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ABSTRACT

One technique that is sometimes employed to enhance the performance of a database
management system is known as attribute partitioning. This is the process of dividing the
attributes of a file into subfiles that are stored separately. By storing together those attributes
that are frequently requested together by transactions, and by separating those that are not,
attribute partitioning can reduce the number of pages that must be transferred from
secondary storage to primary memory in order to process a transaction.

The goal of this work is to design mechanisms that can automatically select a
near-optimal attribute partition of a file's attributes, based on the usage pattern of the file
and on the characteristics of the data in the file. The approach taken to this problem is
based on the use of a file design cost estimator and of heuristics to guide a search through
the large space of possible partitions. The heuristics propose a small set of promising
partitions to submit for detailed analysis. The estimator assigns a figure of merit to any
proposed partition that reflects the cost that would be incurred in processing the transactions
in the usage pattern if the file were partitioned in the proposed way. We have also
conducted an extensive series of experiments with a variety of design heuristics; as a result,
we have identified a heuristic that nearly always finds the optimal partition of a file.

The context of this study is a relational database management system that can
process transactions made against relations whose physical partitioning is unknown to the
user. In specifying and modelling this system, it is necessary to address the problem of
optimizing nonprocedural queries made to a partitioned fil. We have derived a number of

such optimization techniques and have provided the results of a number of experiments with
them.
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CHAPTER 1

INTRODUCTION

The work to be reported in this report is part of an ongoing'research effort to
develop a self-adaptive database management system. The intent of this development is
twofold: to develob the techniques and methodology for the construction of such systems, and
to identify database physical design issues with techniques for their automatic and optimal
determination. In this report, we address the problem of optimizing the performance of a
self-adaptive database management system, in a dynamic environment where access
requirements are continually changing, by automa;lcally partitioning the attributes (fields) of
the file. Attribute partitioning is the task of dividing the attributes (fields) of a file into

non-overlapping groups and then storing each group in av sebarate physical file.

5 Self-adaptive Database Management Systems

It is important that a database system perform efficiently at all times. Efficient
performance requires that the physical organization of the database match the usage pattern
of its users. Thus, as the database’s usage pattern changes over time, its organization and its
access structures can become obsolete, with consequent degradation of performance.

' Performance degradation may also result as the database grows in size or as the nature of the
data it conta.lr.\s changes. After some time, the performance of the database system may

deteriorate sufficiently so as to compel a database reorganization. Since the applications

PRECEDING PAGE HLANK
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Chapter | -8- Introduction

programs accessing the database are ' continually being altered with new applications
programs replacing old ones, and since the contents of the database continually undergoes
change, the reorganization of the database's physical structure must be an ongoing process.

Conventionally, the database administrator determines when and how to reorganize
a database. His decision is based on limited information about the database and the
transactions performed on it; consequently his decision is largely an intuitive guess. For large
databases, a more ;ystematlc means of acquiring information about database usage and a
more algorithmic way of evaluating the costs of alternative configurations is essential. It has
recently been proposed that database management systems be self-adaptive, and automatically
reorganize themselves as the need arises (35 12). Hammer (6] discusses a methodology for
monitoring database usage pattern, and describes the design principles for a self-adaptive,
self-reorganizing database management system. l

A minimal capa'bllity of a self-adaptive database management system should be the
incorporation of a monitoring mechanism that collects usage‘ statistics while performing
transaction processing. A database management system is well suited for gathering and
analyzing information on its own usage and performance; and if the gathering and analysis
of the usage and performance information is done appropriately, the associated overhead can
be minimal. In addition, a self-adaptive database management system should be able to come
up with desirable physical organizations (i.e, desirable data structures and access structures)
based upon the collected statistics, and be able to evaluate the cost of each alternative
organization in order to select an optimal physical organization for a database. Also, it is
possible that such a system might perform the necessary database reorganization itseif, after it

has evaluated the cost/benefits of reorganization and the associated costs of retranslating the
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applications programs that access the database.

. The Relational Model for Databases

In a self-adaptive database management system, the physical organization of the
database is perpetually being reorganized. In order for the database reorganization to be
truly effective, a database management system that performs self-reorganization will have to
manifest the following two important characteristics: 1- data independence between the
database’s physical organization and the application programs that access the database, and
2- nonprocedural access of the contents of the database. By data independence we mean that
users and their application programs are not required to know the actual physical
organization used to represent the data, so that they are free to concentrate on a logica) view
of the data. Data independence makes the database easy to use and avoids the need for
application program retranslation every time the database’s physical structure is changed.
Nonprocedural access also makes the database easy to use; this entails the provision of access
languages which allow the specification of desired data in terms of properties it possesses
rather than in terms of the search algorithm used to locate and retrieve it.

The relational model of data (Codd [9]) has been proposed as a means of achieving
the above goals of data independence and nonpracedural access. The relational data model
provides a simple and uniform logical view of the data that is completely independent of the
actual storage structures and access structure used to represent and access the data. This

makes the definition and manipulation of a database independent of its underlying physical

- organization. As a result, changes at the data organization level need not be reflected in the
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programs that access the database.

A relation in the relational data model is a named two dimensional table that has a
fixed number of attributes (columns) and an arbitrary number of unordered tuples (rows).
All the rows of the table have to be unique. A tuple representing an entry in a relation
contains a value for each attribute of the relation. The number of attributes in a relation is
m and the number of tuples in the relation is n. Figure | shows the relation
ENROLLMENT for students enrolled in caurses. The ENROLLMENT relation has two
attributes  Student and Course, and four tuples (Doe, 6.035), (Poe, 6.032), (Doe, 6.851), and
(Roe, 6.035). The physical realization of a relation is often calied a file, with the attributes
and the tuples of the relation called the fields and records of the file respectively. Henceforth,
we will use the term file when discussing the totality of the data in a refation, indicating that

we are dealing with the physical representation of the relation. However, we will continue

ENROLLMENT:

Attribute

Student Course

| | I -
| Doe | 6.035 |
| | |
| Poe | 6032 |
Tuple | | |
| Doe | 6.851 |
| | |
| Roe | 6.035 |
| | |

Figure 1 The ENROLLMENT relation with 2 attributes and 4 tuples.

ks
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using the terms attribute and tuple for the fields and records of a file so that the two
dimensional tabular data format of the relation will be kept in mind.

In a relational database management system, the user's view of the database is
independent of the details of the database's physlcalh organization. Furthermore, his
nonprocedural queries are far removed from the primitive data manipulation operations for
locating and retrieving the data. Consequently, more responsibility is placed on a relational
database management system than on a conventional system. This responsibility takes two
forms: I- choosing an efficient physical organization for the relation, and 2- optimizing the
process of finding answers to queries made to the database, by the means of efficient and
judicial use of the available access structures.

We believe that the selection of a good physical organizat'ion is the primary issue in
relational database implementation, since the efficiency that can be achieved by a query
optiﬁizer is strictly delimited by the available access structures. Furthermore, the efficient
utilization of a database is highly dependent on the optimal matching of its physical
organization to-its access requirements, as well as to the other database characteristics (such as
the distribution of attribute values in it). Hence, the usage pattern of a database should be
ascertained and utilized in choosing the physical organization.

There. are numerous possibilities for the physical organization of a relational
database. The selection of a particular physical. organization must be based on minimizing
the performance cost in terms of both data access cost and data storage cost. The subject of
this research is selecting the optimal attribute partition of a relational database by utilizing
the access pattern history of tire database in order to minimize the data access cost. Attribute

partitioning consists of dividing the attributes of a file into subfiles that are stored separately.
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In relational terms, this means splitting a relation into a number of subrelations, each
containing a subset of the attributes of the original relation, such that the original relation
may be uniquely reconstructed from the collection of the subrelations. (Strictly speaking, a
subfile is not a relation in that duplicate tuples are allowed. We will give a formal definition

of a subfile in the next section.)

3. Attribute Partitioning in a Relational DBMS

Let A be the set of attributes of a relation, and let T be the set of tuple identifiers
of the relation. (A tuple identifier is a unique identifier for a tuple in the relation.) The
number of attributes in the relation is |A| = m, and the number of tuples in the relation is
ITI = n. Consider the collection of subfiles F = [F,}',‘_, ,» Where each subfile F; is defined by a
pair consisting of an attribute set and a tuple identifier set, which specifies the attributes and
tuple identifiers that are represented in the subfile F;:(A;,T), A,cA, T,cT. The
collection of subfiles F is called the clustering of the relation, and can have two basic forms:

I- an attribute cluster in which
T, =T i=1,.,M and
u:‘_'Ai -A,
2- a tuple cluster in which
A=A i=1,.,M and

M
u T.=T.

The tuples of a subfile are called subtuples. A subfile F;, of an attribute cluster

contains n subtuples, one for each tuple in the original relation. A subtuple of a subfile is
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that part of the original file's tuple that has attributes A;. The subtuples of subfile F; in an
attribute cluster need not all be different. For example, if the relation of Figure | is clustered
such that Fy =(A;, T) is a subfile with A, = {Course}, then the subtuples of F; will be
(6.035), (6.032), (6.851), and (6.035).

An attribute cluster {Fi}'i‘.l in which A;n A = ¢ forall i#¢j istermed an attribute
partition of the relation. In this report, we will limit our attention to the topic of attribute
partitioning. (A discussion of tuple partitioning appears in Section 7.2) Attribute
partitioning is the task of dividing the attributes of a relation and storing each disjoint subset
of attributes in a separate subfile. The objective of attribute partitioning is to construct an
attribute partition of a relation that optimizes the performance of the database management
system by minimizing the cost of locating and retrieving data. Intuitively, attribute
partitioning is accomplished by assigning attributes to the same subfile whenever they are
consistently requested together by queries.

In conventional database management systems (with paged memory organization),
each tuple of a relation is stored with all its attributes together in one file. When a query is
made to the database, all tuples that are required by the query are brought into primary
memory by retrieving all the pages that the tuples reside on. It has been observed in
practical database applications that a query does not usually request all the attributes of the
file; most queries request only a few of the attributes. Problems. are presented by the
co-existence in the same file (or equivalently in the same tuple) of attributes that are not
requested by the query together with the few attributes that are. Whenever the requested
attributes are retrieved, the non-requested attributes will also have to be brought into

primary memory. If only a single tuple is needed to answer such a query, then it really does
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not matter that other attributes that are not requested happen to reside in the same tuple with
the requested attributes; in any event, only one page needs to be retrieved from secondary
storage. On the other hand, usually more than one tuple must be retrieved in order to
answer a query. This means that more than one page must be retrieved from secondary
storage. The expected number of pages that must be retrieved for queries that require more
than one tuple is inversely related to the number of tuples that fit onto one page. (The larger
the number of tuples that can fit onto a page, the fewer pages that need to be accessed, since
there is then a higher probability that two of the requested tuples will fall on the same page.)
The effect of the non-requested attributes is to lengthen the tuple over what it must
minimally be, thus reducing the number of tuples per page, and consequently causing excess
page accesses when answering queries that request only a few of the attributes while accessing
more than one tuple. Therefore if a file is partitioned such that attributes that are

consistently requested together by queries are placed together into the same subfile and

- separated from those attributes with which they are not requested, then the number of page

accesses required to retrieve these attributes will be reduced over the number required from a
file that is not so partitioned. ‘

On the other hand, indiscriminately separating all attributes and storing each in a
separate subfile will also result in excess page accesses. This is because a query that requests
the attributes of a subfile together with some other attributes that are not in the subfile will
incur more page accesses than when all these attributes are in the same subfile, since now the
two groups of attributes reside in different subfiles and on separate pages. When a file has
been partitioned into subfiles, queries requesting attributes stored together in one subfile will

become less costly to answer while those queries that have their requested attributes
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distributed over more than one subfile will become costlier to answer. Intuitively, the optimal
partition is the partition that maximizes the cost reduction for the first kind of queries while
minimizing the cost increase for the second kind of queries.

Aftribute partitioning is most useful for large databases where queries made to the
database usually request only a few attributes of each tuple. It is conceivable thét the request
distribution that has been observed for tuples requested by queries also applies to attributes
requested by queries. It has been observed in many practical database applications that not
all the tuples of a database are requested with the same frequency. The "80-20" rule of
thumb for the distribution of tuple r_eqﬁest frequencies (Heising [17)) states that approximately
80 percent of queries request the 20 percent most frequently requested tuples in a file.
Furthermore, the rule also applies to the 20 percent most frequently requested tuples in the
file; ie. that 64 percent of the queries request 4 percent of the most frequently requested
tuples, and so forth. If this is also true for the request frequencies of attributes by queries,
then most requests are only for a few active attributes of the file.

An example of a large database, where attribute partitioning may be useful, is the
Navy Command and Control Data Base [9). This database consists of a few relations with
many tuples per relation. Some of these relations have as many as 35 attributes and a tuple
length of 64 words. Queries are on-line, and predominantly involve only a few attributes.
Some attributes of the file like the name of ships or the class of ships are frequently requested
by queries while other attributes like the diameter of the torpedo tube are seldom requested.
Therefore, partitloning the vattrlbutes of the files may result in considerable savings in page

access requirements.

VY S Y
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4. Thesis Objective

To summarize, the principal goal of this report is to develop techniques for attribute
partitioning in a self-adaptive relational database environment. For this purpose, we have
-assumed a database management system that supports partitioned files and we have built an
attribute partitioning system consisting of a model for the assumed database management
system and a set of attribute partitioning heuristics. The attribute partitioning heuristics
select a partition for a database managed by a database management system similar to the
one we have modelled. Although our model is not one of any existing system, it is
répresentative of practical systems. Our thrust in building this: modél has been to avoid
many of the simplifying assumptions made in previous studies, and thereby emphasize
important aspects of realistic database environments. We stress the need for monitoring the
database management system and acquiring parameters on the database usage pattern and on i
the evolviﬁg characteristics of the database itself. We describe a methodology for processing
transactions made to a partitioned database built with various access structures, and develop
a complete and accurate model of the cost of accessing the subfiles when performing such a

transaction. Finally, we concern ourself with heuristic techniques that utilize the acquired

parameters and produce optimal or near optimal attribute partitions for the database at a

reasonable computational cost.
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B. Thesis Organization

The rest of this report is organized as follows. Chapter 2 summarizes a number of
previous studies in the area of attribute partitioning, and in the context of evaluating them,
argues for the need of a heuristic solution to realistic database attribute partitioning
problems. In Chapter 3 we provide the model of the underlying database managemeni
system that we have considered: the physical storage structure, the access structures, the
transaction model, the method of processing queries in the partitioned environment and
techniques for the acquisition of the parameters needed for our cost .analysls. In Chapter 4
we present the cost analysis for various basic operations on a partitioned database and
describe how to compute the database’s performance cost, which is what we wish to minimize.
Then in Chapter 5 we present a number of attribute partitioning heuristics that we have
devised, along with the motivation for. their consideration. We also discuss the comparative
advantages and disadvantages of each heuristicc and outline how each heuristic has
performed in a series of experiments. Chapter 6 poses an attribute partitioning problem for a
relation with 8 attributes, and describes its solution using the heuristics of the preceding
chapter. Finally, Chapter 7 concludes the report with suggestions on how to extend the
underlying environment in order to solve more realistic attribute partitioning problems, and
also discusses the relationship between database attribute partitioning and other physical

database design issues.
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CHAPTER 2

THE APPROACH TO DATABASE ATTRIBUTE PARTITIONING f

The pu pose of this chapter is to introduce the approach we have taken to solving
1 the attribute partitioning problem, and to contrast it with the approach taken by others in
| determining the optimal attribute partition. There are two major approaches to attribute
" partitioning, each approach having its own merits and limitations. The two approaches are:
I-  the integer programming approach, which is the approach taken by most other
researchers, and 2- the heuristic approach. We have chosen the heuristic approach for the
following reasons: |- More complex database environments can be handled by the heuristic
approach than by the integer programming approach, 2- An optimal or near optimal ]
attribute partition can be found much more efficiently by the heuristic approach than by the,
integer programming approach, and 3- . Although the heuristic approach (unlike the integer
programming approach) does not guarantee that the optimal partition will eventually be
found, the heuristics we have employed have consistently found an optimal or near optimal

partition for the attribute partitioning problem.

1. Summary of Previous Work Done in Attribute Partitioning

The idea of clustering attributes (and also attribute partitioning) as a means of

improving the performance of a database management system has often appeared in the

literature on file design and optimization. Until the paper of Kennedy [2l), there had been
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little systematic study of this aspect of file organization. Further, the conversion of a relation
into second and third normal forms [I0) was sometimes confused with attribute clustering.
Although normalizing a relation into its normal forms may result in the clustering of
attributes, and thereby reduce page accesses, normalization Is directed towards improving the
logical data schema rather than enhancing database system performance. It is the functional
dependencies among the attributes that govern the splitting of relations in the process of
normalization, rather than the data’s physical characteristics or the database usage pattern.
An example of work in the area of relatit;nal database normalization is that of Delobel and
Casey (13). They are concerned with the problem of decomposing relations into a set of
subrelations such that the information content and logical relationships of the original

relation schema are preserved. However, they do not consider physical database criteria that

would result in a physically optimal decomposition of the relation schema.
Implementations of database management systems that support partitioned files have

been few, and have been limited to simplified environments where finding an optimal or a

suitable partition is relatively easy to manage. Moreover, in these implementations, attribute
partitioning has been treated only as a one-shbt affair, to be determined at the initial creation
of a file. Attribute partitioning has not been viewed as a ﬂatabase organization issue that
needs to be reconsidered periodically, where the retuning should be done by a self-adaptive
database management system.

There have been a number of previous studies of attribute partitioning and attribute
clustering (Day [I], Seppiid [32], Osman [29], Yue and Wong [39], Benner [4), Alsberg (1),
Babad (2], Stocker and Dearnley (35, 12], Kennedy [21, 20), Eisner and Severance [14), March

and Severance [23), and Hoffer and Severance [18, 19]) However, we feel that the resuits of

O W st e .,,.;-,...,._.;._J
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these studies are not directly applicable to a complete or realistic database environment.
Some of these have been formal analyses which have made many simplifying assumptions in
order to obtain analytic solutions; others have been designs that are incomplete or unrealistic
in many ways. Our thrust here is to relax many of the simplifying assumptions that have
been made in previous studies and thus to develop more complete and accurate models of cost
and database access. In addition, we stress the importance of database cost analysis and the
acquisition of accurate parameters, in an environment where access requirements are
continually changing. This aspect of the attribute partitioning problem has not been
addressed in previous work. Below, we present a summary of some of the earlier efforts in

attribute partitioning, identifying the assumed environment of each project along with the

thrust of its research. i

Two of the earliest papers on attribute clustering in a self-adaptive database
management system are by Stocker and Dearnley [35, 12). They discuss the implementation of
a self-reorganizing database management system that carries out attribute clustering. (Recall
that in an attribute cluster, an attribute may ex'lst redundantly in several subfiles) Stocker
and Dearnley show that in a database management system where storage cost is low
compared to the cost of accessing the subfiles, it is beneficial to cluster the attributes, since the
increase in storage cost will be more than offset by the saving in access cost. Although they
do not outline the attribute clustering technique they use, they discuss a query processor,
which utilizes graph theory and various heuristics to process queries made to a file clustered
by its attributes. They conclude that attribute clustering in existing database management
systems is both viable and desirable.

Kennedy [21, 20) considers a mathematical model of attribute partitioning where each
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attribute a; is of known length, and has probability p; of being requested by a query. The
joint probability that attributes a, and a; are requested by the same query is assumed to be
pp; ie, attributes are assumed to appear in queries independently of one another. A cost
function based upon this assumption is derived, which reflects the expected amount of data
that must be transmitted (in terms of number of words, from secondary storage to primary
memory) in order to answer a query. The objective here is to choose a partition such that
this cost function is minimized. Kennedy's model is a mathematical formulation of a
simplified attribute partitioning problem in terms of zero-one integer programming where the
only parameters are p; and |;, the length of attribute a;,. In addition to many other
simplifications, Kennedy's model assumes that when an attribute is fequested by a query, the
subfile containing that attribute has to be retrieved and scanned in its entirety (rather than
retrieving just those subtuples of the subfile that are really needed to answer the query).
Since in this model, optimality can always be trivially attained when each subfile contains
exactly one attribute, the number of subfiles M over which the attributes are to be
distributed has to be fixed beforeha.nd. (Otherwise the trivial partition, defined as the
partition where each attribute is in a separate subfile of its own, will always prevail) As
Kennedy notes, therg is no way short of exhaustive enumeration (which is infeasible as shown
in Chapter 5) to find the optimal solution even for this rather simple model. To find the
optimal sélution to the partitioning problem posed by his model, he introduces two further
simplifying assumptions in order to reduce the integer programming problem to a simpler
problem where mathematical optimization techniques can be applied. One simplification Is
the assumption that all attribute request probabilities are equal, and the other simplification

is that all attributes are of equal lengths.
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In the work of Eisner and Severance (I4], a file can be partitioned into two subfiles:
a primary and a secondary subfile. Each subfile is located on a separate storage device
characterized by differing storage cost and retrieval speed. The attributes are assigned to
each of the subfiles without redundancy. Two forms of the objective cost function that is to
be minimized are derived, where the first cost function is a special case of the (second) more
general cost function. The first cost function is the sum of storage charges for subtuples in
the primary subfile, plus the cost of accessing all the subtuples residing in the. secondary
subfile. (The secondary subfile is accessed only when a query requests an attribute which
happens to be residing there) This cost function is linear and may Be solved by existing

_integer programming techniques. The cost of finding the optimal partition for this function

by integer programming is of the order (m + |Q)®, where m is the number of attributes in
the file and Q is the set of queries made to the database. The second pbjective cost function

is nonlinear, and measures the total costs of access, transfer, and storage for subtuples in both

the primary and secondary subfiles. The search cost for finding the optimal solution for the
general nonlinear objective cost function Is even higher than for the simplified linear cost
function. The limitations of the model adopted by Eisner and Severance are apparent: only
~a maximum of two subfiles are allowed and the cost associated with processing a query is il
taken to be the cost of accessing the whole (primary or secondary) subfile in its entirety rather
than the cost of retrieving just those subtuples of the subfile that are really needed to answer *
the query. Furthermore, the cost of finding the optimal partition using the linear objective
cost function grows in the cube of the sum of the number of attributes and the number of
queries (and the cost grows even faster for the nonlinear objective cost function); this cost is ?

too large for practical purposes.
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March and Severance (23] extend the model of Eisner and Severance to some extent
by assuming that subtuples are blocked in each subfile into fixed size pages. (The page sizes
in the primary and secondary subfiles are not necessarily the same, but the constraint is
tmposed that the sum of the primary subfile page size and the secondary subfile page size is
constant) The nonlinear objective cost function they derive not only depends on how the
attributes are partitioned among the two subfiles, but also on the page sizes selected for each
of the primary and secondary subfiles. Besides the rather peculiar paging organization
adopted, the model of March and Severance has the additional disadvantage that it does not
contain an accurate model of the cost of accessing subtuples that are selected in queries.
Rather, the primary and secondary subfiles are assumed to be accessed in their entirety
whenever any of their attributes are requested by a query (as in the model of Eisner and
Severance). Using integer programming techniques, March and Severance-obtain the optimal
partition for their m.odel However, compared to the model of Eisner and Severance, the cost
of solving the integer programming formulation grows even faster as the number of
attributes and the number of queries made to the database grows.

Hoffer [18) developes an extensive model for attribute partitioning, in which the
obj«tive cost function is a linear combination of storage, retrieval, update, and insert/delete
costs. The problem is formulated in terms of a nonlinear zero-one integer programming
problem, and is solved by a branch and bound algorithm. In applying the optimization
algorithm to the formulation, it became obvious that problems of even modest size were
computationally intractable. In order to use this model to obtain solutions to realistic
problems, it became necessary to reduce the size of the feasible solution space to a point where

optimization becomes economically feasible. To this purpose, Hoffer and Severance [(19)
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propose an attribute partitioning method that produces an initial and crude, but nevertheless
reasonable, partition of the attributes. This partition is then passed as a starting point to the
branch and bound algorithm of Hoffer (18] The initial partitioning method of Hoffer and
Severance uses the cluster analysis algorithm of McCormick et al. [24], which is heuristic in
nature, to group the attributes together into blocks. The clustering algorithm takes a set of
objects and utilizes a measure of "similarity” for all pairs of the objects. It then rearranges
the set of objects such that pairs of objects with large similarity measure fall adjacent or
nearly adjacent to one another. Hence clusters (or blocks) of objects can be identified such
that every pair of objects within the cluster carries a large measure of similarity, and every
pair of objects across cluster boundaries carries a small measure of similarity. Hoffer and
Severance provide attributes as objects to the clustering algorithm. They also develop a
similarity measure for any pair of attributes (called the pairwise .attribute access similarity
measure), which expresses the degree to which the pair of attributes is used together in
queries. The similarity measure of a pair of attributes is obtained as follows: A subfile
ro;nsnsting of only the two attributes is assumed. When answering a query that requests one
or both of the attributes, the subtuples of the subfile need to be retrieved. However, not all
of the information retrieved is used for answering the query: some of the subtuples may not
satisfy one of the attributes, and hence the information contained for the other attribute in
this subtuple is of no use. The similarity measure for the pair of attributes for this query is
defined as the ratio of the amount of useful data transferred to the total amount of data
transferred from such a subfile. The access similarity measure is derived by considering the

set of querles, the frequency of each individual query, and the fraction of tuples satisfying

each query.
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The queries that Hoffer and Severance consider can contain only one attribute in
their selection component. This assumption restricts the applicability of their techniques.
Also, the only access path that they allow is sequential searchi=g and therefore the subfile
that contains the attribute of the selection component of ¢.- query is searched in its entirety
(however, only tuples required for projection are selectively retrieved from the other subfiles).
As with the model of Kennedy, the criteria by which a partition is selected for the file is the
fraction of useful data transferred from secondary storage to primary memory. Since with
such a criterion optimality can always be attained with the trivial partition, as a result, the
number of subfiles in the partition found by the clustering algorithm has to be specified in
advance, and the optimization techniques of Hoffer and Severance only look for the optimal
partition in a subset of the space of all possible partitions. There are also problems
associated with the clustering. algorithm that they use. In Section 53, we describe some of

these problems.

2. The Integer Programming Approach to Attribute Partitioning

The two approaches to attribute partitioning that have been taken are the integer
programming approach and the heuristic approach. Most earlier work on attribute
partitioni.ng falls in the former category. There are two major problems associated with the
formulation and solution of the attribute partitioning problem in the integer programming
approach: I- The applicability of this approach is limited because of the undue simplifying
assumptions made on the problem environment in order to obtain an objective cost function

that is amenable to optimization. In a realistic database environment where the file has
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many attributes and many queries are made to the database and there are many access paths
available by which to access the data, the number of variables and constraints to consider is
so large that it effectively precludes an integer programming formulation of the attribute
partitioning problem for the environment. 2- Even after many simplifications are assumed in
the database environment, the attribute partitioning problem usually reduces to solving a
zero-one nonlinear integer programming problem to which no available mathematical
programming technique can be applied. As Kennedy notes (21), no technique has been found
(short of enumeration) to solve the limited partitioning problem that is expressed only in
terms of attribute request probabilities and attribute lengths. For cases where mathematical
programming techniques are available for solving the integer programming formulation,
applying them to even modestly sized problems is computationally infeasible.

‘The simplifying assuﬁptions on the problem environment that have been made by
previous studies fall to a large extent in two categories. One is a limitation on the complexity
of the queries that are made to the database. Query predicates are either assumed to consist
of single equality conditions, or else database usage is crudely described by a set of attribute
access probabilities that indicate the probability of an attribute being requested by a query.
Correlations between attribute occurrences in queries are ignored. The other simplification
usually adopted concerns the computation of the cost of aﬁswering queries in terms of the
amount of information that must be transferred. In this regard, the effect of blocking tuples
(and subtuples) into pages has been completely ignored. The blocking of tuples into pages
has the effect of increasing the amount of information transferred per tuple access. However,
this increase is not linear, since accessing any number of tuples that reside on the same page

will result in only one page access.  If these blocking effects are ignored, then the
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partitioning problem has a trivial solution. Kennedy (Lemma 4.1, [20]) has shown that when
the amount of information transferred is the sole criterion of the cost function, the optimal
attribute partition is the trivial attribute partition, as described in Chapter 1. The reason for
this is that the total access cost is non-increasing as the attributes are dispersed into an
increasing number of subfiles, even if the ;f;ributes are inappropriately partitioned. Hence
in studies where blocking effects are ignored, in order that the trivial partition not prcvéil,
the number of subfiles into which the attributes are to be partitioned has to be artificially

limited and prespecified.

8. The Heuristic Approach to Attribute Partitioning

The approach to attribute partitioning that we have taken in our work is heuristic
in nature. In the heuristic approach, an optimal or near optimal partition is found for the
attributes by a process of stepwise minimization. An attribute partitioning heuristic which is
based upon stepwise minimization starts with a given partition (eg. the trivial partition),
and attempts to derive from it a new partition that is incrementally superior to the original
one, in that the database partitioned according to the new partition will have a lower
performance cost. When this is achieved, the heuristic further tries to improve upon the
newly derived partition. Each time an improved partition is derived, the performance cost of
the database is réduced. The stepwise minimization process is continued until no
improvement can be made to the latest partition. This last partition will then be returned as
the result of the attribute partitioning heuristic. The resultant partition is not necessarily

optimal, although it can often be argued that the partition is near optimal. (The near
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optimality of the partition proposed by the heuristic can be verified by comparing the
performance of the database management system when the file is optimally partitioned with
ithe performance when the file is partitioned as suggested by the heuristic) Indeed, in the
course of our experimentation with our attribute partitioning heuristics, we have consistently
found that the resultant partition of the heuristics is either optimal, or differs only
insignificantly from the optimal partition.

The heuristic approach to attribute partitioning does not suffer from the two major
problems associated with the integer programming approach. The model of the the database
environment may be as complex as desired. The complexity of the model adopted does not
seriously hamper the heuristic’s. ability to find reasonable solutions to the partitioning
problem (although it may affect the precise amount of search time required by the heuristic to
find a reason..ble-solution). We note that, althougﬁ our model does not consider certain
parameters that have been considered by some earlier studies (e.g. file storage cost, overhead
cost for accessing subfiles, different access and transfer costs for each subfile, and the
imposition of constraints on the allocation of attributes to subfiles), we could readily
incorporate these parameters into our model of the database management system and take
them into consideration without needing to significantly alter our partitioning heuristics.
(These extensions are described in Chapter 7) The heuristic approach is also relatively more
efficient with respect to the time needed to determine a solution. For example, the main
attribute partitioning heuristic that we develop in Chapter 5 operates in time that is on the
order of the product of the number of queries in the usage pattern and the square of the
number of attributes in the file. This compares very favorably with execution time of the

integer programming approach.

e

| -——




Chapter 2 - 29 -The Approach to DB Attribute Partitioning

The model of the database management system we have adopted in this work is in
many ways a generalization of earlier work, and althopgh not a model of any particular
existing system, is more reﬂectlve.o.f practical systems than earlier models. We have allowed
more complicated forms of queries, and have also considered the effect of blocking subtuples
into pages. We allow a diverse set of access structures in our model, including links, indices,
and segments. The objective cost function that we seek to minimize is the total cost of
answering the queries posed to the partitioned database, and is expressed in terms of the
number of page accesses, rather than in terms of the amount of data transferred. Unlike the
models of previous studies, two tuples which happen to reside on the same page, if retrieved,
will not incur twice the access cost of retrieving one of them. Conversely, a single tuple that
has its attributes partitioned, if retrieved in its entirety, will cause numerous page accesses.
Consequently, if the attributes of a file are partitioned inappropriately such that attributes
that are requested together are placed in separate subfiles, the performance cost of the
partitioned database increases. This contrasts with previous models where access cost was
determined solely in terms of total information transferred (and so for which the trivial
partition is always optimaf). In our model, we do not need to specify M, the number of
subfiles in the chosen partition. Rather, M is unconstrained and is determined by the

heuristics according to the optimal partition.

4. Block Diagram of the Attribute Partitioning System

Our attribute partitioning system consists of four components. Figure | shows the

block diagram of the system, in which each component appears as a box. The four




Chapter 2 = 30 -The Approach to DB Attribute Partitioning

components are: |- the parameter acquisitor and forecastor (described in Chapter 3), 2- the
file cost estimator (described in Chapter 4), 3- the query processor (described in Chapter 3),
and 4- the attribute partitior;lng heuristics (described in Chapters 5 and 6). The circles in
the figure represent the collection of forecasted parameters, prepared by the parameter
acquisitor and forecastor, characterizing the database and its usage. Edges in the figure are
labelled by the kind of object passed from one component to another. A brief description of

each component follows.

I- The parameter acquisitor and forecastor continuously monitors the usage pattern
and the response of the database management system to the queries in the usage pattern. It
collects the statistics needed as parameters by the file cost estimator and the query processor.
At certain points in time when file repartitioning is initiated, the parameter acquisitor
calculates trends and makes forecasts of the database usage pattern and database parameters

for a time interval into the future.

2-  The file cost estimator reéelves a proposed partition from the partitioning
heuristics and evaluates it by finding the cost of processing each query in the forecasted
usage pattern against the accordingly partitioned file. To compute the cost of processing a
query, the file cost estimator passes the query to the query processor for query analysis. The
query processor finds a method for the query and returns the method to the file cost
estimator. A method for a query is a procedure indicating how to.go about accessing the
subfiles in order t. answer that query. Using the forecasted database parameters for the

future time interval, the file cost estimator computes the number of page accesses required to

answer the query against the partitioned file according to the query's method. Summing
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\

these costs for all the queries in the usage pattern, the file cost estimator obtains an estimate

for the performance cost of the proposed partition which the partition would be expected to

- incur in the future time interval.

3- The query processor evaluates a query in a partitioned environment by finding a
method for the query. It requires the forecasted parameters of the database and the file

partition. The query processor is heuristic and the method found is normally near optimal.

4- The attribute partitioning heuristics propose a suitable partition of a file's
attributes. The proposed partition is passed for cost estimation to the file cost estimator.
After the cost of the proposed partition is estimated, the heuristics attempt to come up with a
partition that is incrementally superior to the last proposed partition. This process is
continued until a partition is found such that no other partition proposed has a better
performance compared to it. If the performance. cost of the final partition is less than the %

cost of the current file partition by a margin that exceeds file repartitioning cost, the file is

repartitioned according to the resulting partition.
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CHAPTER 3

THE MODEL OF THE DATABASE MANAGEMENT SYSTEM

" In this chapter we will describe the underlying model of the database management
system that we have assumed in our work. We will describe the storage structure and the
access structures we have adopted for the physical representation of a relation, and the
assumptions we have made for the purpose of reducing the problem of attribute partitioning
to a manageable size. We will then describe the structure of the queries made to the database
and the strategy employed to process the queries in a partitioned environment. Finally, we

will Jist the parameters required by the components of our attribute partitioning system (the

attribute partitioning heuristics, the file cost estimator, and the query evaluator), and describe
how these parameters are obtained from monitoring the operations of the underlying

database management system.

1.  The File Model

We have chosen the relational data model as the logical view of data for a database. 1
A database in the relational context cons.ists of one or more relations. However, in order to H
make the problem of attribute partitioning manageable in size, we address the reduced
problem environment of a database with a single relation. In addition we assume that the
physical implementation of a relation is a flat file. That is, a relation is stored as a set of i

unordered contiguous tuples in secondary memory. There are no hierarchies of domains, nor
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pointers from one tuple to another. Although the assumption of flat file storage structure
may seem rather severe, we note that this is the most natural way of storing a relation. Also,
some of the drawbacks of the flat file storage structure, such as the placement of frequently
used data together with seldom used data in the same physical locality, is precisely what
attribute partitioning intends to eliminate. We note here that although the work reported
here is based on the assumption of a single relation database and a flat file storage structure,
the approach to attribute partitioning that we have taken and the attribute partitioning
heuristics that we have developed should be extendible to problems where any of the two
assumptions are relaxed. Specifically, if there is a facility available to estimate the cost of
answering a query made to a multi-relational database with a non-flat file storage structure,
then the main heuristic techniques that we have developed may be regarded as a viable
candidate for the purpose of attribute partitioning. For further discussion of the possible
relaxation of the above twe assumptions, refer to Section 7.2.

All the subfiles of the attribute partition are assumed to reside on direct access
secondary storage devices like disks [6). Storage space on such devices is divided into fixed
size blocks called pages. A page is the infarm;tion quantum transferred between the disk
and primary memory in one disk access. The accessing cost of a page is assumed teo be
proportianal to the average disk seek and latency times plus the page transfer time. Hence,
accessing cost will be independent of the sequence of page accesses. Consequently, we may
think of the pages of a file scattered throughout the disk, with no restriction on their relative
physical locations.

As meritioned above, the tuples of a relation are stored unordered with respect to any

attribute. Th> order in which the tuples are stored will be their chronological order of

ok
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insertion into the file. This makes the problem of file maintenance due to updates, insertions,
and deletions much simpler. If a tuple is updated, the new values replace the old values in
the same tuple. A tuple that is deleted is joined to a pool of deleted tuples and will be reused
for newly inserted tuples. (Such a pool can easily be maintained by threading the tuples that
were deleted into a list) A new tuple that is inserted in the file replaces a tuple that has been
previously deleted. If the pool of deleted tuples is empty, then the inserted tuple is appended
to the end of theAﬁle (if the file occupies an integral number of pages, a new page is allocated
to the file).

The above strategy for overflow handling is intended to maximize the number. of
undeleted tuples per page, and keep the file size to a minimum. The cost of a sequential
search and tuple retrieval by the link access path (described below) are inversely related to
the (average) blocking factor (the average number of used tuples per page), and these costs
should be minimized by keeping storage utilization in the tuple space as high as possible.
Even with the above assumptions, poor storage utilization may still ensue if the database
usage pattern consists of a large number of insertions followed by an equally large number of
deletions. To correct this, garbage collection may be performed on the tuple space so the
'tuples are recompacted to occupy as little space as possible. =~ We note here that in
partitioning the attributes of a file, the cost of garbage collection may be eliminated from
consideration and that if we ignore the effect garbage collection has on the subfile blocking
factor, thg optimal attribute partition is independent of the garbage collection cost. The
reason for this is that no matter how the file is partitioned, garbage collection of deleted
tuples requires that the entire file be brought into primary memory and shipped out back

onto secondary storage. Since the total amount of storage is fixed regardless of how the file is
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partitioned (except for page breakage at the end of each subfile, which is negligible), the cost
of garbage collection does not enter the optimization process. On the other hand, the
blocking factors of the subfiles do influence the optimal partition. The more frequently that
the file is garbage collected, the fewer the number of unused tuples per page and the larger
the blocking factor would be on the average for the file, Therefore, the optimal partition for
the file iwill partially depend on the frequency of garbage collection. Since the optimal
selection of points where the file is to be garbage collected is in itself another database design
optimization problem, we will not consider the problem of the optimal determination of
garbage collection points. (See the works of Shneiderman [33) and Yao et al. [38] for a
discussion of this problem.) We will assume that the subfile blocking factor that the
parameter acquisitor prepares for the attribute partitioning heuristics is the overall average of
the observed blocking factors throughout the planning horizon.

We will assume that tuples are of fixed length (ie. each tuple occupies the same
amount of storage space), so tﬁat each page has a capacity for a fixed number of tuples. This
implies that attribute values h#vé fixed sizes, since a normalized relation has a fixed number
of attributes per tuple. This assumption is in correspondence with the relation being a flat
file and is a necessity for the realization of links between subtuples of the same tuple. We
also make the assumption that each page contains an integral number of tuples, and that
tuples do not overlap page boundaries.

In our file model, we allow three kinds of access structures. These are: segments,
hinks, and indices. An access structure is a mechanism that makes the search and retrieval of
tuples possible. In other words, given the value of an attribute, an access structure can locate

and retrieve all tuples having that value for the attribute. The access path of an access
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structure is the way in which the structure is used. in such a search. A segment is a file or a
subfide that may be retrieved into primary memory and sequentially searched from top to
bottom for tuples with a certain attribute value. Hence by using the sequential search access
path of the segment access structure, we can both locate desired tuples and retrieve these
desired tuples at the same time. A link is an access structure for retrieving tuples which have
already been located. In other words, assume that we have a pointer or some other identifier
that uniquely identifies a tuple by its location. Linking is the access path for deriving the
physical address of the tuple from the identifier and retrieving the tuple from secondary
storage. Therefore the link access structure is a mechanism for retrieving tuples that have
already been identified and whose location is known. A link cannot be used to search for
tuples that possess a certain value (content retrieving). In our file model, each subtuple of a
subfile has a link to all its corresponding subtuples in all the other subfiles. The
corresponding subtuples (or co-subtuples) of a subtuple are all the subtuples that made up a
single tuple before the file (and the tuple) was partitioned. An index is an access structure for
locating subtuples with attributes that match certain values, without actually retrieving the
subtuples. An index does not have the capability of retrieving tuples. In order to retrieve
the tuples that have been located by an index, a link access structure is used. In our file
model, any attribute of the relation may have an index; which ones are actually to be

indexed is a separate database design issue.
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2. _Linking Subtuples

Sequentially searching a file (or a subfile) is a straightforward matter and we will not
discuss 1t any further. A link, on the other hand, is an access structure that is widely used in
our model and we will describe how linking is performed in detail.

Once a subtuple has been located or retrieved, it must be possible to retrieve any of
- 1ts co-subtuples in the other subfiles. (A co-subtuple may have to be retrieved in order to see
if an attribute of it contains a certain value, or in order to project one of its attributes.)
Hence, we assume that each subtuple has a link to all its co-subtuples and that the
co-subtuples may be retrieved by linking. Links as a means of relating tuples may be
classified according to purpose, realization, and cardinality. The purpose of a link in our
model is to relate co-subtuples. Its realization is logical, ie. the link is derived by
transforming the address of one co-subtuple into the address of another one. The cardinality
of the link is one-to-one, i.e. each subtuple is linked to exactly one subtuple in another subfile.
Thus, there ‘is no explicit pointer from a subtuple of a subfile to each of its co-subtuples.
Rather, the address of the co-subtuples in different subfiles can be calculated from one
another’s addresses. By subtuple or co-subtuple address we mean the tuple identifier (or the
logical address of the tuple), which is the address of the tuple relative to the base address of
its file. When retrieving a subtuéle by using a link, the subtuple's tuple identifier (TID) is
translated by the file's page map table into the physical address of the page the subtuple
resides on and the offset of the subtuple within the page. The page address is then used to
retrieve the subtuple from secondary storage in one page access. Note that when retrieving

any number of subtuples that reside on the same page, the page needs to be retrieved only
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once.  Once we have the TID of a subtuple in a subfile (this happens when the subtuple
has been lﬁcated or retrieved), we may obtain the TIDs of all co-subtuples in other subfiles by
applying a transformation to the subtuple's TID. This has been made possible because when
partitioning a flat file implementation of a reht'lon, all co-subtuples retain their relative
position in their subfiles, and also because within a subfile all subtuples are of the same size.
To see what this transformation is, let 7; be the tuple with tuple number i (ie. 7, is the ith
tuple of the file). If the file is partitioned into M subfiles, then 7, 7, ..... Ty are the M
co-subtuples. Let t; be the TID of-subtuple 7;,j=~1,...,M. We want to calculate t;,,
the TID of 7, from t; the TID of r,. We first show how to éet the tuple number i
from the TID t,. Let S be the system page size, |, the subtuple length in subfile F,, and
let b; = | S/l | be the number of subtuples per page in F,(we have assumed that tuples or
subtuples do not cross page boundaries); then |t,/S] is the page number of T,, and

(t) mod S) is the offset of T, in its page. The tuple number i is therefore:
Finally, we want to calculate t;,, the TID of ;,, from i, its tuple number. Since |i/by J

is the page number for the subtuple T;, in F,, and (imod by) is the number of the

subtuple within the page, we have:

(3.2.2) tix =S Li/by ] + I (i mod by)
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3. The Index Organization

Another access structure we have considered in our model is an index. A file may
have an index on one or more of its attributes. A subfile that contains an indexed attribute,
has indexing as an access path to locate subtuples having a specified value for that attribute.
In our model, we have chosen an index to be a balanced tree, where each node of the tree is
a page. A detailed description of the index's structure may be found in Chan (7] and
Blasgen and Eswaran (6]. The index is very simifar to the B-trees of Bayer and McCreight
(3] both in terms of structure and the way it is maintained. Briefly, each non-leaf page of the
index contains an ordered set of pairs of keys (attribute values) and pointers, each pointer
pointing to nodes in the next lower level of the tree. The key in the pair is the highest key
of the node the pair points to. A leaf page consists of a key followed by an ordered list of
TIDs of subtuples that have the key as the value of the indexed-attribute in the subfile. The
choice of index structure for our work is obviously not limited to balanced trees. Any index
that lends itself to usage cost analysis and which is independent of the choice of file partition
may be alternatively used.

To concentrate on the problem of attribute partitioning, we assume that the choice of
indices and their structure is predetermined and chosen beforehand on the basis of other
criteria besides the file partition. This is not to suggest that the problems of index selection
and attribute partitioning are independent of one another. Indeed, the two problems are
mutually interdependent and a better solution to the attribute partitioning problem can be
achieved by their, simultaneous solution. The problem of selecting indices that befit a

database usage pattern has been extensively analyzed by Chan (7). Our work on attribute
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partitioning takes up another dimension of the general problem of physical database design.

4. The Transaction Model

We will consider four types of transactions that may be conducted against the
database: queries, updates, insertions, and deletions. The query and the update transactions

j consist of two components: a selection component that determines the tuples that are to be

selected, and a projection component that determines which attributes of the selected tuples
are to be extracted and returned (in the case of a query) or updated (in the case of an
update). The deletion transaction consists only of a selection component that determines
which tuples have to be deleted. The insertion transaction has no components. An insertion

~transaction is basically a set of tuples that have to be inserted in the file. Because of the
similarities among query, update, and deletion transactions, henceforth, we will discuss only
one of them, namely queries, in full detail. The reader should assume that the discussion for
queries can be generalized for the other transaction types as well. The only difference among
the transaction types is how the projection component of each transaction type is processed
after the tuples zre selected. This difference in processesing the projection component will be
delineated later.

We have made certain simplifying assumptions on the structure of the queries
considered in our model. The simplifications were necessiated by the need to reduce the task
of query cost analysis to a manageable size. We have disallowed join operations on the
relation in queries. The boolean expression in the selection component of a query consists of

either a conjunction made of equality conditions, or a disjunction made of equality conditions.
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A query with just one equality condition is considered to be a special case of a conjunctive
query. An equality condition is a predicate of the form (a = x) , where a is an attribute
name, and the attribute value x of the equality condition is a constant or program variable
which is known at the time the query is processed. The equality condition in the selection
component is used to search for all the tuples (subtuples) in the file (subfile) that have
attribute value x for attribute a. The projection component is a set of attributes whose
values are extracted from all tuples that satisfy the selection component and returned as the
answer to the query. In a conjunctive query, an attribute cannot appear twice in the selection
component, or appear both in the selection and projection components. Although we have
restricted the set of allowable queries by the assumptions presented above, we have still
included a large number of possible quel;ies, encompassing many of the more frequent queries
encountered in practical database applications.

When a query is made to a database, the query processor does the necessary search
and retrievals on the database and returns the answer to the query. There is a cost associated
with processing a query. In our attribute partitioning system, we have incorporated a query
evaluator and a file cost estimator that can analyze a given query and provide an estimate of
the cost of answering the query. Query cost analysis is a complex task. The assumptions we
have made on the structure of the query alleviate some of the difficulties in query processing
and query cost analysis. Besides the assumptions on the structure of a query, query cost
analysis depends on the assumptions made on the distribution of attribute values in the file.
Query cost analysis also depends on the distribution of attribute occurences in the selection
and projection components of queries and the distribution of attribute values in the equality

condition predicates of queries. As we have mentioned in Chapter 2, previous work done on
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attribute partitioning made simplifying assumptions on the distribution of attribute values
and on the distribution of attribute requests in order to keep the problem of query cost
analysis (and hence the attribute partitioning problem) within manageable limits. We have
also made simplifying assumptions on the distribution of attributes values and attribute
requests in building our model of the database management system. However, our
simplifying assumptions are less restrictive in nature than those made in the works of our
predecessors and are closer to the realities of practical database usage. We have made the

following two assumptions in our transaction model.

I- We assume the fraction of tuples that satify a one predicate selection is the
selectivity of the attribute in the equality condition. The (average) selectivity of an attribute
of a relation is the average fraction of tuples under consideration that have historically
satisfied an equality condition involving that attribute. In other words, the selectivity of an
attribute is the fraction of tuples that will most probably satisfy an equality condition on the
file. The concept of an attribute selectivity measure is an important tool for database
modelling and query cost analysis. The attribute selectivity measure will be defined and
described fully in the section on Parametef Acquisition. From the attribute selectivities, the
number of tuples that satisfy an equality condition on an attribute is estimated as the product
of the selectivity and the number of tuples in the file. Using this measure of selectivity
- +0ids the naive assumption that the attribute values are uniformly d.lstrlbutéd in number,
and that the number of tuples satisfying an equality condition is the total number of tuples
divided by the number of different values of the attribute. Also by using this measure, we

have avoided the simplistic assumption that attribute values of a given attribute occur with
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equal probability in the selection components of queries. Although we could have obtained a
still better model of value distribution by noting the number of tuples that contain each value
of an attribute in a table, the attribute selectivity measure has the definite advantage that it
takes httle storage for its preservation. The other scheme requires that a table of attribute
value frequencies be maintained for each attribute in the file, and if there are many distinct
values for an attribute, this table will consume a significant amount of storage and will also

be very difficult to update.

2-  Since we allow the specification of queries with multiple equality condition
predicates, it is necessary to have a measure for the joint resolving power of two or more
equality conditions. (This measure is called the joint selectivity measure.) For this purpose,

we will assume that the appearance in tuples of values belonging to different attributes is

independent. (l.e, the probability that value x of attribute a and value y of attribute b.

appear in the same tuple is equal to the product of their individual probabilities of
appearance.)  Hence the fraction of tuples satisfying a conjunction of predicates
simultaneously is the product of the fractions that satisfy each predicate, and the fraction of
tuples satisfying a disjunction of predicates is the complement of the fraction not satisfying

any of the predicates of the disjunction.

One assumption we do not make in our model, however, is that attributes occur
independently of one another in the selection and projection components of the query.
Neither do we make the less narrow but nevertheless still restrictive assumption that the
correlation between attribute occurence in queries is determined by joint probabilities of

attribute occurence. We actually keep a record (in a table, called the table of query types) of

R i S e sidli
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all queries made to the database, and the exact correlation in the occurence of attributes in
queries may be obtained form this table. Thus we avoid making the strong (and often
inaccurate) assumption that an attribute is requested by a query independent of what other
attributes are requested by that query. This table of queries is concise in that queries
involving the same attributes but different attribute values are clustered together in one

entry. (The number of queries in the cluster is also recorded in the entry.)

B. Query Processing in a Partitioned Database

An -integral part of a database management system is a facility to decide how to
answer queries. Since we are modelling a database management system that decides how to
answer queries posed to the database, and since in the course of attribute partitioning we
need to estimate the cost incurred in answering a query posed to fhe model database, our
attribute partitioning system will also need to decide how to answer queries. When a query is
made to the database, appropriate access paths must be chosen so that tuples satisfying the
selection component of the query méy be located. After the satisfying tuples are located (i.e. a
TID list of such tuples is obtained), the same access path (or possibly some other access path)
will have to be used in order to retrieve the tuples.

For example, assume we have a conjunctive query involving attributes a,, ..., 3, in
the selection component and attributes a,;, ..., ax in the projection component made to a
partitioned file. In order to answer the query, the subtuples that satisfy the equality
conditions on a, ...., a, need to be located (by creating a TID list pointing to the subtuples),

and then their co-subtuples containing attributes a,,, ..., sx have to be retrieved so that the
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value of projection attributes a,,, ..., ax may be extracted and returned. Assume that
there are indices available on some of the attributes a,, ..., a . We may proceed to locate
the subtuples that satisfy the selection component in either of the two following ways (in the
rest of this section, we do not expllcltiy specify when the transformations 3.2.1-3.2.2 are to be
performed on TIDs of subtuples to get the TIDs of co-subtuples; we assume the
transformations are performed whenever necessary):

I- Use all the applicable indices to retrieve the TID lists of subtuples satisfying the
indexed attributes, intersect these TID lists (because the query is conjunctive), and from the
resulting TID list link to the subfiles that contain any of the unindexed attributes a, ..., 3
(an applicable index is an index on a selection attribute). Subfiles are accessed one at a time.
Everytime a subfile is accessed, its subtuples with TIDs in the list are retrieved (via links)

~and checked to sée if they satisfy the equality conditions on the unindexed attributes. The
TIDs of subtuples that do not satisfy any of the unindexed attributes are then pruned from
the TID list (ie, the TID list of the subtuples that satisfy all of the unindexed selection
attributes in the subfile is intersected with the old TID list). After all the subfiles containing
selection attributes have been accessed, and the TIDs in the list have been tested to satisfy the
equality conditions, then all subtuples with TIDs in the list are retrieved (again by linking)
from all the subfiles containing projection attributes, and the projection attributes are
extracted. |

2-  Use none of the indices. Sequentially search one of the subfiles containing
selection attributes, and create a TID list of the subtu;;les that satisfy all predicates involving
the subfile. Thereafter, using the le list, link one by one to the subfiles containing the

remaining selection attributes, until a TID list of subtuples satisfying the entire selection
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component of the query is obtained. Finally, link to subfiles containing projection attributes.

Each of the above two schemes may be thought of as a step by step procedure where
at each step an access ba(h (sequential searching, indexing, linking) is performed in order to
obtain the TIDs of subtuples that satisfy one or more of the equality conditions in the
selection component. Let us call the act of obtaining TIDs of subtuples that satisfy the
equality condition on an attribute the act of resolving the attribute. Hence each of the above
two schemes is a step by step procedure where at each step an index is used to resolve an
attribute, or a sequential search/link is used to resolve one or more attributes in one subfile.
We define the method of a query to be such a step by step procedure where at each step an
access path is used in order to resolve one or more attributes. .

A query usually has many different methods. For example, in the two schemes
above, we chose either to use all the indices, or to use none. We might have chosen to
resolve some of the indexed attributes (in the selection component of the query) by indexing,
while resolving the rest of the indexed and unindexed selection attributes by linking.
Similarly, when linking to subfiles, the subfiles wili be accessed in some sequential order (i.e.
one subfile is linked first, another subfile second, etc.) Each distinct subset of applicable
indices and each distinct subfile sequence constitute a method of the query. (Hence each of
the two schemes above may be translated into many methods as the sequence of linking to
subfiles is instantiated.)

There is a cost associated with a query’s method. Depending on what indices are
used and in what sequential order the subfiles are linked, the cost of answering the query will
be different. For example assume that in resolving the attributes of a query, two subfiles

have to be linked and when each subfile is linked, the size of the TID list will be reduced by
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an equal factor. Then it is better to link to the subfile with the smaller number of pages
before we link to the subfile with the larger number of pages. Although in the first method
the second link will result in more page accesses than the second link in the first method, the
first link in the second method will result in even more page accesses than the first link in the
first method. Therefore, it .ls important that a query processor consider all the methods of a
query and select the method which results in the smallest number of page accesses when
answering the query. The optimal method of a query will depend on the attributes in the
selection component of the query, the attributes in the projection component, the attribute
selectivities and lengths, the attribute partition, and on other database parameters. A query
processor will have to consider all these parameters when choosing a meﬁ\od for a query.

The purpose of this section is to present' how our attribute partitioning system goes
about choosing a method for the query made to the partitioned database. Before we present
our strategy for choosing methods, we delineate and describc the different phases of query
processing; the first phase is the phase in which the query processor decides v the optimal
method of the query.

Processing a- query made against a partitioned database with a single relation and in
which no joins or aggregate operators are involved consists of three phases: I- query

evaluation, 9- query resolution, and 3- query answering.

I- Query evaluation - Query evaluation is the process of finding the optimal method
for a query. In an environment where the file is partitioned and attributes are indexed this
means: |- selecting the indices to use in answering the query, which could be selecting all,

none, or some of the applicable indices, 2- selecting the sequence of accessing those subfiles
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that contain selection attributes not resolved by means of indi.ces. (Note that if no index is
utilized by the method, then the first subfile of the method will be sequentially searched,
while the remaining subfiles will be linked.) The agent for finding the optimal method for a
query (or finding a suitable method in case the optimal method is difficult to find) is the
query evaluator. The query evaluator chooses a method with the objective of minimizing
page accesses when answering the query. Later in this section, we will present the strategy

used by the query evaluator of our attribute partitioning system. The method chosen by our

query evaluator is mot necessarily the optimal method for the query, although we will show

that our strategy results in near-optimal methods. When a satisfactory method is found for a
query, we say that the query is evaluated.

Note that in our model of query evaluation, the query evaluator does not take into
consideration the projection attributes of the query. Strictly speaking, the query evaluator
should also take the projection attributes into consideration and the method of the query
should specify thé sequence of linking to the subfiles containing projection attributes. T his is
because the cost of aﬁswering a query is influenced by the sequence in which projections are
made. For example, if a subfile contains both selection attributes aﬁd projection attributes,
‘then it is beneficial that this subfile be linked last in the method; since if the subfile is linked
last. both the selection attributes may be resolved and the projection attributes may be
projected concurrently. If this subfile is not linked last, it will be linked once for resolving the
selection attributes and another time for projecting the projection attributes. (Note that each
time the subfile will be linked from a different TID list) We have eliminated projection
attributes from consideration when evaluating a query. We do this because: 1- considering

projection attributes will make the problem of query evaluation still more difficult, and 2-
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because we believe that the sequence in which the subfiles are accessed in resolving attributes.
has a more profound influence on the cost of answering a query than the sequence in which
the subfiles are linked for projecting attributes.

The query evaluation performed by our query evaluator does not entail any
input/output operations (i.e. page accesses). The query evaluator does not need to know
about the actual data contents of the subfiles; it only requires the various parameters
prepared by'the parameter acquisitor. The query evaluator evaluates a query by choosing a
method for it, utilizing some strategy. One such strategy is exhaustively enumerating all
possible methods for the query, estimating the cost of answering the query according to each
method (by using the file cost estimator), and then choosing the optimal method. We have
discarded this strategy because it is computationally intractable to consider all possible
methods for a query. This is especially true when making a query against a database

partitioned into many subfiles and/or if there are many indices available. The strategy we . ;

use for query evaluation is instead based upon choosing a near-optlmal method without
requiring extensive analysis of the query.

Query evaluation is the- only phase of query processing that is an optimization
process. The other two phases of query processing do not attempt to optimize the cost of
processing a query. Query evaluation is the only phase actually performed in our attribute
partitioning system. The next two phases are only performed by a database management
system when it actually processes a query. The reason our attribute partitioning system
evaluates .querics is that the method of a query is required in order to estimate the cost of
answering the query. The query evaluator our system supplies the method of the query to the

file cost estimator, which computes the cost of locating the selected subtuples (according to the

e e
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method) and the cost of retrieving the subtuples needed for projection. (The attribute
partitioning heuristics require the cost of answering all the queries in the database usage
pattern. See Section 4.4 for a detailed discussion on how the file cost estimator estimates the

cost of answering a query.)

2-  Query resolution is the process of locating the set of tuples that satisfy the
selection component of the query. A query is resolved when all the selection attributes are
resolved and a list containing the TIDs of all satisfying tuples is produéed. After a query is
evaluated, the query is resolved by accessing the indices specified In. the query's method and
performing the link to the subfiles in the order specified in the query’s method. In each step
of the method, the access path specified in the step is actually performed and a TID list is
created ofh subtuples that satisfy the equality condition predicate of the attributes that are to

" be resolved in that step. For_; conjunctive query, this TID list is intersected w.i-th the (old)
TID list that is the result of the preceding steps of the resolution process. If the query is a
disjunction, the union of the new TID list is taken with the old TID list. The final TID list
obtained from the last step of the method is the result of the query resolution phase. In the
process of query resolution, page accesses are made to secondary storage when performing an

access path.

3- A query is answered when all subtuples containing projection attributes t'hat are
pointed by the TID list are retrieved into primary memory and the attribute values of
attributes specified in the projection component of the query are extracted and returned.
This phase of query procéssing involves only input/output operations and no internal

processing. As previously mentioned, if the last subfile that is linked in the resolution phase
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contains projection attributes, then it is possible to start answering the query before the query
is completely resolved by extracting the projection attribute values from a subtuple when the
selection attribute values of the subtuple satisfies the predicate. In other words, the query

resolution and the query answering phases may overlap on the last subfile in the method.

In the rest of this section we will discuss the query evaluation strategy the query
evaluator of our attribute partitioning systerﬁ uses. Finding a satisfactory method for a query
in a partitioned environment is an blnvolved task. Unlike query evaluation in an
unpartitioned environment where the que;y evaluator has only to choose the optimal set of
applicable indices, a query evaluator in a'partitioned environment in addition has to choose
the sequence of linking to the subfiles. Our query evaluator is a heuristic evaluator that
finds a satisfactory method for the query without resorting to cost estimation. The method
obtained by the query evaluator is not necessarily the optimal method for that query,
although (in the course of our work) we have found it to be near-optimal. We will first
discuss the query evaluation strategy for conjunctive queries. Thereafter we discuss in what
way the strategy used for ciisjunctive queries is different.

Query evaluation consists of two stages. In the first stage, the query evaluator selects
the subset of applicable indices to include in the method. After this has been determineci. the
query evaluator has to choose a sequential order for linking to the subfiles that contain the

rest of the selection attributes.

I- Depending on the attributes in the selection component, their selectivities, and the
attribute partition, it may be beneficial to use none, all, or a subset of the applicable indices.

We believe that for most queries, using either none or all of the applicable indices will lead to
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satisfactory methods. Also in order to reduce the problem of query evaluation to a
manageable size, we will restrict our attention to.the above two choices.

One criterion by which we may judge the effectiveness of utilizing the indices to
process a query is the joint selectivity of the indexed attributes that occur in the selection
component of the query. Assume that: |- the indexed attributes are not jointly selective (i.e.,
the joint resolving power of the indices is low and a large fraction of the tuples will be
selected so that almost all the péges of a subfile that is linked thereafter have to be retrieved),
and assume that 2- a subfile that contains an indexed attribute also contains some other
unindexed selection attributes. Then such a subfile will most likely be accessed in its entirety
in order to resolve the unindexed attribute. Therefore, the .indexed attribute in the subfile
can be resolved by the link at the same time the unindexed attribute is being resolved and
with no extra cost. Hence when the indexed attributes are not jointly selective, using the
indices will not save in the number of pages accessed.

Thus, when the joint selectivity of the indexed attributes is not too lﬁw (which is the
case for the great majority of queries), the query evaluator will choose to use the full set of
applicable indices. This is.because the cost of resolving an attribute utilizing an index (if
available) on the attribute is usually a fraction of the cost of resolving that attribute by
linking to (or sequentially searching) the subfile containing it. This can be true even if the
subfile containing the indexed attribute contains other unindexed selection attributes and has
to be eventually linked: If the indexed attribute and the unindexed selection attributes
residing in' the same subfile as the indexed attribute are resolved simuitaneously by linking
from a TID list to their subfile, there may be more pages accessed than when the indexed

attribute is resolved first using the index, the TID list pruned and reduced (as the result of
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the indexing), and then the subfile linked to resolve the unindexed selection attributes.
Whether all the applicable indices are used or none of the applicable indices are
used, the query evaluator will have to choose a sequence for linking to subfiles containing

unresolved selection attributes. This is done in the second stage of query evaluation.

2- The second stage of query evaluation begins when the indices that are to be used
have been chosen. The query evaluator will then have to link to the subfiles containing the
unresolved selection attributes starting from the TID list that is the result of thé indexing.
Everytime a subfile containing an unresolved selection attribute is linked, the TiD list is
reduced to a TID list of tuples that satisfy the selection attributes in the subfile in addition to
~the previously resolved attributes. The subfiles containing unresolved selection attributes are
linked in su'ccession. producing successively more refined TiD lists. When all the subfiles
have been linked, the query is resolved and the TID list points to the selected subtuples. The
task of the query evaluator in this stage of query evaluation is to find the optimal sequence of
linking to subfiles. Note that the query evaiuator does not actually perform the linking. The
query evaluator only decides on the sequence of linking to the subfiles. It is the query
resolver that actually performs the linking (in the sequence decided by the query evaluator)
and retrieves the subtuples from the subfiles. The query evaluator may need to know the
expected cost of linking to subfiles when deciding on the sequence. An estimate of the
expected cost of linking to subfiles can be obtained without actually performing the linking.
In Chapter 4 we describe the function used for this cost estimation. This function translates
the number of tuple retrievals into the number of page retrievals and only requires the size of

the TID Jist from which the linking is performed. The size of the TID list is readily
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available as the product of the joint selectivity of the attributes resolved so far and the total
number of subtuples in the subfile (the joint selectivity of a set of attributes is obtained by
expression 361 from the individual attribute selectivities). Also note that if no index is
chosen in the first stage of query evaluation, the first subfile of the sequence is sequentiaily
searched (which is tantamount to linking to the subfile from a TID list containing all the
TIDs of the subtuples in the subfile).

The criterion for optimization in this stage of query evaluation is the minimization
of the total number of page accesses when answering the query. Depending on the sequence
chosen in this stage, the method of a query may be optimal or highly nonoptimal. Therefore
it 1s important that the query evaluator use a query evaluation strategy which guarantees that
the sequence chosen is close to optimal for most of the queries evaluated. As we mentioned
before, exhaustive enumeration of all k! possible subfile sequences (where k is the number
of subfiles containing unresolved selection attributes) is out of the quéstion because cost
estimating all of the sequences is computationally intractable. Due to the large search space
(of possible sequences) and the numerous parameters that have to be considered in choosing a
sequence, finding the optimal subfile sequence is a difficult task. However, we may
qualitatively arrive at desirable sequences by considering the following criteria when deciding
on the subfile sequence. 1- Subfiles that can have their selection attributes resolved without
incurring too many page accesses should be linked prior to linking to subfiles that incur
many page accesses. That is, at each step where a subfile is to be linked, the query resolver
should link to the subfile that results in the smallest number of page accesses. Equivalently,
this means linking to the subfile with the largest blocking factor (number of tuples per page),

since the subfile with the fargest blocking factor will result in the fewest pages accessed. (To
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see this, we refer‘ the reader to the discussion of the page access function presented in Chapter
4 and expression 4.2.Lb. In this expression, for fixed n and fixed r, A(nb,r) monotonically
decreases as b .increases) 2- The subfile that makes the joint selectivity of the resolved
attributes become hfghest (most selective) should be linked first. That is, consider the joint
selectivity of the unresolved selection attributes of each subfile and select the subfile with the
highest joint selectivity (i.e. the subfile that reduces the TID list the most) to be linked next.
In this manner, the overall jolnt‘selectlvity will tend to become high as early as possible,
causing the TID list of satisfying subtuples to be reduced earlier and fewer page accesses to
be incurred as the query resolver goes to the next step of the method. The above two criteria
can be conflicting requirements. A subfile may have low blocking factor but high joint
selectivity for unresolved selection attributes, while another subfile may have large blocking
factor but low joint selectivity.

Based upon the above criteria, we have developed five query evaluation strategies
(heuristics) for choosing the subfile sequence. Each strategy is based upon one of the above
criteria or uses a function of both criteria to rank the subfiles in some sequential order.
Needless to say, we do not expect that any single strategy would be able to find the optimal
sequence for all queries made to a database which is partitioned in any manner. However,
we requtre that the sequence chosen by a good strategy never to be far from the optimal
sequence. In order to compare the different strategies which we present, we have conducted a
set of experiments on each of the strategies. In order to determine to what degree the
determined strategies are aptimal and to what extent they may serve the purpose of query

evaluation, we have also applied the set of experiments to two other “control” strategies, and

compared the results with the results of the five strategies. The five strategies considered are:
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(a)

(b)

Least Page Access (LPA) - In this strategy, the subfile that results in the least number of
page accesses is linked. That is, when there are a number of subfiles containing
unresolved attributes, the query evaluator chooses to link to the subfile that would result
in the least number of page accesses. This Is in accordance with the first of the two
ordering criteria’ discussed above. Intuitively, linking the first few subfiles will result in
not too many page accesses, and as the subfiles that incur many page accesses are linked
further on, the joint selectivity of the attributes resolved so far will be sufficiently high
such that not too many page accesses will be made to resolve the remairﬁng attributes.
As mentioned above, this strategy amounts to sequencing the subfiles according to

decreasing blocking factor.

Least Page Access by Pairs (LPAP) - In this strategy, the query evaluator looks at all
ordered pairs of subfiles. For each pair, the query evaluator computes the cost of linking
to the first subfile of the pair and adds to it the cost of subsequently linking to the second
subfile. The computed cost for all the pairs is compared and the query evaluator selects
the pair with the least cost to be the next two subfiles that are linked in the method.
Note that when the query evaluator computes the cost of each ordered pair of subfiles,
the second subfile will be linked from a subset of the TID list from which the first subfile
is linked. This is because after linking to the first subfile, the TIDs of subtuples that did
not satisfy the selection attributes in the first subfile are pruned from the TID list.
Thereafter, the query evaluator reapplies the LPAP strategy to the remaining subfiles to
select the next two subfiles that are to be linked in the method. The reapplication is

repeated until all the subfiles have been sequenced. Everytime a pair of subfiles is
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(c)

(d)

 \—

selected, the TID list is reduced to a smaller TID list of tupl& that in addition satisfy the
selection attributes of the ;;alr of subfiles just selected.

The LPAP strategy is similar to the LPA strategy in that the criterion for
sequencing is the number of page accesses. However, this strategy looks at two subfiles at
a time and also considers the joint selectivity of the unresolved selection attributes of the
first subfile in choosing the subfile pair. Therefore, this strategy will always result in
better methods compared to the methods chosen by the LPA strategy. Observe that if
there are only two subfiles that have to be sequenced in the second stage of query

evaluation, then this strategy will find the optimal sequence.

Highest Subfile Selec;ivity (HSS) - In this strategy, subfiles are sequenced according to
their resolving power: The subfile containing unresolved selection attributes with
highest joint selectivity is chosen to be linked first, and the subfile with the second
highest joint selectivity is linked second, etc. This is in accordance with the second
ordering criterion discussed above. The idea here is to reduce the size of the TID list as

fast as possible.

Highest Selectivity and Least‘ Pages (HSLP) - It is desirable to order the subfiles both
according to the joint selectivity of the selection attributes and according to the number
of pages accessed when linking to them. The previous strategies chose one or the other
as the ordering criteria. This strategy combines the two criteria by ordering the subfiles
according to the (increasing) product of the joint selectivity of the selection attributes and
the number of page accesses incurred in linking to the subfile; the subfile with the least

product is selected and the strategy Is reapplied to the remalnlﬁg subfiles. Everytime the

-
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strategy is applied to the subfiles, the subfile with the least product is selected and the
number of subfiles that are to be sequenced is reduced by one. This strategy is based
upon the assumption that conSidering both criteria will result in a superior method
compared to a method that is found using a single criterion. Note that in this strategy,
everytime a subfile is chosen, the TID list is reduced to reflect the resolution of the
attributes in the newly chosen subfile (i.e. the joint selectivity of attributes resolved so far
is multiplied by the selectivities of selection attributes in the chosen subfile). Thereafter,
when choosing among the rlemalnlng subfiles, the number of page accesses incurred in

linking to a subfile is computed from this reduced TID list.

Highest Selectivity and Least Pages by Pairs (HSLPP) - This strategy is like the Highest
Selectivity and Least Pages strategy except that all ordered pairs of subfiles are compared
together. For each pair, the number of page accesses (computed in the same way as in
the LPAP strategy) is multiplied by the joint resolving power of all the selection
attributes in the pair of subfiles. The pair with the smallest product is chosen. The
strategy is then applied to the remaining subfiles. Compared to the HSLP strategy this
strategy performs a search of depth two and hence will result in superior methods than

those found by the HSLP strategy.

We have conducted a number of experiments on the above five subfile sequencing

strategies. The experiments varied over two different sets of query usage patterns, two
partitions, three sets of attribute lengths, and three sets. of attribute selectivities. The results
given in the table below are the average for each strategy's performance. The two strategies

Exhaust and Random are "control” strategies against which the other strategies are to be
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compared. The Exhaust strategy finds the optimal sequence of subfiles by exhaustively
enumerating all sequences, and selecting the sequence which results in the least processing cost
for the query. The Random strategy finds a sequence for the subfiles by randomly choosing
one of the possible subfile sequences, in what amounts to a non-strategy. The first row of
Table | is the ratio of the average page accesses for each strategy with respect to the page
accesses of the Exhaust stra-tegy.\ The second row is the ratio with respect to the Random
strategy (for the same set of experiments).

The performance of the Least Page Access by Pairs strategy was very close to the
optimal performance. By the performance of a strategy we mean the cost of answering the
queries in the usalgc pattern when each query is evaluated according to the strategy. The
Least Page Access strategy also compares favorably to the other strategies. The performance
of the strategies that considered the joint selectivity were not as good as the LPAP strategy.

Even the LPA strategy, which only considers the number of page accesses, performed better

Exhaust Random LPA LPAP HSS HSLP HSLPP
- 1.0 1.425 1.103 1.004 1.288 1.246 1.055
0.701 1.0 0.773 0.704 0.903 0.875 0.740

Table 1  The results of different query evaluation strategies.
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than the HSLP strategy that considered both the page accesses and the selectivity. We
attribute this partly to the fact that after the first subfile has been linked, the joint selectivity
of the resolved attributes has become high enough so that the second subfile incurs
comparatively fewer page accesses than the first subfile. Thus it becomes important that the
first subfile incur as few page accesses as possible.

The LPAP strategy is very closé to optimal and may be considered as the choice
for a query evaluator in a partitioned database en_virénment. However in our work, we have
chosen the LPA strategy because of the following reasons. 1- The LPA strategy is
near-optimal. 2- The LPA ‘strategy is computatioﬁally efficient compared to all the other
strategies. Since the number of pages accessed in linking from 2 TID list to a subfile is
inversely proportional to the subfile’s blt;cking factor (again, refer to Section 4.2 and
expression 4.2.I:b), a query evaluator based on the LPA strategy initially has to order all the
subfiles of a partition according to decreasing blocking factor. For each partition, the subfiles
of the partiﬁon need to be ordered only once. Thereafter when evaluating a query, the query

evaluator sequences the subfiles that contain unresolved selection attributes in accordance

-with the precomputed sequence based upon the subfile blocking factor.

The figures of Table | are performance averages over different queries, partitions, -

attribute lengths, and attribute selectivities. Obviously, some strategies perform better than
others for certain queries and partitions. It was observed that in general, as the number of
attributes in the selection components of queries increases, the performance of each strategy
deteriorates with respect to the Exhaust strategy, with the strategies that consider only a

single subfile (the LPA, HSS, and HSLP strategies) deteriorating the most. Also, it was

observed that the larger the number of subfiles in the partition, the less optimal the
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performance of the various strategies.

The above discussion concerned conjunctive queries. For disjunctive queries, the
query evaluation strategy used is very similar to the strategy used for conjunctive queries. If
the indexed selection attributes are highly selective, and if the subfile containing the indexed
selection attributes also contain unindexed selection attributes, then with great likelihood, this
subfile will be searched in its entirety and using indices will not be very effective and may be
avoidéd. Otherwise, the full set of applicable indices is used. The subfile éontaininé
unresolved selection attributes are then sequenced according to the LPA strategy (ie.
according to decreasing blocking factor). For a dlsjunctive query, the joint selectivity of the
resolved attributes is computed according to expression 36.2 from the individual attribute
selectivities. |

A disjunctive query is resqlved differently from a conjunctive query in the query
resolution phase: When a TID list is obtained by linking to a subfile, the union of the new
TID list is taken with the old TID list. The resulting TID list is then complemented to
obtain a list of subtuple TIDs that do not satisfy any of the attributes resolved so far. This
complemented TID list is used when linking to the next subfile in the method.
Complementing a TID list is accomplished by repeatedly generating subfile TIDs vsing

expression 3.2.2 and checking to see that a generated TID does not occur in the TID list.

After the query evaluation phase, the query’s method is passed to the query resolver
which actually prbduces the TID list of selected subtuples. The TID list is then used for

linking to subfiles containing projection attributes. Depending on the transaction type, the

query answerer does the following:
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Query - The subfiles containing the projection attributes are linked from the TID list
constructed at the query resolution phase. The selected subtuples are retrieved from the

subfiles, and the values of projection attributes are extracted and returned.

Update - The selected subtuples are retrieved from subfiles containing projection
attributes (as for a query), all attribute values to be updated are updated (in primary
memory), and the subtuples are written back in their previous location. An update
incurs as many page accesses as a query in t);e resolution phase, and twice the number of
page accesses in the answering phase. If any of the updated attributes are indexed, then

the affected .indices are maintained as appropriate.

Deletion - All co-subtuples of the selected tuples are retrieved, marked deleted, and
written back in their previous locations. A deletion incdrs the same cost as a query in the
resolution phase, and twice the cost of retrieving all co-subtuples (i.e. the entire tuple) of
selected tuples in the answering phase. The affected indices are maintained as
appropriate. ‘An overflow garbage collection maf ensue if there are too many deleted

tuples in the file.

An insertion is different from the other transactions. Assuming that the unused
tuples are uniformly scattered throughout the file, inserting r tuples in the file incurs
twice the number of page accesses required for retrieving r uniformly distributed

subtuples from each of the subfiles. This number is computed from the page access

- function of Chapter 4. If the unused tuple slots in the file have been exhausted, then the

excessive inserted tuples are appended to the end of the file. In this case, the number of

o
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page accesses incurred for each subfile will be the number of appended subtuples divided

by the blocking factor of the subfile. Indices are maintained as appropriate.

We note here that the optimal attribute partition is independent of index
maintenance, and the cost of maintaining the indices is incurred regardless of the choice of
partition. Also we have taken the two problems of index selection and attribute partitioning

as separate, assuming that the set of indexed attributes is fixed. Therefore, index

maintenance cost will not enter our objective cost function, and we may eliminate it from

further consideration.

6. Parameter Acquisition

The Parameter Acquisitor monitors the database management system and collects

statistics both on the usage pattern and on the response of the database management system

to the queries. The statistics collected are used to forecast database and usage pattern
parameters for the next time interval. A time interval is the time span between two ;
consecutive repartitioning points. The forecasted parameters will be used by the file cost
estimator and the attribute partitioning heuristics at the repartitioning point marking the end
of the time interval. Monitoring the database management system is a real time activity; it
has to be performed while the database management system processes transactions. For this 1
reason. only those statistics that can be inexpensively acquired should be collected. Also, the
statistics collected must be succinct and require little storage for their preservation. The

statistics collected for the purpose of attribute partitioning fall into four general classes:
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Database Usage Statistics - For each query made to the database, the type of the query is
stored in a table of query types. The type of a query is the set of attributes in the
selection component and the set of attributes in the projection component and a flag
indicating whether the query is conjunctive or disjunctive. Consequently, all queries with
the same attributes (but with possibly distinct attribute values in the equality condition
predicate)vare clustered together in the same entry of the table. (A query type may be
encoded as a bit map for the sake of succinctness) Our assumption that the fraction of
tuples satisfying an equality condition predicate depends only on the selection attributes
and not on the attribute values in the selection component makes this clustering scheme
possible. The number of queries that are clustered in the query type is recorded along

with the query type in the table entry.

Average Relation Size and Average Blocking Factor - The number of tuples in each file
is needed for the purpose of cost analysis. This statistic is continuously updated by the
number of tuples inserted or deleted so that it reflects the instantaneous size of the file.
The blocking factor of the file (the number of tuples per page) is also required for cost
analysis. The blocking factor at a certain point in the time interval is the number of
tuples in the file divided by the number of pages in the file at that point in the time
interval. - The number of pages in the file is also updated continuously as pages are
allocated for inserted tuples or as pages are released after garbage collection, so that it
reflects the true state of the database. Since tuples will pe continuously inserted and
deleted, while some tuples will be temporarily unused (until a tuple is inserted .in place of

a deleted tuple or until the next overflow garbage collection occurs), a fixed value for the

L —— | —— .
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blocking factor over the time interval will at best reflect an average of the true blocking
factor. The average blocking factor parameter is obtained by averaging the blocking

factors observed at a number of points in the time interval.

3-  Attribute Selectivity Statistics - This statistic is the fraction of tuples that have
historically satisfied an equality condition predicate on the attribute. To compute the ’
selectivity of an attribute, the parameter acquisitor records the number of times the
attribute occurs in equality condition predicates of queries, and for each such query, the !
parameter acquisitor records the fraction (or an approximation thereof) of tuples that
satisfied the equality condition. The average of these fractions is thus the attribute
selectivity measure. Below, we describe how the fraction of selected tuples is determined.

Let o; be the fraction of tuples that satisfy an equality condition predicate

involving the ith attribute and occuring in the jth query. The attribute will be resolved

by either sequential searching, indexing, or linklﬁg. If the attr‘ibute is resolved by
sequential searching (i.e. the subfile containing the attribute is searched in its entirety),
then o, can be precisely calculated as the ratio of the numbgr of tuples satisfying the
equality condition predicate n, to the total number of tuples. If the attribute is resolved
by indexing, then a TID list will be obtained that points to the selected tuples, and @ is
precisely the ratio of the size of the TID list to n. If the attribute is resolved by linking,
then @, has to be calculated in a reduced tuple space and then extrapolated to the entire
space.  This is because linking is performed from a reduced set of tuple TIDs, which
have been identified beforehand, in order to get a further reduced set of tuples that

additionally satisfy the predicate. Depending on whether query j is conjunctive or J
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disjunctive, the estimation of @, will be done as follows.

(a) Suppose the equality condition appears in a conjunction of L equality conditions of {

the form:

where C; is an equality condition involving attribute a;,. (The order of the equality
conditions above reflects the order the predicates are sequenced in the query's method.)
. Let ng be the total number of tuples in the relation, and let n; be the number of tuples
that satisfy .C, ACy A A C;. (Note that these numbers ‘are readily available from the
query processor when it resolves the transaction.) o, for query j can then be

approximated as:

oy = nilniy

(b) Suppose the equality condition appears in a disjunction of L equality conditions of

the form:

where C; Is‘an, equality condition involving attribute a;. (The order of the equality

conditions above reflects the order the predicates are sequenced in the query's method.)

Let ng be the total number of tuples in the relation, and let n; be the number of tuples
that satisfy ~Cy A -Cy A ....A~C,; AC;. (Again, these numbers are readily available
from the query processor.) The fraction of tuples satisfying C; of query j can then be

approximated as:
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%y = ni/ng-3 _ ™

The attribute selectivity s; for attribute a; may now be computed as the average of

o, foralljeQ:

1
s = —|"E|¢o'u

where Q is the set of queries made to the database during the previous time interval.
By avefaging the fraction of tuples satisfying the actual occurences of an attribute in the
queries, we have taken into consideration both skewness in the distribution of attribute
values (for the attribute) in the file as well as skewness in the distribution of attribute
value occurences in queries.

The selectivity of an attribute should change if either the distribution of its values in
the file changes, or if the values in the equality condition predicates of queries involving
the attribute change. Since the above changes occur when tuples are inserted, deleted, or
updated and also as the database usage pattern evolves, the attribute selectivity measures
need to be continuously updated to reflect the recent and more accurate information.
The attribute selectivity measure is kept up to date by maintaining a running average of
each attribute selectivity, as the fraction of tuples satisfying an equality condition
predicate on the attribute is calculated in the process of query resolution. Every time a
search is done on an attribute of a file (or subfile), the attribute’s selectivity is updated by
the weighted average of the old selectivity and the fraction of the tuples selected in the

search.

After the individual attribute selectivities have been obtained, the joint conjunctive
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or disjunctive attribute selectivities may be computéd from them.. Our assumption of
independence among attribute value occurences in tuples leads us to simple formulas for
the joint selectivities. The expected fraction of tuples that satisfy a canjunction of
equality conditions simultaneously is equal to the product of the individual expected
fractions that satisfy each equality condition. The joint conjunctive selectivity of a set of

attributes 1, each with selectivity s; is:

(3.6.1) I, s
Similarly, the expected fraction of tuples that satisy a disjunction of equality conditions
simultaneously is the complement of the fraction expected not to satisfy any of the
equality conditions in the disjunction. The joint disjunctive selectivity for a set of

attributes 1, each with selectivity s; is:

(3.6.2) 1-m,,,0-s)

The last statistical information needed is the performance cost of the partitioned database
in the current time interval. This is the cost (in terms of the number of page accesses)
incurred when the database management system answers all the queries in the usage
pattern. This statistic is the sum total of the number of page accesses made in answering
queries since the last repartitioning point. The parameter acquisitor updates this figure
everytime a query is made to the database. This statistic is used to detelimine the extent
to which the partitioned database performance cost comes close to the performance cost

that had been estimated at the previous repartitioning point. If the partitioned database
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performance cost is not within a reasonable distance from the performance cost that was
forecasted for it, then it may be concluded that the current usage pattern no longer
reflects the forecasted usage pattern and that the current attribute partition is no longer

suitable. If the database performance is diagnosed as such, then a repartitioning of the

database may be initiated.

When repartitioning is initiated at a repartitioning point, the parameter acquisitor
takes the statistics collected in the time interval since the last repartitioning point (and also
the statistics collected during previous time intervals) and forecasts parameters for the time

interval up to the next repartitioning point. Specifically the parameter acquisitor forecasts

the following parameters.

@) The frequency of occurence of each query type.
(b) The size of the relation and the average blocking factor.
(c) The average selectivity of each attribute.

A thorough discussion of the exponential smoothing forecasting technique that
should be used for the purpose of predicting the above set of parameters appears in [I5) and
(7). we will .only give an outline here. Intuitively, exponential smoothing uses a weighted
moving average that is based on two sources of evidence: the most recent observation and
the forecast made previously. The new forecast is equal to a percentage (known as the
.;moot hing constant) of the recent observation plus the .complement percentage of the previous
forecast.  Exponential smoothing has a number of advantages including simplicity of
computation, minimal storage requirements, adjustability for responsivéness, and

generalizability to account for trends. A variant of exponential smoothing known as adaptive
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forecasting may also be used. This technique takes trends in the parameters into account. It
is an efficient technique and more reliable than exponential smoothing, and may be preferred
to simple exponential smoothing in some cases. For a thorough discussion of the different

forecasting techniques, the reader is referred to the two works mentioned above.

il A Repartitioning Points

Database repartitioning points may be determined in several ways. Repartitioning
may either be initiated by the database administrator whenever the database administrator
deems necessary, or may be initiated by the parameter acquisitor. One way to have the
parameter acquisitor itself initiate repartitioning is to require it to prepare at each
repartitioning point a forecast of the usage pattern and the database parameters for a
number of periodic checkpoints into the future. For each checkpoint, the performance cost of
the partitioned database is forecasted. During the course of monitoring .the database
management system and the performance of the partitioned database, whenever a checkpoint
is reached, the parameter acquisitor compares the observed performance cost with the
performance cost forecasted at the previous repartitioning point for that checkpoint. If the
observed performance is inferior to the forecasted performance by a margin that is not
acceptable, the parameter acquisitor may conclude that the current partition is no longer
suitable for the current usage pattern and should then initiate repartitioning. When
repartitioning is initiated, forecasts of the usage pattern and database parameters are
prepared for a number of periodic checkpoints into the future. (Finding the optimal set of

checkpoints is itself another database optimization problem. We refer the reader to a brief
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discussion of the problem of optimal determination of repartitioning points presented in

Section 7.1) The attribute partitioning heuristics are then invoked to find a suitable partition
that is optimal or near-optimal for the forecasted usage pattern. If the proposed partition is
different from the current partition, the current attribute partmoﬁ is also cost estimated for
the forecasted usage pattern. If the cost of the proposed partition is less than the cost of the

current partition by a margin that justifies repartitioning, the repartitioning of the database

is carried out.
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CHAPTER 4

COST ANALYSIS AND THE FILE COST ESTIMATOR

In this chapter we will analyze the cost of resolving and answering a query made to
the database and describe how the file cost estimator derives the total system performance cost
for a given partition and a set of queries. (Henceforth, we will use the term partition
performance cost to mean the performance cost of the database management system
partitioned in a specified way, in respanse to the queries in the usage péttern. Also, we will
use the term evaluating a partition to mean the derivation of the partition's performance cost
by the file cost estimator.) Each of the attribute partitioning ht.eurlstics repeatedly calls upon
the file cost estimator to evaluate partitions they propose. Thereafter, fhey select the partition
with the best evaluation and based on it propose another set of partitions. Each proposed
partition is cost evaluated by the file cost estimator and the partition with the best evaluation
is selected. This process of deriving a set of partitions and selecting the best partition is then
repeated. By this process, the heuristics try to propose partitions that result in successively
better evaluations. So in a sense, the file cost estimator may be viewed as our objective cost
function, which the heuristics proceed to minimize by proposing better‘ and better partitions.
| We will assume throughout that internal processing costs (CPU costs) are
insignificant and the performance of the database management system we model is bounded
by input/output operations (page read and writes) and hence that page accessing cost

dominates all internal processing costs. Internal processing costs include the costs of query
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evaluation (assumed to be negligible) and of obtaining intersections and unions of TID lists
in query resolution. We assume that forming the intersection and union of TID lists can be
entirely done in primary memory and so does not incur any page access to storage devices.
Accessing the index of an attribute and retrieving the TID list of the index, do incur page
accesses. Therefore, we include these costs in computing the partition's performance cost.

We do not consider da;ta storage costs in the partition’s evaluation. This is because
if page breakage at tl;e end of a subfile is ignored, the amount of storage required by every
attribute partition of a'ﬁle is the same. No matter how the file is partitioned, the storage area
required for that file will be the same as that for the one-file partition plus an insignificant
number of pages due to page breakage. When repartiticning an attribute partition, for each
subfile at most one page can remain unfilled; the change in storage requirement from one
partition to another cannot exceed the maximum number of subfiles in the two partitions.
Since this figure is usually insignificant compared to the total number of pages required to
store the data, we may safely ignore page breakage and hence storage costs from
consideration in the evaluation of a partition.

Based upon the above assumptions, the performance cost of a partition will be the
cost of accessing the subfiles in order to answer the queries in the usage pattern. Since page
access cost is proportional to the number of page accesses, our cost analysis will solely be
concerned with the number of page accesses incurred in answering a query. Before we
discuss the file cost estimator, we give the page access analysis for each of the sequential

search, linking, and indexing access paths.
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1. Sequential Search

If a query's method does not specify any index to be searched (this happens if none
of the query’s selection attributes are indexed, or if the query evaluator deems the indices
useless for resolving the query), then the first subfile of the method has to be sequentially
searched in its entirety (the rest af the subfiles will be searched using links). In a sequential
search, all the pages of the subfile ar? retrieved, and their subtuples are matched against the
attribute value specified in the query selection predicates, and the TIDs of qualifying
subtuples are stored in a TID list. If F; is the' subfile that is being sequentially searched, n
the number of tuples in the subfile, and 'b. the blocking factor for F, then.the number of

page accesses will be equal to the number of pages in the subfile:
n/o;

The blocking factor b; is equal to the system page size S divided by the length of the

subtuple. If A; is the set of attributes in subfile F;,and |, the length of attribute a; then:

b= /2, \ b)

2. Tuple Retrieval Using Links

Assume that we have a list of TIDs pointing to the subtuples of a subfile. We want
to compute the number of page accesses incurred in retrieving the subtuples with TIDs in the
list. (Such a TID list might have been obtained either by a sequential search on a subfile, by

following a previous link to another subfile, by indexing on-an attribute, or by forming the

intersection or union of TID lists obtained in any of the previous ways.) In any case, an
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estimate of the number of TIDs in the list (which is equal to the number of tuples to which
they point) is readily available from the joint selectivity of the attributes that have been
resolved so far, whose resolution has resulted in this TID list. If s is the joint (conjunctive
or disjunctive, depending on whether the query is conjunctive or disjunctive) selectivity of all
: attributes that have been considered in the creation of the TID list, and if n is the number
of tuples in the subfile, then the length of the TID list is approximated by s #n .

Our cost criterion for performance optimization is the number of page accesses: In a
paged memory environment in which tuples are blocked together in pages, we have to
translate the expected number of tuple accesses to the expected number of page accesses. The
expecied number of pages to be accessed is always less than or equal to the number of tuples
to be accessed because two or more tuples may reside on the same page. In our model of the
database management system, finding the expected number of page accesses is relatively easy
because of the followjrig properties, which hold as a result of the assumptions we have made

about our file and index models:

I- The TID list is ordered. Whether the TID list is obtained by sequential searching,
linking, or indexing it is ordered (i.e. sorted in increasing or decreasing value) and
subsequent intersections and unions preserve this ordering. This property of the TID
hist assures that each page of a subfile is retrieved at most once (since the tuples are
retrieved in the sequence they reside in the subfile. This property also eliminates the
need for large buffer areas in primary memory to accomodate input/output operations,

since at any instance, at most one page will be in primary memory.)

n

The TID list is not redundant; i.e, no TID appears more than once in the list.
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3- The TIDs are distributed uniformly over the TID space. This property is assured by
our assumption in Section 3.4 of independence among the occurence of attribute values
in tuples. Hence all TIDs appear with equal probability in the TID list, and the tuples

they point to-are scattered uniformly throughout the subfile.

These three properties of our model of tuple access makes the translation of the
number of tuple accesses to page accesses relatively simple. Based upon these three
properties, Yue and Wong [40] have derived the number of page accesses from the number

of tuple accesses in terms of the recurrence relation 4.2.1.

(4.2.1.9) } - A(nb0) =0

n
Alnb,sr) + —
n-r n-r

(4.2.1b) A(nbyr+l) =

In the above formula, A(nbyr) is the expected number of .pages accessed from a file (subfile)
with n tuples (subtuples) and b tuples (subtuples) per page when retrieving r tuples
(subtuples). (Note that r=s#n in the cost analysis above) The computation of 4.2.1
involves on the order of r multiplications and r divisions, and is therefore quite expensive
to compute. By the technique of generating functions, we have solved the recurrence relation

4.21 and have obtained the closed form solution 4.2.2 for the number of page accesses.
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n
(4.2.2) Aln,b,r) = — [1 -
. b

i

(%)

The above formulation has the advantage over the recurrence relation that it can be
computed more efficiently. A detailed derivation of the formulation 4.2.2 (hereafter called the
page access function) may be found in Appendix 1 of [7). (Waters [36) and Yao [37) have also
independently arrived at the page access function using the hypergeometric distribution of
probability theory) The formulation 42.2 also admits of a simple i-nterpretation. For an
arbitrary page in the file, the probability that it does not contain any of the r selected tuples
is the number of ways of choosing b tuples from n -r tuples, divided by the number of
wa.ys of choosing b tuples from n tuples. Hence the expected number of page accesses will
be the number of pages (n/b) times the complement of the above probability.

During the course of ‘attribute partitioning, the attribute partitioning heuristics
repeatedly call upon the file cost estimator to evaluate partitions. Every time the file cost
estimator evaluates a partition, it has to estimate the cost of answering each of the query types
in the table of query. types. Estimating the cost of answering each query type involves
computing the number of page accesses incurred in accessing each of the subfiles that
contains an attribute in the selection or projection components of the query‘type. Since for
each such subfile, we have to compute the page access function, it is important that the page
access function be computed as efficiently as possible. The page access function 4.2.2, if
expanded, will take on the ord‘er of min(b,r) multiplications per computation. Although the

page access function is much more efficient in computation than the recurrence relation 4.2.1
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(since b is usually much smaller than r), computing the page access function in its exact
form 4.2.2 is still too costly for our purposes. Instead, we use the following épproximation to

the page access function (suggested by Michael Hammer) in our file cost estimations:

b log(l - ———)
@ n - (b-1)/2
(4.2.3) A(nbr) & ; [l -e ]

The approximation 4.23 has proven to be very fast, taking only a constant number of
multiplications and divisions per computation, and has the advantage of extreme accuracy for

almost every combination of n, b,and r [8)

3. Index Accessing and Tuple Retrieval

Using the index of an attribute of a file (or subfile), in order to retrieve tuples that
have a given value for that attribute, is composed of three steps. The first step is accessing
the non-leaf pages of the index to get a pointer to the TID list of tuples with the given
amibqte value. The second step consists of retrieving this TID list. The third step is
retrieving the tuples that the TIDs point to by retrieving the pages they reside in the subfile.
A detailed analysis of indexing costs appears in Chan [7] and we will not reproduce it. We

shall only repeat here the final expression derived in (7). The average cost of using an index

is:
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M08 | ooy [0+ L/SHUSIT + T(sen +L)/yST + Aln, b, s8n)
n

where n = number of tuples in the file

o

= blocking factor of the indexed attribute’s subfile

-

= length of the indexed attribute

7]

= selectivity of the indexed attribute
" u, = average fraction of index node page utilization

uy = average fraction of index leaf page utilization

S = system page size.
The three terms of the expression are the respective costs of the three indexing steps. The
last step of index use, ie. retrieving the qualifying tuples, actually occurs if this attribute is
the only one whose index is used in the method of the query. In all other cases, the
intersection or the union of the TID list obtained from the second step of indexing is taken

with other TID lists before the tuples that are pointed to are retrieved.

4. File Cost Estimation

The file cost estimator evaluates a partition proposed by the partitioning heuristics
and computes. the performance cost for that partition. The performance cost of each
proposed partition is estimated by iterating ﬁver the queries in the.table of query types and
estimating the cost of answering each query. (This table is provided by the parameter
acquisitor and is a forecast of the database usage pattern for the next time interval) Each
query type in the table is passed for evaluation to the query evaluator. The query evaluator

uses the Least Page Access strategy and thereby produces a near optimal method for the

T
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query. (The Least Page Access strategy, as described in Secticn 3.5, sequences the subfiles that
are to be linked according to decreasing subfile blocking factor.)

The file cost estimator receives the method for the query. If any index is specified to
be accessed by the method, the file cost estimator uses the cost expression for index use to
'compute the cost of accessing the indices. If no index is specified by the query's method, the
first subfile in the method has to be sequentially searched and the cost of the search is the
number of pages in the subfile. (The reason that the first subfile must be sequentially
searched is that initially there is no TID list on hand that would restrict the search to certain
pages of the subfile. Sequential searching may be viewed as a limiting form of linking, where
each page of the subfile has to be retrieved.) In either case, i.e. if indices are used or the
subfile 1s sequentially searched, the joint selectivity of the attributes resolved so far can be
readily computed from expressions 3.6.1/3.6.2, depending on whether the query 1s conjunctive
or disjunctive. (The set of attributes 1 in 3.6.1 and 36.2 is the set of attributes resolved so
far) The remairing subfiles of the method are sequenced and are to be linked in the
sequence specified by the method Using the approximation to the page access function, the
file cost estimator corhputes the cost of accessing the first of these subfiles. (Observe that r,
the number of tuples to be retrieved, equals, the product of the joint selectivity of attributes
resolved so far and the number of tuples in the subfile n). The access cost estimated for this
subfile is then added to the cost of indexing/sequential searching. The file cost estimator
then derives the new joint selectivity figure by including the old joint selectivity figure and
B lecnnes of all the antnibutes resolved in this step of the method in expression 36 1/36 2

4l w e cemmmining subfiles of the method in the sequence specified is then

e e e e aaee way The comt of aceessing fach sublile s
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added to the accumulated cost, and the joint selectivity is updated according to the
selectivities of the newly ‘resolved attributes. When no subfile remains in the method, the file
cost estlmafor will have computed the cost of resolving the query and also the joint selectivity
of the query (and hence the number of tuples selected by the query). The file cost estimator
then computes the cost of answering the query. Using the approximation to the page access
function and the estimate of the number of tuples that are selected by the query, the file cost
estimator estimates the number of pages that need to be retrieved from each subfile that
contains any of the projection attributes. The only subfile containlng.a projection attribute
that does not incur page retrievals in the answering phase is the last subfile in the method of
the query. This is because the projection attributes in this subfile can be retrieved as the
selection attributes of this subfile are being resolved. The cost accumulated in the resolving
and answering phases is then summed to give the cost estimate for the query. A query's cost
estimate is then multiplied by the frequency of the query type to ge; the total cost estimate for
that query type. Finally, the sum of these weighted query cost estimates is the performance
cost of the partition (in the context of the forecasted usage pattern).

The file cost estimator is called repeatedly in the process of attribute partitioning. It
Is imperative that the file cost estimator be implemented efficiently. Note that by clustefing
all queries with the same type into one entry of the query type table, we have already reduced
the totality of the queries in the usage pattern into a relatively smaller set of query types.
Hence, the number of the iterations required by the file cost estimator has already been
reduced. Although further clustering measures like the "nearest centroid” clustering scheme
of Belford [5] could be employed to still reduce the number of query types, the degree of

query clustering we have employed has proven sufficient for our purposes. Tests show that




Chapter ¢ -83- Cost Analysis and the FCE

the file cost estimator (as programmed in the programming language MDL [26] on a PDP-10)
takes somewhat less than a. second of processing time to estimate the cost of a set of 100
conjunctive and disjunctive query types. Furthermore, when queries are additionally
Clustered, correlation information about attribute occurences in qQueries will be inevitably lost,

and estimates based on rlustered queries will be less reliable. Therefore further query

clustering is not advisable.

b. Repartitlonlng Cost

The cost of repartitioning the attribute partition is computed as follows: if at a
repartitioning point, the new partition has subfiles Frats = s F in common with the old
partition, then only subfiles Bl s '. Fi  have to be retrieved, reorganized, and written back

On secondary storage. The total page accesses required to do this will be twice the number of

pages in each subfile:

2z

i-l..qkrn/bn

The above cost is based on repartitioning-all the subfiles Fy, ....., F, simultaneously. le., the

pages of each subfile are read in sequence along with the pages of the other subfiles, the

attribute values are then transferred from one subfile to another, and finally the pages are

written back onto secondary storage. Each page of a subfile is thus accessed only twice, once
for reading and once for writing.

At each repartitioning point, the performance cost of Athe partition proposed by the

partitioning heuristics for the next time interval has already been computed The

performance cost for the current file partition for the next time period is then computed. The
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two are compared and if the proposed partition offers a performance cost reduction greater

than. the cost of repartitioning, then the file should be reorganized according to the proposed

partition.

et
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CHAPTER b

THE ATTRIBUTE PARTITIONING HEURISTICS

In this chapter we present a number of heuristics for partitioning the attributes of a
file. Each attribute partitioning hgﬁrlstlc starts with a supplied partition and derives from it
a superior partition. (If the heuristic is not able to improve on the supplied partition, the
heuristic will terminate and return the supplied partition as its result) Therefore it is
possible to apply the attribute partitioningv heuristics in succession, with éach heuﬁstic
starting with the resuitant partition of tﬁe preceding one and producing a partition that is as
good as the preceding partition. We say that a heuristic is relevant to a partition if its
application will result in an improved partition.

We have performed a number of experiments on the attribute partitioning heuristics.
The overall results of the experimentation performed on each heuristic is included in the
discussion of that heuristic. Since our most extensive program of experimentation was
applied to our main heuristics, we have devoted Section 7 ‘of the chapter entirely to a detailed
discussion of that subject. Before we proceed to describe the heuristics, we will first establish
the necessary terminology for the subsequent sections.

Let P be a partition of the set of attributes A of a file into disjoint subsets. Each
subset of A is termed a block of attributes; the ith block of the partiti;m is denoted by A, .
A block of attributes may be viewed as a representation of a subfile; i.e, when a file is

partitioped according to a given partition P, each block A; of P is directly implemented by

P P e
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a subfile with attributes drawn form A;. If M is the number of blocks in the partition, then
P= {Ai}“f., » AjnA;=¢ forall isj,and u'i‘.,Ai = A. The trivial partition P° has been
defined previously to be the partition where every subfile contains exactly one attribute.

That is, P® = {A%™ | where A? = {a} .

1. The Exhaustive Enumeration Aggrogoh

One way of finding the optimal partition is to produce all partitions of the set of
attributes, and evaluate each of them with thé file cost estimator in order to identify the
partiiion with the best performance cost. This exhaustive enumeration approach is not a
viable partitioning strategy because of the large number of possible ways to partition a file.
The number of distinct partitions of a set of m elements into disjoint subsets, B(m), is
known as the mth Bell number. Unfortunately, there is no simple expression for B(m) that
we can analyze in order to arrive at its complexity. However, Moser and Wyman (27)
provide an asymptotic expansion for the Bell numbers. This asymptotic expansion is in
terms of the solution to the equation xe* = m, and hence is not in closed form. From this
asymptotic expansion it is possible to derive the following asymptotic upper and lower

bounds for the Bell numbers [28):

(5.1.1) B(m) = o(m™)

(5.1.2) m{ - O™ o oB(m) , €>0

-~

where ¢ is any non-zero positive real number. (The notation f(m) = o(g(m)) denotes that
M. f(m)/g(m) = 0.) The two asymptotic bounds are very tight, and from them we see that

the number of partitions of a set of m elements into disjoint subsets asymptotically

e ————————————————]
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approaches close to m™ (or equivalently, close to 2" mzm) as m approaches infinity. By
this we mean that ¢ may be taken as small as possible as long as it is positive, and B(m) will

always grow faster than m('-9™

Therefore for all practical purposes, the number of
distinct attribute partitions is prohibltlvelylhlgh to render an exhaustive enumeration
approach feasible (for the general attribute partitioning problem with any number of
attributes).  As an example, a file containing 10 attributes can be partitioned into
B(10) = 115975 different partitions. Another problem with the exhaustive enumeration
approach is that generating.all the B(m) different partitions is not an easy task. A program

written for generating all the partitions of a set of attributes (and which was lused to

. . /
exhaustively find the optimal partition for a number of attribute partitioning problems with

not more than 8 attributes) required storage space that grew faster than B(m) .

2. The Stepwise Minimization Heuristic

The heuristics we have considered in our wprk and described in subsequent sections
are all stepwise minimization heuristics. Stepwise minimization is the process of carrying out
an optitﬁization task in a series of steps. At each step, a cost criterion is optimized to the
extent possible. Each step that follows carries the optihization still further. Finally, when no
further optimization can be performed at a step, the stepwise minimization process is
terminated. In the case of the attribute partitioning heuristics, each heuristic starts from a
predetermined partition, and in each step tries to come up with a new partition that is an
improv;zment over the paftiti_on of the preceding step. By imprﬁvement we mean that the

performance cost of the improved partition, as evaluated by the file cost estimator, is less than

e
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the performance cost of the previous partition. Once an improved partition is found at a
step, the next step starts with the newly found partition‘ and tries to find a still better
partition. This proc.ess of incremental improvement' is continued until no partition may be
found which is an improvement to the partition considered in the last step of the heuristic.
The last partition is then returned by the heuristic as the resultant partition of the heuristic.
The intermediate partition found at each step of the attribute partitioning heuristics will
depend on the_ partition of the last step, the query frequencies, and the query types.

At each step of the attribute partitioning heuristics we ﬁave considered, the
improved partition is obtai‘hed from the partition of the previous step by either I- grouping
a number of blocks of the last partition together to form a single block, or by 2- degrouping
a block of the previous partition into two or more blocks. The heuristics we have considered
differ from one another in. two respects: |- the attribute partition that they initially start
with, and 2- the manner in which the blocks are grouped or degrouped in each step.

In our work, we apply a heuristic to an initial partition until in the course of
stepwise minimization, the heuristic produces a partition upon which it can no longer
improve. At this point we may apply a second heuristic to the resultant partition of the first
heuristic. After the application of thé second heuristic, a third heuristic may be applied, or

even the first heuristic may be reapplied. Since a heuristic always results in a partition that

is as good as the partition that it starts with, it is always possible to apply any number of

heuristics in succession and never get a partition with a higher performance cost (and
L]

occasionally get an improved partition). However, some of the heuristics we consider are best

succeeded by certain other heuristics. In the discussion of each heuristic, we will make it clear

if the heuristic performed well enough to warrant further investigation, and if so, what other
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heuristics were tried in combination with it.

Note that one mode of operation we do not consider is trying a heuristic for anly one
or a few steps and switching to another heuristic before the first heuristic produces its final
resultant partition. Our mode of applying the attribﬁte partitioning heuristics is based upon
the assumption that if a second heuristic iS relevant to an intermediate partition produced by
a first heuristic (that is, the second heuristic can improve upon the performance cost of the
intermediate partition), then the second heuristic will still be relevant after the first heuristic
has. terminated. This assumption.ls made in order to reduce to a manageable size .he
problem of decidi;ng which heuristic to apply next.

We shall consider a number of heuristics in the forthcoming sections. However, the
pairwise grouping heuristic described in the next section is the main heuristic of this work
and we will att.er.npt_to describe it in full detail. In our experimentation, we have fqund that
the combination of the pairwise grouping heuristic with a second heuristic (the single
attribute degrouping-regrouping heuristic) to be sufficient for the purpose of attribute

partitioning within the context of the database management system we have considered.

3. The Pairwise .Grouging Heuristic

The pairwise grouping heuristic begins with the trivial partition P®, and generates
all partitions that can be obtained by grouping together pairs of blocks in P®. For example,
if A={l,2,3,4} are the attributes of a file, the pairwise grouping heuristic begins with the
trivial partition of row 0 of Figure |1 and produces all the partitions of row | of the same

figure. The heuristic then evaluates all the generated partitions with the file cost estimator,
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and finds the partition (call it P') whose performance cost is the least of all the generated
partitions. In other words, assume C(P) to be the performahce cost of partition P as
determined by the file cost estimator. In the first step of the heuristic, the following

minimization is performed:

(5.3.1) mi CP} )

nl S)<ksm
where P!, = {A, .., AQ U A2, .., A%} . Let j and k be the values that minimize 53J. If it is
the case that C(P},) < C(P) , then the improved.partition P}, is the result of the first step,
and the second step of the heuristic begins with partition P' =P}, . Otherwise, if it is the
case that C(P} x) 2 C(P%), the heuristic terminates (with the trivial partition as the resultant
partition). In general, the ith step of the pairwise grouping heuristic starts with partition
Pt wialt Al A.“:'} (where M, is the number of blocks in P*-'), and performs the

minimization:

(5.3.2) mi C(P}y)

" Sh<ksM_,
where P}, = {A}" e N Y oo A,“:'} . Assuming j and k minimize 532, and if
C(P})) < C(P™"), the heuristic then goes to step i+1 starting with P' = P}, , M; = M_;-1 . This
process is continued until a step (say step L) is reached for which C(P} W2 c(Pt") for all j
and k. At this point, no pair of blocks can be found that grouping them will reduce the
performance cost, and so P! s regurned as the result of the pairwise grouping heuristic.
The pairwise grouping heuristic may be depicted in terms of a lattice where each
node of the lattice is a partition. The top node is the trivial partition and the bottom node is
the “one-file” partition. An interior node is obtained by grouping together a pair of blocks of

one of its parents. Figure | shows such a lattice for the set of four attributes {1, 2, 3, 4}
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(from here on we shall use integers to represent attributes). The ith row of the lattice
corresponds to all the partitions that could be generated by the ith step of the pairwise
grouping heuristic (equlvalently, all the possible partitions with which the i+lth step may
begin). The pairwlsé grouping heuristic begins with the trivial partition and produces all
the partitions that can be reached by following an edge (i, all.the partitions of the first
row). It then selects the partition in that row with the best performance cost. From that
partition, it follows all the edges leading downwards to its children nodes. For example if the

second partition from the left is the best partition of row I, then in the next step the heuristic

Row

0 {1}, (2}, {3), (4

%N

VoL 2h 3B)(ap (3 (2) (4 (0, ey (2), 3 (1), (2, 3) (43} (1), (2, 4), (3N (1), (2), (3, a))

2{(1, 2,3} (4 W1, 2,4 (3} (1L, 2L (3,4 ((1,3)(24) ((1,44(23) (1,3 4} (20 ({1} (2 3, 4))

el gl

- {, 2,3 a))

‘Figure 1  The lattice of partitions.
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would compare the first, fourth, and sixth partitions of row 2. The three partitions of the
second row are all, in a sense, desirable partitions in that they have been derived from a
partition that has previously been proved superior. Specifically, the.heuristic assumes that
the optimal partition is either among the three partitions or is somewhere below them in the
lattice and can be reached by going down the edge from the best of the three partitions. The
heuristic continues to go down the lattice until none of the partitions examined in a row
reduce the performance cost. At this point, the current parent partition is returned as the
resultant partition of the pairwise grouping heuristic.

The resultant partition of the pairwise grouping heuristic is not necessarily the
optimal partition. Only a small subset of all partitions are actually examined by this process.
On the other hand, at each step, the heuristic does select the best partition among a set of
partitions, whose common parent was itself selected as best of a similar set of partitions.
Hence, the resultant partition is optimal among a subset of all the possible partitions and
locally optimal among all the partitions of the lattice. The stepwise minimization nature of
the pan.-wise grouping heuristic is apparent from the discussions above. At each step, we
minimize the cost for a subset of partitions that have been selected on the basis of a similaf
minimization in the previous step.

The motivation behind pairwise grouping is as follows: Initially, when all attributes
are separated in the trivial partition, those queries that request two attributes are answered
with close tq minimum cost, while those quérles requesting more than two attributes are very
costly to answer because their attributes reside in different subfiles and hence on different
pages. Subsequently, as blocks of attributes are grouped, queries requesting a small number

of attributes become costlier to answer because accessing the attributes will bring in those
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attributes that are not requested by the query but nevertheless reside in the same subfile as a
requested attribute, while those queries requesting many attributes, of which all or some are in
the same subfile, become less costly to ainswer. In the process of grouping blocks together, a

pomt will be reached where the reduction in cost of answering those queries that are

~ benefited by the grouping will not offset the increase in cost of answering those queries that

become costlier due to the grouping. This point is a local minimum of the performance cost
functién.

The Bond Energy Algorithm of McCormick et al. [24] is another stepwise
minimization heuristic that may be used for the purpose of attribute partitioning. Hoffer and
Severance [19] have used the Bond Energy Algorithm to group aftributes into blocks based
on the similarities of attribute occurences in queries (see Chapter 2 for a detailed discussion of
how Hoffer and Severance [19) utilize the Bond Energy Algorithm for the purpose of
attribute partitioning). We believe 'that our pairwise grouping heuristic, when compared to
the Bond Energy Algorithm, has a number of advantages which makes it more desirable as a
partitioning vehicle. The Bond Energy Algorithm operates by permufing the columns of a
matrix consisting of pairwise attribute access similarity measures in such a way that the
columns of similar attributes fall close together. If we look at the matrix of pairwise access
similarity measures after the algorithm has terminated, we will find that the attributes are
ordered such that similar attributes are\placed adjacent or nearly adjacent to one another. A
disadvantage of this algorithm is that after this is accomplished, i.e. after such an ordering of
the attributes is found, it is left to subjective judgement to decide how to clump the attributes
together to form blocks. The other disadvantage of this algorithm (and one which will be

examined in Section 4) is that the algorithm only looks at the similarity of access between
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%
pairs of attributes (i.e. between pairs of blocks, each of one attribute) rather than among any

number of blocks containing any number of attributes.

Stepwise minimization is basically a hill climbing heuristic search technique which
will not necessarily locate the. optimal solution. The solution achieved using this technique
may be any of the local minima; the closeness of the solution to the optimal partition will
depend on the database parameters, the access paths of the file, and the usage pattern
parameters. However, in the course ot; our experimentation with the pairwise grouping
heuristic (to be described in full detail in Section 5.7), .the' pairwise grouping heuristic starting
with the trivial partition has consistently resulted in either the optimal partition or in a
near-optimal partition that differed. insignificantly from the optimal partition. This has led
us to believe that pairwise grouping is an attractive heuristic search technique for finding an
adequate partition for the attribute partitioning problem.

The process of pairwisef grouping is actually the method of steepest descent of the
hill climbing heuristic search technique. The coordinates of a point on the "hill" (which
should be visualized as inverted, since the search is for finding the minimum point) are the
partition and the performancé cost of the partition as determined by the file cost estimator.
The distance between two partitions is defined as the number of edges on the minimum path
connecting the two partitions in the lattice of partitions. Pairwise grouping is the process of
following the negative gradient from one point to an adjacent point with a distance of one
(along the partition axis), beginning at the point of the trivial partition. Our conclusion
from this program of experimentation has been that this “hill" is predominantly devoid of
"bumps” (i.e. local minima or points where the gradient changes sigi. and all adjacent points

to the "bump" have a larger performance cost). The few "bumps” that occur on the hill




