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EXECUTIVE BRIEF

A. BACKGROUND

This is the second report by Integrated Sciences Corporation (ISC) as
one of a group of contractors working on the Operational Decision Aids (0DA)
program directed by the Office of Naval Research. The ODA program was initiated
in 1974. It is intended to develop a variety of decision aids and test and
evaluate their usefulness to the Navy. Although the program is not tied to any
specific command and control hardware system, it has focused on the functions
of a Task Force Commander (TFC) and his staff. The role of ISC has been to
find ways tc improve man-machine communication by allocating functions between

man and machine that take advantage of their respective strengths.

ISC's early work on the ODA program explored the use of techniques
by which a decision maker might express and communicate his perception of
important relationships. |ISC calls the particular techniques it has been
developing ''Sketch Models.'' A Sketch Model is essentially a '"picture' that is
first mentally visualized, and then drawn by a decision maker. As used here,
the pictu.e represents the decision maker's perception of the functional rela-
tionship between two or more variables, with the stipulation that the function
be continuous in at least one dimension. Depending on the application, a
Sketch Model can be, for instance, a single curve defining the relationship
between two variables, or it can be a family of parameterized curves, or it
can be a two-dimensional projection of the iso-''altitude' contours of a three

dimensional function.

ISC's first investigation evaluated the ability of human operators to
generate Sketch Models of bivariate Gaussian density functions from sampled
data. In an experiment, a group of subjects were found capable of developing
accurate Sketch Models of one type of well-behaved (i,e., unimodal and
symmetric) three-dimensional fuﬁction. These Sketch Models developed by the
subjects from small samples of the underlying functions estimated those
functions at least as well as, and in som. cases better than, the statistical

technique of maximum likelihood estimation.




! A second study was undertaken to extend those results by investigating
the ability of human operators to generate Sketch Models of less well-behaved
functions, i.e., multimodal and unsymmetric. Experimental results gave a

very strong indication that the subjects were able to produce accurate (as
measured by percent volume error) Sketch Models for a high]y irregular (multi-
modal and unsymmetric) function representing the joint detection capability of
multiple sensors (Reference 1).

The study also sought to evaluate the usefulness of those Sketch Models
for a decision task represented by an air strike path optimization problem.
The experimental results did not prove or disprove the usefulness of the Sketch
Model technique as an aid to the decision problem. There were two reasons. One
was insufficient data, due to severe attrition in the pool of subjects trained

in Sketch Modeling during a lengthy hiatus caused by a series of hardware mal-

functions, The second problem surfaced as soon as the data were analyzed: it
appears that the problems were too easy for the subjects. It was therefore
difficult to ascertain the usefulness of Sketch Models as an aid to the strike

path selection problem.

In this study ISC suggests that machine participation in decision making
can usefully be examined by distinguishing three types. These types correspond
to different degrees of machine participation in decision making. The first
type is unaided, or "man-only,' decision making. It is relied upon when
automated aids either do not exist or are inappropriate to the user's needs or
preferences. The second type is machine aided decision making or '"'machine
helping man.'" Aids of this type have proliferated due to rapid advancements in
computer capabilities and operations research. Examples of the machine helping
man, as the term is used here, include the many uses of computers to solve
product mix problems by linear programming methods and solution of transporta-

tion network problems by dynamic programming. |
ISC believes that its characterization of decision aiding types can

help to distinguish actual TFC decision environments appropriate for each type.
In particular, ISC believes that there are a large number of decision




environments for which the second type is not useful. This is because the
methods available are often too slow, require too much hardware capability,
and give questionable answers in difficult environments. This defeats their
cost-effectiveness certainly for at-sea use, and quite likely land based plan-
ning use, by TFC's.

It is because of these characteristics that I1SC suggests and concen-
trates in this report on defining a third type called ‘''man helping machine to
help man.'" This type of decision aiding finds favor when machine aided decision

making is inadequate and one or both of the following circumstances apply:

1. The decision maker does not have a good understanding of how
the machine works to obtain a solution. This is often the

case when an iterative optimization procedure is used.

2, The decision maker believes that the model used by the machine
is not adequately representative of the real world and there-
fore he wishes to be able to use his knowledge of the real
world to compensate for the model's limitation.

B. THE CURRENT STUDY

ISC's previous work on the ODA program had established that humans were
adept at perceiving and sketching complex functional relationships when data
that could be used to estimate the function were presented to the human in
geometric/graphical format. The question became the following: How useful is
this human capability? Therefore ISC proceeded to define (a) two decision aids
that would use the human capability to solve an experimental problem that could
also be solved by a fully automated algorithm, i.e., machine aided decision
making and (b) an experiment that would compare decision performance with and
without the aids. The two |ISC-designed aids were called Operator Aided
Optimization (0AO) using Nonlinear Programming (NP) and Operator Aided Optimi-
zation using Dynamic Programming (DP). Several key assumptions were made:

1. Some of the complex problems requiring decisions by the Task
Force Commander can be treated by analytic methods.
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2. Special purpose algorithms could be constructed to solve any

problem, but there are so many variations on problems that it
would be impossible or uneconomic to have a special purpose
algorithm to solve every problem. Therefore, it is likely
that the TFC will have a general purpose algorithm available

to solve each generic class of problems.

3. The Task Force Commander of the 1980's will have a general
purpose computer and computer driven display at his disposal.

It is important to understand the nature and purpose of the experiments
reported in this third ISC study for the ODA program, Although ISC used much
of the structure and characteristics of a real-world situation, the experiment
was deliberately limited and therefore, in a sense, artificial, The problem
situation used in the experiment is the selection of (a) an air strike path
through a field of ten enemy sensors and (b) aircraft speeds on each leg of the
path. (Hereafter in this report, the selection of path and speeds is abbreviated
to "selection of path.') Many aspects of real-world air strike planning were not
included in the experimental problem, e.g., aircraft altitude, specific locations
of enemy weapon systems and such real-world systems as electronic countermeasures.
Also, the design of the experimental problems made certain perfect-information

assumptions in order to simplify the analysis.

The experiment was principally designed to contrast decision performance
obtained with aids of the second and .third types. A general purpose algorithm
is available to solve the experimental problem in the second type or ''machine
helping man'' mode of aided decision making. However, a ''man helping machine to
help man' aid which uses man's ability to visually perceive complex functional
relationships is also available. This aid uses the same general purpose
algorithm as is used in the ''machine helping man'' case. However, the man now
controls the use of the algorithm instead of letting it run open-loop. The

experiment designed by I1SC compares decision performance for both types of aids.




C. PRINCIPAL FINDINGS

The operators using the NP aid did significantly better than with-
out the aid. The average improvement across all subjects and trials
was 29% with a range of 9% to 123%. Performance was significantly
different across operators but this was solely for unaided operat-
tion. Thus the aid served as an ''equalizer.'" It enabled operators
having relatively low scores without the aid to do as well as those

who had relatively high scores without the aid.

Operators using the DP aid did significantly better than without
the aid. The average improvement across all subjects and trials
was 12% with a range of 3.5% to 27%.

The lack of a technical education was apparently not an impediment

to good performance with or without either aid.

Operator aided optimization was significantly better than automated
use of the NP algorithm for both types of rules used by the algo-
rithm to select starting points.

The NP aid was less complex to use than the DP aid and operators
generally preferred working with the NP aid to working with the DP
aid. Operators using 0OAO with the NP aid found the global optimum
on a higher percentage of trials than operators using 0AO with the
DP aid. The average time required to adequately train an operator
to use either aid was about four hours.

A potential implication of the findings is that OAO is attractive
to use when it is applicable because:

a. The operator can see what is happening during the optimi-
zation. With pictorial problem representation, he can
make adjustments to the optimization procedure or results
to compensate for limitations in problem representation
more easily than he can when there is no pictorial repre-
sentation.
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b. The time required to train operators to use OAO with

pictorial problem representation is apparently relatively
short and does not require technical knowledge of the

optimization algorithms.

D. RECOMMENDATIONS

If only one of the two ISC-developed aids is to be implemented on the
Operational Decision Aids facility at the University of Pennsylvania, then the
nonlinear programming aid should be chosen. If funds are available it would be
worthwhile to implement the dynamic programming aid also so that Navy officers
and R & D managers could get a feel for the way such an aid could be used. TFC
decision problems that involve discrete variables should be examined for their

applicability to a dynamic programming aid used in operator aided optimization
mode.

ISC found that the three-type characterization of machine participation

in decision making used in this report was useful. Based on this usefulness,

ISC suggests that the third type, man helping machine to help man, be used in
future command and control studies. |5C will assume that command and control
decisions can be categorized as ISC suggests. If this assumption is valid,
then ISC recommends that decisions for which the third type is appropriate be
further evaluated to determine if geometric/graphic representation is the most

efficient way to represent the problem in each case.

The ocean-borne enemy sensors facing a real world air strike planner

are in motion during the planning and execution of the air strike. Consequently, |
the detection field representing the joint detection capability of enemy sensors |
is dynamic and not static. The problems used in the recently completed experi-

ment show static sensors to the operators,

Representing the more realistic dynamic situation involves dynamically
updating the detection contours to account for the changing positions of enemy
sensors. The contour drawing algorithm for a machine stored analytic function
representing joint sensor detection capability is relatively complex. In order
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* to get the best ''fit,'" i.e., best representation of the contours, it is cur-
rently necessary to vary a weighting factor, visually observe the contours drawn
for each value of the weighting factor, and select the value that gives the

best fit.

Recommended steps to be taken in implementing real time dynamics are:

E 1. Devise a method for automatically obtaining an acceptable

fit for the contours.

Provide the operator with controls that will enable him to

N
.

consider the sensor movement while planning the air strike.

3. Provide the operator with controls that will enable him to
consider sensor movement during the air strike and issue

: path change directions.

L., Design an experiment that would compare operator aided optimi-

zation performance with performance of an automated algorithm.
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I. INTRODUCTION

A. BACKGROUND

This is the second report by Integrated Sciences Corporation (I1SC) as
one of a group of contractors working on the Operational Decision Aids (ODA)
program directed by the Office of Naval Research. The ODA program was initiated
in 1974. It is intended to develop a variety of decision aids and test and

evaluate their usefulness to the Navy. Although the program is not tied to any

specific command and control hardware system, it has focused on the functions
of a Task Force Commander (TFC) and his staff. The role of I1SC has been to

find ways to improve man-machine communication by allocating functions between

man and machine that take advantage of their respective strengths.

ISC's early work on the ODA program explored the use of techniques

by which a decision maker might express and communicate his perception of
important relationships. |ISC calls the particular techniques it has been
developing ''Sketch Models.'!' A Sketch Model is essentially a '"picture' that

is first mentally visualized, and then drawn by a decision maker. As used

here, the picture represents the decision maker's perception of the functional
relationship between two or more variables, with the stipulation that the
function be continuous in at least one dimension. Depending on the application,
a Sketch Model can be, for instance, a single curve defining the relationship
between two variables, or it can be a family of parameterized curves, or it

can be a two-dimensional projection of the iso-"'altitude'' contours of a three

dimensional function.

ISC's first investigation evaluated the ability of human operators to
generate Sketch Models of bivariate Gaussian density functions from sampled
data. In an experiment, a group of subjects were found capable of developing
accurate Sketch Models of one type of well-behaved (i.e,, unimodal and
symmetric) three-dimensional function. These Sketch Models developed by the
subjects from small samples of the underlying functions estimated those
functions at least as well as, and in some cases better than, the statistical

technique of maximum likelihood estimation.




A second study was undertaken to extend those results by investigating
the ability of human operators to generate Sketch Models of less well-behaved
functions, i.e., multimodal and unsymmetric. Experimental results gave a
very strong indication that the subjects were able to produce accurate (as
measured by percent volume error) Sketch Models for a highly irregular
(multimodal and unsymmetric) function representing the joint detection capa-
bility of multiple sensors (Reference 1).

The study also sought to evaluate the usefulness of those Sketch Models
for a decision task represented by an air strike path optimization problem.
The experimental results did not prove or disprove the usefulness of the
Sketch Model technique as an aid to the decision problem. There were two
reasons. One was insufficient data, due to severe attrition in the pool of
subjects trained in Sketch Modeling during a lengthy hiatus caused by a series
of hardware malfunctions. The second problem surfaced as soon as the data were
analyzed: it appears that the problems were too easy for the subjects. It was
therefore difficult to ascertain the usefulness of Sketch Models as an aid to
the strike path selection problem.

B. TYPES OF DECISION MAKING

In this study ISC suggests that machine participation in decision

making can usefully be examined by distinguishing three types. These are shown

in Figure 1. ISC has used this proposed classification scheme in the work
reported here. In ISC's opinion these categories were appropriate for the
command and control functions studied and appear to be a useful basis for most

command and control anaiyses.

The three types distinguished here correspond to different degrees of
machine participation in decision making. The unaided, or ''man-only,' type
depicted in the figure is relied upon when automated aids either do not exist
or are inappropriate to the user's needs or preferences. Applications of
machine aided decision making or ''machine helping man'' have proliferated due

to rapid advancements in computer capabilities and operations research




techniques.

Managers like to use a machine to find a problem solution when

Examples of the machine helping man, as the term is used here, include

ments for which the second type is not useful.

UNAIDED DECISION MAKING
(Man Only)

HUMAN HUMAN DECISION ~ ACTION

MACHINE AIDED DECISION MAKING
(Machine Helping Man)

HUMAN HUMAN DECISION ACTION

A
MACHINE RECOMMENDAT | ON
{MACHINEI

HUMAN AIDED MACHINE DECISION RECOMMENDING
(Man Helping Machine to Help Man)

HUMAN |— HUMAN DECISION > ACTLON

4

HUMAN AIDING

f
MACHINE RECOMMENDAT | ON MACH INE

Figure 1. Types of Aided Decision Making.

they understand what the machine does and believe in the model used by the

the many uses of computers to solve product mix problems by linear programming
methods and solution of transportation network problems by dynamic programming.

ISC believes that its characterization of decision aiding types can
help to distinguish actual TFC decision environments appropriate for each type.
In particular, ISC believes that there are a large number of decision environ-
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available are often too slow, require too much hardware capability, and give
questionable answers in these difficult environments. This defeats their
cost-effectiveness certainly for at-sea use, and quite likely land based plan-
ning use, by TFC's., Decision problems for which machine aided decision making

is inadequate tend to have the following characteristics:
1. Solution space is of high dimensionality (e.g., > 5).
2. Criterion function is nonlinear.

3. Criterion function is multi-modal, therefore the machine
] working alone may only find a local optimum instead of the

global optimum,

L, Pertinent problem definition information is not available
with enough advance warning to incorporate into the design
of an operating optimization software package that would
adequately handle all or most problems.

5. Pertinent information concerning available decision options

is also not available in time to impact software development.

It is because of these characteristics that ISC suggests and concen-
trates in this report on defining the third type. ISC believes this is a
somewhat new and relatively powerful distinction. The ''"man helping machine
to help man'' type of decision aiding finds favor when machine aided decision

making is inadequate and one or both of the following circumstances apply:

l. The decision maker does not have a good understanding of

how the machine works to obtain a solution. This is often
the case when an iterative optimization procedure is used.

2. The decision maker believes that the model used by the

machine is not adequately representative of the real world

and therefore he wishes to be able to use his knowledge of

the real world to compensate for the model's limitation.




C. THE CURRENT STUDY

ISC's previous work on the ODA program had established that humans

were adept at perceiving and sketching complex functional relationships when

data that could be used to estimate the function were presented

to the human

in geometric/graphical format. The question became the following: How useful

is this human capability? Therefore I1SC proceeded to define (a) two decision

aids that would use the human capability to solve an experimental problem that

could also be solved by a fully automated algorithm, i.e., machine aided

decision making and (b) an experiment that would compare decision performance

with and without the aids. Several key assumptions were made:

1. Some of the complex problems requiring decisions by the Task

Force Commander can be treated by analytic methods.

2. Special purpose algorithms could be constructed

to solve any

problem, but there are so many variations ‘on problems that it

would be impossible or uneconomic to have a special purpose

algorithm to solve every problem. Therefore, it is likely

that the TFC will have a general purpose algorithm available

to solve each generic class of problems.

3. The Task Force Commander of the 1980's will have a general

purpose computer and computer driven display at

It is important to understand the nature and purpose of
reported in this third ISC study for the ODA program, Although
of the structure and characteristics of a real-world situation,
was deliberately limited and therefore, in a sense, artificial.
situation used in the experiment is the selection of (a) an air
through a field of ten enemy sensors and (b) aircraft speeds on
the path. (Hereafter in this report, the selection of path and

his disposal.

the experiments
ISC used much
the experiment
The problem
strike path
each leg of

speeds is

abbreviated to ''selection of path.') Many aspects of real-world air strike

planning were not included in the experimental problem, e.g., aircraft altitude,

specific locations of enemy weapon systems and such real-world systems as

electronic countermeasures. Also, the design of the experimental problems




made certain perfect-information assumptions in order to simplify the

analysis:

1. Sensors are stationary throughout the air strike and the

location of each sensor is perfectly known.

2. A function specifying composite sensor detection performance

is perfectly known.

3. Fuel consumption characteristics of the strike aircraft are

known.

The utility function used to compute the goodness of each candidate
strike path was composed of only two factors. It was formulated to reward low
probabilities of detection along the strike path and high values of fuel
remaining when the aircraft reach the target. Utility in the real world would
usually be determined by more than just two factors. Expected aircraft attri-
tion would usually be a factor in the utility function; it is not included here
because the problem does not include enemy weapon systems. Therefore, the

utility function is a simplified version of real world considerations.

The experiment was principally designed to contrast decision perfor-
mance obtained with aids of the second and third type. A general purpose
algorithm is available to solve the experimental problem in the second type
or "machine helping man'' mode of aided decision making. However, a ''man
helping machine to help man'' aid which uses man's ability to visually perceive
complex functional relationships is also available. This aid uses the same
general purpose algorithm as is used in the '"machine helping man'' case. However,
the man now controls the use of the algorithm instead of letting it run open-
Joop. The experiment designed by ISC compares decision performance for both
types of aids.

These aids were not intended for immediate use in the design phase of
the current Navy Tactical Flag Command Center (TFCC) project. The problem and
the utility function are scaled-down versions of real-world considerations.

A much larger effort would have been necessary to design an aid suitable for

oo




the TFCC project. However, the problem and utility function do have the five

characteristics enumerated in Section 1-B for which the ''machine helping man"'
mode of aided decision making tends to be inadequate. Also, the ''man helping
machine to help man'' aid designed by ISC does help the operator to understand
how the machine works to obtain a solution and it does enable the operator to
compensate for the model's limitations. Therefore, it was not the purpose of
the current work to produce an aid that would be ready for TFC use upon comple-
tion of the work. Instead, the purpose of the work was to use the experimental
results to draw useful inferences about the relative values of the two types

of aids for the type of situation in which both are used in the experiment.

D. THE REPORT

All phases of this study are documented in the following sections.
Section || describes more fully the way the basic path optimization problem
was put together: it explains how the ONRODA Scenario was adapted, distin-~
guishes at more length between the various ways of determining strike path
solutions, explains the analytical models for single sensor detection
performance and aircraft fuel consumption, and characterizes the utility
function developed to evaluate strike paths. Section Ill details system
operation; it comprises step-by-step explanations of how path solutions were
obtained by the general purpose optimization algorithms and by subjects con-
trolling the algorithms. Sections IV and V outline the experiment and the
data analyses performed, respectively. Section VI interprets the results
insofar as the data warrant. The appendices document the algorithms used to

implement aspects of the study and the training material provided to operators.

The algorithms are provided for the reader interested in seeing how certain

operations research techniques were adapted.




I1. CONTEXT FOR THE EXPERIMENT

A tactical decision task was defined to investigate the usefulness of
decision aids that make use of man's ability to visually perceive complex
functional relationships. The task was that of optimizing an air strike path
through a defender's multi-sensor detection field. This section describes
the task scenario, the system concepts that represent different ways of optimiz-
ing a strike path, and the models of the scenario variables that constitute
the experimental vehicle. Each model described reflects certain assumptions
made about the behavior of the scenario variable. These assumptions, in turn,
were adopted to keep the test vehicle simple, rather than to faithfully model
the variables' ''real world'" performance. The utility criterion function,
ultimately used as a performance measure, is also described here in terms of

its supporting models.

A. AIR STRIKE SCENARIO

The problem selected, implicit in the OMRODA scenario, was that of
optimizing an air strike path between a strike launch point and a target.
The evaluation of ;he path depended on the probability of an aircraft's being
detected by the enemy and the amount of fuel consumed by the aircraft along
the strike path. Accordingly, certain elements of interest, particularly the
scenario geography, were extracted from the ONRODA Warfare Scenario (Reference
2), and other details, described below, were added. The scenario developed
here assumes that the decision has been made to conduct an air strike against
ONRODA, so that investigating the relative usefulness of competing decision
aids in this study means applying them to one aspect of the operational imple-

mentation of the decision to strike.

Figure 2 shows the 500-by=-500 n.m. portion of the ONRODA warfare
scenario area map used to provide the geographical context for this study.
The boundaries provide an area west of ONRODA for the selection of strike
launch points and (it is assumed) enough room to plan strike paths that do
not violate the ORANGE sanctuary.
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The air strike scenario used here incorporates some further assump-
tions. First, the strike target is taken to be the ONRODA airfield complex
only. Second, the strike aircraft are supersonic, and they carry suitable

stores and a predetermined fuel allotment.

The assumptions made about enemy defense have to do with the number,
locations, and ranges of the ORANGE sensors that are capable of detecting
the strike aircraft. Own intelligence reports that there are ten such sensors
and that their locations are pinpointed. One sensor is installed on ONRODA
near the airfield. The other nine are ocean-platform mounted, and since
ORANGE knows the general location of the task force, they are positioned west
of ONRODA between the island and the task force. Intelligence reports that
all the ORANGE sensors are the same type and have the same detection performance
capability. The problem is to plan a strike path against the airfield on ONRODA
that (a) minimizes the probability of strike aircraft being detected, given the
locations and types of enemy sensors, and (b) does not impose excessive fuel
reuqirements on the aircraft, given the fuel allotment and the {uel consumption

characteristics.

Further assumptions for this scenario are that neither the enemy's
defense nor airborne enemy aircraft are to be considered explicitly as strike
factors, |Implicitly, enemy defense capability is one reason to minimize the
probability of being detected along the strike path, tantamount to considering
surprise as a strike factor. In a similar manner, attempting to postpone
detection also affords less time for ORANGE aircraft on ONRODA or on.the main-
land to react, while attempting to conserve fuel enables the strike aircraft

to maneuver if challenged by ORANGE aircraft after reaching the strike target.

B. DESCRIPTION OF CONCEPTS TESTED

Solving the strike path selection problem requires choosing path way
points between the start point and target and specifying aircraft speeds along
each leg. Any of the three types of aided decision making represented in

Figure |1 can be used to select way points and speeds. Abbreviated descriptors
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used in this report that are equivalent to the three types shown in Figure |

are given below.

Types of Aided Decision Equivalent Descriptors

Making (from Figure 1) Used in this Report

Man Only Operator Unaided (OU)

Machine Helping Man Automated (A)

Man Helping Machine Operator Aided Optimization (0AO)
to Help Man

Two types of general purpose optimization techniques that can be used
to implement the automated aid are noniinear programming and dynamic programming.
The structure of the path selection concepts tested is organized around the
two general purpose optimization algorithms used to solve the problem, namely,
a nonlinear programming (NP) algorithm and a dynamic programming (DP) algorithm.

A '"'tree'' representation of the structure is shown in Figure 3.

The NP algorithm requires two inputs. One is specification of the
‘'starting point,' namely the positions of the way points and the speeds along
each leg. The other is a convergence criterion. The algorithm begins to
iteratively optimize the path to find the highest path utility as sooﬁ as it
obtains a starting ''point." It stops when the convergence criterion is met.
Then the algorithm obtains a new starting point and begins to optimize again.
In the automated mode the algorithm contains a procedure for selecting the
starting point and a convergence criterion. [SC obtained test data on two
procedures for selecting the starting point and three convergence criteria.

In operator aided optimization mode, the operator selects the starting point

and decides when to stop the optimizing done by the algorithm., (The same
algorithm is used for the automated mode and the 0A0.) Then he selects a new
starting point and starts operation of the algorithm again. In operator unaided
mode, the operator specifies the path way points and speeds on path legs which
constitute his estimate of the best solution. This is a one-step process;

there is no iterative optimization as occurs in the automated mode and OAO.

The operator unaided mode corresponds to the procedure that would be used today

by a Task Force Commander.

-11=-
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The DP algorithm finds for a given set of constraints the best path
composed of (a) legs from point to point on a specified grid and (b) the best
of a set of three specified speeds for each path segment between two adjacent
grid points. In the automated mode the algorithm considers all the points on
the grid for a specified spacing of grid points and all the available speeds,

i.e., three speeds, for each path segment. 1t finds the best solution for the
specified grid spacing and stops. It does not iterate as does the NP algorithm
because the DOP algorithm, unlike the NP algorithm, finds a global optimum for
the specified grid size.

in OAO mode the operator draws a boundary around the region where he
wants the DP algorithm to optimize. He then selects a grid spacing and con-
strains the algorithm's search by eliminating from its consideration the speeds
he believes will not be in the final solution. The operator starts the algorithm
and the algorithm proceeds to find the best solution for the grid spacing and

constraints set by the operator. The operator views the solution and then

decides on a new combination of grid spacing and constraints for (a) the bounded

area to be searched and (b) speeds to be eliminated from consideration. In

2o e by e ars ot

this fashion the operator iteratively refines solutions found by the algorithm. :

In operator unaided mode the operator draws the estimated best path
from point to point on a specified grid size and he specifies which of the
three available speeds is to be used for each path segment between adjacent
grid points. Operator unaided mode resembles what would be done by the Task
Force Commander today. It is not exactly the same because the operator is
constrained to use the specified grid points and he must select one of three
specified speeds for each path segment.

C. SIMULATION MODELS AND ALGORITHMS

The ''goodness'' of a path generated under any of the system concepts
depends on two factors: fuel consumed along the path and the cumulative
probability of being detected. In order to compute a numerical value (or
utility) that reflects a given path's ''goodness,' it is first necessary to

have some way of quantifying those two factors. This was provided by a set
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of simulation models and computational algorithms developed for the study.
Fuel consumption was modeled as a single functional relationship. The cumu-

lative probability of being detected, however, is more complex and depends on

TS

how the characteristics of the detection field are defined. In general, this
involves first defining single sensor performance, then defining the way a

number of these single sensors combine to create a composite detection field.

The set of models and algorithms used in the study includes: !

. Single-Sensor Detection Rate Model

Cumulative Probability of Being Detected Algorithm
Fuel Consumption Model

Utility Criterion Function

. Dynamic Programming Algorithm

Nonlinear Programming Algorithm

N OB W N —

True Detection Rate Contour-Drawing Algorithm

Numbers 1 -4 are described in this section; numbers 5 -7 are documented in

the appendices.

1. Overview

F Figure L shows how the models and algorithms are used for operator

aided optimization. Scenario elements (composite detection capability of the

ten enemy sensors, strike launch point, and target) defining the problem are
stored in the computer and are shown to the operator by means of the display
((:)). He enters his inputs to the NP or DP algorithm by means of the display
peripherals ((:)). Inputs to both algorithms are the problem definition and
the operator inputs.

The NP algorithm considers a candidate path, finds the cumulative
probability that the air strike will be detected if that path is used, the fuel
consumed on the path, and the utility of the path considering both cumulative
detection probability and fuel consumption. Each path considered by the NP
algorithm and its utility is displayed to the operator ((:)). The NP algorithm
continues to find better paths, and these are continually displayed until the

-4 -
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Figure 4. Interrelation of Models and Algorithms
for Operator Aided Optimization.
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operator decides to use new inputs, The DP algorithm finds the best path for
the set of inputs to the algorithm. This path and its utility are shown to

the operator by means of the graphics.

2. Single-Sensor Detection Rate Model

The detection capability for a single human-operated sensor is modeled
* . . .
as a detection rate, which gives the probability of detection per time unit.
The detection rate is assumed to vary as a function of range from the sensor.

This relationship can be quantified according to:

Ymax/s -g2
Y(R) = R R « exp m
max 2R

where
Y(R) = the value of detection rate at radial distance R from sensor

Ymax = maximum detection rate for the sensor

Rmax = range from sensor at which Ymax occurs
The general shape of detection rate-versus-range curve as governed by Equation
(1) is shown in Figure 5. Equation (1) for y(R) models a sensor with a maximum
detection rate O at range Rmax from the sensor. From the sensor location
(where the detection rate is zero) detection rate increases monotonically until
it reaches its peak value at range Rmax' From this range, Rmax’ the detection
rate drops off monotonically moving away from the sensor, approaching zero at
some range beyond Rmax' Hence, if we visualize Y(R) as a three-dimensional
surface it would look like a volcano with a hole at the center, where the sensor
is located. Around this hole is a circular ridge at a radial distance Rmax

from the center of the hole. Beyond the ridge the sides of the ''volcano' slope

downwards until ''ground level'' is reached.

*Detection rate is a quantitative measure of sensor performance (Ref.6) defined
over the space surrounding a sensor. An intuitive understanding of detection
rate, y(x,y), may be had by considering that yAt is the conditional probability
that a target is detected at or near (x,y) given that 1) At is small and 2) no
detection occurred before At.
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Figure 5. Single Sensor Detection Rate as a Function of Range.
For the experiment one type of sensor was defined, corresponding to
Rmax = 37.5 nautical miles. This value of Rmax was selected for its suitability

to the study. It was not intended to be the performance value for any ''real
world'" sensor. The maximum detection rate Ynax V@S 0,1, The performance curve

for the sensor type is shown in Figure 6.

Recall that the scenario specified ten enemy sensors deployed, so that
if two (or more) detection ranges overlap, we are really concerned about our
strike aircraft being detected by at least one sensor rather than being detected
by more than one. In other words, we are concerned about the total detection
rate at any point that any given set of sensor locations will produce. This
composite detection rate is easily computed. The composite detection rate-yc
at a point (x,y) is the sum of detection rates at (x,y) due to each sensor.
Hence, if yi(x,y) is the detection rate due to sensor i, the composite detection

rate at (x,y) is

Y oy = Fy(xy) (2)

Each term yi(x,y) on the right hand side of Eq. (2) is obtained by transforming
the radial coordinates of Eq. (1) into rectangular coordinates.
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The reader may question the validity of the additive operation in
Eq. (2), since probabilities are not additive in general. After all, detection
rate as we have defined it is the probability of detection per unit time. The
justification of the operation in Eq. (2) lies in the fact that we choose
At (see footnote on page 16) small enough such that within At the probability
of detection by two or more sensors is negligible,* all the higher order terms
in the exact expansion for the left hand side of Eq. (2) drop out, leaving the
right hand side of Eq. (2).

3. Cumulative Probability of Being Detected Algorithm

For an aircraft flying an air strike path through the enemy's multi-
sensor detection field, it is necessary to calculate the cumulative probability
that the aircraft will be detected by the time it reaches the target. The
cumulative probability that an aircraft will not be detected on a given leg by
a single sensor is the building block used to calculate cumulative detection
probability. This is:
|

Pad (cumulative, no detection, = <<P [- J(. YIR(t)] dt] (3)

single sensor) 0

where:
ty = time at beginning of leg
e time at end of leg

For multiple sensors, the cumulative probability that an aircraft will not be
detected on a given leg is:

s=S t
1
Pad (cumulative, no s [" Z / Y[st (t)]dt] (4)

detection on leg) s=] tg
where
S = total number of enemy sensors

*This may remind the reader of similar practices in various branches of
operations research, such as queueing theory.
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The cumulative detection probability for the entire path is calculated by:

=L s=S tl,l
Pd (cumulative detection Looxp [-Z Z / Y[Rs.(t)] dt] (5)
t

on path) 2=1 s=1 o J

where:

L = number of legs in path

L. Fuel Consumption Model

The rate of fuel consumption was calculated in accordance with Equation
6 below:

Fuel rate = 0.0377 v2 - 16.57v + 3869 (1bs/hr) (6)

where,

v = aircraft speed in knots

Fuel used per path leg is:

(Leg Lengthh) ( Fuel Rate (VL) )

Fuel consumed (legi) =

(7)

V.
J

Operators using the NP aid were allowed to select any speed from 250 to 1,000
knots for each leg. Operators using the DP aid were allowed to select high,
medium, or low speed for each leg. These speeds were 1000, 625, and 250 knots

respectively. The fuel consumption rates for these speeds are listed in
Table 1. The second and third columns of Table | are equivalent; they are
simply expressed in different units for easier reference.

The amount of fuel that an aircraft carries on each mission is pro-
portional to the range from the strike launch point to the target. Thus, if
the range is doubled, the fuel allowance for the mission also doubles. The

fuel allowance for each nautical mile between the air strike start position and
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Table 1. Fuel Consumption Rates

Fuel Consumption Rates

Velocity (knots) 1bs/sec 1bs/n.m.
250 0.5785 8.331
625 2.289 13.183
1,000 6.944 24.999

target was 39.69 pounds. This permits the aircraft to do some high-speed
manuevering, but sustained high-speed travel is discouraged by the fact that
allotted fuel would run out before the aircraft could accomplish the mission

or return to the carrier.

5. Utility Criterion Function

A utility criterion function with which to measure the performance
under each of the system concepts in the experiment was defined. The problem
was to select an optimal air strike path, so an appropriate utility criterion
function is one which measures the ''goodness'' of such an air strike path. The
two variables selected to determine the goodness of an air strike path were
fuel consumption along the path and probability of being detected by the enemy
sensors (Sections 3 and 4, preceding). Since the utility function was pre-
specified to measure the goodness of any proposed path, no inputs were elicited
from operators as to desirable values of the two variables. The following
definition of the utility criterion function, U, incorporates a tradeoff between
minimizing the probability of being detected by enemy sensors on one hand and
maximizing the fuel remaining upon arrival at the target on the other.

U(F,P) = [—(——T—éa;_b;g 'DF ](.01 s P,) if (a=b)D=F>0 (8)

=0, if (a-b)D=-F<0 and DP aid is used

= (a-2b)0-F, if (a-b)D=-F<0 and NP aid is used

-21-




where

total amount of fuel consumed upon arrival at target
= cumulative probability of being detected by enemy sensors

distance between strike launch point and target

fuel allowance/n.m.

o & O UV mMm
[}

fuel consumption/n.m. at an achievable speed resulting in the
lowest fuel consumption per unit distance traveled

For each mission the fuel allowance is proportional to the shortest
distance between the air strike launch point and the taraet (a+ D). The
absolute minimum fuel that has to be preserved in order to return from the
target is (b-D). Hence, (a=-b)D is the maximum amount of fuel available
for maneuvering to the target, and (a=-2b)D is the maximum amount of fuel
remaining upon return to the carrier. Note that if the aircraft runs out of

fuel before returning to the carrier, the resulting utility is:
1. Zero for the DP algorithm

2., Negative and equal to the difference between minimum
possible fuel usage and actual usage for the NP algorithm. This

is a device to increase convergence speed.

For the experiment, a=29.7 lbs/n.m., and b=8.3 1bs/n.m., corresponding to

a velocity of 250 n.m./hr.

The utility function takes on any value between 0 and 1, with higher
utility values corresponding to ''better'' paths. As the probability of being
detected by enemy sensors decreases, the utility value goes up. Also, if the

probability remains constant, the utility value increases as fuel ‘consumption
drops. It is obvious why it is desirable to minimize the probability of

being detected by enemy sensors. The rationale for encouraging fuel preser-
vation is that if detection occurs at any time up to arrival at the target,
there should be as much fuel left as possible in order to do some flight

maneuvering to try to return safely.
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In general the two goals of minimizing fuel consumption and minimizing

the probability of being detected are incompatible. A nontrivial optimal air
strike path thus requires a reasonable compromise between the two goals. The
utility function was designed as representative of the class of functions
useful in designing an air strike path through a multi-sensor field, and

Eq. (8) embodies a trade-off between remaining fuel and cumulative probability

of being detected.
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{it. SYSTEM OPERATION

Important characteristics of NP and DP methods for solving the scenario
problems are discussed in this section. Documentation of the step-by-step
operation is given for the OAO concepts that use the DP and NP algorithms.

The emphasis in the documentation is on the display concepts used. This section
also discusses the relevant considerations for the choice among alternative

input rules for NP automated concepts.

A. NONLINEAR PROGRAMMING OPTIMIZATION

1. Characteristics of the Nonlinear Programming Optimization Technique Used

in the Experiment

The setup for the nonlinear programming technique includes the starting
"moint' or first trial solution. In the air strike problem, the starting
"point' is (a) five path legs connecting the air strike launch point and the
target and (b) speeds for each leg. The legs are specified by picking four
"'way points'' between the launch paoint and target. Speeds are selected from a
range of 250 to 1000 knots. After the start point has been specified, the NP
technique operates to find a better combination of way points and speeds. It
does this by exploring changes in the location of each way point and the speed
for each leg. Each exploration involves a single combination of way point and
speed changes. Therefore, improvement in the air strike path takes place
slowly over many explorations, i.e., trials. An advantage of NP is that it
considers all the points in the geographical region it explores instead of
just a set of grid points and all speeds within the aircraft's capability
instead of just a few. A disadvantage is that the ''solution' will be:best
for the region explored but that better solutions may exist in unexplored
regions that the algorithm cannot ''see'' to explore and the NP technique is
often unable to direct itself to look in these unexplored regions. In opti-

mization jargon, NP may find a local optimum but not the global optimum.
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2. Automated Optimization Using the NP Algorithm

The approach used in selecting the NP algorithm was the following:

""What type of technique would you want if you knew nothing about any given
specific problem to be solved and you wanted the technique to be relatively
equally adept at solving a broad diversity of problems?'' This approach is con-
sistent with the assumptions in Section |-C made about the types of TFC problems
for which optimization aids would be appropriate and the type of algorithms that
would be available to the TFC. Answering this question can be broken down into
the five component parts of a nonlinear programming algorithm: Selecting a
starting point, selecting a search direction, selecting a step size, stopping
criterion function, and selecting a new starting point for the next iteration.

Table 2 expresses the approach for each component. Components 1, 2, and 3 are

Table 2. Algorithm Design Guidance for the Components of the NP Algorithm.

COMPONENT ALGORITHM DESIGN GUIDANCE

1 Select a Since no problem specific information is available
starting other than the scales and upper or lower bounds of
point the dimensions of decision space, a random starting :
point selection procedure is required. ]
2 Select a Since it can not be assumed that either first or sec-
search ond derivatives will be continuous over the domain of
direction the criterion function (e.g., Sketch Models), a

gradient-free approach is required.

Select a Since it can not be assumed that first or second

step size derivatives will be continuous over the domain of the
criterion function, a gradient-free approach is
required. (Same as for component (2) above.)

Convergence |A percentage (e.g., < 5%) of change in either the

stopping length of the search vector or the value of the cri-

rule for terion function is allowable; also specifying an

automated amount of time for each iteration regardless of prog-

optimization

ress is allowable.

Selecting a
new starting
point for next
iteration
during auto-
mated mode

Only information available is criterion function
values achieved with other starting points; otherwise
same as (1) above.




used in operator aided optimization (DAD) and automated optimization. Compo-

nents 4 and 5 are specified only for automated optimization since the operator

performs these functions during 0AO.

A baseline approach for automated optimization was designed to be

completely compatible with the assumption of zero problem-specific information.

It consists of the following algorithms for the nonlinear programming components:

Selecting a starting point - A starting point was selected from
a uniform random density function defined between the lower and

upper bounds of each of the dimensions of the solution space.

Selecting a search direction - Rosenbrock's method of orthogonal
directions was selected for this component (Reference 3). This
procedure is quite competitive among gradient-free approaches

working on high dimensional problems. (See Reference 4.)

Selecting a step size - Rosenbrock's method, experimented with
over a variety of problems, recommends increasing step size by a
multiple of 3 when successful and decreasing by 0.5 when unsuc-
cessful.,

Convergence criterion - The search was determined to have con-
verged when the length of the search vector had not changed by

more than 1% in five successive criterion function evaluations.

Selecting a new starting point - The time assumed reasonable for
providing an answer (e.g., 15 minutes) did not allow a substan-
tial number of iterations (e.g., >10). Thus it was not feasible
to use information concerning the success of previous starting

points in the selection of the nth

starting point, and each
successive starting point was selected from the same uniform

random density function described in (1).

The baseline approach was given the name ''Random Starting Point."

In order to evaluate the impact of some problem-specific information

on the performance of the automated concept (and therefore on the results of
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the OAO experiment) the following modifications to the baseline approach i

were evaluated:

T ——

1. Changes in the method for selecting a starting point:
The Random Starting Point rule produced nonsensical air strike paths
which cross over themselves (perfectly valid under the zero problem-
specific information philosophy). This was a controversial component
and deserving of additional investigation. Therefore the starting
points were also selected by a pseudo-random process by which the
path of the air strike was made to conform to straight line segments
connecting points on a parabola that passed through the launch and
target points. This eliminates the crossing-over aspects of the
path, The velocities of the starting point were selected by a

linear pseudo-random procedure which minimizes the variance of the

starting velocities. The name given to this concept was ''Parabolic

Starting Point."

2. Changes in the algorithm for convergence criteria:

This was deemed the component second-most subject to controversy. The
reason was that the automated concept could be considered at an unfair
disadvantage with respect to 0AO if the selected convergence criterion
produced poorer performance than some other criterion. Therefore two
other values of convergence criteria (.1% and 5%) were evaluated.

These in combination with the 1% used in the baseline approach covered
a range of values and allowed the estimation of a convergence criterion

value that maximizes performance of the automated concept.

The several versions of the automated concept were tested in the

following sequence:

1. Performance on five trials for each of twelve problems was
obtained using the Random Starting Point rule for each of the
three convergence criteria, namely, 0.1%, 1%, and 5%. The
result of these trials was that the 1% convergence criterion
was superior to the other criteria and therefore the data from
the runs with this criterion was used to represent automated

NP performance for the Random Starting Point rule.
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2. The 1% convergence criterion was used on five trials for each

aastinin

of the same twelve problems for the Parabolic Starting Point

rule.

3. Operator Aided Optimization Using the Nonlinear Programming Algorithm

At the beginning of a problem the display appears as shown in Figure 7.
The path from launch point to target is a straight line with way points indi-
cated at 1/5, 2/5, 3/5, and 4/5 of the straight line distance. Speed for each
leg is initially set by the program at 600 knots as indicated on the plot at
the left in Figure 7. The operator uses the appropriate buttons on the function
button box (see Figure 8) and the joystick to change the position of the four
way points. He uses the appropriate function buttons and the keyboard to change

speed on any leg.

The operator's purpose is to direct the NP technique to investigate as
many reasonable potential solution regions as possible in 15 minutes, which
is the length of a trial. As soon as the problem is shown on the display, the
operator must decide what region he wants to explore first. His training
instructions are to pick the region that he thinks is most likely to contain
the best solution. He then changes the locations of the way points and speeds

prior to starting the NP algorithm. The resultant path and speeds constitute

his estimate of the best solution and correspond to the Operator Unaided concept.

At the beginning of the problem the three buttons designated as
EVALUATE/HALT, CHANGE VELOCITY and MOVE WAY POINT are lighted on the box. In
order to move a way point, the operator pushes that button. When this is done
the four buttons marked 1, 2, 3, and 4 become lighted. He then pushes the
button corresponding to the point to be moved, i.e., 1, 2, 3, or 4. Way point
] is the one closest to the beginning of the strike path and 4 is nearest the
end (ONRODA Island). Moving the way point is accomplished with the joy stick.
When a single way point is changed a second way point can be changed by pressing
MOVE WAY POINT and the appropriate number of the way point. The act of pressing
MOVE WAY POINT records the position of the last way point that was changed.
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Figure 7. Display Appearance at Beginning of Problem
to be Solved Using NP Algorithm.
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It often happens when using the aid that the angle between adjacent
legs is 90° or less. A real aircraft cannot execute the turns indicated by the
connection of the straight~line path segments in such cases. |t would have
been possible to improve the realism of the aid by having the computer
automatically draw an arc corresponding to an aircraft's turning capability
to connect the path segments. This was not done because the lack of realism
did not interfere with the purpose of the work, namely, the comparison of the

different kinds of decision aids.

To change a speed on one of the five legs, the operator pushes CHANGE
VELOCITY. The five buttons marked 1, 2, 3, 4, and 5 then light. Leg 1 refers
to the leg closest to the path beginning point and leg 5 refers to the path
closest to the end point (ONRODA Island). He then pushes the button correspond-

ing to the leg for which he wants to change speed and:

1. Uses the teletype keyboard to input the speed he wants used
on the selected leg. A decimal point is put at the end of

the number. (This is essentiall!)

2. Pushes the teletype key marked ''CR."

Thus, if he wanted to change the speed on leg 3 to 850 knots, he would:
1. Press function button CHANGE VELOCITY

2. Press function button 3%

3. Press teletype key ''8"
4., Press teletype key ''5"
5. Press teletype key ''0"

Press teletype key '."

7. Press teletype key ''CR'"

When the operator has changed all the way points and speeds to those
he wants, he then presses the function button marked EVALUATE/HALT. The NP
algorithm will begin to operate, i.e., EVALUATE using the starting point
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consisting of the four way points and five speeds. Once the algorithm has
begun operating, only the EVALUATE/HALT button will remain lighted and the only
control at the operator's disposal is to halt operation by pushing this button.

The primary indicators that the operator uses to decide to halt the
algorithm are the displays of the number of function evaluations and the utility
of the latest trial solution. In general, a plot of utility versus function
evaluations would appear as show: in Figure 9. The subject should stop the
algorithm when it reaches the point shown in Figure 9 because there will be
little more utility to be gained by letting the algorithm continue. He should

then input a new set of way points and speeds and start the algorithm again.

Stop the algorithm
UTILITY approximately here

FUNCTION EVALUATIONS

Figure 9. Typical Plot of Utility Versus Function Evaluation.

As the algorithm operates, he can see variable length arrows appearing

briefly at each way point. These represent potential changes in the location
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of a way point being considered by the algorithm. When utility levels off, the

magnitude of changes in the following will also become small:

1. Value of '"Prob," i.e., the probability that the air strike

will be detected prior to arrival at the targét.

2. Value of '""Fuel," i.e., the fuel that will be consumed for the

latest trial solution.
3. Speed changes indicated on the speed/leg graph.

4. Lengths of arrows appearing at each way point.

While the algorithm is operating on the first set of way points and
speeds input by the operator, he should count the number of regions that could
reasonably be expected to contain the best path. Dividing 15 minutes by the
number of regions to be explored indicates approximately the number of minutes
the operator should devote to each region. Depending on the problem, there

will be enough time to explore 4, 5, or 6 regions.

At the end of 15 minutes the computer will have stored:

1. The utility of the path comprised of the first way points
and leg speeds.

2. The utility of each best-solution-to-date at the ‘end of

each minute.

3. The utility of the most recent solution at the end of each

minute.

These are the data that are used In the analysis of operator generated data.




B. DYNAMIC PROGRAMMING OPTIMIZATION

1. Characteristics of the Dynamic Programming Optimization Techniques Used

in the Experiment

A dynamic programming (DP) optimization technique is used in the experi-
ment. The ''setup' for using the dynamic programming technique includes a grid
network of evenly spaced points and a choice of three aircraft speed levels,
namely, low, medium, or high. The DP technique specifies the best path by
connecting points on the grid between air strike launch point and target and
specifying one of the three speeds for each path leg between two connected
points. The advantage of DP is that it does find the best path for the grid and
speed levels it is using. A disadvantage of DP is that it takes a long time
(even with the computer doing the number crunching) to reach a solution. For
example, the time to reach a solution for a nine-by-nine grid with three speed
levels is about four minutes; it is about eight minutes for a ten-by-ten grid.
This occurs because OP investigates every allowable solution and then picks
the best. |If the grid size has finer resolution, e,g., 18 x 18 or 36 x 36, or
the number of allowable speeds is larger than three, then solution time
increases greatly. Another disadvantage is that the coarse grid points are
often unpropitiously located with respect to the detection capability con-
tours. The result is that the algorithm will avoid some valleys in the detec-

tion contours because there are no grid points in the valleys.

The DP algorithm uses the classical, grid-oriented, backward recursion
approach. Minor adaptations have been made to allow the classical approach to
accept the nonlinear utility criterion function. These are thoroughly discussed
in Appendix C.

2. Operator Aided Optimization Using the Dynamic Programming Optimization
Algorithm

The display appears as shown in Figure 10 at the beginning of a problem

to be solved with the DP algorithm. The operator uses the function button box
(see Figure 11) and the track ball to tell the program what to consider when

it works on the problem. Operator inputs include:
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Display Appearance at Beginning of Problem
to be Solved Using DP Algorithm.
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1. A boundary drawn around a region. This algorithm confines its

search for a solution to this region,

2. The grid size to be used by the algorithm, that is, 9 x 9,
18 x 18, or 36 x 36.

3. Speeds that the algorithm is not to consider when searching for
a solution.

In most cases, the algorithm finds a trial path considering the operator inputs,
displays this path and its utility, and stops. (The exception is covered below.)
It does not start again until the operator has completed a new set of inputs or
tells the algorithm to do another iteration using the old inputs. New inputs
may be 1, 2, and 3 above, or 2 and 3, or 3 only.

The operator's first task is to draw his estimate of the best path and
write his estimate of the best leg speeds. He does this on a separately pro-
vided paper copy of the problem. This solution represents the Operator Unaided
concept.

The operator's next task is to decide in his mind the rough outlines of
the regions he will want the algorithm to explore. In general, he will pick
two or three large regions and use the coarsest grid size, namely, 9 x 9, to
explore these. In the beginning, a boundary should be drawn so that it encom-
passes more than one viable path. This way the solution provided by the DP
algorithm reduces the ambiguity about where the better paths reside. When he
finds the region that has the best path, he refines his solution by using a
finer grid size (normally 18 x 18) and making the area within the boundary
smaller.

When the operator has decided the first region he wants to explore, he
responds to the flashing prompt MOVE CURSOR at the lower left of the display by
moving the track ball to draw the boundary. This is indicated by the fact that
the function button DRAW in Figure 11 is lighted. The launch point and the

target must be contained within the closed boundary, |If one of these points is
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not within the boundary, the computer will recognize this as an error, erase
the boundaries drawn, and give the prompt MOVE CURSOR again. Thus, if the
operator wants to redefine his boundary after some of it nas been drawn, he can

start over by closing the boundary without including the launch or target points.

When the boundary has been closed, the computer is ready to accept the
specification of grid size as indicated by the flashing prompt SELECT GRID and
the three lighted function buttons marked 1, 2, 3 at the lower left of the box.
By pushing 1, the coarse grid is selected and displayed. Pushing 2 selects the
medium grid of 18 x 18, and pushing 3 selects the fine grid of 36 x 36.

Now the prompt BOUND SPEED flashes at the lower left of the display.
The arrow at the top left points to a space between two adjacent horizontal
grid rows. By now pushing the buttons L, M, or H at the bottom left of the
function box, the operator deletes from consideration by the algorithm low,
medium or high speed for any path leg that crosses between the two rows and for
any horizontal leg in the upper of the two rows. When the operator is finished
specifying speeds to be deleted from consideration, he pushes the lighted button
NEXT. Upon doing this, the arrow moves down to the next pair of rows and the

operator repeats the procedure. For example:

1. If the operator has pushed L, M, and NEXT, the algorithm will
not consider low and medium speeds for any leg crossing between
the two rows on either side of the arrow and for any horizontal

leg in the upper row.

2. |If the operator has pushed only NEXT, then the algorithm will
not delete any speeds and the arrow will move down to the next

pair of rows.

3, If the operator pushes L, M, and H for any pair of grid rows
above the target or below the launch point, the algorithm will
not consider any leg that would be above the target or below
the launch point. In this case, deleting L, M, and H is per-

missible and will save time,




4. If the operator pushes L, M, and H for any pair of grid rows
between the target and launch points, the computer will be
unable to find any solution. At the end of several minutes,
the display picture will reappear and the blinking prompt
NO SOLN YET will appear at the lower left of the display. In
this case, deleting L, M, and H is not permissible and wastes

time,

The operator continues to delete speeds as he desires until either (a) he has
deleted speeds for the last pair of rows or (b) he decides that he does not want
to delete any more speeds. In either case he then pushes the EXIT button. This
completes the operator's input and the display screen goes blank while the
computer is working on the trial solution. This may take two to five minutes
depending on the size of the region within the boundary, the grid size, and the

number of speeds deleted.

In most cases when the display reappears, the trial solution path is
shown and the utility for that path and the function buttons BOUND, GRID, SPEED
and NEXT are lighted. The operator does not know if the trial solution is the

best possible solution for his inputs or not. He has two basic choices:

1. |If there are two trial paths already displayed, he remembers the
utility value for the most recent iteration displayed in the
box at the top center of the display and then pushes NEXT. By
pushing NEXT, the algorithm will perform another iteration and
show the new and best-to-date trial solutions and their utili-
ties, |If the remembered utility of the previous trial and the
utility of the current trial are the same, then the optimum
solution for the inputs has been found. |If there is little
difference in the two most recent utilities, then the best
tactic will usually be to start investigating another region
or to refine the solution in the current region by using a

finer grid.




2. By pushing BOUND, GRID, or SPEED he can redefine the inputs
considered by the algorithm, If he pushes BOUND, then he must
go through all three steps of drawing the boundary, selecting
grid size, and deleting speeds. |If he pushes GRID, then the
algorithm will use the previously drawn boundary and the opera-
tor selects grid size and deletes speeds. |If he pushes SPEED,
the algorithm accepts the previously drawn boundary and grid and
the operator only deletes speeds. |If the area within the bound-
ary was large, then the operator should redefine the boundary to
include a much smaller number of points in the vicinity of the

path selected by the previous iteration.

If the display reappears without a new trial solution (the exception
previously noted), NO SOLN YET will flash at the lower left of the display. This
means that the algorithm has not been able to find a complete trial solution on
a single iteration. |In this case the operator's suggested response is to push
the NEXT button so that the algorithm will go to the next iteration to complete
the trial solution.




IV. DESCRIPTION OF THE EXPERIMENTS

A. EXPERIMENTAL DESIGN

l. ngotheses

Two types of experiments were conducted. In the Type | experiment,
the performance of unaided operators was compared against the performance of
the same operators using an optimization aid. In the Type || experiment the
performance of operators using an optimization aid was compared against the
performance of an automated optimization procedure as a function of time. These
two types of experiments were conducted for each optimization algorithm, namely,
the nonlinear programming (NP) algorithm and the dynamic programming (DP)
algorithm.

The experimental null hypotheses tested for the NP algorithm were:

1. Path utilities generated by operators are not significantly
different as a function of concept (unaided versus 0A0), prior
experience using the DP aid, operators, replications, or their

interactions.

2. Path utilities generated by operators using 0OAO are not sig-
nificantly different from path utilities generated by the
automated NP algorithm using the random starting point (see
Subsection I11-A for the definition of random starting point).

3. Path utilities generated by operators using 0OAQ are not sig-
nificantly different from path utilities generated by the
automated NP algorithm using the parabolic starting point
(see Subsection 111=A).

The experimental hypotheses tested for the DP algorithm were:

L, Path utilities generated by operators are not significantly
different as a function of concept (unaided versus O0AO), prior
experience using the NP aid, operators, replications, or their

interactions.
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5. Path utilities generated by operators using 0OA0 are not sig-
nificantly different from path utilities generated by the
automated DP algorithm.

2. Independent Variables

The independent variables for the Type | experiments were:
1. System concepts
2. Prior experience using 0AO
3. Operators

L. Replications

The independent variable for the Type || experiments was system concept,

namely operator aided optimization versus automated optimization.

a. Prior 0AQ Experience. Eight of the 16 operators worked the DP

problems first and then the NP problems. The other eight operators did the
NP problems first. Thus for one set of data, for example the NP data, half
the data was generated by operators with no prior experience using either the
NP or DP aid and half was generated by operators with prior experience using
the DP aid.

b. Operators. There were 16 operators. Descriptive information about

the operators and their training is given in Subsection IV-B.

c. Replications. Each operator was given a set of 12 problems to be
solved using the appropriate 0AO procedure (one set of 12 for the NP aid,
another set of 12 for the DP aid). At the beginning of each problem the opera-
tor recorded his estimate of the best solution. Then he proceeded to use the
0AO procedure. All subjects worked the same set of twelve problems. The
learning effect was tested by comparing performance on the first six problems
against performance on the last six problems. Thus, one replication for opera-

tor generated data consisted of six problems.




The automated NP concept does use random numbers to generate
starting points. For this reason each of the 12 NP problems was run five times

using a different random number seed for each trial.

d. System Concepts for Type || Experiments. The system concepts for

the NP algorithm were operator aided optimization, automated optimization using
random starting points, and automated optimization using parabolic starting
points. The system concepts for the DP algorithm were operator aided optimi-
zation and automated optimization.

‘3. Dependent Variables

a. Type | Experiments. The dependent variable for the Type | experi-
ments comparing unaided optimization with OAO was normalized utility. The raw
data for unaided optimization was the utility of the path selected by the opera-
tor. The raw data for OAO was the utility of the best path found by the operator

using 0AO during the fifteen-minute trial. For each problem these data points

were normalized by dividing each value by the highest utility achieved by any
operator or the automated algorithm on that problem. Thus hypotheses 1 and 4
were tested by comparing normalized utility of the unaided solution against the
normalized utility of the best 0AO solution. b

b. Type || Experiments. The raw data for 0OAO and automated optimiza-
tion at time "'t was the best utility found by the operator or automated algo-

rithm from time zero to the end of time “t"'. Table 3 illustrates the meaning.
The raw data across operators and the automated algorithm was normalized for
each minute of each problem by the best utility achieved by any operator or
any run of the automated algorithm.




- Table 3. Example of Data Generated During an
| 0AD or Automated Optimization Trial.

Raw Data, i.e., Best |
Best Utility Generated Utility from Time Zero l
; Minute During the xth Minute to End of xth Minute !
| I 20 20 |
2 60 60
3 62 62
E 4 L4s 62
: 5 54 62
6 55 62
7 b9 62
8 65 65
9 67 67
10 68 68
r 11 37 68
12 52 68
13 56 68
4 57 68
15 30 68

If raw utility data achieved by two competing methods A and B are as
shown in Figure 12 (a), then it is clear that method A is superior. However,
if utilities achieved are as shown in Figure 12 (b), then the time preference
for utility must be stated so that the optimizers (operator or automated
algorithm) may use search strategies best suited for the stated preference.
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Figure 12. Hypothetical Utilities Achieved by Competing Methods.

Two dependent variables were used to test hypotheses 2, 3, and 5. One
was the best utility to date (since time zero). The other was the time average

of best utility to date according to the formula:

t
U(t) = ¢ Ty (9)
t=1,2,...

where U(t) is the normalized utility at time ''t" of the best utility to date.
With these dependent variables it was possible to test hypotheses 2, 3, and §

for:
1. Any specific time

2. Any specified time interval by comparing data curves.

4. Problem Variables

The elements that defined a given problem were the adaptation of the
ONRODA airstrike scenario map (Section I1-A), sensor locations, and strike path
start point. The steps described below were taken to make problems nearly
equally difficult for the operators.
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Each problem used the same number of sensors, namely, ten, and all sen-
sors had the same detection capability. One sensor was always located on ONRODA
Island. The remaining nine were positioned by a pseudo random process. A com-
puter program was written to randomly position the nine sensors subject to two
constraints. One constraint was that no pair of sensors could be positioned
closer to each other than a certain minimum distance. The other constraint
was that all sensors were located below ONRODA Island (see Figure 7). These
were realistic constraints since an enemy opposing the air strike would group
his forces between ONRODA and the threat and would maintain some minimum

spacing between units.

About 50 configurations of sensors generated by the program were
examined by the experiment designers. Starting points for the air strike were
manually selected so that the largest number of paths having nearly equal
utility would result for each of the 50 problems. Then the 24 ''best'' problems
were selected as experimental problems. The basis for selecting the experimental
problems was (a) at least three paths having nearly equal utility and (b) no
path selection strategy was best for a large majority of the problems. (In
the previous experiment reported in Reference 1, the strategy of selecting
paths along the right or left edge of the geographical area displayed to the
operator was best for nearly all problems.) Thus, problem difficulty was not

treated as an independent variable in the experiment because:
1. Problems were constructed to be nearly equally difficult.

2. Normalization of raw data tends to eliminate whatever dif-
ferences in problem difficulty remained after the problems

were selected.
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~ 5. ANOVA Design for Comparing Performance of Unaided Operators with 0A0

The purpose of the Type | experiment was to determine if the operators
would achieve better performance using the NP and DP aids for 15 minutes than
they would achieve without the aids. A nested factorial, randomized block

experiment was conducted. The factors were:

e Concepts (Ci) - 2 levels (Unaided operator and operator aided
optimization)

e Prior Experience (Pj) - 2 levels (Half the operators did DP
problems first and NP next; the other half did NP, then DP)

e Operators (ok(j)) - 8 levels nested within training; therefore

16 operators total

e Replications (RI) - 2 levels (First half of trials and second
half).

There were no designed differences in problem difficulties. Thus, differences
in problem difficulties were not treated as a factor. Any spurious differences
were mitigated by (a) using normalized data in the analysis and (b) balancing
problems within each group of 8 subjects so that 4 subjects got one set of 6
problems in the first replication and the other 4 subjects got the remaining

6 problems in the first replication. The model for the normalized dependent
variable is:

=y +C, +P, +CP, +0 .\ +CO ..\ +R (10)
H cl i CPIJ k(j) & ik(j)

Yijklm 1

+ CR + PR., + CPRi. +

il jl jl

N
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B. OPERATORS AND TRAINING OF OPERATORS

There were three subgroups within the 16 operators. Ten operators were
juniors or seniors from UCLA majoring in engineering or computer science. Two
operators were the staff members at Integrated Sciences who designed the aids
and the experiment. The remaining four operators were alike in that none of

them had a technical background. Their educational backgrounds were:
e Master of Arts (Education)
e Master of Arts (English)
e Master of Arts (Urban Affairs)

e Associate of Arts (Art)

Operator training for use of each aid, i.e., the NP aid and the DP
aid, was conducted in three phases: orientation, exercise using training
problems, and a pre-experiment briefing. Orientation for each aid began with
reading the training materials developed for that aid. The training materials

treated the following topics:
e Purpose of the experiment
e Representation of sensor detection capability on the display
e The utility function
e Characteristics of the optimization technique used (NP or DP)
e Operation of the aid

e Example of a problem worked out (five figures for the DP aid,
nineteen figures for the NP aid, with text comments and guide-

lines accompanying each figure).

The training materials are in Appendices D and E.

After each operator read the training materials, he conferred with one
of the ISC staff members who designed the experiment. Operator questions were
answered during this conference and the ISC staffer verbally tested the opera-
tor's understanding of the problem situation and use of the aid. Then the
operator worked eight problems at the display. Questions that arose during
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these problems were answered by an ISC staff member with experience using the

aid. Another conference between the operator and one of the experiment designers

was held after the training problems were completed. This conference focused
on the search strategies that the operator had learned and planned to use. The
experiment designer advised the operator of potential pitfalls and useful modi-
fications to the planned strategies. The operator began his experimental
trials after this conference. No further training was given during the trials.

The average training time across operators was about four hours for each aid.

C. EXPERIMENTAL PROCEDURE

The experimental team consisted of the test director and an operator.
Each operator was assigned a unique identification code and the sequence of the
twelve problems corresponding to that code was stored in the computer. The
test director scheduled the software and entered the operator's code. That
procedure ''brought up' the operator's next (uncompleted) problem on the dis-
play. At the beginning of the problem the operator entered his best estimate
of the solution as described in Sections I|l1-A-3 for the NP aid and |11-B-2
for the DP aid. Entering this best estimate took between 0.8 and 1.2 minutes
for the NP aid and 0.5 and 0.9 minutes for the DP aid. (These estimates are
based on the personal experience of the experiment designers and their observa-

tions and conferences with operators.)

Feedback to the operator on his performance was provided throughout
each trial. This was done in the following way: the time averaged performance
of the automated algorithm was displayed at the beginning of the trial for all
15 trial minutes. This display was located just above the picture of the
scenario. At the end of each minute the computer calculated and displayed the
operator's time averaged performance under the corresponding value for the
automated algorithm. Thus the operator obtained feedback on how he was doing
in an absolute sense and in a relative sense compared to his ''competition,'

the automated algorithm.

The test director remained on call during each trial to monitor the
trials, troubleshoot any equipment malfunctions or operator-induced problems
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in entering path data, and to bring up the next trial once the previous trial
was completed. The test director spent part of the time in the computer and

display facility where the operator worked the problem and the remaining time
in an adjacent room. Operators normally did two, three, or four trials in a

row before taking a break. Multiple trials were permitted because operators

did not experience fatigue after as many as three sequential trials.




V. RESULTS

A. ANALYSIS OF UNAIDED OPERATOR AND OAO DATA FOR NP AID

A four-way analysis of variance was performed on the normalized path
utility data generated by operators with and without the NP aid. After pooling
procedures (Reference 5) were applied, the ANOVA resuits were as shown in
Table 4.

The operators using the aid did significantly better than without the
aid. This was expected since they had 15 minutes to improve the solution by
using the aid. Of greater interest is the degree of improvement made possible
with this aid. The average improvement across all subjects and trials was 29%
with a range of 9% to 123%.

Performance was significantly different across operators but this was
solely due to performance variability in unaided operation. This can best be
understood by considering the following: average normalized utility without
the aid was 77.24 utility points; the standard deviation was 13.54. Average
normalized utility with the aid was 99.5; the standard deviation was only 0.38.
Thus the aid served as an ''equalizer.' |t enabled operators having relatively
low utility scores without the aid to do as well when using the aid as those
who had relatively high scores without the aid. The lack of a technical edu-
cation was apparently not an impediment to good performance with or without
the aid. Figure 13 shows the average utility with and without the aid for the

12 operators who have a technical education and the four operators who don't.

The significant interaction between prior experience and replications
occurs solely on unaided operator data. The interaction is plotted in Figure
14, The plot indicates that the prior experience using the DP aid was a handi-
cap rather than a help. However, the performance gap was smaller in the second
replication than it was in the first.




Table 4. Analysis of Variance for Comparing Unaided
Operator and 0AO with the NP Aid,

Degrees of

Sum of

Mean

et

Source of Variation Freedom Squares Square Fobs
Concepts (c) I 47,597 | 47,597 | 327.3"
Prior Experience (P) 1 2,745 2,745 4.6
CxP ] 2,580 2,580 5.0
Operators (0) 14 14,248 1,018 h.l*
Cx0 14 13,451 961 42"
P x Replications 1 598 598 4"
CxP xReplications 1 517 517 3-6*
0 x Repl ications 14 3,514 251 1.7
€ % 0 x Repl ications 14 3,206 229 L5
Pooled Error 322 46,829 145 -
Totals 383 135,285
*a = 0.10
Table 5. Analysis of Variance for Comparing Unaided
Operator and 0AO with the DP Aid.
ulde: Degrees of | Sum of Mean F
Source of Variation Freedom Squares | Square obs
Concepts (c) ] 9,514 | 9,514 | 48.2°
Prior Experience (P) i 3,752 | 3,752 | t9.0"
CxP 1 Lo6 496 1.2
Operators (0) 14 20,691 By R
Cx0 14 3,038 217 1.3
CxPxReplications 1 L24 L2y 2.2
Pooled Error 351 69,246 197 =
Totals 383 107,161
*a = 0.10
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B. ANALYSIS OF UNAIDED OPERATOR AND OAO DATA FOR DP AID

A four-way analysis of variance was performed on the normalized path
utility data generated by operators with and without the DP aid. After pooling
procedures were applied, the ANOVA results were as shown in Table S.

Operators using the aid did significantly better than without the aid.

Again, this was expected since they had 15 minutes to improve the solution using

the aid. The average improvement across all subjects and trials was 12% with
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a range of =-9.1% to 27%. The lower number in the range was due to two

trials by one subject who did not sufficiently constrain the problem. Conse-
quently, on one trial the algorithm never reached a solution within 15 minutes,
and on the other trial it yielded a normalized utility of only 20.4 near the end
of the 15-minute period. These trials did not represent the operator's steady
state performance and thus they were eliminated from the following analysis.
With the two unrepresentative trials eliminated, the lower end of the range

was 3.5% improvement.

Performance was significantly different across operators but there was
no interaction with concepts (unaided versus 0A0) as was the case with the NP
data. Average normalized utility without the aid was 80.3 utility points; the
standard deviation was 9.8. Average normalized utility with the aid was 91.2;
the standard deviation was 7.0. Again, the lack of a technical education was
apparently not an impediment to good performance with or without the aid.
Figure 15 shows the average utility for operators with and without a techni-
cal education.

Operators who had previously used the NP aid did significantly better
than those without that experience. The difference on a percentage basis :
was 7.6%.

C. ANALYSIS OF OAO AND AUTOMATED RESULTS WITH THE NP ALGORITHM

The previous subsections treated data generated by operators. Compari-

sons were made between:

1. Utility generated at the beginning of a problem when the
operator estimated the best path without any aid, and

2. The best utility the operator was able to generate using the g

aid over a period of 15 minutes.

This and the next subsection compare as a function of time the performance of |
operators using an aid with automated performance of the same algorithm which

is controlled by the operator during O0AO.
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Figure 16 shows a plot of best-to-date normalized utility versus time
for OA0 and automated use of the NP algorithm. All three curves are signifi-

cantly different from each other at the 10% level by the Wilcoxon matched-pairs,

signed-ranks test. The plot verifies that the parabolic starting point pro-
cedure is clearly superior to the random starting point procedure at all times.
Superiority ranges from 215% at minute | to 12% at minute 15. O0AO using the
NP algorithm is superior to automated use of the algorithm with parabolic
starting point; superiority is 27% at minute 1, 53% at minute 2, and then
gradually decreases to 27% at minute 15. The average utility accomplished by i
unaided operators is shown as a small square plotted at 1.0 minute, the sub-

jectively determined average time when the operator's unaided estimate was

input. The reader can compare the gradual improvement in the average 0AOQ

solution with the average unaided solution.

Figure 17 shows a plot of time averaged normalized utility calculated

according to the scoring rule (Equation 9) versus time for 0A0 and automated
use of the NP algorithm. Again, all three curves are significantly different
from each other at the 10% level by the Wilcoxon matched-pairs, signed-ranks

test. The plot shows the same pattern as observed in Figure 16. The main

PP TR S TR e e

difference is a greater margin of superiority for the parabolic starting

point over the random starting point.

Figure 18 shows 'instantaneous'' normalized utility for the 0A0 and
automated NP algorithm data. Instantaneous utility is defined to be utility
of the most recent solution at the end of the nth minute. The OAO data
quickly reach and maintain high values because the operators are able to
rapidly input good starting points. The automated starting points are rela-
tively poor compared to the operator selected starting points and therefore
the average automated solution at any point in time is relatively poor. Para-
bolic starting points are usually superior to random starting points. Thus,
instantaneous utility generated from parabolic starting points is superior to

utility generated from random starting points as shown in the figure.
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Instantaneous normalized utility is shown in Figure 21 for OAO and
automated DP algorithm data. The automated algorithm curve is higher than the
0AO0 curve because the automated algorithm only works on one problem, therefore

the instantaneous utility can never decrease. The operators made several sets

. of inputs during the 15 minutes of a trial and thus they work on several prob-

lems. The peak for 0AO instantaneous utility occurs early at the fourth
minute because operators work on the path that they estimate is best. The peak

indicates that, in general, the operator estimates of the best path are correct.

At first blush it might appear from Figure 19 that the automated DP is
generally equal to OAQ and certainly better if the operator can wait four
minutes. However, this is not quite correct. An important point to note about
the comparison of OA0 and automated results is that they are influenced by the
number of points in the coarse grid. Automated use of the DP algorithm with
the 9 x 9 coarse grid yields a solution in about four minutes; it takes eight
minutes to reach a solution using a 10 x 10 grid and two hours when the
18 x 18 grid is used. The operator using a 10 x 10 grid will take longer than
he does with the 9 x 9 grid. However, the percentage increase in time used by
the operator is much smaller than the percentage increase for the automated
algorithm. The operator using the 18 x 18 grid can obtain a solution (not
necessarily the best solution) in about four minutes. Thus, the operator can
investigate three possible solutions in fifteen minutes whereas it takes the
automated algorithm two hours to get the best solution. Therefore, Figures 19
and 20 only apply for the particular coarse grid size used by the automated
algorithm and they probably present the automated algorithm in a better light
than it would appear if a range of coarse grid sizes had been used and analyzed

for the experiment.
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Vi. FINDINGS AND RECOMMENDATIONS

A. FINDINGS

1. Comparison of Unaided Operators and OAO for the NP Aid

The operators using the NP aid did significantly better than without
the aid. The average improvement across all subjects and trials was 29% with
a range of 9% to 123%. Performance was significantly different across operators
but this was solely for unaided operation, Thus the aid served as an ''equalizer.'
It enabled operators having relatively low scores without the aid to do as well

as those who had relatively high scores without the aid.

Lack of a technical education was apparently not an impediment to good

performance with or without the aid.

Prior experience using the DP aid was a handicap rather than a help.

2. Comparison of Unaided Operators and OAO for the DP Aid

Operators using the DP aid did significantly better than without the
aid. The average improvement across all subjects and trials was 12% with a
range of 3.5% to 27%.

The lack of a technical education was apparently not an impediment to

good performance with or without the aid.

Operators who had previously used the NP aid did significantly better
than those without that experience, The difference on a percentage basis was

7.6%.

3. Comparison of 0OAO and Automated Results Using the NP Algorithm

0AO was significantly better than automated use of the NP algorithm
for both the Parabolic Starting Point and Random Starting Point rules. The
Parabolic Starting Point rule produced significantly better performance than

the Random Starting Point rule. Superiority of OA0 over automated use of the
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NP algorithm with the Parabolic Starting Point rule was 27% for best-utility-
to-date data at minute 1, 53% at minute 2, and then gradually decreased to
27% at minute 15.

4. Comparison of 0AO and Automated Results Using the DP Algorithm

Neither OAO nor automated use of the DP algorithm was consistently
superior throughout the trial period for best-to-date utility data. O0AO was
superior to the end of the third minute. The automated algorithm was superior
from minute 4 to minute 15 by margins ranging from 7% at the fourth minute,
to 12% at the fifth minute, and then slowly decreasing to 5% at the fifteenth

minute.

0AQ0 was significantly better than the automated algorithm for time
averaged data. However, the margin of superiority decreased from 92% at minute
4 and 41% at minute 5 to only 1% at minute 15.

These results apply for the 9 x 9 coarse grid size used by the automated
algorithm. The results would be different if the number of points in the coarse
grid were larger; it is highly likely that increasing the number of points in
the coarse grid would favor O0AO.

5. Miscellaneous Findings

The NP aid was less complex to use than the DP aid and operators
generally preferred working with the NP aid to working with the DP aid. Oper-
ators using OAO with the NP aid found the global optimum on a higher percentage
of trials than operators using 0AO with the DP aid. The NP aid more naturally
fits the air strike problem than the DP aid. The reason is that the NP aid
operates on space and speed continuums whereas the DP aid must operate on
discrete spatial grid points and speeds. Thus, using the DP aid for the air
strike problem amounts to making a forced fit of a method that deals with
discrete points to a problem described by continuous variables.

The average time required to adequately train an operator to use

either aid was about four hours.




1

6. Potential Implication of the Findings

0A0 is potentially attractive as a decision aid for a class of problems

when all of the following are true:
1. Solution space has high dimensionality (e.g., > 5).
2. Criterion function is nonlinear and multi-modal.

3. Pertinent problem definition information is not available with
enough advanced warning to incorporate into the design of an
operating optimization software package that would adequately

handle all or most problems in the class.

L. Pertinent information concerning available decision options

is also not available in time to impact software development

5. The problem can be represented in geometric/graphical format.

0AO is attractive when the above conditions hold because:

1. The operator can see what is happening during the optimization.
With pictorial problem representation, he can make adjustments
to the optimization procedure or results to compensate for
limitations in problem representation mcre easily than he can

when there is no pictorial representation.

2. The time required to train operators to use 0AO with pictorial
problem representation is apparently relatively short and does

not require technical knowledge of the optimization algorithms.

B. RECOMMENDATIONS

1. O0AO NP Versus OAO DP

If only one aid is to be implemented on the Operational Decision Aids

facility at the University of Pennsylvania, then the NP aid should be chosen.
If funds are available it would be worthwhile to implement the DP aid also so
that Navy officers and R & D managers could get a feel for the way such an aid
could be used. TFC decision problems that involve discrete variables should be

examined for their applicability to an OAQO DP type aid.
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2. Taxonomy of Navy Command and Control Decisions

ISC found that the three-type characterization of machine participa-
tion in decision making used in this report was useful. Based on this useful-
ness, |ISC suggests that the third type, man helping machine to help man, be
used in future command and control studies. |ISC will assume that command and
control decisions can be categorized as ISC suggests. If this assumption is
valid, then ISC recommends that decisions for which the third type is appro-
priate be further evaluated to determine if geometric/graphic representation

is the most efficient way to represent the problem in each case.

3. Simulation of Real-Time Dynamics

The ocean-borne enemy sensors facing a real-world air strike planner
are in motion during the planning and execution of the air strike. Consequently,
the detection field representing the joint detection capability of enemy sensors
is dynamic and not static. The problems used in the recently completed experi-

ment show static sensors to the operators.

Representing the more realistic dynamic situation involves dynamically
updating the detection contours to account for the changing positions of enemy
sensors. The contour drawing algorithm for a machine stored analytic function
representing joint sensor detection capability is relatively complex. |In order
to get the best ''fit,'" i.e., best representation of the contours, it is cur-
rently necessary to vary a weighting factor, visually observe the contours drawn
for each value of the weighting factor, and select the value that gives the
best fit.

Recommended steps to be taken in implementing real time dynamics are:

1. Devise a method for automatically obtaining an acceptable

fit for the contours.

2. Provide the operator with controls that will enable him to

consider sensor movement while glanning the air strike.
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3. Provide the operator with controls that will enable him to
consider sensor movement during the air strike and issue

path change directions.

4. Design an experiment that would compare operator aided optimi-

zation performance with performance of an automated algorithm.

L. Implementation and Testing of a Gradient Search Algorithm for NP

A gradient-free algorithm (Rosenbrock's method) is the currently used
NP algorithm. This was chosen because it could not be assumed that either
first or second derivatives of the criterion function would be available. In
particular, the derivatives would not be available if the detection contours

were drawn as a Sketch Model by the operator.

The problems used in the experiment recently conducted did not contain
Sketch Models. Instead the detection contours were drawn from stored analy-
tical functions which do have derivatives. Gradient search is usually faster
than the gradient-free approach. Thus it would be worthwhile to implement a
gradient search and test its performance against that already obtained using
Rosenbrock's method (the variable metric method is recommended). Further, a
gradieat search could be used even in those cases where analytic derivatives
are difficult to compute. A difference approximation would then be used for

the derivatives.
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APPENDIX A: CONTOUR DRAWING ALGORITHM

For the experiment, it was necessary to come up with a set of '‘true"
composite detection rate contours for each configuration of sensor locations
and sensor sizes used. Each set of true contours corresponds to a ''Sketch
Model'' the subjects were required to draw, and the true contours were dis-
played as feedback to the subjects at the end of each trial under System
Concept B. The development of the contour following algorithm which traces

out the contours required is described below.

A three-dimensional function f(x,y) defined in a region XgSX<X¢,
YoSYSyy can be represented in two-dimensional space as a series of iso-
altitude contours. In other words, the curve f(x,y) =h can be plotted for
every altitude h we have chosen. Each contour thus represents points at the

same specified altitude.

The contour following algorithm requires two major steps. In the
first step, points at each desired altitude level are sampled and stored in
a list. Then each list of points is examined and the points connected so
that the resulting curves describe the true contours reasonably well. These
two steps are further explained below.

To simplify the exposition, let us for the moment concern ourselves
with one altitude level only. The method is easily extended to more than
one altitude.

Suppose we want to find the contours for an altitude h. First we
search in the x-y domain for points at this altitude. We try to find a suffi-
cient number of points (x,y) such that f(x,y) = h. This is done in two
passes.

In the first pass, a flowchart of which is given in Figure Al, we
lay down grid lines § units apart in the Y direction. The value § is

selected such that the grid lines are close enough for the resulting contour
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points not to be too sparse. At the same time the grid lines are not so
close that excessive time is spent in the computations. Each grid line is
then divided into intervals of width & (see Figure A2).. This leads to another
consideration for the value of § in that the finer the grid resolution the
easier it is to detect sharp ridges and peaks. The functional values at

the end points of each interval are checked to see if the desired altitude

h is bracketed. In other words, we check to see if h is between the values

of the function at the two end points. |If bracketing occurs we know we can

find a point within the interval where the value of f is sufficiently close
to h. We do this by successively halving the interval until we are close
enough to the desired point. Each point on the contour found is put into a

list for later use.

+ + 4 4 4 +4 -
I [ “——— end points of

an interval

L L3 + e o - e

Figure A2. Example of Grid Line Division. (Each grid line
is divided into intervals, such as BC.)

At the completion of the first pass, we move to the second pass;
the corresponding flowchart is shown in Figure A3. Here we lay down a
second grid of the same grid size §, but this time the grid lines run in the
X direction., Each grid line is divided into intervals, each of length §.
This second grid is necessary because the first grid cannot "'see' very well

those contours that are parallel to the grid lines, as shown in Figure A4.
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Since the second grid is perpendicular to the first, it can be used
to remedy problems such as that depicted in Figure A4. The second grid is
arbitrarily displaced from the first so that grid points from the two will

not overlap, but this is not necessary.

;r/true contour
‘},,grid line

Figure A4, Error When Using a Single Grid. (With grid
lines in the shown direction, the ABC portion
of true contour is not detected by the grid
lines. The dots are contour points picked up
by grid.)

With the second grid, each interval on a grid line is checked for
bracketing of the desired altitude h. Each occurrence signifies a contour
point within the interval under consideration. Searching by interval halving
yields a point on the contour, and this point is added to our list of contour '

points.

At the completion of the second pass we have a list of points at the
altitude h., Obviously an empty list means that no contour at that altitude
could be found. The next step is to reconstruct contours with this non-empty

list of points.
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We generate the contours by connecting the points in a meaningful

manner, A simplified description of the algorithm used is given below.

l. To begin, a point is obtained from the previously generated

list as a starting point for a new contour,

2. Then this starting point is connected to the point in the
list which is geometrically closest to it in the two-dimensional plane, but
not exceeding a pre~set maximum distance. The reason that we consider only
those points within a maximum distance is that far away points most likely
belong to a different contour curve, though on the same altitude. (This
would be the case, for instance, if the three-dimensional function is bi=-
modal.) If we run out of points at this point, we are done. I|f we fail to
find a point sufficiently close to connect to, we revert to Step 1 to start
a new contour,

3. After two points havé been connected on the current contour,
we modify our criterion for selecting points to connect to. Let us pause for
a while and examine the situation in Figure A5. There we have just connected
the contour from A to B. At point B we have to choose between C and D as the
next point to connect to. Point D is closer than point C, but going from B
to D involves a greater directional change, as measured by 509 in the figure.
Assuming our contour to be a smooth curve with minimal zig-zagging, we may
want to connect to point C instead. In order to accomplish this aim, the

criterion function for selecting the next point is modified to be
AS + B » Ael

where
AS is distance to candidate point (e.g., the length BC)
20 is the directional change (e.g., 46;)

B is the weighting factor to be selected by trial and error to
yield acceptable results for types of curves under consideration

With this modified "'distance' criterion, we always select a point
with the smallest criterion function., As before, only those points which

lie within a sufficiently small distance will be considered. Before
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connecting to the point selected, it is compared with the starting point
(obtained in Step 1), if the starting point is close enough. Between the
two, the one with the smaller criterion function is the next point to connect
to. This provision allows us to close the contour curve when we reapproach
the starting point,

/
‘O: — -— e
A B~ Ff 48;
B

/ ;
starting point

Figure A%, Selection of Candidate Points for Next Point on Contour.

L, Whenever the contour is closed by reconnecting to the

starting point, we revert to Step | to start a new contour.

5. |If in Step 3 we could not find a point close enough to
connect to, we have an open curve. (An open curve can occur, for instance,
when part of the composite detection field lies outside the frame represent-
ing the situation geography boundaries. Examples can be readily seen in
Appendix F.) In this case we return to the starting point for the current
contour and search for another point close to the starting point to connect
to, by reverting to Step 2. For each open contour this procedure of revert-
ing to the starting point will be carried out only once. When nothing can
be done to close the contour, we assume it is an open curve, and we go back
to Step 1.

6. Note that in any step a point already connected to will no

longer be considered. The algorithm stops when we are out of points.

Figure A6 provides a more detailed representation of the algorithm.
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from list of points (stored in
arrays X,Y) on same altitude,
pick a point with pointer {FST
as starting point

T

set IBACK = 0 to flag first
time (X(IFST), Y(IFST)) is used
as starting point

{

start contour at starting point
(X(IFST), Y(IFST))

Y

ICNT = 0 (initialize counter
for number of points already
connected to for current

contour)
¥

ILST = IFST (get pointer to
last point connected to)

Figure A6.

|

list
: of points
xhausted
A 4
- IFOUND = 0 (flag is

zero if next point
on current contour

not yet found)

X=X(1FST) = X(ILST)
Y=Y (IFST) - Y(ILST)
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Figure A6. (Continued).
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APPENDIX B: NONLINEAR PROGRAMMING OPTIMAL PATH SOLUTION

The method chosen for the nonlinear programming optimization was
developed and proposed by H.H. Rosenbrock (Reference 3). It is an attractive
method to use for this application because it does not require the calculation
of derivatives. It is fairly efficient in the number of function evaluations
needed while at the same time being able to handle a wide variety of function

types.

The derivative-free characteristic is necessary in this application
due to the nature of the function being optimized, the utility function in
this case. The function is not explicitly expressed in the varijables that
are being controlled. The utility is a direct function of performance
measures (e.g., penetration ratio) and cost. The control variables on the
other hand include sensor types, number of sensors and location. Once these
are specified the simulator (NIBS) calculates the performance figures to be
used in the evaluation of this utility function. The derivatives of such a
function clearly cannot be analytically obtained. This fact eliminated from
consideration all the optimization methods which require derivative calcula-

tions (conjugate gradient, Newtons, Fletcher-Powell, etc.).

A number of derivative-free methods exist. These include Rosenbrock's,
the simplex method of Himsworth, Spendley and Hext, Smith's method based on
a conjugate direction, and of course, simple univariate search (Reference 4).
Any of these might be suitable for the job. Rosenbrock's method was chosen
because it had the added flexibility of allowing the introduction of constraints

on the controlled variables. These functions could be defined separately from

the utility function that would control the region through which search was
permitted. Although constrained optimization is not a requirement, it was
felt that it might be needed depending on the global behavior of the utility
function. This added flexibility was deemed sufficient cause to select
Rosenbrock's method as the candidate optimization scheme.
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Rosenbrock's method is an extension of the univariate search method.
In univariate search the minimum of a function u(z],xz,...,zn) is found
by searching along each of the x; directions in turn. After reducing
u aé‘%ar as possible with each variable, the procedure moves on to the next
variable in a cyclical fashion. This method can bog down on elongated func-
tions with deep troughs. This is because the search directions are fixed
and do not change as a result of progress through the function. The method
developed by Rosenbrock is meant to eliminate this fault without adding a
great deal of complexity or the need for derivative calculations. The
method basically consists of finding two factors: (1) Length of Step and
(2) Direction of Step. Using these two factors according to the algorithm
proposed by Rosenbrock, function minimization can be accomplished.in an

efficient manner on a wide variety of function types.

The simplest problem is to decide the length of step to be taken in
the desired direction, assuming this direction to be known. The principle
adopted is to try a step of arbitrary length e. If this succeeds, e is
multiplied by a>1. |If it fails, e is multiplied by —B where 0<g < 1.
"'Success'' here is defined to mean that the new value of u is less than or
equal to the old value for a minimization problem. Thus if e is initially
so small that it makes no change in u, it is increased-on the next attempt.

Each such attempt is called a "trial."

The remaining factor is to decide when and how to change the direc-
tions £ in which the steps are taken. The method uses n orthogonal directions
E)s €25 ooy Ey. One trial of the univariate type is made in each of the n
directions in turn. This is done until at least one trial is successful in
each direction, and one has failed in each direction. It will be noticed
that a trial must in the end succeed because e becomes so small after repeated
failures that it causes no change in u. The set.of trials made with one set
of directions, and the subsequent change of these directions, is called a
V'stage.'
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The method chosen for finding the new directions of £ was the follow=
ing. Suppose that d' is the algebraic sum of the lengths of all the success=-
ful steps e, in the direction g, etc. Then let

1

4 = d,s? + dzag ool * dngg

0 0
4, = dobs * ... .2,

—~—

(8.1)

4y = B

Thus 4} is the vector joining the initial and final points obtained by use

of the vectors E?, 52, olelaty Eg, A, is the sum of all the advances made in
directions other than the first, etc.

Orthogonal unit vectors 6}, E;, el E;, are now obtained in the
following way:
= 3
B 4

oy
— —
[}

By/|B|
1.1
By = 4y - 4)°8&,

B,/ |B,| (B.2)
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(ol
N
]

/

No ambiguity is likely to arise, since the method used ensures that no d can
be zero. It is of course possible that one or more of the d are so small
that they are lost in the summations of equations (B.1), but this is unlikely
in practice. The result of applying equations (B.b) and (B.Z) several times is
to ensure that £; lies along the direction of fastest advance, ) along the
best direction which can be found normal to €y, and so on.

The numerical work of developing th's process was carried out to
determine appropriate values for a and B. In addition, tests were run on a
variety of functions in comparison with other available methods. As a
result of testing Rosenbrock selected the values a = 3, B = 0.5 for use in

his method. Using these values he found that his method was not significantly
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slower than the available alternatives in simple problems. In difficult
problems he claims it may be a good deal faster. It is well adapted to
automatic calculation, and is not easily upset by minor irregularities such
as occur in asymmetrical ridges. The method permits the introduction of
constraints into the minimization problem,
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APPENDIX C: DYNAMIC PROGRAMMING OPTIMAL PATH SOLUTION

The experiment required best (or "answer') air strike paths (in the
sense of optimal with respect to the utility function) in order to evaluate
the operator estimates of optimal paths. Dynamic programming was selected
as a convenient tool for obtaining solutions to this optimization problem.
Specifically, a grid-oriented dynazuic programming method was selected for

the optimal solutions; its adaptation to the study is explained below.

1. Background

A detection rate field is generated by sensor performance models, and
the task is to transit this field arriving at a target from a given starting
point in such a way that the utility criterion function is maximized. Recall

that the utility criterion function is a function of fuel remaining upon

arrival at the target and the probability of being detected along a path.

The following restrictions were used to simplify the optimization

problem.

1. The entire region of interest is put on a 16 x 16 quadruled grid

so that all possible trajectories go through the grid points. Each grid point

is also called a node.

2. Transitions are allowed only from a grid point to one of its immed- ,
itately neighboring grid points. In other words, only cardinal and diagonal
transitions are allowed, as shown in Figure C1. The ''legal' transitions are
numbered from 1 to 8. |

3. For each transition, only one of three pre-selected velocities is
allowed.

4. The problem then is, given two nodes A and B, to find both a path
that transits through the grid points from A to B and its component velocities
such that the utility criterion function associated with the path is maximized.
For convenience call B the target and A the base.
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Figure C}. Allowable Air Strike Path Transitions.

This problem can be put in a form for sciution by dynamic programming.
Let us define a sequential decision making process by the following system:

} The state of the system at stage k (k =1, 2, 3, ...) is given by

| Xe = (i, 3, v, Pe, F) (c.1)
i where ;
(i, j) are the coordinates of the node we are currently at

v is the velocity for the transition ending at node (i, j)

¢ s the cumulative probability of not being detected by the

sensor field for optimal path starting at i, j) and ending
| at B

] F is the total fuel consumption for optimal path starting at
i (i, j) and ending at the target B

The decision Dk to be made at stage k is one of the eight allowable
transitions defined previously and the velocity for the selected transition.
Let r(xk, Dk) be the return (or utility) associated with the state Xy
decision Dk at stage k. Also let g be the criterion function for the

and

returns from a sequence of stages.
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Since an optimal path going from A to B is an optimal path going
from B to A and vice versa, we will formulate the problem in the following

manner:

Starting with the system at state X; corresponding to node B (target)
we want to find a sequence of decisions (paths and velocities Dy, D2, ..., Dy
for some positive number N such that Dy, D7, ..., Dy takes the system to some
state Xy corresponding to node A (base). In addition, the criterion function
g [r(XN, DN), r(XN=1, DN=1), «-., F(X], D1)] is to be maximized over all possible
sequences of decisions (paths and velocities) going from B to A. This deci-
sion sequence D}, D2, ..., DN defines an optimal path from B to A and is an
optimal path from A to B.

If the criterion function g is separable and monotonic, (Reference 7),

it can be decomposed into gy and g, in the following manner.

max fstrtn. 0.3, rix e B0 oony flE, o])]}
O Bpugsy wecy By - (c.2)
= max g][r(xk’ Dk)’ max gZ(r(xk-l’ Dk’l)' eoey r(x]: Dl))]
0, Dy o0 Oy

Using dynamic programming, we can solve the above recursive equation
by backward recursion. We start at X and select a decision sequence D}, D2,
«++y Dy, oOne stage at a time, that maximizes g. At state Xy the optimal path
is given by D], Dz, cwoy DN'

We would carry out as many stages as necessary in order to include
all grid points in our soiution. What this means is that regardless of which
point we later choose as the base, we can retrieve from our solution an opti-
mal path going from base to target.

The return function r in Eq. (C.2) is related to the utility function by

P r(Xys Op) = U(F, (1 - Pc)) (c.3)

Xm = (ims Jms» Tm» Pcm: Fm) as defined in Eq. ({C1) and U is as defined
in Eq. (1) in Section 11.C.2.
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Since in Eq. (C.2) we are trying to maximize r(xk, Dk)=|J(Fk, (1-Pgy))
at node (ik, jk), the criterion function g is a 1St projection function. It
follows that the function g‘ is also a 15t projection function and we can arbi-
trarily define the function 9, However, the validity of the decomposition
in Eq. (C.2) hinges on g being separable and monotonic. The criterion function
g being a 15t projection function implies that it is separable. Unfortunately,
though it is not obvious at first, a few sample calculations show that g is not
monotonic. In spite of this fact, by using Eq. (C.2) and applying dynamic pro-
gramming, we still arrived at an optimal answer in most of the cases we tried.
When the solution was not optimal, it was very nearly optimal. We decided
to retain the utility function and the dynamic programming optimization pro-
cedure due to time limitations to get the experiment under way. The experi-
mental results support our belief that meaningful data could still be obtained,
even though strictly speaking, our utility function may not (under certain

conditions) be optimizable by dynamic programming.

2. Description of the Algorithm

We have just discussed the mathematical description of our optimal
path problem. Now we desire a procedure for arriving at a solution. Let us -
go back to the grid we have laid over the entire region of interest. Picture
our target B (destination) as being located on a grid point. Our problem then
becomes, if we pick a starting point A (base), how to find an optimal path
going to B. Using the dynamic programming approach, we would solve for an
optimal path for each starting point on the grid.

Basically the method involves backward recursion, where we start at
the target B and solve for optimal paths for all the immediate neighboring
points of B that have allowable transitions into B. Then we go to the next
layer of neighboring points and find their optimal paths. We propagate in
this manner by going to successive layers of points until all points in the
region are covered. This is a multiple pass method because we will reiterate

until a solution is converged to. However, for practical reasons we will

*
In general, the ith projection function f‘ is defined as

fl(yl’ er Y3, e Yi, $ore ) yi
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stop after the tenth iteration even if convergence has not occurred. Our

experience shows us that after ten iterations the solution is near optimal.

A simplified flowchart describing this method is given in Figure C2.
We start at the target B and define the first layer of points surrounding
the target to be thcse points from which the target can be reached in one
transition (see Figure C3). For each point in this layer we find an optimal
path to the target by examining the neighbors of this point and selecting
a neighbor and a transition velocity such that a transition thereto yields
an optimal path. When we are done we proceed to the second layer of points
surrounding the target. This is the set of outside points from which the
first layer can be reached in one transition. For each point in the second
layer (for example, see point C in Figure C4), we again select a neighbor
and a transition velocity such that the transition thereto, plus the already
found optimal path for that neighbor, constitutes an optimal path for the
point. Then we go to the third layer of points around the target, and so
on until the entire region is covered by our layers. This is the completion
of a pass, and at this point we check to see if we have defined any new
optimal path during the pass. |If so, we go back to the first layer of points
to start another pass. We would have converged to a solution if no change

was made to the optimal paths during a pass.

To retrieve .an optimal path, we go to a grid point corresponding to
the start of the air strike, and obtain an optimal transition and velocity.
This information tells us which grid point is the next point on our optimal
path. Then we go to this next grid point and again obtain an optimal tran-
sition and velocity. By repeating this process, the successive transitions
and veloci;ies so obtained define an optimal path and we stop when we have

arrived at the target.
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Figure C2. Flowchart for Dynamic Programming Procedure.
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Figure C3. Layers of Points Around Target (B).

Figure C4, Potential Optimal Nodes. (From point C, we are to decide
which of the filled-in nodes is to be on its optimal path
to B. An arrow indicates a candidate transition.)
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APPENDIX D
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I. INTRODUCTION

Integrated Sciénces Corporation is conducting a study for the Office
of Naval Research that investigatés ways to allocate functions between humans
and computers so that their respective strengths are best used. The portion
of the study in which you are participating seeks to determine to what extent,
if any, a human operator can aid and thus improve the performance of selected
optimization techniques when applied to a naval tactical decision aiding
problem. We call this “operator-aided optimization,'" or OAO0 for short. The
optimization technique you will be working with is nonlinear programming
optimization. Don't worry if you are unfamiliar with this technique. Even
if you have never heard of it, you will learn enough about its characteristics

during the training phase to enable you to perform well on the experiment.

Your role in the experiment is to act as the member of a Naval Task
Force Commander's (TFC's) staff who is planning a tactical airstrike against
the airfield on a place called OMRODA island. Your Naval Task Force consists
of aircraft carriers, their squadrons of aircraft, and escort ships. They,
are located approximately at the point marked with an X in Figure DI. About
ten enemy ships are located in a region betwzen your Task Force and ONRODA.
Important parts of air strike planning are (a) deciding the path that the
aircraft will take to get to the target and (b) strike aircraft speeds along

the legs of the path. As air strike planner, you must be concerned about
these two factors:

1. The prbbability that aircraft will be detected before they
reach the target. |If they are detected before reaching the target, the
enemy will be at maximum readiness to repel the air strike. The enemy ships
between your Task Force and ONRODA have radar that could detect your aircraft.
However, the enemy ships have no interceptor.aircraft nor do they have guns

or missiles that would be effective against your aircraft.




ONRODA
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YOUR TASK FORCE

Figure DlI. Map of Area of Interest.
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2. Amount of fuel left aboard your aircraft when they reach
the target. It is desirable to maximize the fuel left in order to engage
or avoid enemy interceptor aircraft over the target or to attack secondary
targets once the primary target, ONRODA airfield, has bea2n destroy=d. Your
job is to help the computer comé up with the best airstrike plan between the

task force and the target within a specified time limit.

The best air strike plan minimizes the probability of the aircraft
being detected by the radars and, at the same time, leaves maximum fuel
remaining upon arrival at the target so that enemy fighter aircraft can be

engaged or evaded.

The purpose of this material is to acquaint you with the:
1. Detection ability of multiple enemy radars when there is
overlapping detection coverage between radars in proximity
to each other :

2. Means of measuring the goodness of an air strike plan

3. Characteristics of the dynamic programming optimization
technique.

The training goals are to:
1. Develop expertise in using the equipment
2. Develop a feel fcor tha best way to help the computerized

the
technique find the bast air strike paths and speeds.

In training you Qill do eight problems with the optimization tech-
nique. Experimental data collection will then be done for twelve problems.

Thus, you will do a total of 20 problems. Each problem will last 15 minutes.
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A. REPRESENTATION OF ENEMY RADAR DETECTION CAPABILITY

The capability of a single enemy radar to detect your aircraft is
represented by concentric circles around the radar location. Detection
capability is the same at all points on each circle and is a specified per-
centage of the peak detection capability of the radar. (See Figure D2.)
Notice that as you go along a radial line toward the center of the concen-
tric circles, detection capability increases up to the 90% of the peak level.
The peak occurs between the two 90% circles and detection capability decreases
from the peak as you get closer to the radar location. Thus detection capa-
bility may be visualized in three dimensions as a volcano with a rim and a
crater in the center of the volcano. The ''Detection volcano' is centered on

the radar's position.

When several radars have overlagping coverage as shown in Figure D3,
tha probability of detecting your aircraft at a point within areas of overlap
is higher than it would be at that same point if only one radar could detect
at that point. Thus there is a joint cdastection capability throughout areas
of overlap. The points where joint probabilities of detection are equal are
connacted together to form contours as shown in Figure D4. The contours have
the same general mezaning as the concentric circles in Figure D2, that is, each
contour is the set of points where Jdetection capability is some specified
percentage of the peak joint detecticn capability. The set of contours is
analogous to a topographical map. The difference is that each contour on a
topographical map corresponds to an altitude above sea level and each detec-
tion capability contour corresponds to a detection capability between zero

capability and the peak capability.

B. MEASURING THE GOODNESS OF AN AIR STRIKE PATH: THE UTILITY FUNCTION

The problem is to select an optimal air strike path, so an appropriate
utility criterion function is one which measures the ''goodness' of an air
strike path. The two variables selected to determine the goodness of an air

strike path were fuel consumption along the path and probability of being
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Figure D2. Single Sensor Coverage Template. (Circles show
distance from sensor location, center, at which
percentage values of the peak detection rate occur.)
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Display with all Sensor Coverage Templates Shown.

Figure D3.
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Figure D4. Contours Showing Joint Probabilities of Detection for
Four Radars Located at Positions Marked with a Cross (+).
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detected by one or more enemy radars prior to reaching the target. The

utility criterion function incorporates a tradeoff between minimizing the
orobability of being detected by enamy radars on one hand and maximizing the

fuel remaining upon arrival at the target on the other.

The utility function takes on any value between 0 and 1, with higher
utility values corresponding to "better' paths. A family of parameterized
curvés from the utility function is shown in Figuré D5. The figure shows
that as the probability of béing detected by enemy sensors decreases, the
utility value goes up. Also, if the probability remains constant, the util-
ity value increases as fﬁel consumption drops. It is obvious why it is
desirable to minimize the probability of being detected by enemy sensors.
The rationale for encouraging fuel preservation is that if detection occurs
at any time up to arrival at the target, there should be as much fuel left

as possible in order to do some flight maneuvering to try to return safely.

In general the two goals of minimizing fuel consumption and minimiz-
ing the probability of being detected are incompatible. A nontrivial optimal

air strike path thus requires a reasonzble compromise between the two goals.

C. CHARACTERISTICS OF THE NONLINEAR PROGRAMMING OPTIMIZATION TECHNIQUE USED
IN THE EXPERIMENT -

The setup for thes nonlinear pregrawming technique includes the start-
ing "point'" or first trial solution. In ths air strike problem, the starting
"point'" is (a) five path legs connecting the air strike launch point and the
target and (b) speeds for each leg. The legs are specified by picking four
"wiay points'' between the launch point and target. Speeds are selected from
a range of 250 to 1000 knots. After the start point has been specified, the
NP technique operates to find a better combination of way points and speeds.
It does this by exploring changes in the location of each way point and the
speed for each leg. Each exploration involves a single way point or a single
speed. Therefore, improvement in the air strike path takes place slowly
over many explorations, i.e., trials. An advantage of NP is that it considers
all the points in a geographical region instead of just a set of grid points
and all speeds instead of just a few. A disadvantage is that the ''solution"
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Figure D5. Family of Parameterized Utility Function Curves.
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will be best for the region explored but that better solutions may exist in
unexplored regions and the NP techniqua is unable to direct itself to look
in these unaxplored regions. |In optiinization jargon, NP may find a local

optimum but not the global optimum.

D. OPERATION OF THE NOMNLINEAR PROGRAMMING OPTIM!ZATION

At the beginning of a prob!eh the display will appear as shown in
Figure D6. The path from launch point to target is a straight line with way
points indicated at 1/5, 2/5, 3/5, and 4/5 of the straight line distance.
Speed for each leg is initially set by the program at 600 knots as indicated
on the plot at the left in Figure D6. The subject uses the appropriate buttons
on the function button box (see Figure D7) and the joystick to change the posi-
tion of the four way points. He uses the appropriate function buttons and

the keyboard to change speed on any leg.

The subject's purpose is to direct the NP technique to investigate
as many reasonable potential solution regions as possible in 15 minutes.
As soon as the problem is shown on the display, the subject must decide what
region he wants to explore first. Hz is to pick the region that he thinks
is most likely to contain the best soiuticn. He then changes the locations
of the way points and speeds prior to starting the NP algorithm. At the
beginning of the probism-the thres Sutions designated as ''Evaluate/Halt,"
'"Change Velocity," and ''Move Way Poiat’ arz lighted on the box. In order to
move a way point, push that button. When this is done the four buttons
marked 1, 2, 3, and 4 will become lighted. Then push the button correspond-
ing to the point to be moved, i.e., 1, 2, 3, or 4. Way point 1 being that
closest to the beginning of the strike path and 4 being nearest the end
(ONRODA Island). Moving the way point is accomplished with the joy stick.
When a single way point is changed, a second way point can be changed by
pressing '"Move Way Point' and the appropriate number of the way point. The
act of pressing '""Move Way Point' records the position of the last way point

that was changed.

To change a speed on one of the five legs, push "Change Velocity."

The five buttons marked 1, 2, 3, 4, and 5 will light. Leg 1 refers to the
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leg closest to the path beginning point and leg 5 refers to the path closest
to the end point (ONRODA 1sland). Then push the button corresponding to the
Y2g for which you want to change spzed ard: -

1. Use the teletype keyboard to input the speed you want used

on the selected leg. Put a.decimal point at the end of the
number. (This is essential.)

2.  Push the teletype key marked ''CR."
Thus, if you wanted to change the speed on leg 3 to 850 knots, you would:

. Press function button ''Change Velocity"

Press function button "3
. Press telétypé.key Hay
Press teletype key ''Q"
Press teletype key '0Q"

Press teletype key "1

\IO’\U"I;:‘WN—'

. Press teletype key "CR"

When you have changed all the way points and speeds to those you
want, then press the function button marked "Evaluate/Halt." The NP algorithm
will begin to operate, i.e., '"'Evaiuate,'" using your starting point consisting
of the four way points and five speeds. Once the algorithm has begun operat-
ing, only the "Evaluate/Halt' button will remain lighted and the only control

at the operator's disposal is to halt cperation by pushing this button.

The primary indicators that the operator uses to decide to halt the
algorithm are the displays of the number of function evaluations and the
utility of the latest trial solution. In general, a plot of utility versus
function evaluations would appear as shown in Figure D8. The subject should
stop the algorithm when it reaches the point shown in Figure DB because there
will be little more utility to be gained by letting the algorithm continue.
He should then input a new set of way points and speeds and start the algo-

rithm again.
As the algorithm operates you will note variable length arrows
appearing briefly at each way point. These represent potential changes in

the location of a way point being considered by the algorithm. When utility
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Figure D8. Typical Plot of Utility Versus Function Evaluations.
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levels off, the magnitudes of changes in the following will also become small:

1. Value of "Prob," i.e., the probability that the air strike
will be detected prior to arrival at the target.

2. Value of "Fuel," ji.e., the fuel that will be consumad for

the latest trial solution.
3. Speed changes indicated on the speed/leg graph.

4. Lengths of arrows appearing at each way point.

While the algorithm is operating on the first set of way points and
speeds input by the operator, hé should count the number of regions that
could reasonably be expected to contain the best path. Dividing 15 minutes
by the number of regions to be explored indicates approximately the number
of minutes the operator should devote to each region. Depending on the prob-

lem, there will be enough time to explore 3, 4, or 5 regions.

At the end of 15 minutes the computer will have stored:

1. The utility of the path comprised of the first way points
and leg speeds.

2. The utility of each best-solution-to-date at the end of

each minute.

These are the data that will be used in the analysis of operator generated
data.

E. GUIDELINES
There are two types of data being analyzed:

1. Utility of the path comprised of the first way points and
leg speeds. Thus the operator's first goal is to do the best he can
on this.

2. Operator performance will be calculated at the end of
each trial by adding the 15 utilities of the best-solution-to-date at the
end of each minute and dividing this sum by 15. Thus, operator performance
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for the entire trial is the average of the 15 utilities. The operator's
second goal is to maximize this average. In general this is done by
explaring the regions which could contain the best path in the order of
estimated likelihood that each contains the best path. This is compatible
with the operator's first goal because, if the operator is correct con-
cerning the region which contains the best path, then the average utility
will be nearly equal to the utility of the best path, This is true because
the computer only stores the best utility to date and will therefore not
stare the utilities of paths investigated after the first when the first
region explored contains the best path.

Other general rules to be used with the NP technique are:

1. Those portions of a path that are completely outside the

detection contour should be transited at low speeds.

2. Those portions of a path that traverse a high detection
probability contour should be transited at high speeds. |In particular, the
last leg of the path to the target should be transited at high speed since
it must pass through the high detection region around ONRODA airport.

3. Paths should be drawn to pass through low detection proba-
bility regions. However, a completely roundabout path that avoids detection

contours completely is not a sure winner because long paths use a lot of fuel.

4. When locating NP way points and the path will cross from
outside the lowest detection probability contour to inside it, place one way
point just outside the contour. |If the path is crossing from inside the
lowest detection contour to outside it, place a way point just inside the

contour. These tactics will save computer time.
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This is how the display appears at the beginning of the problem. Five
potential best paths are shown as dot-dash-dot lines.

Figure D9. First Plate, Example Problem.
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The operator chose to explore paths from right to left. It would have been
better to have configured the path so that the last leg began just outside
the contours around ONRODA. The previous starting path remains on the
display as a dot-dash-dot line.

Figure D10. Second Plate, Example Problem.
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The operator stopped the algorithm at the end of 86 evaluations in order to
get this picture. Note that the solution moved the first way point down

in order to get away from the contours above the point.

Figure DI1. Third Plate, Example Problem.
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The operator restarts the algorithm without making any changes.

RO = .09
54 . = 8502.8
UTILIT? = S6.A2
PEST UTILITY TO DATE = 95,62
At the end

of another 52 evaluations (138 total), the operator stops the algorithm
because (a) the step sizes being considered are very small and therefore
the possible utility improvements will also be small, and (b) the utility
hasn't increased very much in the last 25 or so evaluations.

Figure DI12.

Fourth Plate, Example Problem.
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The operator puts the third and fourth way points in an illogical combination
of places and makes small adjustments to the other two way points. The
point will be to see what the algorithm does.

Figure DI13. Fifth Plate, Example Problem.
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At the end of only 17 evaluations not much has happened.

Figure D14, Sixth Plate, Example Problem.
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At the end of 163 evaluations the algorithm has found its way over to a
much better position for the third way point but the utility is not as good
at 163 evaluations (53.83) as it was at 140 evaluations with the earlier,
better selection of way points (56.62 for the starting path of Figure D10).

Figure D15. Seventh Plate, Example Problem.
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The operator selects a new set of way points and the algorithm begins to
explore around these. Again, he should have placed the last way point
closer to ONRODA.

Figure D16. Eighth Plate, Example Problem.
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At the end of 92 evaluations the operator stops the algorithm. Note that
the algorithm has moved the last way point much closer to ONRODA and has
greatly increased the speed for the last leg.

Figure DI7. Ninth Plate, Example Problem.
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The operator has already selected way points for the third path to be
Utility is 59.90 at the end of four evaluations,
He has decided to chénge the

explored by the algorithm.
and then the operator stops the algorithm.
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speed on a particular leg and accordingly pushed the ''Change Speed'' function

button.

Figure D18. Tenth Plate, Example Problem.

The prompt ''Choose Leg'' then appears at the top of the display.
Then he pushes the function button corresponding to the desired leg.
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Immediately the prompt ''"Velocity = ! appears at the top of the display.

Figure D19. Eleventh Plate, Example Problem.
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Ti.e operator then types ''700. CR ' and 700 appears at the top of the display.
The operator restarts the algorithm.

Figure D20. Twelfth Plate, Example Problem.
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The operator stops the algorithm at the end of 176 evaluations. Note again
that the algorithm has moved the last way point much closer to ONRODA.
(Disregard time shown under ''MINS' from this figure on.)

Figure D21. Thirteenth Plate, Example Problem.
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The operator has selected way points for exploring the fourth path and

started the algorithm.

Figure D22.

At the end of 16 evaluations the utility is 56.

Fourteenth Plate, Example Problem.

-128-

-
(e

-
3

r‘;: t:
WO

e
o

BN




FUNCTION EV e - 105 4
BEST UTILITY 1O PATE . 7545

The operator stops the algorithm after 169 evaluations. Again, note that
the algorithm moved the last way point closer to ONRODA. Utility is
competitive with the utility for the first path explored (58.72 versus 56.62)
but is significantly lower than the utilities achieved for the second and
third paths explored (58.72 versus 73.73 and 67.37).

Figure D23. Fifteenth Plate, Example Problem.
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The operator resets the way points to explore the fifth path.
of three evaluations the utility is 36.45.

Figure D24. Sixteenth Plate, Example Problem.
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The operator stops the algorithm at the end of 189 evaluations. Note that
the algorithm moved the last way point closer to ONRODA. Also, note that
the first way point was moved down to get away from the contours above the
starting point.

Figure D25. Seventeenth Plate, Example Problem.
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The operator chooses a very poor set of way points going through high
detection capability contours.

Figure D26. Eighteenth Plate, Example Problem.
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At the end of 211 evaluations the algorithm found its way over to the vicinity
of the fourth path evaluated. But, clearly, it would never have found its
way to the best path found by the operator interacting with the algorithm.

Figure D27. Nineteenth Plate, Example Problem.
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TRAINING MATERIALS FOR OAO USING DYNAMIC PROGRAMMING ALGORITHM
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l. |INTRODUCTION

Integrated Sciences Corporation is conducting a study for the Office
of Naval Research that investigates ways to allocate functions between humans
and compﬁters so that their respective strengths are best used. The portion
of the study in which you are participating seeks to determine to what extent,
if any, a human operator can aid and thus improve the performance of selected
optimization techniques when applied to a naval tactical decision aiding
problem. We call this "operator-aided optimization,'" or 0AO for short. The
optimization technique you will be working with is dynamic programming
optimization. Don't worry if you are unfamiliar with this technique. Even
if you have never heard of it, you will learn enough about its characteristics

during the training phase to enable you to perform well on the experiment.

Your role in the experiment is to act as the member of a Naval Task
Force Commander's (TFC's) staff who is planning a tactical airstrike against
the airfield on a place called ONRODA Island. Your Naval Task Force consists
of aircraft carriers, their squadrons of aircraft, and escort ships. They
are located approximately at the point marked with an X in Figure El. About
ten enemy ships are located in a regicn between your Task Force and ONRODA.
Important parts of air strike planniag are (a) deciding the path that the
aircraft will take to get to the targst and (b) strike aircraft speeds along

the legs of the path. As air strike planner, you must be concerned about
these two factors:

1. The probability that aircraft will be detected before they
reach the target. |[f they are detected before reaching the target, the
enemy will be at maximum readiness to repel the air strike. The enemy ships
between your Task Force and ONRODA have radar that could detect your aircraft.
However, the enemy ships have no interceptor aircraft nor do they have guns

or missiles that would be effective against your aircraft.
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Figure E1. Map of Area of Interest.
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2. Amount of fuel left aboard your aircraft when they reach
the target. |t is desirable to maximize the fuel left in order to engage
or avoid enemy intercepior aircraft over the targat or to attack secondary
targets once the primary target, ONRODA airfie)d, has been destroyed. Your
job is to help the computer comé up with the best airstrike plan between the

task force and the target within a specified time limit.

The best air strike plan minimizes the probability of the aircraft
being detected by the radars and, at the same time, leaves maximum fuel
remaining upon arrival at the target so that enemy fighter aircraft can be

engaged or evaded.

The purpose of this material is to acquaint you with the:
1. Detection ability of multiple enemy radars when there is
overlapping detection coverage between radars in proximity
to each other

2. Means of measuring the goodness of an air strike plan

3. Characteristics of the dynamic programming optimization
technique.

The training goals are to:
1. Develop expertise in using the equipment
2. Develop a feel for ths best way to help the computerized

technique find the best air strike paths and speeds.

In training you will do eight problems with the optimization tech-
nique. Experimental data collection will then be done for twelve problems.

Thus, you will do a total of 20 problems. Each problem will last 15 minutes.
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A. REPRESENTATION OF ENEMY RADAR DETECTIOM CAPABILITY

The capability of a single enemy radar to detect your aircraft is
represented by concentric circles around the radar location. Detection
capability is the same at all points on each circle and is a specified per-
centage of the peak detection capability of the radar. (See Figure E2.)
Notice that as you go along a radial line toward the center of the concen-
tric circles, detection capability increases up to the 90% of the peak level.
The peak occurs between the two 90% circles and detection capability decreases
from the peak as you get closer to the radar location. Thus detection capa-
bility may be visualized in three dimensions as a volcano with a rim and a
crater in the center of the volcano. The ''Detection volcano' is centered on

the radar's position.

When several radars have overlapping coverage. as shown in Figure E3,
the probability of detecting your aircraft at a point within areas of overlap
is higher than it would be at that sames point if only one radar could detect
at that point. Thus there is a joint datection capability throughout areas
of overlap. The points where joint probabilities of detection are equal are
connected together to form contours as shown in Figure E4. The contours have
the same general meaning as the concentric circles in Figure E2, that is, each
contour is the set of points where detection capability is some specified
percentage of the peak joint detection capability. The set of contours is
analogous to a topographical map. The difference is that each contour on a
topographical map corresponds to an altitude above sea level and each detec-
tion capability contour corresponds to a detection capability between zero

capability and the peak capability.

B. MEASURING THE GOODNESS OF AN AIR STRIKE PATH: THE UTILITY FUNCTION

The problem is to select an optimal air strike path, so an appropriate
utility criterion function is one which measures the ''goodness' of an air
strike path. The two variables selected to determine the goodness of an air

strike path were fuel consumption along the path and probability of being
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Figure E2.

Single Sensor Coverage Template. (Circles show
distance from sensor location, center, at which
percentage values of the peak detection rate occur.)
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Figure E4. Contours Showing Joint Probabilities of Detection for
Four Radars Located at Positions Marked with a Cross (+).
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detected by one or more enemy radars prior to reaching the target. The
utility criterion function incorporates a tradeoff between minimizing the
probability of being detected by enemy radars on one hand and maximizing the

fuel remaining upon arrival at the target on the other. ]

The utility function takés on any value between 0 and 1, with higher
utility values corresponding to ''better' paths. A family of parameterized
curves from the utility function is shown in Figure E5. The figure shows
that as the probability of being detected by enemy sensors decreases, the
utility value goes up. Also, if the probability remains constant, the util-

ity value increases as fuel consumption drops. It is obvious why it is

desirable to minimize the probability of being detected by enemy sensors.
The rationale for encouraging fuel preservation is that if detection occurs
at any time up to arrival at the target, there should be as much fuel left

as possible in order to do some flight maneuvering to try to return safely.

In general the two goals of minimizing fuel consumption and minimiz-
ing the probability of being detected are incompatible. A nontrivial optimal

air strike path thus requires a reasonzble compromise between the two goals.

C. CHARACTERISTICS OF THZ DYNAMIC PROGRAMMING OPTIMIZATION TECHNIQUE USED
IN THE EXPERIMENT

A dynamic programming (DP) optimization technique is used in the
experiment. The "setup' for using the dynamic programming technique includes
a grid network of evenly spaced points and a choice of three aircraft speed
levels, namely, low, medium, or high. The DP technique specifies the best
path by connecting points on the grid between air strike launch point and
target and specifying one of the three speeds for each path leg between two
connected points. The advantage of DP is that it does find the best path
for the grid and speed levels it is using. The disadvantage of DP is that it

takes a long time (even with the computer doing the number crunching) to
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reach a solution. For example if the grid has 81 points (nine by nine) and
there are three speed levels, the time to reach a solution may be four minutes.
This occurs bzcause DP invastigates evary 2llowable solution and thea picks
the best. |If the grid size has finer resolution, e.g., 18 x 18 or 36 x 36,
or the number of allowable speeds is larger than three, then solution time

increases greatly.

D. OPERATION OF THE DYNAMIC PROGRAMMING OPTIMIZATION PROGRAM

The display appears as shown in Figure E6 at the beginning of a prob-
lem to be solved with the DP algorithm. The operator uses the function button
box (see Figure E7) and the track ball to tell the program what to consider

when it works on the problem. Operator inputs include:

1. A boundary drawn around a region. The algorithm confines

its search for a solution to this regioa.

2. The grid size to be ussd by the algorithm, that is, 9 x 9,
18 x 18, or 36 x 36.

3. Speeds that the algorithm is not to consider when searching

for a solution.

In most cases, the algorithm finds a trial path considering the operator in-
puts, displays this path and its utility, and stops. (The exception is
covered below.) It doss not start again until the operator has completed a
new set of inputs or tells the algorith= to do another iteration using the

old inputs. New inputs may be 1, 2, and 3 above or 2 and 3 or 3 only.

The operator's first task is to decide in his mind the rough outlines
of the regions he will want the ‘algorithm to explore. |In general, he will
pick two or three large regions and use the coarsest grid size, namely, 10
x 10, to explore these. In the beginning, a boundary should be drawn so
that it encompasses more than one viable path. This way the solution provided
by the DP algorithm reduces the ambiguity 2bout where the better paths reside.
When he finds the region that has the best path, he will refine his solution

by using a finer grid size (normally 18 x 18) and making the area within the

boundary smaller.
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When the operator has decided the first region he wants to explore,
he responds to the flashing prompt ''Move cursor' at the lower left of the
display by moving the track ball to dra. thz boundary. This is indicated
by the fact that the function button "Draw' in Figure E7 is lighted. The
launch point and the target must be contained within the closed boundary.

If one of these points is not within the boundary, the computer will recog-
nize this as an error, erase the boundaries drawn, and give the prompt ''Move
cursor' again. Thu;, if the operator wants to redefine his boundary after
some of it has been drawn, he can start over by closing the bpundary wi thout

including the launch or target points.

When the boundary has been closed, the computer is ready to accept
the specification of grid size as indicated by the flashing prompt ‘Select
grid' and the three lighted function buttons marked 1, 2, 3 at the lower
left of the box. By pushing 1, the coarse grid is selected and displayed.
(Pushing 2 selects the medium grid of 18 x 18, and pushing 3 selects the
fine grid of 36 x 36.)

Now the prompt ''Bound speed'' flashss at the lower left of the display.

The arrow at the top left points to a space between two adjacent horizontal
grid rows. By now pushing the buttons L, M, or H at the bottom left of the
function box, the operator deletes {rom consideration by the algorithm Low,
Medium or High spead for any path leg that crosses between the two rows and
for any horizontal leg in the upper of the two rows. When the operator is
finished specifying speeds to be deleted from consideration, he pushes the
lighted button '"Next." Upon doing this, the‘arrow moves down to the next

pair of rows and the operator repeats the procedure. For example:

1. If the operator has pushed L, M, and Next, the algorithm
viill not consider low and medium speeds for any leg crossing between the
two rows on either side of the arrow and for any horizontal leg in the

upper row.

2. |If the operator has pushed only '""Next," then the algorithm
will not delete any speeds and the arrow will move down to the next pair of

rouws.
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3. |If the operator pushes L, M, and H for any pair of grid rows

above the target or below the launch point, the algorithm will not consider
any leg that would be above the target or below the launch point. In this

case, deleting L, M, and H is permissible and will save time.

4. If the operator pﬁshés L, M, éﬁg H for any pair of grid rows
between the target and launch points, thé computer will be unable to find
any solution. At the end of several minﬁtes, thé display picture will re-
appear and the blinking prompt '"No soln yét" will appear at the lower left
of the display. In this case deleting L, M, and H is not permissible and

wastes time.

The operator continues to delete speeds as he desires until either (a) he
has deleted speeds for the last pair of rows or (b) he decides that he does
not want to delete any more speeds. In either case he then pushes the Exit
button. This completes the operator's input and the display screen goes
blank while the computer is working on the trial solution. This may take
two to five minutes depending on the size of the region within the boundary,

the grid size, and the number of speeds deleted.

In most cases when the display reappears, the trial solution path
is shown and the utility for that path and the function buttons ''Bound," ]
"“"Grid,'" '"'Speed," and ''Next'' are lighted. The operator does not know if the
trial solution is the best possible solution for his inputs or not. He has

two basic choices:

1. If there are two trial paths already displayed, remember
the utility value for the most recent iteration displayed in the box at the
top center of the display and then push '""Next.'! By pushing ""Next,' the
algorithm will perform another iteration and show the new and best-to-date
trial solutions and their utilities. |f the remembered utility of the
previous trial and the utility of the current trial are the same, then the
optimum solution for the inputs has been found. If there is little differ-
ence in the two most recent utilities, then the best tactic will usually be
to start investigating another region or to refine the solution in the current

region by using a finer grid.
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2. By pushing Bound, Grid, or Speed he can redefine tha inputs
consideraed by the algorithm. If he pushes Bound, then he must go through all
thrze steps of drawing the boundary, salecting grid size, and delating speeds.
I he pushes Grid, then the algorithm will use the previously drawn boundary
and the operator selects grid size and deletes speeds. |If he pushes Speed,
the algorithm accepts the previously drawn boﬁndary and grid and the operator
only deletes speeds. |If the area within the boundary was large, then the
operator should redefine the boundary to include a much smaller number of

points in the vicinity of the path szlected by the previous iteration.

If the display reappears without a new trial solution (the exception
previously noted), "No Soln Yet' will flash at the lower left of the display.
This means that the algorithm has not been able to find a complete trial
solution on a single iteration. |In this case the operator's suggested response
is to push the Next button so that the algorithm will go to the next iteration

to complete the trial solution.

E. GUIDELINES
There are two types of data being analyzed:

1. Utility of the operator's first best estimate of the best
path and leg speeds. The operator will dréw his first best estimate on
a hard copy plot of the problem and write the letter symbols for each leg's
speed. This will be done prior to the operator beginning use of the dis-
play. However, problem time will start as soon as the operator receives

the hard copy plot of the problem. The operator's first goal is to do

. the best he can on his '""first best estimate."

2. Operator performance will be calculated at the end of each
trial by adding the 15 utilities of the best~solution-to-date at the end
of each minute and dividing this sum by 15. Thus, operator performance for
the entire trial is the average of the 15 utilities. The operator's second

goal is to maximize this average.
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In general, (2) above is done by exploring the regions which could
contain the best path in the order of estimated likelihood that each con-
tains the best path. |If the operator is correct concerning the region
which contains the best path, then the average utility will be nearly equal
to the utility of the best path. This is true because the computer only
stores the best utility to date and will therefore not store the utilities
of paths investigated after the first when the first region explored con-

tains the best path.

The problem is deciding how large a region should be explored at
first. Since the viable paths will certainly not cross each other, they
can be represented as a left-to-right sequence as shown below for an

assumed five paths.

Paths -+ A B o D E

Operator estimate
if likelihood of - b 3 5 1 2
best path: Case |

Case 11 > 1 4 3 5 2
Case |11 > 5 1 2 L 3
Case 1V > 5 1 L 2 3

In Case | it would probably be best to draw a boundary around D
and E for the first trial. 1n Case Il it's a tossup whether to look at A
aloi: or A and B simultaneously. Looking at A alone will save time and
therefore get you ''on the board' soonest. However, if B is actually best,
you won't find it until after you've looked at D and E together. You should
look at B and C together, then D and E in Case Ill. Look at A only if the
previous results leave you dubious about your initial estimate of A. In
Case IV you may want to explore A, B, and C simultaneously, then D and E.
Only in Case | is the choice rather clear. In all the others it'sahighly

subjective matter.
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Other general rules to be used with the DP technique are:

1. Those portions of a path that are completely outside the
detection contours should be transited at low speeds.

2. Those portions of a path that traverse a high detection
probability contour should be transited at high speeds. In particular, the
last leg of the path to the target should be transited at high speed since
it must pass through the high detection region around ONRODA airport.

3. Paths should be drawn to pass through low detection probability
regions. However, a completely roundabout path that avoids detection contours

completely is not a sure winner because long paths use a lot of fuel.

4. When drawing a DP boundary that is to include the right or left
display boundary, be sure that the boundary drawn coincides with the display
boundary. Otherwise the DP will exclude from consideration those grid points

on the display boundary.
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At the beginning of the problem the operator should picture to himself the
reasonable candidates for best path. In the figure these candidates are
numbered 1-4. Then he should draw a boundary that includes about half of

the candidates. Notice that the boundary drawn crosses the midpoint of the
display on the right. The reason is that a candidate path that lies mainly
in the left half may cross the middle for part of its length. Circled points
should not be included within any boundary because the best solution will
certainly never include these points. Keeping these points outside the
boundary shortens running time for the algorithm. No speeds have been elim-
inated for the transitions between the two highest rows because low speed will
probably be used for one leg of path #4 and high speed will probably be used
for the last leg to the target. High speed has been eliminated for most of
the remaining transitions because the operator believed high speed would not
be selected by the algorithm for the remaining legs on paths #1 and #4.

Figure E8. First Plate, Example Problem.
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At the end of one iteration for the set of constraints shown in Figure ES8,

the operator pushes ''Next'' and finds that another
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Figure E9.
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The operator now draws a boundary that will enable the algorithm to consider
paths #2 and #3. Note that the boundary does not include the points circled
in Figure 1. Also, the operator has placed no speed constraints on transi-
tions in the middle of the display. The reason is that, if the algorithm
selects path #2, high or medium speed may be preferable to low speed. On

the other hand, if the algorithm selects path #3, low speed will be preferred.

The path solved by the algorithm using the operator-supplied constraints
resembles path #2 in Figure ES8.

Figure E10. Third Plate, Example Problem.
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Since the previous solution was the best to date, the operator now decides
to refine the solution by using a finer grid size. The result of the new
inputs is the path which connects points while the previous best path is
shown slightly offset from grid points.

Figure El1l. Fourth Plate, Example Problem.
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The operator then pushed ''Next' and, at the end of another 1.1 minutes, the

result was the same shown for the previous iteration.

Fifth Plate, Example Problem.

Figure El2.
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COMPOSITE DETECTION RATE CONTOURS
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