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INTRODUCTIOHN

The 26 February 1979 solar eclipse, the last one visible from the North
American Continent this century, provides opportunity to determine the
effects of different sources of ionization on the D-region and to study
electron attachment and detachment processes which determine the D-region
electron density. Solar eclipses have the advantage of providing a
day-"night"-day transition on the time scale of several minutes, thus
allowing study of the rapid ion chemistry while assuring that transport
can be ignored. The bulk neutral atmosphere remains unchanged, and the
minor neutral constituents vary in a manner which is reasonably well
understood.

The purpose here will be to determine what the background conditions are
at a selected (but still tentative) experimental site along the path of
the 1979 eclipse and to predict the expected electron and ion densities
according to currently known chemistry. Comparison is made with pre-
vious solar eclipse data, and suggestions for new physical processes are
presented. A list of desirable experimental measurements is also com-
piled as an appendix.

A correct determination of D-region electron densities and electron
attachment and detachment processes is necessary for proper utilization
of Army communic@tions systems and a better understanding of the effects
of nuclear weapons in the middle atmosphere.

BACKGROUND

The path of the 26 February 1979 solar eclipse crosses North America

from the Oregon-Washington coast up through Hudson Bay as shown in Fig. 1.
The more readily accessible sites are listed in Table 1. The less
populated areas are sites 4 and 6 in northern Montana and south of

Hudson Bay. Logistics are more favorable for site 4 at Poplar, Montana,
located on US Highway 2 and on a major railroad line. Calculations
presented here will be for this site.

The model atmosphere utilized in these calculations is the CIRA 1972
March 1 atmosphere for 50° N, with the corresponding temperature pro-
file. The Hp0 content is nominally set at 5 ppm of the total neutral
density. The NO profile is similar to that of Meira [1] with somewhat
lower values near the minimum at 85 km and extrapolated to match the NO
values of Ogawa and Shimazaki [2] near 50 km. The initial values of 0
and 05 are taken from Ogawa and Shimazaki, but are allowed to establish

dynamical equilibrium values corresponding to current conditions.
Figure 2 shows the profiles of these minor constituents at first contact
and later during totality.

Figure 3 shows the major regions of proton and hard electron particle
precipitation and the eclipse path in magnetic coordinates and time.
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Figure 3. The 1979 solqr ec’h:pse path in geomagnetic coordinates as it inter-
sects the main regions of particle precipitation.




Site 4 lies somewhat south of the main region of auroral fluxes. A
nominal value for the flux of electrons with greater than 40 keV energy
(capable of penetrating into the mesosphere) is chosen to be [3]

J(>40 keV) = 3 x 10° elec em™?s™'sr7!,

Figure 4 sho's the ionization rates at site 4 due to the different
sources. If electron precivitation is present, it is capable of being
the dominant source of ionization. Otherwise the ionization of NO by
solar Lyman-alpha dominates in the upper mesosphere, even during the
eclipse, while galactic cosmic rays dominate in the lower mesosphere.

CALCULATIONS FOR THE 1979 SOLAR ECLIPSE

The e]ectron densities at first contact (local time 07:16, solar zenith

= 77°) and during totality (09:36, x = 66.7°) are shown in Fig. 5 for
the case of no precipitating electrons (i.e., a quiet day). Also shown
is the total negative charge density at totality. The electron density
at first contact (where the lunar disc first touches the solar disc)
shows a distinct ledge between 75 and 80 km. In the early stages of the
eclipse, the electron density actually increases somewhat at altitudes
above 70 km because of the increasing solar elevation angle and conse-
quently greater penetration of the solar Lyman-alpha, but then decreases
steadily due to an ever larger portion of the solar disc being obscured.
By totality there is a ledge near 75 km with the electron density below
65 km being essentially negligible. The total negative charge density
below 70 km does not change appreciably during the eclipse because the
dominant ionization source is cosmic rays.

A more detailed descr1pt1on of the ion composition during totality is
given in Fig. 6. NOt is the only significant simple positive ion present
and is of measurable density only in the mesopause region and above.

The hydrates of NO* are the more predominant cluster ions above 80 km,
while the H30+ hydrates are more numerous below 80 km., The major simple
negative ions are C03’ and N03', but they become important only in terms
of total ion number density below 70 km, with C03 gradually giving way
to N03 The hydrates of C03 and N03 become the dominant negative ion
species below 65 km.

When electron precipitation is included, the absolute number densities
of the ionized species increase at all times, but the relative propor-
tions stay very much the same as in the quiet day case. Figure 7 illus-
trates the charged particle densities during totality when electron
precipitation is included. The main differences occur in the positive

ion chemistry above 80 km. The switchover between H30 hydrates and NO
hydrates still occurs at 80 km, but now the not + (H20)n density begins
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to decrease above 85 km because of the increased electron-ion recombina-
tion due to enhanced electron densities. NO* and 02+ become the pre-

dominant positive ions above the mesopause when electron precipitation
is present.

Figure 8 gives the time history of the electron densities at selected
altitudes between 50 and 80 km for the case of no electron precipitation.
Totality is at 16:36 UT (09:36 local time) and lasts 2 minutes 43 seconds;
for the time period shown, at least a portion of the solar disc is

always obscured. Figures 9, 10 and 11 show the detailed histories of

the negative ions at 70, 65, and 60 km. The positive ion densities show
little variation at these altitudes and have not been included.

DISCUSSION OF RESULTS
Positive Ions

The main flow along the positive ion chain, the end results of which
were shown in Fig. 6, is through the NO* hydration chain for the case
where particle precipitation is not the major ionizing source. The -
f$ster pat?s are felt to be switching reactions (see Table 2 for reac- 1
tion rates

NO* + Ny + M > NO* « N, + M, (1)
+. e +.
No* « N, + €0, >NO* + €O, + Ny , (2)
no* - co, + H0 > NO* - H,0 + CO (3)
2 + Hp 2 2

rather than the direct three-body attachment of H,0. The analogous set

of reactions (with the same set of estimated rate constants) occurs with
each subsequent hydration until the third hydrate is reached. At this
point the two-body attachment of water yields

NO* * (Hp0)3 + H)O + H30" - (H0), + HNO, , (4)

and the hydronium fon chain has been entered. In the mesopause region

and above, the hydration of No* does not proceed efficiently beyond the |
first or second hydrate because of the decreasing efficiency of three- i
body processes and the larger electron-ion recombination coefficients of |
the hydrates coupled with the increasing electron density.

Below the mesopause the rapidly increasing efficiency of three-body pro-
cesses and the decreasing electron density, plus the increasing NO

density, allows the formation of the higher hydrates of No* and the

13
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between 50 and 80 km during the eclipse period.
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Figure 8. The time history of the electron density for specific altitudes
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Figure 9. The time history of the negative ion species at 70 km during the eclipse

period.
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Figure 10. The time history of the negative ion species at 65 km during the
eclipse period.
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TABLE 2.

e
.

@m\l.aim-th

—
o
L]

1.

12.
13.
14,
t 15,
16.

18,
19.
22,
23.

17.

+ *
NO +N2+M->N0 N2+M
+

L + L
NO" + N, + CO, > NO* + COp + Ny
* . * .
NO™ - CO, + Hy0 + NO" * H,0 + CO,
+,.
0 + Hy0 (H,0), + HNO,

NO" * (Hy0), + H,

0, * 0, + M 0" + M

05" + Hy0 » 0," * Hy0 +0,

05" * H0 + H0 » H 0" - OH + 0,

3

+ L] + .
H30 (Hzo)n + Ho0 + M > H30 (”2°)n+1 +M

e+02+02—>02'+02
e+ 0,+N,>0," +N,
03 +e~ 0" + 02
02' +0 -~ 03 +e
02' + 02(1Ag) > 202
0" + X(Nz, o0, HZ) +0X+e
9
0" + €O, » CO5~ + 0,
(303 + NO » NOZ" + (:02
NOZ' + 03 + N03' + 02
€03~ + NO, -+ N0z~ + CO
0" + 03 > 03' +0

C03 +0+02 +C02

+te

-+03’*03-+02

2

+o +c
H30" = OH + Hy0 + Hy0" + HyO + OH

POSITIVE AND NEGATIVE ION FORMATION PROCESSES AND RATE CONSTANTS

2.0(-31)(3-?-0—)"'“*
1.0(-9)

1.0(-9)

7.0(-11)
3.9(-30)(3-?2)3°2
1.5(-9)

1.0(-9)

1.4(-9)

-2(-27)

1 .4(_29)(_3%(1) e'(GOO/T)

1.0(-31)
9.0(-12)(3—&)-)1'5
1.5(-10)
2.0(-10)
1.0(-14), 2-6(-10)
6.0(-10)
5.5(-10)
9.0(-12)
9.0(-11)
2.0(-10)
5.3(-10)
1.1(-10)

.31 .
*2.0(-31) read as 2.0 x 10_"_+ T s in °K. Units are em’s™ ! for
two-body reactions and cm®s™! for three-body reactions.

18




rapid conversion to the hydronium ion hydrates through reaction (4). At
80 km the hydronium ions have become the dominant class of positive
ions.

Below 75 km the background ionization due to galactic cosmic rays
becomes more important than the Lyman-alpha ionization of NO. Hydronium
ions are formed by the more direct and faster processes

+
0, +0, +M>0," +M, (5)
+ +
04" + H0 > 0,7 * Hp0 + 0, , (6)
0. “ H,0 + Hy0 > Ha0T - OH + 0
H,0% * OH + H,0 > H0" + H,0 + OH 8
3 20 > Hg0 2 . (8)

Subsequent three-body attachment of H20

+
H30™ * (Hp0)n + Hp0 + M+ H0" * (Hy0)pyy + M (9)

makes H30+ . (H20)3 the most prevalent of the H30+ hydr9tes.

Under disturbed conditions (shown in Eig. 7) where particle precipitation
is the main source of ionization, H30 . (H20)n is predominantly formed

by the reaction paths (5) through (9) at all altitudes. No* s formed
through charge transfer at a faster rate than through Lyman-alpha ioniza-
tion of NO so that no* hydrates are still present at high concentrations.
Increased electron densities and the comparatively greater efficiency of
two-body electron-ion recombination as opposed to three-body hydrate
formation at higher altitudes leads to a decrease of all types of
hydrates above the mesopause for these disturbed conditions.

Negative Ions

Negative ions, according to current gas-phase chemistry, are formed
through the interaction of electrons with the neutral species 0y, CO,

and 03, and are independent of the type or source of ionization. Their
concentrations depend on the magnitude of the electron density, and the
relative ratios are fairly constant despite the level of ionization, as
Figs. 6 and 7 show. Therefore, a discussion of the negative ion forma-
tion and hydration processes for the quiet solar eclipse conditions will
also be valid for disturbed conditions.

19
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The negative ion chain is initiated by the three-body attachment of
electrons to 02

e+ 0p+M>0y + M, (10)
Dissociative attachment to 03 also occurs
o3+e+0‘+02, (1)

but this is never a major "initial" source of negative ions in the meso-
sphere. Detachment occurs rapidly through

0" +0+03+e, (12)
02' + 02(1Ag) 20, r e, (13)
0" + X(Ny, 0, Hy)) > 0X + e . (14)

Photodetachment occurs also, but it is always slower than chemical
means. The combination of a three-body formation process and two-body
destruction processes, particularly with 0, means that negative ions are
never important in the upper mesosphere and only reach significant
concentrations below 70 km.

The key to the buildup of appreciable negative ion concentrations is the
reaction

02 + 03 e 03 + 02 ’ (]5)
which is quickly followed by
03- + COZ > C03 + 02 . (]6)

When reaction (15) dominates, the electrical charge can flow into the
negative ions; when the detachment reacticns (12) and (13) dominate, the
electrical charge remains essentially as free electrons. The ratio of
0/03 determines whether negative ions are formed or not. Allowing

for differences in rate constants of reactions, plus the fact that 02(1Ag)
should also be included, one can use the rule of thumb that when 0/05 > 2

electrons will dominate, and when 0/03 < 2 negative ions will become
appreciable or dominant.

Below 70 km, CO3' becomes the more prevalent negative ion with the
balance gradually shifting to N03' via the slow reactions

€05~ + NO > NO,™ + CO, , (17)

20




followed by

NO,” + 03 > NO,~ + 0, , (18)
or the somewhat faster reaction
C03 + NO2 = NO3 + C02 § (19)

Although NO3' is formed rather slowly, it is also destroyed slowly and
therefore builds up an appreciable concentration below 65 km. In the
current negative ion scheme, NO;~ is a terminal or "end-of-the-chain"
ion. As rapidly as the sunlight disappears the C03', N03' ions switch

to their hydrates so that the hydrated ions dominate below 65 km near
and during eclipse totality (Figs. 6, 9, 10, and 11).

COMPARISON WITH PREVIOUS MEASUREMENTS

Measurements of electron density from the 1966 solar eclipse are shown
as dashed lines in Fig. 12 along with calculated electron densities at
several altitudes for the 1979 eclipse. The contrasts are apparent.
Experimental results show drops by factors of 4 to 10 in the 74 to 82 km
region, while calculations show very little change anywhere above 70 km.
The rapidity with which the decrease occurs in the experimental measure-
ments cannot be matched in the calculated results.

For the calculated electron densities, 70 km appears to be the region
where attachment processes occur which provide a decrease in electron
density as seen at 65 km. In an attempt to determine the nature of
these processes and to simulate the rapid changes observed in the 1966
eclipse, two classes of reactions are introduced. The first is an en-
hanced three-body attachment reaction

e+02+x+02’+x (20)

which provides more of the "initial" negative ion in the negative ion
chain. The second class of reactions is an equivalent two-body attach-
ment reaction

e+ X>VY+ 05 (21)

which essentially bypasses the formation of the initial negative ion
02' and provides an entry into the chain via 03’, which is quickly
changed to C03".

The enhanced three-body attachment reaction is established by taking the
normal reaction e + 0p + Ny > 02' + N, (which nominally provides less

than 25 percent of the total electron attachment) and increasing the
rate constant two orders of magnitude so that it becomes the dominant

21
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electron attachment process. The enhanced two-body attachment reaction
is simulated by taking twc reactions:

03+e+0-+02 (”)
and
0- + 03 '*03- + 0, (]2)

and increasing each of their rate constants two orders of magnitude so
that they become the dominant equivalent electron attachment process.

These two types of enhanced attachment reactions are tried in order to
provide a more rapid electron attachment mechanism and produce larger
drops in the calculated electron densities, but still "preserve" the
conventional gas phase negative ion chemistry. The results at 70 km
for each of these classes of attachment reactions are shown in Fig. 13.
While such enhanced pseudoreactions provide the desired overall drop in
the electron density, the time sequence appears much too slow. Even
worse, at 80 km the same classes of reactions produced no significant
changes.

It is known, however, that large changes in the electron concentration
do occur at 70 km in the day/night transition. The time sequence of
density variations at sunset is compared with that of the eclipse in
Fig. 14. Relatively large decreases in electron density occur rather
rapidly at sunset, but do not occur during the eclipse because of the
different densities of 0 and 04 for the two cases. During the eclipse

the 0 and 03 densities (dashed lines in Fig. 14) approach each other,
but the 03 density never exceeds the 0 density. During sunset the 03
density does exceed the 0 density (dot-dash 1ines) and thus allows
the formation of more stable negative ions such as CO3'.

The flow of charge among the negative species during totality at 70 km
is shown schematically in Fig. 15, The sequence of negative ion forma-
tion has been reviewed above in Eqs. (10) through (16). The crucial
steps are having enough 05 (in relation to 0) to move the charge from

02' to 05™ to 003', and then having a small enough amount of O so that
the CO3~ is not quick]y destroyed through the reaction

C03™ + 0 + 0, + €O

o (23)
Thus while it is possible to cause large changes in the 70 km region by
the "conventional” negative ion chemistry through enhanced pseudoreac-
tions, these mechanisms fail in the 80 km region due to thé dominance of
0 and reactions (12) and (23). It has not been possible to even approxi-
mate the rapid changes shown in Fig. 12.
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Several other types of measurements made during solar eclipses are at
odds with the results one would calculate using conventional gas-phase
chemistry.

Different groups [4,5] have reported estimates of the effective re- 5
combination coefficient during eclipses ranging from 2-6 x 1077 cm’s

in the 90 to 95 km region to 5-10 x 10~ °cm3s™! near the 80 km. The
effective recombination coefficient calculated for the 1979 eclipse is
shown in Fig. 16. Reasonable agreement can be obtained above 90 km, but
the calculated effective recombination coefficient is too small at 80 km.
The large increase in the calculated coefficient below 70 km is due
mainly to the greatly increased ratio of negative ions to electrons.

1

During the 1966 eclipse the total positive-ion density between 70 and

90 km was consistently measured to be greater than the electron density
[6]. Calculations show this would not be the case until below 70 km.
Positive ion hydrates have also been observed to decrease in the 70 to
90 km region during the eclipse [7]. This decrease does not occur below
85 km in these calculations.

Negative ions have been observed above 70 km on at least one occasion,
with heavy negative particles (>150 amu) below 92 km [7]. The calcu-
lated results predict essentially no negative ions above 70 km.

CONCLUSIONS AND SUGGESTIONS

The current gas-phase chemistry is not capable of modeling the rapid
changes in electron density observed during solar eclipses. New mecha-
nisms must be sought which can provide for the rapid attachment and
detachment of electrons which have been observed, as well as other
"anomalous" features. Some broad outlines may be sketched as to what
one might expect.

Particulates would be indicated whose number density, or at least
mixing ratio, increases from the middle mesosphere to the mesopause and
then decreases above the mesopause. This action would explain why the
effects of the particulate or aerosol are apparently masked by the
conventional three-body electron attachment chemistry below about 65 km,
ggdkwhy the conventional chemistry gives reasonable agreement above

m.

These particles should probably be capable of attaching positive jons as
well as electrons. Such ion attachment may help explain classes of
heavierdcharged particles with differing mobiiities which are often
measured.

The rapid variation in the observed electron densities in Fig. 12 would
imply ragid attachment as well as rapid detachment of at least the elec-
trons. The sharp drop-off of the electron densities indicates that this
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class of particles would have an extremely large detachment cross
section; consequently, the electron could not stay attached while there
was light present and would immediately detach as soon as the solar disc
became visible again. As soon as the solar disc is obscured, however,
these same particles would very rapidly attach the available electrons
(or a large fraction of them).

An extremely large photodetachment cross section could also account for
the rapid drops being observed during the eclipse but not always during
normal sunset-sunrise conditions. At higher altitudes, e.g., in the
region of 80 km and above, the major soyrce of ionization is Lyman-alpha
radiation which is severely attenuated as the solar zenith angle increases
past 85 degrees, almost an hour before the visible spectrum disappears.
Therefore, the ambient electron density would decrease gradually through
electron-ion recombination and would be at low enough levels by the time
the visible 1ight disappeared that attachment to particulates would no
longer be the major loss process. Similarly, in the region around 70 km
the electrons are able to advance along the negative ion chain due to
the increase in ozone from the attenuation of ultraviolet 1ight before
the visible 1ight is attenuated. Again the electrons have largely
disappeared due to the "conventional" ion chemistry before the particu-
lates are able to come into play. The fact that even during totality
the electrons did not completely disappear (Fig. 12) would indicate that
the number density of these particulates would be on the same order as

the electrons, i.e., 102 - 10* cm™3, so that as electrons began attaching
to the particulates they would quickly saturate (assuming only one or a
few electrons would attach per particulate), and the particulates would
not be able to scavenge all the electrons that are available. Light
scattering results indicate that a particle number density on the order
%;]102 - 10* cm™3 implies an extremely small size on the order of 0.0l

In conclusion, a growing body of measurements is pointing to a class of
phenomena which are poorly understood but which definitely affect the
jonization-deionization processes and total charge balance in the D-region
of the atmosphere. The 1979 eclipse can serve as a focus to help deter-
mine what these phenomena are. A correct determination of D-region elec-
tron densities and electron attachment and detachment processes is nec-
essary far proper utilization of Army communications systems and a better
understanding of the effects of nuclear weapons in the middle atmosphere.
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APPENDIX
TYPES OF MEASUREMENTS NEEDED

Neutral gas density profile
Temperature profile

03 density

0 density

NO density

Ho0 density

Precipitating particle fluxes and energy spectrum

In situ ion-pair production rate measurements

Electron densities, frequent measurements before, during, and after
totality

Positive ion measurements
Negative ion measurements

Conductivity measurements

Solar flux variations in

X-rays

Lyman-alpha
ultraviolet

visible
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