
? .

hand side of Equation 95, terms couraining cos2in@ are grouped,

yellding a; values given by

8y % ) a5,m An (97)

However, if the function f(n) is either frequency-limited or sequency-

limited, then

a. = an (100)
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The coefficients a can be considered the Fourier coefficients of the
frequency~limited or sequency-limited function (Ref 79:296). |

The next step is to find the set {a; o} of E?, the Fourier co-
efficient set of cal(m,8). Siemens and Kital developed an alternative
expression for the Fourier transform of a Walsh function which differed
from eariler expressions in that it incorporated the.Gray code repre-
sentation of the order of the function (Refs 79:81; 15:349).
Additionally, the expression is nonrecursive. The definition of the

Fourier transform of a Walsh function, wal(m,6), is defined as

1
Tlwal(m,8)] = J wal(m,8)exp(j2nfo)ds

(101
0 :

The even and odd Walsh functions, cal(m,8) and sal(n,0), respectively,

have the Fourier transforms

Flcal(s,0)] = C(f,s)

1
- f cal(s,®)cos2nfede
o .

and

F[sal(s,e)] - jS(f,B)

1

= I sal(s,0)sin2wfode (103)
0 )

where £ and s are normalized frequency and sequency. Since the Walsh

functions are discontinuous, evaluation of Equation 101 - Equation 103
would normally involve a summation of integrals (Ref 80:81).

Siemens and Kitai state that it is convenient to view a contin-
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uous Walsh function as the convolution of the sequence of unit im-

pulses that form the discrete Walsh function over the interval

- 0505 1 with a rectangular pulse of unit magnitude and the width

of 1/2H equal to the spacing of the unit impulse, where M i. the number
of bits in the binary representation of m. The Fourier transform of

the Walsh function is then the product of the trensforms of the discrete
Walsh function and the reétanéular pulse (Ref 80:81)., This relation

is then | |

1

M-
= (-1)B0(-1)0. nf I,. M
F[wal(m,0)] = (~1)°9(-1) [xE c°8(2x+1 8¢ 2)] sinc(f/2 )‘(104)

0

where -3 is the xtP bit in the Gray code representation of m, and a is

the number of Gray code bits of value ONE, and
sinc(£/2M) A sin( £/2M)/(¢ £/2%) (105)
If the cal and sal functions are given, the order m is found from

wal(m,8) = cal(s,0),
me 2g (106)

or

wal(m,0) = 8al(s,0),
mw 2g - 1 (107)

Equation 99 is sufficient to compute the Fourier coefficients of
f(n) assuming the set {An} has been found and Equation>104 has been
used to determine the E?'s necessary to find Fourier coefficients. A

total of 2M Walsh coefficients are necessary to find the complex
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Fourier coefficients. Therefore, to find A requires Zﬂlogzu real

additions and subtracﬁions. A total of 2M2 gtorage locations are
required for the Fourier coefficient sets of cal(m,6) and sal(m,8).

The computatibnal load to fiﬁd the Fourier coefficients of £(n)
can be seen to be 2M? multiplies and (242 + 2mLog,M) additions. This
is compared to 4Mlog2M real multiplies plus 2N¥ additions to compute
the fast Fourier transform.

It can be seen that_the Semes conversion approach requires
greater computational effort than the direcﬁ fast Fourler transform
method and a very large storage requirement for the transformation
matrices (z?). It 1s therefore concluded that this approach is not

feasible for implementation in this probiem.
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V. Comparison of FFT Algorithms

It is geen in Section IV that many orthogonal transforms are not
feasible for use in tactical target identification signal processing.
This section provides a brief description of the'f#ét Fourier transform
(FFT) and then selects the optimal implemen;ation-of it for this appli-
cation. Performance critefia, based on éxecution time, memory
requirements, and error size, are developed aﬁd serve as a basis of
comparison among the implementations considered. Two general types of
implementations, floating point and fixed-point, are presented, tested,
and evaluated using the criteria. ' .

Several different "floating point" FFT subroutines are tested using
the simulation program TGTID as the "driver" program to determine their
relative utility. Two of these FFT subroutines afe modified to

execute more efficiently then one FFT 1s selected based on the criteria

as the most feasible in the simulation program. The FORTRAN IV code of

the FFT subroutines is listed in Appendix C.

A "fixed-point" FFT implementation is derived and demonstrated to
be feasible in this applicaticn. 1t is consideréd to be the optimal
approach for this problem. Several variations of the fixed point
FFT are implemented with the FORTRAN v listings given in Appendix E.
One fixed-point FFT subioutine is selected as the best choice for use
in the simulation program.

Background
The FFT algorichm is a highly efficient procedure for computing

the Discrete Fourier transform (DFT)
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N-1 .
X(k) =) x(n)exp(-j2mk/N) (108)

for k = 0,1,2,...,N-1, where x(n), n « 0,1,2,...,N-1 is an equally
spaced complex data series (Ref 62:100). It takes advantage of the fact
that the calculation of the Fourier coefficients can be carried out
iteratively, which results in a considerable savings of computational
time (Ref 23:45). The DFT is a reversible mapping or unitary operation
for time series and hés the same muthematical properties as those of

the Fourier integral transform given in Equation 8 (Ref 23:45). 1Ia
particular, it defines a frequency spectrum of a time series.

.If digital analysis techniques are used for analyzing a continuoué
waveform then it is necessary that the data be sampled at equal time
intervals in order to produce a tim~ series of discrete samples which can
be used in a digital computer. So that the time series completely
represents the continuous waveform, it is necessary that the waveform be
ﬁand-limited and sampled at twice the highest frequency in the waveform
(Ref 24:45). This rate is knowm as the Nyquist rate and the 'equispaced

samples are known as Nyquist samples.

The speed of the FFT algorithm depends on the factorability of N

M
N=1 n (109)
i=1

and then decomposing the transform into M stages with N/ni transformations

of size n, within each stage (Ref 18:93). The FFT algorithm is most

i
X M M
efficient when N = 2" or n = 4 /2 since a computational advantage is

gained by decomposing the computation of the DFT into successively
smaller DFT's (Refs 54:2; 62:285-287). The improvement in computational

efficiency of the FFT is proportional to N logzN as opposed to tie
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computational load of N2 fdr the straight DFT approach (Ref 60:287).

There are two basic FFT algorithms. The first, called “Decimation-
in-time", derives its name from the fact that in the process of
arranging the computation into smaller transformations, the sequence
x(n) 1is decompoéed into successively smaller sequences. In the second
general class of algorithm, the sequence of Fourier transform coefficients
of X(k) is decomposed into smaller subsequences, hence the name

"decimation-in-frequency" (Ref 62:286-287)., When either one of the

two algorithms is used, the orderiné of the sequence (either input or
output) must be taken into account. If the decimination-in-frequency
algorithm is used the output coefficients will be in bit-reversed
order; and if the decimation-in-time algorithm is used, the input samples
must be put into bit-reversed order. Therefore, in addition to
performing the FFT, a reordering procedure must also be implemented which
accounts for approximately 15-20% of the execution time of the FFT
process (Ref 64:17)., Figure 34 and Figure 35 show the signal flow
graphes of the decimation-in-time and decimation-~in-frequency algorithms,
respectively. |

\\ The literature is rich in material on the FFT: its derivationm,
it; propeftiea, its uses, and its pitfalls. The reader is referred
patficularly to Cooley and Tukey (Ref 25). Bergland (Ref 12),
Cochran et al (Ref 24), Gentleman and Sande (Ref 36), Singleton (Refs 81,
82),| and Oppenheim and Schafer (Ref 62). The Bibliography of this
thesis contains several other related and excellent references.
Cr}teria

The criteria generally applied to the evaluation of an FFT algorithm

include program execution time, accuracy, storage requirement , and
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adaptibility to the &igital computer to be used (Ref 34:1) Bergland
points out that the number of variations of the FFT algorithm appears
to be dir;ctly proportional to the number of people using it aand that
most of these implemen;at;ons are based on either the Cooley-Tukey or
the Sdnde-Tukey methéas, but are formulated to explnit properties of
the time series being analyzed or the properties of the computer being
used (Ref 12:50).'-Ferrie states that best accuracy is achieved only
at the expense of increased execution time and storage (Ref 34:10).

In essence, then, no single FFT algorithm represents a "best" choice:
it depends upon the applicatibn (Ref 71:25).

For this application, short execution time is considered the most
important criterion, and the next most important is small storage
requirements. Since, only major spectral lines are of interest, then
only coarse calculations are important, therefore, accuracy is not
consiéeted an imporiant criterion. -Additionglly, the type of aigital
computer for implementation is the DEC PDP-11/40, and its high speed
integer arithmetic cﬁpﬁbility motivated the development of a fixed-
point FFT subroutine.

Floating Point FFT Algorithm Comparison

The eight FFT subroutines evaluated are briefly described in this
section. Al! the subprograms are written in FORTRAN 1IV. In their
original form most were named "FFTf; for this thesis they are designated
FFT1 through FFT6. Two of the subroutines, FFT1 and FFT4, are modified
to improve their efficiency. All the subroutines, except FFT2, perform
the transform in-élace. And all hardle cdmplex exponentials in terms of

sine and cosine functions according to Euler's rule
exp(~j6) = cos g -jsin 0 (110)
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- FFT1A and B (Ref 62:331,. FFTIA and B are ratix-2, decimation-
in-time transform subprograms. They can handle N equal a power of two
points. The data are treated as complex, and the trigonometric
functions are compp:ed as they are used. They are simply {mplemenced
and straightforward. Computations are performed in-place and calcu-
lations use complex arithmetic. vMemory storage requirements depend
only on N. Initial bit reverse ordering is done within the subroutine.

FFT1B is made wore efficient by performing the first state
separately from the rest of the stages by exploiting the fact that the
vclue of Wknk = exp(-j2rnk/N) is zero for the first stage butierflies,
the basic -unit of computation. Therefore, the cosine aﬁd sine values
are one and zero, respectively, and the arithmetic operations are
simple additions and subtractions. Figure 34 shows this propertf.

FFT2 (Ref 71:21). FFI2 is a radix-2 decimation-in-time algorithm.
It uses two arrays to perform the transform, so that no separate
reordering routine is required, but the storage requirement is
doubled. Complex arithmetic is used. It i; known for its accuracy

b“F”4t§w9¥§“§tiQ?fiF slow (Ref 71:25).

 FFT3 (Ref 71:21). FFT3 is a simple, straight forward radix-2
implementation of the decimation—in-frequency algorithm, It uses’
real arithmetic to compute the butterfly. It requires Subroutine
RBITS to reorder the bit-reversed Fourier‘coefficients. Computations
are performed in-place. Internal storage requirements for this
subroutine are greater than those of the previous subroutines.

FFT4A and B (Ref 62:332). FFT4A performs the transform approx-
imately the same as FFf3 except that the indexing scheme is simpler.

Complex arithmetic 1s used and calculations are performed in-place.
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Reordering is accomplished within the subroutine. FFT4B is modified
to make it more efficient by perferming the last stage separately,
similar'inlconcepc to FFTI1B,

FFT5 (Ref 52:27). FFT5 1s based on the original Cooley-Tukey
FORTRAN subroutine. It is a radix-2 transform subp;ogram and performe
couputations in-place. It 1s neither a fast or efficient implementa-
tioﬁ of the FFT algorithm (Ref 54:28).

FFT6 (Ref 45:A-3). FFT6 is a mixed-radix decimation-in-frequency
algorithm. It can handle 213 points which can be increased with minor
modification to the subroutine. It requires signific#ntly more inter- |

'.nal storage than any of the other FFT subroutines, but it is also

- known for its speed (Ref 82).

Evaluation of the Floating Point FFT Subroutines

The eight FFT subroutines were tested in the simulation program
TGTID with approptiaté modifications made to Subroutine CIMAGE
(Appendix B).

Execution times, memory requirements, and the number of FORTRAN IV
statements for each FFT subroutine are summarized in Table III. The
number of FORTRAN IV statements is the total number of statements
required to perform the transform and reordering routines, but does
not include comment cards. Storage requirements were obtained from
the cross-reference maps produced by the CYBER SCOPE Operating System.
Execution time was determined by using the CEC library subroutine
SECOND (CP) which returns time in seconds to three decimal places. In
Subroutine CIMAGE, the FFT subroutine is called 256 times (NTM = 2

and MBSZ = 128; it is called 128 times for NTM = 1 and 128 times for
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NTM = 2). The FFT size is 128 points (NBSZ = 128 = 2NBORD  yhere
NBORD = 7)., Thus each FFT tested performed 256 128-point transforms
to produce the image. The execution time was measured by taking a
time "hack” (STIME) just before the FFT subroutine was called and just
after it returned (ETIME) to the calling subprogram. The difference
between the two time hacks was ~omputed (RTIME = ETIME - STIME) and
added to the total accumulated execution time (TTIME). The final
value of TTIME was the total execution time to compute the 256 128-
point FFT subroutines neesded to generate one image. The execution
time entry in Table III is an average of the total execution time for

each FFT subrou:ine to generate at least three separate images.

Results of Floating Point FFT Comparison

From Table II1I, it can be seen that FFT1B and FFT 6 are the
fastest subroutines. FFTIA required the least amount of memory.
However, it is concluded that FFTIB iz the best floating point FFT
subroutine based on its speed and storage requirements., Figures
36-39 show the output images generated by FFT1B for increasing
threshold settings. Images generated using FFT6 are shown in

Figures 9 through 1l4.

Fixed-Point FI'T

The implementation and use of a fixed-point FFT is motivated by
several factors. The DEC PDP-11/40 minicomputer to be used in the
actual applicaticns work of radar target imaging processss an
extremely fast integer arithmetic processor znd has no fleating
point processor. The 16-bit word is considered sufficient to provide

an adequate resolution since only gross, relative spectral line
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Table III

Summary of Floating Point FFT Performance Statistics

Number of Number of Aux Arrays Executinn
FFT FORTRAN Instruction Words (Words) Time (Sec)
Statements (Total) ‘
FFTI1A 36 127 N 1.412
FFTI1B 40 143 2N 1.367
FFT2 31 142 4N ' 2.5?
FFT3 21! 197 2N +10 2,007
FFT4A 35 130 28 1.550
FFT4B 40 148 2N 1.51C
FFI5 54 176 2N +15 2.38
FFT6 112 350 2N +26 1.367

lgubroutine RBITS = 32 statements, 120 words
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Figure 36. Subroutine FFTIB; Threshold = 500.
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Figure 37. Sburoutine FFT1B; Threshold = 1000.
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Figure 38,

Subroutine FFTLB;

Threshold = 1700.
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Figure 39.

Subroutine FFT1B;

Thresheld = 2000.
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magnitudes are really required for this application. Fixed point division
by two ig easily performed by shifting the binary point to the left.
The fixed-point FFT is based on the 16-bit word of the DEC PD¥-11/40,
The data word is divided into two parts: the lower 15 bits for ghe
numbers ére scaled so that ﬁhe binary point lies at the extreme left.
The input data must be put into the proper format. First, each
point is multiplied by 27> - 1 = 32767 to put it into a scaled integer
format. Second, each point is divided by the total number of points,
N, in the transform (in this case N = 128) to negate the gain that
is generated as the computation 6f the FFT progresses from stagé to
.stage to prevent the possibility of an overflow when two points are
added together in the butterfly calculation. The real and imaginary
.parts of each data set are scaled and are sorted in two separate, real
and imaginary, arrays, respectively. |
The trigonometric functions are computed znd then multiplied by
32767 to integer scale each sine and cosine value. When the
trigonometric terms are multiplied by the difference of two points in
the computation of a butterfly, the product results in a 31l-bit
number plus sign, which is greater than one. To rescale this nﬁmber,
it is dividéd by 215 = 32768 or more simply, the binary point is
shifted 15 rlaces to the left and the 16 least significant bits
are truncated. This, likewise, prevents an overflow condition from

occurring., The basic butterfly computational algorithm (decimation-in-~

frequency) is shown in Figure 40, and the corresponding equations are

Tl = Xm(p) - Xh(q) (1in
T2 = Y (p) - Y (a) . (112)
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Xm(p) . * - Xm + l(P)

Ym(p) Ym + l(p)

km(q) Tl cos(2rr) Xm 1 (qQ)
. T2 sin(2rr)

Y (q) m+1 (q)

Figure 40. Flow Graph of Two-Point Integer FFT
Butterfly Using Real Arithmetic

xm+1(p) = Xm(p) + Xm(q)
Y1 ® = .0 + Y (@)
X 41(2) = (cos(2 r)*32767*T1 + sin(2 r)*32767)/32768

Ym+l(q) = (cos(2 r)*32767*T2 + sin(2 r)*32757) /32768

where X and Y represent the real and imaginary parts, respectively,
The accuracy of the fixed-point power of two FFT algorithm is
addressed by Welch (Ref 91). His error analysis led to approximate

upper and lower bounds on the root-mean-square error. Based on

(113)

(114)

(115)'

(116)

Welch's findings, it was determined that the theoretical upper bound

for this application (B = 16 and N = 128) is (Ref 91:156)
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RMS(error) . 3 s5x10™3 117
RMS (result) x ( )

This bound is considered to be more than adequate for radar target
imaging. Welch further states that if the transform is taken to
-estimate the power spectrum of a signal, averaging over frequency in a
single périodogram, or averaging over time in a sequence of pgriodograms,
or uéing simple wieghting will decfeaae fhe error (Ref 91:157).

It is concluded that the use of the fixed-point FFT algorithm is
feasible for 1m§1ementation in radar target imaging signal processing.

Five "simulated" fixed-point FFT subroutines were wzitten in
FORTRAN IV for this thesis. They a%e based on the floating point FFI
algorithms previously discussed, exépet Subroutine FFTI4., They are
writteﬁ in sumulated form for use o& the CDC 6600 CYBER 74 System
instead of the minicomputer for whiéh they are intended. Shifting of
the binary point is accomplished witﬂ the use of the CDC intrimsic
library function SHIFT (A,-N).

FFTIi. FFTI1 is based on FFT. EItvis converte§ from compiex,
floating point arithmetic to real, fixed-point arithmetic. Indexing
and reordering are not changed, | )

_ FFTI2. FFTI2 is based on FFTl. It is not aé efficient to
implement as the decimation-in~frequency algorithm.

FFTI3. FFTI3 is based on FFT4. Reordering is performed within
the subroutine. ’

FFTI4. (Ref 34:15-18) FFTI4 is based in part on an algorithm
presented by Fisher (Ref 35). Trigonometric functions are precomputed,

scaled, and stored in a table. The subroutine is called oncé by the

calling program and passes the table to the main FFTI4 subroutine.
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Subrovtine COSINE (Appendix IO is used to generate the trigonometric
table. It is called by Subroutine CIMAGE (Appendix E, Version 3),
and used in Subroﬁtine FFT14. An address loopup routine is used
to obtain the proper sine/cosine value from’the table. Subroutine
UNSCR! (Appendix J) is called by FFTI4 to reorder the'fourier
coefficients. A complete derivation and floating point implementation
is reported by Fisher.(Ref 34).

FFTI5. FFTI5 incorporates the best features of FFT4B and FFTI4.
A cosine table is generated from zero tv two pi. FFTIS uses a
lookup address routine to obtain the required trigonometvic values
for the butterfly computatioﬁ. The last stage of the transform is
performed separately to eliminate the lookup and unnecessary multiplies.
Subroutine UNSCR1 is called fo reorder the fixed-point Fourier

coefficients.

Evaluation of the Fixed-point FFT Subroutines

The five "simulated" fixed-point FFT subroutines were tested in the
simulation program TGTID with appropriate modifications made to
Sburoutine CIMAGE (Appendix B, Version 3). They were evalusted in

the same manner as the floating point FFT subroutines. Table Iy

summarizes the number of FORTRAN IV statements; the amount of memory
required, and the average execution time (over at least three runs of
program TGTID) for each fixéd point FFT subroutines.

The execution time was measured in exactly the same manner as the
floating point FFT subrouﬁines. The first time "hack" (STIME) was taken
just after the data were converted to fixed-point format and just
after the data were converted to fixed-point format and just before the

fixed-point FFT subroutine was called. The second time hack (ETIME)
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was taken just after the return from the subroutine. The difference
was computed (RTIME) and added to the accumulated total execution time
TTIME) of the fixed-point FFT subroutine. This time included obth

the transform and reordering routines. It does not include the time to

© compute the trigonometric functions of Subroutines FFTI4 and FFTI5, which

are only done once.

Results of the Fixed-point FFT Subroutine Comparison

It can be seen in Table IV, that FFTI5 is the fastest fixed-point
FFT subroutine. FFTI3 requires the least amount of memory, while FFIIl

reuqires the most amount of storage. Based on the speed and moderate

" storage requirements, FFTI5 is considered to bé the best fixed-point F¥T

subroutine to use in tactical radar target imaging usiﬁg the DEC PDP-11/40
minicomputer. Figures 41 through 44 show the image created using FFII5 for

increésing threshold. It should be noted that the threshold is set too

low in Figure 41 and too high in Figure 44,
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Table IV

Summary of Fixed Point FIT Performance Statistice

Number of Number of Aux Arrasy Execution
FFT FORTRAN Instrustion Words Mliordsy. Time  (See)
Statements (Total) nosEs <
FFTIl 47 180 2 2.27
FFTI2 36 ' 161 2 2.5
FFTI3 36 112 24 2.185
FFTI4 421 1543 2N + N/4 + 12 1.95
FFTIS 312 1263 2N+ N/2 12 1.20

lsubroutine COSINE has 10 statements, 29 words
2gubroutine COSINE has 8 statements, 19 words

3sutroutine UNSCRI has 29 statements, 125 memory words

HNOTE: Subroutine UNSCR] is faster than Subroutine UIISCR
(Appendix F).
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Figure 41. Subroutine FFTI5; Threshold = 30.
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figufq 42, Subroutine FFTIS; Threshold = 90
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Figure 43. Subrovtine FFTI5; Threshold = 150.
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Figure 44,

Subroutine FFTIS;
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VI. Conclusions and Recommendations

Conclusions

The gajor conclusion of this thesis is that no other orthogonal
transform should be cubstituted for the Fourier transform in the
application of digital signal processing techniques in TTI radar
imaging. The Karhunen-Loeve traunsform has no fast computational
algorithm, The Hankel transform was not usable for implementation
since it is a two-dimensional transform. The Mellin and Cosine (sine)
transforms employ the FFT to compute the transform, thus no speed
advantage would be realized for either of theseAtwo transforms. It
was found that the Walsh power spectrum computed using the fast
Walsh (Hadamard) transform, did not isolate the individual scatterers
of a cruplex target as the Fourier spectrum waé able to do. The con-
version from the Walsh sequency domain to the Fourier frequency domain
was found to be computationally excessive and more than offset the high
speed advantag> of the FWT/FHT. The assertion made by Robinson that
there exists a linear transformation between the wﬁlsh power spectrum
and the Fourier power spectrum was found and proved to be incorrect.

The fixed-point FFT algorithm was the fastest impiementation for
TTI aignal processing. It was considered that the increase in speed
without a significant increase in error was significant. It is
believed that execution will be even faster when programmed on the

DEC PDP-11/40 minicomputer.

Racommendationsg

It 18 recomrended that the scale-invariance property of the

Mellin transform ueing exponential sampling and the FFT be studied to

.
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determine if it is feasible for compensating for the nonlinearities
of the Doppler shift frequency.
It.is recommended that hardware implementations of the Cosine

(Sine) transform be investigated for implementation irnto the TTI
imaging system. | |

. Although no specific system has yet been designed and buiit, some
theoretical systems have been designed. They utilize very éophisticated
tactical radars, but wéll within the state-of-the-art. It is recom- ) '
mended that these or possibly other systems be designed and evaluated

identifying important parameters and operating characteristics.

" Additionally, noise and statistical analysis of such systems should

. be conducted.
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Appendix A

Main Program TGTID

Program TGTID reads in the radar parameters RLOC, PRI,
STARTF, and DELTAF which describe the location of the radar relative

to the target and the waveform desired. 'NBURST and NFREQ are thz number

of bursts transmitted to the target and the number of frequencies with

each burst, respectively. Two otherupérameters NSCAT and SCORM describe
the target, where NSCAT is the number of scatterers within the target
and SCPRM is the set of seven paiameters of each scatterer. The first
three parameters are the ccordinates of the scatterer on the coordinate
system, o is the fourth parameter, and the last three are cosine
weighting terms. |

Program TGTID calls Subroutine CINIT which computes eight additional
parameters based on the input parameters. They determine the size as a
power of two and other characteristics of the time and frequency arrays.
Subtéutine SLANTV 1is calied which returns the simulated_target Doppler
returns. Then, subroutine CIMAGE processes the Doppler signal returns
and displays the synthetic image by calling either of the display
subroutines (Appéﬁdix G). | |

Prograr TGTID finally prints out the radar and scatterer parameters
along with three calculated values: Number of Words/Record, Number of

Records, and the maximum power.
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DO

ODIDNDIIO

S ]

30

t 3

]
¥
L 4

12

® % k& &

13

*

s

B20A>AM TGTIN(INPUT=/87,0UTOUT=/132,
TADFE=TNOUT,TAPZ7=0UTPYT, TAPCA, TAPES, PLOT)

STMULATE RAJAR IMAGE OTTIRN

TOAMAMN /2ANAR/ BLOT(2) ,PRILSTARTF, ﬁfLTAF

SOMMON ZSCATFR/ NSCAT ,SCPRM(74T0)

~AMUAY JANGLEZ A5 ,33,63,ADNT,3N0T,690T

LR Ll /LIHTT/‘NiUQQT,NR0°H,M?Q7,NrQFQ,NFQRDyﬂrsz
DMMAN /PIVOT/Z NS, HN1,NN2,NNT,NTY

COAMNY JTMAGEY/ ‘ﬁAX,vH?D?,u%F’:

C5 M) SPARANM, PT,.L,H1,H2

~AaMMNY JUNTTS/Z NVLT

S0MMaN fPNINTS/ NIMG

S0MMON JATAC10600)

PATE PT/T.1415925/40/7299722533./9H1/ e %794 H2/ J446/
NATA KVLT/6/

NATA M[IMG/8/

NATA NNSZ7213000/

TNPIT PARAMZTEOS
STHULATE RADA2 RETURN
AIITOYT IMAGT SARAMFTERS

PTAD" y PLOC,PRI,STARTF,DELTAF

2€4N°, AG,30,60,YNIT,870T,5N0T.

RELD", HAURST,NFREN

QELN*y NSCAT :
PEAN(S,*) ((SCPRYM(IyK) sI=1,7) 4K=1,NSCAT)

CALL CINIT
fALL SLANTV
pETHR P'MAFV(DATﬁ,N)i,ND?,ND?,N*ﬁ)

HQ*T'(”,12) PLOC, P21, QTA°TF,n€LTAF,
AQ4B2,GC,AD0DT,ANDT, GJOT,
NBURQT,N¢°F0, o

NSPAT, ((SCORM(IK) 3I=1,7), K i, NSCAT)

WOITE(7413) RHAX,NWRDS,NRECS

FOPMAT(//7/79T304"TMAGE PARYMETIRS" /9T 30,15(1H=)4//,
10,*RADAR FARAMETZRS '”,3F10.0,F13.692512:6,/,
T10,"ANGLE DATA ="y5F10.24/,
'T10,*"NO, OF BURSTS " ="51104/y
TLCy"NO. OF FAEQUENCIES ="411047,
T10,"NO, GF STATTEREPS ="y11047/,
T40,"SCATTERE® DARAMFTERS =",(T732,7F10. 3))

FN2MAT (/775 T10,"YAXT MUY POWER = F1042y 7y
T1C, NN, OF WNRNS/RESOIN ="9110!’!
T10,"N2. OF RECORNS =y110,/)

ST0P 2 END
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Apperdix B

Support Subroutines

Subroutine CINIT

Subroutine CINIT calculates NBCRD, NBSZ, NFSZ, NDSZ, ND1, ND2,

ND3, and NIM based on the values of NBURST and NFREQ. NFSZ is the

size of the frequency response data array and NBSZ is the size of the

time respcnse data array. They are related to NBORD by the following

relationships

RD

- NFSz = 2NBO (8.1)

NPS2 = 2NBORD (8.2)
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Subrcutines SLANTV, CTRAN, and DOTP

Subroutine SLANTV 1is the driving subroutine that generates the
simulated "slant voltages", that is, the Doppler signal received by the
radar set. Subroutine SLANTV calls Subroutines HAMWGT, CTRAN, DOTF, FFT6
(Appendix C), and ROLL. The slant voltage values are written to a
temporary file (NVLT) which is returned to Program TGTID for piocessing.
Subroutine SLANTV uées the radar and target parameters read in by
Program TGTID and computed_by Subroutine CINIT. No other input is .

required.
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CALL HAMUGTINTRFN, W)
BT .C=y.*01/2

7N L3 L=1,M3Y3]T
NN 4t I=f,47c7
YarT(T,1)=0,
VITI(T,2) =0,
PIIRRT R (L ~1)

PHT(1) = A 4 A49NTeDR
PHT(2) = A0 4 §NNTx2>
PHT(3) = (0 + GI0Teo0
MESzyg

NN K3 K=g{,M08™
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VWL’(I,?)=V0LT(I,Z)*°C°°N(#,K)‘COS(A)‘CN(K)'H(I)
CAYTTIYYFR A .
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