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ABSTRACT

An investigation of a tuned mass damper for reduction of
offshore oil platform motions is conducted using finite element
tower models disturbed by discretized wave spectra.

Vibration control principles and tieir application to
offshore oil platforms are discussed.

Changes in system response are examined as damper parameters
are varied. Response reduction and damper mass motion are found to
be coequel design considerations.

An assessment is made of a tuned mass damper's effectiveness
in reducing the effects of increasing the natural period of
offshore platforms, fatigue in steel-jacketed platforms, and
soil-degradation under gravity platforms.
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CHAPTER 1

INTRODUCTION

1.1 General Background

Because the search for oil is becoming more intense, as the need

for petroleum products grows, the oil industry is exploring offshore

areas where the environment is hostile. To overcome the elements and

still produce oil, the industry has adopted new platform concepts. In

the North Sea, large concrete structures called gravity platforms are

in use. These platforms rest on the ocean floor in 550 feet of water

relying only on their own weight to keep them stable in one of the

roughest ocean environments in the world. In the Gulf of California

and the Gulf of Llexico, steel jacketed platforms are being constructed

to bring oil from deep water. Exxon's platform is placed in 850

feet of water off the Coast of California and Shell's platform will

operate in 1000 feet of water in the Gulf of Mexico.

As is usual when new concepts are employed in extreme conditions,

problems have developed which demand consideration. A survey of

industry people involved in the implementation of these new concepts

and a review of current literature addressing these concepts reveals

three problems of major concern to the industry with regard to

offshore platforms.

The first problem is designing a platform for use in water deeper

than 1000 feet and still having the design remain economical. Industry

sources reveal that a generai rule of thumb developed from experience

14



limits the fundamental period of offshore platforms to a maximum of

five seconds. This results from the fact that the waves with the

greatest energy content have frequencies greater than five seconds.

Limiting the fundamental period of the structure to five seconds

or less minimizes the dynamic effects of the wave loads on the

structure in the frequency range of waves which produce the largest

forces, thus reducing the ultimate load on the structure. If a platform

is designed without reinforcement for use in water of depths greater

than 1000 feet, the fundamental period is greater than five seconds

resulting in a higher ultimate load on the structure and requiring

more structural material adding to the cost. If a platform is

designed with reinforcement so that the fundamental period is five

seconds or less for water depths greater than 1000 feet, the ultimate

load on the structure is reduced, but the cost of the reinforcing

material is high.

The second problem is combating the low cycle - high stress

fatique of deep water steel jacketed structures in severe ocean

environments such as the North Sea. Nearly all industry sources

surveyed agreed that dynamically amplified fatigue becomes a major

consideration in design as steel jacketed platforms [with fundamental

periods greater than four seconds] move into deeper water in areas

such as the North Sea. Here, conditions are such that normal

day-to-day waves with frequencies near the fundamental frequency of

the structure contain sufficient energy to reduce significantly the

life expectancy of the structure through fatigue failure. Kallaby

15
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and Price [l] calculated the cost of overcoming fatigue effects in

these structures and found that the fatigue premium was 4.5% of the

cost of the structure.

The third problem concerns degradation of the soil under gravity

platforms due to cyclic loading during storm conditions. As large

waves strike the gravity structure, forces are transmitted to the

soil in the form of stress increases or decreases between the soil and

the structure. The nature of wave loading causes these stress changes i

to be cyclic. Increased stresses in the soil cause increases in the

pore-water pressure of the soil and cyclic stress reversals cause the

pore-water pressure to increase with time. As the pore pressure

increases, the soil becomes weaker and finally loses all strength

through liquification. Calculations on soil degradation resulting

from this type of loading have been done by Bjerrum [2], Anderson

j~l [3] and Hoeg [4]. They show that over a period of storms it is

possible for the strength of soil beneath a gravity platform such

as those in operation in the North Sea to be reduced significantly.

Tayloe [5], Watt et al [6] and Utt et al [7] showed that as the soil

strength degraded in the fashion described above, the weakened founda-

tion caused the fundamental period of the structure to increase into

the range where dynamic amplification of the peak load would occur,

thereby increasing the ultimate load on the structure perhaps beyond

the design load. The offshore industry has no field data available

at this time to assess the seriousness of this problem but steps are

being taken to secure an answer in the next few years.

16
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It has been suggested that an effective and economic means of

overcoming some of the problems described above is the use of a

mass damper on structures used in deep water. The mass damper is an

energy absorbing system consisting of a mass-spring-dashpot

apparatus placed near the deck of deep water platforms which, when

properly tuned, reduces the dynamic response of the platform. The

mass damper is not a new concept. In its earliest and simplest form

it was known as a vibration absorber and was used in industry

applications to reduce vibrations [8]. Recently, however, the mass

damper has been installed in two tall buidlings to reduce their

response to wind inputs. The extension of the mass damper concept

to offshore nlatforms and the effectiveness of such a system in

overcoming the problems cited above is the subject of this thesis.

1.2 Scope of Thesis

To examine the potential use of a mass damper on an offshore

platform, this thesis addresses two questions: how effective is

the system when used on a multi-degree of freedom offshore tower

subject to frequency dependent sea states and how does system response

change as damper parameters are varied?

To pursue these answers, offshore platforms are modelled with

a finite element computer program developed by DuVall [9] which

computes the frequency domain response of an offshore platform to

designated sea states. The platform models are of two types:

steel-jacketed structures with fundamental periods ranging from

17
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5-7 seconds and a concrete gravity platform of the Condeep type with

a fundamental period of about three seconds. The various sea states

used as environmental input are modeled by the Pierson-Moskowitz wave

amplitude spectrum which is developed in Chapter 2. DuVall's

program has been modified to include the mass damper, structural

damping, and soil effects.

The vibration absorber and mass damper are explained and their

mathematics discussed.

An illustrative analysis is presented showing structural responses

with and without the mass damper in operation. Next, a modal analysis

of this same example is made to determine participation of each mode

in the total structural response.

Finally the multi-modal model platform is analyzed for varying

sea states to determine damper effectiveness and the variation of

system response with damper parameters. Results are presented and

discussed and an evaluation of overall effectiveness and feasibility

is made.

18



CHAPTER 2

THEORETICAL FORMULATIONS

2.1 The Structural Model

The offshore platforms analyzed in this thesis are modelled

using a finite element computer program developed by DuVall [9].

This program assembles a model of an offshore platform, either

-:avity or steel-jacketed, based on platform dimensions input

by the user. Both types of structures are modelled (see Figure 2.1)

as 4 two-dimensional axisymetric beam elements supporting a load

representing the deck.

The gravity structure midel supports the beam elements with a

caisson which rests on a flexible soil base represented by

linear springs. This model has ten degrees of freedom when the

mass damper is not in operation. These are x1 through x5 and

O through 05 as shown in Figure 2.1. When the mass damper is in
1 5

operation, an additional degree of freedom,xD, is added bringing

the total to eleven.

The steel-jacketed model fixes the beam elements to the ocean

floor in a cantilever fashion representative of piled structures.

This model has eight degrees of freedom when the mass damper is not

in operation. Degrees of freedom xI and 01 are set to zero as

boundary conditions representing a fixed base and the remaining

degrees of freedom are x2 through x5 and 02 through 0@5 An additional

degree of freedoml XD, is added when the mass damper is in operation.

19
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The models are loaded in their plane using a discretized wave

height spectrum (see Section 2.2.1) and the model response is given

as discretized frequency spectrums of horizontal displacements and

accelerations, and in-plane rotations of the beam element nodes.

It has been shown by Nath [10] that platform response is independent

- ~- of the direction of loading so that a tyo-dimensional model is valid

for analysis.

Three models are used in the subsequent analysis: the

1000 foot steel-jacketed platform currently being constructed by

Shell Oil Corporation, a 1200 foot steel-jacketed platform of

theoretical design, and the Condeep Brent B gravity platform in

operation in the North Sea. Table 2.1 lists the finite element

model parameters for each model.

DuVall's program has been modified to include damping effects

and a mass damper in the analysis, and the output of a discretized

frequency spectrum of element strains. A detailed description of

the unmodified program can be found in [9]. Appendix A contains a

listing of the modified program.

Two types of damping, viscous and hysteretic, are incorporated
-~ L

into the program. Viscous damping accounts for fluid-structure

interaction and slippage and rubbing in structural joints. It is

- assumed to be linearly proportional to the structure's velocity and

is represented by the matrix C in the equation of motion:

-- C + Kx P (2.1)

-~ 21
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1000 Ft. 1200 Ft. Condeep

Steel-Jacket Steel-Jacket Gravity

Height 366 m 427 m 173 m

Water Depth 305 m 366 m 145 m

External Radius

Base 33.75 m 37.875 m 17.3 m

Platform 9.0 m 9.0 M 4.9 m

Internal Radius

Base 33.6 m 37.717 m 16.0 m

Platform 8.9 m 8.9 m 4.75 m

2 2 2
Deck Mass 4180.0 MTr-sec2/m 7500.0 IT-sec2/m 1580.0 MT-sec2/m

Deck Inertia 2432760 MT-sec 2/m 2432760 MT-sec 2/m 500187 MT-sec 2/m
Total Mass 11213.0 MT-sec2/m 22304.0 l 2-sec2/m 17141.20 T-sec2/m

Modulus of
Elasticity 2.039 x 10 MT/m 2 2.039 x 10 MT/mi 2.9 x 10 MT/mr

Caisson Height - - 60.0 m

Caisson Radius - - 39.7 m

2 2
Caisson Mass - - 15330.0 MT-sec /mn

Soil Density - - 400.0 MT-sec 2/m4

Shear Modulus - - 5000.0 MT/m 2

V Soil - - .5

Table 2.1

Model Finite Element Parameters

22
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where

M = mass matrix

K = stiffness matrix

P vector of forces

x = vector of accelerations

= vector of velocities

x = vector of displacements

Determining the proper viscous damping for multi-degree of

'4 freedom systems is difficult because the nature of damping is not

well described. In terms of the idealized model there is no

"exact" way to assign values to the elements of C One

method, described by Maddox [11], and used in this analysis, assumes

Rayleigh type damping which corresponds to

C _M + av K (2.2)

where t and 8v are scalars defined by:

T 21  T2  T1  T2
2 1 T2 1 (2.3)

i4T T
1v rT T- [i '1i2Bv =r 1[21I T2 AI]/[ -T]

7T 1 2 T2 T1

and

1,2= percent critical damping assumed in the first two

structural modes

TIT2 =first two natural periods of the structure.

With only viscous damping considered the equation of motion becomes:

23
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M X-+(cM + K)* + K x =P (2.4)
- - - - - - - - - --V.

Hysteretic damping is due to internal friction within the

material itself and is proportional to the stiffness and the

deflection of the structure. It is modelled as:

C 2 =120 H K (2.5)

where

iV--Y

Spercent 
critical hysteretic damping

Including hysteretic damping, the equation of motion becomes

Mx + (1 + 12aH)K x = P (2.6)

When both viscous and hysteretic damping effects are con-

sidered the equation of motion for the structure expands to

M x + (aM + K)x + (1 + 12%)K x•= (2.7)

There is general agreement on the representation of damping

in a structure but no agreement has been reached concerning

values for X1. X and a . A survey of several authors indicates

that overall damping in offshore structures can vary from 1% of

critical to 5% of critical damping depending on the author and

type of structure. In general, most values ranged around 3%.

Table 2.2 shows values of percent critical damping for different

materials estimated by Zijp et al [12). Note that a steel structure

in water combines a 1% critical damping value for steel and a 1.5%

24
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Material Damping (% of Critical)

Soil, Translation 9

Soil, Rocking 4

Steel 1

Concrete 2

Hydrodynamic 1.5

Table 2.2

Damping Values for Various Materials [11]

Percent Critical Standard Deviation of Response at A% Critical Damping
Damping A Standard Deviation of Response at 3% Critical Damping

1 1.7

3 1.0

5 0.8

Table 2.3

Variation of Computed Response with Damping

25



critical damping value for hydrodynamic effects to display 2.5%

critical damping overall. Similarly, a concrete structure in

water displays 3.5% critical damping overall. Again the values

range around 3%.

A concern in choosing a value of overall damping is the

sensitivity of the structural response to that value. To

check the sensitivity of the model to changes in overall damping,

the response of the 1000 foot model to wave excitation was

calculated for different values of overall damping. Results of

these computations, shown in Table 2.3, indicate that the response

is very sensitive to damping. Table 2.3 shows that as damping

is decreased from 3% to 1% of critical, the response standard

deviation increases by a factor of 1.7. As th. damping is

increased to 5% of critical, the response decreases to 0.8 of

the 3% response. Therefore as damping is increased, the rate of

change of the response is reduced, but in the range of damping

found in offshore structures, the change in response can be

significant for small changes in structural damping.

Because the value of damping in any structure can only be

estimated and the response is dependent on the value chosen, a

difficult situation arises. This analysis uses the damping value

most often found in research, 3% critical damping for all cases,

with viscous and hysteretic damping each accounting for one-half

the damping. Therefore, XI = = X H = 1.5% of critical damping.

Table 2.4 shows the values of the damping parameters a, v and H

v H

26



1000 ft 1200 ft Condeep
Steel-Jacket Steel-Jacket Gravity

F N r

First Natural 1.244 rad/sec .905 rad/sec 2.094 rad/sec
Frequency

Second Natural 02 5.712 rad/sec 4.217 rad/sec 4.189 rad/sec
Frequency

First Natural T= 2

Te-iod5.05 sec 6.94 sec 3.00 sec
Period 1

Second Natural I =F 2
S"2 2 1.10 sec 1.49 sec 1.50 sec

Period 2

.015 .015 .015

x2  .015 .015 .015

a .0302 .0224 .0420

.0043 .0059 .0048
ýv

.015 .015 .015

Table 2.4

Natural Frequencies and Damping Parameters for Structural Models

&•
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for the three models to be used in this study.

The mass damper is modelled as a cimple spring-mass-dashpot

system connected to the top node of the structure (see Figure 2.1).

Computation of element strains have been included in the

modified program. For the beam element used in this program

and displayed in Figure 2.2, the strain at any point in the element

equals:

6 12y
SS =-( +L3 • .+ )l 1 i

+ [6 +2[-x( + y) ] 2  (2.8)
L L L

Midpoint strains are taken as the representative strain measures

for the elements. Specializing (2.8) results in

d (29)E 2L 1 2

2.2 Hydrodynamic Forces

2.2.1 The Wave Amplitude Spectrum

Common models for the surface of the sea assume the water

surface can be described as a stationary, ergodic Gaussian, or

normal process with zero mean [13].

A stationary process is one for which the statistics of the

process, or the probability law, remain constant with respect to

time. An ergodic process is one in which any averages taken with

respect to a fixed position, with respect to time, are equal to

28

-- " I I I I I I I• I. . .



rT

x

x x

01 2 d

L

Figure 2.2

BEAM LEMEN

29



averages taken at a fixed time over the ensemble, or collection,

of all possible realizations of the process.

Because of these properties, the sea at any place and time

can be described as a wave amplitude spectrum, S (W) which has

the property that the variance of the wave amplitudes is equal to

the integral of the wave amplitude spectrum over all positive

f-equencies, or

l2 E() 0=2 S (w)dcj (2.10)
Ti

-4o

where

S (w) = wave amplitude spectrum in m2 /sec

2
= variance of wave amplitudes (in spectrum)

2
E()= man square of wave amplitudes (in spectrum)

T = wave amplitude associated with random ocean wave

Of the several empirically derived wave amplitude spectra available,

the most widely used is the Pierson-Moskowitz spectrum [14] represent-

ing a fully developed sea. Its form is
(y G2 ^.0o. 4

S (w) = ( )e (2.11)

where

jCs= 8.10 x 10-3

A =0.74

G = 9.80 m/sec 2

S= G/U
0

U = windspeed reported by weatherships in m/sec

30
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Any one of four parameters can be used to specify a specific sea

state. These are U, fm, Hs, and Hmax where

Wo G
n 2= 2rrU

1-1 = 4/rj0 Srtr(w)dw 4.078 x 10-3 (G2)

m

H -2H
max s

In this analysis, three specific Pierson-Moskowitz wave

amplitude spectrums are used. They correspond to seas generatee

by 70 mph winds, 40 mph winds and 30 mph winds and are plotted in

Figure 2.3. Table 2.5 contains the parameters of these seas. A

detailed development of random waves and the wave spectrum can be

found in Nath [10].

" The computer program of DuVall uses a condensed spectrum

represented by a finite number of frequencies. This condensed

spectrum is derived by evaluating the area between W-A and W+A of the

P-M spectrum around a specified frequency w, taking the square root

of that area, and assigning that value to the specific frequency.

This is the rms wave amplitude in the band w-A to (+A. This

is done for all the frequencies specified, forming a histogram

of frequencies and equivalent wave amplitudes which represent the

P-M spectrum, from w = 0 to w = .35 rad/sec. Although the actual

spectrum does not equal zero until w = oo, the area under the spectrum
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Figure 2. 3

Pierson-Moskowitz Wave Amplitude Spectra Used in the Analysis
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i Windspeed 70 'MPH 40 MPH 30 MPH

•z"f .05 hz .09 hz .12 hz

mI

SH 52.5 ft/16.0 m 16.2 ft/4.9 m 9.0 ft/2.7 m

s
SH ma 50J 't,32.0 m 32.4 ft/9.8 m 18.0 ft/5.4 m

S1ma

Table 2.5

Parameters for the P-M Wave Amplitude Spectrums
Used in the Analysis
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from W .35 to W = is only .05% of the total area from W = 0 to

W = 01, which is insignificant. An example of this process and the

resulting discretized wave amplitude spectrum r(wi) is shown in

Figure 2.4. The discretized wave amplitude spEctr for the three

sea states used in this analysis are shown in Figure 2.5.

The discretized spectrum has the property that the variance

of the wave amplitudes represented by the wave-amplitude spectrum

is equal to the sum of the squares of the discretized wave amplitudes,

that is N]
2 " ) 2

C=T (2.12)

2.2.2 Wave Forces on Offshore Platforms

An expression for the total wave force on a cylinder

per unit of cylinder length has been developed by Morison (1950).

This total force consists of two parts, a drag component and an

inertial component. The drag component can be shown to be

negligible for deep water structures. Therefore the total force

per unit of cylinder length is assumed here to consist of only the

inertial component which is expressed as
2

#T =I) =C (2.13)
T 1I

where

T= total force per unit of cylinder length
T

DI = inertial force per unit length

p = density of fluid transmitting the wave

34

- lI



IS!~ ~

[nI(W 3)1 w3 _A McA)dw
w3-

S (w)

W1  '2 "3 (4 5 Li 6  n

Figure 2. 4a

Typica:l Wave Amplitude Spectrum

,.n (w

Figur 2.4b

Discetied Wve mpltudeSpetru

1 2 35



5.0

70 mph

1.0

40 mph
i .5

(meters)

30 mph

.05

.01 I

.03 .06 .09 .12 .15 .18 .21 .24 .27 .3 .33
f (hz)

Figure 2.5

Discretized Wave Spectra Used in the Analysis (49 Frequencies)
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CI inertial coefficient

D = cylinder diameter

S= fluid partical acceleration

Airy wave theory shows that

-.

H 2 cosh(Kz) (.4sinwt (2.14)
u- 2 W sinh(Kh)

where

H = wave height from tip to trough

K = wave number, K =27/

X wave length

h = water depth from ocean floor to still water surface

z = distance from ocean floor to any elevation on

structure

2
W = KG tanh(Kh)

Therefore
H T 2 _____KzSPsCh(Kh) sintt (2.15)

T 2 1 4 sinh(Kh)

H
Since a single wave is described by n = sinwt, a linear relation-

ship with respect to amplitudes exists between n and T"

This linear relationship allows the use of the discretized

wave amplitude spectrum so that

(TD ) = (TF)n(wi) (2.16)

A where

S.. .D2 2 cosh(Kz)
1 4 sinh(Kh)

A detailed development of this subject can be found in Nath [10].
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Using the set of force distributions D (W where i = 1,N,
T i

the computer program determines a vector of work-equivalent

nodal forces P for each w i to be applied to the structure during

the frequency domain analysis. Development of this procedure is

.7 covered by DuVall [9].

2.3 Frequency Domain Solution

Using the set of vectors P(w1 ) determined from the set of

force distributions 4T (Wi) in Section 2.2.2 to excite the structural

model, the displacement response is found by the computer program

to be a set of vectors x(w.) such that

x(TF) P (w (2.18)

The model is represented by a linear system whose

equation of motion is

M + (M + vK)'x + (1+i2ý )KX = P (2.7)
V_ H

iWt iWt
Assuming P = P(w)e and x = (TF) P(w)ei, substituting into

the equation of motion yields

(-W2M + iawM + K + i2a K + iwý K)(!'F)P()e p()et

(2.19)

It follows that
TF (-W2 M + i-wlM + K + i2K + K) 1  (2.20)

- icWM +K + HE + iw _

The linearity of the system allows the transfer of the properties

of the input to the response so that the variance of the response of
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each degree of freedom is equal to the sum of the -quares of

responses of that degree of freedom at each discretized frequency.

x2 N 2Xwi j=lM (2.21)

Vwhere M number of degrees of freedom in the model.

To determine acceleration response, the following is

used:

4> Wi) =W - Yw i (&)

and (2.22)

(2) N (W)2

Element strains are computed using the relationship

-- k -i (W) B [x(w )]K =1,4 (2.23)

where, as outlined in Section 2.1,

-ýK 10 (L)K ~0, 2L)K1

K =element number

and finally the variance of each element strain is found to be

2 N 2
4 ~Y) = ~ sw))(2. 24)
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CHAPTER 3

VIBRATION CONTROL SYSTEMS

3.1 The Dnamic Vibration Absorber Subject to Sinusoidal Input

The undamped dynamic vibration absorver, inveated by Frahm in

1909, is used to eliminate inwanted vibrations from machinery.

Consider a nachine represented by a one degree of freedom system

subject to an unwanted sinusoidal force Psinwt (Figure 3.1).

..et the vibration absorber be represented by a comparitively small

vibratory system k29, m2 , attached to the main mass m1 (Figure 3.2).

If the parameters k2 , m2 are chosen so that the natural frequency

(k2/M2)1/2 of the attached absorber is equal to the frequency w

of the discurbing force, then the main mass mI will not vibrate at

all. The mathematical proof of this is contained in DenHartog [8].

This result is most useful when the frequency of the disturbing

force is near the n&tural frequency of the main system putting that

system at or near resonance. Consider the case where the main

system whosE: response spectrum is shown in Figure 3.3, is disturbed

at its natural frequency. A vibration absorber is added whose

natural frequency equals the disturbing frequency which equals

the natural frequency of the main system, or;
k k k m2

2 1 2 2a =on or o -- i=
m2  mI K rI

2 1 1 1

where

S 1/2wa = (k 2 /m2 ) = natural frequency of absorber

1/2
Q= (kl/ml)'/ = natural frequency of main system

M= 2m/m! mass ratio = absorber mass/main mass
40

Ai



Psinwt

M-
x

Figure 3. 1

One Degree of Freedom System Disturbed by Force Psinwt

k

Ps inwt

xl

jm2~

x2

Figure 3.22

Main Svstem m,,, k with Vibration Absorber Attached
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Figure 3.3

Response of One Degree of Freedom System to Disturbance
Psinwt as a Function of w
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Figure 3.4

Response of Main System with Vibration Absorber Attached
to Disturbance Psinwt as a Function of w
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The response spectrum for the main system with vibration absorber

attached is shown in Figure 3.4. The system now has two natural

frequencies but the vibration of the main mass at its old natural

frequency is eliminated.

Den Hartog [8] shows that the new natural frequencies are

dependent only on the mass ratio and are found with the following

formula:

= _ -+ (3.1)

Consider the system of Figure 3.2 in which a dashpot is

arranged parallel to the vibration absorber spring k2 , between

masses mI and m The equations of motion for this system become
massi1 adi 2.

m + k1X + k2 (xl-x2 ) + c2 (*I-i 2 ) = Psinwt

(3.2)

m2 + k 2 (x2 -xl) + c 2 (c 2 -* 1 ) = 0

Assuming the solutions

x1 = XleiWt

(3.3)

x2 = X2 eiWt

and substituting these into Equation (3.2) yields
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-m W2 X + klX + k (Xl-X) + iWC (X,-X) P
1 1 1 1 2 12 21L2 AA

-m2(2X2 + k2 (X2-X1 ) + iWC2 (X2-X) 0

The solution of these equations involves complex arithmetic

and is lengi.hy. Den Hartog [8] shows the solution for the displace-

ment of the main mass to be:

(2 - g) + (g2-r2) .2

st (2 c2 g)2(g2-1+1g 2) + [pr 2g 2-(g -!)(g 2-r2 2
-4. C

where

r = Wa/Rn -- frequency ratio (natural frequencies)

g = W/On = forced frequency ratio

cc = 2m2 On = "criticaj*" damping

The general response spectrum for X /Xst is shown in Figure 3.5.

A ~1 S

The shape of the response spectrum, that is the response at any input

frequency, varies with the change in the parameters 2, c2/Cc r, and g.

The maximum value of XI/Xst is

st

Note that X /X can be significant when p is small.

1st
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Response Curves for Motion of the Main Mass. Damped
Absorber (Solid), Undamped Absorber (Dashed)
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3.2 The Damped Dynamic Vibration Absorber Subject to White Noise Input

In general, mechanical systems exhibit internal damping, and

often they are subject to spectral inputs rather than single sinusoids.

SI This is the case with the offshore oil platforms under consideration.

I. Crandall and Mark [15] carried out some parameter optimization

studies with the system shown in Figure 3.6 where both the main system

and the vibration absorber were damped. The system input was a white

noise acceleration applied to the system foundation.
iI2 2

A comparison was made between the values of E[yl]/cy for various

values of the system parameters where

2
E[y1 ] = expected value of the relative motion of mI with

vibration absorber attached

2
CF = expected value (standard deviation) of the moti.on ofY

m without the vibration absorber

Yl = x -X1

The results were similar to those obtained by Den Hartog in his work

with damped vibration absorbers. Crandall found that the response

depended on the mass ratio V, the damping ratio c/c and the
c

frequency ratio r.

As V was increased the minimum value of E[y2/ generally
g

decreased.

The minimum value of E[y ]/ for each mass occured at a

frequency ratio r which followed a law such that

Vi

r =- (3.6)
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where a > 1 by a small amount.

The response not only depends on the damping ratio of the

absorber but also the ratio of each absorber damping ratio to the main

system damping ratio.

Finally, the amplitude of the absorber mass response varies

inversely with the mass ratio when the system is tuned for optimum

vibration absorption, and can be significant, and a limiting design

factor, as the mass ratio decreases.

3.3 The Mass Damper and the Offshore Platform

The mass damper affixed to an offshore oil platform is es-

sentially a damped vibration absorber attached to a damped vibrating

system. There are two main differences between this system and those

studied by Den Hartog and Crandall and Mark. First, the tower is

a multi-degree of freedom system rather than a single degree of

freedom system and secondly the input to the system is a varying

spectral input rather than a single sinusoid or a constant white noise.

To check the feasibility of using a mass damper on an offshore

tower, a modal analysis of the 1000 foot model was carried out. The

details of this analysis and the complete results are in Appendix C.

The results show that the model responds primarily in its fundamental

mode. This indicates that the mass damper should be effective and

'2 it should be tuned to surpress the response of the first mode.

The purpose of the mass damper is to reduce the standard devia-

tion of the response of the structure when the structure is excited by
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a spectral input representing the action of the sea.

An illustrative example demonstrates the ability of the mass

damper to reduce response. The model used is the 1000 foot steel

jacketed tower currentlybeing constructed by Shell Oil Corporation.

The input is the Pierson-Moskawitz wave-amplitude spectrum for a

one-hundred year return sea state discretized into forty-nine

frequencies as explained in Chapter 2. he one-hundred year return

sea state is the sea state corresponding to a wind speed of 70 mph

[161.

First the model without the mass damper was excited by the

one-hundred year return sea. The results are shown for deck

displacement (Figure 3.7), deck acceleration (Figure 3.8), and strain

in the fourth element (Figure 3.9).

Next the mass damper was activated with the parameters in

Table 3.1. The model was then excited by the same sea state. The

results are shown in Figures 3.7, 3.8 and 3.9. These results are

normalized to the rms response of the tower without the mass damper.

The standard deviation of each response was computed using the

method outlined in Chapter 2. The standard deviations of response

were reduced by the use of the damper as follows

Deck rms displacement - reduced 23.7%

Deck rms acceleration - reduced 29.2%

Top element • strain- reduced 28.3%

The motion of the damper in relation to the deck was 3.42 times the

motion of the deck.
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.- 7.7

V .01 (damper mass 112.0)

*w / 1.00
a n

k
I-mass damper 166.7 MT/in

c damnper 5%
* ' c,

c damper

Table 3.1

Mass Damper Parameters
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The important variables to be examined when judging the

effectiveness of the damper depend on two things. First, the space

available for free travel of the damper and second,the reduction

in amplitude of the response variable, for example, the element strains,

which are most important for fatigue and deck acceleration, which

is most important for numan comfort considerations.

In this case, the damper is effective in reducing all three

responses significantly, but the relative motion of the damper is

probably excessive for the crowded conditions found on drilling

platform decks where space is a premium.

~z1
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CHAPTER 4

PARAMETER VARIATION AND SYSTEM RESPONSE

The two important factors in the design of mass dampers are the

effectiveness n reducing platform response and the motion of the

mass damper relative to the tower deck. The final design of a mass

damper is normally a compromize between the effectiveness desired

and the space allocated for movement of the damper. In this chapter

the variation of these factors is studied for a range of damper

parameter values. The 1000 foot tower model with eight degrees of

freedc- active is subjected to the 100 year return storm. Thus an

extensior. is made from a single degree of freedom system with an

attached damper studied by Den Hartog and Crandall to a mass damper

in operation on a multi-degree of freedom system.

The offshore tower, while it essentially acts as a one degree of

freedom system, is not, however, an idealized one degree of freedom

system and it is subject to an input whose intensity varies with

frequency throughout the spectrum.

There are three parameters which determine the response of the

system: the mass rat'.o 1j, the frequency- ratio wa and the ratio of

percent critical damping in the absorber to percent critical damping

in the tower Ba/an. The mass ratio p, of the multi-degree of

freedom system is the ratio of the damper mass to the total mass of

the tower. To determine the variation in system response, each

ratio is varied in turn with the other two constant. The
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effectiveness of response reduztion is measured as the deck displacement

ratio a /cT (the ratio of the rms deck displacement with mass damperD

to the rms deck displacement without the mass damper).

To determine the effect of mass ratio on response, wa/Qn is

held constant at 1.0 and ýa is held at .05 (ýn iL constant at .03

as discussed in Chapter 2), and the mass ratio is set at .01, .03,

and .05. These values of U were chosen as being the limits and mid-

point of the range of values that might be practical in this type of

application. The results are shown in Figure 4.1. As 1, increases,

CD/a decreases but the rate of decrease in a /a is decreasing.D D

This result is similar to that predicted by MacDonald [17] in her

work with Crandall's model and shows that the additional cost of an

increment in p is rewarded with a smaller increment in reduction of

the deck displacement ratio. This fact is important in the economic

analysis of the mass damper system.

Also plotted in Figure 4.1 is the damper displacement ratio

damper (the ratio of the rms relative mass damper displacement to

the rms deck displacement without the mass damper). This ratio also

decreases in the same manner as the deck displacement ratio. By

increasing p the room needed by the mass damper to operate is reduced,

which again affects the cost and feasibility of the damper system.

The variation in deck displacement versus frequency for four

values of p is plotted in Figure 4.2. When p # 0, that is, the

mass damper is in operation, the system has two resonant peaks and the

response is reduced in the area of the natural frequency of the tower.
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As v is increased this reduction of response is increased which reduced

the deck displacement ratio as shown in Figure 4.1.

To determine the impact the frequency ratio wa/On has on response,

aa was held constant at .05 and wa/Qn was varied for each value of U.

Figure 4.3 shows the results. The minimum values of the deck

displacement ratio were achieved at the values of wa/SOn indicated

by a cross on each curve.

It can be seen from Figure 4.4 where the variation in deck

displacement versus frequency is plotted for values of wa/On, that

the minimum response occurs when the two resonant peaks of the

response are equal.

Returning to the results shown in Figure 4.3, note that as the

mass ratio increases the deck displacement ratio becomes less

sensitive to variations in the frequency ratio, allowing broader

variations in tuning with little change in results.

The damper displacement ratio plotted in Figure 4.3 shows the

damper displacement to be very insensitive to variations in the

frequency ratio for all values of p.

To determine the importance of the damping in the absorber on

the structural response, the frequency ratio was held constant at 1.0

and the percent critical damping $a was varied for the three values

of p. The results are plotted in Figure 4.5. Again the minimum

value of the deck displacement ratios were achieved at the values of

aa indicated by a cross on each curve. Figure 4.' shows the

variation in deck displacement versus frequency for values of a

a"
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The variation of damper displacement ratios is also plotted

in Figure 4.5. As the value of $a increases - dampr decreases

for all mass ratios. The decrease is more pronounced for 1 = .01.

Note that although a /a varies only 1.5% in the range shown, the
D

damper displacement ratio decreases 30%. It would seem practical,

and certainly economical, to set aa at a value higher than that

causing the minimum deck displacement ratio for smaller masses to

reduce the damper motion without unjust penalty in deck displacement

reduction.

Table 4.1 summarizes the parameter values for a mass damper

utilized on offshore towers which cause a minimum in the deck

displacement ratio.

Qn

.01 .9825 .0725

.03 .9535 .1250

.05 .9260 .1675

Table 4.1

Mass Damper Parameters for Minimum Response

These results were checked to insure their validity in sea states

developed from winds of 30 mph up to 100 mph. The results
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remain valid without significant change because the spectra represent-

ing the various sea states are the same in the range of frequencies

where resonance occurs in offshore structures.

These values cannot be considered optimum values. They do not

account for the variation in relative damper displacement which must

be a major factor, along with damper effectiveness, in the design of

a mass damper system.
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CHAPTER 5

DAMPER APPLICATION TO INDUSTRY PROBLEMS

5.1 Offshore Platforms in Water Depths Greater than 1COU Feet

As outlined in Section 1.1, offshore platforms designed for

safe operation in water depths greater than 1000 feet are too

expensive to be constructed in the current economic climate. This

high cost results from either of two possible restrictions on the

design. First, that the fundamental period of the structure be

five seconds or less, or second, tlvat if the fundamental period is

allowed to be greater than five seconds, then additional reinforcing

steel is required to withstand the resulting increased design

loads. It appears that it might reduce the total system cost if the

platform had a fundamental period greater than five seconds and the

design loads were equal or less than the design loads of a platform

with a fundamental period of five seconds. This second requirement

permits only normal amounts of material to be used in the platform,

without additional reinforcing.

To check the possible use of the tuned mass damper to help

meet these two requirements, the 1200 foot steel jacketed model, with

a fundamental period of 6.94 seconds, was loaded with a 100 year

return sea state with and without the mass damper in operation.

The damper parameters used were those listed in Table 5.1. In

addition, the 1000 foot model without a mass damper was loaded with

the same sea state as a basis for comparison. The responses compared
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Table 5.1

Comparison of Tower Response when Subject to a

100 Year Return Sea State

Model P RMS Deck Displacement* RMS Top Element Stiain**

1000 foot 0 1.000 1.000
(T=5 see)

'1200 foot 0 1.158 1.012
(T = 6.94
sec.)

1200 foot .01 .852 .707
(T=6.94
sec.)

1200 foot .03 .746 .596
(T=6.94
sec.)

1200 foot .05 .701 .547
(T=6.94

sec.)

Normalized to 1000 foot model P14S deck displacement

Normalized to 10OC foot model RMS top element strain
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are RMS deck displacement and RMS top element strain. RMS deck

displacement is indicative of the overall structural response

and the RMS top element strain is representative of member stresses.

All responses are normalized to either RMS deck displacement or

RMS top element strain of the 1000 foot tower. The results are

shcwn in Table 5.1.

The increase of tower depth to 1200 feet and fundamental

period to 6.94 seconds increases tl-a EMS deck displacement 1.158

times. The increase ir RMS deck displacement is expected as the

fundamental period moves tb frequencies where the waves are larger.

The use of the damper however reduces this response below the RMS

displacement of the 1000 foot tower. The same trend is observed for

EMS top element strain. When the damper is not in operation member

strains in the 1200 foot mcdel are larger than those in the 1000 foot

model, thus requiring additional material to insure safety. When

the damper is in operation the member strains are less than those in

the 1000 foot model for all mass ratios.

Thus the two criteria are satisfied when the majs damper is

applied to the 1200 foot model. The fundamental period of the

structure is greater than five seconds and the member loads are

less than those of a platform with a fundamental period of five

seronds. Therefore the use of a tuned mass damper on a structure

with a fundamental period of greater than five seconds might make

the design of such a structure affordable in today's economic climate

since it reduces the response.
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The travel of the damper mass has not been considered in this

application although it is an important design parameter. The amount

of travel allowed depends on the space available, the damper mass

used, and the response reduction desired. Reduced damper travel can

be accomplished by increasing the damper mass or changing the

damper frequency. The former, while also decreasing tower response,

increases the loads on the structure caused by the additional weight.

The latter increases the tower response. It is apparent in this

case that there is probably a sufficient margin in response reduction

at all values of p to allow for damper motion considerations and

still insure reduced costs.

5.2 Fatigue Failure i•t Steel Jacketed Platforms

The cyclic stresses induced in steel-jacketed deep water platforms

by ocean waves in areas such as the North Sea are of sufficient

magnitude on a daily basis for fatigue to be a major design considera-

'r tion. As mentioned in Section 1.1, the cost of overcoming fatigue

effects in such structures can be significant.

Muga and Wilson [19] present a simplified theory which can be

applied to the design of ocean structures subjected to random-type

forces which explains the mechanism of faLigue failure.

Assu,.,e that a fatigue curve -or a structural metal has been

experimentally determined under conditions similar to those of the

proposed ocean structure. The results are approximately a straight
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line on a plot of log S (stress) against log Nf (number of cycles

of loading to failure). Figure 5.1 is a sample of such a plot.

Note that the slope and intercept of the curve vary depending

on material and environment.

Figure 5.1 can be used to find an estimate of the number of

cycles to failure, Nfl, for a structural member at a given constant

stress amplitude, S1 . lf the constant stress amplitude is at a

constant frequency, fl, which would be the case in wave loading, then

the time to failure, Tf, is:

NI

Tf N (5.1)

When the stress is not of constant amplitude, but is random in

nature, such as those stresses caused by ocean waves, the problem

is more difficult. Empirical theory is uot available, but an

extrapolation of fixed amplitude fatigue data can be made as follows.

Assume a specimen has been tested first at SI failing at Nf1 , and then

at S2 failing at Nf2 (see Figure 5.1). The fraction of the material's

life which is used up for nf1 cycles at SI is assumed to be n IN
fl 1 fl fl*

The fraction cf life remaining is 1 - n INf. This remaining life
fl fl*

is assumed to be used up at stress level S2 in nff2 cycles, where the

fraction of life remaining is nf 2 /Nf 2 . Thus failure occurs when

n nfl + f2 1 (5.2)
Nfl N f2

It follows that, if the specimen experiences nfi cycles of
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Figure 5.1

S-N Data in Salt Water Environment for Annealed Steel,
0.37% Carbon (21)
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stress amplitude Si for i = 1,2,..., the total cumulative damage

fraction is taken to be

ni
D f N 1 (5.3)

i=l,2,... f

Fatigue failure occurs when D = i.

f

From the above theory of fatigue failure and from Masubuchi's

[19] observation that when the applied stress is lowered, the

number of cycles to failure is increased, it can be concluded that

when member stress levels are lowered the time to failure Tf is

increased, thus increasing the life of the structure. Equation 5.1

shows this for the single stress level case. As Nfl increases so

does Tf. For the random stress level case, Equation 5.3 shows that
f*

as the N become larger, D decreases,requiring more nfi before
fi f f

failure will occur, which in turn increases Tf.

As a corollary to the above conclusion, the time to failure

can be held constant, if as stress levels are decreased, member cross

sections are reduced to restore old stress levels. This aliows

reduction in the material used to combat fatigue affects.

The effect of a tuned mass damper on fatigue in offshore plat-

forms was checked by loading the 1000 foot model with sea states

generated by windspeeds of 30 and 40 mph (see Table 2.5). These

sea states were chosen because they occur in the North Sea from 40

to 45 percent of the time [1]. RMS top element strain is the response

examined as strain is a direct representation of member stresses.
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The model was excited by both sea states with and without the mass

damper in operation. The damper parameters used were those listed in

Table 4.1. The results were normalized to the RMS strains of the

structure without the mass damper and are tabulated in Table 5.2.

Note the significant reduction in RMS top element strain for

all values of p in both sea states. This reduction shows the

mass damper to be very effective in reducing member stress levels

which contribute to cyclic fatigue failure. Therefore it appears

that the mass damper could be quite useful in increasing the fatigue

life of offshore platforms or in reducing the material required in

platforms to combat fatigue, thus reducing the cost of these

platforms.

Again the travel of the damper mass has not been considered here,

but the amount of strain reduction found allows for sufficient design

margin to include allowances for damper travel.

5.3 Soil Degradation under Gravity Platforms

As outlined in Section 1.1, weakening of the soil under

large gravity platforms can occur when cyclic waveloading causes

pore water pressures in the soil to increase beyond a critical limit.

If the loading continues, the soil becomes weaker until finally the

soil liquifies and loses all bearing capacity. Several authorities

[2,3,4] have done calculations in this area and they have shown that

over a period of storms it is possible for the strength of the

soil beneath a gravity platform such as those in operation in the
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Table 5.2

Comparison of RMS Top Element Strain for 30 and

40 MPH Sea States

RMS Top Element Strain*

30 MPH Sea State 4C MPH Sea State

0 1.0 1.0

.01 .703 .703

.03 .584 .586

.05 .529 .533

Normalized to RMS Top Element Strain of Each Sea State
without Mass Damper
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North Sea to be reduced. As mentioned in Section 1.1, when this

occurs the weakened foundation causes the fundamental period of

the structure to increase into the range where dynamic amplification

of the peak load would occur, thereby increasing the ultimate load

on the structure, perhaps beyond the design load.

Analysis of soil degradation depends on three variables: the

soil, the structure, and the storm loading. To determine what soil

degradation could occur beneath the Condeep Brent B platform and what

effect this could have on the response of the platform, preliminary

analysis was carried out which used a soil model approximating

that found under the Brent B platform [20], the Condeep Model

described in Table 2.1, and a one-hundred year return storm

described by Lee and Focht [21].

The cyclic loads on the soil were determined by loading the

Condeep model with the one-hundred year return storm. These

loads were then applied in a conservative manner to the soil

model [22], to determine the reduction in strength of the soil

after the storm. The shear modulus of the soil decreased from

5000 T/m prior to the storm to 470 T/m after the storm.

The shear modulus of the soil was then varied and the

fundamental period of the Condeep model was determined for each

value of the shear modulus. The results are plotted in Figure 5.2.
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To check the effectiveness of the tuned mass damper in reducing

stresses caused by loads which increase as the soil degrades, the

Condeep model was excited by a one hundred year return sea state

after its soil had degraded to a shear modulus of 470 T/m2 which

corresponds to a fundamental period of 4.65 seconds. These results

were compared to the response of the Condeep model with normal soil

conditions (G = 5000 T/m 2 , T 3.0 sec.) when excited by the same

sea state. The results, normalized to the RMS responses of the

Condeep under normal conditions, are listed in Table 5.3.

The RMS deck displacement has increased 1.609 times and the

RMS top element strains have increased 1.239 times. Assuming the

platform was designed for 100 year return conditions, the response

of the platform with degraded soil is greater than allowed by

design. To examine the effect of the mass damper on the response,

the Condeep with degraded soil was again excited with the 100 year

sea state, but with the mass damper in operation. The results for

three values of p are given in Table 5.3. Note that the damper

was not able to reduce RMS displacements below design value, but

the RMS strains, which are more closely related to member stresses,

were reduced below design levels for all values of p. The

reduction, however, for p = .01 is only slightly below design

values. If damper mass travel is considered, the long travel distances

which accompany small mass ratios would probably make the use of

dampers with small p prohibitive. The results therefore show the

damper to be effective only if strains are of primary importance and

heavier mass ratios are used.
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Table 5. 3

~22 Comparison of Platform Response when Subject

to 100 Year Return Sea State

Model P RMS Deck Displacement* RMS Top Element Strain**

Condeep
(G=5000, 0 1.0 ~ 1.0
T=3.0)

Condeep
(G=470, 0 1.6091.9
T=4. 65)1.3

Condeep,
(G=470, .01 1.292 .983
T=4. 65)

Condeep
*(G=470, .03 1.134 .717

T=4.65)

Condeep
(G--470, .05 1.055 .603
T=4.65)

Normalized to Condeep (G-5000, T=3.0) RNS Deck Displacement

Normalized to Condeep (G=5000, T=3.0) RMS Top Element Strain
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CHAPTER 6

SUMMARY AND CONCLUSIONS

6.1 Summary of Findings

This thesis has examined the tuned mass damper and its

potential employment on an offshore platform. This examination was

conducted using finite element models of three offshore platforms

and discretized frequency varying spectra of three sea states.

This analysis showed that:

a) When the mass damper was applied to the platform models,

the response of the platforms was reduced. The largest reductions

occurred when the damper parameters were set at v = .05, w /,Qn = .926
a

and a = .1675.a

b) The mass ratio P, has the greatest effect on response

reduction. As the mass ratio is increased from -p .01 to p = .05

(holding other parameters constant) the RMS deck displacement

reduction changes from 23.6% to 28.6%.

c) The damper mass travel, an important design consideration,

varies inversely with the mass ratio and is most affected by the

damping in the mass damper.

A d) The mass damper on offshore platforms in water depths greater

than 1000 feet can reduce the RMS deck displacement by as much as

29.9% and the R.MS strain by as much as 43.3%.

e) The mass damper can reduce the RMS strain in steel-jacketed

offshore platforms subject to adverse fatigue conditionsby as much

as 47.1% in a 30 MPH sea and 46.7% in a 40 MPH sea.
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f) When the mass damper is applied to a gravity platform

subject to soil degradation the RMS strains can be reduced to

levels below those for which the platform is designed.

6.2 Conclusions

Th'e analysis in this thesis has shown the tuned mass damper

on an offshore platform may be effective in reducing the high

costs of platforms designed for water depths greater than 1000 feet,

and fatigue in steel-jacketed platforms. It has shown the tuned

mass damper to be of limited effectiveness in overcoming problems

caused by soil degradation beneath gravity platforms.

While these results are based on the use of simple models,

they are an initial assessment of the feasibility and effectiveness

of applying a tuned mass damper to an offshore platform. The

results are very encouraging. The results indicate that more

detailed analyses should be undertaken, analyses which include

details of specific platforms, and the economic aspects of the

damper.

6.3 Areas for Further Study

An area of further study is the economics of the tuned mass

damper applied to the offshore platform. A central question is -

are the costs of the damper system less than the savings realized?

Another area requiring study is the effect the tuned mass

damper has on reducing soil degradation and not just reducing the
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effects of soil degradation.

Lastly, an area not covered in this thesis is the specific

design of the mass damper for an offshore platform and the

possible use and tuning of entrapped liquids in offshore platforms

as damping devices.

if
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APPENDIX C

MODAL ANALYSIS OF THE WAVE EXCITED PLATFORM

It is a characteristic of mechanical systems that a normal

mode exists for each degree of freedom. Associated with each

normal mode is a natural frequency and a characteristic shape. A

normal mode is distinguished by the fact that the system, when

properly excite', could vibrate freely in that mode alone. When

this occurs the ratio of the displacements of any two degrees of

freedom is constant with time. These ratios define the characteristic

7,• shape of the mode. Most important, the complete motion of the

system may be obtained by superimposing the independent motions of

the individual modes.

By examining the motion in the normal modes and the

conLribution of each mode to the total motion of the excited system,

it is possible to determine the nature of the motion in terms of

how much each mode participates in the total motion.

The modal analysis will be carried out on the 1000 foot

platform used as an example in Chapter 3. It will be excited by the

samem 100 year return sea state discretized into twenty-five

frequencies.

C.1 Natural Frequencies and Characteristic Shapes [23]

The equations of motion for an undamped multi-degree of

freedom system may be written as

14• +. -K- x ;(C.l)
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_ AX01

where M and K are symmetric.

If the system is vibrating in a normal mode, which must be

harmonic with time, then:

x =X sinw t

-w2_ X sinw t (C.2)- n-n n

1'=0

Substituting these equations into the equation of motion yields:

2
w- MX+KX =0

n -- n ---- n

or

(K - wM)X = 0 (C.3)-- n--nS~th
where X is the vector of modal displacements for the n mode.-n

Since X can not be zero, then (K - 22M) 0 which by Cramer's

Rule becomes

E - W2 MI 0 (C.4)

This is a characteristic value problem and the roots of Equation

(C.4) are the characteristic numbers, or eigenvalues, which are

equal to the squares of the natural frequencies of the modes.

For each root there Is a characteristic vector solution X having
-n

an arbitrary magnitude and representing the characteristic shape

of that mode.

There are various schemes for solving the characteristic

value problem above and there is normally one available as a program
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package at any computer facility. The one used for this work was

Access II, available at the Joint Computer Facility, M.I.T.

The vectors X are arranged as columns of the matrix P,

the mo3 el matrix of the system, such that:

'D= [IX }{X_ .{Xn

C.2 Orthogonality of Modes

The orthogonality condition which will be established

in this section is important to the development of the modal

equations. For any two roots corresponding to the nth and mth

modes, Equation C.3 is

K 2 M X K X (C.5a)•' n ---- n --- n

2 M X =K X (C.5b)m - -- m ---

Postmultiply the transpose of (C.Sa) by X, thus

(2 T T(2 M X T)X = (K X) X

or
2 TMT KT

W X M X K X (C.6)
nn -n -n - -Mn

T
Premultiply Equation (C.Sb) by XTn thus

SX M X T K X (C.7)m --n - -m -n - -m

Since MT M and K = K because both are symmetric, then the right
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hand sides of Equations (C.6) and (C.7) are equal. Subtracting

Equation (C.7) from Equation (C.6) yields

(W2_2 X T = 0 (C.8)
n m -n lM

2 2
Since 2 2

n m

T
X nM X m 0-n•----n

which is the orthogonality condition. From Equation (C.6) it can

also be seen that

TX Kx =0

C.3 Modal Equations

Starting with the system equation of motion:

M + K x = P (C.1)

Let x = _ u, where u is the vector of modal amplitudes. This

states that the displacement vector x is a linear combination of

modal values. Substitution into the equation of motion yields:

M u+ K 4 u P (C.9)

Premultiply by f:

T .. T T

T
Consider 4 TM D. Each element in the resultant matrix equals

T
M =X M X
ij -zi0-j
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This equals zero for all i # j because of orthogonality. Therefore

the resultant matrix is a diagonal matrix called the equivalent

mass matrix M whose elements are:
-e

H= xTMX
Mi -I MX

TThe same result is obtained from (' K 4' which becomes K whose

elements ace

Returning to Equation (C.1O) which is now

M i+ K u= TVP
--e- -e-

This is a series of n. uncoupled differential equations

M•1 KU .TP)I

M2 i 2 + Y. " (4Tp)

• (TMiY +Ku = (P)nn nn -- na

which can be solved individually such that

u- 2 sinwt + Aisin( t . ) (C.11)
Ki-Mi' M)

where ui is the sum of the forced and free modal responses.

Up to this point damping has been ignored in the analysis.

If damping had been included, the original equation of motion would
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have been

M x+ K x+ C x p

Carrying out the same analysis as above and ignoring the free

vibration portion of the solution; then
(4)

ii (C.12)

(Ki- i• 2 )2 + c2 W2

Critical damping, c, is defined as the damping which eliminates

any harnomic vibration and is equal to 2vl for a one degree of

freedom system.

The ratio of damping to critical damping is the percent of

damping in the system, which is labeled p.

Therefore
•ic c

l ~p=
Cc 2A1i

Then

c (p) (2Al)

Substituting for c in Equation (C.12) yields

u
i/(K- 2 2 + p2 K12
u (KiMi2)2 + 4p2KiMi

As was pointed out in Chapter 2, damping in the computer model

was of two types which varied with each frequency and therefore

with each mode. For simplification, damping will be assumed to be a
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total of 3% of critical damping in all modes for this modal analysis.

This is conservative for this procedure because it will tend to

reduce the suppression of higher modes which occurs in real

structures.

The point has been reached where n steady-state solutions for

ui exist where ui includes damping. The u vector has been formed.

Recalling that x = 4 u the solution for x in terms of modal

participation has been reached where

xI= Oil u1 + • 1 2 u 2 +..+OinUn

"2x= 2 1 Ul + 42 2 u2 +....+2nun

xn =nlUl + ýn2U2 nnU n

The displacement of each degree of freedom is expressed as a

linear combination of modal displacements. The percentage con-

tribution of any mode to the displacement of any degree of freedom

can be found by

% contribution of ith node to jth DOF =

''Iii ' l(C.13)

The above discussion is concerned with only one input P. In the

analysis of a tower subject to excitation by a wave spectrum which

has been discretized into N frequencies, the input vector P

becomes a function of frequency. Evaluating the modal solution at
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each frequency yields N modal solutions. To find the rms value of

the total response of each degree of freedom the solution of each

degree of freedom at each frequency was used in the following formula

N 2(x) i / I 2ý i (C.14)

j=l

where

i = ith DOF

j = jth frequency

If the same formula is used to evaluate the contribution of each

mode to the rms value of the total response of each degree of

freedom, the result is

N
(ax) =1 I [( oU)i12 (C.l5)

xi j=l

where

i ith DOF

j = Jth frequency

When the term (4 u)i is squared the separation of each modal

contribution is lost and the solution (a)i cannot be found in terms

of modal contribution.

In order to evaluate the modal contribution to the rms value

of the response, the following procedures are used.

At each frequency J, solve the equation of motion
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S2, WE?

xT

M ui + K u.- ,
--e-;j ÷-e j. - j = l,N

with

(*- -p ) = ,N

3x • T2.2 2 2 _

2)+ 4p K M. W i=l,M(nuaber of modes)

so that

-j =DU.

Procedure A

At each frequency j evaluate the cortribution of each mode

to the total response. Then sum the contributions of the mode of

interest for all frequenc.ie3 j 1,N and find the average contribu-

tion of that mode.

Procedure B

Assuming that the sum of contributions to the total response

of all higher modes at aay frequency is small compared to the

contribution of the first mode at that frequency, evaluate the

following formula

% Contribution of first mode to RMS value of total

response for DOF i =

YI (¢ilUl)j2
j=l x 100 (C.16)
N N
I I I~iKuKl]j2

J=l K=I
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This formula states that the percent contribution of the first

mide to the numerical sum of the modal components for a particular

degree of frecdom equals the square root of the sum of the squares

of the first mode contribution at that DOF for each frequency

divided by the square root of the sum of the squares of the numerical

sum of the modal components at that DOF for each frequency times 100.

After the results of these two procedures are obtained, chose

the most conservative figure for evaluation.

C.4 Platform Analysis and Results

The mass and stiffness matrices for the tower were obtained

and the natural frequencies and modal matrix 4) were determired.

The next step is to evaluate the equivalent mass and stiftness

matrices where

NM •TM 4
--e

K = •TK 4

The input vectors P were obtained for each of twenty-five

frequencies in the discretized wave spectrum by evaluation of

the work equivalent forces by DuVall's finite element program.

At each frequency the vector T P was evaluated and the

vector of modal amplitudes u was evaluated. The percent modal

contribution will be evaluated for the deck displacement which is

DOF number 9 or x7 . Evaluating x = D u at each frequency and

examining x7 yields the following results.
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Table C.l shows that the first mode varies for percent

contribution to the total response from a low of 96.0% to a high of

99.8%. The second mode generally provides the remainder of the

response but only 3.0% at the highest.

Using Procedure A and averaging the first mode contribution

the result shows the first mode participates in the response with

an average of 98.3%.

Using Procedure B and evaluating Equation C.16 yields

25 2V •. (¢71u1)j

x 100 = 99.2%

25 8Yi [ 1 27 KUK(]•
j=1 K=1

The most conservative of these results indicates that the response

is that of a one degree of freedom system and that contributions

from higher modes can be ignored.

Two other factors must be considered. First, how does the

modal participation change if the sea state is less intense,

causing the distribution of wave heights versus frequency in the

sea spectrum to shift. Secondly, how does the modal participation

change if the structure is much stiffer, placing the fundamental

frequency of the structure in the range of frequencies where the

sea spectrum is more level. This results in all the higher modes

being excited by waves of nearly equal intensity.

Malhotra ard Penzien [24] did a study which answers the

137



In

Freq. %Mode I % Mode 2 ( u71U1) ( 12 7KU
711K=l

.03 96.6 2.7 3.96E-2 4.94E-2

.042 96.0 2.4 6.02E-1 6.54E-1

.046 97.1 2.4 5.68E-1 6.02E-1

.5 97.3 2.3 6.45E-1 6.82E-1

.054 97.4 2.2 7.79E-1 8.21E-1

.06 97.5 2.1 7.35E-1 7.72E-1

.066 97.7 2.0 5.72E-1 5.99E-!

.072 96.5 1.8 3.92E-1 4.21E-1

.078 97.0 1.8 3.60E-1 3.75E-1

.09 98.2 1.6 2.14E-1 2.22E-1

.102 98.3 1.5 2.26E-1 2.34E-1

.114 98.5 1.3 2.47E-1 2.55E-1

.126 98.7 1.2 2.96E-1 3.05E-1

.138 98.8 1.0 3.71E-1 3.80E-1

.15 99.0 .8 7.02E-1 7.15E-1

.175 99.5 .4 3.06 3.09

.186 99.7 .2 4.37 4.39

.192 99.8 .2 4.78 4.80

.196 99.8 .2 3.90 3.92

.2 99.8 .2 2.47 2.48

.204 9Q.7 .3 1.36 1.37

.208 99.6 .3 1.85 1.87

.275 99.2 .7 8.24E-1 8.38E-1

.25 98.4 1.4 3.51E-1 3.62E-1

.3 96.6 3.0 1.26E-1 1.34E-1

Table C.1

Response Statistics of DOF 9 (x 7) of 1000 Foot Tower
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first question. They showed that varying the input sea states from

one based on a wind speed of 60 miles per hour (Hs = 36 feet) to

one based on a wind speed of 30 miles per hour (Hs = 9 feet)

reduced the participation of the first mode only 3%. When the

sea state was reduced below those based on a wind speed of 30

miles per hour, the decrease in first mode participation became

more pronounced, but the total response in these seas is negligible.

The second question was tackled by Millman [25] in his

analysis of an offshore platform with a fundamental frequency of

.754 cycles per second (T = 1.3 seconds). His modal analysis

of this structure excited by a strong sea state (Hs = 38 feet)

showed the first mode participation in the total response to be

on the order of 97%, clearly still dominant.

The result is that independent of sea state or fundamental

frequency of this type of tower, the first mode participation in

the total response should not fall out of the extremely dominant

range.

There are two conclusions which can be drawn from this

result. First that higher modes can be ignored when considering

"methods of reducing the dynamic response of the tower and second

that results obtained by DenHartog and Crandall and Mark in their

work with vibration absorbers on one degree of freedom systems

should be applicable to the mass damper applied to this tower.

Therefore the mass damper should be effective and it should

be tuned to surpress the response of the first mode.

139


