
- - _______

AD—A053 292 MASSACHUSETTS INST OF TECH CAtSRIDBE LAB FOM COMPUTE—ETC F/B 5/2
ATTRIBUTE PARTITIONING IN A SELF—ADAPTIVE RELATIONAL DATA BASE S—ETCIU)JAN 78 B NIAMIR N0001M— 75—C—066 1

UNCLASSIFIED MIT/LCS/TR—192

• __
_

__ _

~

& /11

I

LABOR ATORY FOR MASSACHUSETTS

COMPUTER SCI ENCE TECHNOLOGY ID?

~~~~~~

MIT/LCS/TR- 192

ATTRIBUTE PARTIT IONING
IN A SELF-ADAPTWE

RELATIONAL DATABASE SYSTEM

/ .
~~~

.
~D D Cç

~ - .

r?fl~]J7Er

Bahram Niamir

The work reported herein was supported by the
Advanced Research Projects Agency of the

Department of Defense and was monitored by the
Office of Naval Research under Contract numbers

N000 14-7 5-C-066 1 and N000 1 4-76-C-0944

545 TECHNOLOG Y SQUARE. CAMBRIDGE , MASSACHUSETTS 02 1 39

ON STATEMENT A

SECURITY CLASSIFICATION OF THIS PAGE (PIll. SM. SIW.q.~)

REPJIT DOCUMENTATION PAGE I~~~,Iu ~~~~~~~~~~~~~~
__

BEFORE COMPLETIN G FORM

(?~ !JI ~~~~Y UUNU~~~~____________________ •1l — —,I’- Mf~~~~ ’ ’ l I

MIT/LCSJTR-~jj J
sov~ ACCW~~~~~

~~~~~~~~ 7~~~~~~2J4;J
S.—! ITS.•(L 1 ~~ 1Ij _I

Relational Database System s S.M.Thesis, Jan.15,1978Attribute Partitioning in a Self~)daptiv

_____________________________________________________ I. PERFORMING ORG. REPORT N U M U E R

__________________________________________________ 
MIT/LCS/TR—192

7. AIJ TNOR( ~) I. CON TRACT OR GRANT NUMUIR(.)

_ _ _ _ _ _ _ _ _  

%l4~75~C~,9~6j 7
~~~~~~~ 

Bahra~/%1iamir]
N~~~l4-76-C~~~44 I

I. PERFORMING ORGANIZATION NAM E AND ADDRESS 10. JAOGRAIhI EL~~MEN~~ PROJECT . TA SK

MIT/Laboratory for Computer Science AREA S W O R K UN ~ 1 4U NUR S

545 Technology Square
Cambridge, Ma 02139

Off ice of Naval Research Jan~~~~
I. CONTROLLING OFFICE NAME AND ADDRESS (

~Q1 I.. n.rsny OATS

Department of the Navy
____ ________________

~~ ~ ,r rInformation Systems Program
Arli ton Va 22217 134

i~~. MUNIT RU ‘IU~~NCY NAM E S ADDRESI(IV ~ vv.rwi ftc. ControIHa~ Offic.) IS. SECURITY CLASS. (.5 ISa. r.poM)

IS.. DECLAS$IFICATION/ DOWNGRADING

Unclassif ied

SCHEDULE

S. OISTRIUUrION STATEMENT (of Gil. R.port)

Approved for public release ; distribution unlimited

7. DISTRISUTION STATEMENT (.5 IS. ab.ft.c g .nlc. d In Block 20, Sf dlff .nn t ftc. R.port)

S. SUPPLEMENTARY NOTES

I. KEY WORDS (Conffiwi. on r.vsr.i .Sd IS n c..l y .ond Sd.ntlty b, block nc.b r)
attribute partitioning self—organizing databases
file partitioning relational database implementation
database design query evaluation
heuristic database design page access models ‘

database management
AUSTRACT (C.ntlnu. o n , v~ on .N. It ~~~~~~~~~ .14 IdonlIf? S~’ .d.cs .c.s .,j —

~~~

~‘One technique that is sometimes employed to enhance the performance of a
database management system is known as attribute partitioning. This is the
process of dividing the attributes of a file into subfiles that are stored
separately. By storing together those attributes that are frequently request-
ed together by transactions, and by separating those that are not, attribute
partitioning can reduce the number of pages that must be transferred from
secondary storage to primary memory in order to procesi a transaction.

DO ~~~~~~ 1473 EDITION OF I NOV SI IS OSSOLETE
S/N OlO2-O*4• UO I I

SECURITY CLASSIFICATION OF THIS PAGE (USion

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


IcUPITY CLASSIFICATION OF THIS P*5tf~~on SM. *14.1. 0

-
~~~

20~~~The goal of this work is to design mechanisms that can automatically
select a near—optimal attribute partition of a file’s attributes, based on the
usage pattern of the file and on the characteristics of the data in the file.
The approach taken to this problem is based on the use of a file design cost

~stimator and of heuristics to 
guide a search through the large space of

possible partitions. The heuristics propose a small set of promising partitions
to submit for detailed analysis. The estimator assigns a figure of merit to
any proposed partition that reflects the cost that would be incurred in process
ing the transactions in the usage pattern if the file were partitioned in the
proposed way. We have also conducted an extensive series of experiments with
a variety of design heuristics; as a result, we have identified a heuristic
that nearly always finds the optimal partition of a file.

The context of this study is a relational database manage~~nt system that can
process transactions made against relations whose physical partitioning is
unknown to the user. In specifying and modelling this system, it is necessary
to address the problem of optimizing nonprocedural queries made to a partitione
file. We have derived a number of such optimization techniqued, and have
provided the results of a number of experiments with them.

ACCESSION for
KTIS White Secffon ~DOC Buff Section o
UPW4N OIIN CEO a
JUSTIF ICATION __________

BY 
______

DIST~BUTWN/AYAft~flfly j~j
D,st. AVAIL and/or ~~~

U—

SECURItY CLASSIFICATION OF THIS PAIS(P~on 0.1 . Lil ~~~d)

_ _ _ _ _



-

~~

-

~~~~~~~~

MIT! LCS/T R—l 92

ATTRIBUTE PARTITIONING IN A SELF-AD APTIVE

RELATIONAL DATABASE SYSTEM

Bahram Nlamtr

January 1978

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LABORATORY FOR COMPUTER SCIENCE

CAMBRIDGE MASSACHUSETTS 02139

~1

- 2 -

ABSTRACT

One technique that is sometimes employed to enhance the performance of a database
management system is known as attribute partitioning. This Is the process of dividing the
attributes of a file Into subfiles that are stored separately. By storing together those attributes
that are frequently requested together by transactions, and by separating those that are not,
attribute partitioning can reduce the number of pages that must be transferred fromsecondary storage to primary memory In order to process a transaction.

The goal of this work Is to design mechanisms that can automatically select anear -optimal attribute partition of a file’s attributes, based on the usage pattern of the fileand on the characteristics of the data In the file. The approach taken to this problem isbased on th? use of a file design cost estimator and of heuristics to guide a search throughthe large space of possible partitions. The heuristics propose a small set of promising
partitions to submit for detailed analysis. The estimator assigns a figure of merit to any
proposed partition that reflects the cost that would be Incurred In processing the transactions
in the usage pattern if the file were partitioned In the proposed way. We have also
conducted an extensive series of experiments with a variety of design heuristics; as a result,we have identified a heuristic that nearly always finds the optimal partition of a file.• The context of this study Is a relational database management system that can
process transactions made against relations whose physical partitioning Is unknown to the
user. In specifying and modellu~g this system, it Is necessary to address the problem of
optimizing nonprocedural queries made to a partitioned file. We have derived a number of

• such optimization techniques and have provided the results of a number of experiments withthem.

. 3 .

ACKNOWLEDGEMENTS

I would like to acknowledge the contributions to this work of my thesis supervisor . Professor
Michael Hammer; for his many invaluable ideas and criticisms; for his scrutinization and
appraisal of the various drafts ; for his continual encouragement and support; and for his
willingness to put up with the perpetuity of this work.

I would like to ex press my thanks to Arvola Chan for many useful suggestions and
discussions, and also to Dennis McLeod (both members of the Data Base Systems Group of
the MIT Laboratory for Computer Science, formerly Project MAC) who have provided me
with feedback on parts of the thesis.

Thanks are due to Chris Reeve. Tim Anderson. and other members and hackers of the
Programming Technology Division of LCS for their help in the implementation effort and
also for their assistance in the elimination, at times, of the weariness due to the preparation of
this document.

I am indebted to those friends, who throughout these hard years, have never ceased with
their moral support and companionship.

Finally, I would like to ex press my gratitude to my parents, Kazem and Suzie Niamir, who
have provided me with unlimited amounts of patience, support, faith, and encouragement.

The work reported herein was supported by the Advanced Research Projects Agency of the
Department of Defense and was monitored by the Office of Naval Research under contract
numbers N000l1-75-C-066l and NOOOl4-76-C~0944.

Th is report reproduces a thesis of the same title submitted to the Department of Electrica l
Fn~ inee. ing and Computer Scienc~~gp..~January 15, 1978, in partial fulfillment of the
I equliements (or the degree of M.ast€f of Science.

Table of Contents - 4

TABLE OF CONTENTS

• Page

ABSTRACT 2

ACKNOWLEDGEMENTS 3

TABLE OF CONTENTS 4

CÔap:eT

I. INTRODUCTION 7
I. Self-adaptive Database Management Systems 7
2. . The Relational Model for Databases 9
3. Attribute Partitioning in a Relational DBMS 32
4. ThesIs Objective 16
5. ThesIs Organization 17

2. THE APPROACH TO bATABASE ATTRIBUTE PARTITIONING 38
I. Summary of Previous Work Done In Attribute Partitioning 18
2. The Integer Programming Approach to Attribute Partitioning 25
3. The Heuristic Approach to Attribute Partitioning 27
4. Block Diagram of the Attribute Partitioning System 29

3. THE MODEL OF THE DATABASE MANAGEMENT SYSTEM 33
I. The File Model 33
2. Linking Subtuples 38
3. The Index Organization 40
4. The Transaction Model 41
5. Query Processing In a Partitioned Database 45
6. Parameter Acquisition 64

Table of Contents - 5-

7. Repartitioning Points 71

4. COST ANALYSIS AND THE FILE COST ESTIMATOR 73
I. Sequential Search 75
2.. Tuple Retrieval Using Links ‘75
3. Index Accessing and Tuple Retrieval 79
4. File Cost Estimation 80
5. RepartitionIng Cost 83

5. THE ATTRIBUTE PARTITIONING HEURISTICS 85
I. The Exhaustive Enumeration Approach 86
2. The Stepwise Minimization Heuristic 87
3. The Pairwise Grouping Heuristic 89
4. File Cost Estimation as a Measure of Block Attractivity 97

5. The Fast Pairwise Grouping Heuristic 101
6. Other Variants of the Stepwise Minimization Heuristic 105
7. Experimenting with the pairwise grouping heuristics 114

6. AN EXAMPLE OF ATTRIBUTE PARTITIONING 132
I. The Statement and Solution of the Problem 133
2. The Efficacy of the Trivial Partition 139

7. REMARKS AND FUTURE DIRECTIONS 143
I. Extensions to the Attribute Partitioning System 143
2. Directions for Future Research 146

REFERENCES 153

n ~~~~~ ~
-1

Chapter I - 7 - Introduction

CHAPTER 1

INTRODUCT ION

The work to be reported in this report is part of an ongoing research effort to

develop a self-adaptive database management system. The intent of this development is

twofold: to develop the techniques and methodology for the construction of such systems, and

to identify database physical design Issues with techniques for their automatic and optimal

determination. In thIs report, we address the problem of optimizing the performance of a

self-adaptive database management system, in a dynamic environment where access

requirements are continually changing, by automatically partitioning the attributes (fields) of

the file. Attribute partitioning is the task of dividing the attributes (fields) of a file Into j
non-overlapping groups and then storing each group in a separate physical file.

1. Self-adaptive Database ManaEement Systems

It Is important that a database system perform efficiently at all times. Efficient

performance requires that the physkal organization of the database match the usage pattern

of Its users. Thus, as the database’s usage pattern changes over time, its organization and its

access structures can become obsolete, with consequent degradation of performance.

Performance degradation may also result as the database grows in size or as the nature of the

data it contains changes. After some time, the performance of the database system may

deteriorate sufficiently so as to compel a database reorganization. Since the applications

— — — — —•— -— —.———.——-.———-—. - _~•;:~~~~~~
•

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -~ ~~~~~~~~~~~~~~~~~~~~~~ •r.i.. t - . .



Chapter I - 8 - Introduction

programs accessing the database are continually being altered with new applications

programs replacing old ones, and since the contents of the database continually undergoes

change. the reorganization of the database’s physical structure must be an ongoing process.

Conventionally, the database administrator determines when and how to reorganize

a database His decision is based on limited information about the database and the

transactions performed on it; consequently his decision is largely an intuitive guess. For large

databases , a more systematic means of acquiring information about database usage and a

more algorithmic way of evaluating the costs of alternative configurations is essential. It has

recently been proposed that database management systems be self-adaptive, and automatically

reorganize themselves as the need arises (35, 123. Hammer (163 discusses a methodology for

monitoring database usage pattern, and describes the design principles for a self-adaptive,

self -reorganizing database management system,

- 
A mrnimal capability of a self-adaptive database management system should be the

incorporation of a monitoring mechanism that collects usage statistics while performing

transaction processing. A database management system is well suited for gathering and

analyzing Information on its own usage and performance; and if the gathering and analysis

of the usage and performance information is done appropriately, the associated overhead can

be minimal. In addition, a self-adaptive database management system should be able to come

up with desirable physical organizations (i.e., desirable data structures and access structures)

based upon the collected statIstics, and be able to evaluate the cost of each alternative

organization In order to select an optimal physical organization for a database. Also, it is

possible that such a system might perform the necessary database reorganization itself, after it

has evaluated the cost/benefits of reorganization and the associated costs of retranslating the

— ~ -_ . - ~~~~ -~~~~ - y .  t,t ~==-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . .S~
, _  

a. ., .. — j
~~& 



- -. — - - —•

Chapter I - 9 - Introduction

applications programs that access the database.

2. The Relational Model for Databases

In a self-adaptive database management system, the physical organization of the

database is perpetually being reorganized. In order for the database reorganization to be

truly effective , a database management system that performs self-reorganization will have to

manifest the following two important characteristics: I- data independence between the

database’s physical organization and the application programs that access the database, and

2- nonprocedural access of the contents of the database. By data independence we mean that

users and their application programs are not required to know the actual physical

organization used to represent the data, so that they are free to concentrate on a logical view

of the data . Data independence makes the database easy to use and avoids the need for

app lication program retranslation every time the database’s physical structure is changed.

Nonprocedural access also makes the database easy to use; this entails the provision of access

languages which allow the specification of desired data in terms of properties it possesses

rather than in terms of the search algorithm used to locate and retrieve it.

The relational model of data (Codd (91) has been proposed as a means of achieving

the above goals of data independence and nonprocedural access. The relational data model

provides a simple and uniform logical view of the data that is completely independent of the

actual storage structures and access structure used to represent and access the data . This

makes the definition and manipulation of a database independent of its underlying physical

organization. As a result, changes at the data organization level need not be reflected in the 

~~~~~~~~~~~~~ - - - -


Chapter I - 10 - Introduction

programs that access the database.

A relation in the relational data model i~ a named two dimensional table that has a

fixed number of attributes (columns) and an arbitrary number of unordered tuples (rows).

All the rows of the table have to be unique. A tuple representing an entry in a relation

contains a value for each attribute of the relation. The number of attributes in a relation is

m and the number of tuples in the relation is 11. Figure I shows the relation

ENROLLMENT for students enrolled In courses. The ENROLLMENT relation has two

attributes Student and Course , and four tuples (Doe, 6.035), (Poe, 6.032), (Do., 6.85 1), and

(Roe, 6.035). The physical realization of a relation is often called a file, with the attributes

and the tuples of the relation called the fields and records of the file respectively. Henceforth,

we will use the term file when discussing the totality of the data in a relatIon, Indicating that

we are dealing with the physical representation of the relation. However, we will continue

ENROLLMENT:

Attribute

- Student Course

Doe 6.035

Poe 6.032
Tuple

Doe 6.851 I

Roe 6.035 I

Figure 1 The ENROLLMENT relation with 2 attributes and 4 tuples.

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - - - -~~~~~~~~~ ,
~~~~~~~~~~~~~~~~ 

-j



Chapter I - II - Introduction

using’ the terms attribute and tuple for the fields and records of a file so that the two

dimensional tabular data format of the relation will be kept in mind.

In a relational database management system, the user’s view of the database Is

independent of the details of the database’s physical organization. Furthermore, his

nonprocedural queries are far removed from the primitive data manipulation operations for

locating and retrieving the data. Consequently, more responsibility is placed on a rela tional

database management system than on a éonventional system. This responsibility takes two

forms: I- choosing an efficient physical organization for the relation, and 2- optimizing the

process of finding answers to queries made to the database, by the means of efficient and

judicial use of the available access structures.

We believe that the selection of a good physical organization is the primary issue in

relational database implementation, since the efficiency that can be achieved by a query

optimizer is strictly delimited by the available access structures. Furthermore, the efficient

utilization of a database Is highly dependent on the optimal matching of its physical

organization to-- its access requirements, as well as to the other database characteristics (such as

the dbstribution of attribute values in It). Hence, the usage pattern of a database should be

ascertained and utilized in choosing the physical organization.

There are numerous possibilities for the physical organization of a relational

database. The selection of a particular physical organization must be based on minimizing

the performance cost in terms of both data access cost and data storage cost. The subject of

this research is selecting the optimal attribute partition of a relational database by utilizing

the access pattern history of the database in order to minimize the data access cost. Attribute

partitioning consists of dividing the attributes of a file into subftles that are stored separately.

—- - --———-—— . —— — ._s__ _,_ - _-~ .--~~ -~ . i_ a.~~ - _ __ .



___ _- -

Chapter I - 12 - Introduction

In relational terms, this means splitting a relation Into a number of subrelations. each

con ta in ing a subset of the attributes of the original relation, such that the original relation

may be uniquely reconstructed from the collection of the subrelations. (Strictly speaking, a

subfsle is not a relation In that duplicate tuples are allowed . We will give a formal definition

of a subfile in the next section.)

3. Attribute Part it ioningjn a Relational DBMS

Let A be the set of attributes of a relation, and let T be the set of tuple identifiers

of the relation. (A tuple identifier is a unique identifier for a tuple In the relation.) The

number of attributes in the relation is IAI • m , and the number of tuples in the relation is

ITt — n . Consider the collection of subifies F — {F1)~.1 , where each subfile F1 is defined by a

pair consisting of an attribute set and a tupte identifier set, which specifies the attributes and

tup le idetitifiers that are represented in the subfile F1 : (A 1, Ti), A, E~ 
A , T, T . The

collection of subilles F is called the clustering of the relation, and can have two basic forms:

I- an attribute cluster in which

T, — T  i — i  ,M and

M
u A — A ,

— I

2- a tuple cluster in wh ich

A — A  — 1  ,M and
N

U T - — T .
i i

The tuples of a subflle are called subtuples. A sublile F1 of an attribute cluster

contains n subtuples, one for each tuple In the original relation. A subtuple of a subfile is

~~~~~~-~- -- -


~

1

Chapter I - 13 - Introduction

that part of the original file’s tuple that has attributes A,. The subtuples of subflle F, In an

attribute cluster need not all be different. For example, if the relation of Figure I is clustered

such that F 1 — (A 1 , T) is a subfile with A 1 — (Course), then the subtuples of F 1 will be

(6 .035), (6.032), (6.85 1), and (6.035).

An attribute cluster ~~~~ In which A1 n A1 — , for all I ,‘ j is termed an attribute

partition of the relation. In this report, we will limit our attention to the topic of attribute

partitioning. (A discussion of tuple partitioning appears in Section 7.2.) Attribute

partitioning Is the task of dividing the attributes of a relation and storing each disjoint subset

of attributes in a separate subfile. The objective of attribute partitioning is to construct an

attribute partition of a relation that optimizes the performance of the database management

system by minimizing the cost of locating and retrieving data. Intuitively, attribute

partitioning is accomplished by assigning attributes to the same subfile whenever they are -

consistently requested together by queries.

In conventional database management systems (with paged memory organization),

each tuple of a relation is stored with all Its attributes together in one file. When a query is

made to the database, all tuples that are required by the query are brought into primary

memory by retrieving all the pages that the tuples reside on. It has been observed in

practica l database applications that a query does not usually request all the attributes of the

file; most queries request only a few of the attributes. Problems. are presented by the

co-ex istence In the same file (or equivalently in the same tuple) of attributes that are not

requested by the query together with the few attributes that are. Whenever the requested

aui-ibutes are retrieved, the non-requested attributes will also , have to be brought into

primary memory. If only a single tuple is needed to answer such a query, then It really does

Chapter I - 14 - Introduction

not matter that other attributes that are not requested happen to reside in the same tuple with

the requested attributes; in any event, only one page needs to be retrieved from secondary

storage. On the other hand, usually more than one tuple must be retrieved in order to

answer a query. This means that more than one page must be retrieved from secondary

storage. The expected number of pages that must be retrieved for queries that require more

than one tuple is Inversely related to the number of tuples that fit onto one page. (The larger

the number of tuples that can fit onto a page, the fewer pages that need to be accessed, since

there is then a higher probability that two of the requested tuples will fall on the same page.)

The effect of the non-requested attributes is to lengthen the tuple over what it must

minimally be, thus reducing the number of tuples per page, and consequently causing excess

page accesses when answering queries that request only a few of the attributes while accessing

more than one tuple. Therefore if a file is partitioned such that attributes that are

consistently requested together by queries are placed together into the same subfile and

sepa rated from those attributes with which they are not requested, then the number of page

accesses required to retrieve these attributes will be reduced over the number required from a

file that is not so partitioned.

On the other hand, indiscriminately separating all attributes and storing each in a

separate subtile will also result in excess page accesses. This Is because a query that requests

the attributes of a subfile together with some other attributes that are not in the subtile will

incur more page accesses than when all these attributes are in the same subfile, since now the

two groups of attributes reside in different subflles and on separate pages. When a file has

been partitioned into subfiles. queries requesting attributes stored together in one subtile will

become less costly to answer while those queries that have their requested attributes

- .:~
._ - - . . ~~~. ~~~~~

- - —— - ~~~~~~~~~ - - ‘~~~~~~~~~ -~~~~~-

Chapter 1 - 15 - Introduction

distributed over more than one subtile will become costlier to answer. Intuitively, the optimal

partition is the partition that maximizes the cost reduction for the first kind of queries while

minimizing the cost increase for the second kind of queries.

Attribute partitioning is m ost useful for large databases where queries made to the

database usually request only a few attributes of each tuple. It is conceivable that the request

distribution that has been observed for tuples requested by queries also applies to attributes

requested by queries. It has been observed In many practical database applications that not

all the tuples of a database are requested with the same frequency. The “80-20” rule of

thumb for the distribution of tuple request frequencies (Heising [17)) states that approximately

80 percent of queries request the 20 percent most frequently requested tuples in a file.

Furthermore, the rule also applies to the 20 percent most frequently requested tuples in the

file; I.e. that 64 percent of the queries request 4 percent of the most frequently requested

tuples. and so forth. If this is also true for the request frequencies of attributes by queries,

then most requests are only for a few active attributes of the file.

An example of a large database, where attribute partit4onlng may be useful, is the

Nav y Command and Control Data Base [9]. This database consists of a few relations with

many tuples per relation. Some of these relations have as many as 35 attributes and a tuple

length of 64 words. Q,uerles are on-line, and predominantly involve only a few attributes.

Some attributes of the file like the name of ships or the class of ships are frequently requested

by queries while other attributes like the diameter of the torpedo tube are seldom requested.

Therefore, partltionir~g the attributes of the files may result in considerable savings in page

access requirements.

-

- — — — - _ s~~~- _. ~~~~~~~~~~~~~ -~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Chapter 1 - 16 - Introduction

4. Thesis Objective

To summarize, the prIncipal goal of this report Is to develop techniques for attribute

partitioning in a self-adaptive relational database environment. For this purpose, we have

assumed a database management system that supports partitioned files and we have built an

attribute partitioning system consisting of a model for the assumed database management

system and a set of attribute partitioning heuristics. The attribute partitioning heuristics

select a partition for a database managed by a database management system similar to the

one we have modelled. Although our model is not one of any existing system, It is

representative of practical systems. Our thrust in building this model has been to avoid

many of the simplifying assumptions made In previous studIes, and thereby emphasize

important aspects of realistic database environments. We stress the need for monitoring the

database management system and acquiring parameters on the database usage pattern and on -

the evolving characteristics of the database itself. We describe a methodology for processing

transactions made to a partitioned database built with various access structures, and develop

a complete and accurate model of the cost of accessing the subfiles when performing such a

transection. Finally, we concern ourself with heuristic techniques that utilize the acquired

parameters and produce optimal or near optimal attribute partitions for the database at a

reasonable computational cost.

___________ _____________ ~~~~~~~~~~~~~~~~~~~~~~~~

Chapter I - 17 - Introduction

5. Thesis OrgRnization

The rest of this report Is organized as follows. Chapter 2 summarizes a number of

previous studies in the area of attribute partitioning, and In the context of evaluating them,

argues for the need of a heuristic solution to realistic database attribute partitioning

problems. In Chapter 3 we provide the model of the underlying database management

system that we have considered: the physical storage structure, the access structures, the

transaction model, the method of processing queries In the partitioned environment and

techniques for the acquisition of the parameters needed for our cost analysis. In Chapter 4

we present the cost analysis for various basic operations on a partitioned database and

describe how to compute the database’s performance cost, which is what we wish to minimize.

Then in Chapter 5 we present a number of attribute partitioning heuristics that we have

devised, along with the motivation for their consideration. We also discuss the comparallve
-

advantages and disadvantages of each heuristic, and outline how each heuristic has

performed in a series of experiments. Chapter 6 poses an attribute partitioning problem for a

relation with 8 attributes, and describes Its solution using the heuristics of the preceding

cha pter. FInally, Chapter ‘7 concludes the report with suggestions on how to extend the

underlying environment In order to solve more realistic attr ibute partitioning problems, and

also discusses the relationship between database attribute partitioning and other physical

database design issues.

_ _ _ _ _ _ _
.

Chapter 2 - 18 -The Approach to DR Attribute Partitioning

CHAPTER 2

THE APPROA CH TO DATABASE ATTRIBUTE PARTITION ING

The pt. pose of this chapter is to introduce the approach we have taken to solving

the attribute partitioning problem, and to contrast It with the approach taken by others in

determining the optimal attribute partition. There are two major approaches to attribute

partitioning, each approach having its own merits and limitations. The two approaches are:

I- the integer programming approach, which is the approach taken by most other

researchers, and 2- the heuristic approach. We have chosen- the heuristic approach for the

following reasons: l~ More complex database environments can be handled by the heuristic

approach than by the integer programming approach, 2- An optimal or near optimal

attribute partition can be found much more efficiently by the heuristic approach than by the,

integer programming approach, and 3- . Although the heuristic approach (unlike the integer

programming approach) does not guarantee that the optimal partition will eventually be

found, the heuristics we have employed have consistently found an optimal or near optimal

partition for the attribute partitioning problem.

1. Summar y of Previous Work Done in Attribute Par t it ioni~ g

The idea of clustering attributes (and also attribute partitioning) as a means of

improving the performance of a database management system has often appeared in the

literature on file design and optimization. Until the paper of Kennedy [211 there had been

—
~~~~-— -~~~~~~~ ~~~~~ __ .,. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~



Chapter 2 - 19 -The Approach to DR Attribute Partitioning

little systematic study of this aspect of file organization. Further, the conversion of a relation

into second and third normal forms (10) was sometimes confused with attribute clustering.

Although normalizing a relation Into its normal forms may result In the clustering of

attributes, and thereby reduce page accesses, normalization is directed towards improving the

logical data schema rather than enhancing database system performance. It is the functional

dependencies among the attributes that govern the splitting of relations in the process of

normalization, rather than the data’s physical characteristics or the database usage pattern.

An example of work in the area of relational database normalization Is that of Delobe) and

Casey (13). They are concerned with the problem of decomposing relations into a set of

subrelations such that the information content and logical relationships of the original

relation schema are preserved. However, they do not consider physical database criteria that

would result in a physically optimal decomposition of the relation schema.

Implementations of database management systems that support partitioned files have

been few, and have been limited to simplified environments where finding an optimal or a

suitable partition is relatively easy to manage. Moreover, In these implementations, attribute

partitioning has been treated only as a one-shot affair, to be determined at the initial creation

of a file. Attribute partitioning has not been viewed as a database organization issue that

needs to be reconsidered periodically, where the retuning should be done by a self-adaptive

database management system.

There have been a number of previous studies of attribute partitioning and attribute

clustering (Day (III, Sepp~li (323, Osman (29], Yue and Wong (39], Benner t4], Alsberg (I],

Babad (2], Stocker and Dearnley (35, 12], Kennedy [21, 20), Eisner and Severance [14), March

and Severance [23), and Hoffer and Severance (18, 19].) However, we feel that the results of 

— —s— •—±
~~~~~~~~~~~~

t-t. — —,-- — — - — -*

Chapter 2 - 20 -The Approach to DR Attribute Partitioning

these studies are not directly applicable to a complete or realistic database environment.

Some of these have been formal analyses which have made many simplifying assumptions in -

bidet’ to obtain analytic solutions; others have been designs that are incomplete or unrealistic

in many ways. Our thrust here is to relax many of the simplifyIng assumptions that have

been made in previous studies and thus to develop more complete and accurate models of cost

and database access. In addition, we stress the Importance of database cost analysis and the

acqu isition of accurate parameters, in an environment where access requirements are

continually changing. This aspect of the attribute partitioning problem has not been

addressed in previous work . Below, we present a summary of some of the earlier efforts in

attribute partitioning. identifying the assumed environment of each project along with the

thrust of its research .

Two of the earliest papers on attribute clustering in a self-adaptive database

management system are by Stocker and Dearnley (35, 12). They discuss the implementation of

a self-reorganizing database management system that carries out attribute clustering. (Recall

that In an attribute cluster, an attribute may exist redundantly in several subflles.) Stocker

and Dearnley show that in a database management system where storage cost is low

compared to the cost of accessing the subff les, it is beneficial to cluster the attributes, since the

increa’e in storage cost will be more than offset by the saving in access cost. Although they

do not outline the attribute clustering technique they use, they discuss a query processor,

which utilizes graph theory and various heuristics to process queries made to a file clustered

by its attr ibutes. They conclude that attribute clustering in existing database management

systems is both viable and desirable.

Kennedy (21, 20) considers a mathematica l model of attribute partitioning where each

_ _

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - -~~~-- ‘ - , .~~~ ---.-—.~~- .- ---- - - -



- —V ~‘- ~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Chapter 2 - 21 -The Approach to DB Attribute Partitioning

attribute a
~ 

is of known length,-and has probability Pt of being requested by a query. The

joint probability that attributes •~ and a
~ 

are requested by the same query is assumed to be

p,p~, i.e., attributes are assumed to appear in queries independently of one another. A cost

function based upon this assumption is derived, which reflects the expected amount of data

that must be transmitted (in terms of number of words, from secondary storage to primary

memory) In order to answer a query. The objective here is to choose a partition such that

this cost function is minimized. Kennedy’s model is a mathematical formulation of a

simplified attribute partitioning problem In terms of zero-one integer programming where the

only parameters are p, and I,, the length of attribute a~. In addition to many other

simplifications, Kennedy’s model assumes that when an attribute is requested by a query, the

subfile containing that attribute has to be retrieved and scanned in its entirety (rather than

retrieving just those subtuples of the subfile that are really needed to answer the query).

Since in this model, optimality can always be trivially attained when each subfile contains

exactly one attribute, the number of subfiles M over which the attributes are to be

disttibuted has to be fixed beforehand. (Otherwise the trivial partition. defined as the

partition where each attribute is in a separate subfile of its own, will always prevail.) As

Kennedy notes, there is no way short of exhaustive enumeration (which is infeasible as shown

in Chapter 5) to find the optimal solution even for this rather simple model. To find the

optimal solution to the partitioning problem posed by his model, he introduces two further

simplifying assumptions In order to reduce the integer programming problem to a simpler

problem where mathematical optimization techniques can be applied. One simplification is

the assumption that all attribute request probabilities are equal, and the other simplification

is that all attributes are of equal lengths.

_ _ _ _ _ _  --V ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~ -- ,--V - - V. -~~~V. - - -__ V . _  - -



p... - — - - ---- - - --- --- V. — 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

.— —--- — — - - - V.— —’ - . ~~ —,.- ---.- -—-,- -— ‘.————, - - -,~~~- -----—- -.----— --—-— -.- --...-. - - — -- --V .,—,

Chapter 2 - 22 - The Approach to DS Attribute Partitioning

In the work of Eisner and Severance (14], a file can be partitioned Into two subfiles:

a primary and a secondary subfile. Each subfile Is located on a separate storage device

characterized by differing storage cost and retrieval speed. The attributes are assigned to

each of the subfiles without redundancy. Two forms of the objective cost function that is to

be minimized are derived, where the first cost function is a special case of the (second) more

general cost function. The first cost function is the sum of storage charges for subtuples in

the primary subfile, plus the cost of accessing all the subtuples residing in the secondary

subtile. (The secondary subtile is accessed only when a query requests an attribute which

happens to be residing there.) This cost function is linear and may be solved by existing

integer programming techniques. The cost of finding the optimal partition for this function

by integer programming is of the order (m + IQ~
)3 , where m is the number of attributes in

the file and Q is the set of queries made to the database. The second .pbjective cost function

is nonlinear, and measures the total costs of access, transfer, and storage for subtuples in both

the primary and secondary subfiles. The search cost for finding the optimal solution for the

general nonlinear objective cost function is even higher than for the simplified linear cost

function. The limitations of the model adopted by Eisner and Severance are apparent: only

a maximum of two subfiles are allowed and the cost associated with processing a query is

taken to be the cost of accessing the whole (primary or secondary) subfile In its entirety rather

than the cost of retrieving just those subtuples of the subfile that are really needed to answer

the query. Furthermore, the cost of’ finding the optimal partition using the linear objective

cost function grows In the cube of the sum of the number of attributes and the number of

queries (and the cost grows even faster for the nonlinear objective cost function); this cost is

too large for practical purposes.

________ - - - V . — ~~
_~~~~~ - ~~~~~~~~~ -~~~- - - -

---— - - - -V — - — - ----—- - . -~~~- - - - --V -~~~~~~~

- - ~~~~~~ - ----- ‘ - — - - - —~~~~~~~~ -~~~~~~-— -~ - _ _~~~~~~~~~~~~~~~~~~~~~~ _ —~~~-- -~~~~~~~~~~~~~~~~~~ _ ~~

Chapter 2 - 23 -The Approach to DB Attribute Partitioning

March and Severance (23) extend the model of Eisner and Severance to some extent

by assuming that subtuples are blocked in each subflle into fixed size pages. (The page sizes

in the primary and secondary subfiles are not necessarily the same, but the constraint is

imposed that the sum of the primary subtile page size and the secondary subtile page size is

constant.) The nonlinear objective cost function they derive not only depends on how the

attributes are partitioned among the two subfiles, but also on the page sizes selected for each

of the primary and secondary subliles. Besides the rather peculiar paging organization

adopted, the model of March and Severance has the additional disadvantage that It does not

contain an accurate model of the cost of accessing subtuples that are selected in queries.

Rather , the primary and secondary subfiles are assumed to be accessed in their entirety

whenever any of their attributes are requested by a query (as in the model of Eisner and

Severance). Using integer programming techniques. March and Severance-obtain the optimal

partition for their model However , compared to the model of Eisner and Severance, the cost

of solving the Integer programming formulation grows even faster as the number of

attributes and the number of queries made to the database grows.

HolIer [18) deve)opes an extensive model for attribute partitioning, in which the

objective cost function is a linear combination of storage, retrieval, update, and insert~dekte

costs . The problem is formulated in terms of a nonlinear zero-one integer programming

problem, and Is solved by a branch and bound algorithm. In applying the optimization

algorithm to the formulation, it became obvious that problems of even modest size were

computationally intractable. In order to use this model to obtain solutions to realistic

problems. It became necessary to reduce the Size of the feasible solution space to a point where

optimization becomes economically feasible. To this purpose, Hoffer and Severance (19)

V - V — V -V , .. -— --~~~~ —V. ~~ .

Chapter 2 - 24 - The Approach to DB Attribute Partitioning

propose an attribute partitioning method that produces an initial and crude, but nevertheless

reasonable , partition of the attributes . This partition is then passed as a starting point to the

branch and bound algorithm of HolIer [18). The initial partitioning method of Hoffer and

Seveia nce uses the cluster analysis algorithm of McCormick et al. (21], which is heuristic in

nature , to group the attributes together into blocks. The clustering algorithm takes a set of

objects and utilizes a measure of “similarity” for all pairs of the objects . It then rearranges

the set of objects such that pairs of objects with large similarity measure fall adjacent or

nearly adjacent to one another. Hence clusters (or blocks) of objects can b~ identified such

that every pair of objects within the cluster carries a large measure of similarity, and every

pair of objects across cluster boundaries carries a small measure of similarity. Hoffer and

Severance provide attributes as objects to the clustering algorithm. They also develop a

similarity measure for any pair of attributes (called the pairwise attribute access similarity

measure\ which expresses the degree to which the pair of attributes Is used together in

quet- ies The similarity measure of a pair of attributes is obtained as follows: A subfile

consisting of only the two attributes is assumed. When answering a query that requests one

or both of the attributes, the subtuples of the subfile need to be retrieved. However , not all

of the information retrieved is used for answering the query: some of the subtuples may not

satisfy one of the attributes, and hence the information contained for the other attribute in

this subtupk is of no use. The similarity measure for the pair of attributes for this query is

defined as the ratio of the amount of useful data transferred to the total amount of data

transferred from such a subtile. The access similarity measure is derived by considering the

crt of queries, the frequency of each individual query, and the fraction of tuples satisf ying

~‘ach query .

- .- —-— ~~~~~~~~~~~~~~~
-

~~~~~~~~~~~ 
~~~~~~~~~~~-—— -


-V ~~
-V-

~~~~~~~
—-

Chapter 2 - 25 -The Approach to DB Attribute Partitioning

The queries that Holler and Severance consider can contain only one attribute in

their selection component. This assumption restricts the applicability of their techniques.

Also, the only access path that they allow is sequential searchi-~g and therefore the subfile

that contains the attribute of the selectio’~ component of ...~ query is searched in Its entirety

(however, only tuples required for projection are selectively retrieved from the other subfiles).

As with the model of Kennedy, the criteria by which a partition is selected for the file is the

fraction of useful data transferred from secondary storage to primayy memory. Since with

such a criterion optimality can always be attained with the trivial partition, as a result, the

number of subfiles in the partition found by the clustering algorithm has to be specified In

advance, and the optimization techniques of Hoffer and Severance only look for the optimal

partition in a subset of the space of all possible partitions. There are also problems

associated with the clustering, algorithm that they use. In Section 5.3, we describe some of

these problems. -

2. The Int eger ProErslmming App roach to Attribute Partitioning

The two approaches to attribute partitioning that have been taken are the integer

programming approach and the heuristic approach. Most earlier work on attribute

partitioning falls in the former category. There are two major problems associated with the

formulation and solution of the attribute partitioning problem in the inte~er programming

approach: I- The applicability of this approach is limited because of the undue simplifying

assumptions made on the problem environment in order to obtain an objective cost function

that is amenable to optimization. In a realistic database environment where the file has

- -- - V.- .--— ~_-VV~~~_VV_~ _~~~.~~~~- - --—-~~~ .— -- - --- .- -
~ ~~~~~ •- . . ~~~~~~~~~~~~~~~~~~ V.. ~~~~~~~~~~~~~~~~ —-.~- -- ,. .. .



- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Chapter 2 - 28 - The Approach to DB Attribute Partitioning

many attributes and many queries are made to the database and there are many access paths

avai lable by which to access the data, the number of variables and constraints to consider is

so large that it effectively precludes an integer programming formulation of the attribute

partitioning problem for the environment. 2- Even after many simpilfications are assumed in

the database environment, the attribute partitioning problem usually reduces to solving a

zero-one nonlinear integer programming problem to which no available mathematkal

programming technique can be applied. As Kennedy notes (21]. no technique has been found

(short of enumeration) to solve the limited partitioning problem that is expressed only in

terms of attribute request probabilities and attribute lengths. For cases where mathematical

programming techniques are available for solving the integer programming formulation.

applying them to even modestly sized problems is computationalty Infeasible.

‘The simplifying assumptions on the problem environment that have been made by

previous studies fall to a large extent in two categories. One is a limitation on the complexity

of the queries that are made to the database. Query predicates are either assumed to consist

of single equality conditions, or else database usage is crudely described by a set of attribute

access probabilities that indicate the probability of an attribute being requested by a query.

Correlations between attribute occurrences in queries are ignored. The other simplification

usually adopted concerns the computation of the cost of answering queries in terms of the

amount of information that must be transferred. In this regard, the effect of blocking tuples

(and subtuples) into pages has been completely ignored. The blocking of tuples into pages

has the effect of increasing the amount of information transferred per tuple access. However,

this Increase is not linear, since accessing any number of tuples that reside on the same page

will result in only one page access. If these blocking effects are ignored, then the

____________ - . - . - ~~~~~~~~~~~~~ :‘t . ’ - - _ ‘~~ : ~~~~~~ ~~~~~~~~ - -



V. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Chapter 2 - 27 -The Approach to DB Attribute Partitioning

partitioning problem has a trivial solution. Kennedy (Lemma 4.1. (20]) has shown that when

the amount of information transferred Is the sole criterion of the cost function, the optima l

attribute partition is the trivial attribute partition, as described In Chapter I. The reason for

this is that the total access cost is non-increasing as the attributes are dispersed into an

increasing number of subfiles, even if the attributes are inappropriately partitioned . Hence

in studies where blocking effects are ignored, in order that the trivial partition not prevail.

the number of subfiles into which the attributes are to be partitioned has to be artificially

limited and prespecified.

3. The Heuristic Approach to Attribute Par tit ioninE

The approach to attribute partitioning that we have taken in our work Is heuristic

in nature. In the heuristic approach, an optimal’ or near optimal partition is found for the

attributes by a process of stepwise minimization. An attribute partitioning heuristic which is

based upon stepwise minimization starts with a given partition (e.g. the trivial partition).

and attempts to derive from it a new partition that is incrementally superior to the original

one, in that the database partitioned according to the new partition will have a lower

performance cost . When this is achieved, the heuristic further tries to improve upon the

newly derived partition. Each time an improved partition Is derived, the performance cost of

the database is reduced. The stepwise minimization process is continued until no

improvement can be made to the latest partition. This last partition will then be returned as

the result of the attribute partitioning heuristic. The resultant partition is not necessarily

optimal, although it can often be argued that the partition is near optimal. (The near 

• V V ~~~~ ~~~~~~~~~ •~~V.• V~~~~~~~V -V~~~~ ~~~~~~~~~
.V .

- - - . V -  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -V .—  -~~~~~~~~



_
-~~ - -

Chapter 2 - 28 - The Approach to DB Attribute Partitioning

optima lity of the partition proposed by the heurlitic can be verified by comparing the

performance of the database management system when the file is optimally partitioned with

the performance when the file Is partitioned as suggested by the heuristic.) Indeed, in the

course of our experimentation with our attribute partitioning heuristics, we have consistently

found that the resultant partition of the heuristics is eIther optimal, or differs only

insignificantly from the optimal partition.

The heuristic approach to attribute partitioning does not suffer from the two major

problems associated with the integer programming approach. The model of the the database

environment may be as complex as desired. The complexity of the model adopted does not

tersously hamper the heuristic’s, ability to find reasonable solutions to the partitioning

problem (although it may affect the precise amount of search time required by the heuristic to

find a reason~ole solution). We note that , although our model does not consider certain

para meters that have been considered by some earlier studies (e.g. file storage cost, overhead

cost for accessing subfiles, different access and transfer costs for each subfile, and the

imposition of constraints on the allocation of attributes to subfiles), we could readily

incorporate these parameters into our model of the database management system and take

them into consideration without needing to significantly alter our partitioning heuristics.

(These extensions are described in Chapter 7.) The heuristic approach is also relatively more

efficient w ith respect to the time needed to determine a solution. For example, the main

attribute partitioning heuristic that we develop in Chapter 5 operates in time that is on the

order of the product of the number of queries in the usage pattern and the square of the

number of attributes in the file. This compares very favorably with execution time of the

integer programming approach.

- -- —S - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ p_- .,V ~~~~~~~~~~~ ‘-~ - -. . - . 



_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
__ ~~~~~~~~~~~~

Chapter 2 - 29 -The Approach to DB Attribute Partitioning

The model of the database management system we have adopted in this work is in

many ways a generalization of earlier work, and although not a model of any particular

existing system, is more reflective of practical systems than earlier models. We have allowed

more complicated forms of queries, and have also considered the effect of blocking subtuples

into pages. We allow a diverse set of access structures in our model, including links, indices,

and segments. The objective cost function that we seek to minimize is the total cost of

answering the queries posed to the partitioned database, and Is expressed In terms of the

number of page accesses , rather than in terms of the amount of data transferred. Unlike the

models of previous studies, two tuples which happen to reside on the same page, if retrieved,

will not incur twice the access cost of retrieving one of them.’ Conversely, a single tuple that

has its attributes partitioned, if retrieved In its entirety, will cause numerous page accesses.

Consequently, If the attributes of a file are partitioned inappropriately such that attributes

that are requested together are placed in separate subf iles, the performance cost of the

partitioned database increases. This contrasts with previous models where access cost was

determined solely in terms of total information transferred (and so for which the trivial

partition is always optimal). In our model, we do not need to specify U, the number of

subfiles in the chosen partition. Rather, U is unconstrained and is determined by the

heuristics according to the optimal partition.

4. Block Diagram of the Attribute Part itioning System

Our attribute partitioning system consists of four components. Figure I shows the

block diagram of the system, in which each component appears as a box. The four

I_V - -. - . - - .. __-f l___—— ~ ‘IV~.t~_ _~~~ ~. , _ - ‘ ‘  ----~-- -~V~~_ -



V .~~~~~~~~ -V._V~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ’ V~~~ V.-V~V ~~~~~~~~~~~~~~~~~~~~~~~ 
_ _ _ _ _ _ _ _ _

Chapter 2 ‘- 30 -The Approach to DB Attribute Partitioning

components are: I- the parameter acqulsitor and forecastor (described In Chapter 3), 2- the

file cost estimator (described in Chapter 4). 3- the query processor (described in Chapter 3).

and 4 - the attribute partitioning heuristics (described, in Chapters 5 and 6). The circles in

the figure represent the collection of forecasted parameters, prepared by the parameter

acquisitor and forecastor, characterizing the database and its usage. Edges in the figure are

labelled by the kind of object passed from one component to another. A brief description of

each component follows. -

I- The parameter acquisitor and forecastor continuously monitors the usage pattern

and the response of the database management system to the queries in the usage pattern. It

collects the statistics needed as parameters by the file cost estimator and the query processor.

At certain points in time when file repartitioning is initiated, the parameter acquisitor

calculates trends and makes forecasts of the database usage pattern and database parameters

for a time interval into the future.

2- The file cost estimator receives a proposed partition from the partitioning

heuristics and evaluates ft by finding the cost of processing each query In the forecasted

usage pattern against the accordingly partitioned file. To compute the cost of processing a

query, the file cost estimator passes the query to the query processor for query analysis. The

query processor finds a method for the query and returns the method to the file cost

estimator . A method for a query is a procedure Indicating how to go about accessing the

subfsles in order t~ answer that query. Using the forecasted database parameters for the

Future time interval, the file cost estimator computes the number of page accesses required to

answrr the query against the partitioned file according to the query’s method. Summing

— ~~~~ - .— 
~~~~~~~~~~~~~ 

.
~~— . ~~~~~~~~~~~~~~~

- .~~~.
V~_ V ~~~~ - ~~ .-, -—. ~. - ‘~1Chapter 2 - SI -The Approach to DB Attribute Partitioning

PA RAMETER
ACQ,UJ SITO R and
FORECASTOR

usage pattern database
parameters

- parameters

query

FILE COST part ition Q UERY
ESTIMATOR

~~ J EVALUATOR
query method

[________________

~~~~~~ ition ~~~~~~ation

ATTRIBUTE 1
PARTITIONIN G
HEURISTICS

Figure I Block diagram of the attribute partitioning system.

________________________________________________ —_ —~~~~~~ a. . ~~~~~~~~~~~~~~~~~~~~ - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — .— -~~~ --. -- - -— - 
-
— -- - V -



-

~~~~~~

Chapter 2 - 32 -The Approach to DB Attribute Partitioning

these costs for all the queries in the usage pattern, the file cost estimator obtains an estimate

for the performance cost of the proposed partition which the partition would be expected to

. incus in the future time interval.

-
3- The query processor .evaluates a query in a partitioned environment by finding a

method for the query. It requires the forecasted parameters of the database and the file

partition. The query processor is heuristic and the method found is normally near optimal.

4- The attribute partitioning heuristIcs propose a suitable partition of a file’s

attributes . The proposed partition is passed for cost estimation to the file cost estimator.

After the cost of the proposed partition Is estimated, the heuristics attempt to come up with a

partition that is incrementally superior to the last proposed partition. This process is

continued until a partition is found such that no other partition proposed has a better

performance compared to it. If the performance cost of the final partition is less than the

cost of the current file partition by a margin that exceeds file repartitioning cost, the file is

i’epa rtitioned according to the resulting partition.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
VVV.V~~~~~V -.

Chapter 3 - 33- The Model of the DBMS

CHAPTER 3

THE MODEL OF THE DATABASE MANAGEMENT SYSTEM

In this chapter we will describe the underlying model of the database management

system that we have assumed in our work. We will describe the storage structure and the

access structures we have adopted for the physical representation of a relation, and the

assumptions we have made for the purpose of reducing the problem of attribute partitioning

to a manageable size. We will then describe the structure of the queries made to the database

and the strategy employed to process the queries in a partitioned environment. Finally, we

will list the parameters required by the components of our attribute partitioning system (the

attribute partitioning heuristics, the file cost estimator, and the query evaluator), and describe

how these parameters are obtained from monitoring the operations of the underlying

database management system. -

.

1. The File Model

We have chosen the relational data model as the logical view of data for a database.

A database in the relational context consists of one or more relations. However, in order to

make the problem of attribute partitioning manageable in size, we address the reduced

problem environment of a database with a single relation. In addition we assume that the

physical implementation of a relation is a flat file. That is, a relation is stored as a set of

unordered contiguous tuples in secondary memory. There are no hierarchies of domains, nor

- - - - V —. — . _
‘L .S

Chapter 3 -34 - The Model of the DBMS

pointers from one tuple to another. Although the assumption of flat file storage structure

may seem rather severe, we note that this Is the most natural way of storing a relation. Also,

some of the drawbacks of the flat file storage structure, such as the placement of frequently

used data together with seldom used data in the same physical locality, is precisely what

attri bute partitioning intends to eliminate. We note here that although the work reported

here is based on the assumption of a single relation database and a flat file storage structure,

the approach to attribute partitioning that we have taken and the attribute partitioning

heuristics that we have developed should be extendible to problems where any of the two

assumptions are relaxed. Specifically, if there Is a facility available to estimate the cost of

answering a query made to a multi-relational database with a non-flat file storage structure,

then the main heuristic techniques that we have developed may be regarded as a viable

candidate for the purpose of attribute partitioning. For further discussion of the possible

relaxation of the above two assumptions, refer to SectIon 7.2.

All the subfiles of the attribute partition are assumed to reside on direct access

sEcondary storage devices like disks (6). Storage space on such devices Is divided into fixed

size blocks called pages. A page Is the information quantum transferred between the disk

and primary memory in one disk access. The accessing cost of a page Is assumed to be

proportional to the average disk seek and latency times plus the page transfer time. Hence,

accessing cost will be Independent of the sequence of page accesses. Consequently, we may

think of the pages of a file scattered throughout the disk, with no restriction on ~heir relative

physical locations.

As mesitioned above, the tuples of a relation are stored unordered with respect to any

attribute . Th’ order in which the tuples are stored will be their chronological order of

— V

Chapter 3 - 35- The Model of the DBMS

insertion into the file. This makes the problem of file maintenance due to updates , insertions,

and deletions much simpler. If a tuple is updated, the new values replace the old values in

the same tuple. A tuple that is deleted is joined to a pool of deleted tuples and will be reused

for newly inserted tuples. (Such a pool can easily be maintained by threading the tupies that

were deleted into a list.) A new tuple that is inserted in the file replaces a tuple that has been

previously deleted. If the pool of deleted tuples Is empty, then the inserted tuple is appended

to the end of the file (if the file occupies an Integral number of pages, a new page is allocated

to the file).

The above strategy for overflow handling Is Intended to maximize the number of

undeleted tuples per page, and keep the file size to a minimum. The cost of a sequential

search and tuple retrieval by the link access path (described below) are Inversely related to

the (average) blocking factor (the average number of used tuples per page), and these costs

should be minimized by keeping storage utilIzation in the tuple space as high as possible.

Even with the above assumptions, poor storage utilization may still ensue if the database

usage pattern consists of a large number of insertions followed by an equally large number of

deletions. To correct this, garbage collection may be performed on the tuple space so the

tuples are recompacted to occupy as little space as possible. We note here that in

partitioning the attributes of a file, the cost of garbage collection may be eliminated from

consideration a~d that if we ignore the effect garbage collection has on the subfile blocking

factor, the optimal attribute partition is independent of the garbage collection cost. The

reason for this is that no matter how the file is partitioned, garbage collection of deleted

tuples requires that the entire file be brought Into primary memory and shipped out back

onto secondary storage. Since the total amount of storage is fixed regardless of how the file Is

- , - ——-- -—~~
—.. -V . — .

~~~~~ ~ -t~ ~- ~~~~~~~~~~~~~~~~~ - 
.
~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -.-- - - -  -— —-—-



Chapter 3 -36 - The Model of the DBMS

partitioned (except for page breakage at the end of each subfile, which is negligible), the cost

t il garbage collection does not enter the optimization process. On the other hand, the

blocking factors of the subfiles do influence the optimal partition. The more frequently that

the file is garbage collected, the fewer the number of unused tuples per page and the larger

the blocking factor would be on the average for the file, Therefore, the optimal partition for

the file will partially depend on the frequency of garbage collection. Since the optimal

selection of points where the file is to be garbage collected is In itself another database design

optimization problem, we will not consider the problem of the optimal determination of

garbage collection points. (See the works of Shneiderman (33] and Yao et al. (38] for a

discussion of this problem.) We will assume that the subfile blocking factor that the

parameter acquisitor prepares for the attribute partitioning heuristics Is the overall average of

the observed blocking factors throughout the planning horizon.

We will assume that tuples are of fixed length (i.e. each tuple occupies the same

amount of storage space), so that each page has a capacity for a fixed number of tuples. This

implies that attribute values have fixed sizes, since a normalized relation has a fixed number

of attr ibutes per tuple. This assumption Is in correspondence with the relation being a flat

file and is a necessity for the realization of links between subtuples of the same tupie. We

also make the assumption that each page contains an integral number of tuples. and that

tup les do not overlap page boundaries.

In our file model, we allow three kinds of access structures. These are: segments,

links, and indices. An access structure is a mechanism that makes the search and retrieval of

tuples possible. In other words, given the value of an attribute, an access structure can locate

and retrieve all tuples having that value for the attribute. The access path of an access

-

~

----V-— . —
~~~~~

- - --—- .- . - ~~~~~~~~ ---~~~V- -- - - - -


~~~~~~~ 

V —-V -

Chapter 3 - 37 - The Model of the DBMS

structure is the way in which the structure Is used in such a search. A segment is a file or a

subfi4e that may be retrieved Into primary memory and sequentially searched from top to

bottom for tuples with a certain attribute value. Hence by using the sequential search access

path of the segment access structure, we can both locate desired tUples and retrieve these

desired tuples at the same time. A link is an access structure for retrieving tuples which have

alread y been located. In other words, assume that we have a pointer or some other identifier

that uniquely identifies a tuple by Its location. Linking is the access path for deriving the

physical address of the tuple from the identifier and retrieving the tuple - from secondary

storage. Therefore the link access structure Is a mechanism for retrieving cuples that have

already been identified and whose location is known. A link cannot be used to search for

tuples that possess a certain value (content retrieving). In our file model,.each subtuple of a

subfile has a link to all its correspondtrig subtuptes in all the other subfi%es. The

corresponding subtuples (or co-subtuples) of a subtuple are all the subtuples that made up a

smgle tuple before the file (and the tuple) was partitioned. An index Is an access structure for

locating subtuples with attributes that match certain values, Without actually retrieving the

subtuples. An index does not have the capability of retrieving tuples. in order to retrieve

the tuples that have been located by an index, a link access structure Is used. In our file

model, any attribute of the relation may have -an index; which ones are actually to be

indexed is a separate database design issue.

.
- - - ~~~~~ _~V_ - , - -



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Chapter 3 - 38 - The Model of the DBMS

2. LinkIng Subtu ples

Sequentially searchmg a file (or a subfile) is a straightforward matter and we will not

discuss it any further. A link, on the other hand, Is an access structure that is widely used In

our model and we will describe how linking is performed in detail.

Once a subtuple has been located or retrieved, it must be possible to retrieve any of

- its co-subtuples in the other subliles. (A co-subtuple may have to be retrieved In order to see

if an attribute of it contains a certain value, or in order to project one of its attributes.)

Hence, we assume that each subtuple has a link to all its co-subtuples and that the

co-subtuples may be retrieved by linking. Links as a means of relating tuples may be

classified according to purpose, realization, and cardinality. The purpose of a link in our

model is to relate co-subtuples. Its realization is logical, I.e. the link is derived by

transforming the address of one co-subtuple into the address of another one. The cardinality

of the link is one-to-one, i.e. each subtuple is linked to exactly one subtuple in another subfile.

Thus, there is no explicit pointer from a subtuple of a subfile to each of its co-subtuples.

Rather , the address of the co-subtuples In different subliles can be calculated from one

another ’s addresses. By subtuple or co-subtuple address we mean the tuple Identifier (or the

log ical address of the tuple), which is the address of the tuple relative to the base address of

its fi l~ When retrieving a subtuple by using a link, the subtuple’s tuple identifier (TID) is

trans lated by the file’s page map table into the physical address of the page the subtuple

resides on and the offset of the subtuple within the page. The page address is then used to

i etrieve the subtuple from secondary storage in one page access. Note that when retrieving

any niiniber of subtuples that reside on the same page. the page needs to be retrieved only

L _ _ V

--
~

Chapter 3 - 39 - The Model of the DBMS

once. Once we have the TID of a subtuple in a subfile (this happens when the subtuple

has been located or retrieved), we may obtain the TIDs of all co-subtuples in other subfiles by

applying a transformation to the subtuple’s TID. This has been made possible because when

partitioning a flat file implementation of a relation, all co-subtuples retain their relative

position in their subfiles, and also because within a subfile all subtuples are of the same size .

To see what this transformation Is, let ~~~ be the tuple with tuple number I (I.e. i~ is the ith

tuple of the file). If the file Is partitioned into M subfiles, then Til . ‘T M are the U

co-subtuples. Let t ,~ be the TID of-subtuple
~~~~~

, j — 1 , M. We want to calculate t ,~
the TID of V , k .  from t ,1 the TID of i’d .  We first show how to get the tuple number ‘

from the TID t,~. Let S be the system page size, l~ the subtuple length in subflle F1, and

let b1 — IS/I1 J be the number of subtuples per page in F1 (we have assumed that tuples or

subtuples do not cross page boundaries) then ( t ,1/S J is the page number of i’,~~, and

(t ,~ mod S) is the offset of ~ In its page. The tuple number I is therefore:

(3.2.1) I — b1 It ij/SJ + (t~ mod S)/11

Finally, we want to calculate ‘ i k ’  the TID of t’i k ’  from i, its tuple number. Since li/bk J

is the page number for the subtuple 1’,k in Fk ,  and (I mod bk) is the number of the

subtuple within the page, we have:

(3.2.2) — S Li/b~J + 1k (I mod bk) 



Chapter 3 - 40 - The Model of the DBMS

3. The Index Organization

Another access structure we have considered in our model is an Index. A file may

have an index on one or more of Its attributes. A subfile that contains an indexed attribute.

has indexing as an access path to locate subtuples having a specified value for that attribute.

In our model, we have chosen an Index to be a balanced tree, where each node of the tree is

a page . A detailed description of the index’s structure may be found in Chan (7) and

Blasgen and Eswaran (6]. The Index is very similar to the B-trees of Bayer and McCrehght

[31 both in terms of structure and the way It is maintained. Briefly, each non-leaf page of the

index contains an ordered set of pairs of keys (attribute values) and pointers, each pointer

pointing to nodes in the next lower level of the tree. The key in the pair is the highest key

of the node the pair points to. A leaf page consists of a key followed by an ordered list of

TIDs of subtuples that have the key as the value of the indexed-attribute In the subtile. The

choice of index structure for our work is obviously not limIted to balanced trees. Any index

that lends itself to usage cost analysis and which is independent of the choice of file partition

-: may be alternatively used.

To concentrate on the problem of attribute partitioning, we assume that the choice of

indices and their structure Is predetermined and chosen beforehand on the basis of other

criteria besides the file partition. This is not to suggest that the problems of index selection

and attribute partitioning are independent of one another. Indeed, the two problems are

mutually interdependent and a better solutIon to the attribute partitioning problem can be

achieved by theit~ simultaneous solution. The problem of selecting indices that befit a

database usage pattern has been extensively analyzed by Chan (71 Our work on attribute

—
-- -— - -~~~

—-—.V - ~~~~~~~ ~~~~~~~~~~~~~~~



Chapter 3 - 41 - The Model of the DBMS

partitioning takes up another dimension of the general problem of physical database design.

4. The Tr ansa ction Model

We will consider four types of transactions that may be conducted against the

F database: queries, updates, insertions, and deletions. The query and the update transactions

consist of two components: a selection component that determines the tuples that are to be

selected, and a projection component that determines which attributes of the selected tuples

are to be extracted and returned (in the case of a query) or updated (in the case of an

update). The deletion transaction consists only of a selection component that determines

which tuples have to be deleted. The insertion transaction has no components. An insertion

- 
transaction is basically a set of tuples that have to be inserted in the file. Because of the

similarities among query, update, and deletion transactions, henceforth, we will discuss only

one of them, namely queries, in full detail. The reader should assume that the discussion for

queries can be generalized for the other transaction types as well. The only difference among

the transaction types is how the projection component of each transaction type is processed

after the tuples are selected. This difference In processesing the projection component will be

delineated later.

- - We have made certain simplifying assumptions on the structure of the queries

considered in our model. The simplifications were necessiated by the need to reduce the task

of query cost analysis to a manageable size. We have disallowed join operations on the

relation in queries. The boolean expression in the selection component of a query consists of

either a conjunction made of equality conditions, or a disjunction made of equality conditions.

_ _  
- . - - - - 

~~~~~~~~~~~~~~~ ~~~~~~~~~~ VV ~~V~ V


V ~~ . ---~~~~~~-———--~-. -- - . -- - -

Chapter 3 - 42 - The Model of the DBMS

A query with just one equality condition is considered to be a special case of a conjunctive

query. An equality condition , is a predicate of the form (a — x) , where a is an attribute

name, and the attribute value x of the equality condition is a constant or program variable

which is known at the time the query is processed. The equality condition in the selection

component is used to search for all the tuples (subtuples) in the file (subfile) that have

attribute value x for attribute a. The projection component is a set of attributes whose

values are extracted from all tuples that satisfy the selection component and returned as the

answer to the query. In a conjunctive query, an attribute cannot appear twice in the selection

component, or appear both in the selection and projection components. Although we have

restricted the set of allowable queries by the assumptions presented above, we have still

included a large number of possible queries, encompassing many of the more frequent queries

encountered in practical database applications.

When a query is made to a database, the query processor does the necessary search

and retrievals on the database and returns the answer to the query. There is a cost associated

with processing a query. In our attrIbute partitioning system, we have incorporated a query

evaluator and a file cost estimator that can analyze a given query and provide an estimate of

the cost of answering the query. Query cost analysis is a complex task. The assumptions we

have made on the structure of the query alleviate some of the difficulties in query processing

and query cost analysis. Besides the assumptions on the structure of a query, query cost

analysis depends on the assumptions made on the distribution of attribute values in the file.

Query cost analysis also depends on the distribution of attribute occurences in the selection

and projection components of queries and the distrIbutIon of attribute values in the equality

condition predicates of queries. As we have mentioned in Chapter 2, previous work done on

- ~~~~~~~~~~~~~~~~~ ~~-—~~~—~~ - - -
~~~~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~-- - -- - -~~~~~~~~~ - -~~- -~~~~ -~~~ - V - -~~~~~~



-~~~~~~~ - .  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Chapter 9 - 49 - The Model of the DBMS

attribute partitioning made simplifying assumptions on the distribution of attribute values

and on the distribution of attribute requests in order to keep the problem of query cost

analysis (and hence the attribute partitioning problem) within manageable limits. We have

also made simplifying assumptions on the distribution of attributes values and attribute

requests in building our model of’ the database management system. However , our

simplifying assumptions are less restrictive in nature than those made in the works of our

predecessors and are closer to the realities of practical database usage. We have made the

following two assumptions in our transaction model.

I- We assume the fraction of tuples that satify a one predicate selection is the

selectivity of the attribute in the equality condition. The (average) selectivity of an attribute

of a relation is the average fraction of tuples under consideration that have historically

satisfied an equality condition involving that attribute. In other words, the selectivity of an

attribute is the fraction of tuples that will most probably satisfy an equality condition on the

file. The concept of an attribute selectivity measure Is an important tool for database

modelling and query cost analysis. The attribute selectivity measure will be defined and

described fully in the section on Parameter Acquisition. From the attribute selectivities, the

number of tuples that satisf y an equality condition on an attribute Is estimated as the product

of the selectivity and the number of tuples In the file. Using this measure of selectivity

~oids the naive assumption that the attribute values are uniformly distributed in number.

and that the number of tuples satisfying an equality condition is the total number of tuples

divided by the number of different values of the attribute. Also by using this measure, we

have avoided the simplistic assumption that attribute values of a given attribute occur with 

— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _. ,.~~~~~~ .3 - - - — — — —



Chapter 3 - 44 - The Model of the DBMS

equal probability in the selection components of queries. Although we could have obtained a

still better model of value distribution by noting the number of tuples that contain each value

of an attribute in a table, the attribute selectivity measure has the definite advantage that It

takes little storage for its preservation. The other scheme requires that a table of attribute

value frequencies be maintained for each attribute in the file, and if there are many distinct

values for an attribute, this table will consume a significant amount of storage and will also

be very difficult to update.

2- Since we allow the specification of queries with multiple equality condition

predicates , it is necessary to have a measure for the joint resolving power of two or more

equality conditions. (This measure Is called the joint selectivity measure.) For this purpose.

we will assume that the appearance in tuples of values belonging to different attributes Is

independent. (I.e., the probability that value x of attribute a and value y of attribute b.

appear in the same tuple is equal to the product of their individual probabilities of

appearance.) Hence the fraction of tuples satisfying a conjunction of predicates

simultaneously is the product of the fractions that satisfy each predicate, and the fraction of

tuples satisfying a disjunction of predicates Is the complement of the fraction not satisf ying

any of the predicates of the disjunction.

One assumption we do not make in our model, however, is that attributes occur

independently of one another in the selection and projection components of the query.

Neither do we make the less narrow but nevertheless still restrictive assumption that the

correlation between attribute occurence in queries Is determined by joint probabilities of

attribute occurence. We actually keep a record (in a table, called the table of query types) of

V ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -~~



. -  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Chapter 3 - 45- The Model of the DBMS

all queries made to the database, and the exact cor relation in the occurence of attributes in

queries may be obtained form this table. Thus we avoid making the strong (and often

inaccurate) assumption that an attribute is requested by a query independent of what other

attributes are requested by that query. This table of queries is concise In that queries

involving the same attributes but different attribute values are clustered together in one

entry. (The number of queries in the cluster is also recorded in the entry.)

5. Query Processin g in a Partitioned Database

An - integral part of a database management system is a facility to decide how to

answer queries. Since we are modelling a database management system that decides how to

answer queries posed to the database, and since in the course of attribute partitioning we

need to estimate the cost incurred in answering a query posed to the model database, our

attribute partitioning system will also need to decide how to answer queries. When a query is

made to the database, appropriate access paths must be chosen so that tuples satisf ying the

selection component of the query may be located. After the satisfying tuples are located (i.e. a

TID list of such tuples is obtained), the same access path (or possibly some other access path)

will have to be used In order to retrieve the tuples.

For example, assume we have a conjunctive query involving attributes a 1 , at in

the selection component and attributes aL.i , a~ in the projection component made to a

partitioned file. In order to answer the query, the subtuples that satisfy the equality

conditions on a~ , at need to be located (by creating a TID list pointing to the subtuples).

and then their co-subtuples containing attributes 1L.I aP( have to be retrieved so that the

~ 

~~~~~~ 
—-————-—-— —

~ -— - - - . ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ - . ~~~~~ __- - ~~~~~~~~~ . - - -- ..‘ V 3 _ , _ .

V .- -~~~~
---.V -.- ~~~~~~

,*.- - .w ~~~

Chapter 3 - 46- The Model of the DBMS

value of projection attributes •L.i K may be extracted and returned. Assume that

there are indices available on some of the attributes a p , at . We may proceed to locate

the subtuples that satisf y the selection component in either of the two following ways (in the

rest of this section, we do not explicitly specify when the transformatIons 3.2.1-9.2.2 are to be

performed on TIDs of subtuples to get the TIDs of co-subtuples; we assume the

transformations are performed whenever necessary)

I- Use all the applicable indices to retrieve the TID lists of subtuples satisfying the

indexed attributes, intersect these TID lists (because the query is conjunctive), and from the

resulting TID list link to the subfiles that contain any of the unindexed attributes a 1 . at

(an applicable index is an index on a selection attribute). Sübfiles are accessed one at a time.

Everytime a subfile is accessed, its subtuples with TIDs in the list are retrieved ~via links)

and checked to see if they satisfy the equality conditions on the unindexed attributes. The

TIDs of subtuples that do not satisfy any of the unindexed attributes are then pruned from

the TID list (i.e., the TID list of the subtuples that satisfy all of the unindexed selection

attributes in the subfile is intersected with the old TID list). After all the subfiles containing

selection attributes have been accessed, and the TIDs In the list have been tested to satisfy the

equality conditions, then all subtuples with TIDs in the list are retrieved (again by linking)

from all the subflles containing projection attributes, and the projection attributes are

extracted.

2- Use none of- the indices. Sequentially search one of the subfiles containing

selection attributes, and create a TID list of the subtuples that satisfy all predicates Involving

the subfile. Thereafter, using the TID list, link on.e by one to the subfiles containing the

remaining selection attributes, until a TID list of subtuples satisfying the entire selection

—~~~~~~~~~~ — - - - — —. - V - - -~~~~~~ -~~~~— — — -~~~~ -— -- --- - V


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~

Chapter 3 - 47 - The Model of the DBMS

component of the query is obtained. Finally, link to subfiles containing projection attributes.

Each of the above two schemes may be thought of as a step by step procedure where

at each step an access path (sequential searching, indexing, linking) Is performed in order -to

obtain the TIDs of subtuples that satisfy one or more of the equality conditions In the

selection component. Let us call the act of obtaining TIDs of subtuples that satisfy the

equality condition on an attribute the act- of resolving the attribute. Hence each of the above

two schemes is a step by step procedure where at each step an index is used to resolve an

attribute, or a sequential search/link is used to resolve one or more attributes In one subfile.

We define the method of a query to be such a step by step procedure where at each step an

access path is used in order to resolve one or more attributes.

A query usually has many different methods. For example, in the two schemes

above, we chose either to use all the indices, or to use none. We might have chosen to

resolve some of the indexed attributes (in the selection component of the query) by Indexing,

while resolving the rest of the indexed and unindexed selection attributes by linking.

Similarly, when linking to subfiles, the subfiles will be accessed in some sequential order (i.e.

one subfile is linked first , another subfile second, etc.) Each distinct subset of applicable

indices and each distinct subfile sequence constitute a method of the query. (Hence each of

the two schemes above may be translated into many methods as the sequence of linking to

subfi)es is instantiated.)

There is a cost associated with a query’s method. Depending on what indices are

used and in what sequential order the subfiles are linked, the cost of answering the query will

be different. For example assume that in resolving the attributes of a query, two .subflles

have to be linked and when each subfile is linked, the size of the TID list will be reduced by

~



Chapter 3 - 48 - The Model of the DBMS

an equal factor . Then it is better to link to the subfile with the smaller number of pages

before we link to the subfi le with the larger number of pages. Although in the first method

the second link will result In more page accesses than the second link in the first method, the

first link in the second method will result in even more page accesses than the first link in the

first method. Therefore, It Is important that a query processor consider all the methods of a

quer y and select the method which results in the smallest number of page accesses when

answering the query. The optimal method of a query will depend on the attributes In the

selection component of th-e query, the attributes in the projection component, the attribute

selectivities and lengths, the attribute partition, and on other database parameters. A query

processor will have to consider all these parameters when choosing a method for a query.

The purpose of this section is to present how our attribute partitioning system goes

about choosing a method for the query made to the partitIoned databasr. ‘Before we present

our strate gy for choosing methods, we delineate and describc~ the different phases of query

processing; the first phase Is the phase in which the query processor decides ~~i the optimal

method of the query.

- 
Processing a- query made against a partitioned database with a single relation and In

which no joins or aggregate operators are Involved consists of three phases: I- query

evaluation, 2- query resolution, and 3- query answering.

I- Query evaluation - Query evaluation Is the process of finding the optimal method

for a query. In an environment where the file is partitioned and attributes are Indexed this

means: I- selecting the indices to use in answering the query, which could be selecting all,

none, or some of the applicable Indices, 2- selecting the sequence of accessing those subfiles

~~~~_ p 
— _S.. ~~~~~~~~~~ d~.1 __ .~~~~ — -

-- V•~ — -. -- -- ~~V ., - -

Chapter 9 - 49 - The Model of the DBMS

that contain selection attributes not resolved by means of indices. (Note that if no index is

utilized by the method, then the first subfile of the method -will be sequentially sea rched,

while the remaining subfiles will be linked.) The agent for finding the optimal method for a

query (or finding a suitable method in case the optimal method is difficult to find) is the

query evaluator. The query evaluator chooses a method with the objective of minimizing

page accesses when answering the query. Later in this section, we will present the strateg y

used by the query evaluator of our attribute partitioning system. The method chosen by our

query evaluator is not necessarily the optimal method for the query, although we will show

that our strategy results in near -optimal methods. When a satisfactory method is found for a

query, we say that the query is evaluated.

Note that in our model of query evaluation, the query evaluator does not take into

consideration the projection attributes of the query. Strictly speaking, the query evaluator

should also take the projection attributes Into consideration and the method of the query

should specify the sequence of linking to the subliles containIng project-ion attributes. This is

because the cost of answering a query is influenced by the sequence in which projections are

made. For example, if a subfile contains both selection attributes and projection attributes,

then it is beneficial that this subfile be linked last in the method; since If the subfile is linked

last , both the selection attributes may be resolved and the projection attributes may be

projected concurrently. If this subfile is not linked last, it will be linked once for resolving the

selection attributes and another time for projecting the projection attributes. (Note that each

time the subfi le wilt be linked from a different TED list.) We have eliminated projection

attributes from consideration when evaluating a query. We do this because: I- considering

projection attributes will make the problem of query evaluation still more difficult, and 2-

- .~~ - - .~~~- - — -
~~~~~. .— i- -—— ~~~~~~~~~~~~~~~~ 

- — .  — 
~~~~~ —~~~~ V ~

- - ~~~~~~~~~ - ~~~~~
, -

- -~~~~~~~~~~
-
~~~~~ —_



V V - -~~~~-~~~~~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Chapter 3 - - The Model of the DBMS

because we believe that the sequence in which the subfiles are accessed in resolving attributes

has a more profound influence on the cost of answering a query than the sequence in which

the subfiles are linked for projecting attributes.

The query evaluation performed by our query evaluator does not entail any

input/output operations (I.e. page accesses). The query evaluator does not need to know

about the actual data contents of the subfiles; it only requires the various parameters

prepared by the parameter acquisitor. The query evaluator evaluates a query by choosing a

method for it, utilizing some strategy. One such strategy is exhaustively enumerating all

possible methods for the query, estimating the cost of answering the query according to each

method (by using the file cost estimator), and then choosing the optimal method. We have

discarded this strategy because it is computationally intractable to consider all possible

method s for a query. This is especially true when making a query against a database

partitioned into many subfiles and/or if there are many indices available. The strategy we

use for query evaluation Is instead based upon choosing a near-optImal method without

requiring extensive analysis of the query.

Query evaluation is the only phase of query processing that is an optimization

process. The other two phases of query processing do not attempt to optimize the cost of

processing a query. Query evaluation is -the only phase actually performed in our attribute

partitioning system. The next two phases are only performed by a database management

system when it actually processes a query. The reason our attribute partitioning system

evaluates queries is that the method of a query is required in order to estimate the cost of

answering the query. The query evaluator our system supplies the method of the query to the

file cost estimator , which computes the cost of locating the selected subtuples (according to the

V~~~~
V — 

~~~~~~~~~~~~~~~~~ - -  -. ~~. ~V - -~~~~~~~~~


Chapter 3 - 51 - The Model of the DBMS

method) and the cost of retrieving the subtuples needed for projection. (The attribute

partitioning heuristics require the cost of answering all the queries In the database usage

pattern . See Section 4.4 for a detailed discussion on how the file cost estimator est imates the

cost of answering a query.)

2- Query resolution is the process of locating the set of tuples that satisfy the

selection component of the query. A query Is resolved when all the selection attributes are

resolved and a list containing the TIDs of all satisfying tuples Is produced. After a query is

evaluated, the query is resolved by accessing the indices specified in the query’s method and

performing the link to the subfiles in the order specified in the query’s method. In each step

of the method, the access path specified in the step is actually performed and a TID list is

created of subtuples that satisfy the equality condition predicate of the attributes that are to

be resolved in that step. For a conjunctive query. this TID list is intersected with the (old)

TID list that is the result of the preceding steps of the resolution process. If the query is a

disjunction, the union of the new TID list is taken with the old TED list. The final TID list

obtained from the last step of the method is the result of the query resolution phase. In the

process of query resolution, page accesses are made to secondary storage when performing an

access path.

3- A query is answered when all subtuples containing projection attributes that are

pointed by the TED list are retrieved into primary memory and the attribute values of

attributes specified in the projection component of the query are extracted and returned .

This phase of query processing involves only input/output operations and no internal

processing. As previously mentioned, if the last subfile that is linked in the resolution phase

- — - - -V -- — - ..— -—~
- —-.-~~~~~~~ :_.J .-t - -.- ... ~~~a.L. i.. - —

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ -

~1

Chapter 3 - 52 - The Model of the DBMS

contains projection attributes, then it is possible to start answering the query before the query

is completely resolved by extracting the projection attribute values from a subtuple when the

selection attribute values of the subtuple satisfies the predicate. In other words, the query

resolution and the query answering phases may overlap on the last subfile in the method.

In the rest of this section we will discuss the query evaluation strategy the query

evaluator of our attribute partitioning system uses. Finding a satisfactor y method for a query

in a partitioned environment is a~ involved task. Unlike query evaluation In an

unpartitioned environment where the query evaluator has only to choose the optimal set of

applicable indices, a query evaluator in a- partitioned environment In addition has to choose

the sequence of linking to the subfiles. Our query evaluator is a heuristic evaluator that

finds a satisfactory method for the query without resorting to cost estimation. The method

obtained by the query evaluator is not necessarily the optimal method for that query,

although (in the course of our work) we have found it to be near-optimal. We will first

discuss the query evaluation strategy for conjunctive queries. Thereafter we discuss in what

way the strategy used for disjunctive queries is different. -

Query evaluation consists of two stages. In the first stage, the query evaluator selects

the subset of applicable indices to include in the method. After this has been determined, the

query evaluator has to choose a sequential order for linking to the subfiles that contain the

rest of the selection attributes.

1- Depending on the attributes in the selection component, their selectivities, and the

attribute partition, it may be beneficial to use none, all, or a subset of the applicable indices.

We believe that for most queries, using either none or all of the applicable indices will lead to

-—-- - - .-——_ - ---fl - - - -S. - -ttat -‘

_ _ _ _
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~1

Chapter 9 - 59 - The Model of the DBMS

satisfactory methods. Also in order to reduce the problem of query evaluation to a

manageable size, we will restrict our attention to-the above two choices.

One criterion by which we may judge the effectiveness of utilizing the indices to

process a query is the joint selectivity of the Indexed attributes that occur in the selection

component of the query. Assume that: I- the Indexed attributes are not jointly selective (i.e.,

the joint resolving power of the indices is low and a large fraction of the tuples will be

selected so that almost all the pages of a subfile that is linked thereafter have to be retrieved ),

and assume that 2- a subflle that contains an Indexed attribute also contains some other

unindexed selectton attributes. Then such a subflle will most likely be accessed In its entirety

in order to resolve the unindexed attribute. Therefore, the .indexed attribute in the subfile

can be resolved by the link at the same time the unindexed attribute is being resolved and

with no extra cost. Hence when the Indexed attributes are not jointly selective, using the

indices will not save in the number of pages accessed.

Thus, when the joint selectivit y of the indexed attributes Is not too low (which is the

case for the great majority of queries), the query evaluator will choose to use the full set of

applicable indices. This is because the cost of resolving an attribute utilizing an index (if

availab le) on the attribute is usually a fraction of the cost of resolving that attribute by

linking to (or sequentially searching) the subfIle containing It. This can be true even if the

subfile containing the indexed attribute contains other unindexed selection attributes and has

to be eventually linked: If the Indexed attribute and the unindexed selection attributes

residing in the same subfile as the indexed attribute are resolved simultaneously by linking

from a TID list to their subfile, there may be more pages accessed than when the indexed

attribute is resolved first using the index, the TID list pruned and reduced (as the result of

- — ~~~~~~~~~~~~~~~~~ -~~~- .—--- : .  ~-~~~~
- - ~-~_-~--- ~--=~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V - .... ~~.L.. .. ~~~~~~~~ - - _______



Chapter 9 - 54 - The Model of the DBMS

the indexing), and then the subfile linked to resolve the unindexed selection attributes.

Whether all the applicable indices are used or none of the applicable indices are

used , the query evaluator will have to choose a sequence for linking to subfiles containing

unresolved selection attributes . This is done in the second stage of query evaluation.

2- The second stage of query evaluation begins when the indices that are to be used

have been chosen . The query evaluator will then have to link to the subfiles containing the

unresolved selection attributes starting from the TID list that is the result of the indexing.

Everytime a subfile containing an unresolved selection attribute is linked, the TED list is

reduced to a T1D list of tuples that satisfy the selection attributes In the subfile in addition to
- the pi-eviousl y resolved attributes. The subfiles containing unresolved selection attributes are

linked in succession, producing successively more refined TID lists. When all the subliles

have been linked, the query is resolved and the TED list points to the selected subtuples. The

task of the query evaluator in this stage of query evaluation Is to find the optimal sequence of

linking to subfiles. Note that the query evaluator does not actually perform the linking. The

query evaluator only decides on the sequence of linking to the subflles. It is the query

resolver that actually performs the linking (in the sequence decided by the query evaluator)

and retrieves the subtuples from the subfiles. The query evaluator may need to know the

expected cost of linking to subfiles when deciding on the sequence. An estimate of the

expected cost of linking to subflles can be obtained without actually performing the linking.

In Chapter 4 we describe the function used for this cost estimation. This function translates

the number of tuple retrievals into the number of page retrievals and only requires the size of

the TID ‘ist from which the linking is performed. The size of the TID list is readily

-- ,  - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
V —- ~~~~



Chapter 3 - 55- The Mode) of the DBMS

available as the product of the joint selectivity of the attributes resolved so far and the total

number of subtuples in the subflle (the joint selectivity of a set of attributes is obtained by

expression 3.6.1 from the individual attribute selectivities). Also note that if no index is

chosen in the first stage of query evaluation, the first subfi%e of the sequence is sequentially

searched (which is tantamount to linking to the subfile from a T1D list containing all the

TlDs of the subtuples In the subfile).

The criterion for optimization in this stage of query evaluation Is the minimization

of the total number of page accesses when answering the query. Depending on the sequence

chosen in this stage, the method of a query may be optimal or highly nonoptima). Therefore

it is important that the query evaluator use a query evaluation strategy which guarantees that

the sequence chosen is close to optimal for most of the queries evaluated. As we mentioned

before, exhaustive enumeration of all Ic! possIble subfile sequences (where Ic is the number

of subfiles containing unresolved selection attributes) is out of the question because cost

estimating all of the sequences is computatlonally intractable. Due to the large search space

(of possible sequences) and the numerous parameters that have to be considered in choosing a

sequence. finding the optima) subfile sequence is a difficult task. However , we may

qualitatively arrive at desirable sequences by considering the following criteria when deciding

on the sublile sequence. I- Subliles that can have their selection attributes resolved without

incurring too many page accesses should be linked prior to linking to subliles that Incur

many page accesses . That is, at each step where a subtile is to be linked, the query resolver

should link to the subfile that results in the smallest number of page accesses. Equivalently.

this means linking to the subfile with the largest blocking factor (number of tuples per page),

since the subfile with the largest blocking. factor will result in the fewest pages accessed . (To 
-

- V~~~~~~~~ - - -  

V - 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ --~~~~ -~~~~~-, - -


Chapter 9 - 56 - The Model of the DBMS

see this , we refer the reader to the discussion of the page access function presented In Chapter

4 and expression 4.2.l.b. In this expression. for fixed n and fixed r A(ri,b,r) monotonically

decreases as b increases.) 2- The subtile that makes the joint selectivity of the resolved

attributes become highest (most selective) should be linked first. That is. consider the joint

selectivity of the unresolved selection attributes of each subfile and select the subfIle with the

highest joint selectivity (i.e. the subtile that reduces the TED list the most) to be linked next.

In this manner , the overall joint selectivity will tend -to become high as early as possible,

causing the TID list of satisfying subtuples to be reduced earlier and fewer page accesses to

be incurred as the query resolver goes to the next step of the method. The above two criteria

can be conflicting requirements. A subtile may have low blocking factor but high joint

selectivity for unresolved selection attributes, while another subtile may have large blocking

factor but low joint selectivity.

Based upon the above criteria, we have developed five query evaluation strategies

(heuristics) for choosing the subflle sequence. Each strategy is based upon one of the above

criteria or uses a function of both criteria to rank the subfiles in some sequential order.

Needless to say, we do not expect that any single strategy would be able to find the optimal

sequence for all queries made to a database which is partitioned in any manner. However ,

we require that the sequence chosen by a good strategy never to be far from the optimal

sequence. In order to compare the different strategies which we present, we have conducted a

set of experiments on each of the strategies. In order to determine to what degree the

determined strategies are optimal and to what extent they may serve the purpose of query

evaluation , we have also applied the set of experiments to two other “control” strategies, and

compared the results with the results of the five strategies. The five strategies considered are:

- - V ;~~_~ _-
-

~~~ 
-- - .- ,- :  5-a _.Sa’..S~ - - -  ~~~~~~~~~~~~~~~~~~ —- V - —



V -

Chapter 3 -57 - The Model of the DBMS

(a) Least Page Access (LPA) - In this strategy, the subfile that results in the least number of

page accesses is linked. That is, when there are a number of subfiles containing

unresolved attributes, the query evaluator chooses to link to the subtile that would result

In the least number of page accesses. This is in accordance with the first of the two

ordering criteria~ discussed above. Intuitively, linking the first few subfiles will result in

not too many page accesses, and as the subfiles that incur many page accesses are linked

further on, the joint selectivity of the attributes resolved so far will be sufficiently high

such that not too many page accesses wilt be made to resolve the remaining attributes.

As mentioned above, this strategy amounts to sequencing the subflles according - to

decreasing blocking factor. 
-

(b) Least Page Access by Pairs (LPAP) - In this strategy, the query evaluator looks at all

ordered pairs of subfiles. For each pair, the query evaluator computes the cost of linking

to the first subtile of the pair and adds to it the cost of subsequently linking to the second

subtile. The computed cost for all the pairs is compared - and the query evaluator selects

the pair with the least cost to be the next two subfiles that are linked In the method.

Note that when the query evaluator computes the cost of each ordered pair of subfiles,

the second subtile will be linked from a subset of the TID list from which the first subtile

is linked. This is because after linking to the first subtile, the TlDs of subtuples that did

not satisfy the selection attributes in the first subtile are pruned from the TID list.

Therea fter, the query evaluator reapplies the LPAP strategy to the remaining subfiles to

select the next two subfiles that are to be linked In the method. The reapplication Is

repeated until all the subfiles have been sequenced. Everytime a pair of subliles Is 



-. -- - - - - V 
~~~~~~~~~

Chapter 9 - 58 - The Model of the DBMS

selected , the TID ‘ist is reduced to a smaller TED list of tuples that in addition satisfy the

selection attributes of the pair of subfiles just selected.

The LPAP strateg y is similar to the LPA strategy in that the criterion for

sequencing is the number of page accesses. However, this strategy looks at two subfiles at

a time and also considers the jo int selectivity of the unresolved selection attributes of the

first subfile In choosing the subtile pair. Therefore, this strategy will always result in

better methods compared to the methods chosen by the LPA strategy. Observe that if

there are only two subfiles that have to be sequenced in the second stage of query

evaluation, then this strategy will find the optimal sequence.

(c) Highest Subfile Selectivity (HSS) - In this strategy, subfiles are sequenced according to

their resolving power: The subfile containing unresolved selection attributes with

highest joint selectivity is chosen to be linked first, and the subtile with the second

highest jo int selectivity is linked second, etc. This is in accordance with the second

oi-dering criterion discussed above. The idea here is to reduce the size of the TID list as

fast as possible.
-

(d) Highest Selectivity and Least Pages (HSLP) - It is -desirable to order the subliles both

according to the joint selectivity of the selection attributes and according to the number

of pages accessed when linking to them. The previous strategies chose one or the other

as the ordering criteria. This strategy combines the two criteria by ordering the subfiles

accorling to the (increasing) product of the joint selectivity of the selection attributes and

the number of page accesses incurred In linking to the subtile; the subtile with the least

product is selected and the strategy is reapplied to the remaining subflies. Everytime the

-
—. —— —-—

V -- -- ~~~ V — —.~~ -— — -—

~1

Chapter 3 - 59 - The Model of the DBMS

strategy is applied to the subfiles, the subtile with the least product is selected and the

number of subfiles that are to be sequenced is reduced by one. This strategy is based

upon the assumption that considering both criteria will result in a superior method

compared to a method that Is found using a single criterion. Note that in this strategy,

everytime a subfile Is chosen, the TED list is reduced to reflect the resolution of the

attributes In the newly chosen subtile (i.e. the joint selectivity of attributes resolved so far

is multiplied by the selectivlties of selection attributes in the chosen subtile). Thereafter ,

when choosing among the remaining subfiles, the number of page accesses incurred in
- linking to a subfile is computed from this reduced TED list.

(e) Highest Selectivity and Least Pages by Pairs (HSLPP) - This strategy is like the Highest

Selectivity and Least Pages strategy except that all ordered pairs of subfiles are compared

together. For each pair, the number of page accesses (computed in the same way as in

the LPAP strategy) is multiplied by the joint resolving power of all the selection

attributes in the pair of subfiles. The pair with the smallest product is chosen~ The

strategy is then applied to the remaining subfiles. Compared to the HSLP strategy this

strategy performs a search of depth two and hence will result In superior methods than

those found by the HSLP strategy.

We have conducted a number of experiments on the above five subtile sequencing

strategies . The experiments varied over two different sets of query usage patterns, two

partitions, three sets of attribute lengths, and three sets of attribute selectivities. The results

given in the table below are the average for each strategy’s performance. The two strategies

Exhaust and Random are “control” strategies against which the other strategies at -c to be

- - — - ~~~~~~~~~~~~~ ~~~~~~~~~~~~

V - - - ~~~~~~~-.~~~~~~~~~~-. - -- ~~

Chapter 3 - 60- The Model of the DBMS

compared. The Exhaust strategy finds the optImal sequence of subtiles by exhaustively

enumerating all sequences, and selecting the sequence which results in the least processing cost

for the query. The Random strategy finds a sequence for the subfiles by randomly choosing

one of the possible subtile sequences, in what amounts to a non-strategy. The first row of

Table I is the ratio of the average page accesses for each strategy with respect to the page

accesses of the Exhaust strategy. The second row is the ratio with respect to the Random

strategy (for the same set of experiments).

The performance of the Least Pate Access by Pairs strategy was very close to the

optimal performance. By the performance of a strategy we mean the cost of answering the

queries in the usage pattern when each query is evaluated according to the strategy. The

Least Page Access strategy also compares favorably to the other strategies. The performance

of the strategies that considered the joint selectivity were not as good as the LPAP strategy.

Even the LPA strategy, which only considers the number of page accesses, performed better

Exhaust Random IPA LPAP ~~ ~~~ HSLPP

- 1.0 1.425 1.103 1.004 1.288 1.246 1.055

0.701 1.0 0.773 0.704 0.903 0.875 0.740

Table I The results of different query evaluation strategies.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ____ ~~~~~~ V V V ~~~ _~~~~~~~V



Chapter 3 - 61 - The Model of the DBMS

than the HSLP strategy that considered both the page accesses and the selectivity. We

attribute this partly to the fact that after the first subtile has been linked, the joint selectivity

of the resolved attributes has become high enough so that the second subtile incurs

comparatively fewer page accesses than the first subtile. Thus it becomes important that the

first subtile Incur as few page accesses as possible.

The LPAP strategy is very close to optimal and may be considered as the choice

for a query evaluator in a partitioned database environment. However In our work, we have

chosen the LPA strategy because of the following reasons. 1- The LPA strategy is

near-optImal. 2- The LPA strategy is computationally efficient compared to all the other

strategies. Since the number of- pages accessed in linking from a TED list to a subtile is

inversely proportional to the subfile’s blocking factor (again, refer to Section 4.2 and

expression 4.2.L b), a query evaluator based on the LPA strategy initially has to order all the

subfIles of a partition according to decreasing blocking factor. For each partition, the subtijes

of the partition need to be ordered only once. Thereafter when evaluating a query, the query

evaluator sequences the subfiles that contain unresolved selection attributes in accordance

- with the precomputed sequence based upon the subtile blocking factor.

The tigure~ of Table I are performance averages over different queries, partitions, -

attribute lengths, and attribute selectivities. Obviously, some strategies pertorm better than

others for certain queries and partitions. ft was observed that in general, as the number of

attributes in the selection components of queries increases, the performance of each strategy

deteriorates with respect to the Exhaust strategy, with the strategies that consider only a

single subtile (the LPA, I-ISS, and HSLP strategies) deteriorating the most. Also, it was

observed that the larger the number of subfiles in the partition, the less optimal the

- - - - —— - -  
V 

~~~~~ 
- -

~~~~~~~~~~~~~~ ~—— ~~~~~~~~~~~~~~~~~~~~~~~~~~~ —- ~~~~~~~~~~~~~~~~~



Chapter 3 - 62 - The Model of the DBMS

performance of the various strategies.

The above discussion concerned conjunctive queries. For disjunctive queries, the

query evaluation strategy used Is very similar to the strategy used for conjunctive queries. If —

the Indexed selection attributes are highly selective, and if the subtile containing the Indexed

selection-attributes also contain unindexed selection attributes, then with great lIkelIhood, this

subfile will be searched- in its entirety and using indices will not be very effective and may be

avoided. Otherwise , the full set of applicable indices is used. The subtile containing

unresolved selection attributes are then sequenced according to the LPA strategy (i.e.

according to decreasing blocking factor). For a disjunctive query, the joint selectivity of the

resolved attributes is computed according to expression 3.6.2 from the Individual attribute

se)ectiv aties .

A disjunctive query is resolved differently from a conjunctive query in the query

resolution phase: When a TED list is obtained by linking to a subtile, the union of the new

TID list is taken with the old TID list. The resulting TED list is then complemented to 
- 

-

obtain a list of subtuple TIDs that do not satisfy any of the attributes resolved so far. This

complemented TID list is used - when linking to the next subtile in the method.

Complementing a TID list is accomplished by repeatedly generating subtile TlDs t’sing

ex pression 3.2.2 and checking to see that a generated TED does not occur in the TID list.

After the query evaluation phase, the query’s method is passed to the query resolver

which actually produces the TID list of selected subtuples. The TID list is then used for

linking to subtites containing projection attributes. Depending on the transaction type, the

query answerer does the following: 

~~~~~~~~~~ .- - ~~~~~~~~~~~~~~~~~~~~~~~ - -V  -~~~ _______________


~ V V V ~~~~~

Chapter 3 - 63 - The Model of the DBMS

Query - The subfi.ies containing the projection attributes are linked from the TJD list

constructed at the query resolution phase. The selected subtuples are retrieved from the

subfiles, and ttie values of projection attributes are extracted and returned.

2- Update - The selected subtuples are retrieved from subfiles containing projection

attributes (as for a query), all attribute values to be updated are updated (in primary

memory), and the subtuples are written ba .k In their previous location. An update

incurs as many page accesses as a query In the resolution phase, and twice the number of

page accesses in the answering phase. It any of the updated attributes are indexed, then

the a ffected .indices are maintained as appropriate.

3- Deletion - All co-subtuples of the selected tuples are retrieved, marked deleted, and

written back in their previous locations. A deletion incurs the same cost as a query in the

resolution phase, and twice the cost of retrieving all co-subtuples (I.e. the entire tuple) of

selected tuples in the answering phase. The affected Indices are maintained as

appropriate. An overflow garbage collection may ensue if there are too many deleted

tuples in the file. -
—

An insertion is different from the other transactions. Assuming that the unused

tuples are uniformly scattered throughout the file, inserting r tuples in the file incurs J
twice the number of page accesses required for retrieving r uniformly distributed

subtuples from each of the subfiles. This number is computed from the page access

function of Chapter 4. If the unused tuple slots in the file have been exhausted, then the

excessive inserted tuples are appended to the end of the file. In this case, the number of

- —.—
~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~ - - - - - V ~ - -



Chapter 3 - 64 - The Model of the DBMS

page accesse s Incurred for each subfile will be the number of appended subtuples divided

by t he blocking factor of the subfile. Indices are maintained as appropriate.

We note here that the optimal attribute partition is independent of index

maintenance, and the cost of maintaining the indices Is incurred regardless of the choice of

partition. Also we have ta ken the two problems of Index selection and attribute partitioning

as seim rate , assuming that the set of Indexed attributes is fixed. Therefore, index

maintenance cost will not enter our objective cost function, and we may eliminate it from

further consideration.

6. Par a meter Acquisition

The Parameter Acquisitor monitors the database management system and collects

statistics both on the usage pattern and on the response of the database management system

to the queries. The statrstics collected are used to forecast database and usage pattern

parameters for the next time interval. A time Interval is the time span between two

consecutive repartitioning points. The forecasted parameters will be used by the tile cost

estimator and the attribute partitioning heuristics at the repartitioning point marking the end

of the time interval. Monitoring the database management system is a real time activity; it

has to be performed while the database management system processes transactions. For this

reason , only those statistics that can be Inexpensively acquired should be collected. Also, the

stat ist ics collected must be succinct and require little storage for their preservation. The

s t i c i u ~s collected for the purpose of attribute partitioning fall into four general classes:

— - V - - ~~~~~~~ V - - - . -- - - -~-- - - - V . - -



Chapter 3 - 65 - The Model of the DBMS

Database Usage Statistics - For each query made to the database, the type of the query is

stored In a table of query types. The type of a query Is the set of attributes in the

selection component and the set of attributes in the projection component and a flag

Indicating whether the query is conjunctive or disjunctive . Consequently, all queries with

the same attributes (but wIth possibly distinct attribute values in the equality condition

predicate) are clustered together in the same entry of the table. (A query type may be

encoded as a bit map for the sake of succinctness.) Our assumption that the fraction of

tuples satisfying an equality condition predicate depends only on the selection attributes

and not on the attribute values in the selection component makes this clustering scheme

possible. The number of queries that are clustered in the query type is recorded along

with the query type in the table entry. 
-

2- Average Relation Size and Average Blocking Factor - The number of tuples in each file

is needed for the purpose of cost analysis. This statistic is continuously updated by the

number of tuples inserted or deleted so that It reflects the instantaneous size ot the file.

The blocking factor of the file (the number of tuples per page) is also required for cost

analysis. The blocking factor at a certain point In the time Interval is the number of

tuples in the file divided by the number of pages in the tile at that point in the time

interval. - The number of pages in the file is also updated continuously as pages are

allocated for inserted tuples or as pages are released after garbage collection, so that it

reflects the true state of the database. Since tuples will be continuously inserted and

deleted, while some tuples will be temporarily unused (until a tuple is inserted in place of

a deleted tuple or until the next overflow garbage collection occurs), a fixed value for the

__________- 
- - -  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-
~~~~~~ ~~~ - - - ~~~~ - - ., - - - ~~~~~~~~~~~~~~~~~~~ 

- 
~~~~~~~~~~~


Chapter 3 - 66 - The Model of the DBMS

blocking factor over the time Interval will at best reflect an average of the true blocking

factor. The average blocking factor parameter Is obtained by averaging the blocking

factors observed at a number of points in the time interval.

3- Attribute -Selectivity Statistics - This statistic is the fraction of tuples that have

historicall y satisfied a~ equality condition predicate on the attribute. To compute the

selectivity of an attribute, the parameter acquisltor records the number of times the

attribute occurs in equality condition predicates of queries, and for each such query, the

parameter acquisitor records the fraction (or an approximation thereof) of tuples that

satisfied the equality condition. The average of these fractions is thus the attribute

selectivity measure. Below, we describe how the fraction of selected tuples is determined.

Let ø ,, be the fraction of tuples that satisfy an equality condition predicate

involving the ith attribute and occuring in the jth query. The attribute will be resolved

by either sequential searching. indexing, or linking. If the attribute is resolved by

sequential searching (i.e. the subtile containing the attribute is searched In Its entirety).

then o~ can be precisely calculated as the ratio of the number of tuples satisfying the

equ ality condition predicate n, to the total number of tuples. If the attribute is resolved

by indexing, then a TID list will be obtained that points to the selected tuples, - and o~ is

precisely the ratio of the size of the TED list to n. If the attribute is resolved by linking.

then c,~ has to be calculated in a reduced tuple space and then extrapolated to the entire

space This is because linking is performed from a reduced set of tuple TEDs, which

have been identified beforehand, In order to get a further reduced set of- tuples that

additionally satisfy the predicate. Depending on whether query j is conjunctive or

-~~~~~ V -

V - - . C-- .— - - -

Chapter 3
. - 67 - The Model of the DBMS

disjunctive, the estimation of
~~

will be done as follows.

(a) Suppose the equality condition appears In a conjunction of L equality conditions of

the form: -

C1 A C 2 A A C t

where c, is an equality condition involving attribute a
~
. (The order of the equality

conditions above reflects the order the predicates are sequenced in the query’s method.)

-
Let no be the total number of tuples in the relation, and let n~ be the number of tuples

that satisfy C 1 A C2 n n C,. (Note that these numbers are readily available from the

query processor when it resolves the transaction,) c~ for query j can then be

approximated as:

- - — n1/n,..1 -

(b) Suppose the equality condition appears In a disjunction of 1.. equalIty conditions of

the form:
-

- -

C 1 v C 2 v V C L - -

where C1 is an equality condition involving attribute a,. (The order of the equality

conditions above reflects the order the predicates are sequenced In the query’s method.)

Let no be the total number of tuples In the relation, and let n1 be the number of tUples

that satisf y -C1 A ~C2 n A A C1. (Again, these numbers are readily available

from the query processor.) The fraction of tuples satisfying C1 of query j can then be

approximated as:

-- _ _ _ ~~~~~ V ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Chapter 3 - 68 - The Model of the DBMS

— n1 / ~“o - 
~~~~~

The attribute selectivity S1 for attribute a~ may now be computed as the average of

a- ,~ for all j Q

SI ~~~~~~~~~~~IQI

where Q is the set of queries made to the database during the previous time Interval.

By averaging the fraction of tuples satisfying the actual occurences of an attribute in the

queries, we have taken Into consideration both skewness in the distribution of attribute

values (for the attribute) in the file as well as skewness in the distribution of attribute

value occurences in queries. -

The selectivity of an attribute should change It either the distribution of its values in

the file changes, or it the values in the equality condition predicates of queries Involving

the attribute change. Since the above changes occur when tuples are inserted, deleted, or

updated and also as the database usage pattern evolves, the attribute selectivity measures

need to be continuously updated to reflect the recent and more accurate information.

The attribute selectivity measure is kept up to date by maintaining a running average of

each attribute selectivity, as the fraction of tuples satisfying an equality condition

predicate on the attribute Is calculated in the process of query resolution. Every time a

search is done on an attribute of a file (or subtile), the attribute’s selectivity is updated by

the weighted average of the old selectivity and the fraction of the tuples selected in the

search.

After the individual attribute selectivit$es have been obtained, the joint conjunctive

V -
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ LAl~~-t -p . -~~~~. . u . _~~~~~S i.-



Chapter 3 - 69 - The Model of the DBMS

or disjunctive attribute selectivlties may be computed from them. . Our assumption of

independence among attribute value occurences In tuples leads us to simple formulas for

the joint selectivities. The expected fraction of tuples that satisfy a conjunction of

equality conditions simultaneously is equal to the product of the individual expected

fractions that satisfy each equality condition. The joint conjunctive selectivity of a set of

attributes I , each with selectivity s, Is:

(3.6.1) fl 1
s1

Similarly, the expected fraction of tuples that satisy a disjunction of equality conditions

simultaneously is the complement of the fraction expected not -to satisty any of the

equality conditions in the disjunction. The joint disjunctive selectivity for a set of

attributes I , each with selectivity s, is:

(3.6.2) 1 — fl~~ (1 — s ,) 
-

4- The last statistical information needed is the performance cost of the partitioned database

in the current time interval. This Is the Cost (In terms of the number of page accesses)

incurred when the database management system answers all the queries in the usage

pattern. This statistic is the sum total of the number of page accesses made in answering

queries since the last repartitioning point. The parameter acquasitor updates this figure

everytime a query Is made to the database. This statistic is used to determine the extent

to which the partitioned database performance cost comes close to the performance cost

that had been estimated at the previous repartitioning point. If the partitioned database



Chapter ~ - 70 - The Model of the DBMS

performance cost is not within a reasonable distance from the performance cost that was

forecasted for It. then it may be concluded that the current usage pattern no longer

reflects the forecasted usage pattern and that the current attribute partition is no longer

suitable. If the database performance is diagnosed as such, then a repartitioning of the

database may be initiated.

When repartitioning is initiated at a repartitioning point, the parameter acquisitor

takes the statisti cs collected In the time interval since the last repartitioning point (and also

the statisti cs collected during previous time Intervals) and forecasts parameters for the time

interval up to the next repartItioning point. Specifically the parameter acquisitor forecasts

the following parameters.

(a) The frequency of occurence of each query type.

(b) The size of the relation and the average blocking factor.

(c) The average selectivity of each attribute.

A thorough dIscussIon of the exponential smoothing forecasting technique that

should be used for the purpose of predicting the above set of parameters appears In (IS) and

(7]; we will only give an outline here. Intuitively, exponential smoothing uses a weighted

moving average that is based on two sources of evidence: the most recent observation and

the for ecast made previously. The new forecast is equal to a percentage (known as the

smoothing constant) of the recent observation plus the complement percentage of the previous

forecast. Exponential smoothing has a number of advantages Including simplicity of

computation, minimal storage requirements, adjustability for responsiveness, and

generalizabilit y to account for trends. A variant of exponential smoothing known as adaptive

- - - - . - - ~~~~~~~~~~~~~~~~~~~~~~~~ r-._.__ 
~~~~~ .S _ -— - ¼ ~~ _____ __ ~_ V  ~~~~ — V V_ V —


Chapter 3 - 71 - The Model of the DBMS

forecasting may also be used. This technique takes trends in the parameters Into account. It

is an efficient technique and more reliable than exponential smoothing, and may be preferred

to simple exponential smoothing In some cases. For a thorough dIscussIon of the different

forecasting techniques, the reader Is referred to the two works mentioned above.

7. Repart itj onj n~ Points

Database repartitioning points may be determined in several ways. Repartitioning

- - may either be initiated by the database administrator whenever the database administrator

deems necessary, or may be initiated by the parameter acquisitor. One way to have the

parameter acquisitor itself initiate repartitioning is to require ~ to prepare at each

repartitioning point a forecast of the usage pattern and the database parameters for a

number of periodic checkpoints Into the future. For each checkpoint, the performance cost of

the partitioned database is forecasted. During the course of monitoring the database

management system and the performance of the partitioned database, whenever a checkpoint

is reached, the parameter acquisitor compares the observed performance cost with the

performance cost forecasted at the previous repartitioning point for that checkpoint. It the

observed performance is inferIor to the forecasted performance by a margin that is not

acceptable, the parameter acquisitor may conclude that the current partition is no longer

suitable for the current usage pattern and should then initIate repartitioning. When

repartitioning is initiated, forecasts of the usage pattern and database parameters are

prepared for a number of periodic checkpoints into the future. (Finding the optimal set of

checkpoints is Itself another database optimization problem. We refer the reader to a brief

—

- V~~~~~~~~~~~~~~ V_~~~~~~~VV V _V ~~~ 1

-
Chapter 3 - 72 - The Model of the DBMS

-
discussion of the problem of optimal determination of repartitionIng points presented in

-

Section 7.1.) The attribute partitioning heuristics are then Invoked to find a suitable partition

- that is optimal or near-optimal for the forecasted usage pattern. It the proposed partition Is

different from the current partition, the current attribute partition is also cost estimated for

the forecasted usage pattern. If the cost of the proposed partition is less than the cost of the

current partition by a margin that justif ies repartitioning, the repartitioning of the database

is carried out.

V — — - ———~ - — - - .- ~~~~~~~~~ — —

Chapter 4 - 73 - Cost Analysis and the FCE

CHAPTER 4

COST ANALYSIS AND THE FILE COST ESTIMATOR

In this cha pter we will analyze the cost of resolving and answering a query made to

the database and describe how the file cost estimator derives the total system performance cost

for a given partition and a set of queries. (Henceforth, we will use the term partition

performance cost to mean the performance cost of the database management system

partitioned in a specified way, in response to the queries In the usage pattern. Also, we will

use the term evaluating a partition to mean the derivation of the partition’s performance cost

by the file cost estimator.) Each of the attribute partitioning heuristics repeatedly calls upon

the file cost estimator to evaluate partitions they propose. Thereafter , they select the partition

with the best evaluation and based on It propose another set of partitions . Each proposed

partition is cost evaluated by the file cost estimator and the partition with the best evaluation

is selected. This process of deriving a set of partitions and selecting the best partition is then

repeated. By this process, the heuristics tr y to propose partitions that result in successivel y

better evaluations. So in a sense, the file cost estimator may be viewed as our objective cost

function, which the heuristics proceed to minimize by proposing better and better partitions.

We will assume throughout that internal processing costs (CPU costs) are

insignificant and the performance of the database management system we model is bounded

by inputloutput operations (page read and writes) and hence that page accessing cost

dominates all internal processing costs. Internal processing costs Include the costs of query

~~~~~~~~~~~~~~~~~~~ - - ——---V~~~~~~~
- 

~~~~ ~~~~~~~~~~~~~~ - ¼ ~~~~~~~~~~~~~~~~~ - -~
--- VVVV~~V~~ _~~~~~~~~ --

- _ ~~~~~~~~~~~~ ~~~~~~~~ ~~ - -V _ ----- V V—

~~~~~~~~~~~

-—-—
~~~~

- - I

Chapter 4 - 74 - Cost Analysis and the FCE

evaluation (assumed to be negligible) and of obtaining intersections and unions of TID lists

in query resolution. We assume that torming the intersection and union of TID lists can be

entirely done In primary memory and so does not Incur any page access to storage devices.

Accessing the index of an attribute and retrieving the TID list of the index, do incur page

accesses. Therefore, we include these costs in computing the partition’s performance cost.

We do not consider data storage costs in the partition’s evaluation. This is because

if page breakage at the end of a subfile is ignored, the amount of storage required by every

attribute partition of a file is the same. No matter how the file is partitioned, the storage area

requited for that file will be the same as that for the one-file partition plus an insignificant

number of pages due to page breakage. When repartitioning an attribute partition, for each

subtile at most one page can remain unfilled; the change in storage requirement from one

partition to another cannot exceed the maximum number of subfiles In the two partitions.

Since this tigure is usually Insignificant compared to the total number of pages required to

store the data , we may safely ignore page breakage and hence storage costs from

consideration in the evaluation of a partition.

Based upon the above assumptions, the performance cost of a partition will be the

cost of accessing the subfi)es In order to answer the queries in the usage pattern. Since page

access cost is proportional to the number of page accesses, our cost analysis will solely be

concerned with the number of page accesses Incurred in answering a query. Before we

discuss the file cost estimator , we give the page access analysis for each of the sequential

search, linking, and indexing access paths.

_. ---- -~~~~~~~~~~~~~~~~ -~~~~~~~~~~
V --~~~ -

- _ - —-~~—-.- - - - -—---~~~~~ -- - - - - - - - - ~~

Chapter 4 - 75 - Cost Analysts and the FCE

1. Sequential Search

If a query’s method does not specify any index to be searched (this happens if none

of the query’s selection attributes are indexed, or if the query evaluator deems the indices

useless for resolving the query), then the first subtile of the method has to be sequentially

searched in Its entirety (the rest of the subfiles will be searched using links). In a sequential

search, all the pages of the subtile are retrieved, and their subtuples are matched against the

attribute value specified in the query selection predicates, and the TIDs of qualifying

subtuples are stored in a TID list. It F, Is the subtile that Is being sequentially searched, n

the number of tuples in the subtile, and b1 the blocking factor for F,, ihen the number of

page accesses will be equal to the number of pages in the subtile:

fn/b~

The blocki:-ig factor b, is equal to the system page size S divided by the length of the

subtuple. If A . is the set of attributes in subfile F1 , and l~ the length of attribute a1 then:

b, — IS/Z A lii
-

2. Tup le Retrieval Using Links

Assume that we have a list of TIDs pointing to the subtuples of a subfile. We want

to compute the number of page accesses incurred In retrieving the subtuples with TIDs In the

list . (Such a TID list might have been obtained either by a sequential ~earch on a subtile, by

following a previous link to another subtile, by indexing on~an attribute, or by forming the

intersection or union of TID lists obtained in any of the previous ways.) In any case, an

~lIrirIL. - - - _ - ~ -~~
- .-. -.- - - - _ - V_ __tV_ __~

_ _ _
—~~——-———- -—- - -—-— — -.~~-- —- — ~~~~~~~~~~~~~~~~~

-~~iuli~

-_~~~~~~~~~~~~~ V .~~~~~~~~~~~~~~~~~~~~~~ V_~~~~~

~~~~~~~~~~~~

Chapter .4 - 76 - Cost Analysis and the FCE

estimate of the number of TIDs in the list (which is equal to the number of tuples to which

they point) is readily available from the joint selectivity of the attributes that have been

resolved so far, whose resolution has resulted in this TID list. If s is the joint (conjunctive

or disj unctive, depending on whether the query is conjunctive or disjunctive) selectivity of all

attributes that have been considered in the creation of the TID list, and if n is the number

of tuples in the subtile, then the length of the TID list is approximated by $ * n.

Our cost criterion for performance optimization is the number of page accesses In a

paged memory environment in which tuples are blocked together in pages, we have to

translate the expected -number of tuple accesses to the expected number of page accesses. The

expected number of pages to be accessed is always less than or equal to the number of tuples

to be accessed because two or more tuples may reside on the same page. In our’ model of the

database management system, finding the expected number ot page accesses is relatively easy

because of the following properties, which hold as a result of the assumptions we have made

about our file and index models:

I- The TID list Is ordered. Whether the TID list Is obtained by sequential searching,

linking, or indexing it is ordered (i.e. sorted In increasing or decreasing value) and

‘tib~equent intersections and unions preserve this ordering. This property of the TID

last assures that each page of a subtile is retrieved at most once (since the tuples are

retrieved in the sequence they reside in the subtile. This property also eliminates the

need for large buffer areas in primary memory to accomodate Input/output operations,

since at any instance, at most one page wIll be In primary memory.)

2- The TID list is not redundant; I.e., no TID appears more than once in the list.

—4



Chapter 4 - ‘77 - Cost Analysis and the FCE

~~
- The TIDs are distributed uniformly over the TID space. This property is assured by

our assumption In Section 3.4 of Independence among the occurence of attribute values

in tuples. Hence all TIDs appear with equal probability in the TID list, and The tuples

they point to’are scattered uniformly throughout the subtile.

These three properties of our model of tuple access makes the translation of the

number of tuple accesses to page accesses relatively simple. Based upon these three

properties, Yue and Wong 140) have derived the number of page accesses from the number

of tuple accesses in terms of the recurrence relation 4.2.1.

(4.2.1..) A(n,b,0) — 0

n-r-b n(4.2.l.b) A(n,b,r.1) — A(n,b,r) + —
n-r n-r

In the above formula, A(n,b,r) is the expected number of .pages accessed from a file (subtile)

with n tuples (subtuples) and b tuples (subtuples) per page when retrieving r tuples

(subtuples). (Note that r — s * ii in the cost analysis above.) The computation of 4.2.1

involves on the order of r multiplications and r divisions, and is therefore quite expensive

to compute. By the technique of generating functions, we have solved the recurrence relation

4.2.1 and have obtained the closed form solution 4.2.2 for the number of page accesses.

----- -— k S ~S.~ - ~~~~~~~~~ —



-- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~ --~~- -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - -~~~~~~~~~~~~~ - --- .,

Chapter 4 - 78 - Cost Analysis and the FCE
C

- jn.-r

(4 .2.2) A (n,b,r) — — Ii - _______

bi
(n)

The above formulation has the advantage over the recurrence relation that it can be

computed more efficiently. A detailed derivation of the formulation 4.2.2 (hereafter called the

page access function) may be found In Appendix I of (7]. (Waters [36) and Yao [37) have also

independently arrived at the page access (Unction using the hypergeometric distribution of

probability theory.) The formulation 4.2.2 also admits ot a simple Interpretation. For an

arbitrary page in the file, the probabilIty that it does not contain any of the r selected tuples

is the number of ways of choosing b tuples from n - r tuples, divided by the number of

ways of choosing b tuples from n tuples. Hence the expected number of page accesses will

be the number of pages (n/b) times the complement of the above probability.

During the course of attribute partitioning, the attribute partitioning heuristics

repeatedly call upon the tile cost estimator to evaluate partitions. Every time thç file cost

estimator evaluates a partition, it has to estimate the cost of answering each of the query types

in the table of query types. Estimating the cost of answering each query type involves

computing the number of page accesses Incurred in accessing each of the subfiles that

contains an attribute in the selection or projection components of the query type. Since for

each such subtile, we have to compute the page access function, It Is important that the page

access function be computed as efficiently as possible. The page access function 4.2.2, if

expanded , will take on the order of min(b,r) multiplications per computation. Although the

page access function Is much more efficient in computation than the recurrence relation 4.2.1

_
__

Chapter 4 - 79 - Cost Analysis and the FCE

(since b Is usually much smaller than r), computing the page access function in its exact

form 4.2.2 is still too costly for our purposes. Instead, we use the following approximation to

the page access function (suggested by Michael Hammer) In our file cost estimations:

r
b log(1-) - - -

,~ r n - (b-1)/2 1(4.2.3) A(n,b,r) ~ — 1 - a Ibi J

The approximation 4.2.3 has proven to be very fast, taking only a constant number of

multiplications and divisions per computation, and has the advantage of extreme accuracy for

a lmost every combination of n, b, and a’ [8].

3. Ind ex Accessing and Tuplo Retrieval

Using the index of an attribute of a tile (or subfile), in order to retrieve tuples that

have a given value for that attribute, is composed of three steps. The first step is accessing

the non-leaf pages of the index to get a pointer to the TID list of tuples with the given

attribute value. The second step consists of retrieving this TID list. The third step is

retrieving the tuples that the TIDs point to by retrieving the pages they reside in the subtile.

A detailed analysis of indexing costs appears In Chan (7] and we will not reproduce it. We

shall only repeat here the final expression derived in (7). The average cost of using an Index

is: -

_ _


~~~--- ~~~~~~~ -— — --- - ~~---~~~~~ - --— -~~~~~~~~~~~~~ --— -~~~~~~~~~~~~~~~~~~
.- --

~ -—.~ -- —----~~~~~
-

~~
---- - - -

~~~

.--

Chapter 4 - 80 - Cost Analysis and the FCE

flog ((ii + L./s)/ui S]1 + f (s*n + L)/u,$1 + A(n, b, sin)u~S/(I . L)

where n — number of tuples in the file

b blocking factor of the indexed attribute’s subtile

I — length of the Indexed attribute

s — selectivity of the indexed attribute

— average fraction of index node page utilization

— average traction of index leaf page utilization

S — system page size.

The three terms of the ex pression are the respective costs of the three indexing steps. The

last step of index use, i.e. retrieving the qualifying tuples, actually occurs if this attribute is

the only one whose index is used in the method of the query. In all other cases, the

intersection or the union of the TID list obtained from the second step of Indexing is taken

with other TID lists before the tuples that are pointed to are retrieved.

- 4. File Cost Estimatio n

The file cost estimator evaluates a partition proposed by the partitioning heuristics

and computes . the pertormance cost for that partition. The performance cost of each

proposed partition is estimated by Iterating over the queries in the table of query types and

estimating the cost of answering each query. (This table is provided by the parameter

acquesitor and is a forecast of the database usage pattern for the next time interval.) Each

query type in the table is passed for evaluation to the query evaluator. The query evaluator

uses the Least Page Access strategy and thereby produces a near optimal method for the

L —- - ~~~~ . - - - ----- - - -—~~~~~~~~~~--~~~-- -_ _ _ _ _ _ _ _

~

~~~~~~~~
---

~~~~~~~
--

~~~~~~~~ ~~~
- -

~~~~
- - -

~~~~~~~~~~~~

-

~~~~~~ ~~~~~~~~~~~~~

—- - -

~~~

Chapter 4 - 
- 81 - Cost Analysis and the FCE

I.

quer y . (The Least Page Access strategy, as described in Section 3.5, sequences the subfiles that

are to be linked according to decreasing subfile blocking factor.)

The file cost estimator receives the method for the query. If any index is specified to

be accessed by the method, the file cost estimator uses the cost expression for index use to

compute t tie cost of accessing the Indices. If no index Is specified by the query’s method, the

flu-st subtile in the method has to be sequentially searc hed and the cost of the search is the

titumber of pages in the subfile. (The reason that the first subfile must be sequentially

searched Is that initially there Is no TID list on hand that would restrict the search to certain

pages of the subtile. Sequential searching may be viewed as a limiting form of linking, where

each page of the subtile has to be retrieved.) In either case, i.e. if indices are used or the

subtile is sequentially searched, the Joint selectivity of-the attributes resolved so far can be

readily computed from expressions 3.6.113.6.2, depending on whether the query i~ conjunctive

~‘i disjunctive. (The set of attributes I in 3.6.1 and 96.2 is the set of attributes resolved so

far.) The remain~ng subfiles of the method are sequenced and are to be linked in the

sequence specified by the method Using the approximation to the page access function, the

fi le cost estimator computes the cost of accessing the first of these subfiles. (Observe that r,

the number of ~uples to be retrieved, equals, the product ot the Joint selectivity of attributes

resolved so far and the number of tuples in the subtile n). The access cost estimated for this

‘uhfule us then added to the cost of Indexing/sequentIal searchIng. 
- 
The file cost est imator

ih.n ~~~~~~~ t h e  n*w jo int select ivity figure by including the old ‘jofnt selectivity figure and

~~~~~ ~~~~~~~~~~~~ • ~rS  ,.i i i  he i ) t ,  i” tt P% ~ Pt IIIVPt1 in this step of the method in expression ‘
~ 6 I/~ 6 ~

- . —, --d ~~~ .. he -
~~~~~~~~~~~ 1 ~.IW i~~~ of the ~‘~et h~ 1 in t N. e ‘.~ ,e~ iii e~ I , ‘, t hen

- . • ••~~~ ... ~~~~~~~~ ~~., ‘ - •• •, h ~,. i ’ Es$r  I’



1

Chapter 4 - 82 - Cost Analysis and the FCE

added to the accumulated cost , and the joint selectivity is updated according to the

selectivit ies of the newly resolved attributes. When no subtile remains In the method, the file

cost estimator will Have computed the cost of resolving the query and also the Joint selectivity

of the query (and hence the number of tuples selected by the query). The file cost estimator

then computes the cost of answering the query. Using the approximation to the page access

function and the estimate of the number of tuples that are selected by the query, the file cost

estimator estimates the number of pages that need to be retrieved from each subtile that

contains any of the project ion attributes. The only subtile containing a projection attribute

that does not incur page retrievals in the answering phase is the last subfile in the method of

the query. This is because the projection attributes In this subfile can be retrieved as the

selection attributes of this subtile are being resolved. The cost accumu’ated in the resolving

and answering phases is then summed to give the cost estimate for the query. A query’s cost

estimate is then multiplied by the frequency of the query type to get the total cost estimate for

that query type. Finally, the sum of these weighted query cost estimates is the perfo rmance

cost of the partition (in the context of the forecasted usage pattern).

The file cost estimator is called repeatedly in the process of attribute partitioning. It

is imperative that the file cost estimator be implemented efficiently. Note that by clustering

a l l  queries with the same type into one entr y of the query type table, we have alread y reduced

the totality of the queries in the usage pattern into a relatively smaller set of query types.

Hence, the number of the Iterations required by the file cost estimator has already been

reduced. Although further clustering measures lIke the ~nearest centrold” clustering scheme

of RelIord [5] could be employed to still reduce the number of query types, the degree of

y i Iii~tp,ifl~, we have employed ha; proven sufficient for our purposes Tests show that



-- - --
____ ___________ 

Chapter 4 - 83 - Cpst Analysis and the FCE

the file cost estimator (as programmed in the programming language MDL (263 on a PDP-l0) - -

takes somewhat less than a second of processIng time to estimate the cost of a set of 100
cQnj unctive and disjunctive query types. Furthermore, when queries are additionally
clustered, correlation information about attribute occurences in queries will be Inevitably lost,
and estimates based on riustered queries will be less reliable. Therefore further query
clustering is not advisable.

5. Repartitj onj n~~ Cost

The cost of repartitioning the attribute partition Is computed as follows: if at a
repartitioning point, the new partition has subflles F5,1 ,FM in common with the old
partition, then only subfiles F1 , F~ have to be retrieved, reorganized, and written back
on secondary storage. The total page accesses required to do this will be twice the number of
pages in each subtile:

2Z , fn/bj l

- The above Cost is based on repartitioning-an the subfiles F1 F~ simultaneously. I.e., the
pages of each subtile are read in sequence along with the pages of the other subfiles, the
attribute values are then transferred from one subtile to another, and finally the pages are
wr itten back onto secondary storage. Each page of a subtile is thus accessed only twice, once

for reading and once for writing.

At each repartitioning point, the performance cost of the partition proposed by the
partitioning heurIstics for the next time Interval has already been computed. The
performance cost for the current file partition for the next time period is then computed. The



----- -~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Chapter 4 - 84 - 
- Cost Analysis and the FCE

two are compared and If the proposed partition offers a performance cost reduction greater
than, the cost of repartitioning, then the tHe should be reorganized according to the proposed
partition. - 

- 

- - J



Chapter 5 - 85 - The Attribute Partitioning Heuristics

CHAPTER 5

THE ATTRIBU TE PARTITI ONING HEURISTICS

In this chapter we present a number of heuristics for partitioning the, attributes of a

file. Each attribute partitioning heuristic starts with a supplied partition and derives from it

a superior partition. (If the heuristic Is not able to improve on the supplied partition, the

heuristic will terminate and return the supplied partition as Its result.) Therefore It is

possible to apply the attribute partitioning heuristics in succession, with each heuristic

starting with the resultant partition of the preceding one and producing a partition that is as

good as the preceding partition. We say that a heuristic Is relevant to a partition If its

application will result in an improved partition.

We have performed a number of experiments on the attribute partitioning heuristics.

The overall results of the experimentation performed- on each heuristic is included in the~

discussion of that heuristic. Since our most extensive program of experimentation was

applied to our main heuristics, we have devoted Section 7 of the chapter entirely to a detailed

discussion of that subject. Before we proceed to describe the heuristics, we will first establish

the necessary terminology for the subsequent sections.

Let P be a partition of the set of attributes A of a ‘file into disjoint subsets. Each

subset of A Is termed a block of attributes; the ith block of the partition Is denoted by A,.

A block of attributes may be viewed as a representation of a subtile; i.e., when a file Is

partItion ed according to a given partition P , each block A1 of P is directly implemented by

_ _ _ _ _ _



I

Chapter 5 - 86 - The Attribute Partitioning Heuristics

a subtile with attributes drawn form A1. If U is the number of blocks In the partition, then

P — {A 1)~~1 , A1 n A1 — .  for an I ,‘,g ,  and u~.1A1 — A .  The trivial partition P0 has been

defined previously to be the partition where every subtile contains exactly one auribute.

That is, P0 — (A?)T., , where Af — (at ) . -

1. The E*ha ustive Enumeration Approach

One way of finding the optimal partition is to produce all partitions of the set of

attributes, and evaluate each of them with the file cost estimator in order to identify the

partition with the best performance cost. This exhaustive enumeration approach is not a

viable partitioning strategy because of the large number of possible ways to partition a file.

The number of distinct partitions of a set of m elements Into disjoint subsets, B(m), Is

known as the mth Bell number. Unfortunately, there is no simple expression for B(m) that

we can analyze In order to arrive at its complexity. However, Moser and Wyman (27)

provide an asymptotic expansion for the Bell numbers. This asymptotic expansion is in

terms of the solution to the equation x e • m, and hence is not in closed form. From this

asymptotic expansion It is possible to derive the following asymptotic upper and lower

bounds for the Bell numbers (28]:

(5.1.1) B(rn) — o(mm)

(5.1.2) m~ 
- ~)m — o(B(m)) , E > 0

where is any non-zero positive real number. (The notation 1(m) — o(g(m)) denotes that

lim ,fl...,T, f(m-)/g(m) — 0.) The two asymptot ic bounds are very tight, and from them we see that

the number of partitions of a set of m elements into disjoint subsets asymptotically



Chapter 5 
- 

- 87 - The Attribute Partitioning Heuristics

a pproaches close to mm (or equivalently, close to 2” 
b012Th

) as m approaches infinity. By

this we mean that may be taken as small as possible as long as It is positive, and B(m) will

always. grow faster than m0 ~~~~~ Therefore for all practical purposes, the number of

distinct attribute partitions is prohibitively high to render an exhaustive enumeration

approach feasible (for the general attribute partitioning problem with any number of

att ributes). As an example, a file containing 10 attrIbutes can be partitioned into

6(10) — 115975 different partitions. Another problem with the exhaustive enumeration

approach is that generating. all the B(m) different partitions is ‘not an easy task. A program

written for generating all the partitions of a set of attributes (and which was fused to
/

exhaustively fin4 the optimal partition for a number of attribute partitioning problems with

not more than 8 attrIbutes) required storage space that grew faster than 8(m) .

2. The Stepwise Minimization Heuristic

The heuristics we have considered In our work and described In subsequent sections

are all stepwise minimization heuristics. Stepwise minimization is the process of carrying out

an optimization task in a series of steps. At each step, a cost criterion Is optimized to the

extent possible. Each step that follows carries the optimization still further. Finally, when no

further optimization can be performed at a step, the stepwise minimization process is

terminated. In the case of the ‘ attribute partitioning heuristics, each heuristic starts from a

predetermined partition, and In each step tries to come up with a new partition that Is an

improvement over the partition of the preceding step. By improvement we mean that the

performance cost of the improved partition, as evaluated by the file cost estimator , is less than

_ _ _ _ _ _ _ _ _ _ _ _ _ _  -j



—

Cha pter 5 - 88 - The- Attribute Partitioning Heuristics

the performance cost of the previous partition. Once an improved partition is found at a

step, the next step starts with the newly found partition and tries to find a still better

partition. This process of incremental improvement’is continued until no partition may be

found which is an improvement to the partition considered In the last step of the heuristic.

The last partition is then returned by the heuristic as the resultant partition of the heuristic.

The intermediate partition found at each step of the attribute partitioning heuristics will

depend on the partition of the last step, the query frequencies, and the query types.

At each step of the attribute partitioning heurIstIcs we have considered, the

improved partition is obtained from the partition of the previous step by either I- grouping

a number of blocks of the last partition together to form a single block, or by 2- degrouping

a block of the previous partition into two or more blocks. The heuristics we have considered

differ from one another in two respects: I- the attribute partition that they initially start

with, and 2- the manner in which the blocks are grouped or degrouped in each-step.

In our work , we apply a heuristic to an initial partition until In the course of

stepw ise minimization, the heuristic produces a partition upon which it can no longer

improve . At this point we may apply a second heuristic to the resultant partition of the first

heuristic . After the application of the second heuristic, a third heuristic may be applied , or

even the first heuristic may be reapplied. Since a heuristic always results in a partition that

is as good as the partition that it starts with, it Is always possible to apply any number of

heuristics in succession and never get a partition with a higher performance cost (and

occasional ly get an improved partition). However, some of the heuristics we consider are best

succreded by certain other heuristics. In the discussion of each heuristic, we will make it clear

if the heuristic performed well enough to warrant further investigation, and if so, what other 

a - - 
~~~~~~~

--.- . --

‘ - -- ‘—‘.-——‘-------‘-————.‘—.~ ‘.. - -
~

‘ -

Chapter 5 - 89 - The Attribute Partitioning Heuristics

heuristics were tried in combination with it.

Note that one mode of operation we do not consider is trying a heuristic for only one

or a few steps and switching to another heuristic before the first heuristic produces its final

resultant partition. Our mode of applying the attribute partitioning heuristics Is based upon

the assumption that if a second heuristic Is relevant to an intermediate partition produced by

a first heuristic (that is, the second heuristic can improve upon the performance cost of the

intermediate partition), then the second heuristic will still be relevant after the first heuristic

has, terminated. This assumption is made in order to reduce to a manageable size ~he -

problem of deciding which heuristic to apply -next.

We shall consider a number of heuristics in the forthcoming sections. However, the

pairwise grouping heuristic described in the next section is the main heuristic of this work

and we will attempt to describe it in ‘full detail. In our experimentation, we have found that

the combination of the pairwise grouping heuristic with a second heuristic (the single -

attribute degrouping~regroupIng heuristic) to be sufficient for the purpose of attribute

partitioning within the context of the database management system we have considered.

3. The Pairwi se Grou PinE Heuristic

The pairwise grouping heuristic begins with the trivial partition P0 , and generates

all partitions that can be obtained by grouping together pairs of blocks in P0. For example,

it A — {i , 2, 3, 4) are the attributes of a file, the pairwise grouping heuristic begins with the

trivial partition of row 0 of Figure I and produces all the partitions of row I of the same

figure. The heuristic then evaluates all the generated ~~~

Chapter 5 ‘ - 90 - The Attribute Partitioning Heuristics

and finds the partition (call It P’) whose performance cost Is the least of all the generated

partitions. In other words, assume C(P) to be the performance cost of partition P as

determined by the file cost estimator. In the first step of the heuristic, the following

minimization Is performed:

(5.3.1) mm

where P~ k — {Af , ..., Af u A~. ..., Ag) . Let j and k be the values that minimize 5.3.1. If it is

the case that C(P~ k) < C(P°) , then the improved.partition P~ k Is the result of the first step,

and the second step of the heuristic begins with partition p1 —
~~~
. Otherwise, if it is the

case that C(P~ k) ~ C(P0), the heuristic terminates (with the trivial partition as the resultant

partition). In general, the ith step of the pairwise grouping heuristic starts with partition

= {A~~’ , ~~~ , A~~~) (where M~..1 Is the number of blocks in P’ ’), and performs the

minimization: ‘

(5.3.2) mm c(P k)IS  I S

where 
~~ k — j A~~

1 , ..., A ’~ u A~
1 , ..., A,,T’1) . Assuming j and K mInimize 5.3.2, and if

C(P k) < C(P’~ ), the heuristic then goes to step i + 1 starting with P~ — P~ , U1 — M,.1—1 . This

process is continued until a step (say step 1) is reached for which C(P’j k) � C(P1 ’ ) for all j

and K . At this point, no pair of blocks can be found that grouping them will reduce the

performance cost, and so P~~ is returned as the result of the pairwise grouping heuristic.

The pairwise grouping- heuristic may be depicted in terms of a lattice where each

no~1’ of ihi’ lattice is a partition. The top node is the trivial, partition and the bottom node is

the “one-file” partition. An interior node is obtained by grouping together a pair of blocks of

one of its parents. Figure I shows such a lattice for the set of four attributes (1, 2, 3, 4)



Chapter ~ - 91 - The Attribute Partitioning Heuristics

(from here on we shall use integers to represent attributes). The ith row of the lattice

corresponds to all the partitions that could be generated by the ith step of the pairwise

grouping heuristic (equivalently, all the possible partitions with which the i.lth step may

begin). The pairwise grouping heuristic begins with the trivial partition and produces all

the partitions that can be reached by following an edge (i.e., all.the partitions of the first

row). It then selects the partition in that row with the best performance cost. From that

partition, It follows all the edges leading downwards to its children nodes. For example If the

second partition from the left Is the best partition of row I, then in the next step the heuristic

0 ((I), (2), (3), (4)) -

I UI~ 2), (3), (4)) ((I , 3), (2), (4)) ((I , 4), (2), (3)) ((I), (2, 3), (41) (( I), (2, 4), (3)) (( I), (2), (3, 41)

2 ( ( I , 2, 3), (4)) UI . 2, 4), (3)) ((I , 2), (3, 4)) ((I , 3), (2, 4)) ( ( I , 4), (2, 3)) ((1 , 3, 4), (2)) ( ( I ) ,  (2 , 3, 4) )

3 
. 

((I , 2, 3, 4))

Figure I The lattice of partitions. - 

— - - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -~~,-— ~- -~~~- ~~~~~~~~~~~~~~~~~



Chapter 5 - 92 - The Attribute Partitioning Heuristics

would compare the first, fourth, and sixth partitions of row 2. The three partitions of the

second row are all, in a sense, desirable partitions In that they have been derived from a

partition that has previously been proved superior. Specifically, the heuristic assumes that

the optimal partition is either among the three partitions or Is somewhere below them in the

lattice and can be reached by going down the edge from the best of the three partitions. The

heuristic ~ontinues to go down the lattice until none of the partitions examined in a row

reduce the performance cost. At this point, the current parent partition is returned as the

resultant partition of the pairwise grouping heuristic.

The resultant partition of the pairwlse grouping heuristic Is not necessarily the

optimal partition. Only a small subset of all partitions are actually examined by this process.

On the other hand, at each step, the heuristic does select the best partition among a set of

partitions, whose common parent was itself selected as best of a similar set of partitions.

Hence, the resultant partition Is optimal among a subset of all the possible partitions and

locally optimal among all the partitions of the lattice. The stepwise minimization nature of

the 1a irwis e grouping heuristic is apparent from the discussions above. At each step, we

minimize the cost for a subset of partitions that have been selected on the basis of a similar

niinimization in the previous step.

The motivation behind pairwise grouping is as follows: Initially, when all attributes

are separated in the trivial partition, those queries that request two attributes are answered

with close tq minimum cost, while those queries requesting more than two attributes are very

costly to answer because their attributes reside in different subflles and hence on different

pages. Subsequently, as blocks of attributes are grouped, queries requesting a small number

of attributes become costlier to answer because accessing the attributes will bring in those



Chapter 5 - 93- The Attribute Partitioning Heuristics

attributes that are not requested by the query but nevertheless reside in the same subfile as a

requested attribute, while those queries requesting many attributes, of which all or some are in

the same subtile, become less costly to a.~swer. In the process of grouping blocks together, a

point will be reached where the reductiOn in cost of answering those queries that are
- benefited by the grouping will not offset the increase in cost of answering those queries that

become costlier due to the grouping. This point is a local minimum of the performance cost

function.

• The Bond Energy Algorithm of McCormick et al. (24) is another stepwise

minimization heuristic that may be used for the purpose of attribute partitioning. Holler and

— 
- 

Severance (19] have used the Bond Energy Algorithm to group attributes into blocks based

on the similarities of attribute occurences in queries (see Chapter 2 for a detailed discussion of

how Holler and Severance (19) utilize the Bond Energy Algorithm for the purpose of

attribute partitioning). We believe that our pairwise grouping heuristic, when compared to

the Bond Energy Algorithm, has a number of advantages which makes it more desirable as a

partitioning vehicle. The Bond Energy Algorithm operates by permuting the columns of a

matrix consisting of pairwise attribute access similarity measures in such a way that the

columns of similar attributes fall close together. If we look at the matrix of pairwise access

similarity measures after the algorithm has terminated, we will find that the attributes are

ordered such that similar attributes are placed adjacent or nearly adjacent to one another. A

disadvantage of this algorithm is that after this is accomplished, i.e. after such an ordering of

- the attributes is found, it is left to subjective judgemerit to decide how to clump the attributes

to~eihei’ to foim blocks. The other disadvantage of this algorithm (and one which will be

r~~~ni $,wd in ~t’~iIon 4) Is that the algorithm only looks at the similarity of access between

- ~~~~~, ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -•.
~~~

—,--— — .- ~~~~~~~~~~~~~~~~ ‘~
-


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ -~~~~~~~~~~~~~~ -

Chapter 5 - 94 - The Attribute Partitioning Heuristics

pairs of attributes (i.e. between pairs of blocks, each of one attribute) rather than among any

number of blocks containing any number of attributes.

Stepwise minimization is basically a hill climbing heuristic search technique which

will not necessarily locate the. optimal solution. The solution achieved using this technique

may be any of the local minima; the closeness of the solution to the optimal partition will

depend on the database parameters. the access paths of the file,, and the usage pattern

parameters . However, in the course of our experimentation with the pairwise grouping

heuristic (to be described In full detail in Section 5.7), the pairwise grouping heuristic starting

with the trivial partition has consistently resulted in either the optimal partitiQn or in a

near -optimal partition that differed insignificantly from the optimal partition. This has led

us to believe that pairwise grouping is an attractive heuristic search technique for finding an

adequate partition for the attribute partitioning problem.

T~,e process of pairwise grouping Is actually the method of steepest descent of the

hill climbing heuristic search technique. The coordinates of’ a point on the “hill” (which

should be visualized as inverted, since the search Is for finding the minimum point) are the

partition and the performance cost of the partition as determined by the file cost estimator.

The distance between two partitions Is defined as the number of edges on the minimum path

connecting the two partitions in the lattice of partitions. Pairwise grouping Is the process of

following the negative gradient from one point to an adjacent point with a distance of one

(along the partition axis), beginning at the point of the trivial partition. Our conclusion

from this program of experimentation has been that this ‘hill” Is predominantly devoid of

“bumps” (i.e. local minima or points where the gradient changes sigt~ and all adjacent points

to the “bump” have a larger performance cost). The few “bumps” that occur on the hill

‘4


