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INTRODUCTIO N

The 26 February 1979 solar eclipse , the l as t one v i sible from the Nor th
American Continent this century , provides opportunity to determine the
effects of different sources of ionization on the 0-region and to study
electron attachment and detachment processes which determine the 0-region
electron density . Solar eclipses have the advantage of providing a
day— 1 nlght ’-day transition on the time scale of several minutes, thus
allowing study of the rapid ion chemistry while assuring that transport
can be ignored . The bulk neutral atmosphere remains unchanged , and the
minor neutral constituents vary in a manner which is reasonab~y wel l
understood.

The purpose here will be to determine what the background conditions are
at a selected (but still tentative) experimental site along the path of
the 1979 eclipse and to predict the expected electron and ion densities
according to currently known chemistry. Comprison is made with pre-
vious solar eclipse data , and suggestions for new physical processes are
presented. A list of desirable experimental measurements is also com-
piled as an appendix.

A correct determi nation of D-region electron densities and electron
attachmen t and detachmen t processes Is necessary for proper utilization
of Army communications systems and a better understanding of the effects
of nucl ear weapons in the middle atmosphere.

BACKGROUND

The path of the 26 February 1 979 solar eclipse crosses North America
from the Oregon—Washington coast up through Hudson Bay as shown in Fig. 1.
The more readily accessibl e sites are listed in Table 1. The less
populated areas are sites 4 and 6 in northern Montana and south of
Hudson Bay. Logistics are more favorable for site 4 at Poplar , Mon tana ,
located on US Highway 2 and on a major railroad line. Cal culations
presented here will be for this site.

The model atmosphere utilized in these calculations is the CIRA 1972
March 1 atmosphere for 500 N , wi th the corresponding temperature pro-
file. The H20 content is nominally set at 5 ppm of the total neutra l
density. The NO profile is similar to that of Meira [1] with somewhat
lower values near the minimum at 85 km and extrapolated to match the NO
values of Ogawa and Shimazakl [2] near 50 km. The initial values of 0
and 03 are taken from Ogawa and Sh imaza k i , but are allowed to establish —

dynamical equilibri um values corresponding to current conditions.
Figure 2 shows the profiles of these minor constituents at first contact
and later during totality .

Figure 3 shows the major regions of proton and hard electron particle
precipitation and the eclipse path In magnetic coordinates and time .
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Site 4 lies somewhat south of the main region of aurora l fl uxes. A
nomina l value for the flux of electrons with greater than 40 keV energy
(capable of penetrating into the mesosphere) Is chosen to be [3]

J(>40 keV) = i x lO~ el ec cm 2s 1sr 1 .

Figure 4 sho ’s the ionization rates at site 4 due to the different
sources . If electron precipitation is present , it is capable of being
the dom inan t source of ionization. Otherwise the ionization of NO by
solar Lyman-alpha dominates in the upper mesosphere , even dur i n g the
ecl ipse , while galactic cosmic rays dominate in the l ower mesosphere .

CALCULATIONS FOR THE 1979 SOLAR ECLIPSE

The electron densities at first contact (local time 07:16, solar zenith
x = 770) and during totality (09:36, x = 66.7°) are shown in Fig. 5 for
the case of no precipitating electrons (i.e., a quiet day). Also shown
is the total negative charge density at totality . The electron density
at first contact (where the l unar disc first touches the solar disc)
shows a distinct l edge between 75 and 80 km. In the early stages of the
ecl ip se , the electron density actually increases somewhat at altitudes
above 70 km because of the increasing solar elevation angle and conse-
quently greater penetration of the solar Lyman-alpha , bu t then decreases
steadily due to an ever larger portion of the solar disc being obscured .
By totality there is a l edge near 75 km with the electron density below
65 km being essentially negligible. The total negative charge density
below 70 km does not change appreciably during the eclipse because the
dominant ionization source is cosmic rays.

A more detailed description of the ion composition during totality is
given in Fig. 6. N0~ Is the only significant simple positiv e ion present
and is of measurable density only in the mesopause region and above.
The hydra tes of NO+ are the more predom i nan t clus ter ions above 80 km ,
while the H30

+ hydra tes are mor e num erous bel ow 30 km . The major simple
negative ions are C03 and N03 ,  but they become important only in terms
of total Ion number dens ity below 70 km , with C03 gradually giving way
to N03 . The hydrates of C03 and rio 3 become the dominant negative ion
species below 65 km.

When electron precipitatio n is included , the absolu te number dens iti es
of the Ionize d spec ies increase at al l  times , but the relative propor-
tions stay very much the same as in the quiet day case. Figure 7 illus-
trates the charged particle densities during totality when electron
precipitation Is included. The main differences occur~1n the positive +Ion chemis try above 80 km. The switchover between H3O~ hydra tes and NO
hydrates still occurs at 80 km , bu t now the NO~ . (H 20)n density begins8
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to decrease above 85 km because of the increased electron-ion recombina-
tion due to enhanced electron densities. N0+ and 02

+ become the pre-
dominant positive ions above the mesopause when electron precipitation
Is present.

FIgure 8 gives the time history of the electron densities at selected
altitudes between 50 and 80 km for the case of no electron precipitation.
Totality is at 16:36 UT (09:36 local time) and lasts 2 minutes 43 seconds;
for the time period shown, at least a portion of the solar disc is
always obscured. Figures 9, 10 and 11 show the detailed histories of
the negative ions at 70, 65, and 60 km. The positive ion densities show
littl e variation at these altitudes and have not been included .

DISCUSSION OF RESULTS

Positive Ions

The main flow along the positive ion chain , the end results of which
were shown in Fig. 6, is through the N0~ hydration chain for the casewhere particle precipitation is not the major ionizing source. The
faster paths are felt to be switching reactions (see Table 2 for reac-
tion rates)

NO~ + + M ÷N0~ N~ + M , ( 1)

NO~ N~ + CO2 ~ NO~
’ CO2 + N~ , (2)

t1O~ CO2 + H20 ÷I~ltj~ H~O + CO2 , (3)

rather than the direct three-body attachment of H20. The analogous set
of reactions (with the same set of estimated rate constants) occurs with
each subsequent hydration until the third hydrate is reached. At this
point the two-body attachment of water yields

NO~ (H 20) 3 + H20 + H3O~ 
. (H 20) 2 + HNO2 , (4)

and the hydronlum ion chain has been entered. In the mesopause region
and above, the hydration of NO~ does not proceed efficiently beyond thefirst or second hydrate because of the decreasing efficiency of three-

• body processes and the larger electron-ion recombination coefficients of
the hydrates coupled with the increasing electron density.

Below the mesopause the rapidly increasing efficiency of three-body pro-
cesses and the decreasing electron density, plus the Increasing NO
density, allows the formation of the higher hydrates of NO~ and the

13
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TABLE 2. POS IT IVE AND NEGATIVE ION FORMAT ION PROCESSES AND RATE CONSTANTS

1 P1~ + N2 + M+ NO~ N2 + M 2.O(_31)(2~~) *

2. NO’ N~ + CO2 + NO~ CO2 + N2 l.O(-9)

3. NO~ CO2 + H20 
-

~~ NO~ H~O + CO2 1. O( -9)

4. NO~ (1120)3 + 1120+  H3O~(H2O) 2 + HNO2 7.O(-l1)

5. O~~ O~ + M + O4~ + M ~~~~~
(3

~(i)3 2

6. O4~ + H2O + O2~ 
I1~0 + 02 1.5(-9)

7. O2~ H2O + H20 + H3O~ • OH + 02 1 .0(-9)

8. H3O~ OH + H20 + H3O~ H20 + OH l.4(-9)

9. H~O~ (H2O)~ + H20 + M + H3O~ (H2O)fl+1 + M •2(-27 )

10. e + 02 + 02 + 02 + 02 l.4(_29)(~~2.) e~~
600 s/T)

e + 02 +N 2 --0 2 +N 2 l.O(-3l)

11. 03 + e + Q + 02
12. °2 + 0 + 03 + e 1.5(-l0)
13. 02 + 02(’~g) + 202 + e 2.0(-l0)

14. O + X(N2, 0, H2) + OX + e l .0(-l4) , 2-6(-1O)

15. 02 + 03 + 0
3 

+ 02 6.0(-lO)

16. 03 + CO2 + C03 + 02 5.5(-10)
17. C03 + NO + N02 + CO2 9.0(-12)

18. N02 + 03 + N03 + 02 9.O(-ll)

19. C03~ + NO2 + N03 + CO2 2.O(-l0)

22. O~ + 03 + 03 + 0 5.3(-lO)

23. C03 + 0 + 02 + CO2 l.1(-10)

*2.Q(_31) read as 2.0 x I Is in IC Units are cm3s 1 for
two-body reactions and cm6s 1 for three-body reactions.

18 
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rapid conversion to the hydronium ion hydrates through reaction (4). At
80 km the hydronlum ions have become the dominant class of positive
ions.

Below 75 km the background ionization due to galactic cosmic rays
becomes more important than the Lyman-alpha ionization of NO. Hydronium
ions are formed by the more direct and faster processes

O2~~+ O 2 + M ÷ O 4~~+ M , (5 )

p. + i i  j~ j~ + . II II+ ~~~ + “2 r12u + V
2

H~O + H20 .‘. H3O~ OH + 02 (7)

H3O~ OH + H20 + H3O~ H20 + OH . (8)

Subsequent three-body attachment of 1120

H3O~ (H20)n + H20 + M -
~
- H3O~ (H O) + I~ (9)

makes H3O~ (1120)3 the most prevalent of the H3O~ hydr~tes.

Under disturbed conditions (shown in Fig. 7) where particle precipitation
is the main source of ionization , H30~ (H20)n is predominantly formed
by the reaction paths (5) through (9) at all altitudes. NO~ is formedthrough charge transfer at a faster rate than through Lyman-alpha ioniza-
tion of NO so that NO~ hydrates are still present at high concentrations.Increased electron densities and the comparatively greater efficiency of
two-body electron-ion recombination as opposed to three-body hydrate
formation at higher altitudes leads to a decrease of all types of
hydrates above the mesopause for these disturbed conditions.

Negat ive Ions

Negative ions, according to current gas-phase chemistry, are formed
through the interaction of electrons with the neutral species 02, CO2
and °l’ and are independent of the type or source of ionization. Their
conceñtratións depend on the magnitude of the electron density, and the
relative ratios are fairly constant despite the level of ionization , as
Figs. 6 and 7 show. Therefore, a discussion of the negative ion forma-
tion and hydration processes for the quiet solar eclipse conditions will
also be valid for disturbed conditions.

19
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The negative ion chain is initiated by the three—body attachment of
electrons to 02

e + 0 2 + M + 02 + M .  (10)

Dissociative attachment to 03 also occurs

03 + e + O~ + 02 ( 11 )

but this is never a major “initial” source of negative ions in the meso—
sphere. Detachment occurs rapidly through

O2 + O ~~~O3 + e ,  (12)

02 + 02
(1Ag) + 202 + e , (13 )

0 + X( N ~, 0, H2) + OX + e . (14)

Photodetachment occurs al-so , but it is always slower than chemical
means. The combination of a three-body formation process and two—Lc’iy
destruction processes, particularly with 0, means that negative ions are
never important in the upper mesosphere and only reach significant
concentrations below 70 km.

The key to the buildup of appreciable negative ion concentrations is the
reaction

02 + 03 03 + 02 , (15)

which is quickly followed by

03 + CO2 + CO3 + 02 . (16)

When reaction (15) dominates, the electrical charge can flow into the
negative ions; when the detachment reacticns (12) and (13) dominate, the
electrical charge remains essentially as free electrons. The ratio of
0/03 determines whether negative ions are formed or not. Al lowing
for differences in rate constants of reactions , plus the fact that O2 (1t~g)
should also be Included , one can use the rule of thumb that when 0/03 > 2
electrons will dominate, and when 0/03 < 2 negative ions will become
appreciable or dominant.

Below 70 km, CO3~ becomes the more prevalent negative ion with the
balance gradually shifting to N03 via the slow reactions

C03 + NO + N02 + CO2 , ( 17)
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fol lowed by

N02 + 03 + N03 + 02 (18)

or the somewhat faster reaction

COj + NO2 + NO3 + CO 2 . (19)

Although N03 is formed rather slowly, it is also destroyed slowly and
therefore builds up an appreciable concentration below 65 km. In the
current negative Ion scheme , N03 is a termina l or “end-of-the—chain ”
ion . As rapidly as the sunl ight d isappears the C03 ,  N03 ions switch
to their hydrates so that the hydrated ions dominate below 65 km near
and during eclipse totality (Figs. 6, 9, 10, and 11).

COMPARISON WITH PREVIOUS MEASUREMENTS

Measurements of electron density from the 1966 solar eclipse are shown
as dashed l ines -in Fig. 12 along with calculated electron densities at
several al titudes for the 1979 eclipse. The contrasts are apparent.
Experimental results show drops by factors of 4 to 10 in the 74 to 82 km
region , while calculations show very little change anywhere above 70 km.
The rapidity with which the decrease occurs in the experimental measure—
ntents cannot be f~atched in the calculated results.

For the calculated electron densities , 70 km appears to be the region
where attachment processes occur which provide a decrease in electron
density as seen at 65 km. In an attempt to determine the nature of
these processes and to simulate the rapid changes observed in the 1966
eclipse , two classes of reactions are introduced . The first is an en-
hanced three-body attachment reaction

e + 0 2 +X - ’- 02 + X  (20)

which provides more of the “initial ” negative ion In the negative ion
chain. The second class of reactions is an equivalent two—body attach-
men t reaction

e + X + Y + 0 3 (21)

which essentially bypasses the formation of the initial negative ion
02 and provides an entry into the chain via 03 ,  which is quickly
changed to CO3 .

The enhanced three—body attachment reaction is established by taking the
norma l reaction e + 02 + -

~
- O~ + N2 (w hich nominally provides less

than 25 percent of the total electron attachment ) and increasing the
rate constant two orders of magnitude so tha t It becomes the dominant
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Figure 12. The time history of the calculated electron densities for the 1979
solar eclipse at 65 , 70, and 80 km compared measured electron den-
sit ies durin g the 1966 solar eclipse at 74 , 78, and 82 km.
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electron attachment process. The enhanced two-body attachment reaction
is simulated by taking two reactions:

03 + e + O + 0 2 (11)

and

O + O 3 +O 3 + O ~ (12)

and increasing each of their rate constants two orders of magnitude so
that they become the dominant equivalent electron attachment process.

These two types of enhanced attac hment reactions are tried in order to
provide a more rapid electron attachment mechanism and produce larger
drops In the calculated electron densities , but still “preserve” the
conventional gas phase negative ion chemistry . The results at 70 km
for each of these classes of attachment reactions are shown in Fig. 13.
While such enhanced pseudoreactions provide the desired overall drop In
the electron density, the time sequence appears much too slow . Even
worse , at 80 km the same classes of reactions produced no significant
changes .

It is known , however , that large changes in the electron concentration
do occur at 70 km in the day/night transition. The time sequence of
density variations at sunset is compared with that of the eclipse in
Fig. 14. Relatively large decreases in electron density occur rather
rapidly at sunset , but do not occur during the eclipse because of the
different densities of 0 and 03 for the two cases . During the eclipse
the 0 and 03 densities (dashed lines in Fig. 14) approach each other ,
but the 03 dens ity never exceeds the 0 density. During sunset the 03
density does exceed the 0 density (dot—dash lines ) and thus allows
the formation of more stable negative Ions such as C03 .

The flow of charge among the negative species during totality at 70 km
is shown schematically in Fig. 15. The sequence of negative ion fornia—
tion has been reviewed above in Eqs. (10) through (16). The cruc ial
steps are having enough 03 (in relation to 0) to move the charge from

to 03 to C03 , and then having a small enough amount of 0 so that
the C03 ts not quickly destroyed through the reaction

C03 + 0 
~
O2 + CO2 . (23 )

Thus while it is possible to cause large changes in the 70 km region by
the “conventional ‘ negati ve ion chemistry through enhanced pseudoreac-
t ions , these mechanisms fall In the 80 km region due to th~ dominance of
O and reactions (12) and (23). It has not been possibl e to even approxi-
mate the rapid changes shown in Fig. 12.
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Several other types of measurem ents made duri ng solar eclipses are at
odds with the results one would calculate using conventional gas—phase
chemistry.

Different groups [4,5) have reported estimates of the effective re-
combination coefficient during eclipses ranging from 2—6 x iO~ cm3s 1

in the 90 to 95 km region to 5-10 x 10 5cm 3c’ near the 80 km. The
effective recombination coefficient calculated for the 1979 -eclipse is
shown in Fig. 16. Reasonable agreement can be obtained above 90 km, but
the calculated effective recombination coefficient is too small at 80 km.
The large increase in the calculated coefficient below 70 km is due
mainly to the greatly increased ratio of negative ions to electrons.

During the 1966 eclipse t~e ~ota1 positive-ion density between 70 and90 km was consistently measured to be greater than the electron density
[6] . Calculations show this would not be the case until below 70 km.
Positive ion hydrates have also been observed to decrease in the 70 to
90 km region during the eclipse ~7J. This decrease does not occur below
85 km in these calculations.

Negative ions have been observed above 70 km on at least one occasion,
with heavy negative particles (> 150 amu) below 92 km [7]. The calcu-
lated results pr.edict essentially no negative ions above 70 km.

CONCLUSIONS AND SUGGESTIONS
The current gas-phase chemistry is not capable of modeling the rapid
changes in electron density observed during solar eclipses . New mecha-
nisms must be sought w hich can provide for the rapid attachment and
detachment of el ectrons which have been observed, as wel l as other
“anomalous ” features. Some broad outlines may be sketched as to what
one might expect.

Particulates would be Indicated whose number density, or at least
mixing ratio, increases from the middle mesosphere to the mesopause and
then decreases above the mesopause. This action would explain why the
effects of the particulate or aerosol are apparently masked by the
conventional three-body electron attachment chemistry below about 65 km,
and why the conventional chemistry gives reasonable agreement above
90 km.

These particles should probably be capabl e of attaching positive ions as
wel l as electrons. Such ion attachment may help explain classes of
heavier charged particles with differing mobilities which are often
measured.

The rapid variation In the observed electron densities in Fig. 12 would
imply rapid attachment as well as rapid detachment of at least the elec-
trons. The sharp drop—off of the electron densities indicates that this
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class of particles would have an extremely large detachment cross
section ; consequently, the electron could not stay attached while there
was light present and would imediately detach as soon as the solar disc
became visible again. As soon as the solar disc is obscured, however,
these same particles would very rapidly attach the available electrons
(or a large fraction of them).

An extremely large photodetachment cross section could also account for
the rapid drops being observed during the eclipse but not always during
norma l sunset-sunrise conditions. At higher altitudes , e.g., in the
region of 80 km and above, the major so~,rce• of ionization is Lyman-alpha
radiation which is severely attenuated as the solar zenith angle increases
past 85 degrees , almost an hour before the visibl e spectrum disappears.
Therefore, the ambient electron density would decrease gradually through
electron—ion recombination and would be at low enough levels by the time
the visibl e light disappeared that attachment to particulates would no
l onger be the major loss process. Similarly, in the region around 70 km
the electrons are able to advance along the negative ion chain due to
the increase -In ozone from the attenuation of ultraviolet light before
the visibl e light is attenuated. Again the electrons have largely
disappeared due to the “conventional” ion chemi stry before the particu-
lates are able to come Into play. The fact that even during totality
the electrons did not compl etely disappear (Fig. 12) would indicate that
the number density of these particulates would be on the same order as
the electrons , i.e., 102 - lQ~ cm 3, so that as electrons began attaching
to the particulates they would quickly saturate (assuming only one or a
few electrons would attach per particulate), and the particulates would
not be able to scavenge all the electrons that are available. Light
scattering results indicate that a particle number density on the order
of 10 2 - lO~ cm 3 implies an extremely small size on the order of O.Olii
[8].

In conclusion, a growing body of measurements is pointing to a class of
phenomena which are poorly understood but which definitely affect the
ionization—deionization processes and total charge balance in the D-region
of the atmosphere. The 1979 eclipse can serve as a focus to help deter-
mine what these phenomena are. A correct determination of• D-region elec-
tron densities and electron attachment and detachment processes is nec-
essary f~r proper utilization of Army coniiiunications systems and a betterunderstanding of the effects o-f nuclear weapons in the middle atmosphere.
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APPEND IX

TYPES OF MEASUREMENTS NEEDED

Neutral gas density profile

Temperature profile

03 dens ity

O density

NO density

H2O density

Precipitating particle fluxes and energy spectrum

In situ ion—pair production rate measurements

Electron densities, frequent measurements before , during, and after
totality

Positive -Ion measurements

Negative ion measurements

Conductivity measurements

Solar flux variations In
- x-rays

- Lyman-al pha
- ultraviolet

— visible
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