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ABSTRACT
Let g be a positive continuous function on IR which tends to

-o and whnich is not integrable over R. The bcundary-value

zero at
fe Ll(lR). We

problem -u'' +g(u) = i, u'(*¥w) = 0, is considered for
is integrable

show that this problem can have & solution if and only \f g

at - and if this is so then the problem is solvable precisely when

00
[ f(t)dt >0. Some extensions of this result are also given.
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SINGULAR SEMI-LINEAR EQUATIONS IN Ll(lR)

Stephen D. Tisher

In [2] M. G. Crandall and L. C. Evans show that the singular

semi-linear problem

-u"(x) + B(u(x)) = f(x), -0 < X < 00

() u'(x®) =0
" LAw)

has a solution for each fe Ll(lR) with f f >0 if (and only if) B is
integrable at -. Here @ is a given pn;sitive monotone increasing continuous
function on R. In fact, they discuss the more general situation when
B is a maximal monotone graph. In this paper we consider several
extensions of the problem (**) and provide another technique for proving

that these equations have a solution. In particular, we recover

the result of Crandall and Evans by different means.

Theorem 1. Let g be a positive continuous function on R with

[ o]
lim g(t) = 0, j g(s)ds divergent .
- 00

t o=

Let Ll+ = {fe LI(IR) : f f>0}); for fe Li consider the problem
R
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(-u"(x) + g(u(x)) = f(x), -w<x<w
e
(1) g u"e L (R)
u'(xo0) =0 .
.

The following are equivalent:

(a) (1) has a solution for all fe Li

(b) (1) has a solution for some fe Li

(c) g is integrable at -« .

Proof. (a) implies (b) is trivial. To see that (b) implies (c) suppose

there is a function u with u"e Ll, u'(xo) = 0, and

1
Laa)

(2) -u" + g(u)

for some fe Ll. Then u'e Loo and u tends to -% at both £ for
the following reason. Suppose there is a sequence xn - o with
lim u(xn) = L> -0, Let {yn} be any other sequence of real numbers

n
tending to +. Then from (2) we get

Y
1 2.1 2 « i
o E(u'(yn)) i E(u'(xn)) + H(u\yn)) = H(U(Xn)) e f fu'
*n
where
~'t
H(t) = [ g(s)ds .
0

Hence, lim H(u(yn)) exists and equals H(u(L)). Thus, H(u(t)) has a
n




limit at @ which implies that u has limit L at <« since H is
strictly monotone. But then g(u(t)) tends to g(L) >0 as t - = which
contradicts the fact that g(u(t)) is in Ll(lR). An identical argument

shows u tendsto - at -o. With H as above we also have

N -

2 2 4
[(u'(y))” = (u(0)"] + H(u(0)) - H(uly)) - [ fu'
¥

for each y,y <0. Thus, H(u(y)) has a finite limit as y - -». Since
u(y) = ~© as y — - we find that H(s) has a finite limit as s — -«
implying that g is integrable at -o. The proof that (c) implies (a) is the

most difficult. The first step is to show that the set of those f ¢ Ll* for

which (1) is solvable is closed in Li: the second step is then obviously
to show that the set of those fe Li for which (1) is solvable is dense

in Li. To prove the first assertion, let fn = f in LI(IR)_, with f,

1
fne L+. Let u satisfy
-u" + =
(3a) u_ g(un) fn
(3b) un(tw) =0
|
(3c) u"e¢ L' (R) .
n

Integrate both sides of (3a) from - to x and then from x to +x and
use the fact that g > 0. This gives {uA(X)i = “fﬂl +1 for all large n
and hence

(4) fll o Sh m=32,....
L (R)




This in turn implies that {un. 1s equicontinuous. We may assume,

theretore, that

either +x, O

For any x ¢« R

Hence, un\x) < C torall n andall x. Thus, it is obviously impossible

1

{un} converges uniformly on compact subsets of R

=2, or to a continuous function u. Set

o
G(x) = [ g(s)ds .

-0

and any n we have

X
G(u, (x)) - __L g(u (H)u! (it
X
1 ' 2 ; '
- lun(x)] 010 tnun

'_~Al.

that {un} tends to +w, Suppose that {un} tends to

on compact subsets ot IR. Again we have

(3)

and hence

(6)

¢ ol
We may assume that '\u'l‘. converges weak-*in L (IR) to a function p
I

X
) .
“dwem? G = [ (ou (e
< n n -.l’ n n

[ o

0= | fu .

. n

-0

to

-0 uniformly

and also that {ul'l(o)} converges. Integrating (3a) from 0 to Xx we see

that u;lm) converges pointwise to  p(x) on IR. Hence. (5) and (6) vield

and

> 5
(p(x))” -~ | #p

-

o~ o




0

0 f fp.

-0

Hence, p has a limit of 0 at both +w and -». Again from (3a) we

obtain
X X
u;I(y) - u;l(x) +f g(un(t))dt :f fn(t)dt
Y Y
so that
X
p(y) - p(x) = [ flv)at .
Y
Now let y - -¢ and x «- +%; we find
oD
0 <f f = p(-) - p(+) = 0,
-0

a contradiction. Note that this argument is dependent on g in only a
minor way. In particular, if {gn} is a sequence of positive continuous
functions conw.zréing uniformly on compact subsets to .. positive continuous
unction a which tends to 0 at -% and which lies in Ll(-co,O] out
not in Ll.'l'R) and if, say, {gn} increases to g on (-%,%)  then
the functions Vn which satisfy
—v,'l' +gn(vn) =0fy vr'lf:too) =0, fe Li

are equicontinuous and uniformly bounded on compact subsets of R. We
shall make use of this later on.

Returning to the functions {fn} and {un} we see that {un}

converges uniformly on compact subsets of R to a continuous function

5 1 g 1
u. We clearly have un -~ u'" in Lloc so that u satisfies

-5~
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(7) -u'"+g(u) = f on R.
Fatou's lemma implies g(u) is in LI(IR) and hence u' ¢ LI(IR); thus
u' has limits at both +® and u tends to - at both *o as in the

implication (b) implies (c). From (5) and (6) we get

X

1 2
- 5 (u(x))" + Glu(x)) = .fw fu!
and
0 = f fut .

Hence, u' tendsto 0 at both *w, sothat u is a solution of (1).

Note also that

[* o] 0 o0
[ lu"+f|: f (u" +f) = f f
-00 -00 -0
< Il
and hence
(8) llu"!llgz!lfﬂ1 \

The second assertion, that there is a dense set of f ¢ Li for which

(1) is solvable, will be proved in the following way. Let f be a continuous

function on R in Ll+ with support in the interval I = [a,b]. We shall

1
show (1) is solvable for this f. We assume temporarily that g is C

We shall need the following Proposition.

Proposition. Let a<b andlet g be a positive Cl function on IR

which is integrable at =-o and bounded at +o; set

R "

on

IR.




=
G(x) - f g(s)ds .

-

Then for each a, B the initial value problem
-w'x) + g(w(x)) = f(x), a<x<bhb, fe Lz(a, b)

G
i v(a) = a, v'(a) = B
has a unique solution. If a, ca and ﬁn - B and if vn 1s the solution i
of (9) for (an, ﬁn), then vn converges uniformly to the solution v of |
(9) for (a,p). Finally, the family {vap} of solutions of (9) corresponding

to the initial values {(e,p) : -® <a < g, Bl <M} is equicontinuous on

[a,b].

Proof. Once the equicontinuity is established the existence and uniqueness
follow from standard results; see [1], Chapter 1. To obtain the equi-
continuity assertion (from which the second assertion also follows), we

multiply the top equation in (9) by v' and integrate to obtain

. X
| - 2 () + Glvx) + 2% - Gla) = [ g
I a

so that if x, is chosen with lv'(xo) = v flw we have

llv* llf0 <p° + 2G(a) + 2G(v(xy)) + Allvtll
5;32 + 2G(a) + 2G(a + (b - a) v’ I'iw) + Al o

<%+ 2G(a) + Ay +Afa + (b= a) vl )+ Alive

)¢

| H g
Nl s
oc

for some constants AO‘ Al depending only on g. Hence.

bounded for lﬂ[ <M and -©<a<a

0




Conclusion of proof of Theorem 1. Let f be a continuous function in

1
L., with support in the interval (a, bi. We shall show that (1) is solvable

for this f. FPirst, on (-», a] we show that the equation
(10) g(u(x)) - u"(x)

u(a) = Cy» u'(-o) =0

has a solution. Let v be the function with

: -1/2 :
v'(t) = (2G(t)) T, -e<t<c
v(cl) a
where
X
G(x) = f g(s)ds.
- 00

Then v is increasing and has range (-«, al. Let u be the inverse of

v on (-», a)], wu(v(t)) =t. Thus

u(a) - c1
and
u'(x) /vt (aG(ml/?‘
or
(11 u'(x) l&G(u(xH)l/z.




[f we ditfferentiate both sides of (1l1) we sce that u satisfies (10).

e e

Similarly, there is a solution of

u'(x) - g(u(x)) b<x<owm

u(b) - C,. u'(e) = 0

which satisfies

/2

u'ix) = -(ZG(u(x)))1 L xe o,

Hence, to finish the proof of the theorem we need only show that there is

a solution v of the equation

(12) -v'+g(v) = f on (a, b)
with
(a) v'(a) = (ZG(v(a)))l/2
(13)
|
(b) v'(b) = ~(2G(v(b)))Y 2 E
i

Let Ve be the solution of (12) with v(a) =t and v'(a) = (ZG(t))l/z assured

by the Proposition. (We temporarily assume that g is bounded at +%

]
fé
z

if, in fact, it is not.) Then

b
vy(b) - v (a) + a{ v.'(s)ds

1/ .

@G 4 [ g (shds -p
a

_()-




b
where p f f(t)idt > 0. To show that t may be chosen with
: 1/2
vé(b’ - =(2G(v,(b))) we consider

, b
2 V2, ¢
+ (2Glv,(b)" " + [ glv,(siids - p .
a

L(t) = (;eG(t))l

The Proposition implies £ 1is continucus. We have

L(t) > -p + (ZG(t))l/Z .

Since G is unbounded, there are values of t with £(t) > 0. Next let
t | -«; by the equicontinuity of the functions {vt} we must have
vt - -x uniformly on [a, b] so that £(t) — -p < 0; hence, there is
a tO at which ¢ (to) = 0, and thus (12) is solvable with the boundary
conditions (13).

We have now shown that (1) is solvable for all f ¢ Ll+ under the
assumption

(14) g« C(R N L), ¢ { Lim) .

If g is merely positive and continuous on IR with g « Ll(—oc, 0),

g { Ll(]R), then there is a sequence {gn} of positive functions satisfying

(14) which converge uniformly on compact subsets of R to g and which

also increase to g on (-»,%), The comments made earlier show that
the solutions {un} of (1) with gn in place of g converge to a solution

of (1) for g. This completes the proof of Theorem 1.

Remark. The condition g 4 Ll(IR) is necessary as well as sufficient in

order that Theorem 1 be valid. For suppose g ¢ Lw(lR) n LI(IR); then the

-10-




function G is bounded. If f is supported on [-1,1] and if (1) has

a solution for f, then (13) must hold with u in place of v so that

1 1
0 = N2G(u(-1)) + V2Gu(D) + [ g(u(s))ds - ) f(s)ds .
-1 -1

The first three terms of this expression are bounded, independent of u,
and hence the integral of f over IR can not exceed some fixed number

depending only on g.

Theorem 2. Let g be a positive continuous function on R with

(15) lim g(t) = 0, g { Ll(lR) .

te>=-00

Let B(x) be a positive absolutely continuous function on IR with

Bf ¢ Ll(IR) and B bounded away from zero. For f ¢ Li consider the

equation
-u''(x) + B(x)g(u(x)) = f(x), =-o <x <o
(16) u e INR)

u'(;tao) = 0 .

Then (16) has a solution for each f ¢ Ll+ if and only if g is integrable at -«.

Proof. If (16) is solvable for some f ¢ Ll+ with support in [-1,1] then
u'>0 on (-o,-1] and u'<0 on [l,®). It now follows very much as

in Theorem 1 that u tends to =-© at *o and that g is integrable at

o1l




To show the sufficiency of the condition that g be integrable at -

we first show that the equations

4 u"(x)  B(x)g(u(x)), Ix | >a>0
(17) J u(-a) - c)s u(a) - c,
u'(zx) =0

have a solution. As in the proof of Theorem 1, the solution u must be
monotone increasing for - < x < -a and monotone decreasing on (a, ®);
we shall only consider the details for the case -»< x < -a, the other case

being entirely similar. We wish to find a continuous function v with

; -1/ 2
(18) vit) = (2 [ B(v(s))a(s)ds) ' °, -w<t<c

- 00

1

v(cl) = -a .,

If such a v exists, then the inverse function u of v will satisfy
X
) /
u'(x) (Zj B(rlg(u(r))u'(r)dr)l’ &
~-on

u(-a) - c1

and hence u will satisfy (17). To see that (18) has a solution let bl

and bZ be positive numbers with b, < B(s) _<_b2 for all s and let gN

1

be the function defined by

t
: -1/2
it = (2 ) olsids) Y7, -N<gtce

-N

w]Pe




: I -1/2 . ~1/2

Let Q- w e U-N.cl) - (lbz) ;N(t) < w(t) E(Zbl) gN(t) for
all ¢t ¢ [-N'Cl" and let T map QN into QN by

X .

ST =2

(Tw)(x) = (2 | B(w(s))g(s)ds) g

-N

where
wi(t) = w(t), \;(cl) = -a.

Clearly Tw e QN; if {wn} is a bounded sequence in QN, then {wN}

is equicontinuous and uniformly bounded. Thus, T is a compact mapping

and so has a fixed point w which must satisfy

N

X~ -1/2
w(x) = (2 ]-N B(wy(s)g(s)ds) 7, -N<x<c .

The functions {wN} are equicontinuous and uniformly bounded on compact

subsets of (-, Cll and so a subsequence, again denoted by {\'XIN},

converges uniformly on compact subsets of (-9, c1] to a function \7»10. But

we also see that

X X
| B(wy(s))g(s)ds i B(w,(s))g(s)ds
-N ~00

uniformly on compact subsets of (-%, CI]' Hence, wN Wy uniformly on
compacta; setting v = \;10 we see that v satisfies (18).

The remainder of the proof of Theorem 2 is like that of Theorem 1; the
condition that B' € LI(IR) is used to prove that the sequence {un} can not

go to -».

Corollary 3. Let a(x) ¢ Ll(lR), f e Ll(IP.). and let g be a positive

continuous function satisfying (15). Consider the equation

“]3=




(1)  -u"(x) + a(x)u'(x) + glu(x)) - f(x), -»<x<=»
(19) (ii) u"e LI(R)
(iii) u'(£ o) - 0

X
Let g be integrable at -« and set w(x) - exp| -f a(s)ds]. A necessary
0

and sufficient condition that (19) be solvable is that

(20) f f(x)w(x)dx >0 .
R

If (21) is solvable for all fe L]‘ satisfying (20), then g is integrable at

-0 ,
Proof. Let x = H(y) where H is the inverse of the function I defin2d by

I'(x) = 1/w(x)

I(0) =0 .

Then both H and I are 1-1 monotone increasing functions mapping R

onto R and the substitution v(y) = u(H(y)) reduces (19) to

-v"(y) + (H'(y))2g(viy) - (H'(y))26(H(y))

(21)

1

v'eLl, v'(tw) =0

which has a solution according to Theorem 2 precisely when

o0

0< [ (H'(y) H(H(y)dy
-0
o0

- fwix)dx

- 00

-14-




Remark. Let P be a maximal monotone graph lying in the upper half-
plane; that is, p(x) is a subsetof {y >0} for each x ¢ R. Let
ﬁo(x) = 1in{y : y € B(x)}. The result of Crandall and Evans is that if
e o
[ B°(x)dx <
-0
for some a € D(B), then the equation

(22) -u(x) + Blu(x)) > £(x), u(x) = 0, L}

is solvable. This result also follows from Theorem 1 in the following way.
Let {Bn} be a sequence of positive continuous monotone increasing
functions which increase to Bo on D(B) and which increase to +®

off D(B). The solutions {un} of (1) with B, inplace of g then
decrease on R to a solution u of (22).

A final result related to Theorem | is presented below.

Theorem 4. Let g be a positive continuous function on IR satisfying

(15). For £« Ll(IR) consider the equation
u'(x) + g(u(x)) = f(x), -0 <x<ow
(23) v e« I(R)

u'(-o) = §, u'(+®) = ¢,

where
(24) J fxdx=p>¢, - & -

(a) Suppose g is integrable at -w. If (23) has a solution for some f

with compact support (which necessarily satisfies (24)) then gl >0 > gz.

If (23) has a solution for f =0, then E,l = -gz.

«]G=




(b) If g 1s integrable at -» and if ":l >0 > gz. then (23) has a

solution for all f with

xn

-8, <o f f(x)dxf_min{gz,—gl} :

-0

(25)

o

2

(c¢) If (23) has a solution for some f satisfying (24), then g is

integrable at -w.

Proof. (a). If f has support in [a,b)], then u'(x) <0 for x <a and

Xx>b. If u'(-x)<0, then u'<0 on (-»,a) and hence u is
decreasing on {(-+,a). However, u musttend to -% at both -% and
+~- if u is a solution of (23) and thus u can not decrease on (-, a).

Likewise, u'(+») must be negative. Further, if u'" + g(u) =0, then

(u'(x))2 + 2G(u(x)) = const. on (-, ©)
which clearly implies that gl = -gz.

(c) is proved exactly as in Theorem 1.

(b) is the most difficult of the assertions. TFirst, exactly as in
Theorem I, 1t can be shown that the set of those f satisfying (24) for
which (23) is solvable is closed in LI(IR). Next, we show that if f has
compact support, say in (a,b), and if f satisfies

w0

Lo §,- & <0 - [ f(x)dx <min(-¢,¢,)

i,
then (23) has a solution. The key to this, as in Theorem I, is to show

two things: first that the equations

o] b=




E u(x) +glu(x)) - 0, x ¢ [a,b]
' (26)

W) - g, uie) = €,

have a solution which necessarily satisfies
/2
/2

(27) w(a) = (& - 2G(u(a))'

w(b) = (g5 - 2G(u(b)’

and second that the equation

(28) u'(x) +g(u(x)) = f(x), a<x<b

is solvable subject to the non-linear boundary conditions (27). Both
these assertions are proved as the similar statements are in the proof of
Theorem 1.

Remark. The upper bound in (25) is not completely satisfactory; however,

the situation for (23) is more involved than that of (1) as (a) shows.

The author would like to thank Prof. M. Crandall for a number of

E helpful comments on a preliminary version of this manuscript.
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