AD=A053 315 MOORE SCHOOL OF ELECTRICAL ENGINEERING PHILADELPHIA P--ETC F/6 14/2
NOPAL PROCESSOR: INTRA=TEST SEQUENCING.(U)
JAN 78 R W BERMAN DIAAZS-TM-OGSO
UNCLASSIFIED ECOM=75=0650=F

A

~

DA053315

.'.........‘..................................0........................

AD No.——

ODC FILE_COPY.

Research and Development Technical Report
ECOM 75-0650- F

ECOM

US ARMY ELECTRONICS COMMAND FORT MONMOUTH, NEW JERSEY 07703

‘ HISA FM 2957-T3 i

NOPAL PROCESSOR: INTRA-TEST SEQUENCING

Ronald Wayne Berman

Moore School of Electrical Engineering
Department of Computer and Information Science
University of Pennsylvania

Philadelphia, Pennsylvania 19104

January 1978
Final Report for Period 30 June 1975 - 31 August 1977

DISTRIBUTION STATEMENT f
APPROVED FOR PUBLIC RELEASE < D D c
DISTRIBUTION UNLIMITED.

PREPARED FOR:

NOTICES

Disclaimers g‘

The findings in this report are not to be construed as an !
official Department of the Army position, unless so desig-
nated by other authorized documents. |

!
The citation of trade names and names of manufacturers in f
this report is not to be construed as official Government ‘]
indorsement or approval of commercial products or services i

referenced herein.

Disposition

Destroy this report when it is no longer needed. Do not
return it to the originator.

Y

Q

VINGLADD LY L
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

READ INSTRUCTIONS
BEFORE COMPLETING FORM

3. RECIPIENT'S CATALOG NUMBER ‘

4. TITLE (end Subtitle) S. _IYPEQE COVERED

INAL Xegart. "

6. PERFORMING ORG. REPORT NUNBER

iéOPAL PROCESSOR: INTRA-TEST SEQUENCING, ‘_7

: R(e)
2 25 YorhR25-725=C~gL S |
Ronald Wayne/Berman] DAAA-25-75-C0650

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. ::32.0A=0'R‘.Klz:rTTNPUROJ!c:' TASK

Moore School of Electrical Engineering
Department of Computer and Information Sciencev
University of Pennsylvania, Philadelphia, PA 1910

j icusszdum #q |ooz

11, CONTROLLING OFFICE NAME AND ADDRESS
US Army Electronics Command:

ATTN: DRSEL-TL-MS

13. NUMBER OF P =
Fort Monmouth, NJ 07703 100 W
"MONITORING AGENCY NAME 8 ADDRESS(/! dilferent from Controlling Office) | 5. SECURITY CL ASS=TB! thie report)’
UNCLASSIFIED
Sa. DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, if difterent from Report)

'8. SUPPLEMENTARY NOTES The work covered by this report was sponsored by Frankford

Arsenal, US Army, Philadelphia. However, since the Frankford Arsenal mission
relative to this work was transferred to the US Army Electronics Command (ECOM),
Ft. Monmouth, NJ, this report is being issued as an ECOM report.

19. KEY WORDS (Continue on reverse aide Il necessary and Identity by dlock number)

Automatic Testing

Automatic Test Systems

Automatic Test Equipment

Automatic Generation of Test Programs

"

. ABSTRACT (Continue on reverse side If necessary and identify by dlock number)

is report describes the algorithms, methods, and programs that represent the
intra test sequencing phase of the NOPAL processor. The overall objective of
the NOPAL system is to generate a program for computer controlled automatic test
equipment for testing an electronic unit under test. The input to the system is
a nonprocedural description of the desired test expressed in the NOPAL language.
The present report describes how such a specification can be analyzed and how a
flowchart can be generated for performing the test. A subsequent phase of NOPAL

generates a program based on the flowchart. . (continued)

(V'] ‘:::"" 1473 =01mom OF 1 NOV 68 1S ORSOLETE UNCLASSIFIED
SECUMTY CLASSIFICATION OF TWIS PAGE (When Data Bn Tntersdd

#10 039

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE(When Date Enteved)
[—— o
§20. ABSTRACT (continued)

The report can be read independently of the NOPAL processor. Readers interested
only in the automatic sequencing of operations in a program can omit Chapters 1
and 2, which describe the NOPAL language and processor. Readers interested in

greater detail on the NOPAL processor can obtain further information in the
references listed in the bibliography.

i

CONTENTS
Page
1. INTRODUCTION 1
1.1 BACKGROUND 2
1.2 THE NOPAL PROCESSOR 4
1.3 ORGANIZATION OF THE REPORT 8
2. OVERVIEW OF NOPAL STATEMENT TYPES 9
3. ADJACENCY MATRIX 14
3.1 ELEMENTARY STRUCTURES OF THE ADJACENCY MATRIX 14
3.2 EXPRESSING PRECEDENCE RELATIONS IN MATRIX FORM 18
4. PRELIMINARY ANALYSIS OF THE ADJACENCY MATRIX 25
4.1 OVERVIEW OF THE ANALYSIS 25
4.2 ALGORITHM PERFORMING ANALYSIS 29
5. PATH MATRIX 35
5.1 OVERVIEW OF DETECTING CIRCULAR DEFINITIONS 35
5.2 CONSTRUCTING THE PATH MATRIX 38
6. ENUMERATING CIRCULAR DEFINITIONS 40
6.1 BUILDING TREES TO LOCATE CIRCULAR DEFINITIONS 41
7. PRECEDENCE DETERMINATION AND SEQUENCING ALGORITHM 44
7.1 OVERVIEW OF PRECEDENCE DETERMINATION 45
BIBLIOGRAPHY ACCESSION for Eia 52
NTIS White Section rw
ACKNOWLEDGEMENTS i Buft Section 3 52
UNANf INC*D @)
APPENDIX A JUS 7 iCATION) 54
o e 5 ‘
APPENDIX C M‘g@%@'{'gﬁfr 87
4
|
|
l

FIGURES:

s awm (R w v N R
Srm gt & S » . > - B
[SSH NI e) o o o o s Rl Rt

-
. ®
-

(oo e RV NP, I, NV,
e & ONe BEE
(PR SS IR — T SS

NN
. e s .
& 000 -

> >
B

DESIGN AND PROGRAMMING OF TESTING

SYSTEM FLOWCHART OF THE NOPAL PROCESSOR
TOP LEVEL STRUCTURE OF THE NOPAL LANGUAGE
SAMPLE TEST MODULE

DIRECTED GRAPH OF SAMPLE TEST MODULE

IN FIGURE 2.2

DICTIONARY OF NODE IN THE DIRECTED GRAPH
IN FIGURE 3.1

CONSTRUCTING THE DICTIONARY AND FORMING
THE ADJACENCY MATRIX

TARGET AND SOURCE SUMMARY

ADJACENCY MATRIX FORMED FROM TEST MODULE
IN FIGURE 7.1

DIAGNOSIS AND VARIABLE SUMMARY

ALGORITHM TO CREATE ADJACENCY MATRIX
ADJACENCY REPORT

SAMPLE TEST MODULE WITH UNDETECTED ERRORS
ADJACENCY MATRIX FOR SAMPLE TEST MODULE -
FIGURE 4.1

SUMMARY OF ERROR/WARNING MESSAGES

SUMMARY ALGORITHM PRELIMINARY ANALYSIS OF
THE ADJACENCY MATRIX

SAMPLE DIGRAPH WITH CYCLE

ADJACENCY MATRIX FOR SAMPLE DIGRAPH

PATH MATRIX FOR SAMPLE DIGRAPH

ALGORITHM TO CONSTRUCT PATH MATRIX

CYCLES ALGORITHM

SAMPLE DIGRAPH, ADJACENCY MATRIX, AND TREES
SAMPLE OUTPUT FROM CYCLE ENUMERATING PROCEDURE

ANALYZING DIGRAPH OF FIGURE 6.2

ALGORITHM (PRECEED) PRECEDENCE DETERMINATION
ADJACENCY MATRIX FOR TEST MODULE (FIGURE 2.2)

RANK SET FOR SAMPLE-DIGRAPH (FIGURE 2.2)

SEQUENCE OF PROCESSING REPORT FOR TEST MODULE

IN FIGURE 2.2

COMPUTER PROGRAMS FOR INTRA TEST SEQUENCING

FUNCTIONAL DESCRIPTION AND PROGRAM MODULES

it

1 INTRODUCTION

Computer controlled Automatic Test Equipment (ATE) increases the

efficiency while reducing the cost of testing complex equipment. The
function of the computer program which operates the ATE is to validate
the Unit Under Test(UUT) design, test point availability and packaging.
The complex computer program logic needed to specify test sequences

require the programmer to have expert knowledge of the Unit Under Test

(UUT) and of computer technology (programming). The NOPAL language was
developed to simplify the task of specifying test sequences controlling
the ATE.

NOPAL is an acronym for 'Nonprocedural Operational Performance
Analysis Language'. Independent NOPAL test modules each containing the
logic and diagnostic instructions for a particular test situation may be
written in nonprocedural or random order. A significant advancement in
NOPAL over other test specifications languages is the ability to auto-
matically sequence the test modules, and the instructions within the test
modules. This attribute provides the flexibility to modify test instruct-
ions without manually reordering other statements or test modules.

The report presents the algorithms, methods, and computer programs

used to automatically order the statements within a test module.

1.1 BACKGROWND:

Maintenance and support expense for complex equipment are approaching
procurement costs in many organizations. For example, it is reported that
of the fifteen and a third billion dollars spent on electronics by the
United States Department of Defense, more than one third, or five and a
quarter billion dollars, was spent on maintenance and support [Eleccion,
1974]. It is estimated that 80% of this cost is attributed to labor, with
85% of the time spent on diagnosis and fault isolation. Fiscal savings can

be achieved by utilizing engineering technicians with Automatic Test Systems

(ATS). This may be contrasted to the present manual procedures employed
by electical engineers to determine optimal test sequences.

The probable savings can be calculated by comparing the beginning
salary of engineers and engineering technicians as reported by the United
States Department of Labor Statistics [U.S. BLS, 1975)]. In 1974,
beginning engineers received $13,171 per year as contrasted to the engineer-
ing technician's $7,975 per year, a difference of forty percent. Based
on the maintenance and support figures given above, the estimated savings
might be one and a half billion dollars, assuming there is a one-to-one
substitution ratio between the engineering technicians and the electrical
engineers. The savings would enable electrical engineers to utilize their
talents more productively.

To achieve fiscal economy and enhanced reliability as a result of
cffective testing, the United States Army developed a special purpose
language, OPAL (Operational Performance Analysis Language) [Frankf{ord
Arsenal, 1976] to mechanize the programming of ATS. The design is general
enough to test a broad range of equipment including electronic, mechanical,
hydraulic, and optical. Its operation is similar to the well known

2

computer language, BASIC, 1n that cach line begins with a keyword such
as DECLARE, GOTO, CALL, ctc. OPAL's most significant improvement over
earlier test programming languages such as ATLAS [ARINC, 1972] is its
facility for modular development of test modules, allowing independent
test development by different programming teams.

Use of OPAL as a programming language requires considerable pro-
gramning labor. For example, the exact execution sequence of instructions
within each test module and the overall ordering of test modules nust
be specified. This is done with the conventional GOTO and CALL state-
ments. A high likelihood of error is present when manually implementing
the fault determination strategy. This is a result of the extensive
knowledge needed in computer programming, applied mathematics, and the
component being tested. lengthy sequencing instructions
combined with required storage assignments, produce multiple coding steps
for all test specifications. In order to simplify the process of
programming the ATS, a non-procedural test specification language was
developed at the University of Pennsylvania in the Moore School of
Electrical Engineering, Department of Computer and Information Sciences
[Che, 1976].

NOPAL - an acronym for Nonprocedural Operational Perfommance
Analysis Language permits the user to specify test specifications in
modular fashion, independent of one another. The actual sequence of
execution is determined automatically by the NOPAL processor. Since
the sequencing is performed automatically, all GOTO's and subroutine
CALL's have been eliminated. The name NOPAL was sclected because it
is the name of a cactaceous plant which illustrates an incremental

growth of stems analogous to the modular development of tests in NOPAL.

(2

——————————————————

Unlike OPAL, NOPAL is not a programming language. Rather, it is

a language for describing individual tests and diagnoses which are used
as input to the NOPAL processor. The OPAL processor then produces a
computer program for conducting these tests in conjunction with

Automatic Test Gquipment (ATE). Tigure 1.1 illustrates this relationship.

NOPAL's non-proceduralness also allows for incrementality in the
sense that additions or modifications to test specifications may be
incorporated easily. For example, when tests are added Because of design
modifications, the user need not construct alternative sequencing as
in OPAL. The automatic ability to sequence enables NOPAL to achieve a
degree of sophistication that will reduce the cost of updating and
creating the program for the ATS.

Another improvement incorporated in NOPAL is its ability to auto-
matically allocate storage assignments for single and subscript variables.
These assignments indicate whether a variable is locally defined to a
particular test module or globally defined to all test modules. The
attribute, whether local or global, is stated in several user reports.
1.2 THE NOPAL PROCESSOR

The NOPAL processor is graphically represented in Figure 1.2. The
monitor, located at the top of this diagram, is the control mechanism
of the system involving the procedures below it. These procedures,

"o

titled "syntax analysis,'" "intra-test analysis," and "inter-test
analysis," form the three basic divisions of the processor.
Syntax analysis, drawn on the far left portion of Figurce 1.2, ‘

refers to the process of parsing NOPAL source strings into syntactic

r//,*NON-PROCEDURAL

TEST
SPECIFICATION

-

NOPAL
PROCESSOR

!

r//' OPAL

PROGRAM

-

OPAL
PROCESSOR

L

TEST PROGRAM
FOR
COMPUTER CONTROLLED
ATE

ik

AUTOMATIC
TEST
EQUIPMENT

(ATE)

DESIGN AND PROGRAMMING
OF TESTING

FIGURE 1.1

P

SYNTAX

MNITOR

¥

TITLE:

ANALYSIS

REPORTS

PR g o

i oo

e —— Vet

SYNTACTICAL TITLE: INTRA-TEST TITLE: INTER TEST
ANALYSIS SEQUENCING SEQUENCING
) INTRA-TEST WEIGHTED INTE
| : AnacENey P Abuacency |1 |TEST PRECEDENGE—Y REPORT
I mmix REPORT ' MATRIX
| ANALYSIS: ERRORS V' Maaovsts: ERROR
ADUACENCY I japNING | | vEIGHTED WARN ING
| MATRIX PRECEDENCE REPORT
| HAREX
I) PATH |
l MATRIX | PATH MATRIX
4 ' g
’ .
I ERROR 4) cycLs | CYCLE ERROR/
| |WARNING € DETECTION | | petecTion WARN ING
REPORT REPORT
l I
2) FLOW [
| SEQUENCING '\¥ cuarT [PEQUENCING
| REPORT.
INTER TEST
e CODE FLOWCHART
GENERATION GENERATION
OPAL CODE
OPAL CODE
STORED STORED
SYSTEM FLONCHART OF THE NCPAL PROCESSOR
FIGURE .2
6

.

classes, and storing them in an associative memory. This special purpose

nemory network stores the strings so that they are "associated" by their
content, and can be retrievedeasily during later stages of processing.
User reports including a source listing, a cross reference report, and
an error report are produced during this phase.

Intra-test analysis is represented in the center of Figure 1.2
partitioned by the broken rectangle. 1Its purpose is to evaluate
expressions within ecach test module to determine automatically their
sequence of execution. The process begins by establishing an adjacency
matrix, for every NOPAL test module. Each position of the adjacency
matrix represents a variable name, a diagnosis, or a conjunction or

asscrtion. Relations are represented on the matrix such that source and

target variables are linked to conjunction and assertions, or operator
response and other parameter variables are linked to diagnoses. A path
matrix is later introduced to detect circular definitions by indicating
the existence of all paths within the NOPAIL test module. If the NOPAL
test module is error free, sequencing is performed using precedence-and-
ranking-algorithms based on graph theory. Reports listing the sequenced

NOPAL statements and the detected errors are generated.

Inter-test analysis, drawn on the right portion of Figure 1.2, refers

to the process of automatically determining the order of execution for
all test modules. Six sequencing strategies are combined ;Qith precedence
relationship rules to formm a directed graph, rcprcscﬁtod as a precedence
matrix. LBach position of the precedence matrix represents a variable

name, diagnosis, or test module. The row and colwm combinations

denote a precedence relationship. Based on the matrix, it can be deter-

mined whether the test specifications are complete, consistent and/or
unambiguous. Also, possible cycles are detected and eliminated appro-
priately. Finally, test modules are assigned execution levels and
ordered in proper execution sequence. A detailed report explaining this
process is currently in progress.

1.3 Organization of the Report

Section 2 introduces the types of NOPAL statements. Following this,
the sections parallel the process of intra-test sequencing illustrated
in the center portion of Figure 1.2.

In Section 3, the algorithms which transform NOPAL statements into
matrix form are described. Preliminary analysis of ambiguity is in
Section 4. The path matrix that detects circular or transitive relations
is presented in Section 5. Finally, Section 6 details the precedence

algorithm that orders NOPAL statcments.

OVERVIEW OF NOPAL STATEMENT TYPLS
NOPAL statements concisely express test situations whose sequencing
is discussed in this report. This section presents an overview of the
language to familiarize the reader with its construction. To actually
write a test module, the NOPAL Language Manual should be used.

The overall structure of the NOPAL language is summarized in
Figure 2.1, using an extended BNFIF notation. As shown at the top line,

a specification in NOPAL has three parts: Test, Unit Under Test (UUT),

and ATE. The latter two are intended to provide UUT and ATE independence,

in the sense that changes are reflected only in the corresponding parts
of the specification. Consistent with the theme of this report, the
discussion centers around the format of the NOPAL test specifications
written in independent test modules.
failure modes. Because the modules are independent of ecach other, they
may be modified, deleted, or inserted without affecting other test
situations. Formally, a test module is a composite of four unique
classes: stimuli, measurement, logic, and diagnosis.

The Stimuli class indicates the actions applied to the UUT at
test time , while the Measurements class expresses what actions are
needed to ascertain the success or failure of the test. Both stimuli
and measurement employ conjunction and assertion statements. A
conjunction indicates a function applied or measured to a specific
connector point of the UUT. An Asscrtion may be used for two purposes.
The primary one is for stating the range of measurements which would

determine the success or failure of a test. The other use is to

e ————————]

T

< NOPAL SPECIFICATION > ::= < TEST SPECIFICATION > < UUT SPECIFICATION >
< ATE SPECIFICATION >

< TEST SPECIFICATION > ::= <TEST MODULE > [< TEST MODULE >]*
< TEST MODULE > = [<STIMULI >] [<MEASUREMENT >]
[<LOGIC >]* [< DIAGNOSIS >]*

< STIMULI > ::= [<CONJUNCTION >] [<ASSERTION >]*
< MEASUREMENT > ::= [<CONJUNCTION >] [<ASSERTION >]*
< CONJUNCTION > ::= <TEST POINIS > < RELATION > < WAVEFORM >
[<TEST POINTS > <RELATION > <WAVEFORM >]*

< ASSERTION > ::= [IF CLAUSE THEN]

< ARTTH EXPR > < RELATION > < ARITH EXPR >

[ELSE <ARITH EXPR > < RELATION > < ARITH_EXPR >]
< 10GIC > ::= <OPERATOR > <DIAGNOSIS ID >
< DIAGNOSIS > ::= <DIAGNOSIS ID > <MESSAGE > [< FAILURE IDS > |

[<OTHER DATA >] [<TIMING >] ;

[< OPERATOR RESPONSES >]
Key: [<- =] OPTIONAL

[« - ~]* MAY REPEAT ZERO OR MORE TIMES i

FIGURE 2.1 TOP LEVEL STRUCTURE OF THE NOPAL LANGUAGE

10

store data values and pertorm computation during execution of the

testing process.

| Ihe sample test module (Figure 2.2) demonstrates tho. use of
stimuli, measurement, logic, and diagnosis to express a test situation.
The only stimuli is conjunction §S W0001 which applies function
"CONST 8" to connector pins "J24 B" and "WND". To measure the result
of §§ W0001, measurement conjunction $M WO001 applies function "SINE D"
to connector pins "J22'" and "OND'". Finally measurement assertion

SM_WOOOZ evaluates the results to determine the success or failure

of the test.
Conjunctions and assertions employ two classes of variables:

Source and target. Source variables are generated elsewhere, in other

assertions or conjunctions. TARGET variables are locally evaluated to
be used elsewhere. Source variables may be considered dependent or
exogenous; while target variables may be considered independent or ;

endogenous. Within the sample test module (Figure 2.2), conjunction

$M W0001 defines "F1'" and "yv1" as target variables, and '"VAR1'" as a

source variable. Assertion SM)\’OOO.Z defines "yARl" and "vpy'ras source

variables. [ssentially a variable defined both as source and target

by different conjunctions and assertions causes the conjunction or

assertion which uses the variable as target to automatically precede

the conjunction or assertion that employs it as source. |
Each diagnosis identifies the failures and the message which communi-

cates the results of testing to the operator. A diagnosis statement is

composed of five parts: affected components, other parameters, message

type, timing, and operator response. Affected components is a list of

11

e e ————

TEST SYTEST0003;
STIMULI 2(SYTEST0003) ;

CONJUNCTION $S_W0001(2):
(<J24_B > GND = CONST S(27.5 VOLT));

MEASUREMENT $M_SYTEST000 (SYTEST0003) ;

CONJUNCTION _$M W0001($M SYTEST000) :
(J2Z,GND__ = SINE D(V1 VOLT, F1 HZ, VARl SEC))
TARGET: F1, V1
SOURCE: VART;

ASSERTION $M W0002($M SYTEST000) :

IF VAR1=60 THEN
F1 = S*1E+06 +- 60
ELSE
F1 = S*1E+06 +- 2.5
SOURCE: VAR1, Fl;

LOGIC $LOGIC0010(SYTEST003): *4, 5, *6;

t

DIAGNOSIS 4: F
~ OPERATOR MESSAGE:

TYPE=4#S, i

TIME= 0.00000E+00SEC, i

RESPONSE=(VAR1) ;

DIAGNOSIS §: |

" OPERATOR MESSACE: ’
AFFECTED COMPONENTS=FREQ TOL (STD SM{Z_FRE) ,
OTHER PARAMETERS=('FREQ'), oF
TYPL=46;

DIAGNOSIS 6:

7 OPERATOR MESSAGE:
OTHER PARAMETERS=(F1, 'HZ'),
TYPE=D;

FIGURE 2.2 - SAMPLE TEST MODULE

12

failure functions indicating the modes of failure and corresponding
components which the diagnosis asserts to have failed. Other parameters
indicates the variables or character strings that are included in the
diagnostic message. The diagnostic message is referred to by the

label in the message type. Timing states when the operator message is

to be sent in respect to the beginning of the application of the stimuli.
If the message contains instructions to the operator .to perform duties
such as pressing keys, reading meters, or making measurements, an

operator response may be necessary in order to conclude the tests. The

possible responses consist of suspending or initiating a test or
inputting to the terminal the values of the requested variables.

Operator response and other parameters qualify the diagnostic
message. Figure 2.2 presents three diagnoses. Diagnosis 4 uses VARL
to store the operator response for latter examination. Diagnosis 5
employs the character string 'FREQ' as an other parameter. Diagnosis 6
uses variables F1 and character string 'HZ' as an other parameter.

The next section discusses how the information necessary for
sequencing is constructed from the test module and represented in a

mitrix equivalent form.

13

3. ADJACENCY MATRIX

This phase of the NOPAL processor deals with the transformation
of NOPAL test specifications by the use of graphs and matrices. It
describes an application of graph theory to the analysis of NOPAL
specifications and to the generation of a sequenced test module. While
graph theory has been used in various computer applications in recent
years the analysis of information relationships and the automatic
sequencing by means of graph are novel. This section presents the
background and terminology involved, as well as describing the graphs,
matrices, and other data structures that are built from a NOPAL
specification test module for intra-test sequencing.

Section 3.1 provides an overview of the processes involved in
this stage, and Section 3.2 discusses them in greater detail.
3.1 ELEMENTARY STRUCTURES OF THE ADJACENCY MATRIX

This section discusses a matrix representation of the test specif-
cations introduced in Section 2. Of these specifications, the pre-
cedence indicator éontrolling sequencing is based on source and target
variables. For example, a source variable to an assertion must be
available before invoking the assertion. A target variable to an
assertion is only available after the assertion is computed. This
requirement detailing precedence information is implied in a "directed
graph''.

A directed graph is a network of interconnected nodes such that

cach node is a conjunction, assertion, diagnosis, or variable. Formally,

a directed graph is a pair (N,A) such that N represents the set of nodes
in the test module; and A represents the set of orderved pairs (N3, NK).

Each Ai is illustrated with an arrow indicating a path from node Nj

14

to node Nk. Each node may have multiple arrows emanating from it. Because
the arrows have an associated direction the graph is sometimes called a
digraph.

The sample test module of Figure 2.2 is represented as a directed
graph in Figure 3.1. Each conjunction, assertion, diagnosis, and variable
corresponds to one node. Variables repeated by different conjunctions,
assertions, or diagnoses; or used as both source and target, are still
represented with one node. Nodes that are not related, are not connected.

The nodes of the digraph correspond to locations within a dictionary.
The dictionary is defined as an array of strings which are the names of the
conjunctions, assertions, diagnoses, and variables in the test module. This
structurc stores the digraph node labels and is used to form the rows and
colums of the adjacency matrix. Tt is formed by grouping conjunctions
and assertions, diagnoses and variables.

Figure 3.2 shows the construction of the dictionary for the sample

test module in Figure 2.2. The dictionary has nine labels prearranged begin-

ning with conjunctions and assertions followed by diagnoses and variables.
Although the directed graph is more comprehensible for humans, it's
counterpart, the adjacency matrix, is an equivalent form better suited

for digital computation. Formally the adjacency matrix(A) corresponds

to the digraph (N,R) of N nodes with one relation R defined as an N x N
matrix (i.c. a matrix having an equal number of rows and columns). The
relation is expressed below with a "1' in Aij indicating a path from node
i to node j:

Aij =1 if (Nj,NKk) is in R; ELSE
Aij = 0

15

DIRECTED GRAPH OF SAMPLE TEST MODULE IN FIGURE 2.2

FIGURE 3.1
1 |$S wooo1 CONJUNCTIONS
Z $M w0001
3 | &M w0002 ASSERTION
4 |4
s [DIAGNOSES
6 |6
7 |VARL
8 | Fl VARIABLES
9 | w

DICTIONARY OF NODE IN THE DIRECTED GRAPII

IN FIGURE 3.1

FIGURE 3.2

16

The adjacency matrix for the sample test module of Figure 2.2
is shown in Figure 3.3. It is equivalent to the directed graph in
Figure 3.1. such that relations between nodes are preserved. For example,
the "1'" in row 2 column 8 indicates a directed path [rom node 2 to node 8.
Thus, referrine to the dictionary, the path is from the conjunction
$M_W0001 to the target variable IFI. The next section details the algorithms

used to indicate paths between nodes in the adjacency matrix.

ADJACENCY MATRIX

STATEMENT TYPE DICTIONARY 123456789
CONJUNCTION 1 $S W0001 010000000
CONJUNCTION 2 $MW0001 000000011
ASSERTTON 3 $M W0002 000000000
DIAGNOSES e e 000000100
DIAGNOSES 5 § 000000000
DIAGNOSES 6 6 000000000
VARIABLE 7 VARL 011000000
VARIABLE 8§ Fl O01I001000
VARIABLE 9 Wl 000000000

FIGURE 3.3 CONSTRUCTING THE DICTIONARY AND
FORMING THE ADJACENCY MATRIX

17

IR RO,

3.2 EXPRESSING PRECEDENCE RELATICNS IN MATRIX FORM

This section explains the mechanism of linking variables in matrix
form to specify the precedence of execution.

Conjunctions and assertions employ source und target variables to
help specify logical or arithmetic relationships. A target variable is
expressed within the adjacency matrix by placing a '"1'" at the intersection

of the conjunction or assertion row and the target variable colum. A

source variable is the inverse of the target rcpresentation expressed by
placing a "1" at the intersection of the source variable row and the
conjunction or assertion colum. This inverse representation puaranteces
precedence of target relations before source relations. Figure 3.4

sumnarizes the process of indicating the above relations.

MATRIX ROW COLUMN VALUE
TARGET: ~ ADUACENCY ~ CONJUNCTION TARGET VARIABLE 1 BINARY
ASSESIT\ION
SOURCE: ANJACENCY SOURCE CONJUNCTTON 1 BINARY
VARIABLE OR

ASSERTION

FICGURE 3.4 TARGET AND SOURCE SUMMARY

18

Figure 3.5 is an adjacency matrix formed from information in
Figure 2.2. It illustrates using mnemonics to show explicitly the
source and target linkage.

The {irst entry in the dictionary is conjunction $§S_W0001.

Matrix entries are not required because the conjunction does not employ

source or target variables. The second entry is conjunction $M W0001

which employs two target variables, Fl and V1; and one source variable,

VARI. The target relations are entered in the second row of the adjacency
matrix with "1" in the eighth and ninth columns. The source relations

are entered with a "1'"" in the second column of the seventh row. The third
entry, assertion SM_}\'OOOZ‘, uses two source variables VART and Fl1 which are

entered in the third colum of rows seven and eight.

DICTIONARY ADJACENCY MATRIX

1 $S W0001 OBOOOO0ODODO

2 $MW0001 0000000TT S - SOURCE

3 SM W0002 000000000

447 000000RDD T - TARGET

55 000000000

6 6 000000000 R - OPERATOR RESPONSE

7 VARL 0SS000C00

8 Fl 00S00PO0DO0DO P - OTHER PARAMETERS

9 Vi 000000000 B - STIMULT CONJUNCTION

EXECUTED BEFORE

rumeno<Tg MEASUREMENT
N o o " CONJUNCTION
SE8

FIGURE 3.5 ADJACENCY MATRIX FORMED FROM TEST MODULE IN
FIGURE 7.1

B T ST

Variables used within diagnoses arce represented in a similar form

to the source and target variables. An operator response
variable is expressed by placing a "1'" at the intersection of the

diagnosis row and variable colum. The other parameters variable is

expressed by placing a '"1' at the intersection of the variable row and
diagnosis colum. The inverse representation guarantees precedence of
operator responses before other parameters. Literal strings that are
enclosed by apostrophes (e.g. 'HZ') have no significance in the logical
ordering of statements thus they are not represented in either the
dictionary or the adjacency matrix. Figure 3.6 sumarizes the method
used to indicate variable attributes to diagnosis.

MATRIX ROW COLUMN VALUE

OPERATOR RESPONSE: ADJACENCY DIAGNOSIS ~ VARTIABLE 1 BINARY

OTHER PARAMETERS: ADJACENCY VARTABLE DIAGNOSIS 1 BINARY

FIGURE 3.6 DIAGNOSIS AND VARIABLE SUMMARY

Figure 3.5 also shows operator response and other matrix entries
constructed from the sample specifications in Figure 2.2. Mnemonics are
used to explicitly differentiate these relations from the previous source
and target structures. For example, Diagnosis 4, which employs the
variable VARI as an operator response, is expresse. in the seventh column
of the fourth row. In Diagnoses 5 the other parameters, 'FREQ' is a
literal string (denoted by a character string enclosed within apostrophes)
rather than a variable. Since the adjacency matrix only links variables,
"FREQ" is not indicated on the sample matrix. Similarly, the literal

string 'HZ' of Diagnosis 6 is not present in the adjancency matrix.

However, other parameter variable Il of Diagnosis 6 is represented in
the sixth colum of the eighth row.

The path relations introduced thus far directly parallel the wave-
forms and diagnosis statements. Because NOPAL is non-procedural, an
additional relation is necessary to insure that stimuli conjunctions pre-
cede measurement conjunctions. Thus the functi »~ which excite the
UUT through specified terminals precede the functions which classify
UUT's responses. This is achieved simply by inserting a '"1'" in the
measurement conjunction colunn of the stimuli conjunction row. Thus in
the sample test module of Figure 2.2, a "1'" is entered in the second
colum of the first row, linking $S W0001 to $M WOOO1.

The process of constructing the adjacency matrix is summarized in
the algorithm of Figure 3.7 The last step of this process evaluates the
external variable 'SEQOPT'(initially set when invoking the NOPAL system)

to ascertain whether to generate a special purpose Adjacency Matrix Report.

This report (Figure 3.8) indicates relations, node labels, and node
attributes of the samplec test module in Figure 2.1. It summarizes in short
form the necessary information employed in intra-test sequencing.
Preliminary error analysis is performed as soon as the above infor-
mation is accumulated in the adjacency matrix. This analysis detects
multiply defined target variables is discussed in Section 4. Section 5

develops a more sophisticated aleorithm to detect circular ambiguities.

As the rcader procedes through the following sections, the power and

sophistication of representing test specifications in matrix form will

become evident.

ALGORITHM TO CREATE AN ADJACENCY MATRIX

LET #W = NUMBER OF CONJUNCTIONS AND ASSERTIONS IN ADJACENCY MATRIX

LET #p = NUMBER OF DIAGNOSES ON ADJACENCY MATRIX

LET #V = NUMBER OF VARIABLES IN ADJACENCY MATRIX |

LET N = TOTAL NUMBER OF CONJUNCTIONS, ASSERTIONS, DIAGNOSES VARIABLES

LET DICTIONARY(N) = LIST OF CONJUNCTION, ASSERTION, DIAGNOSIS, AND
VARIABLE LABELS. (SIZE DETERMINED BY N).

LET ADJACENCY MATRIX(N,N) = MATRIX SUCH THAT EACH POSITION 'X' CORRESPONDS
TO THE LABEL IN POSITION 'X' OF 'THE DICTTONARY.

1. GATHER, THEN GROUP ALL CONJUNCTIONS, ASSERTIONS, DIAGNOSES, AND

VARIABLES INTO DICTIONARY
2. COUNT AND SET #W, #D, #V AS NECESSARY
3. CALCULATE SIZE OF THE ADJACENCY MATRIX

N = #W + #D + #V

4. ALLOCATE ADJACENCY MATRIX A(N,N)
5. SET ADJACENCY MATRIX TO '0' |
6. PERFORM 7-9 FOR EACH CONJUNCTION AND ASSERTION
7. FOR EAQI VARIABLE PERFORM 8-9
8. IF SOURCE VARIABLE THEN:

ADJACENCY MATRIX(VARTABLE ROW, CONJUNCTION OR ASSERTION COLUM) =1 |
9. IF TARGET VARIABLE THEN:

ANTACENGY MATRIX(CONJUNCTION OR ASSERTION ROW, VARIABLE COLUMN) =1

10. PERFORM 11-12 FOR EACH DIACNOSIS (/D)

11. FOR EACH DIAGNOSIS VARIABLE PERFORM STEP 12-13

FIGURE 3.7 ALGORITHM TO CREATE ADJACENCY MATRIX

22

12.

13.

14.

15.
16.

IF OPERATOR RESPONSE VARIABLE IN DIAGNOSIS THEN: '

ADJACENCY MATRIX (DIAGNOSIS NODE, VARIABLE NODE) = 1 |
IF OTHER PARAMETER VARIABLE IN DIAGNOSIS THEN |
ADJACENCY MATRIX (VARIABLE NODE, DIAGNOSIS NODE) = 1

IF THERE EXISTS A STIMULI AND MEASUREMENT CONJUNCTION WITHIN TEST MODULE
THEN ADJACENCY MATRIX (STIMULI CONJ. NODE, MEASUREMENT CONJ. NODE)=1

IF '"SEQOPT' = 1 THEN PRINT ADJACENCY MATRIX REPORT

END

FIGURE 3.7 ALGORITIM TO CREATE ADJACENCY MATRIX

(continued)

23

INTRA MODULE SEQUENCING SYTEST0003
ANALYSTS OF THE ADJACENCY MATRIX

123456789
1 $S w0001 CONJUNCTION 010000000 .
2 $M w0001 CONJUNCTION 000000011 f
3 $M W0002 ASSERTION 000000000
4 4 DIAGNOSES 000000100
3 b DIAGNOSES 000000000
6 6 DIAGNOSES 000000000
7 VAR VARTABLE 011000000
8 F1 VARIABLE 001001000
9 000000000

V1 VARIABLE

ADJACENCY REPORT

FIGURE 3.8 n

4. PRELIMINARY ANALYSIS OF THE ADJACENCY MATRIX

After entering the known precedence relations into the adjacency
matrix an analysis is performed to guarantee that the test module is
error free. This section corresponds to the second box of the center
partition in Figure 1.2. Methods verifying target variables correct
usage are discussed. Specifically four types or ambiguities or inconsist-
encies are presented: 1) excess target variables per assertion, 2)
incorrect target variable expression, 3) wrong arithmetic operator in
an assertion, and 4) target variable defined more than once.

Section 4.1 presents an overview of the analysis, and section 4.2
details the algorithm.

4.1 OVERVIEW OF THE ANALYSIS

This section begins the evaluation of conjunctions, assertions,
and diagnosis variables. To clarify the forthcoming discussion, a new
sample test module is presented in Figure 4.1. This test module is
composcd of two conjunctions, three assertions, and one diagnosis. The
logic to invoke the diagnoses has been eliminated since it is not a
contributing factor in intra-test sequencing. Although the test module
may appear well formed, it posses multiple errors that would prevent
sequencing and final code generation.

The methods used to ascertain the correctness of a test module are
dependent on the adjacency matrix. Because it contains the repre-
sentation for all conjunctions, asscrtions, diagnoses, and variables, it
reduces the necessity of retrieving the original source strings from

the associative memory.

25

e

TEST ONE;
STIMULT $S_ONE(ONE);
CONJUNCTION A3:
(J22,GND) = SINE D (Y,VOLT, Z, Z, X SEC)

TARGET: Y, 2
SOURCE: X;

MEASUREMENT $M ONE(ONE) ;

CONJUNCTION A2: (J24 3, GND) = CONS T(27.5 VOLT));
ASSERTTION A4 ($M ONE):
X=Y
TARGET: Y,Z
SOURCE: X;
ASSERTION AS($M ONE) :
X-1 =Y
TARGET: X
SOURCE: Y;
ASSERTION A6 ($M_ONE) : -
Y<¢ X
TARGET: Y :
SOURCE: X; 1
DIAGNOSE D1 : ,1
OPERATOR RESPONSE=(X) 5
TYPE = D; I

FIGURE 4.1 SAMPLE TEST MODULE WITH UNDETECTED ERRORS

26

Target variables and operator responses have special significance
in the preliminary analysis. To achieve successful sequencing of the
test module, the variables must explicitly adhere to the conventions
established in the NOPAL Language Reference Manual. Rather than
examining each statement in the test module, the analysis can be
expedited by using a special partition within the adjacency matrix
that contains all target and operator responses. Formally, the partition
consists of the colums that refer to variables and the rows that refer
to conjunctions assertions and diasmoses. The commonality of
variables in this partition is that the target variable is evaluated
after the conjunction or assertion is executed while the operator res-
ponse of a diagnosis is set after the diagnostic.
The adjacency matrix for the sample test module is presented in
Figure 4.2. The relevant partition to the discussion is surrounded by
a heavy broken line. It contains all target and operator responses
in the test module. An additional colum labelled "MI'" is inserted to
the right of column nine. The contents ot this vector are the total
number of target variables per conjunction or assertion. It begins in
row 1 and terminates in row 5. Below row nine, an additional row labelled
"MD'" is inserted. Tt contains the total number of times each variable is
defined to follow the conjunction, assertion, or diagnoses. Thus it is
calculated by adding the content of each colum, and expanding the i
partition to include diagnoses. Enhanced processing time is achieved by
using the matrix as well as the additional row and colum. 1
The next section describes the algorithm that cvaluates the

relations in the aforementioned partition.

CONJ
CONJ
ASRT
ASRT
ASRT
DIAG
VAR
VAR
VAR

A3

A2

~
w0
o

=<
-
]

e
o
.

e

Ad
AS
A6
D1

p—

1_-‘..-. onn-...:

Sovefecvce]even]occelenect

ceae]e
.
.

ADJACENCY MATRIX FOR SAMPLE TEST MODULE - FIGURE 4.1

NNV A 2 RN NN AN/

FIGURE 4.2

D

n

(3]

4.2 ALCORTTHM PERFORMING ANALYSIS

Inconsistencies discussed in this section are grouped in two
categories: 1) assertions that employ target variables and 2) con-
junctions, assertions, and diagnoses that employ the same target variable
and/or operator response. A summary of the user messages is shown in
Figure 4.3. The overall classification of the message is on the left side
of the diagram, with the actual text on the right side. Each error or
warning message states the test module, the statement, the
associated variable, and the ambiguity. Abbreviations are not used to
avoid confusing the inexperienced user.

Most of this analysis concerns the special conventions used with
assertions that employ target variables. Of special concern is that each
assertion may use only one target variable. The verification of this is

implemented by searching the "MI'"' colum in the sample test module. If

any sum is greater than one, the process continues to check whether the
node in the dictionary is an assertion. If this situation does occur,
the first error message of Figure 4.3 is issued. An example of this
type of error is shown with assertion A4 (Figure 4.1) having two target
variable, y and z. The "2" in the first position of MT is not signifi-

cant as the dictionary node indicates that it is a conjunction.

Another convention pertaining to assertions that employ target
variables is that the variable must precede the equal sign. Expansions
or modilications by perfoming multiplication, division, subtraction, or
addition are not allowed before the equal sign. This convention is
consistent with the standard mathematical notation of placing the result :

of a computation of the variable preceding the cqual sign. The

29

w

TYPE

1 *ERROR (AMBIGUITY):

o

*ERROR (AMBIGUITY):

*WARNING
(INCONSISTENCY) :

w

4. *WARNING

(POSSIBLE AMBIGUITY):

FIGURE 4.3 SUMMARY OF ERROR/WARNING MESSAGES

MESSAGE
IN ASSERTION OF TEST -

THERE ARE TWO OR MORE TARGET VARIABLES

EXPRESSION PRECEDING THE '="IN
ASSERTION OF TEST DOES
NOT MATCGH THE TARGET VARIABLE

IN ASSERTION OF TEST .
A VARIABLE IS DECLARED AS TARGET; BUT THE
RELATION OPERATOR IS NOT AN'=. REPLACED

BY AN EQUAL SI(N.
VARTABLE _ OF TEST

IS DEFINED MORE THAN ONCE IN , ’

——

30

verification i1s implemented by first scarching the '"MI" colum of the
adjacency matrix to ascertain whether the waveform employs a target
variable. If any sum in this colum is greater than one, the process
continues to check whether the node in the dictionary is an assertion.
Then the target variable indicated within the isolated partition is
compared to the text retrieved from the associative memory which pre-
cedes the equal sign. 1f both expressions are not equivalent, the
second user message in Figure 4.3 is issued. An example of this type

of ambiguity is shown in assertions AS and A6. (Figure 4.1) Target
variables Y or Z used in A4 are different than X, the actual expression
which precedes the eaqual sign. Also target variable X of Assertion AS is
different than the actual expression "x-1'" which precedes the equal sign.

The equal sign is the sole operator permitted when assertions employ
target variables. The implementation strategy is similar to the
assertion categories already discussed. By evaluating "MI"' and the
dictionary, assertions are located that employ target variables. Once
these assertions are known, the operator is retrieved from the associative
memory. If it is not an equal sign, the third user message is issued.
Concurrently, the operator is changed to an equal sign in the associative
memory. For example assertion A6 exhibits this characteristic by using
a less than operator instead of an equal sign.

Should the same variable be the target of a conjunction of assertion,
and also the operator response of a diagnosce, there exists a possibility
that the user has made an crror by multipley defining the variable. The
implementation is different from the preceding three as the partition

Figure 4.2) is expanded to include operator responses. This is
gu Xp I PO

31

i

accomplished by including the diagnosis rows as shown in the circle
surrounding colums 7,8,9 of row 0.

Once the partition is enlarged, the sum of each colum is stored
in an additional row, "MD", located at the bottom of the adjacency
matrix. The contents of 'MD'" indicate the total number of times each
variable is defined as target to a conjunction, target to an assertion,
and the operator response of a diagnosis. If any sum is greater than
one, the fourth user message is issued. The sample test module (Figure
4.1) displays three ecxamples of this ambiguity. They are:

1) variable X defined in assertion AS and diagnosis DI.
2) variable Y defined in assertions Ad, A6 and conjunction A3.
3) variable Z defined in assertion A4 and conjunction A3.

The process of performing the analysis discussed in this section
is sumarized in the algorithm of Figure 4.4. Most of the analyses are
performed simply by going up, down, and across the adjacency matrix
searching for '"l1's" indicating predetermined relations.

Even though a procedure successfully passes the preliminary analysis
covered in this section and in syntax analysis, it does not necessarily
guarantee that there are no hidden or inferred ambiguities. For example
the sample test module possesses a circular definition that cannot be
sequenced. Discovering its existence is a non-trivial task whose com-
plexity may be seen by attenpting to manually locate it. Just as it is
a difficult process in a short test module of only six lines, imagine
the difficulty when using a test module exceeding fifty lines. The
complexity of detecting these inconsistencies manually led to the
development of an automatic process of checking all test modules for

this type of inconsistency.

SUMMARY ALGORITHM

PRELIMINARY ANALYSIS OF THE ADJACENCY MATRIX

LET #W = NUMBER OF CONJUNCTIONS AND ASSERTIONS IN ADUACENCY MATRIX

LET #D = NUMBER OF DIAGNOSES IN ADJACENCY MATRIX

LET #V = NUMBER OF VARIABLES IN ADJACENCY MATRIX

LET #N = TOTAL NUMBER OF CONJUNCTIONS, ASSERTIONS, DIAGNOSES, VARIABLES

LET HOML = #N + 1

LET DICTIONARY (N) = LIST OF CONJUNCTION, ASSERTION, DIAGNOSIS,
AND VARTABLE LABELS. (SIZE DETERMINED BY N)

LET ADJACENCY MATRIX(N,N) = MATRIX SUCH THAT EAQH POSITION CORRESPONDS
TO THE LABEL IN POSITION X OF THE DICTIONARY.

1. /* MORE THAN 1 TARGET VARIABLE PER ASSERTION #
2. PERFORM 3-6 FOR EACH CONJUNCTION AND ASSERTION (I=1 to #W)
3. #E=0
4. IF DICTIONARY(I) IS AN ASSERTION THEN

PERFORM 5 FOR EACH POSSIBLE TARGET VARIABLE (J=HOMl TO N)
5. IF ADJACENCY MATRIX(I,J) = '1' THEN #E = #E + 1
6. IF #E > 1 THEN PRINT ERROR #1
7. /* TARGET VARIABLE MUST PRECEDE ARITH OPERATOR */
8. PERFORM 9-12 FOR EACH CONJUNCTION AND ASSERTION (I=1 TO #W)
9. IF DICTIONARY (T) IS AN ASSERTION TIIEN

PERIFORM 10-12 FOR FEACH POSSIBLE TARCET VARIABLE (J=HOML TO N)

10. IF ADJACENCY MATRIX (I,J) = '1' THEN
PERFORM 11-12

FIGURE 4.4

33

TTTTTIENCTOTET

1.

i1
14.

15

16.
1
18.

/*

RETRIEVE TEXT PRECEDING OPERATOR
IF TEXT 7 = DICTIONARY (J) THEN PRINT ERROR #2
ASSERTIONS ARITHMETIC OPERATOR */

PERFORM 15-18 FOR EACH CONJUNCTION AND ASSERTION (I=1 TO #W);

IE

#E

DICTIONARY(I) IS AN ASSERTION THEN
PERFORM 16-18

=

RETRIEVE OPERATOR FROM THE ASSOCIATIVE MEMORY

IF

/*

OPERATOR IS NOT EQUAL TO '=' THEN PRINT ERROR #3

AND REPLACE ASSERTION'S OPERATOR IN THE ASSOCIATIVE MEMORY WITH '='.

MULTIPLEY DEFINED TARGET VARIABLES */

PERFORM Z1-24 FOR EACH VARIABLE (I= HOMI TO N)

#E

EE

END

=%

PERFORM 23 FOR EACH CONJUNCTION, ASSERTION, DIAGNOSIS (J=1 TO
#IW + #D)

IF ADJACENCY MATRIX(J,I) = '1' THEN #E = 4E + 1

#E > 1 THEN PRINT ERROR #4

FIGURE 4.4

34

i
|

S. PATH MATRIX

This scction discusses the process of detecting circular definitions
that might exist in the digraph. It corresponds to the third box within
the center partition of the NOPAL processor diagram (Figure 1.2). The
implementation is achieved by constructing a 'path' matrix to reveal
direct and impliced paths. Transitive or circular definitions are casily
isolated in this matrix. Upon detection, additional processing is
subsequently performed to isolate their exact nodes and report them to the
user. Section 5.1 discusses an overview of the process while section 5.2
details the algorithm which constructs the path matrix.
.1 OVERVIEW OF DETECTING CIRCULAR DEFINITIONS

As the number of digraph nodes increase, there exists a greater
possibility of generating a cycle. A cycle is defined as a sequence of
inter-connected nodes such that the final node and the bepinning node
are the same. Simply it is a closed loop, or endless sequence of test
statements. This ambipguity must be corrected before proceeding to the
sequencing phase of the NOPAL processor.

A sample digraph containing circular ambiguity is shown in Figure S5.1.
The digraph nodes correspond to dictionary labels "1, 2", "3, '"g', "5,
The most obvious cycle present exists between nodes "1' and "S'". Node "1
has a direct path to node "5'"; similarly node "S'" has a direct path to
node "1''. Therefore node "1'" must precede node "5 AND node "'5'" must
precede node "1, This ambiguity is one of many present within the digraph
that must be detected before proceeding to the intra test sequencing. g

It all test modules contained less than ten positions, then detecting
closed loops would be trivial. By generating a pictorial graph of the *

test module, the user could then examine it to veryify it is cycle free.

|
1
1
I
!

However as the size of test modules grows, exceeding fifty positions, the
manual process becomes increasingly complex. Performing this function
manually is inappropriate for a general purpose system which promotes the
simplification of specifying test situations. Thus an automatic algorithm
was incorporated to detect the presence of circular definitions.

The adjacency matrix for the digraph (Figure 5.1) is presented in
Figure 5.2. Each path is a direct link between two digraph nodes. For
example the path emanating from node '"4'" and temminating at node '"5'" is
indicated in the fifth colum of the fourth row. Indirect paths such
as the one beginning at node '4" continuing through nodes ''2'", "1",

"3, and ultimately terminating at node '4" are not shown in this matrix.

An efficient method to detect circular definitions involves creating
a matrix that exhibits all paths. A path matrix if formed as a trans-
formation of the adjacency matrix that accomplishes this goal. Formally
the path matrix indicaes the existence of paths regardless of length
from node i to node j. It is sometimes referred to as a 'reachability'
matrix due to its attribute of displaying a swmary of nodes which may be
reached from other nodes.

The path matrix for the sample digraph is prescnted in Figure S.3.
Every entry has a '"1'" showing that any node may reach any other node includ-
ing itself. For example node '"4'' may reach nodes '"1'', "2'', "3 4. 1In

essence this matrix reports the existence of all paths, direct or indirect.

36

L=y (=

ADJACENCY MATRIX FOR
SAMPLE DIGRAPH

FIGURE 5.2

1\3

FIGURE 5.1
SAMPLE DIGRAPH WITH CYCLE

PATH MATRIX FOR
SAMPLE DIGRAPH

FIGURE 5.3

'1' ON DIAGONAL INDICATES
CYCLES IN DIGRAPH

37

Although it is possible to derive circular definitions directly from
the adjacency matrix, it is not a computationally efficient approach.
Once the path matrix is created, the presence of one or more cycles is
detected by searching for a '"'1'"' on the diagonal. If there are no cycles
in the graph, the system procedes to the next phase, precedence deter-
mination. Otherwise, the nodes that constitute the closed loop are
determined using the 'cycle' procedure shown in Section 6.

The following section explains the transformation performed to
produce the path matrix.

5.2 CONSTRUCTING THE PATH MATRIX

The path matrix (P) consists of ones and zeroes with a "1" in row i
and colum j if there is a path from node i to node j. The procedure used
to construct this matrix is adapted from Warshall's algorithm [Warshall,
1962] summarized in Figure 5.4.

The technique begins by copying the adjacency matrix into an empty
path matrix. The colums of the path matrix are then traversed searching
for "1's". For each "1" in Pij, a path exists from node i to node j.
Therefore any path from node j is also common to node i. Each path (k)
from row j is copied to the k colum of row i.

For example the adjacency matrix of Figure 5.2 shows node "1'" having
paths to nodes '3', "4", "5". The sole path in node '"2" is to node "1".
Since node '"1'" can be reached from node '2', all paths from node "1' can
also be indirectly rcached from node "2". The algoritian continues by
placing "1's" in colum '"3'", "4'"', "5" of row 2.

The constructed path matrix reveals the presence of cycles by
exhibiting "1's" on any diagonal. The next section (6) explains the

38

____._.”

process of enumcrating the distinct nodes that constitute the cycle.

P
A
n

path matrix
adjacency matrix
number of nodes in digraph

nwn un

1. Let P = A (for all ij)

2. ‘Setj'=11

3. Seti=1

4. IF Pij = "1" then Pik = Pik Pjk (for all k=1 to n)

5. Set i = i+l; if 1 = n, THEN go to 4

6. Set j = j+l; If j = n, then go to J; else return;

ALGORITHM TO CONSTRUCT PATH MATRIX
FIGURE 5.4

39

6. ENUMERATING CIRCULAR DEFINITIONS

This section discusses the procedure which 1locates the exact
statements constituting circular definitions. The implementation is
associated to the fourth box within the center partition of the NOPAL
processor diagram (Figure 1.2). It is invoked, if and only if, cycles
are detected on the diagonal of the path matrix. In essence, the
algorithm provides a user aid for debugging inconsistencies in the test
module. The discussion begins with a general overview of the technique
employed followed by an illustration.
6.1 BUILDING TREES TO LOCATE CIRCULAR DEFINITIONS

There are three parameters used to isolate circular definitions
within the digraph. They are the adjacency matrix (A), the path matrix
(P), and the number of nodes (n) in the digraph. The algorithm finds
cycles by the principle that node i is in a cycle with node k, if Ajk
Pri =1 i.e. there is a path from node i to node k and a path from
node k back to the node i. Formally, the extension of digraph paths
adequately traces circular definitions.

Extended paths isolating circular definitions are referred to as

trees. A tree is a set of connected nodes that begin at a predetermined

root or top node, and continue to a terminal or final node. At each inter-

val, as the tree increases in length, the terminal node is compared to the

root node. If they are equivalent the tree is circularly defined. Else
the trec continues to grow until the end of the path is rcached or the

tree length exceeds the number of nodes in the digraph.

Adapted from [Berztiss, 1971] the trec generating algorithm is

an

sumnarized in Figure 6.1. It commences by building the tree beginning
with node "1" where each extension is:

A = "1" (i=1 to n)

T i
Figure 6.2 shows a sample digraph, its' adjacency matrix, and the
constructed trees. The algorithm deletes past root colums and rows to
expedite processing. Figure 6.3 illustrates the output produced
from the 'cycles' algorithm invoked to evaluate the sample digraph. The
error message explicitly defines ambiguous nodes.
There are several methods which might be used to correct the
circular inconsistency. The user should initially begin by reviewing the
NOPAL Test Specification Report to verify that the statements and variables
correspond to the intended source file. The next logical procedure
is to scan the Cross Reference and Attribute Report for the existence
of slightly different labels, which may be the result of typographical
error. The Adjacency Matrix Report is useful because it reproduces
the system interpretation of the test module. Warning and error
messages produced during the preliminary analysis of the adjacency
matrix may be the best clue to those variables incorrectly defined.
The above methods combined with the output from ''cycles' provide

extensive diagnostic assistance.

41

Step
Step 2

Step
Step
Step
Step

Step

Step
Step
Step
Step

Step

Step
Step
Step
Step
Step

Step

Step
Step
Step
Step
Step

Step

Step
Step
Step
Step

Algorithm CYCLES: Cycle Enumeration

Let A = Adjacency Matrix
Let P = Path Matrix
let N = Number of notes in Digraph

let Root = Beginning node of tree
Let Level = Number of nodes in tree
Let Path(k) = Actual nodes in tree

1. Root =1
(initiate tree; steps 2 to 0):

Set REACHJ (k) = Root (for k=Root to n)

3. Set USED (k) = 0 (for k=Root to n)
4. Set level=l.

S. PATH (1)=Root.
6. Set i=Root.
7. (Test if current path can be extended with nodes in a cycle:

Steps 7-11):
IF REACHJ (i) > n then go to Step 12.
8. Set j= REAGJ (i).
9. If A(i,j)*P(j,Root)=1 and =USED (j) then go to Step 18.
10. Set j=j+l.
11. If j < =n then go to Step 9.

12. (Backtrack in tree, resetting REACHJ and USED ;
Steps 12 through 17):
Set REACHJ (i) = Root.
13. Set USED (i) = 0.
14. Set level=level-1.
15. If level=0 then go to Step 26.
16. Set i = PATH (level).
17. Go to Step 7.

18. (Extend path; Steps 18 through 23):
Set USED (j) =

19. Set REAQHJI (1) = j+1

20. Set level=level - 1.

21. Set PATH (level) =

22. Set i=j.

23. If j —=Root then go to Step 7.

|
24. (Print Cyclic Pathy 3
Print PATH (k), k = 1 to level (message #7).
25. (o to Step 13. |
20. Sct Root=Root+l.
27. If Root <= n then go to Step 2.
28. Retumrn ‘

"CYCLES ALGORITHM' !
FIGURE 6.1 i

42

—————

ABCDE
{0 TP 88 [0 ()
1 000
0 011
0 00 |
0

1 00

Ab‘.\'l\cco.nh'
MATRIR

SAMPLE DIGRAPH, ADJACENCY MATRIX, AND TREES
FIGURE 6.2

ERROR (Circular definition): The following group of items in test above

are circularly defined:

.
-
-
-

P

-
-
-

-
.
-

v
-
-

-

>>>>>»>r
-—-—:oopnnn
E>mmmm o o
> wWrewemm

> > W

. v e
-

SAMPLE OUTPUT FROM CYCLE ENUMERATING PROCEDURE ANALYZING
DIGRAPH OF FIGURE 6.2

FIGURE 6.3
43

— _

I——————

7. PRECEDENCE DETERMINATION AND SEQUENCING ALGORITHM

This section discusses the final phase of intra test sequencing
shown by the fifth box in the center partition of the NOPAL processor
diagram (Figure 1.2). The theme of this section is the algorithm which

automatically sequences the non-procedural source input statements.

The reordered statements are included in an optional 'flowchart' report
for user convenience. After successfully ordering the NOPAL statements,
code is automatically generated and stored on a disk file by the
processor.

The implementation algorithm is adapted from (Berztiss, 1971]
analysis of paths and cycles in digraphs. The computer program is
an adaptation of a program written by Adam Rin in his Ph.D.
dissertation [Rin, 1976]. Rins implementation automatically generates
a business applications program from non-procedural source specifi-
cation statements. Although the application is functionally different
than devising techniques to generate programs for automatic test equip-
ment; the sequencing process for non-procedural input is fundamentally
equivalent.

The following sections present an overview of the sequencing

algorithm followed by an example including the optional flowchart
report.

44

F""""""""""""""""-.l'llIlllllIlllllIIlllIIllllllIlllIllll!llllllllllulnulupg....p..q.1

7.1 OVERVIEW OF PRECEﬁENCE DETERMINATION

The comprehensive design‘of the adjacency matrix insures that it
contains the necessary information for intra-test sequencing. After
complex error analysis verifies the validity of the digraph, the nodes
are ranked according to precedence and reordered according to their
rank.

The easiest method to implement the sequencing strategy is through
matrix multiplication. For example, the adjacency matrix A, displays

paths of length 1 from i to j. A2 displays paths of length 2. Formally

A displays the paths of length j. At each stage of the matrix multi-
plication, the colum of the current rank set contains all zeros; having
no predecessor with the current length path. Employing a well formed
digraph, the algorithm terminates when all entries in A are zero
requiring at mosf n stages (j = n).

Although the above approach is straight-forward, it is not the
most efficient implementation because the matrix multiplication requires
n4 steps. A much quicker algorithm to sequence the digraph nodes is
given in algorithm "precced' (Figure 7.1). This algorithm analyzes

the original matrix in n2

steps without performing multiplications.
The algorithm works by first finding all the nodes of rank 0;
i.e. all the nodes which do not have precedents (Step 2). This is

simply all the nodes which have all zeros in their column (in Step 2,

these arc all column nodes j that arc put in set D(0); the "i" in
the condition arc the row entries in each such colum j). These |

nodes become the elements of rank set D(0), and the rank of all such

45

3

Algorithm (PRECEED): Precedence Determination

the following symbols are used:

A The input n x n adjacency matrix (row and column for each node)
i row index for A

J colum index for A

D a vector of '"rank sets'; each rank set (element of the vector)

consists of a set of nodes at that rank.

X rank counter; index to D (i.e. in the algorithm, D(1) is the
set of nodes of rank 1; D(1-1) is the set of nodes of rank 1-2 etc.)
n the number of nodes; also the number of rows and colums of A;
also the number of elements in vectors R and 0.

P is set successively to each node in the previous rank set,
D(1-4); indexes row of A

q is set successively to each node in the current rank set D(1);
indexes colum of A; also indexes R

R the '"'rank vector'" that is produced (has n elements); the index
to R is a node number; the value of each element of R gives the rank
of that node; e.g. R(q) gives the rank of node q.

0 the "order vector'" produced (has n elements); the indices to 0
are the sequence or step numbers (1,2,3,...); the value at each element

of 0 is the node number to be executed at that position.

ALCORITIIM (PRECEED) PRECEDENCE DETERMINATTON

FIGURE 7.1

STEP

1

2

-

~1

ALGORITHM

Initialize R to all zeros
D, = g) | vi (= 0)}
If D, = § then go to 9
1«0

le 1+1
If 1 =n; go to g

Tes g, Tplatadsg

Rqe-t(+y €D

If Dg+@ then go to 4
otherwise go to step 8

Set Order vector to
Rearranged nodes in Rank
ascending order

(normal exit)

There exists at least 1

one cycle somewhere in
the digraph

ALCORITHM PRECEED:

-

EXPLANATION
Initially Rank vector all 0.

Nodes of rank 0 consist of
all those which have no
precedents

i.e. all 0 colum

Index for rank set
initially 0

Next rank set consists of
all those nodes which depend
on something in the previous
rank

All nodes in current rank
set are ranked with level 1

If there are still nodes
in current rank set, go back
to find next rank set

Nodes are now ranked;
simply rearrange nodes
in rank order

This is because the algorithm
has gone thru n rank sets
and dependencies still
exist on last one

PRECUDENCE DETERMINATTON
FICURE 7.1

nodes to set to 0.

Secondly, the nodes of rank 1 are direct descendants of nodes
in rank 0; similiarly the nodes of rank 2 depend on nodes in rank 1
(possibly updating the previous rank of some nodes); and so forth
(Steps 3-6).

At each stage, the algorithm has to check the rows of the previous
set of nodes for direct descendants (Step 5). After the nodes have
thereby been partitioned into rank sets, the order of execution of
the nodes is simply a re-arrangement of the nodes according to their

rank (Step 8). The result of this algorithm is an order vector 0,

where 0(1) is the node to be executed at step i.

The algorithm terminates when either all nodes have been ordered
or, theoretically if a cycle exists in a network. The latter is
impossible, however, because any cycle would have been detected in the
earlier cycle detection and enumeration algorithm, and the processor
would not have reached this point.

To best illustrate the use of this algorithm, it is applied to the
adjacency matrix of Figure 7.2 which corresponds to the test module in
Figure 2.2. Beneath the adjacency matrix (Figure 7.3) is the rank set
with 5 partitions of sequenced nodes. Explicitly nodes 1,4,5 of D(0)
must precede node 7 of D(1). Similarly node 7 must precede node 2 in
D(2). Node 2 must precede nodes 8 and 9 in D(3). Finally nodes 3 and
6 in D(4) arc the last nodes to be executed.

The existence of multiple nodes per partition such as in D(0),

D(3), D(4) indicate the possibility of executing the nodes in parallel.

48

1 §S W0001
2 $M w0001
3 SMW0002
INESR

S 45

O 5]

7 VARI

8 Kl

9 Vi

RANK_ SET
D(O)

———=—=5

INTRA MODULE SEQUENCING SYSTEST0003
ANALYSTS OF THE ADJACENCY MATRIX

123456789
CONJUNCTTON 01006060000
CONJUNCTTON 00008600011
ASSERTTON C00000000
DTAGNOSES 000000100
DIAGNOSES 000000000
DIAGNOSES 0000000O00
VARTABLE 011000000
VARIABLE 001001000
VARTABLE 000000000

AIDJACENCY MATRIX FOR TEST MODULE (FIGURE 2.2)

FIGURE 7.2

SEQUENCED NODE LABELS

§S Woool

4—————-—9 ,:1

Gom == = = =¥ §

DR Vo e i i o i By

D(2) {2—

n(4) {3—-—-—--—-——--)

VARI]

$M w0001

D(3) (8= = = = — == [
g w - -) V]

$M W0002

G —— ———-) O

RANK SET FOR SAMPLE- DIGRAPH (FIGURE 24 2)
FIGURE 7.3

49

e

—-

The present system uses a single central processing unit; thus multiple
nodes per partition are excecuted sequentially. As the research into
parallel processing continues, future systems may better utilize this
characteristic.

A reorganization of the statements is produced in the Intra Test
Sequencing Report of Figure 7.4. This report, which resembles a flow-
chart, lists the reordered statements within a particular test module.
Statement and variable names with the actual rank vector afe included
for completeness. The actual logic for generating diagnoses is not
included as it is not employed during the sequencing of statements.
The variables are classified as global, local, source and target. The
report which is generated by setting ''SEQOPT" to 1 or 2 when invoking

the NOPAL processor)is a comprechensive sumnary of the sequenced test

module.

T R e T e T

vl TNOId
277 TNOId NI F1INAON LSAL ¥0d I¥OdII ONISSAD0dd 40 FONINOAS

‘@ = 3dAL ‘(14 “.ZH.)=SYLLTNWEVd ¥9HLO SASONOVIA 9 1% 9 6

‘14 "miva :ounos
§*Z -+ 90+314S = T4 3514

09 -+ 90+d1xS = T4 NIHL 09=T4VA dI NOILY3SSY Z000M W$ ¥ € 8
/ 1999VL / TVEOT19 IT9VIIVA A ¢ 6 L
TVO0T AT9VIHVA Td € 8 9
TIVA :43dN0S
¢ _ TA ‘T4 139Vl -
((23S TIVA" ZH 14" LT0A TAJA 3ANIS = QNO ‘zze) NOILONNINOD [000M WS Z 4 S o
T™VOO1 T19Y TIVA TIVA 1 L 14

9% = 4dAL‘ (ORI ,)=SY4ALIWViVd ¥IHIO

$(d ZHNS QIS)T0L OFdd = SININOAWOD (AIDTAHV SASONDY I S 0 S g
*(TIVA) =3SNOdST “00+400000°0 = TWIL ‘S# = 4dAL SASONOYIA v 0 t Z
$((II0A S°L2)S ISNOD = @O ‘d vzf) NOLIDNOCNOD TOOOM S$ 0 1 I

¥OIDAA XIANI

1891 4dAL TWN AN @0 I3

AATI0

€0001STISAS ISHAL ¥0d ONISSTDOUd 40 FONANOIS

10.

k.

12.

BIBLIOGRAITY

Arinc, "Abbreviated Test Language For Avionics Systems (ATLAS),"
Specification 416, 1972. Aeronauntical Radio, Inc., 2551 Riva
Road, Annapolis, Maryland 21401.

Berztiss, A.T., '"Data Structures, Theory and Practice,' Academic
Press, 1971, New York.

Y. Chang, "Automatic Test Program Generation,' Dissertation in
preparation, Department of Computer and Information Sciences,
University of Pennsylvania, Philadelphia, Pennsylvania, 19174.

H. Che and Y. Chang, "The NOPAL Language: '"Specifications and User
Manual," Moore School Report 76-04, University of Pennsylvania,
Philadelphia, Pennsylvania, 19174, August 1976.

Digitest, ''Logic Automated Stimulus And Response (LASAR),' Training
Manual, POB 10611, Dallas, Texas 75207.

Morris Elecion, "Automatic Testing: Quality Raiser A Dollar Saver,"
IEEE Spectrum, August 1974, pp. 38-43.

Frahkford Arsenal, "Operational Performance Analysis Language (OPAL).
Definition Of, Syntax Of, and Semantics Of," Proposed MIL-STD-1462,
Change 2, Philadelphia, Pennsylvania, 19137, September 1976.

F. Linguitti, "Testing Design Methodology: A Case Study,'" M.S. Thesis.
Department of Computer and Information Science, University of
Pennsylvania, Philadelphia, Pennsylvania 19174.

N.S. Prywes, "Automatic Computer Program Generation For Automatic
Testing Systems,'" Report FCF-3-75, Frankford Arsenal, Philadelphia,
Pennsylvania, 19137, January 1975.

N. Adam Rin, "Automatic Generation of Business Data Processing Programs
For A Non-Procedural Language,'" Th.D. Dissertation, 1976, Department of
Computer and Information Sciences, University of Pennsylvania,
Philadelphia, Pa., 19174.

Cihan Tinaztepe and R. Berkowitz, "Automatic Test Program Generation
For Automatic Testing Systems,' Progress Report, Prepared for
Frankford Arsenal Under Contract DAAA-25-75-0650, University of
Pennsylvania, Philadelphia, Pennsylvania, 19174, March 1976.

Cihan Tinaztepe, ''Automatic Test Design,' Ph.D. Dissertation in
Preparation, Dept. of Computer and Information Sciences, University
of Pennsylvania, Philadelphia, Pennsylvania, 19174.

BIBLIOGRAPHY (continued)

13. U.S. Bureau of Labor Statistics, Handbook of Labor Statistics 197§,
Washington, D.C., Government Printing Office (B1S Bulletin 1965).

14. J. Warfield, '"Binary Matrices In Systems Modelling,'' IEEE Transactions
On Systems, Man and Cybernetics, Vol, SMC-3, No. 5, Sept. 1973.

15. S. Warshall, "A Theorem On Boolean Matrices,'" JACM 9, 11-12 (1962).

ACKNOWLEDGEMENTS

I would like to thank my advisor, Dr. Noah Prywes, for his leadership
and direction throughout the duration of this research. Also, I wish to
“acknowledge Yung Chang for his collaboration in the design and implementa-

tion of this project.

39

APPENDIX A

Al COMPUTER PROGRAMS FOR INTRA TEST SEQUENCING: INTRODUCTION

The diagram below (Figure Al) illustrates the organization of computer
programs used to implement intra-test sequencing. The top portion of the
diagram is the main procedure which issues the control logic to invoke
specific modules performing unique sequencing functions. The bottom portion
of the diagram presents three separate boxes each performing tasks used in
this phase and shared by other phases of the NOPAL processor. Together the
top and bottom portions constitute the five phases of intra-test sequencing.
The objective of each box is written in the first line followed by the
corresponding computer program names. Each program name is surrounded by
double quotes to easily distinguish their presence in the diagram. This
diagram arrangement is functionally similar to the center partition of the
NOPAL Processor Diagram showing Intra Test Analysis (Fieure 1.2). While both
include functional performance at each phase, Diagram Al is more comprehénsive.
Also stating those computer programs responsible for the implementation.

The box labelled "INTSEQ' is the main control procedure of the process.
It contains sub-procedures that are exclusively used for intra test
sequencing. Three procedures, "WAVEFORM LOADER', "DIAG LOAI)ER', and "LOCATE"
exclusively construct the adjacency matrix. Together they are shown
in the first box in Diagram Al, which corresponds to the first box of the
center partition of Diagram 1.2. '"WAVEFORM LOADER" retrieves
conjunctions and assertions from the associative memory to collect a list
of variables uscd. "DIAG LOADER" retricves diagnoses (rom the associative
memory, also collecting a list of variables used. Both of these programs

rely upon "LOCATE" to eliminate redundant entrics to produce a complete

TITLE: INTRA-TEST
MONITOR SEQUENCING

——.—._——.——-—-——A——I—-———--—-—-—_—--—-—-’

#1 ADJACENCY MATRIX ADUACENCY REPORT
"WAVEFORM LOADER' | !MATRIX PRINT"
"DIAG LOADER'" >| "'sYM_PRINT"
"LOCATE"

#2 PRELIMINARY : < FLQW(}IART
ANALYSIS _ REPORT
“Q‘IECK" HPR—SEQH

I

I

l

I

|

|

I

| "LOOK"
[:
I

I

I

I

|

I

I

] R SR R R

#3 PATH MATRIX
""CRPATH"'

I

3 |
*4 CYCLE DETECTION I
|

I

|

I

"CYCLES"

¥S SEQUENCING
""PRECEED"'

CODE
GENERATTON

COMPUTER PROGRAMS FOR INTRA TEST SEQUENCING
FIGURE Al

39

list of variables used in the test module entries.

‘The preliminary analysis of the Adjacency Matrix is located in
the second box of Diagram Al. It employs the computer program ''CHECK"
and "LOOK" to accomplish its analysis. The third box performs the
transformation of the Adjacency Matrix to that of a path matrix. It
employs the computer program '"CRPATH". Directly below the third box,
the computer program '"CYCLES' identifies the nodes or statements that
are circularly defined. The fifth box located at the bottom of the page
performs the actual sequencing of statements within the test module.
The computer program 'PRECEED' performs this function.

All reports are issued from within the main procedure 'INTSEQ'.

Included are the Adjacency Matrix Report and the Flowchart Report

shown on in the right portion of the box. Specifically computer pro-
grams "MATRIX PRINT" and 'SYM PRINT' produce the Adjacency Matrix
Report; and the computer program "PR SEQ" produces the Flowchart Report.

The preliminary analysis of the adjacency matrix produces error

listings directly from precedures ""Check' and ''Look'" (Box #2).
A special index follows (Figure A2) linking the functional des-
cription to respective program modules. It is a quick summary to help {

the user locate the page number of a specific computer program.

56

INTRA TEST SEQUENCING

FUNCTION COMPUTER MODULES PAGE COMMENTS

invoking intra INSEQ A5 contains data

test sequencing structures and
control logic
for sequencing

construct the

adjacency WAVEFORM LOADER ~ Al0

matrix DIAG LOADER All

LOCATE A12

preliminary

analysis of CHECK Al4

the adjacency LOOK A16

" matrix

adjacency matrix MATRIX PRINT Al7 set SEQOPT = 1

report SYM PRINT Al8 when invoking
NOPAL processor

construct path CRPATHS A24

matrix

locate cycles CYCLES A25

sequencing PRECEED A27

sequencing PR SEQ Al19 set SEQOPT = 1

report or 2 when in-

voking NOPAL
processor

FIGURE A2

57

FUNCTIONAL DESCRIPTION AND PROGRAM MODULES

INTSEQ: PROC(BEGIN)®

/%% UNICOLL VERSION *xu/

/*THIS PROCEDURE CREATES THE ADJACENCY MATRIX USED FOR

INTRA MOOULE SEQUENCING. THEC ACTUAL MATRIX IS A CONTROLLED
VARIABLE STRUCTURE: THUS OPTIMIZING ON THE SYSTEM MEMORY.

IT BEGINS BY COUNTING THE NUMBER OF WAVEFORMS (BOTH STIMULI
AND MEASUREMENT) +«VARIABLES(BOTH SOURCE AND TARGET), AND
DIAGNOSES T0 DLTERMINE THE SIZE OF THE MATRIX.

ONCE THE ADJACENCY MATRIX IS CONSTRUCTED, ERROR DETECTION AND

- INTERNAL SEQUENCING FOLLOW..

THERE ARE THREE NEW DATA STRUCTURES. THEY ARE *A','HOMER'. AND
A =A CONTROLLED STRUCTURE WHOSE SIZE 1S DETERMINED BY SUM TOTAL
OF THE NUMBER OF DIAG'S,.VARIABLES, AND WAVEFORMS,
HOMER=- A CONTROLLED STRUCTURE THAT POINTS BACK TO THE
OIRECTORY (KEYNODE), THIS ENABLES EVERY ADDRESS IN A THE
ABILITY To TRACE BACK TO 1TS STORAGE ENTRY IN THE DIRECTORY,
VAR=-A CONTROLLED STRUCTURE USED TO COLLECT ALL SOURCE AND TARGET
REFERENCESe THE FIRSY COLUMN INDICATES *SOURCE':
ThE SECOND INDICATES *TARGEY'e THE FIRST ROW
OF BOTH COLUMNS STORES THE NUMBER OF VARIABLES pLACED
IN EACH COLUMN. ¢
DIAG-A CONTROLLED STRUCTURE USED TO COLLECT ALL DIAGNOSE
REFERENCES. THE FIRST ROW INDICATES THE MNUMBER OF DIAG LBLS.

*/
DCL 1 SYMBOL (200) EXTe /% 2-TABLE DIRECTOR */
2 KEYNAME CHAR(12) VAR,
(2 uvp, 2 DOWN 2 TYPLIST) FIXED BIN1

DCL 1 KEYNODE(300) EXT.
(2 KEYTYPEs 2 TYPLINKs 2 NEXTYPE, 2 HOME) FIXED BIN,
2 REFLIST PTR:
DCL 1 STORAGE.ENTRY BASED (STO_PTR) .
2 DATA PTRe 2 HREYS FIXED BIN,
2 KEYENTRY (N REFER (HKEYS))e .
3 NAME FIXED BIN+ 3 NEXT PTR:
DCL 1 ANY BASED(DP) . /*x INCLUDE TABLE_ENTRY #/
(2 TYPE: 2 STMT#) FIXEN BIN.
(2 ALIAS: 2 ENTRY_SEQH#) FIXED BIN,
2 FTYPE CHAR(1)1
DCL 1 TEST BASEDI(DP)
(2 TYPE: 2 STMTH) FIXED BIN
(2 STIMe 2 MEAS, 2 LOG) PTR:
DCL 1 WAVEFQORMS ALIGNED BASED(DP)
(2 TYPE:. 2 STMT#) FIXED BINe
(2 S_LIST, 2 T~LIST) PTR.
(2 TEST_LRLe 2 BREF.LBL) FIXED BIN.
2 TRIPLET,
3 POINTCR PTRs 3 FLAG BIT(1):
DCL 1 WAVEFORMS_LEVEL BASED(TP)
2 HWAVEFORMS FIXED EBINs
2 ENTRY(N REFER(nWAVEFORMS))
3 WAVEFORM PTR, 3 LEVEL FIXED BING
DCL 1 DIAGNQSIS BASEN(DP) o .
(2 TYPEe 2 STMTH) FIXED BINo

58

OCL
ocL

2 USED PTR»
2 OP_MSG .«
3 AFFECTED_COMP PTRs 3 OTHER_PARMS PTR ¢
3 TYPE FIYED BIN
3 TIMING
4 VALUE DEC FLOATs 4 DIM CHAR(12),
2 OP_RPS» .
3 VAR_PTR PTRe 3 Y_N CHAR(1)}
OCL 1 MSG_PARM RASED (TP)
2 #PARMS FIXED BINs
2 PARM (NC REFER(MSG.PARM.H#PARMS)),
3 TYPE FIXED BINs 3 PNTR PTR:
DCL 1 LOGIC BASFD (DP).
(2 TYPE, 2 sTMT#) FIXED BIN
2 BENTRY FIXED BIN,
2 ENTRY (NC REFER(HENTRY))
3 OPERATOR CHAR(4) .
3 DIAG_LBL FIXED BIN:
DCL 1 STIM_MEAS BASED (DP).
(2 TYPEs 2 STMTR) FIXED BINs
2 WAVEFORMS_PTR PTR:

DCL 1 STR BASED (TP)

2 HCHAR FIXEnN BIN.
2 TEXT CHAR(LS REFER (STR«#CHAR)):
DCL PLACE FIXED BIN:
DCL 1 LIST_VAL BASED(TP) .,
2 HVAL FIXED BIN.
2 VAL(N REFER(LIST.VAL.#VAL)) FIXED BIN:
DCL 1 LIST_PTR BASEDI(TP)
2 HPTR F1yED RIN.
2 PTR(N REFER(LIST_.PTR.!#PTR)) PTR;
DCL 1 DCL ALIGNED BASED(TP)
2 I0 FIXED BINy 2 UESCRIPTOR PTR.
2 SCOPE B1T(1)s 2 LINK PTR}:
OCL 1 IF.CELL ALIGNED BASED (TP)
(2 TRUEC_PARTs 2 FALSE_PART) PTR.
2 CF BIT(1), 2 #CHAR FIXED BIN.
2 CONDITION CHAR(LS REFER(IF.CELLJHCHAR))
DCL 1 SIMPLE_CONJ BASED (TP)»
2 HTRIPLET FIXED BIN,
2 TRIPLET (ND REFER(HTRIPLET))
3 CDE PTRs 3 RELATION CHAR(1l)y 3 FDE PTRG
DCL SA FIXED BIN EXT: /* FOR ALPHAMERIC (=2) #*/
DCL NAMES(31) CHAR(12) VAR EXT:
JOCL TYPES(31) FIXED BIN EXT:
NCL (STO_PTR«NDP,TP,SP) PTR
NCL (SPECH,TESTi+STIMIH MEASHDIAGH MSGH,LOGICH +CONJH«ASRTH,

COMPHCMPFLHWUUTPTHVATEPTH#FUNCH VARBEND#) FIXED BIN EXTS

DCL RPTRS(200) PTR;

DCL A(NeN) BIT(1) INITC((N®N)('0°*)) CONTROLLED -

P (NeN) BIT(1) CONTKOLLED: .

ORDER(N) FIXED gIN EXT CONTROLLED: -
DZL $SYMIN) CHAR!(12) VARYING CONTROLLED:

DCL HOM_NODE(SIZE) FIXED BIN CONTRCLLED;

DCL HOM_PTR(SIZE) PTR CONTROLLED:

DCL VNODE(200) FIXED BIN: DCL VPTR(200) PTRS

DCL (ERRL.CNTNO_WARN) FIXED BIN EXT3

59

DCL (HV HMEAS+HDIAG«#STIM #W I N«SIZZ+HOM) FIXED BING
DCL SEQOPT FIXED BIN EXT:

DCL DIAG(200) PTR3

DCL (MEAS_CONJ+STIM_CONJ) FIXED BIN INIT(O):
DCL(BEGIN'T_PTR,TP_LEVEL W.PTR.«P3_PTR) PTR:

NDCL (TTP+sTPM_LEVEL,TPS_LEVEL«NEW_VAR) PTR:

DCL (TP_PARMS+TP.OPERATOR) PTR}

pDCcL ($SNAME « SCONJ+SASRT+$DIAG) CHAR(12) VARYING}
DCL STYPE CHAR(1S5S) VARYING«$I CHAR(4) VARYINGs
SORDER CHAR(4) VARYING: SRANK CHAR(4) VARYING!
DCL (SMAT«VARTST) CHAR(12) VARYING:

OCL (LIN1.LIN2+LIN3) CHAR(90) VARYING:

DCL TEMP PTR: ©OCL $V1 CHAR(60) VARYING;

NCL TCN FIXED BING

pCL $C PICTURE 9';

OCL 3$T PICTURE *9'; Lo

DCL sU CHAR(1) INIT(*='):

OCL BLK1 CHAR(1) INIT(®' ") -

OCL SEGRPTY FILE OUTPUT PRINT ENVI(F(131)):

- DCL SEQERR FILE OyTPUT PRINT ENV(F(131))%
_OPEN FILE (SEQRpT), FILE (SEQERR):

SASRT = 'ASSERTION*; $VAR = 'VARIABLE':
$DIAG = 'DIAGNOSES+*: SMAT =*SUBSCRPT_VAR':
BCONJ = 'CONJUNCTION':

'« CALCULATE # OF WVEFORMS AND STORE VARIABLES =%/
STO_P!R = BEGIN: DP.T_PTR = DATA;

$TST = KEYNAME (HOME (NAME(1)))¢

$STIM'HMEAS = 0

CALL WAVEFORM_LOADER ('1°'B)¢

/«xx LOAD DIAG wITH STGRAGE POINTERS TO DIAGNOSES s¥x/
STO.PTR=BEGIN: DP=pATA: :

STO_PTR=LOG; Dp=DATA}

IF STO_PTR = NULL THEN HDIAG=0:

ELSE #D1AG=_OGIC HENTRY

DO I = 1 TO HDIAG?
TYPES({1)=NAME(DIAG_LBL(I)):

CALL RETREVS('0*B«sRPTRSyNR«DIAGH) §
OIAG(I)=RPTRS(1)}

END3

/*x FOR EACH DIAGs SAVE OPERATOR AND OTHER PARMS =%x/
CALL DIAG-LOQADER('1'B):

SIZEWN = HDIAG + MV + HSTIM + BMEAS:

. ALLOCATE HOM_NODE+HOM-PTR.A:

HOM_NOCE = o3

COUNT = #STIM + #MEAS + #DIAG: A='0'B:

60

/%% MOVE TEMP VARIABLES TO HOMER #»/
DO I=1 TO uv:i
COUNTY = COUNT +1¢

HOM_NODE (CUUNT) = VNODE(I):
HOM_PTR(COUNT) = VPTR(I):

END:

HOM= ®STIM + HMEAS + MDIAGH
COUNT +STIM_CONJ,MEAS_CUNJ = 0

/** LOAD HOMER wWITH WAYEFQRMS. AND 'A* WITH VARIABLES »%/
CALL WAVEFORM.LOADER('0'B)}

/*%_OAD HOMER WITH DIAG %%/
CALL DIAG.LOADER('u'B):

#W = HSTIM ¢+ HMEAS;
ALLOCATE $SYM:

IF SEQOPT = 1 THEN CALL MATRIX_PRINT:
ELSE CALL SYW-PRINT:
CALL CHECK;:

/%% DETECT ERRORS AND SEQUENCE *x/

/%sxsex CALL INTERNAL CODE GENERATION BEFORE RETURNING #sxxssesssanx,

/*x CREATE PATH MATRIX =%/
ALLOCATE P; CALL CRPATHS (A«P(N);

/%% CHECK DIAGONAL FOR CYCLES xx/
DO I=1 TO Nt

IF P(I+I) = *1*g THEN
DOV CALL CYCLES{AWPNySSYM):
RETURN .
ENU

END?

/** PRECEDENCE %%/

ALLOCATE ORDER: CALL PRECEED(A+URDER'N):

IF SEQOPT <=2 THEN CALL PR-SEQ(ORDER$SYM«N):
FREE A+HOM_NODE ,HOM_PTR.$SYN:P:

61

WAVEFORM_LOADER: PROC(SWITCHI

/e* THIS PROCEDURE WILL EXAMINE ALL WAVEFORMS.
IF *SWITCH* IS SET 7O '0'. ALL NtW SOURCE AND
TARGEY VARIBLES ARE INSERTED TO THE TEMPOQRARY
VARIABLE LIST. IF SWITCH IS SFY Tp *1' THE WAVEFORM
STORAGE POINTER IS LOADCO TO *HUMER'. AND ALL
LOCATIONS IN THE ADJUACENCY MATRIX ARE SETees#/

DCL SWITCH BIT(1)$

COUNTY = 0:

DP = T-PTR:

DO I=1 TO 23

IF- I=1 THEN STO_PTR = T_PTR=->TEST,STIM}
ELSE STO_PTR = T-PTR=->TEST.MEAS:

IF STO.PTR=NuLL THEN GOTO BAD:

DP = DATA: /% pOLLOW TO STIM AND MEAS =/
TP = WAVEFORMS_PTR: X

IF I=1 THEN #STIM = HWAVEFORMS:

ELSE #MEAS = HWAVEFORMS;

TYTP = Tp;

DO J=1 TO H#WNAVEFORMS:

STO-PTR = TTp=-DWAVEFORMS.LEVEL,WAVEFQORM(J) i
N-PTR«0OP = DATA;

IF "SWITCK THEN /+*STIM OR MEAS CONJ NOT NULL *x/

DO: COUNT = COUNT +1:
HOM_PTR(COUNT)=STO_PTR
HOM_NODE(COUNT) =03

IF ANY.TYPE == CONJ# THEN GOTO BY:
IF J=1 & 1=1 THEN STIM-CONJ=COUNT:
IF J=1 & 1=2 THEM MEAS_CO.J=COUNT:

ERD:
8Y:
IF JU=2 & 1=2 THEN IF STIM_CONJ >0 &
MEAS_CONJ >N THEN A(STIM_CONJ+MEAS_CONJ) = '1°'B;
DO K = 142 1t '
IF K=1 THEN TP=W_PTR=>NAVEFQORMS,S_L IST;
ELSE TP = H-PTR-)UgVEFORMS.T-LIST%
DO WHILE (YP =NULL)?
NODE = NAME(DCL.ID)?
PLACE = LOCATE(NOUE«TP«SWITCH);
IF ~SWITCH THEN IF K=1 THLN A(PLACE.COUNT)='1'R;
IF “SWITCH THEN IF K=2 THEN A(COUNT.PLACE)='1'B:
TP=LINK?
END:
ENO:
ENO?
BAD:
. END:

END WAVEFORM_LOADER:

DIAG.LOADER: PROC(SWITCH)} '

/%% THIS PROCEDURE WILL EXAMINE ALL DIAGNOSES.

IF SWITCH IS SET YO '0'« ALL NEW DIAGNOSES' VARIABLES
ARE INSERTED TO TME TEMPORARY VARIABLE LIST., IF

SWITCH IS SET 7o '1'e THE DIAGNOSES STORAGE POINTER

IS LOADED TO HOMER, AND ALL LOCATIONS IN THE ADJACENCY
MATRIX ARE SETeqecee - «/ '

OCL SWITCH BIT(1)¢

COUNT = HSTIM 4+ #MEAS!

00 I=1 YO HDIAG:

STO.P|R = DIAG(I): DP = DATA:R

IF ~SWITCH THEN
D0: COUNT = COUNT + 11
HOM-PTR(COUNT) = STO.PTR1

HOM_NOOLC (COUNT) = 03
END S

DO J = 142 3
IF J=1 THEN TP=O0THER_PARMS3}
ELSE TP = OP_RPS,VAR_PTR:

1F J=1 THEN /ex QTHER PARMS w7/

D0 K=1 TO #PARMS WHILE (TP =NULL):

IF MSG_PARM«TYPE(K)=$A THEN
03
SP = MSG-PARM.PHTR(K) i
NODE = NAME (5P->0UCLLID);
PLACE = LOCATE (NODE«SPsSWITCH)
IF ASWITCKR THEN A(PLACEYCOUNT) = *1¢B3
END?

END3

IF U=2 THEN /+«x OPERATOR RESPONSE #»x/
00 WHILE (TP-=nULL):
NODE = NAME(OCL.ID):
PLACE = LQCATE (NODE«TP«SWITCH)?
IF ~SWITCH THEN A(COUNTsPLACE) = *1'B}
TP = LINK;
END?

ENDY

END:
END DIAG.LOADER;

63

LOCATE: PROCEDURE (NEW.VARI'NEW+OPTION) RETURNS (FIXED BIN)?}

CEND_L: END:

/t“'t‘ttt.‘tttv't‘.""l CERRRR AR AR R EE RO R R RN R R RN kR
THIS PROCEDURE WwILL LOCATE THE POSITION OF A VARIABLE IN
EITHER *HOMER® QR *VAR', *VAR®' IS USED 1O DERTMINE THE ACTUAL
NUMBER OF UNIQUE VARIAOBLES.. ONCE THIS HAS BEEN DETERMINED
*HOMER® IS OYNAMICALLY ALLOCATED WITH THAT EXACT NUMBER,
THUS THE PROCEDURE HAS TWOo ABILITIESt ONE TO SEARCH THE
TEMPCRARY VARIABLE LIST. AND ADD NEW VARIABLES AS THEY
COME. AND(2) TO SEARCH THE FINAL VARIABLE LIST °*HOMER'

A'ID RETURN ITS POSITON SO THAT IT MIGHTY BE ADDED TO THE
ADJACENCY MATRIXe. THC FOLLOWING COCE ALTHOUGH SHORT WAS
OEVELOPED INTO TS OWN PRQCEDURE BECAUSE ITS BASICLY
INIATES A SCARCH CHECKING FOR BOTH SIMPLE AND COMPLEX
VARIABLES. ' .

INPUT PARAMETERS?)
‘NEW.VAR = STo.PTR TO VARIABLE NAME
TP - TP POINTER TO DCL
OPTION - IF *'0¢ WILL SEARCH *HOMER®* AND RETURN POSITON
IF *1¢ WILL SEARCH 'VAR' AND INSERT IF NEW
tt"‘."ttttﬁt““#ttl‘ttt“fﬁ‘l*‘l*“*lt*tt#*.tt‘#ttt‘/

DCL (TP_OLD+TP_NEW,0LD_SP NEN_SP«NEW:OLD) PTR}
DCL (KeNEW_VARSTEMPMAX) FIXED BIN:
pcL OPTIOW BIT(1): MAX=0!

DO L = 1 TO #Vi
MAX = L3

IF OPTION THEN TEMP = VNODE(L):
ELSE TEMP = HOM_NODE (HOM + L)

IF NEW_VAR ~= TEMP THEN GOTO END-L:
IF OPTION THEN OLD = VPTR{L)

ELSE OLDL = HOM_PTR(HOM + ()3

/%% CHECK FOR SIMPLE VARIABLE %%/
IF NEW=DDCL.DESCRIPTOR = NULL &
OLU=>DCL.DESCRIPTOR = NULL i
THEN GOTO MATCM:
/%% CHECK THAT BOTH ARE ARRAYS %u/
IF NEWN-D>UCLJ DESCRIPTOR == NULL &
CLD->DCL.DESCRIPTOR == NULL THEN

DUt /xxx CHECK THAT SUBSCRIPTS MATCH %%%/
TP.OLD = OLp=>DCL.DESCRIPTOR:
TPLNEW = NEW=>0CL.DESCRIPTORS
IF TPNEW=DLIST_PTRHPTR "= ;
TP_OLD=DLIST_PTR«+PTR THEN GOTC INSERT: !
00 M = 1 TO TPLNEW=DLIST_PTR.#PTR i
OLD-SP = TP_OLO=>LIST_PTR.PTR(M)} . *
NEW_SP = TP_NEW=DLIST_PTR.PTR{M) g
IF OLN-SP=>STR.TEXT == NCW_SP=>STR.TEXT i
THEN GOTO INSERT:
END: /%% END M = 1 TO 81 PTR s/
GOTO MATCHS
ENO; /%« END BOTH ARRAYS #e%esn/
ELSE GOTO INSERT:

04

-—

INSERT: IF OPTION THEN /s INSERT o/

LDO: HV = #V + 131 UNODE(HV) = NEW_VAR;

VPTR(#V) = NEW: RETURN(#V)} . :

END?

ELSE CALL SYSERR (*SEARCHED VARIAB

S LE nOoT IN .

MATCH: MAXz=MAX + HOM; RETURN (MaXx) s W i
END LOCATE:

CHECK: PROC1
JEP L ERERRB Y SRR PP BN AP RN R A AR RS RE R R A AR KR YN B RN ERNES
THIS PROCEDURE WILL EXAMINE THE ADJACENCY MATRIX FOR:
1) MORE THEN 1 TARGET PER ASSERTION
2) MULTIPLE pEFINED TARGETS
3) INVALID LFFT HAND EXPRESSIONS
4) INVALID OPERATORS
T2 2SS a2 2 ‘ttﬂtt“14‘10010“'0“*“..“‘.'.‘t‘#“‘.t.[

,

/x%s» MULTIPLE DECLARATIONS OF TARGET ®%s/
HOM1 = HOM +1%

D0 1=HOM1 TO Ni
LINI S%'%: nE=0;

DO J=1 TO HOM: /
IF AGJeI) = ¢1'B THEN .

DO H#E=HE +1% i

/%% STORE WAVEFORMS *x/

LINI = LINL (f SSYM(J) 18 ' o' 3
END:

END?

IF #HE 21 THEN
007 IZ=LENGTHI(LIN1):{ LIN1=SUBSTR(LIN1«1¢12-1):
PUT FILE (SE@QCRR) EDIT ‘
(**WARNING (POSSIBLE AMBIGUITY): VARIABLE ' 11 $SYM(I)?
11* OF TEST ¢ 1) $TST 1
11* 1S DEFINED MORE THAN ONCE IN *) LINI
11 THEY MUST BE EXCLUSIVE ') (SKIPwAI}
NO_WARN = NO_WARN + 1:i
END+

ENDS
/x*x MORE THEN 1 TARGET IN ASSERTIQ! #wwxy

00 I=1 TO #wi

LIN1=*"s .

STO.P'R = HOM_PTR(I): DP=DATA: ut=01%

IF WAVEFORMS.TYPE == ASRTH# THEN GOTC NO_ASRT#:

DO J=HOM1 TO Ni
IF A(IvJ) = *1'B THEN

DO HE=HE +1:
LIND = LINY 40 SSYM(J) 11 " «* 3
END:

END?

05

— - . —

IF HE >1 THEN '

DO?! IZ2=LENGTHILIN1): LIN1=SUBSTR(LINI+1+s12-1)1
PUT FILE (SEQERR) EDIT

(**ERROR (AMBIGUITY): IN ASSERTION ' I SSYM(I)
11 OF TEST ¢ 1| STST 11'y THERE ARE TWO OR MORE®
11 YTARGET VARIABLES: * 1ILIN1) (SKIP.A)}
ERR.CNT = ERR-CNT + 13
END?

/x*x EXAMINE LEFT EXPRESSION AND OPERATOR #*#x/
SP=POINTER; IF gE >0 THEN

DO: IF TRIPLET.FLAG = '0'B THEN CALL LOOK(SP)}

ELSE po:

COND: CALL LOOK(SP=>IF_CELL.TRUE.PART)}

IF SP->IF_CELL.CF='1'B THEN :
Do;: SP=SP->IF_CELL.FALSE_PART: GOTO COND?
END?
ELSE IF SP-D>IF_CELL.FALSE.PART == NULL THEN
CALL LQOOK (SP->IF.CELL.FALSE_PART):

END:

ERUS

WO_ASRT#: ENDY"

LOOK: PROCEDURE(TEMP):
DCL (TEMP+SPP) PTR1
DCL 1 SIMPLE_ASRT BASED (TEMP),
2 RELATIONAL
3 EXPR(2) PTR+ 3 OPERATOR CHAR(2),
2 RANGE ,
3 EXP PTRy 3 PCNT CHAR(1)}

SPP = EXPR(1): LIN1=''; HE=0%
DO J=HOM1 70O N
IF A(4vJ)='1'8 THEN : :
DO: IF SPP=>STR,TEXT=$SYM(J) THEN GOTO OPER:

RESHE +1%

IF HC = 1 THEN LIN1=$SYM(J)}

END: F :
END3 ‘e

o
‘

PUT FLLE(SEQERR) EDIT 3

(**ERROR (AMBIGUITY): EXPRESSION * I'l SPP=>STR.TEXT

11" PRECEEDING THE *'='"' IN ASSERTION ' 1 $SYM(]I)

11* OF TEST ¢ 11 STST Il + DOES NOT MATCH THE TARGET VARIABLE ¢
11 LIN1) (SKIP.A)?

ERR-CNT = ERK-CNT + 1:

OPER: IF SIMPLE_ASRT,OPERATOR == +=¢ THEN
DO? SIMPLE_AgRY,OPERATOR = '=';
PUT FILE (SEQEPR) EDIT
(**WARNING (INCONSISTENCY): IN ASSERTION ' Il $SYM(I)
11* OF TEST ¢ 1§ S$TST 1i1's A VARIABLE 1S DECLARED AS'
11* TARGET: BUT THE RELATION OPERATOR IS NOT AN EQUAL SIGN.!
11* PREPLACED By AN EQUAL SIGN,*) (SKIPA) R}
NO.WARN = NO_WARN + 13 5
END;

END LOOK:
END CHECK:

66

MATRIX.PRINT: PROC!

STO_PTR = BEGIN}

PUT FILE(SEQRPT) PAGE?R }

PUT FILE(SEQRPT) EDIT (*INTRA MODULE SEQUENCING * 11 STST,
*ANALYS1S OF THE ADJACENCY MATRIX)
(SKIP(5)COL(28) ¢ AySKIP(1)+COL(26)+AsSKIP(3))3

IF N<1 THEN RETURN:

LINI«LIN2¢LIN3 = * 3

IF N>94% THEN
DOi /**70 BIG TO PRINT %%/ . ,
PUT FILE (SEQRPT) EDIT ('ERROR: ATTEMPT TO WRITE MATRIX ¢
11 *WHOSE SIZE EXCEEDS MAXIMUM # OF 94, THC SAME INFORMATION ¢
11°IS AVAILARLE IN THE INTERNAL SEQUENCING REPORT WHICH DOES*
11' NOT HAVE A SIZE LIMIT') (SKIP+AsSKIP)}
RETURN?
END?

IF N<47 THEN B=23 ELSE B=11
. COUNT=0: TEN = 0%

00 I=1 TO Ni

COUNT = COUNY + 1%

IF COUNT = 10 THEN
DO: COUNT = o+ TEN = TEN + 1%
END

$C = COUNT: ST = TEN:

IF I<10 THEN LIN1 = LIN1 ! BLK1:3
ELSE LIN1 = LINY By 8T:
LIM2 = LIN2 11 sCs
LIN3 = LIN3 11 sUS
IF N<47 THEN
DO% LIN1 = LIN1 1] BLK1:

LIN2 = LIN2 I BLK1i
LINS = LIN3 1l BLK1:
END3

ENDs

IF W>Y THEN PUT FILE (SEQRPT) EDIT (LIN1) (COL(3S)+A4SKIP)?Y
PUT FILE (SEQRPT) EOIT (LIN2) (COL(35)vA«SKIP): ;

PUT FILE (SEQRPT) EDIT (LINZ) (COL(35)4A«SKIP):

CALL SYM_PRINT: A

END MATRIX_PRINT:

SYM_PRINT: PROCEDURE:
/ess PRINT NAMES AND SAVE THEM FOR YCHECK®' PROCEOURE s s/

09 I =1 70 N:

IF HOM.NOOE(I) > 0 THEN
D03 SNAME = KEYNAME (HOME (HOM_NODE(I))):
STYPE = $VAR; TP = HOM_PTR (I)}
IF DESCRIPTOR = NULL THEN GOTO PNT:

67

P——

i
!
il
i

/%% SUBSCRIPTED VARIABLE *s»/
TEMP = DESCRIPTOR: $V1 = SNAME:
00 J = 1 TO TEMP=DLIST_PTR«H#PTR}
SP = TEMP-DLIST.PTR,PTR(J)?
IF J=1 THEN $V1 = $v1 1) * (% 1) SP=D>STR.TEXT: ELSE
SV1 = SV1 Il * +* 1| SP=D>STR.TEXT:
END?

SNAME = svi (I *)* §
GOTO PNT:
ENO?

STO.PTR = HOM_PTR(I): DP=DATA: STYPE = *CRROR':

IF ANY«TYPE = ASRTH# THEN STYPE = SASRT:
IF ANY.TYPE = CONJ#t THEN s$TYPE = $CONJ:
IF ANY.TYPE = DIAGH# THEN $TYPE = SDIAGH

SNAME = KEYNAME (HOME(NAME(1)!) 3
PNT: IF SEQOPT = 1 THEN
PUT FILE(SEQRPT) EDIT (I+SNAME+STYPE+(A(I+JIDO J=1 TO N))
(COL(2)F(4),COL(B)+A(COL(22) A COL(36)((MIALB))]
$SYM(I) = SNAME;

END;
END SYM_PRINT:

-PR.SEQ: PROC (ORDER«DICT«N)%

DCL CAT ENTRY (CHAR(%)FIXED BINs, FIXED BIN) RED.
CON ENTRY(FIXED BINCFIXED BINIRED 3
/%% PROCEOURE YO PRINT SEQUENCING s/
DCL (IORDER.IRANK) FIXED BIN INIT(O):

DCL #OUT FIXED gIN INIT(0)%
DCL KEYWD CHAR(S) VARYING?
DCL FLOATMX FLOAT INIT(1E+75) STATIC,

LTEMP FIXED BINe TEMP CHAR(70) VAR INIT(*?).

CURTXT CHAR(140) VAR INIT(**).

SEMICOLON CHAR(1) INIT('3%)e

LPAR CHAR(1) INIV(*(*)s RPAR CHAR(1) INIT(*)*),

COLON CHAR(1) INIT(*3*)y COMMA CHAR(2) INIT('s *)¢"

BLANKS CHAR(70) IRIT((70)* ')« TAG BIT(1)+

ORDER(*) FIXED BINs DICT(%*) CHAR(12) VARYING.

RANK(N) FIXED BRIN EXT CONTROLLEO, PARCMA CHAR(3) INIT(').

Bl CHAR(1) INIT(' *)e« SKP FIXED INIT(21)%

DCL 1 SIMPLE_-ASRT BASED (TP).
2 RELATIONAL .
3 EXPR(2) PTRs 3 OPERATOR CHAR(2),
2 RANGE .,
3 EXP PTRy 3 PCNT CHAR(1)?

DCL 1 CONNECTORS BASED (TP).
2 DIM CHAR(12)
2 HPTS FIXED BINY
2 POINTS (NP REFER(CONNECTORS.#PTS)) FIXED BIN:

DCL 1 AFFECTED_COMp BASED(TP).e
2 ANY_OR CHAR(1)+2 #COMPS FIXED BIN,
2 ELEMENT(NC REFER (HCOMPS)).
(3 COMP_FL#e¢ 3 COMP_IDy 3 FAIL_FN) FIXED BIN?t

68

IF SEQOPT = 2 THEN PUT FILE(SEQRPT) PAGE:

PUT FILE (SEQRPT) EOIT(*SEQUENCE OF PROCESSING ¢ 11

*FOR TEST “11 STST) (SKIP(3)+COL(26)1AsSKIP(2))

PUT FILE (SEQRPT) COIT('ORDER*+*VECT 4 *ORDER® ¢ *RANK®Y s tNAME " 4
CTYPE ' o *TEXT* ' INDEX**VECTOR")

(COL(1)¢AsSKIP(1)+COL(1)esA«COL(7)¢AsCOL(15) AsCOL(27),

AvCOL(44) vAICOL(70)+AsSKIP(1)sCOL(1)4AsCOL(7)¢ASKIP(2))3

00 M=1 TO Nt
I1=0ORDER(M): /¥x I IS THE MATRIX NODE BEING EXAMINED x%/
IF HOM_NODE(I) >0 THEN CALL VAR-PT: ELSE
DO: /x*x WAVEFQORMS OR DIAGNOSES sx%x/
STO-PTR=HOM_PTR(I): DP=DATA; STYPE='ERROR"
JORDER = I IRANK = RANK(I):
SNAME = DICT(I)?¢ HOM1= #iw + HOIAG 413 &
IF ANY.TYPE = DIAGH THEN CALL UIAG_PT;: ELSE CALL WFORM_PT:
IF LTEMP >0 | (LENGTH(SNAME)) >0 THEN CALL CON(042):
END: /sx END WAVEFOKM OR DIAGHWOSES %%/
CALL CON(O0.2)
END /7** END M ITERATION =%x/

VAR_PT: PROC:

TP=SHOM_PTR(I)? S«T=0: LINE=""}
IF DESCRIPTOR=NULL THEN STYPE=SVAR}
ELSE STYPE=SMAT?H

IF "SCOPE THEN TEMP='LOCAL'1
ELSE
DO: /=*x GLORAL =%/
D0 K=1 TO #HW;
IF A(Ko I) THEN T=T+1lj
END?

TEMP='GLOBAL /'3
IF 1 >0 THEN TEMP=TEMP 11°* TARGET /9y
ELSE TEMP=TEMP 11 ' SOURCE /'i ?
END , -
PUT FILE (SEGRPT) EDIT(MyI RANK(I) DICT(I)+STYPE'TENP)
(SKIPVCOL(1) F(4)eCOLLTIF(4)1COLLLI4)CF(U)
COL(26)¢AVCOL(41)+AVCOL(58) A
STYPE«TEMP="'1}
END VAR.PT:

DIAG_PT: PROC}H
SKP«NB«K=1: s$TYPE=SDIAG!

TP = OP.MSG,AFFECTED.COMP: g
IF !Pa=NULL THEN /% AFFECTED COMPONENTS =/
BO: CALL CAT('AFFECTED COMPONENTS =¢4040)%) ;
KEYWD = AND_OR 1| B1i '
DO L=1 7O #COMPS}
KF = FAILLFN(L): CURTXT = KEYNAME (HOME(CQOMP_10(L))23
IF KF>0B THEN CURTXT = KEYNAME (HOME (KF)) I ILPARIICURTXT i
11 RPAR:
CURTXT = CURTXT 11| KEYWD: CALL CON(1+ 0)3

END:
SUBSTR(TEMPs LTEMP = 1) = COMMA: |
ENDg

69

stk i

TP = OTHER_PARMS; .
IF TPa=NULL THEN /% OTHEK PARAMETERS =/
DO: CALL CAT(*OTHER PARAMETERS=('s 0 ¢« 0)1
DO L=1 TO MSG_PARM.HPARMS}
SP=MSG_PARMPNTR(L)}
IF MSG_PARM.TYPE(L)"=$A THEN
CALL CAT(SP=D>STR,TEXT 1! COMMA,0+0)1
END:
D0 L=#W TO N3
CURTXT=pICT(L) 11 COMMA;
IF A(L+y) THEN CALL CON(O40)?
END ¢
TEMP = SUBSTR(TEMPs 14 LTEMP=2) 1l PARCMA;

; END3

1F GP_MSG,TYPE>0 THEN /% OP, MSG. TYPE =/

i DU: CURTXT='TYPE = *1IKEYNAME (HOME (NAMC (OP_NSG,TYPL))) 11 COMMAG
i CALL CON(31¢0): :)

! ENDS

IF TIMING,VALUESFLOATMX THEN /* TIMING =/

CALL CAT('TIME=" IITIMING.VALUE 11 COMMA+0,0)3

TP T OP_RPS.VAR-PTR:
IF TPa=MULL THEN /x OP, RESP. VARS =/
DO: CALL CAT('RESPONSE=('+ 1 4 0)3

r
DO L= HOM1 TO N} 3
IF A(1+L) THEN.
DO: CURTXT=DICT(L) 1] COMMA; CALL CON(1+¢0): END?

END? :

TEMP = SUBSTR(TEMP+1+LTEMP~2) 11 PARCMA: {3
END:

IF OP_RPS,Y_N-=B1 THEN /7% Y/N s/ -
CALLL CAT(*RESPONSE = ' [1 OP_RPS.Y_N 11 COMMA.1 4v0)3 s
LTEMP=LENGTH(TEMP) { . ;
TEMP=SUBSTR(TEMP +1+LTEMP=2) 11 SEMICOLON: ?

END DIAG-PT:

WFORM_PT: PROC: G
TP = WAVEFORMS,POINTER: TAG =-FLAG: STYPE = WAVEFORMS.TYPE:
SKP«NB(KF=1: K=1B;
IF STYPESCONJE THEN STYPE=$SCONJ: ELSE STYPE=$ASRT:
IF -~TAG THEN CALL SIMPLE(TP, " NKB): /¢SIMPLE CONJ/ASRT#*/ J
ELSE /% CONDITIONAL CONJ/ASRT #/ -
D0; COND: CALL CAT('IF *1JCONDITIONII * THEN *+NB«O)$ i
TAG = IF.CgLL,.CF: i
CALL SIMPLE(TRUE-PARTs NB+4);: TP = FALSE-PART: 2

IF TAG THEN 1
DO: CALL CAT('ELSE *(NBv1):

IF NB»KF THEN DOi NB = SKP: K = 13 END:
ELSE pOi NB = NB + 5i k = 0; END:
GOTO COND¢

END3

IF TPa=NULL THEN /% ESLE=> SIMPLE CONJ. %/ \

003 CALL CAT('ELSE '+ KBy 1)3% |

CALL SIMPLE(TPs NB + 4)3 :

END: !

END: CURTXT=*TARGET: *1i {

70

IF T.LIST ~=NULL THEN

00: CALL CAT(*TARGET: *+SKP+1)i
00 L=HOM1 TO N3
IF A(I+L) THEN .

DO; CURTXT=DICTI(L) 11 COMMA;
. EnD3
SUBSTR(TEMP,LTEMP=1411=813}
END:

IF S.LIST == NULL THEN

DO CALL CAT(*SOURCE: *+SKP+1)3i
DO L= HOM3 T2 N3
IF A(L+I) THEN F

DO: CURTXT=DICTIL) ‘11 COMMAG

END:

END

SUHSTRITEMP, LTEMP=1, 1) = SEMICOLON3

SIMPLE: PROC(P,NB)t /%% QUTPUT SIMPLE
DCL (Ps TP) PTYRe NB FIXED BIN:

IF STYPE=CONJ# THEN /% TRIPLET
DO
DO L=1 YO Pp=>#TRIPLET?
TP = P->CDE(L): CALL CAT (*(

DU J=1 7O TP=>HPTS;]

CURTXT = KEYNAME (HOME (NAME(TP=>POINTS(J))))

CALL CON(NBs 0)%

ENDt

SUBSTR(TEMP+ LTEMP=1, 1) = *>*}
TEMP = TEMp 11 * =

TP = P=>FDp(L)%

CALL CAT(TP=>STR.TEXT 11 *) &'
END;
SUBSTR(TEMP, LTEMPsy 1) = Bl

ENDS
ELSE /% ASRT x/

CALL CON(1+0)3

CALL CON(1+0)3

CONJU/ASRY =%/

CONJUNCTION »/

€'+ NBe 0)1

NBe 0)%

END?

END:

Il COMMAY

D0: TP = P=-DEXPR(1): CALL CAT(TP=>STR.TEXTs NBs 0)1

TP = P=>ExPR(2)% 5

CURTXT=B111P->RELATIONAL- OPERATORI IB11ITP~->STR.TEXT}

CALL CON(nBeQ) 3
TP = P=>RANGE.EXP} :
IF TP-=NULL THEN

DO: CURTXT=* 4= * || TP=>STR,TEXTIIP=DPCNT}

CALL CON(NBe0):i ENDi
END:
END SIMPLER
END WFORM_PT:

71

| .

CAT: PROC(TEXT+ NBv OPT): /% CONCATENATE & OUTPUT TEXTY =/

/*% IF OPT = g CHECK TOTAL LENGTH., THEN CAT,
IF OPT = 1 OUTPUT LAST RECORD. THEN CAT,
IF OPT = 2 INITIAL 7

DCL TEXT CHAR(x)+(NB1OPT) FIXED BING
CURTXT = TEXT}

CON: ENTRY(NB, OPT): /* SAME As CATs« EXCEPT TEXT FROM wCURTXT" =/

IF OPT=0 THEN
DOZIF(LENGTH(TEMP))=0 THEN NB=03% .
IF(LENGTH(TEMP))+ (LENGTH(CURTXT))<70 THEN
TEMP=TEMP 11 SUBSTR(BLANKS+1+NB) |1 CURTXT 3
ELSE OPT=1:

END;

IF OPT =1 | oPT=2 THEN

DO: 1F IORDER >0 THEN
D03 /»x» PRINY ENTIRE LINE %=/
PUT FILE(SEQRPT) EDIT(M«IORDERIRANK(SNAME +STYPE«TEMP)
(SKIPe«COL (1) eF(4)¢COLI7)F(4) CULI14)sF(4),COL(26) A,
COL(41)+A,COL(58)A)

-$NAME «$TYPE=**
IORDER « IRANK=0;

END: ELSE :

PUT FILE (SEQRPT) EDIT (TEMP) (SKIP.COL(S5B8)+A):

IF OPT =2 THEN TEMP=¢'; ELSE TEMP=CURTXT:

END?
LTEMP=LENGTH(TEMP) &
END CAT:

END PR_SEQ:
END INTSEQ:

CRPATHS: PROC(ADJMAT+PATHMAT N ¢
/**x DEBUG »%%x/ ..
DCL (ADUMAT PATHMAT) (*.%) BIT(*)?
PATHMAT=ADJMAT ; ’
Do J=1 TO Ni
00 I=1 TO Ni

END:

END?
END CRPATHS;

T

IF PATHMAT(IeJ) THEN PATHMAT(I+*)=PATHMAT(I %) |PATHMAT(J*)}

|
|

CYCLES: PROC (A P.N,DICT)S

DCL SEQERR FILE OUTPUT PRINT ENV(F(131))1
DCL (A P) (%4%) BIT(*):
OCL PRINT_LINE CHAR(125) VARYING:
DCL USED (N) BIT(1):
OCL UICT (%) CHAR(12) VARYING:
DCL (ROOT REACHJ(N) «PATH(N+1)) FIXED BINS
DCL PATH_EXTENDED BIT(1):

CO ROOT=1 TO N
DO K=ROOT TO N;:
REACHJ(K)=ROOT?
USED(K)=+0'B;
END:

LEVEL=11
PATH(1)=R0O0OT!
I=ROOT}

D0 WHILE(LEVELA=0):
PATH_EXTENDED='0'B:
JMIN=REACHJ(I)
D0 J=JMIN 7O N WHILE((LEVEL-=Q)&-~PATH_EXTENDED):
IF A(IvU)&P(Y+RODT)IZUSED(Y) THEN DO}
PATH_EXTENDED='1'8:
Call EXTEND-PATH;
IF J=ROOT THEN DO:
CALL PRCYCLE(PATHoLEVEL D
CALL BACKTRACK:
END1
END3
END:
IF -PATH.EXTENDED THEN DO?
REACHJ(I)=RQOT;
CALL BACKTRACK;:
END;
ENO:
ENC3

/% INTERNAL SUBROUTINES =/

BACKTRACK: PROC?$

USED(I)='0*B:

LEVEL=LEVEL=1:

IF LEVEL"=0 THEN I=PATH(LEVEL):
END BACKTRACK?

EXTEND.PATH: PROC¢
USED(J)=*'1'83
REACHJ(TI)=J+13

© LEVEL=LEVEL+1:
PATH(LEVEL)=J}
I=J:

END EXTEND.PATH:

73

PRCYCLE: PROC(PATH,LEVEL)?}
/«s& MOST OF THIS PROCEOURE HAS BEEN CHANGED FROM aDAM RHIN'S
THESIS TO SIMPLIFY THE PRINTING OF CIRCULAR DEFINITONS
IN THE ERROR REPORT RB 10/76 sx%/

bcL IA FIXED:
DCL $TST CHAR(12) EXT VARYING:
DCL PATH(*) FIXED BIN:
DCL LEVEL FIXEp BINS
DCL ERKR_CNT FIXED BIMN EXT:
PRINT_LINE = 'ERROR (CIRCUULAR DEFINITION)S ¢

11'THE FOLLOWING GRQUP OF ITEMS IN TEST * 10l STST

11" ARE CIRCULARLY DEFINED: '3
DO NODES=1 7O LEVEL3

PRINT=-LINE=PRINT_LINE 11 DICT(PATH(NODES)) 11%y * ¢

END:
IASLENGTH(PRINT-LINE) 2 :
PRIN!LINE=SUBSTR(PRINT_LINE«+1¢IA-2):
PUT FILE (SEQERR) EDIT (PRINT_LINE) (SK1PsA):
ENC PRCYCLE}: .
END CYCLES:

PRECEED:PRUC (ADUMAT ,ORDERN) 3

/+ REARRANGE NODEs OF A DIRECT GRAPH(SPECIFIED By ADJACENCY MATRIX ®/
/* “ADJMAT" N BY N) IN ASCENDING "RANK" ORDERe+ RESULTING IN N-~ELEMENT=/

/% VECTOR "“ORDER",

DCL (ADJMAT(%,%)s UNUSE(N)s T INIT(*1'B)s F INIT(*'0'B)

*/
) BIT(1),

(ORDER (%) (NODES(2)INIT((2)0)4NEWw INIT(2),0LD INIT(1))FIXED BIN:

DCL ¢ DEPTH(2,N)y K INIT(O) } FIXED BING
DCL RANK(NR) FIXEp BIN EXT CTL:
OCL (I+JyLoII,M) FIXED BIN STATIC:

/* ADJMAT-~ADJUACENCY MATRIX DEFINING THE DIGRAPH,.
/% Ne==sce==TNE NUMBER OF MNODES IN YHE DIGRAPH.
/% ORDER-=-~THE VECTOR OF NODES IN RANK ORDER.

=/
. %/
x/

/7% RANK=-==-<~VECTOR OF RANKS OF NODES IN DIGRAPH, INTUITIVELY. THE x/

/% RANK IS THE MAX. DEPTH OF A GIVEN NODE IN THE DIGRAPH x/
/% FROM ANY RCOT. EXT BECAUSE USED IN *'GFLTRPT! x/
/* DEPTH---SET OF NODES IN A GIVEN RANK(OLD 8 NEW)es I+E.¢ "RANK SETU,%x/
/% NODES---COUNTERS FOR # OF NOCES IN OLO & NEW RANK SET(DEPTH). */
/* OLD=---=-POINTER TO PREVIOUS RANK SET. x/
/% NEW==-=-=-=FOINTER TO CURRENT RANK SET. x/
/* UNUSE-==-BIT VECTOR OF NODES NOT IW THE CURRENT RANK SET, x/

/* ALLOCATE RANK AND INITIALIZE RANK OF ALL MODES 7O 0

NR=N3
ALLOCATE RANK:

IF N=1 THEN DO: ORDER(1).RANK(1)=0: RETURN: END?
RANK+ ORDER = 0:

/% SET UP DEPTH 0« */
DO J=1 TO N3

*/

/% ENTER THOSE NODES WITH AN ALL=-0 COLUMN IN THE FIRST RANK SET =%/

IF ANY(ADJUMAT(*+J)) THEN GOTO OUT:
Ms NODES(OLD)=NODES(OLD)+1} DEPTH(OLD«MY=J?
ouUT: END:

74

IF NODES(OLD)<=0 THEN GOTO ERR: /% NQO COL HAS ALL 0 t/
/% WHICH MEANS T8AT EVERYTHING IS
DEPENDENT ON SOMETHING ELSE =/

/% OTHERWISE. PROCEED TO FIND RANK SETS OF DEPTH 1 AND ON ®/

DO L=1 TO N=1: /% FOR EACH RANK SET ("DEPTHw) x/
/% INITIALIZE NUMBER OF NODES IN NEXT RANK SET TO 0%
FLAG ALL NODEs AS NOT APPEAKRING IN NEXT RANK,SET INITIALLY =/
NODES (NEW)=03 UNUSE=T}

00 I=1 TO NODES(OLD): II1=DEPIH(OLD+yI)% ,* FOR EACH NORE IN THE
. PREVIOUS RANK SEY =/

D0 JU=1 YO N /* FOR EACH COLUMN (NODE) CHECK IF IT IS A
DEPENDENT OF NODE IN OLD RANK SET =/

/» IF NODE Is DEPENDENT OF CURRENT MNOCC IN OLD RANK SET
(NODE 1I) AND IF IT IS NGT YET IN NEXT (NEW) RANK SET
THEN ENTER 1T AS A MEMBER OF THE NEXT RANK SET =/

IF ADUMAT(I1,J) THEN 1F UNUSE(J) THEN

DO: RANK(J)=L?: UNUSE(JU)=Fi /* SET OR UPDATE RANK OF NOOE

ANO INOICATE THAT IT IS NEW RANK SETs/
Me NODES(NEW)=NOOES (NEW)+13 DEPTH(NEW M) =Js
END;
ENO;
END:

/% IF THERE ARE NOT ANY NODES IN NEXT RANK SETs l1.E. THERE
ARE NO NOOEs OEPENUENT UN ANY NOOES IN PREVIOUS RANK SET.
THEN WE ARE DONE BECAUSE EVERY NODE HAS ITS RAﬂh */

IF NOUES(NEN)(0 THEN GOTO REORDER:

/% EXCHANGE OLD AND NEW RANK SETSs WHICH HAS THE EFFECT OF
MAKING NEW RANK SET THE OLD ONE., AND A NEW "NEW" RANK SET
WILL BE CREATED IN NEXT PASS *x/
M=NEW; NEW=0LD: oLD=M;
END:

ERR: :
RETURNS /*CyCLES EXIST. ERROR RETURN WITH OROER=0Q */

REORDER: /* SORT NODES BY ASCENDING RANK ORDER. %/
DO I=V TO Le1: '
D0 J=1 TO N
IF RANK(J)=1 THEN DO: K=K+13 ORDER(K)=Ji: END?
END} :
END:
END PRECEED;:

75

ST

]
]
{)
|
|
i

APPENDIX B

/REERIEEREERRREOREPERRRRRAB AL KRS B R4 B ERRRRS KRR KRR/

/e _ */
/¢ NOPAL TEST SPECIFICATION FOR RADIOSET */
/e %/

/ERBRAEERAEERECAREEREREERFERAR KRS EF RN R NR KD RN KRR RRE R/
NOPAL SPECIFICATION RAOIQSET:

JREREBR S XN EREEEFRERRXRE XA R KRR A KRR XX R R R R XXX KR KRS/

/% &/
/x TEST MODULES: 13 x/
/* %/

JEFXERXEAEERREE LR R R AR R X XXX A KR E KRR R R KRR KR KKK KK/

TEST 13
/= NULL STIMULI =/
/% NULL MEASURIMENT =/
LOGIC $LOGICD010(1): %13

DIAGNOSIS 1%
OPERATQR MESSAGE:
TYPE=#H1+
RESPONSE=71

TEST 2i
/% NULL STIMULI =/
. MEASUREMENT s$“v_.2(2)3

CONJUNCTION S$SM_WO0001($SM_2):
(<XJ24%-Be ' XJ24_C> = CONST.R(MRES OHM))
TAKGET: MRES!

ASSERTION $M_W0002($M.2):
MRES > 100
SOURCE: MKRES3:

LOGIC SLOGICO0010(2): 214 192 %x3%
/%*x FOLLOWING DIAGNOSIS ALREADY DEFINED BEFORE:

DIAGNOSIS 13
OPERATOR MESSAGE:
TYPZ=H1.
RESPONSE=7:
*%xx/
DIAGNOSIS 23
OPERATOR MESSAGE:

AFFECTED COMPONENTS=INPUT-SHORT,
TYPZ=H4:

DIAGNUSIS 3¢
OPERATOR MESSAGE:

76

o
{

il a5

e | TR

OTHER PARAMETERS= (MRESs *OHMS '),
TYPE=D? ;

TEST SYTEST0003%
STIMULI 2(SYTEST0003)1%

CONJUNCTION $S.W0001(2):
(<J24.By GND> = CONST.S(27.5 VOLT))i

MEASUREMENT $M_SYTESTOOO0O(SYTEST0003)¢

CONJUNCTION $M_WOO0O01($SM_SYTESTO000):
" (<J22, GND> = SINE_D(V1 VOLT «F1 HZ .VAR1 SEC
TARGET: Fis V1
SOURCE: VAR11%

ASSERTION $M.W0002($M4-SYTEST000)$
IF VAR1:=60 THEN
F1 = S¥1E+06 +=- 60
ELSE
F1 = O5*1E406 +- 2.5
SOURCE: VARl. F11i

LOGIC $LOGICOO010(SYTESTOU03):- »4¢ |75, %61

DIAGNOSIS 43
OPERATOR MESSAGE:
TYPE=HS5"
TIME= 0.00000E+00SEC
RESPOWNSE=(VAR1){

DIAGNOSIS 5¢
OPEKATOR MESSAGE:?
AFFECTED COMPONENTS=FREQ_TOL (STD.SMHZ-FRE),

OTHER PARAMETERS=('FREQ*)
TYPE=#61

DIAGNOSIS 6t .
OPERATOR MESSAGE: : h
OTHER PARAMETERS=(F1, *Hz'),
TYPE=D:

TEST 43
/% NULL STIMULI =/
MEASUREMENT S$M_u4(4)3
ASSERTION SM_WOO001(SM=-&)
V1 = 0,26 +- 0.06
SOURCE: Vi
LOGIC $LOGICOD10(4): »74 183
DIAGNOSIS 7%
OPCRATOR MESSAGE:
OTHER PARAMETERS=(V1, * yRMS*),
TYPE=D:
DIAGNOSIS B¢

GPCRATOR MESSAGE:
AFLCTIED COMPONENTS=ANPL _TOL(STUO.SNHZ-FRE) .

-

))

Otner PARANCTERS =C' AMPL"),
TEST Si TNReG = 202

STIMULI 3(5)1

CONJUNCTION $S.W0001(3):
(<U24_8¢ GND> = CONST_S(27.5 VOLT)) 2
(<J16> = SIGNAL_AM(2.001 MHZ +=95 DB +0 % +1 KHZ))i

MEASUREMENT $M_5(5)1

CONJUNCTION SM_WO001($M_S):
(<XJ19.As GND> = SINE_D(V1 VOLT +%*+3 SEC))
TARGET: V1%

ASSERTION $M-W0002(SM.5)?
Vi <= 0,7 ;
SOURCE: V1t

LOGIC $LOGICO0010(S5): %9, 1210}

DIAGNOSIS 9%
OPERATOR MESSAGE:?
OTHER PARAMETERS={V1, *'VAC').
TYPE=D:

DIAGNOSIS 10:
OPERATOR MESSAGE:
AFFECTED COMPONENTS=MIN_QUTPUT(AUDIO_10MW)
TYPE=H8Y

TEST 63
STIMULI s$S_o6(6)18

CONJUUNCTION $S.W0001($S_6):
(<JY24._.B+s GND> = CONST_s(27,5 VOLT)) &
(<J16> = SIGNAL.AM(2.001 MHZ ¢+~95 DB 0 % «1 KHZ 1)}

MEASUREMENT $4_6(6)3%

CONJUNCTION $M_W0001(SM_g) ¢
(<XJ19.L+ GND> = SINE_D(V1 VOLT +%+3 SEC))
TARGET: V1i -

ASSERTION SM_W0002(SM-6):
Vi <= 0,7
SOURCE: V1

LOGIC SLOGICO0010(6): %11+ 19123

.DIAGNOSIS 11:
OPERATOR MESSAGE:
OTHER PARAMETERS=(V1, * VyACv),
TYPE=D:

DIAGNOSIS 12
OPERATOR MESSAGE:
. AFFECTED COMPONENTS=MIN_QUTPUT(AUDIO.2W)
TYPE=HI:

78

TEST 1
srxndlr $S_7(7)%

CONJUNCTION $S_W0001($S_7)3
(<J24_3, GND> = CONST_S(27.5 VOLT 1)) &
(<J16> = SIGNAL_AM(2.001 MHZ =95 DB ¢0 % +1 KHZ)31

MEASUREMENT $M_7(T7)1 ,

CONJUNCTION ANY_NAME(SM_7): |
(<XJ19.A+« GND> = SINE_D(V1 VOLT +x¢3 SEC))
TARGET: V1i

ASSERTION $M_WO0002(SM.T7):
Vi >= 2,33
SOURCE: V11t

LOGIC $LOGTICO0010(7): =13+ %14, (7151

DIAGNOSIQ 13:
OPERATOR MESSAGE :-
TYPE=#H10+
TIME= 0. 00000{+00$EC|
RESPONSE=?1

DIAGNOSIS 14
OPERATOR MESSAGE‘
OTHER PARAMETERS=(V1, * VvAC*),
TYPE=D:

DIAGNOCSIS 15¢
OPERATOR MESSAGE:
AFFECTED COMPONENTS=MAX_.OUTPUT(AUDIO_10MHW) .
OTHER PARAMETERS=(' 10 My*). 4
TYPE=#H11} .

TEST 83

STIMULI $S_8(8)3%

CONJUNCTIOV $S-W0001($S_8):
(<J24_Bsy GND> = CONST_s(27,5 VOLT)) &
(<J16> = SIGNAL_AM(2.001 MHZ =95 DB +0 % 1 KHZ));

MEASUREMENT $M_8(8)3

CONJUNCTION $M_W000L(SM_8):
(<XJ19.Ls GND> = SINE_D(V1 VOLT «%*¢3 SEC))
TARGET: V13

ASSERTION Al1(SM_3):
LOG = 20*LOG10(V1/3.981E=-06)
TARGET: LOG
SOURCE: V13

ASSERTION A2($M.8) 3
V1 >= 35.2
SOURCE: V1t

LOGIC $LOGICOD1I0(B): %16+ #17, 1518}

DIAGNOSIS 16:

79

| _ " OPERATOR NESSAGE:
? fo-ye v B TYPE=#12,

; TIME= 0.00000E+400SEC,
; " RCSPONSE=73 i

DIAGNOSIS 17:
OPERATOR MESSAGE: .
OTHER PARAMETERS=(V1, * VvAC', LOG: °'D6°').
TYPE=0D: .

(‘ . . OIAGNOSIS 18: :
OPERATOR MESSAOE:
. ' AFFECTED COMPONENTS=MAX.QUTPUT(AUDIO_2W) .
OTHER PARAMETERS=('2W'),
TYPE=#11:

TEST 9¢
STIMULT $S_9(9):

CONJUNCTION $S-W0001($S_91:
(<J24_By GND> = CONST_s(27.% VOLT)) &

(<J16> = SIGNAL_AM(F1 NHZ ,-95 0B «+0 % +1 KHZ))
SOURCE: F1:
E ASSERTION $5-W0002($S_-9):
F1 = INT((4%x(RANDOM+K)-2)+1000)/10000+1E-09
TARGET: F1
SOURCE: K:

ASSERTTIQN ASSERTION#2($S_9):
F2 = F1-0.001
TARGET: F2
SOURCE: F1

ASSERTION LOOP($s_9):
K = LOOP_OF(1,7,1)
TARGET: K:

MEASUREMENT $M_9(9):

CONJUNCTION $M-NOOO1(IM_9?:
(<XJ19.L+ GND> = SINE_D(V2(K).s.0 SEC)
TARGET: v2(X)
SOURCE: K:

ASSERTION $N-WOO002($M-9):
LOG = 20=L0G10(V2(K)/3,981¢-06)
TARGET: LOG
SOURCE: K+ V2(K):

LOGIC $LOGICO00)I0(9): %19« 220, #21;

: OIAGNOSIS 19:
i : OPERATOR MESSAGE:
: s OTHER PARAMETERS=(F2),
TYPE=#1% .
TIME= 0.00000E+400SEC,
RESPONSE=7:

Fioy ® DIAGNOSIS 20: ;
! 2 OPERATOR MESSAGE:"
) OTHER PARANETERS:=(F1, * MMZ').

80 !

-——

- e e e e e e g— S o— 4 S . . e Svage ———t - & < mo——

TYPE= D.

‘OLAGNOSIS 21: :
: OPERATOR MESSAGE:
OTHER PARAMETERS=(V2(K}s * VAC*'¢ LOG. * DBv),

TYPE=0:
;EST 10;
/¥ NULL STIMULI +/
MEASUREMENT $M.10(10):

ASSERTION $M-NOOD1($M_10):
CRATI0 = MAX(V2)/MIN(V2)
g TARGET: RATIO
-SOURCE: V23

ASSERTIQON $4-W0002($N-10):
RATYO <= &
SOURCE: RATIO:

LOGIC $LOGICO0010(10): %22+ 17233

DIAGNOSIS 22:
OPERATOR MESSAGE:
OTHER PARAMETERS=(RATIO),

TYPE=D:
DIAGNOSIS 23:
OPERATOR MESSAGE:
AFFECTED COMPONENTS=GAIN_ RATIO-
TYPE=#13;:

TEST 11:
STIMULT 6(11)3

CONJUNCTION $S_W0001(6):
(<J2u4.By GND> = CONST.S(27.5 VOLT 1) &

(<J16>. = SIGNAL_AM(25.002 MHZ «+13 DB +0 % 1 KHZ)):

MEASUREMENT $MN_11(11);:

CONJUNCTION $M-WOO0O01($M_11):
(<XJ19.A+ GND> = SINE_O(VI VOLT +*40 SEC)}

TARGET: V1

ASSERTION #1($N-11):
V1l >= 2.2
SQURCE: v1:

ASSERTION #2($M.11):
vVl <= 2,8
: SOURCE: V13

LOGIC ¢LOGICO00L10(11): #24« %25, 1726}

DIAGNOSIS 24:
OPERATOR MESSAGE:
TYPE=#1S, !
TIME= 0.04000E+00SEC,

RESPONSE:=7: v ¥ .

siage s 81
¥ ! CRpe: AR L ,

e ey

= P

DIAGNOSIS 25: .
OPERATOR MESSAGE:
OTHER PARAMETERS=(V1, * yACv),
TYPE=D:

DIAGNOSIS 263
CPERATOR MESSAGE?
TYPE=#173

TEST 12:
STIMULI DUMMY.NAME(12)3%

CONJUNCTION $S.W0001(DUMMY_NAME)?
(<J24_8B¢ GND> = CONST_S(27,5 VOLT)) &
(<J16> = SIGNAL_AM(25,002 MHZ ++13 DB +0 % 1 KHZ

MEASUREMENT sM_12(12)3%

CONJUNCTION $M_W0001(®M_12): .
(<XJ19.A+ GND> = DISTORTION(P1 % +2 KHZ))
TARGET: P1i -

ASSERTION $M_W0002($M=12)2°
Pl <= 3
SOURCE? P11

LOGIC $LOGICO0010(12): %27+ 17281

DIAGNOSIS 27:
OPERATOR MESSAGE:
OTHER PARAMETERS=(P1, '%¢)s
TYPE=D:

DIAGNOSIS 28:
OPERATODR MESSAGE:
AFFECTED COMPONENTS=DISTORT (AUDIO_10MW)
OTHER PARAMETERS=('10 MW*s 1,0)
TYPE=#181%

TEST 13:
STIMULI $S_13(13)%
CONJUNCTION $S-W0001($S_13):
(<J24_3¢« GND> = CONST_S(27.5 VOLT)) &
(€J16> = SIGNAL_AM(25,002 MHZ ++13 DB «0 % «1 KHZ
MEASUREMENT $M_13(13)3%
CONJUNCTION $M_W0001(SM_13):
{<XJ19.Ly GND> = DISTORTION(P1 % «1 KHZ))
TARGET: P1: .
.ASSERTION $M_WO0002(SM-13):
P1 <= 5 y
SOURCE: P1t
LOGIC $LOGTCO0010(13): 294 130:

D1AGNOSIS 23:
OPERATOR MESSAGE:

82

)i

ovveR FParaneTERS PaL bo
TYPEDDI BTG & R S

DIAGNOSIS 30:
OPERATOR MESSAGE:
AFFECTED COMPONENTS=DISTORT(AUDIO.2W)+
OTHER PARAMETERS=(" 2W'y Se0)0

TYPE=#18%
JEEERRREXRRFRKECEIANKR XK KA REA R SRR RS AR KRR KRR KKK/
/% g x/
/x MESSAGES x/
/% x/

JEEXSXXEEFREREEIRRB B AR E SR RN S X IR RXREREXRR KRR KK R KK S/

MESSAGE #4:
TEXT=¢ R/T DC INPUT SHORTED U24-B/J24-C
AN/GRC~106 DEFECTIVE
CHECK PRINTOUTS FOR DEFECTS.
PRESS STOP. 3

MESSAGE D: ALIAS=DISPLAY, a
TEXT=+ (STETS): (P) i

. MESSAGE #5¢
TEXT=*IF A 12 MINUTE UUT WARMUP IS DESIRED« KEY IN 720;:
OTHERWISE KEY IN 60,
PRESS YES, '%

MESSAGE #e6:
TEXT=*TEXT OMITTED, i

MESSAGE #8:
TEXT='TEXT OMITTED,*1}

MESSAGE #9:
TEXT=*TEXT OMITTED,*?

MESSAGE #10:
TEXT=¢TEXT OMITTED, i

MESSAGE #11:
TEXT=*TEXT OMITTED. ¢

MESSAGE #12:%
TEXT=*TEXT OMITTED,*:

MESSAGE #Hi4:
TEXT=*TEXT OMITTED,*?

MESSAGE #13:)
TEXT=*TEXT OMITTED,*$

MESSAGE #15:
TEXT=*TEXT OMITTED,*}

MESSAGE #H17:
TEXT=¢TEXT OMITTED,*:

MFSSAGE #18:
TEXT=* (P1) AUDIO DISTORTION GREATER THAN (P2) PERCENT.

83

e ———————

MESSAGE 1: ALIAS=z#1. _
TEXT=* INITIAL UUT & ATE HOOKUP MESSAGE. FULL TEXT OMITTED, *i

/'tt“tttt"‘.‘"t‘t*t‘ttt‘#t*#t#ttt#“‘#*‘ttt*‘#/

/% */
/% UUT COMPONENTS/FAILURES */
/% x/

/EBEEXXEERRERBEE RN EREAREE R AR R R KA AR R R A KRR X AXE SR RS X/

COMP_FAIL 1: INPJT_.SHORT?}

COMP_FAIL 2: STD.5MHZ_FRE. FAILURE FUNCTION=FREQ-TOL s {NDEX=1‘?mnech»
COMP;FAIL 3: STD.SMHZ_FRE+ FAILURE FUNCTION=AMPL-TOFv 1NDEX=2J¥NﬁIﬁb»
COMP_?AIL 4: AUDIO-10MW. FAILURE FUNCTION=MIN_OUTPUT., INDEX=3.PRETECT(')
COMP_FAIL S: AUDIO-10MW. FAILURE FUNchN:lmAx-ouTPUT. INDEX=5,P61€.1';(-)'_

COMP_FAIL 6% AUDIO-10MW. FAJLURE FUNCTION=REF_VOLT+« PROTECT=(1, 11).
COMMENTS=* DISTORTION RE#, VOLTe TEST.'; -

COMP_FAIL 11: GAIN_RATIO« PROTECT=(1+ 2+ 3¢ 44 S¢ 8¢ 9);

* COMP_FAIL 7: AUDID-10MWs FAILURE FUNCTION=DISTORTs PROTECT=(1+ 6);

COMP_FAIL 8: AUD1J-2Ws FAILURE FUNCTION=MIN_OUTPUTs INDEX=4. PROTECT=@
COMP_FAIL 9: AUDIO.2W: FAILURE FUNCTICN=MAX_.OUTPUT+ INDEX=6:+ PROTECT=#
COMP_FAIL 10! AUDIO_2W. FAILURE FUNCTION=DISTORTs PROTECT=(1+ 11);

[ERKXAKEERKREKRECRRRKEKEEKTRRRRAREMEKKE S SRR KR KRR KRR/

/* x/
/* UUT CONNECTION POINTS */
/* */

VA2 1T I I e R ¥ T2 2 I3 22223 ES S22 22 2 2 04

S S A A A S < =gt - mee

5 UUT_POINT : XJ24.Cs ALIAS=GND, CONNECTOR=(MULTIPLE, C)i

UUT_POINT : J24.B, ALIAS=XJU24_B¢ CONNECTOR=(MULTIPLEs B),
LIMIT=(VOLTs 3,50000E+01, 2,00000E+01¢ SND).
COMMENTS=* MULTIPLE CONNECTOR?:

UUT.POINT ¢ Jeai

- gy -

UUT_POINT 3: J16+ ALIAS=XJ16+« CONNECTOR=(COAXs)
LIMIT=(UvOLTs 1.00000E+02+ 0.00000E+00s GND)» |
i COMMENTS=* COAXIAL CABLE*; i
UUT.POINT 2% J24.Cy ALIAS=GND, CONNECTOR=(MULTIPLEs C)3}

UUT.POINT 40 J19-A¢ ALIAS=XJ19_A« CONNECTOR=(MULTIPLEs A)os
' LIMIT=(VOLT. 5,000VU0£+00, O,00000E+00+ GND):

UUT.POINT 50: J19.B+ ALIAS=GND, CONNECTOR=(MULTIPLE« B)}

UUT_POINT : J19.L, ALIAS=XJ19_L+ CONNECTOR=(MULTIPLE« L),
! LIMIT=(y 7.U0000E+01s 0,00000E+00¢ GND)

/B a4 00489404000ttt Er st ed P ot AR et e RTINSOV RIS/

84

'P"Tmﬂwm"mmwwmwmm - : 4--u-.-IllllIl!lIIll!lllllllllll!ll!-'l'l-"-!-ﬂ'ﬂ“!'“""'"”‘!

/¢ ATE FUNCTIONS 2 */
/% , %/
/‘*t*#"'###t‘#‘t‘t“tt**’&“#tt‘#t#t#.tt#t*'*t‘*‘/

FUNCTION 20¢ CONST.Rs FUNCTION TYPE=M, #PINS= 24
PARAM_01=(Xe Ty LIMIT=(OHMe 1.00000€E+03¢ 1,00000E+00)).
VALUE RETURNED=*TRUE/FALSE*}

FUNCTION 10: CONST.Ss FUNCTION TYPE=S. H#PINS= 29
PARAM_01=(Xs Sy LIMIT=(VOLTy 6+00000E+01¢ 0.00000E+00))«
VALUE RETURNED=* CONSTANT VOLT.': ’ -

FUNMCTION 30¢ SINE-D¢ ALIAS=SINE_DEpLAY, FUNCTION TYPE=Me« HPINS= 2+
PARAM_U1=(Xe Te LIMIT=(VOLTe 1.00000E+02¢ ~1,00000E+01)).
PARAM_02=(Ys Te LIMIT=(MHZe 1.00000E+01% O0.0U000E+0G}))«
PARAM_03=(2y S¢ LIMIT=(SECe 1+00000E+75+ =1,00000E+75))
COMMENTS='APMPL.« FREQ.. TIME DELYD"'3

FUNCTION 110 FREQ-TOLs FUNCTION TYPE=SF,
: PARAM_01=(COMPONENT+ S) %

FUNCTION 120: AMPL_TOL. FUNCTION "TYPE=F,
PARAM_01= (COMPONENT §)3i ,

FUNCTION 130: MIN_OUTPUT. FUNCTION TYPE=F.
PARAM_01=(COMPONENTy S)3

FUNCTION 140: MAX_OUTPUT. FUNCTION TYPE=F.
PARAM_01=(COMPONENT+ S)3

FIINCTION ¢ DISTORTs FUNCTION TYPE=F.
PARAM_01=(COMPONENT. S)¢

: FUNCTION 150: RIF.VOLTs FUNCTION TYPE=F.
‘ PARAM_01=(COMPONENT« S)i

FUNCTION 40: SAMs ALIAS=SIGNAL_AM« FUNCTION TYPE=S« HPINS= 1.
PARAM_013(Xs S¢ LIMIT=(MHZe 1.00000E+402¢ 1,00000E-01)).
PARAM_02=(Ys S¢ LIMIT=(DBy =-1,00000E4014 ~1,50000E+402))+
PARAM_03=(Z» Sy LIMIT=(%y, 1.00000E+75¢ =1.00000E+75)),
PARAM_04=(Wy S¢ LIMIT=(KHZs 1+50000E+01¢ 1,00000E-01)):

FUNCTION 50¢ LOG10+ FUNCTION TYPE=E+ 4
PARAM_01=(Xe S)o |
VALUE RETURNED='LOG1O(X) 3

FUNCTION 602 INT+ ALIAS=INTEGERy FUNCTION TYPE=E.,

PARAM_01=(Xs S)yv
VALUE RETURNEO=*FLOOR OF X', COMMENTS=* LARGEST INTEGER <= X':

FUNCTION 70: RANDe« ALIAS=RANDOM. FUNCTION TYPE=E,
VALUE RETURNEO=*RANDOM NUMBER®:

FURCTION 80: MAXy ALIAS=MAXIMUM, FUNCTION TYPE=E.
* VALUE RETURNED=*MAX({X14X24 XN)*s¢ COMMENTS=' N>=1: X A VECTOR,*

FUNCTION 90: MIN+ ALIAS=MINIMUM. FUNCTION TYPE=L,
VALUE RETURNED=* MIN(X14X24XN)*?

Funcrion ¢ DISTe ALIAS=DISTORTIONs FUNCTION TYPE=M. #PINS= 2.
PARAM_01=(Xs Ty LIMIT=(%s 1,00000E475¢ =1,00000E+75))
. 85

!
i
\
'

PARAM_02=(Ye S¢ LIMIT=(KHZ: 1.00000E+02¢ 0.00000E+00))
VALUE RETURNEOD=*TRUE/FALSE"'%

FUNCTION : LOOP.OF, FUNCTION TYPE=C,
PARAM_01=(INITs S)s
PARAM_02=(BOUNDs S)¢ :
PARAM_03=(INCRy S)+ COMMENTS='REPEAT FOR K=INIT TO BOUND BY INCR"

JREXEVEERERCECE IR R R KR R KSR R R R B K SN R KN KE K KR XXX R KX X/

/% */
/* ATE CONMECTION POINTS */
/% x/

JEERERERXEERREEEE AR R R RKR SRR KA KEN R KRR LR ERER R R KKK/

ATE_POINT 1: ATE_Xu24B, UUT_POINTS=(U24.B)1
ATE_POINT ¢ ATE-XU24.Ce UUT;POINT5=(J2Q-C)1
ATE_POINT ¢ 30: ATEPTH30+ UUT_POINTS=(J16+ J22)1%

’
4

END RADIOSET?

86

e

e

APPENDIX C

t¢

=

_3ISNOJS3Y
1x31

ST# = 3dAy

+ S3SON9v10 ¢
3dAl ; JWyYN

T 1831 04 9NISS3I0¥d 30 3IIN3INBIS

0 S3SON9VYIO

T
XIdLYW AJNIOVF OV 3HL 30 SISAVNY
T ONIJN3INO3S 3INOOW VHINI

[§ 0 1
¥O01I3A X3AGNI
WNVY H3(0H0 1D3A
¥30¥0

87

10 = 3dAL *(S3YA *+SWHO)=SYILIWVYYD ¥3HLlO S3soN9vIa

$1S3¥4 :32uN0s

00T < S3¥w NOIL¥3SSV
v 209 3718VIyvA
thit = 3dAL CLYOHSTLINGNI = SLM3INQOJWOD 0313344y $3SON9yIa
te = 3ISNODS3IY *TH = 3dAy S3sS0N9y10
tS3¥w 213939V1L
((WHO SIYWIYTLASNOD = <I=H2rX *8-H2rXD) NOILINNPNOD
ix3t 3dal

2 1S31 ¥04 9NISS3II0Nd

1oocoo0oo0o
wmMmiroooooo

=

tmOOOQOO
1OCOOO ™

9SS+
XI¥lvW ADN3IVI QY

—NI1OCOOO™

C000M~WS

S3uk
4
T

TO00M"WS

3JHVUN

40 3IN3NO3S

toocoo0o0o

1

3T8VIYVA
S3SON9vIa
S3SON9via
S3SoN9VIa
NOILYHISSY
NOILINNFNOD

30 SISATVNV

2 INIIJNINO3S 3TINA0W VHINI

0 T
HO1I23A
NNvY ¥3030

S3NH

€

2

T
C000M~wWS
TO00OM™WS

88

L3

X30NI

133A .
¥3040

“-aNnFNO

10 = 3dALl *(T4 *e2He)=SHILIWVHVL Y3HLQ S3SON9YIU
113 sTAVA :324N0S
G*C -+ 90+31*S = T4 3513
09 -+ 90+3TxS = T4 N3IHL 09=THVA 491 NOILMN3SSY 2000M~WS L] €]
/ 1394vVL /7 ¥g0g 378VIyvA TIA £ 6 '
va01 378V IyvA 14 € e 9
tTHYA :32yN0S
TA T4 :139yV) 2
((23S THVA® ZH T4* L170A TAIQ~3INIS = <UMI *22M) NOI1JNNCNOI TO00M~WS < r4 S
209 3718V1yvA THVA T L h
19 = 3dALl *(.0344,
)=SHIL3IWVHYd YIHLO *(3Y4"2HWS™OLS)101703dd = SIN3INOIWOI A3LI34dy S3S0M9y10 S 0 S € o
o0
P (THYVA)=3SNOJS3Y *00+300000°0 =3WIL *S# = 3dA) S3sSON9vIa h 0 L 2
100 LIDA S*L2)STLISNOD = <UNY *8Th20D) on»uzzvzou TO000M~SS 0 1 1
¥0L1I23A X30NI
1x31 3dAlL 3WYN Mivy ¥3030 433A
: 4d30%0
€0001S314As 1S31 ¥0d4 9NISs3Jodd 40 3IIN3NO3S
0000O0OOCOO - 371aVINVA IA 6
' 000TOoOTOO 3N8VINVA 14 8
00000OTTO 3NUVINVA THVA L
0000O0O0OODO S3soN9vIa 2 %
0000O0OOCOT O S3soN9vIa S s
® 00TO0OO0OO0DO0DO0CDO sS3sotigvia " h 'n
0000O0OOOTO NOILY3SSY 2000m~KS &
T1T00000O0CO NOILINNPJOI T000M1~Ws &
000O0O0DOOTO NOILONNrNOD T000M=S$ &
6 8L9SheE2T
XIYLVYW ADN3IIVFQV 3HL 40 SISAWNY

€n001SILAS INIININO3S 3INAOW VHLINT

10 = 3dAL *(TA *,SWH¥A +)=SH¥ILIWYAVd ¥IHLO ~ S3SON9YIO L L5 2 a
1A :3J4N0s o
900 =+ 92°0 = I NOT L1¥3sSV TO00M~WS T T £ @

/ 378N00S 7 vgos 371GV TyvA " TA 0 t 2z

198 = 3J4A1L *laduy

=SYIL3IWVHYd YIHLIO *(3IY4~ZHWS™ALS)I0L"IdwWY = S1NINODWOD 031D3 44y S3SON9VIO e 0 o T
¥01J3A X30NI
1x31 3dAl . 3WVN Mhyy H30¥0 1J3A
: ¥3040

H 1S31 ¥0d4 9INISS3J0¥d 40 3IIN3INO3S

ooTT 318VIHVA IAn n
0000 S3solavIa e £
0000 S3SON9VIQ L ¢
0000 NOI1¥3sSY To000M~ws I
heaTT

XTYlVW AJN3IVFQV 3HL 40 SISATVNY

% 9NIJN3NO3S 3TINAOW WHINI

AD=A053 315

UNCLASSIFIED

MOORE SCHOOL OF ELECTRICAL ENGINEERING PHILADELPHIA P==ETC F/6 14/2
NOPAL PROCESSOR: INTRA=TEST SEQUENCING.(U)
nanzs-?s-c-osso :

JAN 78 R W BERMAN
ECOM=75=-0650-F

2 &? IIIIII‘||||||‘|||||||I|||I||IIIII\|IIIIII‘IIIIII|I||I|I|IIIIII||||||||||IIII||II||||

END

DATE
FILMED

6-78

D¢

1.! e T T T b e e St s i 0 i i

10 = 3dAL *(TA VAW)=SHILIWVHVY H3HLO s3sonsvio [€] 9
tTA $32uN0S
L°0 => T NOIL¥3SSY 2000M~WS € £ S
/ 1394v1 7/ vd0lg 37gvIyvAa IA 4 9 L]
tTA 3$1394Vy
((23S €% 170N TA)UTINIS = <ANI *V=6IrxD) NOILINNPNOI T000M™WS 1 2 £ mu
tO8# = 3dALl *(MWO0T=0IONV)LINAINOTNIW = S1NM3NOdWOD 0312334y S3SOoN9yIU ot 0 S 2
% $(0 2HX T¢ % 0* 9Q S6=¢ ZHW T00°2)WV=TYNIIS
= C9TI/r>)%® ((LT0A S°L2)STLSNOD = <QH9 *g=hHerd>) NOILINNMNOD TO000M™SS 0 ¢ ¢
. ¥0123A X30NI
1x3L ’ 3dAl 3WyN NNVY ¥33¥0 1J3A

430¥0
G 1S31 ¥0Jd 9NISS3J0¥d 40 3IN3ND3S 2

00TTOO 376VINVA A9
A 000000 S3sSON9VIa 3T S
000000 s3sonevia 6 h
000000 NOILY3SSVY 2000M-Ws £
T0O0O0OO NOILINMNOD 1000M-wS ¢
0000TO0 NOILINNPNOD 1000%~Ss 1
96 €2t :

XI¥iVW ADNIIVMQVY 3HL1 40 SISATTVNY
S 9NIININO3S 37NAOW VYHLINI

10 = 3dAl *(TA *,IVA «)=SHILIWVUVY ¥3IHIO S3ISON9vIa 14 € t 9
tTIA 332uN0s
L°0 => IA NOIL1Y¥3SSV 2000M~WS £ € %
/ 139YvL / Ww@odlg 378vIyvA TA 4 9 t
STA $1393Vy Bl
((23S €*s* L70A TAIQ™3NIS = <ONI *I1761IrXD) NOI1DHuOPY0I T000M~ WS 1 2 & o
te# = 3dAl *(m2-010NV)INdINO~NIW = SIN3INODWOI Q3133 4dy S3IS0NYYIA 2t 0 [[
100 2HX T* % 0* 80 S6-¢ ZHW T00°2)WV-VYNIIS
= C9Ir>)% ((LI0A S°L2)STISNUD = <KAN9 *g-herd) HOILINNCNOI T000M~SS 0 1 1
¥01J3A X30NI
1x31 3dal 3WYN Whvy ¥30¥0 4)3A
. 83040

9 1S31 ¥04 9NISS3I0Md 40. IININO3S : .

go0TTOO 378VINVA IA 9
000000 sS3son9via et s
000000 S3SoN9vIa 1T
0000000 NOIL1Y¥3SSY €000M~us £
tTo0o0o000 NOIL1INNrNOD 1000m~ws ¢
0o0o0o0TO NOILIJNNPNOD tooon=ss 1
9Snect
XIYLYW AINIDVFaY 3HL 40 SISAWNY

9 9NIJININO3S 3IN0OW VHINI

R ———— M

10 = 3dAL *(TA *4IVA 4)=Sy3ILIWVNVL ¥3IHLO S3SON9VIU st € S L
tTA $324N0S

£€°2 =< A NOILY3SSVY 2000M~WS £ € 9

/ 1394Vl 7/ v¥gOo9 31GVIHVA TA 4 L S
$Ta 1394V}

((23S €°+* LI0A TA)Q™3INIS = <ONI *V=6IrXD) NOTL1IMNNCHOI JWYN~ANY 1 2)
tTTH = 3dAL *(sMW OT .

}=SYILIWVHYd YIHLO ¢ (MNOT=0IUNY) ANDLNO~XVW = SIN3INOAWOD O3LI3 44y S3SoN9vIa ST (] 9 E 2

tZ = 3SNOdS3IN *00+300000°0 =3Il *0TH = 3dAL S3SON9vIU €T 0 4 2
ttt ZHX T* % 0 90 G6-¢ ZHW T00°2)WV=IVNIIS

= C9TM>)% ((LI0A S°L2)STASNOD = <KAON9 *@~h2rd) NOILINNPNOI T000M~SS 0 T 1

¥0133A X30NI
ix3L 3dAlL 3WYN MNVY ¥33¥0 133A
43040

L 1S31 ¥O04 9NISS3IONd 40 3IININO3S

00ToTO0O 37HVINVA IA &
0000000 S3sON9viIa St 9
0000O0CDO00UD0 S3sSon9vIa L] S
0000000 S3SOoN9VIa €T 0
0000000 NOTLu3SSY C000M~4ns &
T000000 NOILINNLNOD INVHTARY
00000TO NOILINNPNOD T000M~Ss 1
L9S hEeTH

XIYLVW AIN3IVFQY 3HL 40 SISATVNY
L 9NIIN3NO3S 3NQO0W VHINI

o

(901 *IA .Lmo. *eIVA 4)=SHILIAVHYY H3HIO

3dAl
w201
tIA $:32yNOS
2°S¢ =¢ Ia
tIn $3D2ynos
9071 :1394Vy
(90-3T86°E/TAI0T201s0¢ = 907
/ 1394vL / vun19
$TA :1354v)
((I35 €%s¢ 170A TA)UT3INIS = <CON9 *T1761IrXD)
Slim=3dhL (MmT,) 2sva23Wyyvd
JHL0 *(M2T0I0NY)LINdINOT XYW = SIN3INOdWOD U313344vy
1L = 3SNOJS3Y *00+4300000°0 =3WIl *21# = 3dAj
1((ZHA T¢ % 0° 90 S6-¢ ZHW 100°2)WV-yn9IS
= <C9I/r>)1% ((L1T0A S°L2)ST1SH0D = <ON9 *g8™62rd)
1x31

@ 1S31 ¥0d4 9NISS3I0ud

$350%9v10 L1
3718YI4vA 901
NOTI1Y¥3sSY ev
NOILY3ISSY v
3719vIyvA TA
NOI12NNMNOID T000M~ WS
S$3s0H9y10 8t
S3s0N9y10 91
NOILINNrHOI T000M~SS
3dAl IHYN

40 3IN3ND3S

3NBVINVA
3T8VIHVA
S3SO0N9VIa
S3sorovia
s3son9vIa
NOI1¥3SSY
NOTLY¥3SSY
NOILIONNPHOD
NOIL1JNNAPNO)D

DIo~wOoODOOOOO
toocoocoooocoo
10000000 ™mw

nwnrocoocooocoocoocoo
1 OO0 0000 ~0O

MNMIOCO0OO0OOOO0OO O

NIt ~O0O000CO0OO0COO
ftoooocoocoocooo

1
40 SISAwLV

~

9 h

AJN3DVPOY ML

€ ONIDNINO3S 3TINQ0W VMHLINI

0 1

[§

¥01J3A X30NI

Huvye

901

A

et

Lt

9t

t4]

¢ 14
T000M~:3S
ToCOM—SS

Y30%0 1I33A

¥3040

“~aAFazneraco

94

tTd :32un0s
24 :139vvy

100°0-ty = 24

114 :32uUn0s

(C ZHX T* % 0% 80 G6-* ZHW ULJIWV=IVNIIS
<9TMr>1% ((LT0A S°L2)STISNOI = <AN9 *g~h2rd)
V201

tH 232uN0s

T4 :139uvy
60-3T+0000T/(000T*(2=(H+WOQNVY)*h))INT = T4
V201

t $139uvy

(T°£°1)307d007 = ¥

ix31

6

000

000

000

000

000

000

000

000

T0o0

0To

00D

0 0 ¢

000

0000

hea2

Tttt
X

T —
NOILY3SSY SHNOT 1 ¥ISSY 4 £ 9
NOILINNPNOD TO00M™SS] 4 s
378vIuvA 14 € ot "
NOTLY¥3SSV 2000M~SS 2 2 £
3718VINvA » 1 Tt 2
NOILlY3SSY 4001 0 H 1
- ¥01J33A X3aNI
2 3dAl 3WYN WNvY ¥30¥0 123A
¥3040
1S31 ¥04 9NISS3d04d 0 IININGIS
00T0000000O0O 37HVINVA 901 1 0
00TO00TO0OO0O0O00O0 318VINVA Oi12A €1
0000T0000O0GO0O 37avIyvA 24 2t
00000TTO0OTO 31GVINVA N 1t
000TO0000TOT ITHVINVA T4 01
0000000O0DO0OO S3ISONOYIQ 12 6
000O0O0O0OOODOOO - S3SONIVIQ 02 &
00000O0OCODOODO S3SON9VIQ 6y ¢
000000O0O0O0OO O NOILYISSY 2000M-WS 9
000000O0O0OOOC NOILIAPNOD 1000M~WS S
T00000O0O0COCOO NOILH3SSY 4001 &
00000O0O0O0OOTO NOILY3SSY 2HNOILMISSY €
0TO0OO0OO0O0OOOOGO OO NOTILYISSY 2000M-S§ ¢
000000TD0D0O0O0 NOILINIKNOD 1000M-SS 1
tTo6@L9SHERT
L 4
I¥1IVW ADNIDVLQY 3HL 40 SISAWNY

6 9NIJDN3INO3S 37nAQ0OW VHINI

/ L3%WVL / Weoe

3SNOdS3y +00+300000°0 =3WIL
*otn = JdAL *(CIITENILNVYYL ¥IMLID

WI0I

1A $32uN0S

(M)2A 3213949y

((23S 0°e¢(MI2AIG73NIS = COND *176Tr YD)

10 = JdALl *(TJ3 ¢.Z2H4 o)=Y TLINVHEYY NIMLIN

¥VA~ LdWI99NS

S3SO0N9y 10

378vInvA

NOI LINACNOD

S3ISON9YIU

(M) EA

el

23

T000M" WS

(14

£l

96

133

SUMIZA 480 & *eIVA ¢)=SHILIWVHYL ¥IHIO

(90=-3T36°C/(AV2A) 01901802

S3SONSvIa
379vIyvA

NOTL1HISSV

6

"l

L] ¢

£t

(44

97

10

1¢Is = 3dAL

= 3dAL *(OILVH)=SHILIWVHYY ¥3IHLO

tolivy
h

t2A

olivy

(SAINTW/(ZAI XV

/ 334n0S

SOILVYTNIVY = SININOJWOI

ix31

$324N0S
=> 014vy

TvI01
$30uNn0s
$139uv)
= 011Vy

/ Qo019

0312344v

S3ISON9V]O

NOIL1Y¥3ISSV

378vIygvA

NOIL1¥3SSY
379V INVA
S3SON9VIO

3dAl

01 1S31 ¥0d4 9MISSII0ONd

100 O0COCO
niIroocoooco
tooocoocoo
NJIOCOCO0OOO0 ™
NI OOOOO ™

0

L]

XI¥1VW AJNIDVF OV
0T 9NIJN3NO3IS 37N00W VMINI

ELDY

ce

Z000M~HS
oILvY

TO00M™HS
CcA
114

3WYN

30 3IN3NO3S

0
1
0
0
0
0

T

378VINVA
JIBVINVA
S3SON9vIQ
S3SON9YIQ
NOILY¥3SSY
NOIL1Y¥3SSY

30 SISATVNVY

0 S

0 L}
¥NLI3n
YhVY ¥30H0

Orivy
A

14

22

2000~ ~ks
T000M~wS

[4

1
230N

493A
¥3040

- N0

98

80 = 3dAl *(TA ¢4IVA «)=Sy3liyvivd y3HL0 S3SON9yI0

tIn :304N0S

9°2 => Ia NOI1y3gSV
tTA $32¥N0S
2°2 =< TA NOTLH3gSV
/ 1394¥V1 /7 vy0y 318VINYA
tIn 21393V)
((23S 0°*s* L170A TAIQ™3NIS = <OND *VT6TIrXD) NOILINNFNOI
1Lt = 3441 SISONIVIU
te = 3SNOJSIH *00+300000°0 =3WIL *STH = JdAy S3sSOoN9v1IU
1((ZHX T* % 0* 90 €1+* ZHW 200°G2)WVv=Iyn9ls
= C9T/r>)% ((LI0A S°L2)STASNOD = <QNy *8h2r) NOILINNCOD
1x31 3dAl
TT 1S31 ¥0d4 9NISS3I
00TO0T
00000
0000O
0000O0O
00000
000O0O
T000O
0000O0TO
8 L9S 4

XTHLYW AIN3IIJV QY

o¥d

MmMiIoococoococow
NI ~OO0OOOOOCO

3H1

-1 € 9 U]
t4] £ L] 4
i € € 9
TA [8 S
TOOOM™WS T 4 h
92 0 L £
he 0 S 4
TO00M~SS 0 ¢ 1
Y0123A X30NI
3WVN ANV H30¥0 4123A
¥30H0

40 3IN3Nn03S

0 . 31N8VIHVA In ®
0 S3SO0N9VIA 92 L
0 S3sSoN9VIa CT A
0 S3SON9VIAa e s
0 NOILY3SSY en h
0 NOILY3SSY in ¢
0 NOILINNrHNOD T000M~wS ¢
0 NOILINNPNOD tooom=ss 1
T

40 SISATVNY

TT 9NIININO3S 3INAOW VMHLINI

99

10 = 3dAL *(Td ‘4%)=SYILIWVHYY ¥3IHIO

tTd :32yNn0s

€ => 14

IvI01

tTd :1394Vv)

((ZHX 2% % TAINOILYOLSIA = <CAN9 *V=6TINrXYD)
t91H = 3JdALl s(0°1 *,Mw OT,

1=SH3IL1INVHEYd ¥3IHLIO

*(PWOTT0IQNY)LHOLSIO = SENUINOCDW0) 0312344y

PO(ZHX T % 0° 810 €L+* 2HY 200°G2)IWV=IVNIIg

= C9IM>)1% (L L0A S°*LZ)STLISNOD = <ONY *87herd)
1x3L

2t

S3SON9v10 L2
NOILYISSY 2000M~WS
318V IyvA 1d
NOILONNPNOD T000M~kS
S3sSonN9yIU g2
NOTLINNPNOID T000M~SS
3dAl IWVN
1831 ¥04 9NISSIIONd J0 IININD3S
00TTOO IEVINVA
0000009 S3sS0N9YIQ
000000 S$3s0N9vVIq
0000000 NOTL1Y3SSY
T000O0O0 NOILINAPNOD
0000TO0 NOILINAMNOD
96 hEg2T
XIHIVW ADN3IOVCQV 3HL 40 SISATVNVY

21 9NIJNII03S 37na0W VHINI

0 1
H01J3A

ANV ¥3340

co0om~us
1000M=usS
T000~"SS

L]
100

4
X3an1

433A
43040

- INY

DISTRIBUTION LIST

For Technical Report No. ECOM-75-0650-F

Defense Documentation Center
ATTN: DDC-TCA :

Cameron Station (Bldg. 5)
Alexandria, VA 22314 (12 cys)

Code R123, Tech Library
DCA Defense Comm Engrg Ctr
1870 Wiehle Ave.

Reston, VA 22090

Defense Communications Agency
Technical Library Center

Code 205 {(P.A. Tolovi)
Washington, DC 20305

GIDEP Engineering & Support Dept.
TE Section

PO Box 398

Norco, CA 91760

Commander

Naval Electronics Laboratory Center
ATTN: Library

San Diego, CA 92152

Rome Air Development Center
ATTN: Documents Library (TILD)
Griffiss AFB, NY 13441

CDR, US Army Missile Command
Redstone Scientific Info Center
ATTN: Chief, Document Section
Redstone Arsenal, AL 35809 (2 cys)

Commander

HQ Fort Huachuca

ATTN: Technical Reference Div.
Fort Huachuca, AZ 85613

Commandant

US Army Signal School
ATTN: ATSN-CTD-MS
Fort Gordon, GA 30905

CDR, Harry Diamond Laboratories
ATTN: Library

2800 Powder Mill Road

Adelphi, MD 20783

HQ Marine Corps
CODE LMC-4
Washington, DC 20380

Director, National Security Agency
NSA/S274

ATTN: Mr. Ron Seaman

Fort Meade, MD 20755

Commander

TRASANA

ATTN: ATAA-TDL

White Sands Missile Range, NM 88002

DA-0DCSLOG
ATTN: DALO-SMM-E (Mr. Nichols)
Washington, DC 20310

ASA L&L

ATTN: COL E. A. Viereck, Jr.
Pentagon Building

Room 3E619

Washington, DC 20310

PM, ATSS
ATTN: DRCPM-ATSS
Fort Monmouth, NJ 07703

Commander

US Army Troop Support Command
4300 Goodfellow Boulevard

St. Louis, MO 63120

Commander
ARRCOM

ATTN: DRSAR-RDG
Rock Island, IL

101

DISTRIBUTION LIST (continued)

HQDA (DAMA-CSS)
Washington, DC 20310

PM, ARTADS
ATTN: DRCPM-TDS-TF
Fort Monmouth, NJ 07703

Commander

US Army TARADCOM

ATTN: DRSTA-RGD

ATTN: DRSTA-MST

Warren, MI 48090

Commander

US Army Aviation Systems Command
P.0. Box 209

ATTN: DRSAV-FPP

St. Louis, MO 63120

Commander

US Army Electronics Command
ATTN: DRSEL-SA

ATTN: DRSEL-TL-M

ATTN: DRSEL-TL-MS (/4 cys)
ATTN: DRSEL-MA-D

ATTN: DRSEL-NL-BG

ATTN: DRSEL-MS-TI (2 cys)
Fort Monmouth, NJ 07703

Commander

Tobyhanna Army Depot

ATTN: DRXTO-MI-O

ATTN: Dep. Dir, Mr. W. Morris
Tobyhanna, PA 18466

Commander
US Army Materiel Systems
Analysis Agency
ATTN: DRXSY-CC
Aberdeen Proving Ground, MD 21005

Commander

MIRCOM

ATTN: DRSMI-RLE

ATTN: DRSMI-RLD

ATTN: Dir of Maint, TMDE Ofc
Redstone Arsenal

Huntsville, AL 35809

Commander

US Army Satellite Communications Agency
ATTN: DRCPM-SC-8B

Fort Monmouth, NJ 07703

Commander

US Army Maintenance Management Center
ATTN: DRXMD-TR

Lexington, KY 40507

Commander

US Army ARADMAC

ATTN: SAVAE-EMP

Corpus Christi, TX 78419

Commander

US Army Signals Warfare Lab
ATTN: DELSW-0S

Arlington Hall Station
Arlington, VA 22212

Commander

Sacramento Army Depot

ATTN: DRSXA-MPE

ATTN: Dep. Dir, Maint (Mr. A. Weaver)
Sacramento, CA 95813

Commander

US Army Logistics Center
ATTN: ATCL-MC

Fort Lee, VA 23801

Commander
Picatinny Arsenal
ATTN: TSD (Bldg 352)

Dover, NJ 07801

Commander

US Army Materiel Development and
Readiness Command

ATTN: DRCDL

ATTN: DRCDE-T

ATTN: DRCDE-DS

5001 Eisenhower Avenue

Alexandria, VA 22333

102

DISTRIBUTION LIST (continued)

"/ Commander

Kelly Air Force Base
ATTN: SA-ALC/MMIN
ATTN: SA-ALC/XRXM
ATTN: SA-ALC/MAGT:
San Antonio, TX 78241

Headquarters

AFSC/LGM

Andrews Air Force Base
ATTN: Mr. Clark Walker
Washington, DC 20334

Headquarters
USAF/LGYE

ATTN: Mr. C. Houk
Washington, DC 20330

Commander

Wright Patterson Air Force Base
ATTN: ASD/ENEGE

ATTN: ASD/AEG

Dayton, OH 45433

Headquarters

Naval Materiel Command

ATTN: Dir, Automatic Test
Equipment Management &
Technology Ofc (MAT 036T)

Washington, DC 20360

Commander

Naval Air Systems Command
ATTN: AIR 53424, Mr. M. Myles
Washington, DC 20360

Commander

Naval Electronic Systems
Engineering Center

ATTN: 03T, Mr. F. Fernandez
P.0. Box 89337

San Diego, CA 92138

Commander

Naval Electronic Systems Command
ATTN: ELEX 4802, Mr. G. Margulies
Washington, DC 20360

Commander

Naval Sea Systems Command

ATTN: SEA 9822B, Mr. John Yaroma
Washington, DC 20360

Commander

Naval Electronics Laboratory Center
ATTN: Code 4050, Mr. D. Douglas
271 Cataline Boulevard

San Diego, CA 92152

NASA

J. F. Kennedy Space Center

ATTN: DE-DEO-2, Mr. L. Dickison
Kennedy Space Center, FL 32899

RLG Associates, Inc.
11250 Roger Bacon Drive
Suite 16

Reston, VA 22090

Mr. Ralph Shirak

RCA Corporation

P.0. Box 588
Burlington, MA 01803

Mr. B. Richard Climie
Aeronautical Radio, Inc.
2551 Riva Road
Annapolis, MD 21401

Mr. Roger W. Fulling
Hughes Aircraft Company
1515 Wilson Boulevard
Arlington, VA 22209

Mr. Leon G. Stucki

McDonnell Douglas Astronautics Co.
5301 Bolsa Avenue

Huntington Beach, CA 92647

Dr. Noah S. Prywes

Dept. of Computer and Information Science
University of Pennsylvania

Philadelphia, PA 19174

103

DISTRIBUTION LIST (continued)

National Bureau of Standards
Bldg 225, RM A-331

ATTN: Mr. Leedy

Washington, DC 20231

Massachusetts Computer Associates
26 Princess Street

ATTN: Mr. D. Loveman

ATTN: Mr. Thomas Cheatham, Jr.
Wakefield, MA 01880

Mr. Robert G. Kurkjian

Hughes Aircraft Company
Bldg 6, MS E111

Culver City, CA 90230

Mr. Andrew Mills
Hewlett-Packard
974 East Arques
Sunnyvale, CA 94806

Mr. M. T. Schloesser
Lockheed-California Company
Div. of Lockheed Aircraft Corp.
Bldg 167

Burbank, CA 91520

Analytics

2500 Maryland Road
ATTN: Mr. S. Leibholtz
ATTN: Mr. R. Brachman
Willow Grove, PA 19090

104

HISA-FM 198-78

