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ABSTRACT

Let g be positive continuous j unction on JR which tends to

hero ~t -
~~~~ and which Is not integrable over JR. The boundary-value

problem -u ” + g(u) = f , u ’(± °o ) = 0, is considered for f ~ L1(JR ) . We

show that this problem Cdfl have a solution if and only tf g is Integrable

at -
~~~ and if this is so then the problem is solvable precisely when

00

f t(t)dt > 0. Some extensions of this result are also given .
-u0
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SINGULA R SEMI-LINEA R EQUATIONS IN L1(IR )

Stephen D. Fisher

In [2 ] M. G. Crandall and L. C. Evans show that the singular

semi- ’linear problem

“(x) 4 ~(u (x ))  = f(x ) . -00 < x  < oo

(~~ u ’( *00)  0

U ” E L
1
(IR )

has a solution for each f L’(IR ) with 5 f > 0 if (and only if)  1~ is
JR

integrable at -x ~ Here ~3 is a given positive monotone increasing continuous

f unction on JR. In f ac t , they discuss the more general situation when

j3 is a maximal monotone graph . In this paper we consider several

extensions of the problem (~ ) and provide another technique for proving

that these equations have a solution. In particular , we recover

the result of Crandall and Evans by different means.

Theorem 1. Let g be a positive continuous function on JR with

g(t) 0 , g(s)ds divergent

Lot L~ = (f ~ L’(IR ) f  f > 0} ; for f L~ consider the problem

Sponsored by the United States Army under Contract No. DAAG29 ~7 C-0024
~in~ by the N ciU on al  Science roundat ion . Gra nt MPS 75-O~ SO I .
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-u ” (x ) + g (u (x ))  1(x) , - r  < x <

(1) u ’ c L1(IR )

u ’(*~ o) :0

The followi~~~~re equivalent:

(a) (1) has a solution for all f c  L1

(b) (1) has a solution for some 1€ L~

(c) g is integrable at -
~~~~

Proof. (a) implies (b) is trivial. To see that (b) implies (C) suppose

there is a function u with u ” e J}, u ’(± oo ) = 0. and

(2) -u~ 4- g(u) 1

for some f€ L1. Then u’ € L°° and u tends to -oo at both ±~ o for

the following reason. Suppose there is a sequence X — 00 with

Jim u(x ) = L >  -oo . Let 
~
‘n~ 

be any other sequence of real numbers

tending to +~~~ . Then from (2) we get

- 
~~ (u ’( y )) 2 + ~ (u ’(x )) 2 

~ H( u ~y ) )  - H(u(x )) = f fu’

where

t
H(t)  I g( s)ds

0

Hence , u r n  H( u(y )) exists and equals H(u (L ) ) .  Thus , H ( u ( t ) )  has a

-2 — j 
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limit at ~ which implies that u has limit L at ‘~ si nce H is

strictly monotone. But then g(u(t)) tends to g(L) ~ 0 as t • ‘ which

contradicts the fact that g(u(t)) is in L
1(IR). An identical argument

shows u tends to -00 at -uo~ With H as above we also have

~ [(u’( y)) 2 - (u ’( O )) 2 J + H(u(0)) - H(u(y)) f fu ’

for each y,y <0. Thus, H(u(y)) has a finite limit as y -‘~~. Since

u( y) —
~~ 

-~~ as y -. -0o we find that H(s) has a finite limit as s — -‘

implying that g is integrab le at -00• The proof that (c) implies (a) is the

most difficult. The first step is to show that the set of those f L~ for

which (1) is solvable is closed in L~; the second step Is then obviously

to show that the set of those 1€ L~ for which (1) is solvable is dense

in L~ . To prove the first assertion , let f~ -~~ f in L’(IR), with f ,

f € L .  Let u satisfyn + n

(3a) -u ’ + g(u ) f
n n fl

(3b)  u ’( *co ) 0n

,, 1(3c) u L (JR )

Integrate both sides of ( 3a) from -~~ to x and then from x to -F ’~ ’ and

use the fact that g > 0. This gives 1 u ’(x)  < i f ~ 1 1 1 for all large n

and hence

(4) l lu ’ j t  
00 ~~A, n 1, 2 

L (IR)

-3- 
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This in tuui imp l i e s  t h a t  {u } i s  equ t c on t i nuou s .  We may assume ,

the r t ’ t¼ ~I c . ~n a t  (u  conver ijes un i fo rmly  on compact subsets of JR to

t ’ith er ‘-“ . ci — -p . or to a cont inuous func t ion  u . Set

x
Ui x) - gls)d s

-

For any x i D~ and any n we have

G(u (x) )  g (u l t ) ) u ’( t ) d t

lu x) J + /  t u ’2 n - n n
-

A1
llcn~ e , U

n
i X )  C ioi all n and all x . Thus , it  i s obviously impossible

th at  U tends to ~~~~ Suppose th at  { u )  tends to -
~~~ unif ormly

on co m pac t subsets ot IR. Again we have

>‘
( ‘) — “

~~ 
(u ’ ~x ) l~~ G~u tx)) t (t)u ’ i t ) d tn n n n

arn i hence

0 f u ’
- n f l
-~~~

.

We m ay as sum e  ~h . i t  u ’ converges weak— ‘ - in L (JR) to a function p

and also tha t  u ’~ 0)  } converges. Integrating ( 3a) from 0 to x we see

that u ’ i .d cn nveri ~’s pointwiso to p(x) on JR. Hence , ( ~‘) and C 6) yield

- ( p i x ) ~~ ~

‘ 

ip

Ii flU



~~~~

Hence , p has a limit of 0 at both +x  and -oU~ Again from (3a ) we

obtain

u ’(y ) - u ’ ( x) + 

~~~~~~~~~~~~~~~~~~ 

f
X

f (t)dt
y y

so that

p(y) - p(x) 5 f(t)dt .

Now let y -
~~ 

-x ’  and x -~~ +00 ; we find

a contradiction . Note that this argument is dependent on g in only a

m ’~nor way .  In part icul ar , if { g }  is a sequence of positive continuous

functions converging uni formly on compact subsets to positi ve continuous

unct ion o which tends to 0 a? -00 arid which lies in L1(-oo , 0J out

not in L~ IR) and if , say, { g )  increases to g on (-~~ , ~~), then

the funct ions v which sat isfy

-v 1 
~
- g ( v ) f , v ’~1* x ’ )  0, f L~

are equicontinuous and uniformly bounded on compact subsets of JR . We

shall  make  use of this later on.

Returning to the functions {f} and {u} we see that {u)

converges uniformly on compact subsets of JR to a continuous function

u . We clearl y have u ” -• u ” in L1 
so that u satisfiesn b c

—5 —
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( 7 )  — u ’ + g ( u )  = f on JR

F’atou’s lemma implies g(u) is in L1(JR ) an d hence u ” L1(JR); thus

u ’ has limits at both ± ‘~~ and u tends to -00 ~~ both ± ~r as in the

implication (b) implies (c). From (5) and (6) we get

~~~~~(u 1(x ) )
2 

~~G(u(x))

and

0 = ~~~~ fu ’ .

Hence , u ’ tends to 0 at both ± 0 0~ so that u is a solution of (1).

Note also that

= f ( u ” + f )  J~ f

.~~ h f Il l
and hence

(8) j lu ’’~[
1 <

The second assertion , that there is a dense set of f c L~ for which

(1) is solvable , will be proved In the following way. Let f be a continuous

function on JR in L1 with support in the interval I ( a , b i .  We shall

show (1) is solvable for this f. We assume temporarily that g is C’ on JR .

We shall need the following Proposition.

Proposition. Let a < b and let g be a positive function on JR

which Is integrable at -oo and bounded at +0 0;  set

-6-



x
G(x)  j g( s )ds

-

Then for each 
~~~
. ~3 the initial value problem

~ 
-v ”(x) + g(v(x)) f(x), a ~ x b, f L~(a. b)

v(a ) = a, v ’( a) 3

has a unique solution. If a a and 1~ ~3 and if v is the solutionn n n
of (~~) for (a , ~3 ) ,  then V converges uniformly to the solution v of

i~~) fo r (a , 3). Finally, the family {v } of solutions of (9)  correspondinga~3

to the initial values {~~, ~) : -~~~~ < a < a0. ~~ I < M } is equicontinuous on

Ia ,bJ .

Proof. Once the equicontinuity is established the existence and uniqueness

follow from standard results; see [ 1] ,  Chapter 1. To obtain the equi-

continuity assertion (from which the second assertion also follows), we

multiply the top equation in (9) by v’ and integrate to obtain

1 2 1 2  x
- ~~ (v ’(x)) + G(v(x))  + ~3 - G(a) / fv’

so that if x0 is chosen with lv ’(x 0 ) 11 v ’ ;L we have

iv ’ ~,2 <~~2 + 2G( a) + 2G(v(x 0)) 4 A l i v ’ H
2 

+ 2G(a) + 2G(a + (b - a) Iv ’ Jl ~ ) + Aj v ’ ~~
~ ~2 

+ 2G(a) + A0 + A1(a + (b - a) I v ’ ~~ ) + A~~v ’ . j

for some constants A0, A1 depending only on g.  Hence , ‘ v ~ is

bounded for ~ < M and - 0 0<  a < a0 .

___________— ~~~~~~~~~~~~~~~ .- 



--

_ _ _ _Conclusion ot proof ot Theorem 1. Let f be a continuous function In

with support in the interval (a , b .  We shall show that ( 1) Is solvable

fo r this  t . Fi r st , on (-or ’, al we show that the equation

Uo i  g ( u ( x i )  u (x )

u (a l  = c1, u ( - ~~) 0

has  a solution.  Let v be the function with

-1~~2v ’(t l  (Z G (t f l  , -~~~~~~~ t ‘~ C
1

v(c 1) - a

where

x
G(x) 

~
j g(s)ds.
-Or ’

Then v is increasing and has range (-a’. a~~. Let u be the inverse of

v on ( - ‘-- , i~ , u (v ( t )  : 
~~ Thus

u ( a ) c1

and

1/2
u (x ) l/v ’(t )  •- (2G(t ~)

or

~l 1i u~~x ) ( 2 G l u ( x u i l  2

-8—



I t  we L1i t ~ere~ t I i te  both sides et ( I L l  we see that u satisfies (10).

si m i l a r l y .  there is a solution of

u ( x l  g ( u ( x ) )  b - x <.

u (b )  - c 2 , u ( ~ ) = 0

w ’~ich sa t i s f ies

u (x ) = ~(2 G ( u ( x ) ) ) 1/2
, b < x <

Hence, to f inish the proof of the theorem we need only show that there Is

a solution v of the equation

( l2~ -v ’ 4- g(v) f on (a, b) J
with

(a) v (a) = (2G(v(a)~~
/2

(13’

v’(b)

Let v~ be the solution of (12) with v(a) t and v’(a) = (2G(t))
1
~~ assured

by the Proposition. (We temporarily assume that g is bounded at +00

if , in fact, it is not.) Then

b
v~(b ) - v~( a )  + r v~ (s)ds

(2G(t)) 2 
~ .1 g(v~(s))ds -p



-..,- — -— ~-~~~~-.-~~~~ -- -——-~~~~~~~ ~~~~~~~~~

b
where p f f ( t i d t  - 0. To show th~ t t u~~ ’ be chosen with

v ( b ~ ~
(2 G(v t ( b ) ) )

~
’2  we consider

1 2  l~~’ 
b

1( t)  ( 2 ’) ’t ) )  (2C (v (b ))  / g v t s , ~ds -

The Proposition implies  I is cont inucus .  V,e have

1 ( t)  > -p 4 ( Z G ( t ) ) l Z

Since G Is unbounded , there are values of t with £ (t) > 0 . Next let

t -‘;  by the equlcontinulty of the functions {v~} we must have

v —
~~ 

- -~ uniformly on [a, b] so that 1 (t) — -p < 0; hence , there is

a t0 at which 1 ( t 0
) = 0 , and thus (12) is solvable with the boundary

conditions ( 13).

We have now shown that (I) is solvable for all f ~ L1 under the

ass umption

( 14 )  g C1
(JR ) fl L~~( JR ) ,  g ~ L1(IR)

If g is merely positive and continuous on JR with g L1(-r ’ , 0),

g 4 L1(IR) ,  the n there is a sequence { g }  of positive functions sa t i s fy ing

( 14) which converge uni formly  on compact subsets of JR to g and which

also increase to g on (-
~~~~ 

, f ’) .  The comm ents made earlier show that

the solutions { u }  of (1) with g in place of g converge to a solution

of ( 1) for g. This completes the proof of Theorem 1.

Remark . The condition g 4 L1(IR) is necessary as well as suf f ic ien t  in

order that Theorem I be valid. [‘or suppose g L~~(1R ) fl L1(IR ); then the

-10-



function G is bounded. If f is supported on [-1, 1) and if ( 1) has

a solution for f , then (13) must hold with u in place of v so that

_ _ _ _ _  _ _ _ _  
1 1

0 = “J�~~(u( — l)) + ~J2G(u(I)) + f g(u(s) )ds  — f f( s )ds
— l — l

The first three term s of this expression are bounded , independent of u ,

and hence the integral of f over JR can not exceed some fixed number

depending only on g.

Theorem 2. Let g be a positive continuous function on JR ~~~

( 15) lim g(t)  = 0, g 4 L1(IR )
00

Let B(x) be a positive absolutely continuous function on JR with

B’ ~ L1(IR ) and B bounded away f rom zero. For f E L’+ consider the

equation

-u ’(x) + B(x)g(u(x)) f(x), -00 < X  < 0 0

(16) u ” L1( IR )

L u ’ ( ± 0 0 ) = 0 .

Then (16) has a solution for each f t L1 if and only if g is integrable at --c .

Proof. If (16) is solvable for some f c L~ with support in [-1,1] then

u ’ > 0 on (-00 , -1] and U t < 0  on [1 , 00 ).  It now follows very much as

in Theorem 1 that u tends to -00 at ±00 and that g is integrable at -x’.

—Il—
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To show the su f t i c i e n cy  of the condition tha t  g be integrable at -

we f i r s t  show that  the equ at ions

u ’ ( x )  B ( x ) g ( u ( x i i , I x i d  ~
-

i 17) u ( - a )  c1, u(a )  - C
2

u (i ’~ ) 0

have a solution. As in the proof of Theorem 1, the solution u must be

monotone tn~reasing for -~~~‘< x < -a and monotone decreasing on (a , ~~‘) ;

we shall only consider the details for the case -~~~~< x < -a , the other case

being entirely slm~1ar. We wish to find a contlr.uous function v with

( 18) v (t ) (2 1  B (v ( s) )g ( s )ds ) 1/2
, -~~~~< t < c1

v(c 1
) -a

If such a v exists , then the inverse function u of v will satisfy

u ’(x ) (2 J B (r ) g(u( r ) ) u I (r ) d r) 1
~
’2

u ( - a  - C
1

and hence u will sat isfy (17). To see that (18) has a solution let b1

and b 2 
be positive numbers with b1 < B ( s) < b 2 for all s and let

be the funct ion defined by

- (2  J g ( s ) d s ) l
~~ , -N < t  < c1

— 12—



“-.---~~~~~~~~~~~~~~~~~~~~~~~~ --~~~~~~~~~~~~~~~~~~~ -- - - -~~~~~~~ --~~~~~~~~

Let ~ -N . c1
) : 

~
2b ) ) ’

~
2
~~N

( t )  < w( t )  < ( Z b l) l/2
~ N (t ) for

all t -N . c1 and let I map £2 N into 
~ N by

x 1 2) Tw) ( x )  = (2  J B (w(s ) )g ( s )d s )
-N

where

= w(t), w(c~) —a

Clearly Tw c2 .~1; if { w }  is a bounded sequence in 
~ N’ then {wN }

is equicontinuous and uniformly bounded. Thus , T is a compact mapping

and so has a fixed point which must  satisfy

x-
wN (x) = (2  J B(w~~(s) )g ( s )ds) l~ 2 , -N < x

-N

The functions } are equicontinuous and uniformly bounded on compact

subsets of ( -~~. c1 J and so a subsequence , again denoted by

converges uniformly on compact subsets of (-
~~~~~, 

c1] to a function w~ . But

we also see that

/ ‘ B(w~~(s) )g ( s )d s -

~~ 
[ B(w 0(s) )g(s)d s

-N -
~~~~

uniformly on compact subsets of (-00,c1 ]. Hence, WN 
- -  w 0 uniformly on

compact a;  setting v = w0 we see that v satisfies (18).

The remainder of the proo f of Theorem 2 is like that of Theorem 1; the

condit ion that  B’ c L1(JR ) is used to prove that the sequence { u }  can not

go to -‘.

Corollary 3. Let a(x) ( L1(JR ) , f ( L~flfl) . and let g be a p osit ive

con tinuous function sati s fying ( 15).  Consider the equation

— 13— 
-~~ --.---.—~ —-



r (I) -u”(x) a(x)u ’(x) + g (u (x ) )  f (x) , - -‘h < x

(19) (ii ) u t

(iii) u ’(± ~ ) 0

Let g be integrable at -
~~~~ and set w(x) = exp[ -f a(s)ds ] . A necessary

and sufficient condition that (19) be solvable is that

(20) f f(x)w(x)dx > 0
JR

If (21) is solvable for all f t  L~ satisfyIng (20) ,  then g is Integrable at

Proof. Let x = I-I (y ) where H Is the Inverse of the func tion I defin~d by

I ’(x) l/w(x)

1(0) 0

Then both H and I are 1-1 monotone increasing functions mapping JR

onto JR and the substitution v(y ) = u ( H ( y ) )  reduces (19) to

~ 
—v ’(y) + (H’(y))2g (v(y)) (H’(y)) 2f(H(y))

( 21)

v ” c L’, v’(± or’ ) 0

which has a solution according to Theorem 2 precisely when

0 < f ( H ’( y ) ) 2f ( H (y ) ) dy

f f(x)w (x)dx .



Remark . Let 13 be a maximal monotone graph lying in the upper hal f -

plane; that is , 13(x) is a subset of ~y > 0) for each x JR. Let

13°(x) = i~j {y  : y 13(x)) .  The result of Crandall and Evans is that if

a
1• 0
J 13 (x)dx <~~
-00

for son~e a t D(p), then the equation

(22) —u ”(x) + 13(u(x)) f(x), u ’(± oo ) = 0 , f t L~

is solvable . This result also follows from Theorem I in the following way.

Let { 1 3 }  be a sequence of positive continuous monotone increasing

functions which increase to 130 on D( 13) and which increase to + 0 0

off D(p) . The solutions { u }  of (1) with 1~ in place of g then

decrease on JR to a solution u of (22) .

A final result related to Theorem I is presented below.

Theorem 4 . Let g be a positive continuous function on JR satisfy ing

( 15). For f t L1( IR) consider the equation

u ”(x) + g(u(x)) f(x), -00 < x  < 0 0

(23) u ” t L1(IR)

L u ’(-oo ) = 

~l’ u ’( + oo )

where

(24) f f(x)dx = p >
~~2

-
~~1

.

(a) Suppose g is integrable at -00 • If (23) has a solu tion for some f

with compact support (which necessarily sati sfies (24 ))  then 
~l > 0 >

If (23) has a solution for f E 0, then

— 15—



-~~ .~~~~~~~ 

1

t b ) h ~i i s  tn t e~j r ab l e  at -
~~~~ and if  ~ 0 ~ ~~~~. then ( 2 3)  has a

solution for all t w ith

- ~ / f(x)dx < min(~ 2, ~~

~c) If ~~~ has a solution tor some f sati sfying (24), then g is

i ntegr able at

Proof. ( a ) .  If f has support in I a  ,b l ,  then u ”(x) 0 for x < a  and

x ~ ‘ b. If u ’(- -~ ) < 0 , then u ’ < 0 on (- -c , a) and hence u is

decreasing on c - -” , a) .  However , u mus t  tend to -
~~~ at both -00 and

+ -‘ if  u is a solution of (23)  and thus u can not decrease on ( _oo , a).

Likewise .  u ’( -t- -~) mu s t  be negative . Further , if u ’ 4 g( u ) 0 , then

( u ’( x)) 2 
+ 2G(u(x)) const. on (_ 0 0 , 00)

which clearl y implies th at  
~l

( c) is proved exact ly as in Theorem 1.

(b )  is the most d i f f i cu l t  of the assertions. First , exactly as in

Theorem 1. i t  can be shown that  the set of those f sa t i s fy ing  ( 2 4 )  for

which 23 )  is solvable is closed in I}i JR) . Next , we show that if f has

compact  support , say in (a , b), and if  f sa t isf ies

25) ’  - 

~l < p f f (x)dx < min ( -~ 1,~~~)

th en ( 2 3 )  has a solution. The key to th is , as in Theorem I , is to show

two things: first that the equations

-1 6-
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(u ~~x) g ( u ( x ) )  0 , x 4  [a , b I

u ’(- -~ ) - ‘1’ u ’( 00 )  =

have a solution which necessarily satisfies

~2 7)  u ’(a) (~~ - 2G(u( a) ) ) ~~
2

u ’(b ) = -(
~~~~~~ 

- 2G( u(b D) VZ

and second that the equation

( 28 )  u ”(x) + g (u (x ) )  f (x) ,  a < x ~ b

is solvable subject to the non-linear boundary conditions (27) .  Both

these assertions are proved as the similar statements are in the proof of

Theorem 1.

Remark.  The upper bound in (25)  is not completely satisfactory; however ,

the situation for (23)  is more involved than that of (1) as (a) shows.

The author would like to thank Prof. M . Crandall for a number of

helpful  comments on a preliminary version of this manuscript.
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Let g be a positive continuous function on F which tends to zero at

-00 and which is not integrable over JR . The boundary-value problem

—u ” + g(u) = 1, U ’(~~~~~) 0, Is considered for f1~IL’ . ;~f~Ø ~~~~~t1-mt .Pii!__ .
problem can have a solution if and only if g is int ,~~~le at ~~iid if this ‘

Is so then the problem Is solvable precisely when ~ I f ( t )dt  
~
). Some exten- /

sions of this result are also given .
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