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~ lenables the user to make Inputs to a machine wh i ch operates on the inputs and
1shows problem solutions derived from the inputs. The user and the mach i ne work
iteratively until the user is satisfied with the mach i ne solution . Prob l ems foi
which OAO is appropriate tend to have the following characteristics :

U. Solution space Is of high dimens ionality ~{erg-.~-T-->&);2 ’S Criterion function is nonlinear , and multi-moda l , therefore the machin
working a lone may only find a local optimum instead of the globa l
optimum.

The problem for which the ISC aids were constructed is the selection of
(a) an air strike path through a field of ten enemy sensors and (b) aircraft
speeds on each leg of the path. Utility of each cand i date strike path was
computed according to a predetermined utility funct i on; the utility function wa!’
nonlinea r and multi-moda l . One of the ISC—des i gned aids uses a nonlinea r
programing (NP) algorithm; the other uses a dynamic programming (DP) al gorithm.
An experi~pent was des i gned by ISC to compare decision performance for both type~of aids. ~\Slxteen UCLA students solved prob l ems with and without the aid and
these data were compared. Subject data usi ng the aids were also compared wi th
the data resulting from using the algorithm in the automated mode. The
~rin,Y~al findings from the experiment were:

/ 1. The operators using the NP aid did significantly better than without
the aid. The average improvement across all subjects and trials was
29% with a range of 9% to 123%. Performance was significant ly dif-
ferent across operators but this was solel y for una i ded operation .
Thus the aid served as an ‘1 equalizer.” It enabled operators having
relatively low scores without the aid to do as well as those who had
relatively high scores without the aid.

2. Operators using the DP aid did significantl y better than without the
aid. The average improvement across all subjects and trials was 12%
with a range of 3.5% to 27%.

3. The lack of a techn i ca l education was apparently not an imped i ment to
good performance with or without either aid.

4. The average time required to adequately train an operator to use eithe
aid was about four hours.

5. A potential implication of the findings is that OAO is attractive to
use when it Is applicable because:

a. The operator can see what Is happen i ng during the optimization .
With pictorial prob l em representation , he can make adjustments to
the optimization process or results to compensate for limitations
in prob l em representation more easil y than when there Is no
pictorial representation .

b. The time required to train operators to use OAO with pictorial
prob l em representat ion is apparently relatively short and does no
requ i re techn i cal knowledge of the optimization algorithms .

UNCLASSIFIED
SECURITY CL ASSIF ICAT ION OF T,419 DAGE(Wh.n flste Fnte,.,t ~

II ,.. -.- .- — ,. -. —-, - —-~~-,---~~ 
- -..- ,--———. - -..—--- .- —---

~~
-----. .. -—- -- -..- -,---

~~
---- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
--



_______ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~ 
.-

~
- .- “

~~~~~ 
‘I’

I.

EXPERIMENTAL INVEST IGATI ON OF THE USEFULNESS
OF OPERATOR AIDED OPTIMIZAT ION IN A

• SIMULATED TACTI CAL DECISION A IDING TASK

a.

• Report No. 215-4
I.

Contract No. N00014-75-C-081l

Prepared for :
Code 455

• Director , Engineering Psycho l ogy Program
Psycholog ical Sc i ences D i v i si on

Offic e of Nava l Research
Department of the Navy

Arlington, Virginia 22217

By:

Davi d H. Walsh
Mi chael D. Schechterman

In tegrated Sci ences Corporation
1640 FIfth Street

Santa Monica , Cal ifornia 90401

I~C!!~~~ I’S I~

4p3 ~~
-
~;~‘ 9~4~~ 

r

~~~ ~~~~ o
January 1978 ~~~~~~~~~~~~~ 

.- . -

;J L. L~L I)
— -~~~~~~~

- 
~~•.- -— .~~~~~ ~-



EXECUTIVE BRIEF

A. BACKGROUND

This is the second report by Integrated Sciences Corporation (ISC) as

one of a group of contractors working on the Operationa l Decision Aids (ODA)

program directed by the Office of Nava l Research . The ODA program was initiated

in 1 974. It Is intended to develop a variety of decisio’~ aids and test and

eva l uate their usefu l ness to the Navy. Although the program is not tied to any

specific command and control hardware system, it has focused on the functions

of a Task Force Commander (TFC) and his staff. The role of (SC has been to

find ways to improve man-mach i ne comun i cation by allocating functions between

man and machine that take advantage of their respective strengths.

ISC’ s early work on the ODA program explored the use of techniques
by wh i ch a decision maker mig ht express and communicate his perception of

important relationships . ISC cal ls the particular techn iques it has been

deve loping “Sketch Models.” A Sketch Model is essential l y a “pictur&’ that is

first mentally visualized , and then drawn by a decision maker. As used here,

the pictu1~e represents the decision maker ’s perception of the functional rela-

tionship between two or more variables , with the stipulation that the function

be continuous In at least one dimension . Depending on the application , a

Sketch Model can be, for instance , a single curve defining the relationsh i p

between two variables , or it can be a family of parameterized curves , or It
can be a two—dimensional project i on of the iso-”altitude ” contours of a three

d imensional function .

(SC ’s first investigation evaluated the ability of human operators to

generate Sketch Mode ls of bi varia te Gaussian densi ty functi ons from samp led

data. in an experiment , a group of subjects were found capable of developing

accurate Sketch Models of one type of well-behaved (i.e., un imodal and
symmetrIc) three-d i mensional function . These Sketch Models developed by the

subjects from small samples of the underly ing funct i ons estimated those

funct i ons at least as well as, and In som~ cases better than , the statistica l

techn ique of max i mum likelihood estimation .

I 1
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A second study was undertaken to extend those results by investigating
the abi l i ty  of human operators to generate Sketch Models of less well-behaved
funct i ons, i.e., multimoda l and unsymmetric. Experimental results gave a

very strong ind i cation that the subj ects were able to produce accurate (as
measured by percent volume error) Sketch Models for a highly irregular (multi-
moda l and unsymmetric) funct i on representing the joint detection capability of

multiple sensors (Reference 1).

The study also sought to evaluate the usefulness of those Sketch Models

for a decision task represen ted by an air strike path optimization problem.

The experimental results did not prove or disprove the usefulness of the Sketch

Model technique as an aid to the decision prob l em. There were two reasons. One

was insufficient data , due to severe attrition in the pool of subjects trained

in Sketch Modeling during a lengthy hiatus caused by a series of hardware mal-

functions. The second problem surfaced as soon as the data were analyzed : it

appears that the problems were too easy for the subjects. it was therefore

difficult to ascertain the usefu l ness of Sketch Models as an aid to the strike

path selection problem .

In this study ISC suggests that machine participation in decision making

can usefully be exam i ned by distinguishing three types. These types correspond

to different degrees of machine part icipation in decision making. The first

type Is una i ded , or “man—only,” decisio n making. It is relied upon when

automated aids either do not exist or are inappropriate to the user ’s needs or

preferences. The second type is mach i ne aided decision making or “machine

help ing man.” Aids of this type have proliferated due to rapid advancements in

computer capabilities and operations research. Examp l es of the machine helping

man, as the term is used here, include the many uses of computers to sol ve

product mix problems by linea r programming methods and solution of transporta-

tion network problems by dynamic programming.

1SC believes that its characterization of decision aiding types can

help to distinguish actual TFC decision environments appropriate for each type.

In particular , (SC believes that there are a large number of decision

— il l —
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env ironments for wh ich the second type Is not useful. This is because the
methods available are often too slow , require too much hardware capability ,
and give questionable answers in difficult environments. This defeats their

cost—effectiveness certainly for at-sea use, and quite likely land based plan—

ning use, by TFC ’s.

It is because of these characteristics that ISC suggests and concen-

trates In this report on defining a third type called “man helping mach i ne to

hel p man.” This type of decision aiding finds favor when machine aided decision
making is I nadequate and one or both of the following circumstances appl y:

1. The decision maker does not have a good understanding of how

the machine works to obtain a solution . This is often the
case when an Iterative optimization procedure is used .

2, The decision maker believes that the model used by the machine

is not adequately representative of the real world and there-

fore he wishes to be able to use his knowl edge of the real

world to compensate for the model’s limi tation .

- - B. THE CURRENT STUDY

ISC ’s previous work on the ODA program had established that humans were

adept at- perceiving and sketching comp l ex functiona l relationships when data

that could be used to estimate the function were presented to the human in

geometric/graphical format. The question became the following : How useful is

this human capability? Therefore ISC proceeded to define (a) two decision aids

that would use the human capability to sol ve an experimental prob l em that could

also be solved by a fully automated algorithm , i.e., machine a i ded dec i sion
making and (b) an experiment that would compare decision performance wi th and

without the aids. The two ISC-des i gned aids were called Operator Aided

Optimization (OAO) using Nonlinear Programing (NP) and Operator Aided Optimi-

zation using Dynamic Programming (DP). Several key assumptions were made:

1. Some of the compl ex problems requiring decisions by the Task
Force Commander can be treated by analytic methods.

“lv— 
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2. Special purpose algorithms could be constructed to solve ~~~~~~~ ,

problem, but there are so many variat i ons on problems that it

would be impossible or uneconomic to have a special purpose
algorithm to solve every problem. Therefore , it is l ikely
that the TFC w i l l  have a genera l purpose algorithm avai lable
to solve each generic class of problems .

3. The Task Force Commander of the 1980 ’s w i l l  have a general
purpose computer and computer driven display at his disposal.

It is important to understand the nature and purpose of the experiments
reported in this third ISC study for the ODA program. Although (SC used much
of the structure and characteristics of a rea l—world situation , the experiment
was deliberately l imited and therefore , in a sense , ar t i f i c ia l .  The problem
situation used in the experiment is the selection of (a) an air str ike path
through a field of ten enemy sensors and (b) aircraft speeds on each leg of the
path. (Hereafter in this report , the se lection of path and speeds is abbreviated
to “select ion of path. ”) Many aspects of rea l-world air str ike planning were not
included in the experimental problem, e.g., aircraft altitude , specific locations
of enemy weapon systems and such rea l-world systems as electronic countermeasures .
Also , the des ign of the experimental problems made certain perfect—information
assumptions in order to simplif y the analysis.

The experiment was princ i pally designed to contrast decision performance

obtained with aids of the second and ~thlrd types. A genera l purpose algorithm

is available to solve the experimenta l prob l em in the second type or “machine

helping man” mode of aided decision making. However , a “man helping machine to

help man” ai d which uses man ’s ability to visually perceive compl ex functiona l

relationships is also available. This aid uses the same genera l purpose

algorithm as Is used in the “machi ne helping man” case. However, the man now

controls the use of the algorithm instead of letting it run open—loop . The

experiment designed by (SC compares decision performance for both types of aids.

-v-
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C. PRINC IPAL FINDINGS

1. The operators using the NP aid did s ign i f icant ly  better than wi th-
out the aid. The average improvement across all subjects and trials

- 

- was 29% wi th  a range of 9% to 123%. Performance was s igni f icant ly
different across operators but this was solel y for una i ded operat-

tion . Thus the aid served as an “equalizer.” It enabled operators

hav i ng relatively low scores without the aid to do as well as those

who had rela ti vel y hi gh scores without the aid.

2. Operators using the DP aid did si gnificantly better than wi thout

the aid. The average improvement across all subjects and trials

was 12% with a range of 3.5% to 27%.

3. The lack of a techn i ca l education was apparently not an i mpediment

to good performance with or without either aid.

4. Operator aided optimization was significantly better than automated

use of the NP algorithm for both types of rules used by the algo-

rithm to select start i ng poi nts.

5. The NP aid was less comp l ex to use than the DP aid and operators

generally preferred working with the NP aid to working with the DP

aid. Operators us i ng OAO with the NP aid found the globa l opt i mum

on a hi gher percentage of trials than operators using OAO with the

DP aid. The average time required to adequately train an operator

to use either aid was about four hours.

6. A potential implication of the findings is that OAO is attractive

to use when it is applicable because:

a. The operator can see what is happen i ng during the optimi-

zation. With p i ctorial prob l em representation , he can
make adjustments to the optimization procedure or results

to compensate for limitations In problem representation

more easi l y than he can when there is no pic torial repre—

sentat ion .
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b. The time required to train operators to use OAO wi th
p ictoria l problem representation is apparently relatively

short and does not require technica l know ledge of the
optimization algorithms .

0. RECOMMENDATIONS

If only one of the two (SC-developed aids is to be imp l emented on the

Operational Decision Aids fac i l i ty  at the University of Pennsylvania , then the
nonlinear programing aid should be chosen. If funds are avai lable it would be
worthwhile to imp lement the dynamic prog raming aid also so that Navy off icers
and R & 0 managers could get a feel for the way such an aid could be used . TFC
decision problems tha t involve discrete variables should be examined for their
appl icabi l i ty  to a dynamic programming aid used in opera tor aided optimization
mode.

(SC found that the three—type characterization of machine partici pation
in decision making used in this report was useful. Based on this usefulness ,

(SC suggests that the third type, man helping machine to help man , be used in

future command and control studies . (SC will assume that command and control

decisions can be categorized as (SC suggests. If thi s assumption is valid ,

then (SC recommends that decisions for wh i ch the third type is appropriate be

further eva l uated to determine if geometric/graphic representation is the most

efficient way to represent the problem in each case.

The ocean-borne enemy sensors facing a rea l world air strike planner

are in motion during the planning and execution of the air strike . Consequently,

the detection field representing the joint detection capability of enemy sensors

Is dynamic and not static. The problems used in the recently completed experi-

ment show static sensors to the operators.

Representing the more realistic dynamic situation involves dynamically

updating the detection contours to account for the changing positions of enemy

sensors. The contour drawing al gorithm for a machine stored ana l ytic function

representing Joint sensor detection capability is relatively complex . In order

-VI I-
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to get the best 11fit ,” i.e., best representation of the contours , it Is cur-
rentl y necessary to va ry a weighting factor , v isua l ly  observe the contours drawn
for each va l ue of the weighting factor , and select the value that gives the

best fit.

Recommended steps to be taken in imp l ementing rea l time dynamics are:

- 
I. Devise a method for automatically obtaining an acceptable

fit for the contours.

- 
2. Provide the operator wi th  controls tha t w i l l  enable him to

consider the sensor movement while planning the air strike.

3. Provide the operator with controls that will enable him to

consider sensor movement during the air strike and issue

path change directions.

I .. 4. Design an experimen t that would compare operator aided optimi-

zation performance with performance of an automated algorithm.

-v iii - 
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. INTR ODUCTI ON

A. BACKGROUND

This is the second report by Integrated Sciences Corporation ((SC) as

one of a group of contractors working on the Operational Decision Aids (ODA)

program directed by the Office of Nava l Research. The ODA program was initiated

in 1974. It is intended to develop a variety of decision aids and test and

eva l uate their usefulness to the Navy . Although the program is not tied to any

specific command and control hardware system, it has focused on the functions

of a Task Force Comander (TFC) and his staff. The role of (SC has been to
find ways to improve man-machine communication by al locating functions between
man and machine that take advantage of their respective strengths.

ISC ’s earl y work on the ODA program explored the use of techniques

by which a decision maker might express and commun i cate his perception of

important relationships. (SC calls the part i cular techniques it has been

developing “Sketch Models.” A Sketch Model is essentially a “picture” that

is first mentally visualized , and then drawn by a decision maker. As used

here, the picture represents the decision maker’s perception of the functional

relat ionshi p between two or more var iab les , with the stipulation that the

function be continuous in at least one dimension . Depend i ng on the application ,

a Sketch Model can be, for Instance, a single curve defining the relationship

between two variables , or it can be a family of parameterized curves , or it

can be a two—dimensional projection of the i so—”altitude ” contours of a three

di mensional functi on.

(SC ’s first i nvestigation eva l uated the ability of human operators to

generate Sketch Models of bivariate Gaussian density functi ons from sampled
data. In an experiment, a group of subjec ts were found capab le of develo pi ng
accurate Sketch Models of one type of well-behaved (i.e., un i modal and
symmetric) three—dimensiona l function . These Sketch Models developed by the

subjects from small samples of the underlying functions estimated those

funct ions at leas t as well as , and in some cases better than , the statistica l

technique of maximum likelihood estimation .

4 
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A second study was undertaken to extend those results by investigating

the ability of human operators to generate Sketch Models of less well-behaved

functions , i.e., multimoda l and unsymmetric. Experimental results gave a

very strong ind i cation that the subjects were able to produce accurate (as

measured by percent vol ume error) Sketch Models for a highly irregular

(multimodal and unsymetric) function representing the joint detection capa-

bility of multiple sensors (Reference 1).

The study also sought to eva l uate the usefulness of those Sketch Models

for a decision task represented by an air strike path optimization problem.

The experimental results did not prove or disprove the usefulness of the

Sketch Model technique as an aid to the decision problem. There were two

reasons. One was insufficient data , due to severe attrition in the pool of

subjects tra i ned in Sketch Modeling during a lengthy hiatus caused by a series

of hardware malfunctions. The second prob l em surfaced as soon as the data were

analyzed : it appears that the problems were too easy for the subjects. It was

therefore difficult to ascertain the usefu l ness of Sketch Models as an aid to

the strike path selection problem.

B. TYPES OF DECISION MAKING

In this study (SC suggests that mach i ne participation in decision

making can usefully be exam i ned by distinguish i ng three types. These are shown

in Figure 1. (SC has used this proposed classification scheme in the work

reported here. In (SC ’s opinion these categories were appropriate for the

command and control functions stud ied and appear to be a usefu l basis for most

command and control ana lyses.

The three types distinguished here correspond to different degrees of

mach i ne participation in decision making. The unaided , or “man—only,” type
depicted in the figure is relied upon when automated aids either do not exist

or are inappropriate to the user ’s needs or preferences. Applications of

mach i ne aided decision making or “mach i ne helping man” have proliferated due

to rapid advancements in computer capab ilities and operations research

—2—
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I. UNA I DED DECISION MAKING
(Man Only)

IH UMANII 
HUMAN DECISION 

- ACT ION

II . MACHINE AIDED DECI S ION MAKI NG
(Machine Helping Man)

I HUMAN j 
HUMAN DEC ISI ON 

~ ACT ION

MACH INE RECO MMENDAT I ON 
!MACH INE I

III. HUMAN AIDED MACHINE DECISION RECOMMENDING
(Man Helping Machine to Help Man)

I HUMAN } HUMAN DECI S ION 
- ACT ION

t j HUMAN AIDIN G

L MACHINE RECOMMENDAT I ON [MACH ~NE I

Figure 1. Types of Aided Decision Making.

techniques. Managers like to use a machine to find a problem solution when

they understand what the machine does and believe in the model used by the

mach i ne. Examp l es of the machine helping man , as the term is used here, include

the many uses of computers to solve product mix prob l ems by linear programming

methods and solution of transportation network prob l ems by dynamic programing.

ISC believes that its characterization of decision aiding types can

help to distinguish actua l TFC decision environments appropriate for each type.

In particular , (SC believes that there are a large number of decision environ-

ments for which the second type is not useful. This is because the methods

-3—
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available are often too slow , require too much hardwa re capability , and give

questionable answers in these difficult environments. This defeats their

cost—effectiveness certainly for at—sea use , and quite likely l and based plan-

ning use, by TFC ’s. Decision prob l ems for which machine aided decision making

is i nadequate tend to have the follow i ng characteristics :

I. Solution space is of high dimens ionality (e.g., > 5).

2. Criterion function is nonlinear .

3. Criterion function is multi-moda l , therefore the machine

working alone may only find a loca l opt i mum instead of the

global optimum.

4. Pertinent problem definition information is not available

with enough advance warning to incorporate into the des i gn

of an operating optimization software package that would

adequately handle all or most problems .

5. Pertinent information concerning available decision options

is also not available In time to impact software deve l opment.

It is because of these characteristics that (SC suggests and concen—

trates in this report on defining the third type. (SC believes this is a

somewhat new and relative l y powerful distinction . The “man help ing mach i ne

• to help man” type of decision aiding finds favor when machine aided decision

making is i nadequate and one or both of the following circumstances apply:

I. The decision maker does not have a good understand i ng of

how the machine works to obtain a solution . This is often

the case when an iterative optimization procedure is used.

2. The decision maker believes that the model used by the

mach i ne is not adequately representative of the rea l world

and therefore he wishes to be able to use his knowledge of

the rea l world to compensate for the model’s limitation.

L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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C. THE CURRENT STUDY

I SC’s previous work on the ODA program had established that humans

were adept at perceiving and sketching complex functional relationships when

data that could be used to estimate the function were presented to the human

in geometric/graph i cal format. The question became the following : How useful

is this human capability? Therefore (SC proceeded to define (a) two decision

aids that would use the human capability to sol ve an experimental problem that

could also be solved by a full y automated algorithm , i.e., mach i ne aided

decision making and (b) an experiment that would compare decision performance

with and without the aids. Several key assumptions were made:

I. Some of the complex problems requiring decisions by the Task

Force Commander can be treated by analytic methods.

2. Special purpose algorithms could be constructed to solve ~~~~,
problem , but there are so many variations ‘on problems that it

would be i mpossible or uneconomic to have a special purpose

algorithm to solve eve~y problem. Therefore, it is likely

that the TFC will have a general purpose al gorithm available

to solve each generic class of prob l ems.

3. The Task Force Commander of the l 98O ’s w i ll have a general
pu rpose computer and computer driven display at his disposal.

it is important to understand the nature and purpose of the experiments

reported in this third (SC study for the ODA program . Al though (SC used much

of the structure and characteristics of a real -world situation , the experiment

was deliberately limited and therefore, i n a sense, artificial. The problem

situation used in the experiment is the selection of (a) an air strike path

through a field of ten enemy sensors and (b) aircraft speeds on each leg of

the path. (Hereafter in this report , the select ion of path and speeds is

abbreviated to “selection of path.”) Many aspects of rea l -world air strike

planning were not included in the experimental prob l em, e.g., aircraft altitude ,

specific locations of enemy weapon systems and such rea l -world systems as

el ectronic countermeasures. Also , the design of the experimenta l prob l ems

-5- 
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made certain perfect—information assumptions in order to simplif y the
analysis:

I. Sensors are stationary throughout the air strike and the

location of each sensor is perfectly known.

2. A function specifying composi te sensor detection performance

is perfect ly known.

3. Fuel consumption characteristics of the strike aircraft are

known.

The utility function used to compute the goodness of each candidate

strike path was composed of only two factors. It was formulated to reward low

probabilities of detect ion along the strike path and hi gh values of fuel

remaining when the aircraft reach the target. Utility in the real world would

usually be determined by more than just two factors. Expected aircraft attri-

tion would usually be a factor in the utility function ; it is not included here

because the problem does not include enemy weapon systems. Therefore, the

utility funct i on is a simplified version of real world considerations.

The experiment was princ i pally desi gned to contrast decision perfor—

mance obtained with aids of the second and third type. A genera l purpose

algorithm is available to solve the experimenta l problem in the second type

or “machine hel ping man” mode of aided decision making. However, a “man

helping mach i ne to help man” aid which uses man ’s ability to visually perceive

complex functiona l relationsh i ps is also availab le. This aid uses the same

general purpose algorithm as is used in the “machine hel p ing man” case. However,

the man now controls the use of the algorithm instead of letting t run open-

loop. The experiment designed by (SC compares decision performance for both

types of aids.

These aids were not intended for Immediate use in the design phase of

the current Navy Tactica l Flag Command Center (TFCC) project. The problem and

the utility function are scaled-down versions of real -world consideratIons.

A much larger effort would have been necessary to design an aid suitable for

—6—



the TFCC project. However , the prob l em and utility function do have the five

characteristics enumerated in Section I—B for which the “m achine helping man”
mode of aided decision making tends to be inadequate. Also , the “man helping

machine to help man” aid des i gned by ISC does help the operator to understand

how the machine works to obtain a solution and it does enable the operator to

compensate for the model’s limitations. Therefore, it was not the purpose of

the current work to produce an aid that would be ready for TFC use upon comple-

tion of the work. Instead , the purpose of the work was to use the experimenta l

results to draw useful inferences about the relative va l ues of the two types

of aids for the type of situation in which both are used in the experiment.

0. THE REPORT

All phases of this study are documented in the following sections .

Section II describes more fully the way the basic path optimization problem

was put together: it explains how the ONRODA Scenario was adapted , distin-

guishes at more l ength between the various ways of determining strike path

solutions , explains the analytical models For sing le sensor detection

performance and aircraft fuel consumpt i on , and characterizes the utility

function developed to eva l uate strike paths . Section III  details system

operation; it comprises step—by-step explanations of how path solutions were

obta i ned by the genera l purpose optimizat ion algorithms and by subjects con-

trolling the al gorithms . Sections IV and V out line the experimen t and the

data analyses performed , respectively. Sect i on VI interprets the results

insofa r as the data warrant. The appendices document the al gorithms used to

implement aspects of the study and the training material provided to operators.

The al gorithms are provided for the reader interested in seeing how certain

operations research techniques were adapted .
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II. CONTEXT FOR THE EXPERI MENT

A tactica l decision task was defined to investi gate the usefu l ness of

decision aids that make use of man ’s ability to visually perceive complex

functiona l relationships. The task was that of optimizing an air strike path

through a defender ’s multi—sensor detect i on field. This section describes

the task scenario , the system concepts that represent different ways of optimiz-

ing a strike path , and the models of the scenario variables that constitute

the experimental vehicle. Each model described reflects certain assumptions

made about the behavior of the scenario variable. These assumptions , in turn ,

were adopted to keep the test vehicle simple , rather than to faithfully model

the variables ’ “real world” performance. The utility criterion function ,

ultimately used as a performance measure , is also described here in terms of

its supporting models.

A. AIR STR I KE SCENARIO

The problem selected , imp l icit in the O~”~ODA scenario , was that of

optimizing an air strike path between a strike launch point and a target.

The eva l uat i on of the path depended on the probability of an aircraft ’s being

detected by the enemy and the amount of fuel consumed by the aircraft along

the strike path. Accord i ngl y, certain elements of interest , particularly the

scenario geography , were extracted from the ONRODA Warfare Scenario (Reference

2), and other details , described below , were added . The scenario developed

here assumes that the decision has been made to conduct an air strike against

ONRODA , so that i nvestigating the relative usefulness of competing decision

aids in this study means app l y ing them to one aspect of the operational imple-

mentation of the decision to strike.

Figure 2 shows the 500—by—500 n.m. portion of the ONRODA warfare

scenario area map used to provide the geographica l context for this study.

The boundaries p rovide an area west of ONRODA for the selection of strike

launch points and (it is assumed) enough room to plan strike paths that do

not violate the ORANGE sanctuary . 
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The air strike scenario used here i ncorporates some further assump-

tions . First , the strike target is taken to be the ONRODA airfield comp l ex

only. Second, the strike aircraft are supersonic , and they carry suitable

stores and a predetermined fuel allotment.

The assumptions made about enemy defense have to do with the number ,

l ocations , and ranges of the ORANGE sensors that are capable of detecting

the strike aircraft. Own intelligence reports that there are ten such sensors

and that their l ocations are pinpointed . One sensor is installed on ONRODA

near the airfield. The other nine are ocean—platform mounted , and since

ORANGE knows the genera l location of the task force, they are positioned west

of ONRODA between the island and the task force. Intelligence reports that

all the ORANGE sensors are the same type and have the same detection performance

capability . The problem is to plan a strike path aga i nst the airfield on ONRODA

that (a) minimizes the p robability of strike aircraft being detected , given the

l ocations and types of enemy sensors , and (b) does not i mpose excessive fuel

reuq i rements on the aircraft , given the fue l allotment and the fue l consumption

character i St cs.

Further assumpt i ons for this scenario are that neither the enemy ’s

defense nor airborne enemy aircraft are to be cons i dered explicitly as strike

factors. Implicitl y, enemy defense capability is one reason to minimize the

probability of being detected along the strike path , tantamount to considering

surprise as a strike factor. In a similar manner , attempt ing to postpone

detection also affords less time for ORANGE aircraft on ONRODA or on-the main-

land to react, while attempting to conserve fuel enables the strike aircraft

to maneuver if challenged by ORANGE aircraft after reaching the strike target.

B. DESCR IPT ION OF CONCEPTS TESTED

Solving the strike path select i on problem requires choosing path way

points between the start point and target and specifying aircraft speeds along

each leg . Any of the three types of aided decision making represented in

Figure 1 can be used to select way points and speeds. Abbreviated descri ptors

-10-
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used in this report that are equiva l ent to the three types shown in Fi gure 1

are given be l ow. -

Types of Aided Decision Equivalen t Descriptors
Making (from Figure 1) Used in this Report

Man Only Operator Una i ded (Qu)

Mach i ne Helping Man Automated (A)

Man Helping Mach i ne Operator Aided Optimization (OAD)
to Help Man

Two types of general purpose optimization techn i ques that can be used

to imp lement the automated aid are nonlinea r programing and dynamic programing.

The structure of the path select i on concepts tested is organized around the

two general purpose optimization algorithms used to solve the prob l em, namely,

a nonlinea r programing (NP) algorithm and a dynamic programming (DP) algorithm.

A “tree” representation of the structure is shown in Fi gure 3.

The NP algorithm requires two inputs. One is specification of the

“starting point ,” namely the positions of the way points and the speeds along

each leg. The other is a convergence criterion . The algorithm begins to

iteratively optimize the path to find the hi ghest path utility as soon as it

obtains a starting “point.” It stops when the convergence criterion is met.

Then the algorithm obtains a new starting point and begins to optimize again.

In the automated mode the algorithm conta i ns a procedure for selecting the

starting point and a convergence criterion. (SC obtained test data on two

procedures for selecting the starting point and three convergence criteria.

In operator aided optimization mode, the operator selects the starting point

and dec i des when to stop the optimizing done by the algorithm . (The same

algorithm is used for the automated mode and the OAO.) Then he selects a new

starting point and starts operation of the algorithm again. In operator unaided

mode, the operator specifies the path way points and speeds on path legs wh i ch

constitute his estimate of the best solution . This is a one-step process;

there is no iterat ive optimization as occurs in the automated mode and OAO .

The operator unaided mode corresponds to the procedure that would be used today

by a Task Force Commander.
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The DP algorithm finds for a given set of constraints the best path

composed of (a) legs from point to point on a specified grid and (b) the best

of a set of three specified speeds for each path segment between two adjacent

grid points. In the automated mode the algorithm cons i ders all the poi nts on

the grid for a specified spacing of grid points and all the available speeds,
i.e., three speeds, for each path segment. It finds the best solution for the

specified grid spacing and stops. It does not i terate as does the NP algorithm

because the ~P algorithm , unlike the NP algorithm , finds a globa l optimum for

the specified grid size.

In OAO mode the operator draws a bounda ry around the regi on where he

wants the DP algorithm to optimize. He then sel ects a grid spacing and con-

stra i ns the algorithm ’s search by eliminating from its consideration the speeds

he believes will not be in the final solution. The operator starts the algorithm

and the algorithm proceeds to find the best solution for the grid spacing and

constraints set by the operator. The operator views the solution and then

decides on a new combination of grid spacing and constraints for (a) the bounded

area to be searched and (b) speeds to be eliminated from consideration . In

this fashion the operator iteratively refines solutions found by the algorithm .

In operator unaided mode the operator draws the estimated best path

from point to point on a specified grid size and he specifies which of the

three available speeds is to be used for each path segment between adjacent

grid points . Operator unaided mode resemb l es what would be done by the Task

Force Commander today . It is not exactly the same because the operator is

constra i ned to use the specified grid points and he must select one of three

specified speeds for each path segment.

C. SIMULATION MODELS AND ALGORITHMS

The “goodness” of a path generated under any of the system concepts

depends on two factors: fuel consumed along the path and the cumulative

probability of being detected . In order to compute a numerica l va l ue (or

utility) that reflects a given path’s “goodness,” it is first necessary to

have some way of quantify i ng those two factors. This was provided by a set

—13—
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of simulation models and computationa l algorithms developed for the study.

Fue l consumption was modeled as a single functiona l relationship. The cumu-

lative probability of be i ng detected , however, is more comp l ex and depends on

how the characteristics of the detection field are defined . In general , this

i nvolves first defining single sensor performance, then defining the way a

number of these single sensors comb i ne to create a composite detection field.

The set of models and algorithms used in the study includes :

I. Sing l e-Sensor Detection Rate Mode l

2. Cumulative Probability of Being Detected Algorithm

3. Fuel Consumption Model

4. Utility Criterion Function

5. Dynamic Programming Algorithm

6. Nonlinea r Programing Algorithm

7. True Detection Rate Contour-Drawing Algorithm

Numbers 1 - 4 are described in this sect i on; numbers 5—7 are documented in

the appendices .

1. Overv i ew

Figure k shows how the models and algorithms are used for operator

aided optimization . Scenario elements (composi te detect i on capability of the

ten enemy sensors, strike launch point , and target) defining the problem are

stored in the computer and are shown to the operator by means of the display

He enters his inputs to the NP or DP algorithm by means of the display

peripherals (
~i3). Inputs to both algorithms are the problem definition and

the operator inputs.

The NP algorithm cons i ders a candidate path , finds the cumulative

probability that the air strike will be detected if that path is used , the fuel

consumed on the path , and the utility of the path considering both cumulative

detection probability and fuel consumption . Each path considered by the NP

algorithm and Its utility is displayed to the operator 
~~~~~~ 

The NP algori thm
continues to find better paths , and these are continually displayed until the

-14 -
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Problem Definition
(Strike launch point ,

— target location , and
compos i te sensor
capability model)

Inputs to
Graphics Algorithm

Prob l em 0
Definition

Path and

Utility of Path

Optim i zation Al gorithm

_________  — 
0 ~ Cumulative Utility

~d 
Algorithm Function

Inputs Fue l -

to Al gorithm Consumption Opti m iza tion

Model Procedure

~~~ Path and Utility of Path

Figure 4. Interrelation of Models and Al gorithms
for Operator Aided Optimi zation .
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operator dec i des to use new inputs , The DR al gorithm finds the best path for

the set of inputs to the algo rithm. This path and its utility are shown to

the operator by means of the graphics .

2. Single—Sensor Detection Rate Model

The detection capability for a single human-operated sensor is model ed

as a detection rate,~ which gives the probability of detection per t ime  unit.

The detection rate is assumed to vary as a funct i on of range from the sensor.

This relationship can be quantified accord i ng to:

y / 2
,~~~ max i -R

D — R . exp t 2max ~2Rmax
where

?(R)  = the value of detection rate at radial distance R from sensor

Y = maximum detection rate for the sensormax

R = range from sensor at wh i ch Y occursmax max

The genera l shape of detection rate—versus—range curve as governed by Equation

(I) is shown in Figure 5. Equation (1) for y(R) models a sensor with a maximum

detection rate y at range R from the sensor. From the sensor locationmax max
(where the detection rate is zero) detection rate increases monoton i cally until

it reaches its peak va l ue at range Rmax~ From this range , Rmax~ the detection
rate drops off monoton i cally moving away from the sensor , approaching zero at

some range beyond Rmax~ 
Hence, if we visualize y(R) as a three-dimensiona l

surface It would look like a vol cano with a hole at the center , where the sensor

is located . Around this hole is a circular ridge at a radial distance Rmax
from the center of the hole. Beyond the ridge the sides of the “vo lcano” slope
downwards until “ground level” Is reached .

*Detection rate is a quantitative measure of sensor performance (Ref.6) defined
over the space surrounding a sensor. An intui tive understand i ng of detection
rate, y(x,y), may be had by cons i dering that y~t is the conditional probability
that a target is detected at or near (x,y) given that 1) At is small and 2) no
detect ion occurred before At.
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Fi gu re 5. Single Sensor Detection Rate as a Function of Range .

For the experiment one type of sensor was defined , corresponding to
= 37.5 nautica l miles . This va l ue of R was selected for its suitability

to the study. It was not intended to be the performance va l ue for any “rea l
world” sensor. The maximum detection rate y was 0,1 The performance curvemax
for the sensor type is shown in Figure 6.

Recall that the scenario specified ten enemy sensors dep loyed , so that

if two (or more) detection ranges overlap, we are reall y concerned about our

strike aircraft being detected by at least one sensor rather than being detected
by more than one. In other words, we are concerned about the tota l detection

rate at any point that any given set of sensor locations will produce. This

composite detection rate is easil y computed . The compos i te detection rate y
c

at a point (x,y) is the sum of detection rates at (x,y) due to each sensor.

Hence, if y.(x,y) is the detection rate due to sensor i , the composite detection

rate at (x,y) is

~~y 1
(x ,y) (2)

Each term y.(x,y) on the right hand side of Eq. (2) is obta i ned by transforming

the radial coordi nates of Eq. (1) into rectangular coordinates .
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The reader may question the validity of the additive operation In

Eq. (2), since probabilities are not additive in general. After all , detection

rate as we have defined it Is the probability of detection per unit time. The

justification of the operation in Eq. (2) lies in the fact that we choose

At (see footnote on page 16) small enough such that within At the probability
*of detection by two or more sensors Is negligible , all the higher order terms

In the exact expansion for the left hand side of Eq. (2) drop out , leaving the

right hand side of Eq. (2).

3. Cumulative Probabili ty of Being Detected Algorithm

For an aircraft fl ying an air strike path through the enemy ’s multi—
sensor detection field , it is necessary to calculate the cumulative probability

that the aircraft will be detected by the time it reaches the target. The

cumulative probability that an aircraft will not be detected on a given leg by

a single sensor is the building block used to ca l culate cumulative detection

probability . This is:

~nd (cumulative , no detection , 
= exp 

~ 
dt] (3)

single sensor) o
where:

t0 time at beginning of leg

time at end of leg

For multiple sensors, the cumulative probability that an aircraft will not be
detected on a given leg Is:

~nd (cumulative , no — exp 
[- ~~ J’~

( 
(t))dt] (4)

detection on leg) s—l t0
where

S • total number of enemy sensors

*Thls may remind the reader of simil ar pract i ces in various branches of
opera ti ons resea rch, such as queueing theory.
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The cumulative detection probability for the entire path is cal culated by:

2.—L s—S t

~d (cumulat i ve detection I - exp 
~~~ 

~~~~~ 
?[R5~ (t)] dt] (5)

on path) 2~ l s—I tO,L

where:

L — numbe r of l egs in path

4. Fuel Consumption Model

The rate of fuel consumption was ca l culated in accordance with Equation

6 below:

Fue l rate = 0.0377 v2 - l6.57v + 3869 (lbs/hr) (6)

where,

v = aircraft speed in knots

Fuel used per path leg is:

(Leg Length )( Fuel Rate (v.) )
Fuel consumed (leg.) — (7)

Operators using the NP aid were allowed to select any speed from 250 to 1 ,000

knots for each leg. Operators using the DR aid were allowed to select high ,

med i um, or low speed for each leg. These speeds were 1000, 625, and 250 knots

respectively. The fuel consumption rates for these speeds are listed in

Table 1. The second and third col umns of Table 1 are equivalent; they are

simply expressed in different units for easier reference.

The amount of fuel that an aircraft carries on each mission Is pro—

portional to the range from the strike l aunch point to the target. Thus, if
the range is doub led, the fuel allowance for the mission also doubles. The

fuel allowance for each nautica l m i le between the air strike start position and

-20-
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Table 1. Fue l Consumpt i on Rates

Fuel Consumpt i on Rates
Veloc i ty (knots) lbs/sec lbs/n.m.

250 0.5785 8.331

625 2.289 13.183

1 ,000 6.944 24.999

target was 39.69 pounds. This perm i ts the aircraft to do some high-speed

manuevering, but sustained high—speed trave l is discouraged by the fact that

allotted fuel would run out before the aircraft could accomplish the mission

or return to the carrier. -

5. Utility Criterion Function

A utility criterion function with wh i ch to measure the performance

under each of the system concepts in the experiment was defined . The problem

was to select an optima l air strike path , so an appropriate utility cr i te r ion

funct i on is one wh i ch measures the “goodness” of such an air strike path. The

two variables selected to determine the goodness of an air strike path were

fue l consumption along the path and probability of being detected by the enemy

sensors (Sections 3 and 4, preceding) . Since the utility function was pre-

specified to measure the goodness of any proposed path , no inputs were elicited

from operators as to des i rable va l ues of the two variables. The following

definition of the utility criterion function , U , i ncorporates a tradeoff between

minimizing the probability of being detected by enemy sensors on one hand and

maximizing the fuel remaining upon arriva l at the target on the other.

( - b)D— F 
(.01 +4.95P)

U(F ,P) — 
[2~a - 2bJi ] , if (a - b)D - F>0 (8)

— 0 , if (a- b)D—F < 0 and DP aid is used

— (a— Zb)D-F , if (a- b )D- F<O and NP aid is used
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where

F — tota l amount of fuel consumed upon arriva l at target

P = cumulative probability of being detected by enemy sensors

D distance between strike launch point and target

a = fuel allowance/n.m.

b — fuel consumption/n .m. at an achievable speed resulting in the
lowest fuel consumpt i on per unit d stance traveled

For each mission the fuel allowance is p roportional to the shortest

distance between the air strike launch point and the tarc~et (a . D). The

absolute minimum fuel tha t has to be preserved in order to return from the

target is (b . D). Hence, (a— b)D is the maximum amount of fuel available

for maneuvering to the target , and (a — 2b)D is the maximum amount of fue l

remaining upon return to the carrier. Note that If the aircraft runs out of

fue l before return i ng to the carrier , the resulting utility is:

1. Zero for the DP al gorithm

2. Negative and equal to the diffe rence between minimum

possible fuel usage and actua l usage for the NP algorithm . This

is a dev i ce to increase convergence speed.

For the experiment , a 29.7 lbs/n .m., and b=8.3 lbs/n.m ., corresponding to

a ve l oci ty of 250 n.m./hr.

The utility function takes on any va l ue between 0 and 1 , with hi gher

utility val ues correspond i ng to “better” paths . As the p robability of being

detected by enemy sensors decreases , the utility va l ue goes up. Also , if the

probability remains constant , the utility va l ue increases as fue l consumption
drops. It is obvious why it is des i rable to minimize the probability of

being detected by enemy sensors. The rationale for encouraging fuel p reser-

vation is that if detection occurs at any time up to arriva l at the target ,

there should be as much fue l left as possible in order to do some fli ght

maneuvering to try to return safe1’~.
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In general the two goals of minimizing fue l consum ,~tion and minimizing

the probability of be i ng detected are incompatible. A nontrivial optimal air

strike path thus requires a reasonable compromise between the two goals. The

utility function was designed as representative of the class of functions

useful in desi gning an air strike path through a multi—sensor field , and
Eq. (8) embodies a trade—off between remaining fuel and cumulative probability

of being detected .
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I I I .  SYSTEM OPERAT I ON

I mportant characteristics of NP and DR methods for solving the scenario

prob l ems are discussed in this section . Documentation of the step-by—step

operation is given for the OAO concepts that use the OP and NP algorithms.

The emphasis in the documentation is on the display concepts used . This section

also discusses the re l evant considerations for the cho i ce among alternative

input ru l es for NP automated concepts.

A. NONLINEAR PROGRAMMING OPTIMIZAT I ON

1. Characteristics of the Nonlinear Programing Op~ imiza tion Technique Used

in the Experiment

The setup for the nonlinear programing technique inc l udes the starting

“point ” or first trial solution . In the air strike problem , the starting

“po i nt” is (a) five path legs connecting the air strike launch point and the

target and (b) speeds for each leg . The legs are specified by picking four

“way points ” between the launch point and target. Speeds are selected from a

range of 250 to 1000 knots. After the start point has been specified , the NP

technique operates to find a better comb i nation of way points and speeds. It

does this by exploring changes in the location of each way point and the speed

for each leg. Each exploration i nvolves a sing le combination of way point and

speed changes. Therefore , improvement in the air strike path takes place

slowly over many explorations , i.e., trials. An advantage of F~JP is that it

considers all the points in the geographica l region it explores instead of

just a set of grid points and all speeds within the aircraft ’s capab ility -

instead of just a few. A disadvantage is that the “solution ” will be best

for the region explore d but that better solutions may exist in unexplored

regions that the al gorithm cannot “see” to explore and the NP techni que is

often unable to direct itself to look in these unexp!ored regions. In opti-

mization jargon , NP may find a l oca l optimum but not the globa l optimum. 



2. Automated Optimization Using the NP Algorithm

The approach used in sel ecting the NP algorithm was the follow i ng :

“What type of technique would you want if you knew nothing about any given

specific problem to be solved and you wanted the technique to be relatively

equally adept at solving a broad diversity of problems?” This approach is con-

sistent with the assumptions in Section I-C made about the types of TFC problems

for wh i ch optimization aids would be appropriate and the type of algorithms that

would be available to the TFC. Answering this question can be broken down into

the five component parts of a nonlinea r prog ramming algorithm: Sel ecting a

starting point , selecting a search direction , selecting a step size , stopping

criterion funct i on , and selecting a new starting point for the next iteration .

Table 2 expresses the approach for each component . Components 1 , 2, and 3 are

Table 2. Algorithm Design Guidance for the Components of the NP Algorithm.

— 
COMPONENT ALGORITHM DESIGN GUIDANCE

I Select a Since no prob l em specific information is available
starting other than the scales and upper or l ower bounds of
point the dimensions of decision space, a random starting

point selection procedure is required .

2 Select a Since it can not be assumed that either first or sec-
search ond derivatives w ill be continuous over the domain of
direction the criterion function (e.g., Sketch Models), a

— _____________ 

grad i ent—free approach is required .

3 Select a Since it can not be assumed that first or second
step size derivatives will be continuous over the domain of the

criterion function , a gradient-free approach is
required . (Same as for component (2) above.)

4 Convergence A percentage (e.g., < 5~) of change in eithe r the
stopping length of the search vector or the value of the cri-
rule for ten on function is allowable; also spec i fying an
automated amount of time for each iteration regardless of prog-

— 
optimization ress is allowable.

5 Selecting a Only information available is criterion function
new starting va l ues achieved with other starting points ; otherwise
point for next same as (1) above .
iteration
during auto-
mated mode
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used in operator aided optimization (OAO) and automated optimization . Compo-

nents 4 and 5 are specified only for automated optimiza tion since the operator

performs these functions during OAO .

A baseline approach for automated optimization was des i gned to be

completely compatible with the assumpt i on of zero prob l em-specific information .

It consists of the follow i ng algorithms for the nonlinear programming components:

1. Selecting a starting point - A starting point was selected from

a un i form random density function defined between the lower and
uppe r bounds of each of the dimensions of the solution space.

2. Sel ecting a search direction - Rosenbrock’s method of orthogona l

directions was selected for this component (Reference 3). This

procedure is quite competitive among grad i ent-free approaches

working on high dimensional problems . (See Reference 4.)

3. Selecting a step size - Rosenbrock ’s method , experimented with

over a variety of prob l ems , recommends increasing step size by a

multiple of 3 when successful and decreasing by 0.5 when unsuc-

cessful.

4. Convergence criterion - The search was determined to have con-

verged when the length of the search vector had not changed by

more than 1~ in five successive criterion function eva l uations.

5. Selecting a new starting point - The time assumed reasonable for
providing an answer (e.g., 15 minutes) did not allow a substan-

tial numbe r of iterations (e.g., >10). Thus it was not feasible

to use information concerning the success of previous starting

points in the sel ection of the ~th starting point , and each

successive start i ng point was selected from the s~me uniform

random density function described in (I).

The baseline approach was given the name “Random Starting Point.”

In order to eva l uate the i mpact of some prob l em—specific information

on the performance of the automated concept (and therefore on the results of

-26— 
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the OAO experiment) the follow i ng modifications to the baseline approach

were evaluated :

I. Changes in the method for selecting a starting point:

The Random Starting Point rule produced nonsensica l air strike paths
wh ich cross ove r themselves (perfectly val id under the zero problem -
specific information philosophy). This was a controversial component
and deserv i ng of additiona l investIgation . Therefore the starting

points were also selected by a pseudo-random process by wh i ch the

path of the air strike was made to conform to stra i ght line segments

connecting points on a parabola that passed through the launch and

target points . This eliminates the crossing—over aspects of the

path. The ve loci t ies of the start ing point were selected by a
linea r pseudo-random procedure wh i ch minimizes the variance of the

start ing ve loc i t ies. The name given to this concept was “Parabolic

Starting Point.”

2. Changes in the algorithm for convergence criteria:

This was deemed the component second-mos t subj ect to controversy. The
reason was that the automated concept could be considered at an unfair
disadvantage with respect to OAO if the selected convergence criterion

produced poorer performance than some other criterion. Therefore two

other va l ues of convergence criteria (.1% and 5~) were eva l uated .

These in comb i nation with the l~ used in the baseline approach covered

a range of va l ues and allowed the estimat i on of a convergence criterion

va l ue that maximizes performance of the automated concept.

The severa l versions of the automated concept were tested in the

following sequence:

I. Performance on five trials for each of twel ve problems was

obtained using the Random Starting Point rule for each of the

three convergence criteria , namely, 0.1%, 1% , and 5%. The
result of these trials was that the 1% convergence criterion

was superior to the othe r cr i ter ia and therefore the data from
the runs wi th this criterion was used to represent automated

NP performance for the Random Starting Point rule.
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2. The 1% convergence criteri on was used on five trials for each

of the same twelve prob lems for the Parabolic Starting Poin t

rule.

3. Operator Aided Optimization Using the Nonlin ea r Programming Algorithm

At the beg i nning of a prob l em the display appears as shown in Fi gure 7.
The path from launch point to target is a stra i ght line with way points ind i-

cated at 1/5, 2/5, 3/5, and 4/5 of the straight line distance . Speed for each

leg is ini tially set by the program at 600 knots as indicated on the plot at
the left in Figure 7. The operator uses the appropriate buttons on the function

button box (see Figure 8) and the joystick to change the position of the four

way points . He uses the appropriate function buttons and the keyboard to change

speed on any leg .

The operator ’s purpose is to direct the NP technique to i nvesti gate as

many reasonable potential solution reg i ons as po ssible in 15 minutes , wh ich
is the l ength of a trial. As soon as the problem is shown on the disp lay, the
operator must dec i de what reg i on he wants to explore first. His train ing

instruct i ons are to pick the reg ion that he thinks is mos t likely to contain

the best solution. He then changes the locations of the way points and speeds

prior to starting the NP algorithm. The resultant path and speeds constitute

his estimate of the best solution and correspond to the Operator Una i ded concept.

At the beginning of the problem the three buttons des i gnated as

EVALUATE/HALT , CHANGE VELOCITY and MOVE WAY PO I NT are lighted on the box. In

order to move a way point , the operator pushes that button . When this is done

the four buttons marked 1 , 2, 3, and 4 become lighted . He then pushes the

button correspond i ng to the point to be moved , i.e., 1 , 2, 3, or 4. Way point
1 is the one closest to the beginning of the strike path and 4 is nearest the

end (ONRODA Island) . Moving the way point is accomplished with the joy stick.

When a single way point is changed a second way point can be changed by pressing

MOVE WAY POINT and the appropriate number of the way point. The act of pressing

MOVE WAY PO I NT records the position of the last way point that was changed .
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Figure 7. Display Appea rance at Beginning of Problem
to be Sol ved Using NP Al gorithm.
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It often happens when using the aid that the angle between adjacent
legs is 900 or less. A rea l airc raft cannot execute the turns indicated by the
connection of the straigh t-line path segments in such cases. It would have

been possible to improve the realism of the aid by having the computer

automatical ly draw an arc corresponding to an a i rc ra ft ’s turning capability

to connect the path segments. This was not done because the lack of realism

did not interfere with the purpose of the work , namely, the comparison of the

different kinds of decision aids.

To change a speed on one of the five legs , the operator pushes CHANGE

VELOC I TY. The five buttons marked 1 , 2, 3, 4, and 5 then li ght. Leg 1 refers
to the leg closest to the path beg i nn i ng point and leg 5 refers to the path
closest to the end point (ONRODA island) . He then pushes the button correspond -

- 
- 

ing to the leg for wh i ch he wants to change speed and :

1. Uses the teletype keyboard to input the speed he wants used

on the selected leg . A decima l point is put at the end of
the number. (This is essent ia l ! )

2. Pushes the teletype key marked “CR.”

Thus , if he wanted to change the speed on leg 3 to 850 knots , he would:

1. Press function button CHANGE VELOC ITY

2. Press function button “3”

- 3. Press teletype key “8”

4. Press teletype key “5”

5. Press teletype key “0”

6. Press teletype key “.“

7. Press teletype key “CR”

When the operator has changed all the way points and speeds to those

he wants , he then presses the function button marked EVALUATE/HALT . The NP
algorithm will begin to operate , i.e., EVALUATE using the starting point
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consisting of the four way points and f ive speeds . Once the algorithm has
begun operating, only the EVALUATE/HALT button will remain lighted and the only
control at the operator ’s disposal is to halt operation by pushing this button .

The primary ind i cators that the operator uses to dec i de to halt the
algorithm are the display s of the numbe r of function eva l uations and the utility
of the latest tr ial solution . In genera l, a plot of u t i l i t y  versus function
eva l uations would appear as sh’~w~, in Figure 9. The subject should s top the
al gorithm when it reaches the point shown in Figure 9 because there will be
l i t t le  more ut i l i ty  to be gained by lett ing the algorithm continue . He should
then input a new set of way points and speeds and start the al gorithm again.

Stop the al gorithm
UTILITY approximately here

FUNCT I ON EVALUAT I ON S

Figure 9. Typica l Plot of Ut i l i ty  Versus Function Evaluation .

As the al gorithm operates , he can see variable length arrows appearing
briefly at each way point. These represent potential changes in the location
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of a way point being considered by the algor ithm. When ut i l i ty levels off , the
magnitude of changes in the following will also become small:

1. Va l ue of “Prob ,” i.e., the probability that the air strike

wi l l  be detected prior to arriva l at the target.

2. Va lue of “Fuel ,” i.e., the fue l that w i l l  be consumed for the
latest tr ial solution .

3. Speed changes ind icated on the speed/leg graph .

4. Lengths of arrows appearing at each way point.

While the algorithm is operating on the f irst set of way points and
speeds input by the operator, he should count the number of regions that could
reasonably be expected to contain the best path. Dividing 15 minutes by the
number of reg i ons to be explored ind i cates approximatel y the number of minutes
the operator should devote to each reg ion. Depend ing on the problem, there
wi l l  be enough time to explore 4, 5, or 6 reg i ons.

At the end of 15 minutes the computer w i l l  have stored :

1. The utility of the path comprised of the first way points

and leg speeds.

2. The ut i l i ty  of each best-solution—to—da te at the - end of
each minute.

3. The utility of the most recent solution at the end of each

minute.

These are the data that are used In the analysis of operator generated data.
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B. DYNAMIC PROGRAMMING OPTIMIZAT I ON

1. Characterist ics of the Dynamic Programing Optimization Techniques Used
i n  the Experimen t

A dynamic programing (DP) optimization technique is used in the experi-
ment. The “setup” for using the dynamic programming technique includes a grid
network of evenly spaced points and a cho i ce of three aircraft speed l evels ,

namely, low , medium, or high . The DP technique specifies the best path by

connecting points on the grid between air strike launch point and target and
specif ying one of the three speeds for each path leg between two connected
points. The advantage of DP is that it does find the best path for the grid and
speed l evels it is using. A disadvantage of DP is that it takes a long time

(even with the computer doing the number crunching ) to reach a solution . For
example , the time to reach a solution for a nine—by-nine grid wi th three speed
l evels is about four minutes ; it is about eight minutes for a ten—by—ten grid.
This occurs because DP investigates every al lowable solution and then picks

the best. if the grid size has finer resolution , e.g., 18 x 18 or 36 x 36 , or

the number of al lowable speeds is larger than three , then solution time
increases greatl y. Another disadvantage is that the coarse grid points are
often unpropitious ly l ocated with respect to the detection capability con-

tours. The result is that the algorithm will avoid some valleys in the detec-

tion contours because there are no grid points in the valleys.

The DP algorithm uses the classica l, grid-oriented , backward recursion
approach. Minor adaptations have been made to allow the classica l approach to

accept the nonlinea r ut i l i ty  criterion function . These are thoroughly discussed
in Appendix C.

2. Operator Aided Optimization Using the Dynamic Programing Optimization

Algorithm

The display appears as shown in Figure 10 at the beg inning of a problem
to be solved with the DP algorithm. The operator uses the function button box
(see Figure 11 ) and the track ball to tell the program what to consider when

it works on the problem. Operator inputs include :
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Figure 10. Display Appearance at Beginning of Probl em
to be Solved Using OP Algorithm.
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1. A boundary drawn around a reg ion. This algori thm confines its

sea rch for a solution to this reg ion .

2. The grid size to be used by the algorithm, that is , 9 x 9,
18 x 18 , or 36 x 36.

3. Speeds that the algorithm is not to consider when search i ng for
a solution .

In most cases, the algorithm finds a trial path consi dering the operator inputs ,

displays this path and its utility , and stops. (The exception is covered below.)

It does not start again until the operator has completed a new set of inputs or

tells the algorithm to do another iteration using the old inputs. New i nputs

may be 1 , 2, and 3 above, or 2 and 3, or 3 only.

The operator ’ s f i rst  task is to draw his estimate of the best path and
wr i te his estimate of the best leg speeds . He does this on a separately pro-
vided paper copy of the problem. This solution represents the Operator Una i ded

concept.

The operator ’s next task is to decide in his mind the rough outlines of
the regions he w i l l  wan t the al gorithm to explore. In genera l, he w i l l  pick
two or three large reg ions and use the coarsest grid size , namely, 9 x 9, to
explore these. In the beginning, a boundary should be drawn so that it encom-

passes more than one viable path. This way the solution provided by the DP

al gorithm reduces the ambiguity about where the better paths reside. When he

finds the region that has the best path, he refines his solution by using a

finer grid size (normally 18 x 18) ar1d making the area wi thin the bounda ry

smaller.

When the operator has dec i ded the first reg i on he wants to explore , he
responds to the flashing prompt MOVE CURSOR at the lower left of the display by
mov ing the track ball to draw the boundary . This is indicated by the fact that
the function button DRAW i n  Figure 1 1 is lighted . The launch point and the

target must be contained within the closed boundary , If one of these points is

~~
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not within the boundary , the computer will recognize this as an error , erase

the boundaries drawn , and give the prompt MOVE CURSOR again. Thus, if the

operator wants to redefine his boundary after some of it nas been drawn , he can

start over by clos i ng the boundary without including the l aunch or target points.

When the boundary has been closed , the computer is ready to accept the

specification of grid size as indicated by the flashing prompt SELECT GRID and

the three lighted function buttons marked 1 , 2, 3 at the l ower left of the box.

By pushing 1 , the coarse grid is selected and displayed . Pushing 2 selects the

med ium grid of 18 x 18, and pushing 3 selects the fine grid of 36 x 36.

Now the prompt BOUND SPEED flashes at the l ower left of the display .

The arrow at the top left points to a space between two adjacent horizontal

grid rows. By now pushing the buttons L, M , or H at the bottom left of the

function box, the operator deletes from consideration by the algorithm low ,

med i um or high speed for any path leg that crosses between the two rows and for

any horizontal leg in the upper of the two rows. When the operator is finished

spec i fy i ng speeds to be deleted from consideration , he pushes the lighted button
NEXT. Upon doing this , the arrow moves down to the next pair of rows and the

operator repeats the procedure. For example:

1. If the operator has pushed L, M , and NEXT , the algorithm will

not consider low and med i um speeds for any leg crossing between

the two rows on either side of the arrow and for any horizontal

leg in the upper row.

2. If the operator has pushed onl y NEXT , then the algorithm will

not del ete any speeds and the arrow will move down to the next

pair of rows.

3. If the operator pushes L, 14, and H for any pair of grid rows

above the target or below the launch point , the algorithm will

not consider any leg that would be above the target or below
the launch point. In this case, deleting L, M , and H is per-

missible and will save time .
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4. If the operator pushes L, M , and H for any pair of grid rows

between the target and launch points , the computer will be

unable to find any solution . At the end of severa l minutes ,

the display picture will reappear and the blinking prompt

NO SOLN YET will appear at the lower left of the display . In

this case, deleting L, 14, and H is not permissible and wastes

time .

The operator Continues to delete speeds as he desires un til either (a) he has

deleted speeds for the last pair of rows or (b) he dec i des that he does not want

to delete any more speeds. In either case he then pushes the EXIT button . This

completes the operator ’s input and the display screen goes blank while the

computer is working on the trial solution . This may take two to five minutes

depending on the size of the region within the boundary , the grid size, and the

number of speeds deleted .

In most cases when the display reappears , the trial solut i on path is

shown and the utility for that path and the function buttons BOUND , GRID , SPEED
and NEXT are li ghted. The operator does not know if the trial solution is the
best possible solution for his inputs or not . He has two basic cho i ces:

I. If there are two trial paths already displayed , he remembers the

utility value for the most recent iteration displayed in the

box at the top center of the display and then pushes NEXT. By

push i ng NEXT , the algorithm will perform another iteration and

show the new and best-to—date trial solutions and their utili-

ties, If the remembered utility of the prev i ous trial and the

utility of the current trial are the same, then the optimum

solution for the inputs has been found . If there is little

difference in the two most recent utilities , then the best

tactic will usually be to start i nvestigating another region

or to refine the solution in the current reg ion by using a

finer grid.
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2. By pushing BOUND , GRID , or SPEED he can redefine the i nputs

considered by the algorithm. If he pushes BOUND , then he must

go through all three steps of drawing the boundary , selecting

grid size , and deleting speeds. If he pushes GRID , then the

algorithm will use the previously drawn boundary and the opera-

tor selects grid size and del etes speeds. If he pushes SPEED ,

the algorithm accepts the previously drawn bounda ry and grid and

the operator only deletes speeds. If the area within the bound-

ary was large , then the operator should redefine the boundary to

include a much smaller number of points in the vicini ty of the

path selected by the previous i teration .

If the display reappears without a new trial sol ution (the exception

previously noted), NO SOLN YET will flash at the l ower left of the display. This

means that the algorithm has not been able to find a complete trial solution on

a single iteration . In this case the operator ’s suggested response is to push

the NEXT button so that the algorithm will go to the next iteration to complete

the trial solution.

-40-

___________________ _ _ _ _ _  

I— - - -
— —— —S.--- -- ~~~~~~~~~~~~~~~~~ . -- _~~~ _~~~~~~~~~~ -- -.



-- 5- --- - -----~~—-- -~~~~~~~~~~ 5-

— — -.--—~~~~~- —- -5— - 5- - - - - - -

IV. DESCRIPTION OF THE EXPERIMENTS

A. EXPERIMENTA L DESIGN

I. Hypotheses

Two types of experiments were conducted. In the Type I experiment,

the performance of unaided operators was compared aga i nst the performance of

the same operators using an opt i ii~ization aid. In the Type II experiment the

performance of operators using an optimization aid was compared against the

performance of an automated optimization procedure as a function of time . These

two types of experiments were conducted for each optimization al gorithm , namely,

the nonlinea r programing (NP) al gorithm and the dynamic programing (DP)

al gorithm.

The experimenta l null hypotheses tested for the NP algorithm were:

1. Path utilities generated by operators are not si gnificantly

different as a function of concept (unaided versus OAO), prior

experience using the DP aid , operators, replications , or their

interact ions.

2. Path utilities generated by operators using OAO are not sig-

nificantl y different from path utilities generated by the

automated NP algorithm using the random starting point (see

Subsection Ill—A for the definition of random starting point) .

3. Path utilities generated by operators us i ng OAO are not sig-

nif icant ly different from path utilities generated by the

automated NP algorithm us i ng the parabolic starting point

(see Subsection Ill—A) .

The experimenta l hypotheses tested for the DP algorithm were:

14~ Path utilities generated by operators are not significantly

different as a function of concept (unaided versus OAO), prior

experience using the NP aid , operators , rep l ica t ions , or their
interact i ons.
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5. Path utilities generated by operators u s i n g  OAO are not sig-

nificantly different from path utilities generated by the

automated DP algorithm.

2. Independent Variables

The independent variables for the Type I experiments were:

I. System concepts

2. Prior exper ience u s i n g  OAO

3. Operators

4. Replications

The i ndependent variable for the Type II experiments was system concept ,

name l y operator aided optimization versus automated optim ization .

a. Prior OAO Experience. Ei ght of the 16 operators worked the OP

prob l ems first and then the NP prob l ems. The other ei ght operators did the

NP problems first. Thus for one set of data , for example the NP data , half

the data was generated by operators with no prior experience using either the

NP or DP aid and half was generated by operators with prior experience using

the DP aid.

b. Ojerators. There were 16 operators. Descriptive information about

the operators and their training is given in Subsection IV— B.

c. Replications. Each operator was given a set of 12 prob l ems to be

solved us ing the appropriate OAO procedure (one set of 12 for the NP aid ,

another set of 12 for the DP aid) . At the beg inning of each problem the opera-

tor recorded his estimate of the best solution . Then he proceeded to use the

OAO procedure. All subjects worked the same set of twe l ve problems . The

learning effect was tested by comparing performance on the first six prob l ems

against performance on the last six prob l ems. Thus , one replication for opera-

tor generated data consisted of six prob l ems.
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The automated NP concept does use random numbers to generate
starting points. For this reason each of the 12 NP problems was run five times
using a different random number seed for each trial.

d. System Concepts for Type II Experiments. The system concepts for
the NP algorithm were operator aided optimization , automated optimiza tion using
random starting points , and automated optimiza tion us !ng parabolic starting
points. The system concepts for the DP al gorithm were operator aided optimi-
zation and automated optimization .

-3. ~~pendent Variables

a. Type I Experiments. The dependent variable for the Type I experi-
ments comparing unaided optimization with OAO was normalized utility. The raw
data for unaided optimiza tion was the utility of the path selected by the opera-
tor. The raw data for OAO was the u tility of the best path found by the operator
using OAO during the fifteen—minute trial. For each prob l em these data points
were normalized by dividing each va l ue by the highest utility achieved by any
operator or the automated algorithm on that prob l em. Thus hypotheses I and 4
were tested by comparing normalized utili ty of the unaided solution against the
normalized utili ty of the best OAO solution .

b. Type II Experiments. The raw data for OAO and automated optimiza-
tion at time “t” was the best utility found by the operator or automated al go-
rithm from time zero to the end of time “t”. Table 3 illustrates the mean i ng.
The raw data across operators and the automated algorithm was normalized for

each minute of each prob l em by the best utility achieved by any operator or

any run of the automated algorithm.
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Table 3 . Example of Data Generated During an
OAO or Automated Optimization Trial.

Raw Data , i.e., Best
Best Utility Generated Utility from Time Zero

Minute During the xth M inute to End of xth Minute

20 20

2 60 60

3 62 62

4 45 62

5 54 62
6 55 62
7 49 62
8 65 65
9 67 67
10 68 68

11 37 68
12 52 68
1 3 56 68
1 4 57 68
15 30 68

If raw utility data achieved by two competing methods A and B are as

shown in Figure 12 (a), then it is clear that method A is superior. However ,

if utilities ach i eved are as shown in Figure 12 (b), then the time preference

for util ity must be stated so that the optimizers (operator or automated

algorithm) may use search strategies best su i ted for the stated preference.
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Figure 12. Hypothetica l Utilities Achieved by Competing Methods.

Two dependent variable s were used to test hypotheses 2, 3, and 5. One
was the best utility to date (since time zero). The other was the time average
Of best utility to date according to the formula:

t
4. ! u(t)

t—l ,2,

where U(t) is the normalized utility at time “t” of the best utility to date.
With these dependent variables it was possible to test hypotheses 2, 3, and 5
for:

1. Any specific time

2. Any specified time Interva l by comparing data curves.

4. Prob lem Varia b les

The elements that defined a given prob l em were the adaptation of the

ONRODA airs trlke scenario map (Section Il—A) , sensor loca ti ons , and strike path
start point. The steps described below were taken to make prob lems nearly

equally difficult for the operators.
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Each problem used the same number of sensors , namel y, ten , and all sen-

sors had the same detect i on capability. One sensor was always l ocated on ONRODA

Island. The remaining nine were positioned by a pseudo random process. A com-

puter program was written to randomly position the nine sensors subject to two

constraints. One constraint was that no pair of sensors could be positioned

closer to each other than a certain minimum distance. The other constraint

was that all sensors were l ocated below ONRODA Island (see Figure 7). These

were realistic constraints since an enemy oppos i ng the air strike would group

his forces between ONRODA and the threat and would maintain some minimum

spacing between units .

About 50 configurations of sensors generated by the program were

exam i ned by the experiment des i gners. Starting points for the air strike were

manuall y selected so that the largest number of paths having nearly equa l

utility would result for each of the 50 prob l ems. Then the 24 “best” problems

were sel ected as experimenta l prob l ems. The basis for selecting the experimenta l

prob l ems was (a) at least three paths hav ing nearly equa l utility and (b) no

path selection strategy was best for a large majority of the problems . (In

the previous experiment reported in Reference I , the strategy of selecting

paths along the right or left edge of the geographica l area displayed to the

operator was best for nearly all prob l ems.) Thus , problem difficulty was not

treated as an independent variable in the experiment because:

1. Problems were constructed to be nearl y equall y difficult.

— 2. Normalization of raw data tends to eliminate whatever dif-

ferences in problem difficulty rema i ned after the problems

were selected .
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5. ANOVA Design for Comparing Performance of Unaided Operators with OAO

The purpose of the Type I experiment was to determ i ne if the operators

would achieve better performance using the NP and DP aids for 15 minutes than
they would ach i eve without the aids. A nested factorial , random i zed block

experiment was conducted . The factors were:

• Concepts (C.) — 2 l evels (Una i ded operator and operator aided

optimization)

• Prior Experience (Ps
) - 2 l evels (Half the operators did DP

problems first and NP next ; the other half did NP , then DP)

• Operators (Ok(j)) 
— 8 l evels nested within training; therefore

16 operators total

• Replications (R1) 
— 2 l evels (First half of trials and second

half) .

There were no des i gned differences in problem difficulties. Thus , differences

in problem difficulties were not treated as a factor. Any spurious differences

were mitigated by (a) using normalized data in the analysis and (b) balanc i ng

problems within each group of 8 subjects so that 4 subjects got one set of 6

problems in the first replication and the other 4 subjects got the remaining

6 problems in the first replication . The model for the normalized dependent

varia ble i s:

Y + C. + P. + CP . + 0 . + CO. . + R (10)
i jklm i j  ij k(j ) ik( j ) 1

+ CR. + PR. + CPR . + ORil jl IJ l k(j)l

+ COR +
~~ik(j)l m(ijkl)
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B. OPERATORS AND TRAININ G OF OPERATORS

There were three subgroups within the 16 operators. Ten operators were

juniors or seniors from UCLA majoring in eng i neering or computer sc i ence. Two

operators were the staff members at Integrated Sciences who designed the aids

and the experiment. The remaining four operators were alike in that none of

them had a technica l background . Their educationa l backgrounds were :

• Master of Arts (Education)

• Master of Arts (English)

• Master of Arts (Urban Affa i rs)

• Associate of Arts (Art)

Operator training for use of each aid , i.e., the NP aid and the OP

aid , was conducted in three phases: orientation , exercise using training

prob l ems , and a pre-experiment briefing. Orientation for each aid began with

reading the training materials deve loped for that aid. The training materials

treated the following topics :

• Purpose of the experiment

• Representation of sensor detect i on capability on the display

• The utility func t ion

• Characteristics of the optimization technique used (NP or DP)

• Operation of the aid

• Example of a prob l em worked out (five figures for the DP aid ,

nineteen figures for the NP aid , with text coments and guide-

lines accompany ing each figure).

The training materials are in Appendices D and E.

After each operator read the training materials , he conferred wi th one
of the ISC staff members who des i gned the experiment. Operator questions were

answered during this conference and the ISC staffer verbally tested the opera-

tor ’s understanding of the prob l em situation and use of the aid. Then the

operator worked eight prob l ems at the display. Questions tha t arose during
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these problems were answered by an ISC staff member with experience using the

aid. Another conference between the operator and one of the experiment designers

,, was held after the training problems were completed . This conference focused

on the search strateg i es that the operator had learned and planned to use. The

experiment designer advised the operator of potential pitfalls and usefu l mod i-

fications to the planned strategies. The operator began his experimental

trials after this conference. No further training was given during the trials.

The average training time across operators was about four hours for each aid.

C. EXPERIMENTAL PROCEDURE

The experimenta l team consisted of the test director and an operator.

Each operator was assigned a unique identification code and the sequence of the

twelve prob l ems correspond i ng to that code was stored in the computar. The

test director scheduled the software and entered the operator ’s code. That
procedure “brought up” the operator ’s next (uncompleted) problem on the dis-

play . At the beg i nn i ng of the prob lem the operator entered his best estimate

of the solut i on as described in Sections Ill- A— 3 .for the NP aid and III— B - 2

for the DP aid. Entering this best estimate took between 0.8 and 1.2 minutes

for the NP aid and 0.5 and 0.9 minutes for the DP aid. (These estimates are

based on the personal experience of the experiment designers and their observa-

tions and conferences with operators.)

Feedback to the operator on his performance was provided throughout

each trial. This was done in the following way: the time averaged performance

of the automated algorithm was displayed at the beginning of the trial for all

15 trial minutes. This disp lay was located just above the picture of the

scenario. At the end of each minute the compu ter calculated and disp layed the

operator ’s time averaged performance under the corres ponding value for the
automated algorithm. Thus the operator obta i ned feedback on how he was doi ng

in an absolute sense and i n a rela ti ve sense compared to h i s “competition ,”

the automated algorithm.

The test d irector remained on call dur i ng each trial to monitor the
trials , troubleshoot any equipmen t malfunction s or operator—Induced problems
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in entering path data , and to bring up the next trial once the previous trial
was completed. The test director spent part of the time in the computer and
display facili ty where the operator worked the problem and the remaining time
in an adjacent room. Operators normally did two, three, or four trials in a
row before taking a break. Multiple trials were permitted because operators
did not experience fatigue after as many as three sequential trials.
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V. RESULTS

A. ANALYS I S OF UNA I DED OPERATOR AND OAO DATA FOR NP AI D

A four-way ana l ysis of variance was performed on the normalized path

utility data generated by operators with and without the NP aid. After pooling

procedures (Reference 5) were applied , the ANOVA results were as shown in

Table 4.

The operators using the aid did si gnificantly better than without the

aid. This was expected since they had 15 minutes to improve the solution by

using the aid. Of greater interest is the degree of improvement made possible

with this aid. The average improvement across all subjects and trials was 29~
with a range of 9~~ 

to l23~.

Performance was si gnificantly different across operators but this was

solely due to performance variability in una i ded operation . This can best be

understood by considering the following: average normalized utility without

the aid was 77.24 utility points; the standard deviation was 13.54. Average

normalized utility with the aid was 99.5; the standard deviation was onl y 0.38.
Thus the aid served as an “equal i zer.” It enabled operators having relatively

low utility scores without the aid to do as well when using the aid as those

who had relatively hi gh scores wi thout the aid. The lack of a techn i ca l edu-

cation was apparently not an imped iment to good performance with or without

the aid. Figu re 13 shows the average utility with and without the aid for the

12 operators who have a technica l education and the four operators who don ’t.

The significant interaction between prior experience and replications

occurs solely on unaided operator data . The interaction is plotted in Figure

14. The plot indicates that the prior experience using the OP aid was a hand i-

cap rather than a help. However, the performance gap was smaller in the second

replication than it was In the first.
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Table 4. Analysis of Variance for Comparing Una i ded
Operator and OAO with the NP Aid .

Degrees of Sum of Mean
Source of Variation Freedom Squa res Square obs

Concepts (C) 1 47,597 47,597 327.3*

Prior Experience (P) 1 2,745 2,745 4.6
CxP 1 2,580 2,580 5.0

Operators (0) 14 14,248 1 ,018 4.1 ”

CxO 14 13,451 961 4.2*

PxReplications 1 598 598 4.1

CxPxRep lications 1 517 517 3.6

OxRep l i cations 14 3,514 251 1.7*

Cx0xRep lications 14 3,206 229 1.6*

Pooled Error 322 46,829 145 -

Totals 383 135,285

= 0.10

Table 5. Analysis of Variance for Comparing Una i ded
Operator and OAO with the DR Aid.

Degrees of Sum of Mean FSource of Variation Freedom Squares Square obs

Concepts (C) 1 9,514 9,514 48.2*

Prior Experience (P) 1 3,752 3,752 19.0
*

CxP 1 496 496 1.2

Operators (0) 14 20,691 1 ,478 7~5*
C xO 14 3,038 217 1.1

Cx P x Replications 1 424 424 2.2

Pooled Error 351 69,246 197 —

Totals 383 107 ,161

0.10
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Figure 13. Average Performance of NP Operators
With and Wi thout a Techn ica l Background .
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Replications for Unaided NP Operators

B. ANALYS IS OF UNAIDED OPERATOR AND OAO DATA FOR DP AID

A four—way analysis of variance was performed on the normalized path
utility data generated by operators with and without the OP aid. After pooling

procedures were applied , the ANOVA results were as shown in Table 5.

Operators using the aid did significan tly better than without the aid.

Again , this was expected since they had 15 minutes to improve the solution using

the aid. The average improvement across all subjects and trials was l2~ with
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a range of -9.1% to 27%. The lower number in the range was due to two

trials by one subject who did not sufficiently constrain the problem. Conse-

quently, on one trial the al gorithm never reached a solution within 15 minutes ,

and on the other trial it yielded a normalized ut ility of only 20.4 near the end

of the 15—minute period . These trials did not represent the operator ’s steady

state performance and thus they were eliminated from the following ana lysis.

With the two unrepresentative trials eliminated , the l ower end of the range

was 3.5% improvement.

Performance was significantly different across operators but there was

no interaction with concepts (unaided versus OAO) as was the case with the NP

data. Average normalized utility withou t the aid was 80.3 utility points; the

standard deviation was 9.8. Average normalized utility with the aid was 91.2;

the standard deviation was 7.0. Again , the l ack of a techn i cal education was

apparentl y not an imped i ment to good performance with or without the aid.

Fi gure 15 shows the average utility for operators with and without a techn i-

cal education .

Operators who had previously used the NP aid did significantl y better

than those without that experience . The difference on a percentage basis

was 7.6%.

C. ANALYSIS OF OAO AND AUTOMATED RESULTS WITH THE NP ALGORITHM

The previous subsections treated data generated by operators . Compari-

sons were made between:

1. Utili ty generated at the beginn i ng of a problem when the

operator estimated the best path without any aid , and

f 2. The best utility the operator was able to generate using the

aid over a period of 15 minutes .

This and the next subsection compare as a funct i on of time the performance of

operators us i ng an aid with automated performance of the same al gorithm which

is controlled by the operator during OAO .
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Figure 16 shows a plot of best-to—date normalized u tility versus time

for OAO and automated use of the NP algorithm. All three curves are si gnif i-

cantly different from each other at the 10% level by the Wilcoxon matched-pa i rs,

si gned—ranks test. The plot verifies that the pa rabolic starting point pro-

cedure is clearly superior to the random starting point procedure at all times.

Superiority ranges from 215% at minute 1 to 12% at minute 15. OAO using the

NP algorithm is superior to automated use of the al gorithm with parabolic

s tar t ing  point; super ior i ty  is 27% at minute 1 , 53% at minute 2 , and then
gradually decreases to 27% at minute 15. The average utility accomplished by

unaided operators is shown as a small square plotted at 1.0 minute , the sub-

jectively determined average time when the operator ’s una i ded estimate was

input. The reader can compare the gradua l improvement in the average OAO

solution with the average unaided solution .

Figure 17 shows a plot of time averaged normalized utility calculated

according to the scoring rule (Equation 9) versus time for (lAO and automated

use of the NP algorithm. Again , all three curves are significantly diffe rent

from each other at the 10% l evel by the Wilcoxon matched—pairs , sig ned—ranks

tes t .  The plo t shows the same pat tern as observed in Figure 16. The main

d i f fe rence is a greater marg in of super io r i ty  for  the parabol ic s tar ti ng
poin t ove r the random starting point.

Figure 18 shows “instantaneous ” normalized utility for the OAO and

automated NP al gorithm data. Instantaneous utility is defined to be utility

of the most recent solution at the end of the n~
’
~ minute. The OAO data

quickly reach and maintain hi gh values because the operators are able to

rapidly input good starting points . The automated starting points are rela-

tive l y poor compared to the operator sel ected starting points and therefore

the average automated solution at any point in time is relativel y poor. Para-

bolic start i ng points are usually superior to random starting points. Thus ,

— 
instantaneous utility generated from parabolic starting points is superior to

utility generated from random starting points as shown in the figure.
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Instantaneous normalized utility is shown in Figure 21 for GAO and

automated OP algorithm data . The automated algorithm curve is higher than the

OAO curve because the automated algorithm only works on one problem , therefore

the instantaneous utility can never decrease. The operators made several sets

- 
of inputs during the 15 minutes of a trial and thus they work on severa l prob-

l ems. The peak for OAO instantaneous utility occurs early at the fourth

minute because operators work on the path that they estimate is best. The peak

indicates that , in genera l , the operator estimates of the best path are correct.

At first blush it might appea r from Fi gure 19 that the automated OP is

generall y equa l to OAO and certainly better if the operator can wait four

minutes. However , this is not quite correct. An i mportant point to note about

the comparison of OAO and automated results is that they are influenced by the

number of points in the coarse grid. Automated use of the DP algorithm with

the 9 x 9 coarse grid yields a solution in about four minutes ; it takes eight

minutes to reach a solution using a 10 x 10 grid and two hours when the

18 x 18 grid is used. The operator using a 10 x 10 grid will take longer than

he does wi th the 9 x 9 grid. However, the percentage increase in time used by

the operator is much smaller than the percentage increase for the automated

al gorithm. The operator using the 18 x 18 grid can obtain a solution (not

necessarily the best solution) in about four minutes . Thus , the operator can

investigate three possible solut ions in fifteen minutes whereas it takes the

automated algorithm two hours to get the best solu tion . Therefore, Figures 19

and 20 only appl y for the particular coarse grid size used by the automated

algorithm and they probabl y present the automated algorithm in a better light

than it would appear if a range of coarse grid sizes had been used and analyzed

for the experiment.
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V I. FINDINGS AND RECOMMENDAT I ONS

A. FINDINGS

— 1. Comparison of Unaided Operators and OAO for the NP Aid

The operators using the NP aid did significantl y better than without

the aid. The average improvement across all subjects and trials was 29% with

a range of 9% to 1 23%. Performance was significantl y different across operators

but this was solely for unaided operat i on . Thus the aid served as an “equalizer. ”

It enabled operators having relatively low scores without the aid to do as well

as those who had relativel y hig h scores without the aid.

Lack of a technica l education was apparently not an i mpediment to good

performance with or without the aid.

Prior experience using the DR aid was a hand i cap rather than a help.

2. Comparison of Unaided Operators and OAO for the DR Aid

Operators using the DR aid did significantly better than without the

aid. The average improvement across all subjects and trials was 12% with a

range of 3.5% to 27%. 
-

The lack of a technica l education was apparently not an imped i ment to

good performance with or without the aid.

Operators who had prev i ously used the NP aid did significantly better

than those withou t that experience. The difference on a percentage basis was

7.6%.

3. Comparison of OAO and Automated Results Using the NP Algorithm

OAO was significantly better than automated use of the NP algorithm

for both the Parabolic Start i ng Point and Random Start i ng Poi nt rules. The
Parabol i c Start ing Point rule produced si gni f icant ly  better performance than

the Random Star t ing Point rule. Superiority of OAO over automated use of the
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NP algorithm with the Parabolic Starting Point rule was 27% for best-utilit y—

to—date data at minute 1 , 53% at minute 2 , and then gradually decreased to
27% at minute 15.

4. Comparison of OAO and Automated Results Using the OP Al gorithm

Neithe r OAO nor automa ted use of the DR al gori thm was consis tent ly
superior throughout the trial period for best—to-date utility data. OAO was
superior to the end of the third minute. The automated algorithm was superior
from minute 4 to minu te 15 by margins rang ing from 7% at the fourth minu te ,
to 12% at the fifth minute , and then slowly decreasing to 5% at the fifteenth
minute.

OAO was si gnificantl y better than the automated al gorithm for time
averaged data. However , the marg in of superiority decreased from 92% at minute
4 and 41% at minute 5 to only 1% at minu te 15.

These results apply for the 9 x 9 coarse grid size used by the automated
algorithm. The results would be different if the numbe r of points in the coarse
grid were larger; it is highly likely that increasing the number of points in
the coarse grid would favor OAO.

5. Miscellaneous Findings

The NP aid was less complex to use than the DR aid and operators
generally preferred working with the NP aid to working with the DP aid. Oper-
ators using OAO with the NP aid found the g loba l optimum on a hi gher percentage
of trials than operators using OAO with the OP aid. The NP aid more naturally
fits the air strike problem than the DR aid. The reason is tha t the NP aid
operates on space and speed continuums whereas the DP aid must operate on
discrete spatial grid points and speeds. Thus, using the OP aid for the air
strike problem amounts to making a forced fit of a method that deals with
discrete points to a problem described by continuous variables .

The average time required to adequately train an operator to use

either aid was about four hours.
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6. Potential Implication of the Fin d in g~

OAO is potentially attractive as a decision aid for a class of prob l ems

when all of the following are true:

I. Solution space has high dimens i onal ity (e.g., > 5).

2. Cri terion function is nonlinear and multi—moda l .

3. Pert i nent prob lem de f i n i t i on  informat ion is not avai lable wi th
enough advanced warning to i ncorporate into the design of an

operating optimization software package that would adequately

handle all or most problems in the class.

4. Pertinent information concerning availabl e decision options

is  also not available in time to impact software development

5. The prob l em can be represented in geometric/graphica l format.

OAO is attractive when the above conditions hold because:

I. The operator can see what is happening during the optimization.

With pictorial problem representation , he can make adjustments

to the op t im iza t ion  procedure or resul ts to compensate for

lim i t a t i o n s  in problem representation more e a s i ly  than he can

when there is no pictorial rep resentation .

2. The time requ i red to train operators to use OAO with pictorial

problem representation is apparentl y relatively short and does

not require technica l knowl edge of the optimization al gorithms .

B. RECOMMENDAT I ONS

I. OAO NP Versus GAO DP
If only one aid is to be imp l emented on the Operational Decision Aids

facility at the University of Pennsylvania , then the NP aid should be chosen.

If funds are available it would be worthwhile to imp l ement the DR aid also so

that Navy officers and R & 0 managers could get a feel for the way such an aid

could be used . TFC decision problems that involve discrete variables should be

examined for their applicability to an GAO DR type aid.
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2. Taxonomy of Navy Command and Contro l Decisions

ISC found that the three-type characterization of mach i ne participa-

tion in decision making used in this report was useful. Based on this useful—

ness , ISC suggests that the third type , man helping machine to help man , be

used in future command and contro l studies . (SC wi l l assume that command and

control decisions can be categorized as (SC suggests. If this assumption is

valid , then (SC recommends that decisions for wh i ch the third type is appro-

priate be further eva l uated to determine if geometric/graphic representation

i s the most efficient way to represent the prob l em in each case.

3. Simulation of Real-T i me Dynamics

The ocean—borne enemy sensors facing a real-world a ir strike planner

are in mot i on during the planning and execution of the ai r strike . Consequently,

the detection field representing the joint detection capability of enemy senso rs
is dynamic and not static. The problems used in the recentl y completed experi-

ment show static sensors to the operators.

Representing the more realistic dynamic situation i nvolves dynam i cally

updating the detection contours to account for the changing positions of enemy

sensors. The contou r drawing algorithm for a machine stored analytic function

representing joint sensor detection capabi lity is relatively complex . In order

to get the best “fit ,” i.e., best representation of the contou rs , it is cur-
rently necessary to vary a weighting factor , visuall y observe the contours d rawn

for each va l ue of the weighting factor , and select the va l ue that gives the

best fit.

Recommended steps to be taken in imp l ementing rea l time dynamics are:

1. Devise a method for automatically obtaining an acceptable

fit for the contours.

2. Prov i de the operator with controls that will enable him to

consider sensor movement while planning the air strike .
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3. Provide the operator with controls tha t will enable him to

conside r sensor movement during the air strike and issue

path change directions.

4. Des i gn an exper iment  that would compare operator aided optimi-

zation performance with performance of an automated algorithm.

4. Imp l ementation and Testi ng of a Grad i en t Search Algorithm for NP

A gradient-free algorithm (Rosenbrock ’s method) is the currentl y used

NP algorithm. This was chosen because it could not be assumed that e i ther

f i r s t or second d e r i v a t i v e s  of the criterion function would be available. In

particular , the derivatives would not be available if the detection contours

were drawn as a Sketch Mode l by the operator.

The problems used in the experiment recently conducted did not contain

Sketch Models. Instead the detection contours were drawn from stored analy-

tica l functions wh i ch do have derivatives. Grad i ent search is usuall y faster

than the gradient—free approach . Thus it would be worthwhile to imp l ement a

gradien t search and test its performance against that alread y obtai ned using
Rosenbrock’s method (the variable metric method is recommended). Further , a

gradie it search could be used even in those cases where analytic der vatives

are difficult to compute. A difference approx i mation would then be used for

the derivatives.
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APPENDIX A: CONTOUR DRAWIN G ALGORITH M

For the experiment , it was necessary to come up with a set of “true”
compos i te detection rate contours for each configuration of sensor locations

and sensor sizes used. Each set of true contours corresponds to a “Sketch

Model” the subjects were required to draw, and the true contours were dis—

played as feedback to the subjects at the end of each trial under System

Concept B. The development of the contour following al gorithm wh i ch traces

out the contours required is described below.

A three—dimensiona l functi on f(x,y) defined in a region x0~x~xt,

Yo’Y~Yt 
can be represented in two—d imensiona l space as a series of i so—

altitude contours. in other words, the curve f(x,y) ~ h can be plotted for

every altitude h we have chosen. Each contour thus represents points at the

same specified altitude.

The contour following algorithm requires two major steps. In the

first step, points at each des i red altitude l evel are sampled and stored in
- . a lis t. Then each list of points is examined and the points connected so

that the resulting curves describe the true contours reasonably well. These

two steps are further explained below.

To simplify the exposition , let us for the moment concern ourselves

with one altitude l evel only. The method is easily extended to more than

one altitude .

Suppose we want to find the contours for an altitude Ii. Fi rst we
search in the x—y domain for points at this altitude . We try to find a suff I—

cient number of points (x,y) such that f(x,y) — h. This is done in two

passes.

4 In the firs t pass, a flowchart of which is given In Figure Al , we
lay down grid lines ~ uni ts apart in the Y d rection. The value 6 is

selected such that the grid lines are close enough for the resulting contour
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Fi g u r e  Al. Flowchart for First Step of Contour Following Al gorithms , pass ~~ •
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poi nts not to be too sparse. At the same time the grid lines are not so

close that excessive time is spent in the computations. Each grid line is

then divided into intervals of width 6 (see Figure A2). This leads to another

consideration for the value of 6 in that the f iner the grid resolution the

easier it is to detect sharp ridges and peaks. The functiona l va l ues at

the end points of each interva l are checked to see if the desired altitude

h is bracketed. In other words , we check to see if h is between the val ues

of the function at the two end points. If bracketing occurs we know we can

find a point within the interva l where the value of f is sufficientl y close

to h. We do this by successively halving the interva l until we are close

enough to the desi red point. Each point on the contour found is put into a

list for later use.

: 

,
1

~,grd

_

line

end points of
interval

. —
~~~ 6 -

~~~~
— -

Figure AZ. Example of Grid Line Divi sion. (Each grid Tine
is divided into interv als , such as BC.)

At the completion of the first pass, we move to the second pass;

the corresponding flowchart is shown in Figure A3. Here we lay down a

second grid of the same grid size 6, but this time the grid lines run in the

X direction . Each grid line is divi ded into intervals , each of length 6.

This second grid is necessary because the first grid cannot “see” very well

those contours that are parallel to the grid lines , as shown in Figure A1~- .
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F gure A3, Flowchart for First Step of Contour Following Al gorithm , Pass 2.
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Since the second grid is perpendicular to the first , t can be used

to remedy prob l ems such as that depicted in Figure A4. The second grid is

arbitrari ly disp laced from the first so that grid points from the two will

not overlap , but this is not necessary .

true contour

A 
~ 1
,..grid line

B

C

Figure A14. Error When Using a Single Grid. (With grid
lines in the shown direction , the ABC portion
of true Contour lS not detected by the grid
lines. The dots are contour points p icked up
by grid.)

With the second grid , each interva l on a grid line is checked for

bracketing of the des i red altitude h. Each occurrence signifies a contour

point wi thin the interva l under consideration . Search i ng by interva l halving

yields a point on the contour, and this point is added to our list of contour 
-

points.

At the comp letion of the second pass we have a lis t of points at the

altitude h. Obviously an empty lis t means that no contour at that altitude

could be found. The next step is to reconstruct contours with this non—empty

list of points.
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We generate the contours by connecting the points in a meaning ful

manner. A simplified description of the algorithm used is g i ven below.

1. To begin , a point is obtained from the previously generated

list as a starting point for a new contour.

2. Then this starting point is connected to the point in the

list which Is geometricall y closest to it in the two—dimensiona l plane , but

not exceeding a pre—set maximum distance. The reason that we consider only

those points within a maximum distance is that far away points most likely

bel ong to a different contour curve, though on the same altitude. (This

would be the case, for instance, if the three—dimensional functinn is bi-

modal.) If we run out of points at this point , we are done, if ,qe fail to

find a point sufficiently close to connect to, we revert to Step 1 to start

a new contour.

3. After two points have been connected on the current contour,

we modify our criterion for selecting points to connect to. Let us pause for

a while and examine the situation In Figure A5. There we have just connected

the contour from A to B. At point B we have to choose between C and D as the

next point to connect to. Point D is closer than point C, but going from B

to D i nvolves a greater directional change, as measured by AG2 in the figure.

Assuming our contour to be a smooth curve with minima l zig—zagging , we may

want to connect to point C instead. In order to accomplish this aim , the

criterion function for selecting the next point is modified to be

AS + 8 ‘AG 1

where

AS is dIstance to candidate point (e.g., the length BC)

AG is the directional change (e.g., Ae1)

B Is the weighting factor to be selected by trial and error to
yield acceptable results for types of curves under consideration

With this modified “distance” criterion , we always select a point

with the smallest criterion function . As before, only those points wh i ch

lie within a sufficiently small distance will be cons idered. Before
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connecting to the point selected , it is compared with the starting point
(obtai ned in Step 1), if the starting poin t is close enough. Between the
two, the one with the smaller criterion function is the next point to connect
to. This provision allows us to close the contour curve when we reapproach
the starting point .

I~\Ae 2 
ç

extension of AB

starting point

Figure AS. Selection of Candidate Points for Next Point on Contour.

- . 4. Whenever the contour is closed by reconnecting to the

starting point , we revert to Step I to start a new contour.

5. If in Step 3 we could not find a point close enough to
connect to, we have an open curve. (An open curve can occur, for instance,

when part of the composite detection field lies outside the frame represent-

ing the situation geography boundaries. Examples can be readily seen In

Appendix F.) in this case we return to the starting point for the current

contour and search for another point close to the starting point to connect

to, by reverting to Step 2. For each open contour this procedure of revert-

ing to the starting point will be carried out only once. When nothing can

be done to close the contour , we assume it 15 an open curve, and we go back

to Step 1.

6. Note that in any step a point already connected to will no

longer be considered. The algorithm stops when we are out of points.

Figure A6 prov i des a more detailed representation of the algorithm .
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Figure A6 . Flowchart for Contour Following Al gorithm , Second Step.
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APPENDIX B: NONLINEAR PROGRAMM I NG OPTIMAL PATH SOLUTiON

The method chosen for the nonlinear programing optimization was

developed and proposed by H.H. Rosenbrock (Reference 3). It Is an attractive

method to use for this application because it does not requ i re the calculation

of derivatives . it is fairl y efficient in the numbe r of function evaluations

needed while at the same time being able to handle a wide variety of function

types.

The derivative-free characteristic is necessary in this appli cat ion
due to the nature of the function being optimized , the utility func ti on in
this case. The function is not explicitly expressed In the variables that

are being controlled. The utility Is a direct function of performance

measures (e.g., penetration ratio) and cost. The control variables on the

other hand include sensor types, number of sensors and location . Once these

are specified the simulator (NIBS) calculates the performance figures to be

used in the evaluation of this utility function . The derivatives of such a

function clearly cannot be anaiyt ically obtained . This fact eliminated from

consideration all the optimization methods which requ i re derivative calcula-

tions (conjugate gradient , Newtons , Fletcher—Powell , etc.).

A number of derivative—free methods exist. These include Rosenbrock’s,

the simp lex method of Himsworth, Spendley and Hext, Smith ’s method based on

a conjugate direction , and of course, simp le un i variate search (Reference 4).

Any of these mig ht be suitable for the job. Rosenbrock’s method was chosen
because it had the added flexibility of allowing the introduction of constra i nts

on the controlled variables . These functions could be defined separately from

the utility function that would control the reg ion through which sea rch was
permitted . Although constra i ned optimization is not a reqUirement , it was
felt that it mig ht be needed depending on the global behavior of the uti lity
function . This added flexibility was deemed sufficient cause to select

Rosenbrock’s method as the cand i date optimization scheme.
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Rosenbrock’s method is an extension of the univariate search method.

In univariate search the minimum of a function u(z1,x2,...,x~) i s found
by searching along each of the xj directions in turn. After reducing

u as far as possible with each variable , the procedure moves on to the next
variable in a cycl i cal fashion . This method can bog down on elongated func-

tions with deep troughs. This is because the search directions are fixed

and do not change as a result of progress through the funct i on. The method

developed by Rosenbrock is meant to elim inate this fault without adding a

great deal of complexity or the need for derivative cal culations. The

method basi cally consists of find i ng two factors: (i) Length - of Step and

(2) Di rection of Step. Usi ng these two factors accord i ng to the algorithm

p roposed by Rosenbrock, function minimization can be accomplished.in an

efficient manner on a wide variety of function types.

The sin~,lest problem is to decide the length of step to be taken in

the des i red direction , assuming this direction to be known. The principle

adopted Is to try a step of arbitra ry l ength e. If this succeeds, a is

multiplied by a>l . If It fails , a is multiplied by —B where 0< 8<1 .

“Success” here is defined to mean that the new val ue of u is less than or

equa l to the old va l ue for a minimization prob lem. Thus if e is initially

so small that it makes no change in u , it is increased.on the next attempt.

Each such attempt is called a “trial.”

The remaining factor is to decide when and how to change the direc-

tions j in wh ich the steps are taken. The method uses 11 orthogonal directions

~1’ ~2’ ‘ ~~~~. One trial of the univarlate type is made in each of the ,~
directions in turn. This is done until at least one trial is successful in

• each direction , and one has failed in each direction. It will be noticed

that a trial must in the end succeed because a becomes so small after repeated
• failures that it causes no change in u. The set . of trials made with one set

of directions , and the subsequent change of these directions , is called a

“stage.”
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The method chosen for finding the new directions of ~ was the follow-

ing. Suppose that is the algebraic sum of the lengths of all the success-

ful steps 
~l’ 

in the direction 
~l’ 

etc. Then let

:: A1 + + ... +
A2 — d24 + ... + (a.i)

Thus A 1 is the vector joining the ini t ial and final points obtained by use
of the vectors 

~~~~
, 4, ..., ~~~~, A2 Is the sum of all the advances made in

direct ions other than the firs t, etc.

Orthogonal uni t vectors ~~~~, ~~~~, ..., ~~~~, are now obtained i n the
following way:

— B1/~B~

= A2 — Af E ~~F~

~~~. : B2/ 1B 2 1 (B.2)

=

— B~/JB~

No ambiguity is likely to arise, since the method used ensures that no d can
be zero. It Is of course possible that one or more of the d are so small

that they are lost In the sunriations of equations (B.1), but this Is unlikely

in practice. The result of applying equations (B.b) and (B2) several times Is

to ensure that 
~ 

lies along the direction of fastest advance, 
~~ 

along the
• best direction wh ich can be found normal to 

~~~~
, and so on.

The numerical work of develop i ng tP”s process was carried out to

determine appropriate val ues for a and B. In addition , tests were run on a

variety of functions in comparison with other available methods. As a

result of testing Rosenbrock selected the values a — 3, 8 — 0.5 for use in

his method. Usi ng these values he found that his method was not significantl y
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slowe r than the availa b le al terna ti ves in simple problems. In dif f icult
problems he claims It may be a good deal faster. It is well adapted to
automatic calculation , and is not easily upset by minor irregularities such
as occur in asymetrical ridges. The method permi ts the introductlon of
constraints into the minim ization problem.
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APPENDIX C: DYNAMIC PROGRAIIMING OPTIMA L PATH SOLUTION

The experiment required best (or “answer”) air strike paths (in the

sense of optima l with respect to the utility function) in order to eval uate

the operator estimates of optima l paths. Dynamic programing was selected

as a conveni ent tool for obtaining solutions to this optimization problem.

Specif ically, a grid—oriented dyna .ic programing method was selected for

the optima l solutions ; its adaptation to the study is explained below.

1. Background

A detection rate field is generated by sensor performance models, and

the task is to transit this field arriving at a target from a given starting

point in such a way that the utility èriterion function is maximized . Recall

that the utility criterion function is a funct ion of fuel remaining upon

arriva l at the target and the probability of bei ng detected along a path.

The following restrictions were used to simp lif y the optimization

problem. •

1. The entire region of interest is put on a 16 x 16 quadru led grid

so that all possible trajectories go through the grid points . Each grid point

is also called a node.

2. TransitIons are allowed only from a grid point to one of it s immed-
lately neighboring grid points. In other words , only card i na l and diagona l

transi tions are al lowed, as shown in Figure Cl . The “legal” transitions are

numbered from 1 to 8.

3. For each transi tion, only one of three pre-selected velocities Is

allowed.

4. The problem then Is , g iven two nodes A and B, to find both a path
that transits through the grid points from A to B and its component velocities

such that the utility criterion function associated with the path Is maximized .

For convenience call B the target and A the base.
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Fi gure Cl. Allowable Air Strike Path Transitions.

This problem can be put in a form for so~ut1on by dynamic programming.

Let us define a sequential decision making process by the following system:

The state of the system at stage k (k = 1 , 2, 3, ...) is given by

Xk = (I , j, v, P,, F) (C.l)

where

(I , j) are the coordinates of the node we are currently at

v is the veloc i ty for the transition ending at node (i , J)
• is the cumulative probability of not be i ng detected by the

sensor fi eld for opt ima l path star tin~g at I , J) and ending
atB

F is the total fuel consumption for optima l path starting at
(1 , J) and end i ng at the target B

The decis ion Dk to be made at stage k is one of the eight allowable

transitions defined previously and the velocity for the selected transition .

Let r(Xk, Dk) be the return (or utility) associated with the state Xk and

decision Dk at stage k. Also let g be the criterion function for the
• returns from a sequence of stages.
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Since an optima l path goi ng from A to B is an opt ima l path going

from B to A and vice versa , we will formulate the problem in the followi ng

• manner:

Starting with the system at state X1 correspond i ng to node B (target)

we want to find a sequence of decisions (paths and velocities Dl, 02, ... , DN
• for some positive number N such that Dl, D2, .. ., Dp~ takes the system to some

state XN corresponding to node A (base). In addition , the criterion function

g (r(XN , DR) , r(XN—l, DN—l ), ... , r(X~ , Di)] is to be maximized over all possible

sequences of decisions (paths and ve l ocities) going from B to A. This deci-

sion sequence DI, D2, ... , DN def ines an optima l path from B to A and Is an

optima l path from A to B.

If the criterion function g i s separabl e and monotonic , (Reference 7),
it can be decomposed into and g2 in the following manner .

max {g[r(X~, Dk), 
r(Xk,l, Dk~l ), ... , r(X 1, D1)]}

Dk, Dk.. l, ..., D1 (C.2)

= max gl (r(Xk, Dk), max g2(r(X~~1, Dk_l ), ... , r(X1, D1))]Dk 
Dk..1, ...,

Using dynamic programing, we can solve the above recursive equation

by backward recursion. We Start at X 1 and select a decision sequence D1, D2,

... , DN, one stage at a time , that maximizes g. At state XN the optimal path

Is given by D1, D2, ... , D1~.

We would carry out as many stages as necessary in order to include

all grid points In our solution . What this means is that regardless of which
point we later choose as the base, we can retrieve from our sol ut ion an opt i-
mal path going from base to target.

The return function r in Eq. (C.2) is related to the utility function by

r(X 0~) — U(F , (1 — Pcm)) (C.3)
where m

= (Im, im. rm, PCm , Fm) as defined in Eq. (t.i) and U is as defined

in Eq. (1) in Section II .C.2.
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Since in Eq. (‘C.2) we are try i ng to maximize r(Xk, Dk)=U(Fk, (l— P ck
))

at node (i k, 
~k~’ 

the criter ion function g is a 1~ t projection function . It

fol lows that the function g
~ 

is also a 1st projection function and we can arbi-

trarily define the function g2
. However, the validity of the decomposition

in Eq. (C.2) hinges on g being separable and monotonic. The criterion function

g being a 1St projection function implies tha t it is separable. Unfortunately,

though it is not obv ious at first , a few sample calculations show that g is not

monotonic. In spite of this fact, by using Eq. (C.2) and appl ying dynamic pro-

graming , we still arrived at an optima l answer in most of the cases we tried .

When the solution was not optima l , it was very nearly optimal. We decided

to retain the utility function and the dynamic programmi ng optimization pro-

cedure due to time limitations to get the experiment under way. The experi-

mental results support our belief that meaningfu l data could still be obtained ,

even though strictly speaking , our utility function may not (under certain

conditions) be optimizabie by dynamic programing.

2. Description of the Algorithm

• We have just discussed the mathematica l description of our optima l

path problem. Now we desire a procedure for arriving at a solution . Let us

go back to the grid we have laid over the entire region of interest. Picture

our target B (destination) as being located on a grid point. Our problem then

becomes, if we pick a start i ng point A (base), how to find an optima l path

going to B. Using the dynamic programming approach , we would solve for an

optima l path for each starting point on the grid.

Basicall y the method i nvolves backward recursion , where we start at

the target B and sol ve for optimal paths for all the immediate neighboring

points of B that have allowable transitions into B. Then we go to the next

layer of nei ghbori ng points and find their optima l paths. We propagate in

this manner by going to successive layers of points until all points in the

region are covered. This Is a multiple pass method because we will reiterate

unt il a solution is converged to. However, for practical reasons we will

*I n genera l , the ith projection function f1 is defined as

f1 (y1, y2 y3 ... y 1, ...) —
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stop after the tenth iteration even if convergence has rrot occurred . Our

experience shows us that after ten i terations the solution is near optimal.

A simplified flowchart describing this method is given in Figure C2.

We start at the target B and define the first l ayer of points surrounding

the target to be thc..,e points from which the target can be reached in one

transition (see Figure C3). For each point in this layer we find an optima l

path to the target by examining the nei ghbors of this point and selecting

a nei ghbor and a transition veloc i ty such that a transition thereto yields

an optimal path. When we are done we proceed to the second l ayer of points

surrounding the target. This is the set of outside points from which the

first layer can be reached in one transition . For each point in the second

layer (for example, see point C in Figure Ck), we again select a neig hbor

and a transition veloc i ty such that the transition thereto, plus the already

found optimal path for that neighbor , constitutes an optimal path for the

point. Then we go to the third layer of points around the target, and so

on until the entire region is covered by our layers. This is the completion

of a pass, and at this point we check to see if we have defined any new

optimal path during the pass. If so, we go back to the first l ayer of points

to start another pass. We would have converged to a solution if no change

was made to the optima l paths during a pass.

To retrieve an optima l path , we go to a grid point correspond i ng to

the start of the air strike , and obtain an optima l transition and veloc i ty.

This i nformation tells us which grid point is the next point on our optima l

path. Then we go to this next grid point and again obtain an optima l tran-

sition and velocity . By repeating this process, the successive transitions

and velocities so obtained define an optima l path and we stop when we have

arrived at the target.
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Fi gure C2. Flowchart for Dynamic Programming Procedure.
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• I . I NTRODUCTION

Integrated Sciences Corporation is conducting a study for the Office
of Nava l Research that i nvestigates ways to allocate functions between humans

and computers so that their respective strengths are best used . The portion

of the study in which you are participating seeks to determine to what extent,

if any , a human operator can aid and thus improve the performance of selected

optimization techniques when applied to a naval tactica l decision aiding

problem. We call this “operator—aided optimization ,” or OAO for short. The

optimization techn i que you will be working with is nonlinea r programing

optimization. Don ’t worry if you are unfamiliar with this technique. Even

if you have never heard of it , you w i l l  learn enough about its characteristics

during the training phase to enable you to perform well on the experiment.

Your role in the experiment is to act as the member of a Naval Task

Force Comander’s (TFC’s) staff who is planning a tact i ca l airstrike aga i nst

the airfield on a place called ONRODA island. Your Nava l Task Force consists
of aircraft carriers , their squadrons of aircraft , and escort shi ps. They~
are located approximatel y at the point r~arked with an X in Fi gure Dl. About

ten enemy ships are located in a region between your Task Force and ONRODA.

Important parts of air strike plan nin g are (a) deciding the path that the
aircraft will take to get to the target and (b) strike aircraft speeds along

the legs of the path. As air strike p lanner , you must be concerned about

these two fac tors:

1. The probabili ty that aircraft will be detected before they
reach the target. If they are detected before reaching the target , the
enemy will be at maximum readiness to repel the air strike . The enemy shi ps
between your Task Force and ONRODA have radar that could detect your aircraft.
However, the enemy shi ps have no interceptor aircraft nor do they have guns
or missiles that Would be effective against your aircraft.
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2. Amount of fuel left aboard you r aircraft when they reach

the target. It is desirable to maximize the fuel left in order to engage

or avoid enemy interceptor aircraf t over the target or to attack secondary

targets once the primary ta rget , Oi~RODA 3i rf i e l d , has been de~ troy~d. ‘,‘our

job is to hel p the computer come up wi th the best airstr ike p lan between the

task force and the target within a specified time limit.

The best air strike plan minimizes the probability of the aircraft

being detected by the radars and , at the same time , l eaves maximum fuel

remaining upon arriva l at the target so that enemy fighter aircraft can be

engaged or evaded.

The purpose of this material is to acquaint you with the:

1. Detection ability of multiple enemy radars when there is
overlapping detection coverage between radars in proximity
to each other

2. Means of measuring the goodness of an air strike plan

3. Characteristics of the dynamic programming optimization
techn tçue .

The training goals are to:

1. Develop expertise in using the equi pment

2. Develop a feel for the best way to help the computerized
technique find th~ best air strike paths and speeds.

In training you will do eight prob l ems with the optimization tech-

nique. Experimental data collection ~•,i l l then be done for twelve problems.

Thus , you will do a total of 20 problems. Each problem will last 15 minutes.
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A . REPRESENTATION OF ENEMY RADAR DETECTION CAPABILITY

The capability of a single enemy radar to detect your aircraft is

represented by concentric circles around the radar location. Detection

capability is the same at all points on each circle and is a specified per-

centage of the peak detection capability of the radar. (See Figure D2.)

Notice that as you go along a radial line toward the center of the concen-

tric circles , detection capability increases up to the 90% of the peak l evel.

The peak occurs between the two 90% circles and detection capability decreases

from the peak as you get closer to the radar l ocation. Thus detection capa-

bility may be visualized in three dimensions as a vol cano with a rim and a

crater in the center of the volcano. The “Detection volcano” is centered on

the radar ’s position .

When severa l radars have overlapping coverage as shown in Figure D3,

the probability of detecting your aircraft at a point within areas of overlap

is hi gher than it would be at the: sa~ie point if only one radar could detect

at that point. Thus there is a joint detection capability throughout areas

of over l ap. The points where joint pro~abifl ties of detection are equal are

connected together to form contours as shown in Figure D4. The contours have

the same general meaning as the cc-~centric circles in Figure D2, that is , each

contour is the set- of points where detection capability is some specified

percentage of the peak joint detection capab ility. The set of contours is

analogous to a topographica l map. The difference is that each contour on a

topographica l map corresponds to an alt itude above sea l evel and each detec-

tion capability contour corresponds to a detection capability between zero

capability and the peak capability .

B. MEASURING THE GOODNESS OF AN AIR STR I KE PATH : THE UTILITY FUNCTION

The problem is to selec t an optima l air strike path , so an appropriate

utility criterion function is one which measures the “goodness” of an air

strike path. The two variables selected to determine the goodness of an air

strike path were fuel consumption along the path and probability of being
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detected by one or more enemy radars prio r to reaching the target. The

utility criterion function incorporates a tradeoff between minimizin g the

probability of being detected by enemy radars on one hand and max im izing the

fuel remaining upon arrival at the target on the other.

The utility function takes on any va l ue between 0 and 1 , with higher

utility values correspond i ng to “better” paths. A family of parameterized

curves from the utility function is shown in Fi gure D5. The figure shows

that as the probab ility of being detected by enemy sensors decreases, the

utility va l ue goes up. 
• 
Also , if the probability rema i ns constan t, the util-

ity va l ue increases as fuel consumption drops. It is obvious why it s

desi rable to minimize the probability of be i ng detected by enemy sensors.

The rationale for encouraging fuel preservation is that if detection occurs

at any time up to arriva l at the target , there should be as much fuel left

as possible in order to do some flight maneuvering to try to return safely.

• In genera l the two goals of minimizing fuel consumption and minimiz-

ing the probability of being detected are i ncompatible. A nontrivial optima l

air strike path thus requires a reasonable compromise between the two goals.

C. CHARACTERISTICS OF THE NONLINEAR PROGRAMM I NG OPTIMIZAT I ON TECHNIQUE USED
IN THE EXPERI MENT

The setup for th~ nonlinea - progra~rnin g technique includes the start-

ing “point” or first trial solution. In the air strike problem , the starting

“point” is (a) five path legs connecting the air strike launch point and the

target and (b) speeds for each leg. The legs are specified by picking four

“way points” between the launch point and target. Speeds are selected from

a range of 250 to 1 000 knots. After the start point has been specified , the

NP technique operates to find a better combination of way points and speeds.

It does this by exploring changes in the location of each way point and the

speed for each leg . Each exploration invo l ves a single way point or a sing le

speed. Therefore, improvement in the air strike path takes place slowly

over many explorations , i.e. , trials. An advantage of NP i~ that it considers

all the points in a geographica l reg ion instead of just a set of grid points

and all speeds instead of just a few. A disadvantage is that the “solution ”
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will be best for the reg ion exp lored but that better solutions may exist in

unexplored reg ions and the UP techn i que is unable to direct itself to look

in these unexplored regions. In opt im ization jargon , UP may find a 10c3l

optimum but not the globa l optimu m .

D. OPERAT ION OF THE NONLINEAR PROGRAMMIN G OPTIM IZAT ION

At the beg inning of a prob l em the disp lay will appear as shown in

Figure D6. The path from launch point to target is a straight line with way

points ind i cated at 1/5, 2/5, 3/5, and 4/5 of the straight line distance.

Speed for each leg is initiall y set by the program at 600 knots as ind i cated

on the plot at the left in Fi gure D6. The subject uses the appropriate buttons
on the function button box (see Figure D7) and the joystick to change the posi-
tion of the four way points. He uses the appropriate function buttons and

the keyboard to change speed on any leg .

The subject ’s purpose is to direct the NP technique to investigate

as many reasonable potential solutio n regions as possible in 15 minutes.

As soon as the problem is shown on the disp lay , the subject must decide what

reg ion he wants to explore first. Ha is to pick the region that he thinks

is most like l y to contain the best solutio n . He then changes the locations

of the way points and speeds prior to start ing the NP algorithm . At the

beg inning of the proble m -the three b~t:ons desi gnated as “Evaluate/Halt ,”

“Change Veloc i ty,” and “Move W~y ?on ~ a~e li ghted on the box. In order to

move a way point , push that button. When this is done the four buttons

marked 1 , 2, 3, and 4 will become lighted . Then push the button correspond-

ing to the point to be moved , i.e. , 1 , 2, 3, or 4. Way point 1 be i ng that

closest to the beg i nning of the strike path and 4 being nearest the end

(ONRODA Island). Mov i ng the way point is accomplished with the joy stick.

When a single way point is changed , a second way point can be changed by

pressing “Move Way Point ” and the appropria te number of the way point. The

act of pressing “Move Way Point” records the position of the last way point

that was changed.

To change a speed on one of the five leg s, push “Change Velocity.”

The five buttons marked 1 , 2, 3, 4, and 5 will light. Leg I refers to the
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leg closest to the path beg inn ing poin t and leg 5 refers to the path closest

to the end point (ONRODA Island) . Then push the bu tton corresponding to the

leg for ~-ih i ch you want to change speed a r :  
•

I. Use the teletype keyboard to input the speed you want used
on the selected leg. Put a -decima l point at the end of the
number. (This s essential.)

2. Push the teletype key marked “CR.”

Thus , if you wanted to change the speed on leg 3 to 850 knots, you would:

1. Press function bu tton “Change Velocity ” -

2. Press function button “3”

3. Press teletype key “2”
4. Press teletype key “0”

• 5. Press teletype key “0”

• 6. Press teletype key “ .“

7. Press teletype key “CR”

When you have changed all the way points and speeds to those you

want , then press the function button marked “Eva l uate/Halt.” The NP algorithm

will beg in to operate , i.e., “Evaluate ,” using your starting point consisting

of the four way points and five speeds. Once the al gorithm has begun operat-

ing , only the “Evaluate/Halt” button wil l remain li ghted and the only control

at the operator ’s disposal is to hslz operatio n by pushing this button.

The prima ry indica tors that the operator uses to decide to halt the

dIgorithm are the displays of the number of function evaluations and the

utility of the latest tria l solution . In general , a plot of utility versus

function evaluations would appear as shown in Fi gure D8. The subject should

stop the algorithm when it reaches the point shown in Figure D8 because there

will be litt le more utility to be gained by letting the algorithm continue.

He should then input a new set of way points and speeds and start the algo—

• rithm again.

As the algorithm operates you will note variable length arrows

appearing briefly at each way point. These represent potential changes in

the location of a way point be i ng considered by the algorithm. When utility

— I l l —
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l evels off, the magnitu des of changes in the following will also become small:

1. Value of “Prob ,” i.e. , the probability that the air strike

wi l l be detected prior to arriva l at the target.

2. Value of “Fuel ,” i. e., the fuel tha t will be consumed for

the latest trial solution.

3. Speed changes ind i cated on the speed/leg graph.

4. Lengths of arrows appearing at each way point.

While the al gorithm is operating on the first set of way points and

speeds input by the operator , he should count the number of regions that

could reasonably be expected to contain the best path. Dividing 15 minutes

by the number of regions to be explored indicates approximately the number

of minutes the operator should devote to each region. Depend i ng on the prob—

1cm , there wi l l be enough time to explore 3, 1+ , or 5 regions.

At the end of 15 minutes the computer wi ll have stored :

1. The utility of the path comprised of the firs t way points

and leg speeds.

2. The utility of each best-solution-to—d ate at the end of

each minute.

• These are the data that will be used in the analysis of operator generated

data.

• E. GU I DELINES

There are two types of data being analyzed :

1. Utility of the path comprised of the first way points and

leg speeds. Thus the operator ’s first goal is to do the best he can

on this.

2. Operator performance will be calculated at the end of

each trial by adding the 15 utilities of the best—solution-to—date at the

end of each minute and dividing this sum by 15. Thus , operator performance
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for the entire trial is the average of the 15 utilitie s. The operator ’s

second goal is to maximize ths average. In genera l this is done by

exploring the reg i ons wh i ch could contain the best path in the order of

estimated likelihood that each conta i ns the best path. This is compatible

with the operator ’s first goal because, if the operator is correct con-

cerning the region wh i ch contains the best path , then the average utility

will be nearly equa l to the utility of the best path , This is true because

the computer only stores the best utility to date and will therefore not

store the utilities of paths i nvestigated after the first when the first

region explored contains the best path.

Other genera l rules to be used with the NP technique are :

I. Those port i ons of a path that are completely outside the

detection contour should be trans i ted at low speeds.

2. Those portions of a path that traverse a high detection

probability contour should be trans i ted at hi gh speeds. In particular , the

last leg of the path to the target should be trans i ted at hig h speed since

it must pass through the high detection region around ONRODA airport.

3. Paths should be drawn to pass through low detection proba-

bi l ity regions. However , a completely roundabout path that avoids detection

contours completel y is not a sure winner because long paths use a lot of fuel.

4. When locating NP way points and the path will cross from

outside the lowest detection probability contour to inside it , place one way

point just outside the contour. If the path is crossing from inside the

l owest detection contour to outside it , place a way point just inside the

contour. These tac t ics wi l l  save computer t ime.
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This is how the display appears at the beginning of the problem. Five
potential best paths are shown as dot-dash—dot lines .

Figure D9. First Plate , Example Problem.
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The operator chose to explore paths from right to left. It would have been
better to have configured the path so that the last leg began just outside
the contours around ONRODA. The previous starting path remains on the
display as a dot-dash-dot line.

Fi gure 010. Second Plate , Exan~ le Problem.
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• The operator stopped the algorithm at the end of 86 evaluations in order to
get this p icture . Note that the solution moved the first way point down
In order to get away from the contours above the point.

Figure D li. Th i rd Plate , Example Prob l em.
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The operator restarts the algorithm without making any changes . At the end
of another 52 eva l uations (138 total), the operator stops the algori thm
because (a) the step sizes being considered are ve ry small and therefore
the possible utility improvements will also be small , and (b) the utility
hasn ’ t increased very much in the last 25 or so evaluations.

Figure D12. Fourth Plate , Example Problem.
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The operator puts the third and fourth way points in an illogica l comb i nation
of places and makes small adjustments to the other two way points . The
point will be to see what the algori thm does.

Figure Dl3 . Fifth Plate , Example Prob l em.
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At the end of only 17 evaluations not much has happened .

Figure 014. Sixth Plate , Example Problem.
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At the end of 163 eva l uations the algorithm has found its way over to a
much better position for the third way point but the utility is not as good
at 163 evaluations (53.83) as it was at 140 eva l uations with the earlier ,
better selection of way points (56.62 for the starting path of Fi gure olO).

Fi gure Di5. Seventh Plate , Example Problem.
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The operator selects a new set of way points and the algorithm begins to
explore around these. Again , he should have placed the last way point
closer to ONRODA.

Figu re D16. Eighth Plate , Example Prob l em.
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At the end of 92 eva l uations the operator stops the al gorithm. Note that
the algorithm has moved the last way point much closer to ONRODA and has
greatly increased the speed for the last leg.

Figure D17. Ninth Plate , Exancle Problem.
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The operator has already selected way points for the third path to be
explored by the algorithm. Utility is 59.90 at the end of four eval uations ,
and then the operator stops the algorithm. He has dec i ded to ch..’nge the
speed on a particular leg and according l y pushed the “Change Speed” function
button . The prompt “Choose Leg” then appears at the top of the display .
Then he pushes the function button corresponding to the des i red leg.

Figure Dl8. Tenth Plate , Example Problem.
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I mmediately the prompt “Ve loci ty “ appears at the top of the display .

Figure Dl9. Eleventh Plate , Example Problem.
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Tt;e operator then types “700. CR “ and 700 appears at the top of the display .
The operator restarts the algorithm.

Figure D20. Twel fth Plate , Example Problem.
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The operator stops the algorithm at the end of 176 eva l uations. Note again
that the al gorithm has moved the last way point much closer to ONRODA .
(Disregard time s hown under “MINS” from this figure on.)

Figure D2l. Thirteenth Plate , Example Problem.
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The operator has selected way points for exploring the fourth path and
started the algorithm. At the end of 16 eva l uatIons the utility is 56.18.

Figure D22. Fourteenth Plate , Example Problem.
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The operator stops the algorithm after 169 eval uations. Again , note that
the algorithm moved the last way point closer to ONRODA. Utility is
competitive with the utility for the first path explored (58.72 versus 56.62)
but is significantly l ower than the utilities achieved for the second and
third paths explored (58.72 versus 73.73 and 67.37).

Figure D23. Fifteenth Plate , Examp le Problem.
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The operator resets the way points to explore the fifth path. At the end
of three eva l uations the utility is 36.45.

Figure D24. Sixteenth Plate , Example Prob l em.
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The operator stops the algorithm at the end of 189 eva l uations. Note that
the algorithm moved the last way point closer to ONRODA . Als o , note that
the first way point was moved down to get away from the contours above the
starting point.

Figure D25. Seventeenth Plate , Example Prob l em.
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The operator chooses a very poor set of way points going through hi gh
detection capability contours.

Fi gure D26. Eighteenth Plate , Example Problem.
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At the end of 211 evaluations the algorithm found ~ts way over co the vicinityof the fourth path eva l uated. But , clearly, It would nevec have found its
way to the best path found by the operator interacting with the algorithm.

Figure D27. Nineteenth Plate , Examp le Prob l em.
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I. INTRODUCTI ON

Integrated Sciences Corporation is conducting a stud y for the Office

of Nava l Research that i nvesti gates ways to allocate functions between humans

and computers so that their respective strengths are best used . The portion

of the study in wh i ch you are participatin g seeks to determine to what extent ,

if any , a human operator can aid and thus improve the performance of selected

optimization techniques when app lied to a nava l tactica l decision aiding

problem. We call this “operator—aided optimizatio n ,” or OAO for short. The

optimization technique you will be working with is dynamic p rogramming

optimization. Don ’t worry if you are unfam iliar with this technique. Even

if you have never heard of it , you wil l learn enough about its characteristics

during the training phase to enable you to perform wel l on the experiment.

Your role in the experiment is to act as the member of a Nava l Task
Force Commander’s (TFC’s) staff who is planning a tactica l airstr ike against

the airfie’d on a place called ONRODA Island. Your Nava l Task Force consists
of aircraft carriers , their squadrons of aircraft , and escort ships. They
are located approximatel y at the point r~arked wi th  an X in Fi gure El. About
ten enemy shi ps are located in a reg i on between your Task Force and ONRODA .
Important parts of air strike planni~ig are (a) deciding the path that the
aircraft will take to get to the target and (b) strike aircraft speeds along
the legs of the path. As air strike p lanner , you must be concerned about
these two factors:

1. The probability that aircraf t will be detected before they
reach the target. If they are detected before reaching the target , the
enemy will be at maximum readiness to repe l the air strike . The enemy shi ps
between your Task Force and ONRODA have radar that could detect your aircraft.
Ho~.zever , the enemy ships have no intercep tor aircraft nor do they have guns
or missiles that would be effective against your aircraft.
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2. Amount of fuel left aboard your aircraft when they reach

the target. It is des i rable to maximize the fuel left in order to engage

or avoid enemy intercep tor aircr aft ove~ the ta rg-~r or to attack secofldary

targets once the prima ry target , ONRODA ai rfie id , has been destroyed . Your

* job is to help the computer come up with the best air stri ke p lan between the

task force and the target within a specified time limit.

The best air strike plan m inimizes the probability of the aircraft

being detected by the radars and , at the same time , l eaves maximum fuel

remaining upon arriva l at the target so that enemy fighter aircraft can be

engaged or evaded.

The purpose of this material is to acquaint you with the :

1. Detection ability of multiple enemy radars when there is
overlapping detection coverage between radars in proximity
to each other

2. Means of measuring the goodness of an air strike plan

3. Characteristics of the dynamic programming optimization
technique.

The training goals are to:

1. Develop expertise in using the equipmen t

2. Develop a feel for the best way to help the computerized
— technique find the best air strike paths and speeds.

In training you will do eight prob l ems with the optimization tech-

nique. Experimental data collection w i ll then be done for twelve problems.

Thus, you will do a total of 20 problems . Each problem will last 15 minutes.
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A. REPRESENTAT ION OF ENEMY RADAR DETE CT IO~I CAPABILITY

The capability of a single enemy radar to detect your aircraft is

represented by concentric circles around the radar location . Detection

capability is the same at all points on each circle and is a specified per-

centage of the peak detection capability of the radar. (See Figure E2.)

Notice that as you go along a radial line toward the center of the concen-

tric circles , detection capabi lity increases up to the 9O~ of the peak level.

The peak occurs between the two 9O~ circles and detection capability decreases

from the peak as you get closer to the radar l ocation. Thus detection capa-

bility may be visualized in three dimensions as a volcano with a rim and a
crater in the center of the volcano. The “Detection volcano” s centered on

the radar ’s position .

When severa l radars have overlapping coverage , as shown in Fi gure E3,

the probability of detecting your aircraft at a point within areas of overlap

is higher than it would be at that same point if only one radar could detect

at that point. Thus there is a johit detection capabi lity throug hout areas

of overlap. The points where joint proba b ilities of detection are equal are

connected together to form contours as sho.~n in Figure E4. The contours have

the same genera l meaning as the concentric circles in Fi gure E2, that is , each

contour is the set of points where detection capability is some specified

percentage of the peak joint detection capability. The set of contours is

ana logous to a topographica l map. The difference is that each contour on a

topographica l map corresponds to an altitud e above sea l evel and each detec-

tion capability contour corresponds to a detection capability between zero

capability and the peak capability .

B. MEASURIN G THE GOODNESS OF AN AIR STR IKE PATH: THE UTILITY FUNCTI ON

The problem is to select an optima l air strike path , so an appropriate

ut ility criterion function is one which measures the “goodness” of an air

strike pa th. The two variables selected to determine the goodness of an air

strike path were fuel consumption along the path and probability of being
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Fi gure E2. Single Sensor Coverage Template. (Circles show
distance from sensor location , center , at wh i ch
percentage va l ues of the peak detection rate occur.)

-1 39-



—I’

‘

I 
//‘/~~~~~~~~~~~~~\\\\ 

\ ~~~~~~~
I 1, 7/ U’ \\ ‘\ \
I I I I I ‘ ~~~~~~ —,-—‘r-—~-.~~I I I f~ fA - 1\—~~ \ \ t
I I I IA ((i ...~ \\ I I 1 1 ~~~~~~~

~ f~- - 
5-5N
\ 

\

~~~~~ \ TY _ _ _ _  
-- , \ \

_ _  I

~~~~

_.-_ _ -— — - 5 \ /

7 ~~~~~~ 

— 
~~~~~~~~~~~~~~

~‘ 

(
~ 

:,
‘

_ 
~~~~~~~~~~~~ -

- 

- ~
- )

\~~ 
_ _ _  

- 

.‘ 

,

\•
\ 

/ \

Fi gure E3. Display with all Sensor Coverage Templates Shown.

-1 kO - 



1~ 7 / 
- - - - -

I 1 ~~~ 
,—f~ pN RODA - \

-- / 1 1 L~~ ) / \\ N %
%~~

— 
) 

~\ (~i” ) ~ ~~~~~~~

I ~~~ 
~~~~~~~~~~~ \_ \~•___,/ \ \

S’ )

‘
~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /  ~1

— 

/

Figure Ek. Contours Showing Joint Probabi lities of Detection for
Four Radars Located at Positions Marked with a Cross (+).

— 1 141—

- - - -~-— ----— —— -5~~~----— --——-5- --— -——-- =-~~-5~~ — - -- - -- --- - - - -5 -5-  5——— --  -



- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ ‘ 5 -~~~~~~ -- ----5- —5- 5--- -5-- -

detected by one or more enemy radars prior to reaching the target. The

utility criterion function incorporates a tradeoff between minimizing the

probabil ity of being detected by enemy radars on one han-J and maximizing the

fuel remaining upon arrival at the target on the other.

The utility function takes on any value between 0 and 1 , with higher

utility values corresponding to “better” paths. A famil y of parameterized

curves from the utility function is shown in Figure E5. The figure shows

that as the probability of bei ng detected by enemy sensors decreases, the

utility va l ue goes up. Also , if the probability remains constant , the util-

ity value increases as fue l consumption drops. It is obvious why it is

desirable to minimize the probability of be i ng detected by enemy sensors.

The rationale for encourag i ng fuel preservation is tha t if detection occurs

at any time up to arrival at the target , there should be as much fuel left

as possible in order to do some fl i ght maneuvering to try to return safely.

In genera l the two goals of minimizing fuel consumption and minimiz-

ing the probability of being detected are incompat ible. A nontrivia l optima l

air strike path thus requires a reasonable compromise between the two goals.

C. CHARACTERISTICS OF THE DYNAMIC PROGRAMM ING OPTIMIZATION TECHNIQUE USED
IN THE EXPERI MENT

A dynamic programming (DP) optimization technique is used in the

experiment~ The “setup” for using the dynamic programm i ng techni que includes

a grid network of evenly spaced points and a cho i ce of three aircraft speed

l evels , name l y, low , med i um , or hi gh. The DP techn ique specifies the best

path by connecting points on the grid between air strike launch point and

target and specif ying one of the three speeds for each path leg between two

connected points. The advantage of DP is that it does find the best path

for the grid and speed levels it is using . The disadvantage of DP is that it

takes a long time (even with the computer doing the number crunch i ng) to
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reach a solution . For example if the grid has 81 points (nine by nine) and
there are three speed levels , the time to reach a solution may be four minutes.

This occurs because OP investigates every allowable solution and then picks

the best. If the grid size has finer resolution , e.g., 18 x 18 or 36 x 36,

or the number of allowable speeds is larger than three , then solution time

increases greatly.

D. OPERAT ION OF THE DYNAM IC PROGRAMM ING OPTIMIZAT ION PROGRAM

The display appears as shown in Figure E6 at the beginning of a prob-

lem to be solved with the DP algorithm. The operator uses the function button

box (see Fi gure E7) and the track ball to tell the program what to consider

when it works on the problem. Operator inputs include :

1. A bounda ry drawn around a reg ion. The algorithm confines

its search for a solution to this reg ion .

2. The grid size to be used by the algor ithm , that is , 9 x 9,
18 x 18 , or 36 x 36.

3. Speeds that the aigorith~ is not to consider when searching

for a solution .

In most cases, the algorithm finds a trial path considering the operator in-

puts , displays this path and its Ut Il It y , and stops. (The exception is

covered below.) It does not start agair until the operator has comp leted a

new set of inputs or tells the al gor ith~ to do another iteration using the

old inputs. New inputs may be 1 , 2, and 3 above or 2 and 3 or 3 onl y.

The operator ’s first task is to decide in his mind the rough outlines

of the regions he will want the algor ithm to explore. In general , he will

pick two or three large regions and use the coarsest grid size , namely, 10

x 10, to explore these. In the beginn ing , a boundary should be drawn so

that it encompasses more than one viable path. This way the solution provided

by the DP algorithm reduces the ambiguity about where the better paths reside.

When he finds the region tha t has the best path , he will refine his solution

by using a finer grid size (normally 18 x 18) and making the area with in the

boundary smaller.

-144-

—- 5 - - — —-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — -~~~~~~~~~~~~~~~~~~~~ 
—



-

~~~~~

-—- -5 5-- . — , p

- .

~ \ I I

/ ~~ ~~~~~~~ ~

\ s .  ‘- ~~~ 
- 
‘ 

~~~~~~~~~~~~~~~
- 

-‘ 
- 

: 

/ 

- 

-

TII11~ ~~- F (2~’
\ - —

, 
- - —.. ~~-

..__——
~ -- — 

-

- 
~~~~~~~

- -  

— ~~p-.~p 
— -,

—

—

Figure E6. Display Appearance at Beg i nning of Prob l em
to be Sol ved Using DP Algori thm.

-145-

- , - ---~~~ - -,
~~~--~~ - -- ~~~~~~ - — ,- , 5--

~~~~~~~~ - --- -5-— ‘—- -- - -
~~~~~~~~~~ 

— — 
~~~~~~~~~~ 

-—-5- —



- _________________

When the operator has decided the first region he wants to explore ,

he responds to the flashing promp t “Move curso r” at the lower left of the

display by nio’,i ng the track bal l to dra.~ the boundary - This is indi cated

by the fact that the function button “Drab-i” in Figure E7 is lighted . The

launch point and the target must be contained within the closed boundary .

If one of these points is not wi thin the bounda ry , the computer will recog-

nize this as an error , erase the boundaries drawn , and g ive the prompt “Move

cursor” again. Thus, if the operator wants to redefine his boundary after

some of it has been drawn , he can start over by closing the boundary without

including the launch or target points.

When the boundary has been closed , the computer is ready to accept

the specification of grid size as indicated by the flashing prompt “Select

grid” and the three l i ghted function buttons marked 1 , 2, 3 at the lower

left of the box. By pushing I , the coarse grid is selected and displayed .

(Pushing 2 selects the med i um grid of 18 x 18, and pushing 3 selects the

fine grid of 36 x 36.)

Now the promp t “Bound speed” flashes at the lower left of the disp lay .

The arrow at the top left points to a space between two adjacent horizontal

grId rows. By now pushing the buttons L, M , or H at the bottom left of the

function box, the operator deletes frori consideration by the algorithm Low,

Med i um or Hi gh speed for any path leg t crosses between the two rows and
for any horizonta l leg in the upper of the two rows. When the operator is

finished spec i fying speeds to be deleted from consideration , he pushes the

lighted button “Next.” Upon doing this , the arrow moves down to the next

pair of rows and the operator repeats the procedure. For example:

1. If the operator has pushed L, M , and Next, the algorithm

will not consider low and med i um speeds for any leg crossing between the

two rows on either side of the arrow and for any horizonta l leg in the

upper row.

2. If the operator has pushed onl y “Next,” then the algor i thm

will not delete any speeds and the arrow w ill move down to the next pair of

ro--ss.
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3. If the operator pushes 1, M, and H for any p a r  of grid rows

above the target or below the launch point , the algorithm will not consider

any leg that would be above the target or below the launch point. In this

case, deleting L, It, and H is permissible and will save tin~e.

4. I-f the operator pushes L, M , and H for any pair of grid rows
between the target and launch points , the computer will be unable to find

any solution . At the end of severa l minutes , the display picture will re-

appear and the blinking p rompt “No soin yet” will appear at the lower left

of the display. In this case deleting L, H, and H is not permissible and

wastes time. -

The operator continues to delete speeds as he desi res until either (a) he

has deleted speeds for the last pair of rows or (b) he decides that he does

not want to delete any more speeds. In either case he then pushes the Exit

button. This completes the operator ’s input and the display screen goes

blank while the computer is working on the trial solution. This may take

two to five minutes depend i ng on the size of the region within the boundary ,

the grid size, and the number of speeds deleted .

In most cases when the display reappears , the trial solution path

is shown and the utility for that path and the function buttons “Bound ,”

“Gr id ,” “Speed,” and “Next” are lighted . The operator does not know if the

trial solution is the best possible solution for his i nputs or not. He has

two basic choi ces:

1. If there are two trial paths already disp layed, remember
the utility value for the most recent iteration displayed in the box at the

top center of the display and then push “Next.” By pushing “Next,” the

algor ithm will perform another i teration and show the new and best—to—date

trial solutions and their utilities. If the remembered utility of the

previous trial and the utility of the current trial are the same, then the

optimum solution for the inputs has been found. If there is little differ—

ence in the two most recent ut ilities , then the best tactic will usually be

to start investigating another reg ion or to refine the solution in the current

region by using a finer grId. -
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2. By pushing Bound , Grid , or Speed he can redefine the inputs
considered by the algorit hm . If he pushes Bound , then he must go through all

three steps of dra~-iing the boundary , selecting grid size , and del~ ti n.~ speeds.

If he pushes Gr Id , then the algorithm wil l use the previousl y drawn boundary

and the operato r selects grid size and deletes speeds. If he pushes Speed ,

the al gorithm accepts the p reviousl y drawn boundary and grid and the operator

onl y deletes speeds. If the area w ith in the boundary was large , then the
operator should redefine the boundary to inc l ude a much smaller number of

points in the vicinity of the path selected by the previous i teration .

If the displa y reappears withou t a new trial solution (the exception

previousl y noted), “No Sol n Yet” will flash at the lower left of the display .

This means that the al gorithm has not been able to find a complete trial
solution on a single i teration . In this case the operator ’s suggested response
is to push the Next button so that the algorithm will go to the next iteration
to comp l ete the trial solution .

E. GUIDELINES

There are two types of da ta being ana l yzed :

1. Utility of the operator ’s first best estimate of the best

path and leg speeds. The operator w i l l  d raw his first best estimate on

a hard copy plot of the problem and write the letter symbols for each leg ’s

speed. This will be done prior to the operator beg i nn i ng use of the dis-

p lay. However , prob l em time will start as soon as the operator receives

the hard copy plot of the problem . The operator ’s first goal is to do

the best he can on his “first best estimate.”

2. Operator performance will be calculated at the end of each

trial by adding the 15 utilities of the best—solution—to—date at the end

of each m i nute and d iv id ing this sum by 15 . Thus, operator performance for

the entire trial is the average of the 15 ut ilities . The operator ’s second
goal is to maximize this average.
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In general , (2) above is done by exploring the regions which could

contain the best path in the order of estimated likelihood that each con-

tains the best path. If the operator is correct concerning the region

wh i ch contains the best path, then the average utility will be nearl y equa l

to the utility of the best path. This is true because the computer onl y

stores the best utility to date and will therefore not store the utilities

of paths i nvestigated after the first when the first reg i on explored con-

ta i ns the best path.

The prob l em is deciding how large a region should be explored at

first. Since the viable paths will certainly not cross each other, they

can be represented as a left—to-right sequence as shown below for an

assumed five paths .

Paths .4. A B C D E

Operator estimate
if likel i hood of -‘ 4 3 5 1 2
best path: Case I

Case Il -÷ 1 3 5 2

Ca s eI lI 5 1 2 4 3

Case lV 5 1 4 2 3 -

In Case I it would probabl y be best to d raw a boundary around D

and E for the first tria l . In Case II it ’s a tossup whether to look at A

aloi.~ or A and B simu l taneousl y. Looking at A alone will save time and

therefore get you “on the board” soonest. However, If B is actuall y best ,
you won’t find it until after you ’ve looked at 0 and E together. You should

look at B and C together , then 0 and E in Case III. Look at A only if the

previous results leave you dubious about your initial estimate of A. In

Case IV you may want to explore A , B , and C simultaneously, then 0 and E.

Only in Case I is the choice rather clear. In all the others t’s~~high l y

subjective matter.
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Other general rules to be used with the DR technique are:

1. Those port i ons of a path that are completely outs i de the

detection contours should be trans i ted at low speeds.

2. Those port i ons of a path that traverse a high detection

probability contour should be transited at hi gh speeds. In part i cular , the

last leg of the path to the target should be trarts i ted at high speed since

it must pass through the hi gh detection reg i on around ONRODA airport .

3. Paths should be drawn to pass through low detection prob ability

reg ions . However , a completely roundabout path that avoids detection contours

completely is not a sure winner because long paths use a lot of fuel.

4. When draw i ng a DP boundary that is to include the right or left

dis p lay boundary, be sure that the boundary drawn coincides with the display

boundary. Otherwise the DR wi ll excl ude from consideration those grid points

on the dis play boundary .
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At the beginning of the problem the operator should picture to himself the
reasonable candidates for best path. In the fi gure these candidates are
nurthered 1-4. Then he should draw a boundary that includes about half of
the candidates . Notice that the boundary drawn crosses the midpoint of the
display on the right. The reason is that a candidate path that lies main ly
In the left half may cross the mi ddle for part of Its length. Circled points
should not be included within any boundary because the best solution will
certainly neve r include these points. Keeping these points outs i de the
boundary shortens running time for the algorithm. No speeds have been elim-
inated for the transitions between the two highest rows because low speed will
probabl y be used for one leg of path #4 and high speed will p robably be used
for the last leg to the target. Hi gh speed has been eliminated for most of
the remaining transitions because the operator believed high speed would not
be selected by the algorithm for the remaining legs on paths #1 and #4.

Figure E8. Fi rst Plate , Exan~ le Prob lem.
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At the end of one iteration for the set of constraints shown in Figure E8,
the opera tor pushes “Next” and finds that another iteration causes no improve—
n~nt in results.

Fi gure E9. Second Plate , Example Problem.
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The operator now d raws a boundary that will enable the al gorithm to conside r
paths #2 and #3. Note that the boundary does not include the points circled
in Fi gure 1. Also , the operator has p l aced no speed constraints on trans i-
tions in the middle of the display . The reason is that, if the algorithm
selects path #2, hi gh or medium speed may be preferable to law speed. On
the other hand , If the al gorithm sel ects path #3, low speed will be preferred .
The path solved by the algorithm using the operator—supplied constraints
reseithles path #2 in Figure E8.

Fi gure E1O. Th i rd Plate , Example Problem.
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Since the previous solution was the best to date, the operator now deci des
to refine the solution by using a finer grid size. The result of the new
inputs is the path wh i ch connects points while the previous best path is
shown slightly offset from grid points.

Figure £11 . Fourth Plate , Example Problem.
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The operator then pushed “Next” and, at the end of another 1. 1 minutes , the
resul t was the same shown for the previous iteration.

Figu re El2. Fifth Plate , Example Problem.
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