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FOREWORD 

The regularity observed in natural processes can often be expressed 
and explained in mathematical language. Galileo put forth this idea 
in stating that the language of science is mathematics. In many 
scientific fields mathematical descriptions have provided the tools 
for fundamental advances and important discoveries. These conferences, 
which are sponsored by the Army Mathematics Steering Committee (AMSC), 
provide an opportunity for engineers, physicists and other scientists 
to get together with mathematicians to originate conceptual and 
analytic tools to treat problems in these various fields. 

A.s in previous meetings, the Twenty-Third Conference of Army Mathe
maticians gave its attendees a chance to see the developments taking 
place in the various Army laboratories. The Army scientist's contrib
utions covered a broad spectrum of scientific areas. Through these 
meetings, techniques developed at one installation are brought to the 
attention of scientists at other places, thus reducing duplication of 
effort. Another important phase of these meetings is presenting the 
members of the audience an opportunity to hear nationally known 
scientists discuss recent developments in their own fields. This year 
there were five invited speakers who gave addresses in the areas listed 
below, and who were more than willing to discuss various problems with 
scientists in the Army agencies. 

Speaker and Institution 
Prof. M.D. Kruskal 
Princeton University 
Prof. D.H. Sattinger 
University of Minnesota 
Prof. Mike Crandall 
Mathematics Research Center 
Prof. H.O. Kreiss 
Uppsala University, Sweden 
(Visiting NYU) 
Prof. Edward Kamen 
Georgia Institute of 
Technology 

iii 

Area of Talk 
What's All This About Solitons 

Group Theoretic Methods in 
Bifurcation Theory 
Evolution Governed by Accretive 
Operators 
Numerical Solution of Problems 
with Different Time Scales 

Use of Algebraic Methods in the 
Design of Controllers and Observers 
for System~ with Time Delays 



The success of the the benefits derived from these conferences 
depend a great deal on the host installation. This year we were 
pleased to have the U.S. Army Air Mobility Research and Development 
Laboratory, Langley Directorate, Hampton, Virginia, serve in this 
capacity. Those in attendance were fortunate to have Mr. Robert L. Tomaine 
as Chairman on Local Arrangements. He, together with members of his 
staff, provided all those things, such as projection equipment, travel 
information, etc., needed for a successful symposium. 

The AMSC is pleased to be able to provide the Proceedings of this Con
ference. It is hoped the scientific ideas contained herein will benefit, 
not only those who were able to attend the conference, but also many 
others that did not enjoy that privilege. 
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ABSTRACT 

The self similar expansion of nonneutral plasmas is examined using 
various models. Analytical solutions are obtained for: (1) The 
expansion of a Maxwellian electron cloud governed by Ohm's Law; 
(2) The expansion of an electron cloud using a mobility model; 
(3) The expansion of an electron cloud using a cold plasma model; 
and (4) The expansion of a charge particle cloud with a temporally 
decaying nonlinear diffusion coefficient. 
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NONNEUTRAL PLASMA . EXPANSION 

K. !. Lonhgren 

(1) 
In ~ previous report, we presented a methodical procedure for obtaining the self 

similar variables using some of the techniques of Lie Group Theory. Gener•l physical 

phenomena which occur in plasmas and could be modeled with equations amenable to a self-

similar treatment were presented along with their solutions. An extensive list of ref-

erences was also given, The purpose of this report is to summarize a pot-pourri of 

further ex~les which fall Wlder th~ umbrage of "Nonneutral Plasma Expansion". 

With the increased interest in relativistic electron beam fusion devices, consider-

able attention has been given to the study of nonneutral plasmas. The recent monograph 

by Davidson(
2

) summarizes the past work and motivates our interest in examining various 

_aspects of this problem. In this report, we shall examine three sets of fluid equation 

models and using the technique of "seif Similar Solution of Partial Differential Equations, 

obtain analytical solutions, 

ln addition, a recent experiment on the Wisconsin Multipole suggests that the cross-

field diffusion coefficient can be modeled with a one-dimensional diffusion equation 

. d . 11 d . . . (3 ) where the diffusion coefficient 1s qonlinear an exponent1a y ecay1ng 1n t1me. A 

self-similar solution of this problem shall also be given. 

In Section II, we describe the various models and present the self-similar solutions. 

The models are: (1) The expansion of a Maxwellian electron cloud governed by Ohm's Law; 

(2) The expansion of an electron cloud using a mobility model1 (3) The eXpansion of an 

electron cloud using a cold plasma model; and (4) The expansion of a charge particle 

cloud with a temporally decaying nonlinear diffusion coefficient. Section III is the. 

conclusion. 

2 



II. Various Problems 

To analyze the problems, we follow the procedure given ~n reference 1 and only 

describe the physical phenomena, list the PDE, the self similar variables, the ODE and 

the solution to the ODE without repeating the details of the procedure in each case. 

1) Expansion of a Maxwellian electron cloud governed by Ohm's Law( 4) 

In this example, we examine the expansion into a vacuum of a thermalized electron 

cloud, described by an isothermal Maxwellian distribution. ·It is assumed that collisions 

are sufficiently frequent such that we can speak of a conductivity for the medium. 

The governing equations are: 

I) Equatlon of continuity 

0 (l) 

II) Ohm 1 s Law 

(2) 

XII) Maxwellian electrons 

(3) 

where all symbols are standard. By differentiating (3) with respect to x and substitut-

ing (2), we obtain 

j = -cr 
k T 

B e 
q 

In normalized units, (4) and (1) lead to 

where 

and ~D is the Oebye length and 

1 
L-7 t/J ) - t/J = o 
ljl YY T 

E: fa 
0 

is a relaxation time. 

We find that (S) admits a self-similar solution of the form 

n(~) • T$(y,T), ~ • y/T. 

(4) 

'I 

(5) 

(6) 

The solution satisfies the conservation law that electron charge is conserved in space. 

3 



The boundary conditions which are germane to this problem are: 

b) IJI(<»,T) • 0 • IJI(y,O) .. T'J(t"""") '"'0 i.e. "consolidation". (7) 

Substituting (6) into (5), we obtain 

(8} 

The first integral of (8} is 

(9) 

We shall further impose the condition that the current j + 0 as y ~.., From (4), 

this transforms to 
1 - n + o 
n ~ 

The integral of (9) is 

as Using this and (7bl , 

n 
1 

(10} 

The constant c2 is determined from (7a) to be c2 

final result is 

1/~0 • In terms of y and T , the 

w = _B_ = ~----~1~-----
noq T[y

2
/2T

2 
+ l/W

0
1 

(11) 

t' 

Charge is conserved as is shown below. 

(12) 

In conclusion, we have examined the expansion of an electron cloud in a vacuum. 

onder conditions where Coulomb forces can be neglected, this calculation could model an 

electron cloud expansion in a plasma in time scales short with respect to ion motion. 

2) Expansion of an electron cloud using a mobility model (S) 

Recently, considerable attention has been given to the problem of the transient be-

havior of the bulk electric field and space charge distribution in semi~conductors and in 

the conduction in dielectric and insulating fluids. It has been found prudent to use a 

4 



mobility model where the velocities of charge carriers injected from an emitting ~lectrode 

are proportional to the electric field through their mobilities and the electric field is 

related to the charge densities of the carriers through Gauss's law. Many and Rakavy (6 ) 

(7) and Helfrich and Mark were probably the first to suggest that the problem could be 

uxxieled with the set of dimensionless equations 

(13) 

i = 1£ 

which'are Poisson's equation, the equation of continuity and a mobility definition for 

current respectively. The subscript x and t denote a partial differentiation with 

respect to space and time. 

In their original paper, Many and Rakavy(6 ) obtained a solution to (13) by looking 

for the characteristics of the problem. Subsequently, this approach was extended by Batra, 

Schechtman and Seki, (S) zahn, Tsang and Pao, (9 ) de Oliveir~ and Ferreira(lO) and others. 

An extensive list of relevant experimental observations is given in reference 9. 

As the problem is extremely important, we suggest an alternative technique for solu-

tion which will describe the spatial and temporal evolution' of: I) a fixed electric field 

~d II) a constant source of current which are both governed by (13). The technique that 

we shall apply is to find the "self-similar solution" of this set of partial differential 

equations. 

Equation (13) can be written as 

(14) 

The self similar variables are 

and (15) 

where a/y and 6/Y are constants which will be specified by invariance and conserva-

tion requirements. Invariance specifies that a - 13 • -y 

SUbstituting (15) in (14), we write 

5 



(16) 

We shall obtain solutions for (16) subject to: I) A fixed electric field and II) a con-

stant current at x • 0 requirement. 

I) Electric field is eonstant'at x • 0. we choose: 

a ... Y 

With these values, t • x/t and ' • E • The inteqral of (16) with these constants is 

where k
1 

is a constant of integration. The constant is set equal to zero since 

!(x a O,t) m 0 in order to satisfy space charge limited conditions. This specifies 

'(~ .. 0) "' 0 The solution of (17) is ' = t from which we compute that 

1 
p .. t+t 

0 

(17) 

(18) 

where the constants x
0 

and t
0 

have been explicitely included since (13) is invariant 

to translation. 

II) Current is constant at x • 0 • We choose: 

With this choice, we have t X 
.. t2 

This can be inte9rated once to 

and 

6 

2a S -·-y y 

E ··t 
where + satisfies (16) which becomes 

(20) 



(21) 

The constant of integration k2 is set equal to zero since we require that E(x = O,t) 

be zero for space charge limited conditions which specifies f U; "' Ol = 0 •. The integral 

of (21) is 

(22) 

from which we compute that 

p 1 
= t+t

0 
(23) 

where again·the constants and t
0 

have been introduced since (13) is invariant to 

translation. Note that this is identical to (18). 

In (21), we can also obtain the solution for a non-space charge limited condition 

(E(x • O,t) * 0) by setting the constant of integration k
2 

equal to, say, 2i
0 

. The 

integral of (21) can then be written as 

from which we compute that 

1 
p- t+t 

0 

i -

(24) 

(25) 

Where again the constants x
0 

and . t
0 

have been reintroduced. Note that (25) reduces 

to the space charge limited case for i
0 

• 0 • 

In ?onclusion, we have shown that the set of equations which describe the Transient 

Space Charge Limited Current Problem admit self-similar solutions for two physically in-

terestinq boundary conditions. These solutions are valid in the initial stages before 
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the particles reach a second electrode which may be placed at x • L • 

3. Expansion of an electron cloud using a cold plasma model 

A model which can describe the behavior of an ele~tron cloud expansion into a fixed 

ion background is to assume that Poisson's equation is an initial condition. The electro-

st~tic approximation for the V X.B .Maxwell equation and the continuity equation assure 

that P · • t' · t" f' d for all tl·me. Cll) o1sson s equa 1on 1s sa 1s ~e 

The basic equations are: 

Cpv) + p • o 
X t 

mv + mvv • -eE 
t X 

V X B - 0 = e E - pv 
0 t 

which are the equations of continuity ~nd motion and Maxwell's equation respectively. 

"" 

(26) 

The self similar variables which satisfy the conservation law that J ndx "' constant 
0 

are 

2 2 
E ~ E; N = nt ; U ~ V/t; ' ~ x/t (27) 

These are the same self similar variables that were obtained in an earlier study of the set 

(26) where the Ansatz that Maxwell's equation could replace Poisson's equation had not 

been made. (l2) In the earlier study, it was not a pedestrian task to integrate the ODE. 

Substituting (27) into (26), we now obtain the OOE: 

A solution of this _set is 

-2N- 2~N~ + (NU)' 

U - 2~Uf; + UU~ "' - E 

2(~ + NU = 0 • 

0 

u • 2~ , N "' 2 and £ = -21; 

from which we write the solution of (26) using (27) and (29) as 

2x 
E "' - t2 

2 
n .. t2 v .. 2x 

t 

In conciusion, we find that in the final self simil~r solution, the density is 

(28) 

(29) 

(30) 



independent of position at the end rather than making it an a priori assumption in the 

calculation as did Gintsburg who treated a similar problem.~lJ} 

4. Expansion of charged particles with a temporally decaying nonlinear diffusion 

coefficient 

In recent experiments on the Wisconsin Multipole, it was confirmed that the cross-

(3) 
field diffusion coefficient depended on time ~nd amplitude as 

Incorporating this in the one dimensional diffusion equation, we obtain 

n • t [ ~at 1 J e: -- n rn X X 

(31) 

(32) 

where all cons.tants except a have been suitably normalized away. A change of variables 

1 -at 
T =- (1 - E ] (33) 

a 

transforms (32) to 

(34) 

The self similar treatment of (34) is straightforward, at least for the case where 

the conservation law J ndx = constant is valid, The self similar variables are 
0 

and the resulting ODE is 

If the burst of particles is symmetric at x • 0 such that 

n(x-0,-r) • -r- 213 (36) can be integrated twice to yield 

9 

n I • 0, 
X x-0 

and 

(35) 

(36) 

(37) 



Using (33) and (35) in (37), we finally obtain 

(38) 

We note that (38) gives a reasonably accurate qualitative description to the ex

perimen~a+ results. This seems true even though the time scale in the experiment is 

sufficiently long such that normal modes have been exited. 

III. Conclusion 

The self similar behavior of four plasma phenomena have been described. 
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THE MATHEMATICAL DESCRIPTION OF A MOVING BOUNDARY 
PROBLEM IN AN ELLIPTIC - PARABOLIC SYSTEM OF 

PARTIAL DIFFERENTIAL EQUATION IN THE 
HYDRODYNAMICS OF POROUS MEDIA 

Yoshisuke Nakano 
U.S. Army Cold Regions 

Research and Engineering Laboratory 
Hanover, New Hampshire 

ABSTRACT. The simult~neous solution of two types of partial 
differen~ial equations, a parabolic equation for unsaturated flow and an 
elliptic equation for saturated flow is required for analysis of water 
II!Cve.c::ent in partly unsaturated and partly saturated porous media. A new 
and co~plete mathematical description of the boundary is obtained. It 
is proven that the boundary is generally a singular surface and the 
existing theory, >:h:ich net;lects such singular.ity is incorrect. 

I. Ii;TRODUC?IOii. The analysis of water movement in a partly 
u::~sat'.l.Tat.ed e.!1d !'&.rtly saturated porous rnedi um requires the simultaneous 
scl-...:tion of two t:,'})es of pa::tial differential equations: a parabolic 
equat:i on for ·t:be U...'1satTrated part and an elliptic equation for the 
s:o.tuyated part. Raats ( 1972, cf. Raats and Gardner, 1974) studied the 
bcurH':ary conO.i tion bet.\leen these t.wo parts and fo'...lnd thEt no condj tion 
necessarily l1a.d t.o be imposed on the boundary. This finding has been 
accept.eO. 2.s the compJ.ete matnema.tical description of the boundary. 
Ec,:ever, in the Fresent work it is proven that the boundary condition 
derived -oy Raats (1972), although correct, is not complete, because it 
does not account for the discontinuity of a certain physical variable. 
A ne-., and complete matrJematical aescription accounting for this dis
continuity is derived. It is also proven that a similar boundary 
ccndi tion holds true for a •:etting front. 

II. TH:E_QRY. Consider a mater) al volume V intersected by a moving 
bm.mda.ry o vi th a velocity vector JC. The ma.terial volu.'rJle V consists of 
a sc.tura~ed part V a!'ld an u...T"Jsaturated na::t V as shmm in Figure 1. V 
is bu:..:nC:ed bv c.-u::-f~ces S and o -.;bile V is Bounded bv surfc.ces S s . s s u " u 
and o . 

u 
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The sip1s of unit. norr!!al vectcrs ~ on -:tese surfac:e s are inr.5.ica-+Jed 
by supeysc:;i:;:"ts i:1 ?it;"-rre l. vi e follo...., "t!"le s'ue.n::a.rd ;:,et:-JOd of deyi·:a
tion used by ?:.~:.s a.:1d Ga_y .iner (l974). For -:he sa}:e of si!!:plicity 
.,..e ass ·~::e ~he.t t!'"Je !Ledium T1-2ittJer e>:!"lib:::.s t!Je capi :i.1ary fri::ee pf~ e:1or;-.e:-. on 
nur cc:-i~ . f.. i~s eithe:- a sv·J~(:= o:: e. sink. ~'c also e.ssu.TDe the:.t all va::-:ables 
are S! !: -:>oth , in o"t-1-!o::- r -~c, ;::s, a2.1 "\·a:r:lc:bles ir. cluding their deriv~tives 
of" ell C·rOers are CO:'".: i:-."..!Cl:S in V-o . 

. :..~ ·; ·lJ-i;J €: ~"":-.e ? ·::: .. ·=-- ::-: :~' :::-- :::. :- : ~; ... c-rt :. : : €--:--re~ to t~1 e t:..;ro vol\.ll"nes V 
· c..~1 d \ ~ ~Y t.~e - ~ -=-c. c.i' a C::.....-: ;:- = :~~!.: csc. :: t5 ::·: ~~. e s~·s-:-. e:~ (x, y, z) c.ttac~ed 

t.o ~-b~ s::-:!id ; .::e:.se 

e 

D f 
Dtv 

u 

D 
Dt f &C.V ., 

s 

f ev d\' + n s 
s 

&nv = j 
v 

u 

Cl6 f dV + at s 
u 

J eundS 

6 
s 

(la 

(lb) 

e~ f l ux of -~·c.t er, -,•!"Jere ~ i s t:-1e vc-Jocity vc-ctor of ·.rater relc.tive 

to t.he soljd pr.ase . 

evn = e(~·~) = co~p8~ent of "tb e flux i n the direction of ~· 

un = ~·""n = co;:-,pc,nent of the veloc ity vector~ in the d irect.ior; of 

'R.· 'J.Je p.)sitive C. i r e c:tion of 72 on o is 6.ef i nc0. as out1.-."ard :from 

·:- r! ~ ::~:: :1 oiC.s ' tr ·-:.: ·:s ~ort :. :-~ :::. : · :·-:-~ i ~ r:: r.. . s ·: ~ M. t i c lJ.y c. :::.a.t h e..J:s."t. lcal 
:I"el r .. ~ .:c ~ : -:::·.: -:-<? n -::::.e C:-2::-- i ·\· s.~.: :i··. ::" S j n ...... t· : · :~. ~. o f t:,.'o Cjff·e·r ent space 
c·r ·:~~L: .. ::-:r: ry ~-.:t.; ::;s (I r ::. :·: !2 ~:-"J, J. ~67) . 
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CRITICAL REVIEW OF ONE-DIMENSIONAL TUBE FLOW 
EQUATIONS 

Aivars K.R. CelmiQS 
Ballistic Modeling Division 

Ballistic Research Laboratory, USARRADCOM 
Aberdeen Proving Ground ~ Maryland 21005 

ABSTRACT 

Flows through ducts or pipes are often analyzed theoretically and numer
ically using one-dimensional flow equations. Generally it is assumed 
that the equations describe relations between average flow properties and 
that they are adequate if the axial component of the flow dominates . This 
paper reviews the derivation of the governing equations. It is shown that 
equations which ·are traditionally used for tube flows have a very limited 
scope of applicability. Their theoretical validity is in essence restricted 
to steady incompressible flows. In cases of more complicated flows some 
terms in the traditional momentum and energy equations can be in error by up 
to 50%. It is also shown that the popular approximation of the energy 
dissipation function by the product of the average velocity and average shear 
stress is appropriate for the simplest flows only. The paper reveals short
comings of traditional methods of derivations of tube flow equations and 
provides explicit formulas for correction terms which should be used in the 
governing equations. An interesting property of the new equations for 
average flow properties is that the momentum equation and energy equation 
cannot be combined with the continuity equation to yield simple equations 
for velocity components and specific energy, respectively. Consequently a 
divergence form of the equations can be obtained only if momentum components 
and energy per unit volume are used as unknowns. 
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1. INTRODUCTION 

We consider in this paper the derivation of governing equations 
for fluid flows through ducts. Such flows are important elements in 
many mechanical systems. Most fluid mechanics textbooks present, 
therefore, a simple derivation of the governing equations, which 
reduces the general three-dimensional equations to a set of equations 
for one-dimensional flow. Experience has shown that these equations 
are adequate for many applications. Probably because of this success 
researchers sometimes tend to disregard the limits of applicability 
of the one-dimensional flow equations. In order to derive governing 
equations for more complicated flows they duplicate the steps used for 
simple duct flows. The resulting equations are not always adequate, 
e.g., in case of certain non-steady flows. Some textbooks discuss 
limitations of the usual tube flow equations. Often, however, the 
discussion is rather general, or limited to examples and exercise 
problems, and easily overlooked by casual readers. In this paper we 
will concentrate on the limitations. We will keep the discussions 
simple by considering in detail only a one-phase flow in a straight 
duct with a constant cross-section. The discussion of the example will 
provide a methodical approach to the derivation of flow equations for 
more general cases. 

The starting point of our discussion is the set of general three
dimensional flow equations. In order to make this paper self-contained, 
we.list the equations in Section 2. In Section 3 we specialize the 
equations for the case of a duct flow using a standard procedure, which 
is found in textbooks. In order to establish limits for the validity 
of the specialized equations, we carry out in Section 4'a more careful 
derivation of the duct flow equations. This .derivation provides quan
titative informationabout the errors which are introduced by the special
ization of the equations. A comparison of the 'derivations and results 
of Sections 3 and 4 reveals that in standard derivations of the equations 
some non-zero terms are neglected. In Section 5 two examples are pre
sented: a steady flow and an approximation to an interior ballistics 
flow. Quantitative estimates are given for some usually neglected terms 
in the governing equations. Section 6 contains some conclusions which 
can be drawn from the discussions of the equations. 

2. BASIC GOVERNING EQUATIONS 

We consider flows which satisfy conservation laws for mass. momen
tum and energy. Governing equations for such flows are derived and 
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discussed, e.g., by Tsien in Reference 1 and Batchelor in Reference 2. 
In this section we summarize the equations in order to make this paper 
self-contained. We use, in general. the same notation as Tsien. includ
ing the convention about the summation over equal indexes. 

First we will consider the equations in integral form. In these 
equations the volume integrals are for an arbitrary control volume v. 
which need not be simply connected. We assume. however. for simplicity 
that its surfaceS has everywhere an outward pointing normal nj· The 
conservation of mass can then be expressed by the equation 

The momentum equations are 

The specific kinetic energy of the fluid is 

Combining eqs. (2.1) and (2.2) we obtain for the kinetic energy the 
equation 

!.._ JP k dV -t,[ p k u.n .dS+fu.!E....aa dV = J u. F .dV . at 'f J J J' J x. J J 
J 

(2.1) 

(2 .3) 

(2.4) 

le.s. Tsien.., "The Equations of Gas Dyna:mi.cs . ..," in Pundamentats of Gas 
Pynamias, edited by H.W. Emmons, Princeton University PressJ 1958. 

2o.K. BatahetoPJ An Introduction to FZuid Dynamics1 Cambridge UnivePsity 
Press, 1967. 



The first law: of thermodynamics is 

~y adding eqs. (2.4) and (2.5) we obtain an equation for the specific 
:otal internal energy e + k: 

: f:c· + k)dV+J~c· + k)ujnjdS+JP ujnjdS f€-:~l) dV + Jc~· UjFj)dV. 

(2.6) 

rhe last integral in eq. (2.6) is the contribution of external and 
~iscous forces to the changes of the total internal energy. Its first 
part. J~dV, is the contribution of viscous forces to the internal energy 
e. The integrandcp. i.e •• the heat dissipation function, can be ex
pressed in terms of the viscous stress tensor Tjk: 

a~ 
~ = TkJ" axj 

(2. 7) 

We assume that the viscous stress tensor is related by Stokes for
mula to the strain rate tensor ekj (Reference 1, page 13, Reference 3, 
page 132) 

(2.8) 

This definition is not restricted to constant viscosities~ and~·. i.e •• 
to homogenous fluids. However, it restricts the considerations to iso
tropic fluids. The viscosities ~ and~· must be positive or zero. 

3G. HameZ, Mechanik der K.ontinua, R.G. Teubner, Stuttgart, 1956. 
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The stra~n rate tensor Ekj is defined by (Reference 2, page 80) 

1 a~ au. 
Ekj "' 2 c~Xj + a~) (2.9) 

Substituting (2.8) and (2.9) into eq. (2.7) we obtain the following 
expressions for ~: 

~~- 2~ £kj£kj ·• c~·- ~J 0kjEiiEkj = 

•2JJ {£2} + (J.l'-·~) {£}2 = trace 3 . trace 
(2.10) 

Eq. (2.10) shows that the heat dissipation function ~is always positive 
for a stress tensor of the form (2.8). 

The term fu·FjdV in eq. (2.6) is'the contribution of viscous and 
body forces to the changes of the kinetic energy k. The force (per unit 
volume) Fj is a sum of body forces pXj and viscous forces Tj. The latter 
can be expressed in terms of the viscous stress tensor Tkj' We thus 
have the equation 

F. • p-X. + T. 
J J J 

(2.11) 

Combining eqs. (2.7) and (2.11) we obtain 

~+ u.F. = cp+ u.T. + pu.X. = 
J J J J J J 

(2.12) 

a • -a- (u.T.k) + pu.X. 
~ J J J J 
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In this form we have subdivided the contributions of forces to the 
changes of the total internal energy into contributions by viscous and 
by body forces. The corresponding volume integral in eq. (2.6) is 

f( 4) + u . F . ) dV := (( ip + u . T. + p u. X. ) dV = 
J J Jl J J J J 

We note that the surfac~ integral in eq. (2.13) contributes to the inter
nal as well as to the kinetic energy of the flow. It represents the 
viscous ·forces acting on the surface of the control volume. The volume 
integral over the bod.y forces contributes to the kinetic energy only. 

The governing equations (2.1), (2.2) and (2.4) through (2.6) can 
also be expressed in differential form as follows *' + a!. (P uj) = o, (2.14) 

J 
.L c ) _a_ ) !£.... - F (2 15) at P ~ + axj (P ~uj + a"k - k ' • 

a· · a !.L F (2 16) -;-t (P k) + -3 - (P k u.) + u... = u. . , • 
<~ xj J J <~Xj J J 

a a au. aq. at (P e) + ".x. (p e u.) +p--l..: Q- ---2 + cp · (2.17) 
f1 J ax. ax. J 

J J J . 
a a a aq. 
- (p(e+k)] + -.._- [p(e+k)u.] +- (p u.) = Q-;-2 + <P+ u.F. • (2.18) at axj J axj J axj J J 

Eq. (2.16) is a consequence of eqs. (2.14) and (2.15), because k is 
defined by eq. (2.3). Also, eq. (2.18) is the sum of eqs. (2.16) and 
(2.17). We have, therefore, only five independent differential equa
tions for the six quantities p, uk, p, and e. To complete the system 
of equations we need another equation, which is provided by the equa
tions of state for the fluid under consideration. We assume that such 
an equation is available, e.g., in the form 

ece,p,p) = 0 J (2.19) 

?R 



and that eq. (2.19) can be solved explicitly for either of the argu
ments. For example, in case of an ideal gas with constant specific 
heats eq. (2.18) is 

.E.._ (y-l)e = 0 . 
p 

(2.20) 

For the discussions in the rest of this paper we will not make use of 
eq. (2.19) or (2.20). The assumption of the existence of such an equa
tion is made here only to close the set of governing equations. 

3. APPROXIMATE GOVERNING EQUATIONS FOR DUCT FLOWS 

In this section we derive approximate governing equations for duct 
flows. The dominant component of such flows is usually in the axial 
direction. Also, in many cases only the dependence of flow properties 
on the axial coordinate is of practical interest. Duct flows are there
fore usually treated by one-dimensional equations which are derived 
from the general flow equations of Section 2. 

A standard procedure for the derivation of these equations is to 
consider a control volume which consists of a length ~z of the duct. 
The integral forms of the governing equations are applied to this 
control volume and corresponding differential equations obtained by 
letting ~z approach zero. This method is used, e.g., in References 4 
and 5, and we will follow these references closely. 

Another possible approach is to start with governing equations for 
one-dimensional flow, i.e., a flow which depends on only one coordinate 
and which has a velocity component in the direction of that coordinate 
only. Three dimensional effects, e.g., from the wall friction, are then 
added to the equations by ad hoc procedures. \~e will not pursue this 
approach here because the former approach can be generalized more 
easily. 

4A.H. Shapiro 3 The pynamics and Thermodynamics of Compressible Fluid 
Flow, Vol. I and II3 Roland Press Company, NeUJ YoPk, 1954. 

SL. Croaao, "One-OimensionaZ. Treatment of _Steady Gas Dynamics" in 
FUndamentals of Gas Dynamics II, edited by H.W. Emmons, Prinaeton 
University Press, 1958. 
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Let z be the axial coordinate and let for simplicity the cross
sectional area A of the duct be constant. The continuity equation (2.1) 
is then for the control volume 

. 
(3.1) 

The bars on ~ and u in eq. (3.1) indicate that we are dealing with 
average density and velocity, respectively. We apply now the mean value 
theorem to the first term in eq. (3.1) and use a Taylor series expansion 
for the second term. The result is 

a! {p(z) A}·~~+ ~z ·A a~u) = oc~z2J, (3.2) 

where z ~ z ~ z + ~z. Letting ~z in eq. (3.2) approach zero we obtain the 
continuity equation 

a'P + a ep u) = 0 at az 
(3. 3) 

The momentum balance equation is considered in the z-direction only. 
First we obtain as above from eq. (2.2) 

a ... an> u2) a- 2 
-at {p(z) il(z) A}·~z + ~z·A - + ~z·A 2.P. = F·A·~z + O(~z ) . (3.4) az az 

The momentum equation for the average flow properties is obtained from 
eq. (3.4) by letting 6z approach zero. The result is 

(3.5) 
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The force per unit volume, F, can be expressed as a sum of two compo
nents in analogy to eq. (2.11). The momentum equation is then ' 

2. (" tlJ • 2. (" u2) • !£. = -P -x -T at ~ az ~ az + • 
(3". 6) 

The quantity T in eq. (3.6) is obtained from the resultant of the viscous 
boundary forces on the surface of the control volume. For simple tubes 
T can be expressed in t~rms of the pipe friction coefficient or, by exper
·imental correlations, in terms of the surface roughness and perimeter of 
the tube. The term pX usually represents the gravity force component in 
the axial direction of the tube. 

A combination of eqs. (3.3) and (3.6) yields 

a (1 - - 2) + ..1. (.!. 15' u:3) + n !!>. == n F = n 15' x + n r c 3 • 7) at 2 P u az 2 az 

Eq. (3.7) can be considered as an equation for the kinetic energy, if 
the latter is approximated by 

(3.8)' 

However, 'eq. (3.7) is a mathematical consequence of the continuity and 
momentum equations, i.e., eqs. (3.3) and (3.6), and is independent of 
any assumptions about the kinetic energy. 

Next we consider the energy balance. Following general practice 
(see, e.g., Reference 4) we start with the eq. (2.6) instead of using 
the first law of thermodynamics, i.e., eq. (2.5). For the control vol· 
ume we obtain first 

_! {i5•(e+K)•A}•L\z + L\z•A L {i5·ti·(e+i) + ii•p} = at az 

• (Q- ~j •A•L\z + ( ~+ ii•F) •A•Az + O(L\z
2) (3.9) 
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At the limit Az + 0 eq. (3.9) yields the energy equation 

;t {p Ce+()} + !z fi5 n (e+K) + u p} • 

- a" -•Q-'ii+~+UF. (3.10) 

The equation of state~ such as eq. (2.19), contains usually the 
internal energy i and not the total internal energy e + r. Therefore, 
eq, (3.10) is modified to eliminate k. To this end it is assumed that 
the approximation (3.8) holds, and eq. (3.7) is subtracted from eq. 
(3.10). The result is· 

a c· ~J a c- P. _>. _ an -Q !f. + l' - pc +- pu.e +p-= -a 'if· at a~ az z 
(3.11) 

Eq. (3.11) is, of course, the first law of thermodynamics and could have 
been obtained directly from eq. (2.5) without any assumptions about the 
kinetic energy. 

In order to use eqs. (3.3), (3.7), and (3.11} for computations we 
need among other dat'-estimates for the forces pX and T and for the heat 
dissipation function~. The latter is often expressed in terms ofT by 
the following arguments. (See, e.g., Reference 4, page 39 ff. and 
972 ff.) 

The last integral on the right hand side of the energy equation 
(2.6) is according to eq. (2.13) 

W • / ((p+ u.F .)dV = 't .ku.nkdS + [ P u.X.dV • 
J J J J J J 

(3.12) 

The surface integral in eq. (3.12) represents the work rate of viscous 
forces acting on the surface S of the control volume. We subdivide this 
surface into material boundaries (e.g., duct walls) and flow-through 
surfaces S0 • The work done on material boundaries is called shaft work. 
The work by viscous forces on the flow-through boundaries is called 
shear work. Let the corresponding work rates be Wshaft and W0 , respec
tively. In these terms eq. (3.12) is 

W • f (~ + u.F .}dV = W h ft + W + { ~ u.X.dV • 
JJ sa o JJ 

(3.13) 
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The integral W0 over the open boundaries is usually assumed to be negli· 
gible. For example, in case of a tube flow it is argued that integration 
over the core flow region contributes very little to the integral because 
T'k is small in that region. Integration over the boundary layer region 
also contributes little because the velocity uj is small in the boundary 
layer. Hence W0 must be small. 

If we carry out the derivation of eq. (3.10) using the relation 
(3.13) we obtain 

a - a 
rt[P (!+k)] + a-z[P il (e+k) + n p] - !S.. - - - (3.14) = Q - az + wshaft + wo + P n X 

Combining eqs. (3.14), (3.7), and (3.8) we obtain as the first law of 
the!ffiodynamics instead of eq. (3.11) the equation 

a c- -) a c- - -) n an - ~ w + T.f - -at p e + az P u e + Y az = Q - az + shaft "o - u T (3.15) 

In this equation the heat dissipation function <I? is approximated by 

(3.16) 

At the material boundaries the velocity of the fluid is equal to the 
velocity of the boundary. Therefore, Wshaft is non-zero only if the 
boundaries are moving. If the tube does not contain moving boundaries 
and W

0 
is neglected, then eq. (3.16) becomes 

<I? = -ii T, 

which is the usual approximation of <I? for tube flows (Reference 4, 
page 972 ff.) 

(3.17) 

_ In case of two-phase flows, e.g. particles submerged into the fluid, 
Wshaft is assumed to be the work of drag forces. Let the average par
ticle velocity be Uparticle and the drag force be Tdrag· Then 

w = u 1 
shaft particle drag 

(3.18) 
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The resultant T of the viscous forces is in this case the sum of par
ticle drag and wall friction forces 

(3.19) 

The equation for ~becomes then 

~ =.(Uparticle- U) ~drag- u Twall • (3.20) 

This equation is sometimes modified by an ad hoc factorJ see Reference 6, 
page 81. 

In summary, either eq. (3.17), or eq. (3.20) provides a convenient 
estimate for~ i.e .• for the right-hand side of the energy equation 
(3.15). Estimates of Twall and fda are also needed to express the 
terms on the right-hand sides of thegmomentum equation (3.6). It appears 
from the derivation that no further estimates of flow properties are 
needed under quite general conditions. 

Some limitations of the approximation (3.17) become obvious if we 
consider non-steadr fluc!uating flows. In such flows it is possi~le 
that the signs ofT and u are temporarily equal, In these cases W0 
cannot be neglected, because otherwise we would have a negative heat 
dissipation function. Thus it seems appropriate to ask how accurate is 
the energy equation (3.15). Our derivation does not provide any clues 
to an answer to this question. _We will therefore rederive the duct flow 
equations more carefully in the next section, keeping track of all approx
imations involved. 

4. PRECISE GOVERNING EQUATIONS FOR DUCT FLOWS 

In this section we will derive complete one-dimensional governing 
equations for flows through constant area ducts, including formulas for 
quantities which were neglected in Section 3. We will then discuss the 
differences between the cornvlete equations and those of the previous 

6G.B. WaZZis, One-Dimensional TWo-Phase Flow, MoGraw-HiZZ Co, New YoPk, 
1969. 
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section, indicating where the previous derivation of the equations is 
insufficient. 

One-dimensional duct flow equations are relations between average 
flow properties. The equations depend therefore, among other things, on 
the definitions of the averages. For steady duct flows certain averages 
and corresponding governing equations have been discussed by Crocco in 
Reference 5. Because the averages defined by Crocco cannot be used for 
non-steady flows, our analysis will be different. The results of our 
analysis can be applied to steady as well as non-steady flows. 

First we consider the continuity equation (2.1). For a control 
volume which consists of a length of ~x3 of the duct, eq. (2.1) is 

~3+6x3 

:t I (JP Js}dx3 • 

X A 

(4 .1) 

3 
The integrals fpds and fpu3ds are functions of x3. We expand these 

functions in Taylor series, intechange· the order of integration over x3 
and differentiation with respect tot in the first term of eq. (4.1), 
and apply the mean value theorem to that term. The result is 

(4. 2) 

with o <:e < 1. 

At the limit" l.\~3 + 0 eq. (4·. 2) yields 

(4. 3) 

We now define for each cross-section x3 ~ canst. an average fluid 
density p by 

~ "' ~ f p ds ( 4. 4) 
A 
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and an average fluid velocity uby 

(4.5) 

The continuity eq. (4.3) can then be expressed in terms of the average 
density and velocity as 

3'15' -- + at -
3-Ci5 u) = o . ax3 

(4.6) 

Eq. (4.6) is identical to the continuity equation (3.3). However, 
we have now established that the continuity equation is of this form 
only if the average quantities p and u are defined by eqs. (4.4) and 
(4.5), respectively. Thus, if we chose an alternate definition of the 
average velocity, e.g., the simple spatial average 

then the corresponding continuity equation would be 

Ci3 u) "' -
3-[1'5 Cii - uJ J • ax3 

The right-hand side of eq. (4.8) is non-zero in general. 

(4. 7) 

(4.8) 

The momentum equation (2.2) yields for a duct flow in analogy to 
eq. (4.3) 

(4.9) 

If the flow is axially symmetric, then for k = 1 and k = 2 all terms in eq. (4.9) are identically zero. In cases of non-axisymmetric flows 
all three momentum equations are needed to describe the flow, e.g., in 
the case of a non-vertical tube in a gravity field. We will consider 
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for simplicity only the momentum equation in the axial x3-direction, 
thus restricting the analysis to axisymmetric flows. Eq. (4.9) thus 
becomes 

(4.10) 

Eq. (4.10) contains two new flow variables for which averages have to 
be defined. We chose the following definitions: 

- 1 f d p "'- p s 
AA 

(4.11) 

and 

(4.12) 

Expressing the momentum equation (4.10) in terms of average quantities 
we then obtain 

(4.13) 

with 

= 3!3 
~!P [({P u3ds )

2 
- { P ds { P u~ds]] 

(4.14) 

Comparing the momentum equation (4.13) with the corresponding 
eq. (3.5), we see that the latter equation is in error. The reason for 
this error is that eq. (3.4) should have contained the term ~z·Cm·A. Eq. 
(4.14) shows that.this term is non-zero in general. The expression in 
square brackets in eq. (4.14) is negative or zero according to Schwarz's 
inequality. It is zero if and only if u3 = const. across the duct. 
Hence the correction term em is zero only in case of a slug flow or if 
the term is independent of x3. The latter is the case for steady incom
pressible flows through constant area ducts. In all more interesting 
cases Cm is non-zero and its magnitude should be estimated to justify 
the neglect of Cm• or em should be included in the momentum equation. 
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The average force per unit volume .. "F3 ,. is define'd by eq. (4.12). 
For later reference we note that according to equation (2.11) F3 is a 
sum of body fo~ces and viscous forces. We define the coTTesponding 
averages by 

'Ill' - 1 :3k d 
S 

ih 
1. -- -- s 
3 A,_. o"k_ 

(4.15) 

A 

and 

( 4.16) 

With these definitions we have 

We now consider the first law of thermodynamicst eq. (2.5). First 
we obtain for the duct flow in analogy to e~ (4.9) 

~d P e ds + a!J P e u3ds+ J p :~ ds = j (Q - :~) ds + j ~ds , [4.18) 

A .A ·-A A A 

In order to express this equation in terms of averages we define 

- 1 I d -e=_A pes, 
p A 

( 4 .19) 

- 1) - 1 ~ a~ <P = - 4>ds = - T • - ds A A kJ ax_ 
J 

( 4. 20) 

A A 

and 

(4.21) 



With these definitions eq. (4.18) becomes . 

.!..- (i5 e) + _a_ Ci5 e u) + P au: = H + <I>+ eel + ce2 • at ax
3 

ax
3 

( 4. 22) 

where 

an 1 ~ a~ eel "" p - - - p - ds ax3 A a~ 
( 4. 23) 

A 

and 

c = a C'/5 e u) - .!. _a_ ( P d 
e2 ax

3 
A ax

3 
J e u3 s · 

(4.24) 

A 

The nature of the correction terms eel and Ce2 is similar to that of the 
correction term C~ in the momentum equation. They are zero for slug flow 
and, should be est1mated in other cases. If we compare eq. (4.22) with 
the corresponding eq. (3.11). we see that the latter is in error. The 
reason for the error is an oversight of a term ~z(Cel + Cez)· A which 
should have been introduced in eq. (3.9). The correction terms enter 
the equations because a product of function averages is in general not 
equal to the average of the product of the functions. Or, differently 
expressed, multiplications of functions and averaging of functions are 
not commutative operations. 

We mentioned in Section 3 that cl> is usually approximated by -u f 3 . 
It was also shown that such an approximation is based on the assumption 
that a term W0 can be neglected. We will now investigate the approxima
tion more carefully, By the definition (4.20) we have 

(4.25) 
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~e first term on the r~ght-hand side of eq. (4.25) we recognize as 
W0 , i.e., the average of the gradient of the work rate of viscous 
forces on the cross section A. The second term may be approximated 
by -u T3. The final formula for ~ is then 

where 

1 a f W =-A -a- -rk3~ds 
o x3 A 

(4. 27) 

and 

(4.28) 

Combining eqs. (4.26) and (4.22), we obtain for the energy equation 
(first law of thermodynamics) the expression 

3 c- -) a c- - -uJ - an H- - r- c c 1:'1' + c (4 29) it p e + ax3 p e + p ax3 = - u 3 + el + e2 + "o ~ . . 

The first two correction terms, Cel and C 2, appear in eq. (4.29) 
because of the averaging of some terms. Tne last two correction terms, 
W0 and C~, are due to the approximation of ~by-uf3 . 

The equation for the kinetic energy can be treated formally in 
the same manner as the equation for the internal energy. One can intro
duce error terms, corresponding to Cel and Ce2, either in the kinetic 
energy equation or in the equation for the total internal energy. 
Since typically only the equation for internal energy is needed for 
computations~ the other equations are not formally derived. 

In summary, we have shown that the one-dimensional governing 
equations for average flow properties in duct flows are not the same as 
equations for locally one-dimensional flows. If ~he medium is compressible 
then the additional terms in the governing equations vanish only for slug 
flow. For other flows the magnitudes of the terms should be estimated for 
each case to check their significance. Formulas given in this section may 
be used for that purpose. 
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If the duct is axially symmetric, it is more convenient to use 
cylindrical coordinates than the cartesian coordinates of this section. 
We give .therefore in Appendix A all pertinent formulas in cylindrical 
coordinates. 

S. EXAMPLES OF TUBE FLOWS 

5.1 Incompressible Steady Flow Through Cylindrical Tubes 

In the case of an incompressible steady duct flow the flow velocity 
is constant along the duct and dependent on the radial coordinate r only. 
Also, only the axial coordinate u of the velocity is non-zero. There
fore, of all the correction terms given in Appendix A, only C~ can be 
non-zero in this case. It is given by eq. (A.35), which reduces to 

R 

C :: U T - -:II" u - (r T ) _- 2 J a 
~ · z R~ ar rz dr . (5.1.1) 

0 

The shearing stress •rz(r) is in the present case a linear function 
of r. This is a consequence of the second momentum equation (A.13) 
which reduces to 

!E.= l !_ (r r ) (5.1.2) az r ar rz 

The left-hand side of eq. (5.1.2) is constant. Therefore, trz must be 
linear in r: 

t (r) = ~R t (R) . (5.1.3) rz rz 

Substituting eq. (5.1.3) into eq. (5.1.1), we obtain 

4t r/R) 
R 

c~ "" nr ~ur dr = z R3 
0 

• n r .. 2 u t (R) .!. z rz R 
(5.1.4) 
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Th~ average shear stress Tz is, according to eqs. (A.l7) and (A.21), 

2 R a 
T' = - f - (r t ) dr = 

z R2 
0 

3r r:z: 
2t (R) !. 

rz R • 
(5.1.5) 

Substituting eq. (5.1.5) into eq. (5.1.4) we see that the correction 
term Ct is zero. 

Hence the average flow equations are exact for incompressible 
steady flows through circular tubes. This is essentially a consequence 
of eq. (5.1.3) and the result is valid for eitherturbulentor laminar 
flows. Also, we ·have not made use of Stokes equations for the stress 
tensor, nor made any assumptions about the viscosity of the fluid. 

5.3 Lagrange's Interior Ballistics Flow 

As an example for non·steady tube flows we consider Lagrange's 
approximation to interior ballistics flow (Reference 7). The approxi· 
mation is obtained by postulating that the average axial velocity u 
of the gas in a gun tube is at any time a linear function of the axial 
distance z, i.e., 

ii(z,t) =-- up (t) , 
z (5.2.1) 

where zp(t) and llo = dzp/dt are the location and velocity of the pro· 
jectile, respectively. ·we assume that the local velocity can have axial 
as well as radial components which may depend on z, t, and on the radial 
coordinate r. 

Some consequences of the assumption (5.2.1) are discussed in the 
Appendix B. In summary, the discussion shows that this assumption. 
complemented with a second Lagrange's assumption 

(5.2.2) 

· 7 J. Corner, Theory of the Interior Ballistias of Guns, John WiZey and 
Sons, New York, 1950. 
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is consistent with the average continuity equation (4.6) for the flow. 
One can also assume that the local velocity vector has the form 

( 

u(z, t). f(r) ) 
u• • 

v(z,t)•h(r) . 
.(5.2.3) 

For any reasonable functions u(z,t) and ~(r) one can determine corres
ponding funtions v(z,t) and h(r) such that the local continuity equa
tion is satisfied, (The necessary formulas are given in Appendix B.) 
However, a flow characterized by eqs. (5.2.l) through (5.2.3) in general 
does not satisfy the local momentum equations if constant viscosities 
are assumed. Hence Lagrange's approximation, (5.2.1) and (5.2.2), and 
a local velocity field of the type (5.2.3) can be consistent only for 
inhomogeneous media, i.e., media with variable viscosity. 

Because an exact solution of the viscous tube flow equations is 
not available, we cannot obtain exact values for all correction terms. 
However, the correction term in the momentum equation is independent 
of the viscosities and can be computed exactly for any flow profile. 
In contrast, the correction terms in the energy equation can be computed 
only if additional information is available about the stress tensor and 
the internal energy profile. These terms we will estimate by computing 
their values far constant viscosities and for a number of "reasonable" 
flow profiles. We expect by such calculations to obtain at least order
of-magnitude estimates of the correction terms. 

Particularly we will consider flow profiles of two types. First 
we will assume a flow field which is described by 

u(r,z,t) 
u (t) .n+2 ~ -([) j = ztffi--z t) n p 

and (5.2.4) 

u (t) 1 (r) [1 - ([) j v(r,z,t) = -Rtffi-n"R 
p 

This flow field has a Hagen-Poiseuille profile for n = 2. For larger 
values of n it approximates turbulent flow profiles or profiles with 
thin boundary layers. 

As a second example we will consider a flow profile which approx
imates the universal profile for steady turbulent tube flow. 
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The flow field defined by eq. (5.2.4) satisfies the local continu
ity equation. if the density is given by eq. (5.2.2). We note the inter
esting fact that local continuity requires the radial flow component to 
be directed toward the center of the tube. This is due to the higher 
mass flow rate at the center and due to the assumed increase of the 
average axial velocity u(z.t) with z. 

The correction term Cm of the momentum equation is given for our 
flow by eq. (B.48) 

(5.2.5) 

Substituting 

f(r) 
n+2 ~ -(t) j = 
n 

(5.2.6) 

into eq. (5.2.5). we obtain 

c 1 a c -2) = - n+l az p u . 
m 

(5. 2. 7) 

The momentum equation is therefore in terms of the average axial velocity 

a (iS u) 
at +G.+_!_\ 

\ n+f) 
(5.2.8) 

Eq. (5.2.8) shows that in the case of a Hagen-Poiseuille profile the 
momentum transport term in t.he momentum equation should be increased by 
about 33%. Even for a rather flat profile with, say, n = 10 the correc
tion term is 9% in this example. 

The first correction term Cel of the energy equation is zero in 
our example because the density p is independent of r and z. (See 
Appendix B for a discussion of this term.) 
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The second correction term Ce2 of the energy equation is (see eq. 
(8.54)) 

c.2 = :. r il :2 j (1-f) e.r dr1 = 

= P ~ ~2 :. I ~ (1-f) e r dr1. (5.2.9) 

In order to compute this term we would need to make an assumption about 
the internal energy function e. For the present discussion we will not 
ma~e any assumptions and leave eq. (5.2.9) unchanged. 

The average heat dissipation function~·, which appears on the right 
hand~side of the energy equation can be computed by the formulas (8.56) 
and (8.57). The result of the computation is 

2 ~u~ 2 € - 1 n+2 n+3 2 4> = 21Ja2 - ( ) + ....E. 21J - - - ll 
R2 n · zp n+l 3 + IJ) . (5.2.10) 

The e~uation for the average internal energy (first law of thermo
dynamics) is in our case 

a~~ ~) + ~z (i5 e U) + P ~~ = H + ~ + ce2 • (5.2.11) 

Substituting eqs. (5.2.9) and (5.2.10) into eq. (5.2.11), we obtain 

aos e) + !_EP en(-.!:. L ( (1-f) e r d~~ + 'P an= at az ~ ~ R2 J j az 

0 

""R + 2 -z .!_ rcn+2)2 + (i n+4 + ll~~~. cs.2.12) 
IJ .u R2 L- 2n ~ n+l iU)\z) J 

In eq. (5.2.12) we have included the correction term Cez into the 
energy flux term on the left hand side. It is readily apparent from the 
form of the term that the correction is zero, if the specific internal 
energy e is independent of r. 
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. In the heat dissipation function on the right-hand side of eq. 
(5.2.12) the term with the factor (R/z)2 can generally be neglected, 
because (R/z)2 is of the order l0-2. (R/z is large in the vicinity of the 
breech, where the one-dimensional approximation should not be used any
w~~ The other term in the square brackets is usually replaced by 
-u Tz. If this is done, then two additional correction terms should be 
included in the equation. The general formulas for these terms are 
given by eqs. (B.61) and (8.62). They are in our case 

w =(~2 [~2 1 p 
[R

2
h·

2 
• (~Y h

2 
• 2~} dr. JJ' - tl 0 

0 

• (~2 
, f n+S/2 q' - t »] (5.2.13) z lJ. n+l 

p 
and 

2 
2 -2 1 (n+2) 

1J u R2 2n (5.2.14) 

The first term u T:z; in eq. (5.2.14) is according to eq. (8.63) 

u T 2JJ n2 l f' (R) 2 -2 1 -(~2 ~y 2JJ (n+2). (5.2.15) = - - JJ u 2 (n+2) :: 
z R 

R 

Comparing eqs. (5.2.13) and (5.2.15), we see that the term w0 is 
indeed small relative to the magnitude ·of u Tz· In Section 3 such a 
ratio of magnitudes was anticipated based on plausibility arguments. 

The total correction is the sum of C~ and W0 • Combining eqs. 
(5.2.13) through (5.2.15) we obtain for the sum 

t...F. 



The right-hand side of the energy equation (5.2.12) is thus 

=H-uT z; 
(1-a) • (S. 2.17) 

where a is a relative correction which is to be applied to uTz. It is 
given by 

n-Z a=---2n 
(g_\2 2 n+4 ~ ll' 3 n+lJ 
'J) 3 (n+l} (n+2) \ + iJ 4 n+4J . (S. 2.18) 

The s~c~nd term in this f~zmula can.in general be neglected, because 
(R/z) 1s of the order 10 . The f1rst term is zero only for n = 2, 
i.e., for a Hagen·Poiseuille flow profile. In this case the shear 
stress is a linear function of r, which causes certain correction terms 
to vanish, as shown in Section 5.1. For a flat flow profile with, say, 
n • 10, the relative correction is a = 0 . .4. Clearly such a 40% approx
imation error will be seldom tolerable. Hence for flat flow profiles 
and constant viscosities the approximation of ~by -ufz is not realis
tic for calculations in interior ballistics. 

The flow profile which is define~ by eq. (5.2.4) does not have 
the characteristic form of a fully developed turbulent flow profile for · 
any n. We may therefore ask whether the correction terms are possibly 
smaller for such a profile. In order to investigate this question we 
approximate the universal turbulent profile (see, e.g., Reference 8, 
page 512) by defining 

The corresponding function h(r) is 

BH_ Sahli.chting~ Bowui.ary Layer Theory1 McGratJJ-Hil.Z.~ Nez,; York 
(4th Edition)J 1960. 
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The correction term Cm of the momentum equation can now be 
computed using eq. (5.2.5). The result is 

(5.2.21) 

In analogy to eq. (5.2.8) we conclude from eq. (5.2.21) that the 
momentum flux term in the momentum equation should be increased by 9% 
in the present case. 

Assuming as before constant viscosities, we obtain for the average 
heat dissipation function 

2 

~· zu u
2 ~2 7.840 + ~~ (1.699 u + ··~ 

For the product -uTz we obtain 

n T =- 2~ n2 !_ f'CRJ = 
z R2 

2~ rr2 l-2 • 14.364 • 
R 

The right-hand side of the energy equation (5.2.12) is therefore 

!l • \P = ii - il 'i'z [1 - 0.454 + (~Y 0.059 ~ ': 0.588 ~'] 

(5.2.22) 

(5.2.23) 

(5.2.24) 

The_error which is introduced by replacing ~by -uTz is about 45% of 
lu Tzl· As in the previously treated case, such errors will be seldom 
tolerable. 

We may conclude from these examples that the magnitudes of correction 
terms are essentially the same for flow profiles described by eq.(S.2.4) 
as for profiles described by eqs. (5.2.19) and (5.2.20). Using conven
tional tube flow equations, e.g. from Reference 4, for interior ballis
tics calculations, one introduces errors in the momentum and energy 
equations which are of the order of 9-50% of several of the terms. 
The examples indicate that an investigation of magnitudes of the 
correction terms is necessary_ whenever average flow equations are used 
to describe non-steady tube flows. 
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6. GONCLUSIONS 

Tube flow governing equations for average properties differ from 
one-dimensional flow equations. The differences are caused by the fact 
that averaging of functions and multiplication of functions are not 
commutative operations. The magnitudes of the differences depend on the 
particular problem. If the unsteady tube flow is of a type which is 
encountered in interior ballistics, then several terms in the equations 
can be in error by up to SO%. 

One consequence of the various correction terms in the equations is 
that the continuity and momentum equations cannot be combined to yield 
a simple equation for the average axial velocity component. Instead, 
the original equation for the average axial momentum component is the 
simplest form. Correspondingly, the energy equation should be formulated 
for the internal energy per unit volume instead of using the specific 
internal energy. 

The popular approximation of the heat dissipation function by the 
product of average velocity and average shear stress is appropriate only 
in the simplest cases, e.g., for steady flows or flows with a Hagen
Poiseuille velocity profile. In other cases the approximation can be 
off by up to 50%. In cases of more complicated flows even the sign of 
the approximation can be wrong. Hence the approximation should not be 
used unless one can demonstrate its validity in the particular case of 
application. 

Formulas for the correction terms in the governing equations can 
be derived for other than simple tube flows following the outline of 
this paper. The derivations which are presented in some engineering text
books neglect important first-order terms. The apparent success of the 
inaccurate equations for the treatment of tube flows is probably due to 
the fact that the neglected terms are small or vanish for steady flows, 
for which most comparisons between calculation and experiments are made. 
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APPENDIX A 

FORMULAS IN CYLINDRICAL COORDINATES 

In Section 2 through 4 a convenient cartesian tensor notation was 
used to derive all formulas. If the .results are to be used for axially 
symmetric tube flows, then it is more convenient to use cylindrical 
coordinates. In this appendix we express the important formulas in 
these coordinates. 

Stokes equation for the stress tensor of an isotropic fluid can be 
expressed in coordinate·independent form as follows (Reference 3, page 
132; Reference 2, page 144) 

2 
T = 2~ £ + c~· - 3 ~) div u*•I , (A.l) 

where T is the stress tensor, £ is the strain rate tensor, u* is the 
velocity vector of the fluid, and I is the unit tensor. The viscosities 
~and~· in eq. (A.l) need not be constant, i.e., the fluid under 
consideration need not be homogeneous. However, ~ as well as ~· must 
be positive or zero. 

Next we compute the work rate of the viscous forces acting within 
an arbitrary volume. To this end we compute the inner product of the 
viscous forces V·t with the velocity vector u* and integrate over the 
volume. The result can be expressed as follows: 

f (u* • (Y'•t)) dV = rJ (u* • (t•n)) dS- f~dV • (A.2) 

In eq. (A.2) n is a unit vector, orthogonal to the surface of the volume 
V and pointing inward, and ~is the heat dissipation function defined by 

~= {te}t = 2~ h: 2 } + (u'- ~ ~) div u* {e:} • race trace 3 trace (A. 3) 

Because div u* = {dtrace; eq. (A.3) can be·also expressed as follows: 

"':;: 211 {£2} + ("' - ~3 ") {e:}2 
"¥ "' trace "' "' trace . 

(A.4) 
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Eq. (A.4) corresponds to eq. (2.10) in cartesian coordinates .. Eq. 
(A.2) corresponds to eq. (2.13) in cases where the body forces Xj 
are absent. 

We now express the various quantities appearing in the equations 
using cylindrical coordinates. Let the coordinates be r, ~ and z. 
Components of vectors and tensors we denote by attaching corresponding 
indexes to the quantities. Thus, the velocity vector u* is 

u* a (u • u~, u J • r ., z (A • .S) 

The strain rate tensor e has the following components (Reference 2, 
Page 602) 

t .!.~.L(!u\ 
r~ 2 L ar \t ~) 

e: zz 

au z ::: az-, 

(A.6) 

The vector V·~ has the components Tr• T~ and Tz• representing the vis
cous forces acting in the three coordinate directions. The components 
are 

aT !. chr~ + 
aT 

1 (V•T) T rr -1:!. + - T H) = = --+ - (T ar • r r r a~ az r rr 

(V•T) f = r, = 
otrp .!.~ + d't~z + 1 
ar + 2- T r a<P az r rt; 

at .!. aT pz + aT 
1 (V•-r) = T rz zz 

(A. 7) = --+ --+ -T z z ar r a~ az r rz 
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We specialize these equations for the case of an ax1symmetric flow 
without swirl through a circular tube. The flow is then independent 
of the coordi~ate ~~ and the ~-component of the velocity, ~' is 
zero. In order to simplify the notation we denote the non-zero 
velocity components as follows: 

u = u(t,z,r) , z 

u = v(t,z,r) . r 

(A. 8) 

Let R be the radius of the tube. The average density is then defined 
by 

p (t, z) 
2 R 

: :2 J p(t,z,r) r dr . 
R o 

(A.9) 

The average axial velocity is 

2 R 
ii(t, z) = -=-2--- J p (t, z, r) u(t, z,r) r dr . 

R 1"(t,z) o 
(A.lO) 

The local continuity equation is 

~ + l !__ (r p v) + L (P u) = 0 . at r ar az 
(A.ll) 

The corresponding equation for .the averages is 

ai5 a a:t + a-z CP . a) "' o . (A.12) 
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The local balance of momentum is expressed by the following two differ
ential equations: 

a (p v) 1 a 2 a 
(P u v) + ~= T + -- (p r v ) +-at r 3r az ar r 

(A.l3) 

a ~P u~ + 1 a 
r u v) 

a (P u2) +!E.. Tz r- ar- CP +-at az az 

The third momentum equation is staisfied identically because of our 
symmetry assumptions. The right-hand sides of eqs. (A.l3) depend on 
the strain rate tensor£ by eq. (A.7) and (A.l). In our case the strain 
rate tensor has the following components: 

av 
e:rr "' ax . 

The divergence of the velocity vector is 

div u* = {d trace 

__ 1 a 
r ar 

(r v) 
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£ zz 
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The viscous stress tensor t has the components 

av 2 
t • 21-1 - + (\1 1 

- -3. \1) div u* , rr ar 

(A.l6) 

t~~ • 2\l ~ v + (u' - t 1-l) div u* , 

T '• 0 fZ I 

au 2 
T • 2u -- + ("' - - JJ) div u* • n az .. ;; 

The right·hand side of the local momentum equations (A.l3) is 

at 
1 rz +----T 

az r +~ 
(A.l7) 

1 a .h 
(v ) ( ) + -E. •tz=·Tz=rar rtrz az. 
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Substituting. (A.l6) into (A.17), we obtain 

The momentum equation for the averages is 

where the average pressure p is defined by 

. R . 
V = ~ f p(t,z,r) r dr 

R o , 

and the average viscous force Tz by 

2 R 
'rz = :2 { T (t,z,r) r dr • 

R o z 

The correction term Cm in eq. (A.19) is 

c = L rP rr2 _ L C p m az R2 J 
0 

The equation for the local internal energy is 

(A.l9) 

(A. 20) 

. (A. 21) 

(A.22) 

a ~i e) + ~ ~r (r p e v) + :z (p e. u) + p [~ :r (r v) + * J . (A. 23) 
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The heat dissipation function ~is given by eq. (A.4). Sub
stituting the strain rate tensor components from eq. (A.6) into 
(A.4), we obtain 

~ 
2 

1 (av au)2 (v)2 
"' • 2u ..!\ + - . - + - + - + ~ r} 2 az ar r 

2 [1 a aiJ 2 
+ (\.I r - ytl lf ar (r v) + ~ • 

The energy equation for the average internal energy is 

where 

and 

2 R H = - 2 I (Q - div q) r dr , 
R o 

2 R 
~ = 2 I~ r dr , 

R o 

R 

c = 'P an - .L ( p r.ht r + !_ (r v)l dr 
el az R2 j Laz ar 'J 

0 

R 

c • L (iS a f) - !.. ( L (p u e) r dr . 
e2 ch; R2 J az 

0 
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(A.2S) 

(A.26) 

(A.27) 

(A.28) 

(A.29) 

(A.30) 



The term -u Tz is often used instead of~ in eq. (A.25). In that case 
the equation becomes 

a~~ !) + :z (j5 ! U) + p :~ = H - ti Tz + eel + ce2 + wo + c~ • (A. 31) 

• 

The additional correction terms W0 and C~ are 

- 2 R 
W = -- f div(t u*) r dr 
o R2 o 

(A. 32) 

and 

(A.33) 

In eq. (A.32) we have 

T u* 

and 

Therefore 

R 

W = L J L Jt v + T u1 r dr = o R2 az l rz zz J 
0 

R 

~ !d :. [P G> :~ + 2" u :~ + (•' ~% •J u div uJ r dr , (A.34) 

0 

where div u* is given by (A.lS). 
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The integrand in (A.33) can be obtained from eq. (A.17). Carrying 
out the substitutions, we obtain for the second correction term 

2 R 
Ct • U T · ;r f (v T + u T ) r dr • 

• 1! 'i' _··~.J ~of!.!... :r ' J z + a'rz - i' 1 
z R2 j [ (: ar rr az r ¢1(11J 

+ 

+ u [~ :r (ro 'rz) + a::~ r dr • 
(A. 35) 

The separate expressions for C~ and W0 might be of interest for the 
discussion of approximations. Usually C~ is neglected completely and 
W0 is assumed to be small by plausibilit~ ar~e~ts. The total correc
t1on, which is caused by replacement of ~by -u Tz• is the sum of W0 and 
Ct. The sum is, of course, 

• n f •• !21 t" [@2 • t G: . ~~2 . @~ • @1 . (A.36) 

0 

+ ("' - ~ ") (div u•)j r dr , 

Eq. (A.36) may be more advantageous for actual calculations than (A.34) 
and (A.35) because it does not contain derivatives of the viscosities. 
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APPENDIX B 

LAGRANGE'S APPROXIMATION TO INTERIOR BALLISTICS FLOW 

It is plausible to assume that in a gun tube the average axial vel
ocity u(z,t) of each cross-section is a linear function of the distance 
z from the breech of the weapon. Let Zp(t) be the location of the pro
jectile and Up(t) = dzp/dt be its veloc1ty. The above-mentioned 
Lagrange's approximation is then 

u(z.t) (8.1) 

In the classical Lagrange's approximation (B.l) is supplemented with 
the assumption that the gas density in the tube is a function of time 
only. 

In this appendix we shall investigate some consequences of these 
assumptions. Particularly we are interested in finding if there is a 
three-dimensional viscous tube flow which satisfies Lagrange's assumptions. 

First we will consider flows in which the gas density is a separable 
function of z, t, and the radial coordinate r: 

p(r,z,t) = g(r) • P(z) • K(t) (8.2) 

Later we will specialize our considerations to the classical Lagrange's 
approximationJ where P(z) and g(r) are constants. 

We assume that g(r) is non-dimensional and normalized by 

2 R :z f g(r) r dr = 1 
R o 

(8.3) 

The product of the other two functions in eq. (8.2) is then the average 
density 

p(z,t) 
2 R 

= P(~) K(t) = -z f p(r,z,t) r dr . 
R o 

(8.4) 
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In eq. (B.l) the variables z and t are already separated. We assume. 
that the dependence of u on r can be separated also, such that 

u{r,z,t) = f(r) o ij(z,t) . (B.S) 

It was shown in Section 4 that a reasonable definition of the aver
age axial velocity u in terms of the local velocity u is 

1 2 R 
1I • - o 2 { u pr dr . 

p R o 
(8.6) 

With this definition of uwe have the foHowing relation between the 
nondimensional functions f(r) and g(r): 

R 
2 
2 f f(r) g (r) r dr = 1 • 

R o 
(B. 7) 

The funtions u(z,t) and p(z,t) satisfy the continuity equation (4.6), 
i.e., 

.2£. a c· -u) = 0 at + az p • (B. 8) 

Substituting the product P·K for p into eq. (B.8) and the expression 
(B.l) for uwe obtain 

up(t) d (, ;'\ (8.9) 
P(z) o K' (t) + K(t) z (t) dZ ~ P(z~ • 0 · 

p 

This equation has solutions of the form 

(B.lO) 

with arbitrary m. In eq. (B.lO) p
0 

is the average density of the gas 
in the tube at time t = 0. Form= 0 we obtain the classical Lagrange's 
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solution. More generally we may assume pto be, e.g., of the form 

(B.ll) 

with arbitrary m, Ao and ~· For physical reasons m ~ 0, Ao ~ 0 and 
Am ~ -Ao· 

Next we investigate the radial velocity component v(r,z,t). The 
local continuity equation is 

M. 1 a 1 a a at 'i" 7 a;Cr P v) + r 3T (P w) + 3Z (P u) = o, (8.12) 

where w is the angular velocity component. Let w = 0 (no swirl) and 

v = V(z,t) • h(r) • (8.13) 

Eq. (8.12) can then be expressed by 

:~ • g(r) + p v ~ :r [r g(r) h(r)] + g(r) f(r) ~z [P u] = 0 (8.14) 

Eliminating cp/ct from eq. (8.14) with the aid or eq. (8.8), we obtain 

[-l•f(r)] g(r) a(p u) + i5' v _1_ dd [r g(r) h(r)] "' 0 . 
az r r . 

(B. 15) 

This equation is satisfied by the functions 

v(z, t) = R !. a(p i".Q 
l5 az (8.16) 

and 

1 r 
h(r) :;; J (1-f) g r dr (8.17) 

R r g 0 
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Eqs •. (8.13), (8.16), and (8.17) give the local radial velocity 
v(r,z,t,) for any flow profile specified by p, u, g, and f. Clearly, 
the factor h(r) is not normalized in the same manner as f(r). There
fore, v(z,t) is not an "average" radial velocity. If pis given by 
eq. (8.11), then 

A
0 

+ (m+l) 

(8.1~) 

. It is interesting to note that vis not zero for z = 0 and i = Zp• This 
is an indication that the assumption (8.5) about separation of variables 
fot the axial velocity is not valid in the vicinities of the breech and 
the projectile. These regions we will therefore exclude from our consid
erations. 

In summary we have found a flow field in a cylindrical tube which 
satisfies the local continuity equation and Lagrange's assumption (8.1). 
The flow field is described by the following functions 

z 
u = (t) u (t) • f(r) 

zp p 

p = ~(z,t) • g(r) (8.19) 

v = V(z,t) • h(r) 

If one specifies u, then pis given by eq. (8.11) and v is given by 
eq. (8.18). The, dependence of the flow field on r can be specified by 
two functions, g(~) and f(r), from which h(r) is then computed by eq. 
(8.17). The function g(r) has to be positive for 0 < r <Rand normal
ized by eq. (8,3). ·We assume also that g'(O) = 0. The function f(r) 
has to satisfy the conditions 

f'(o) • 0 
and 

\. 

(8.20) 

f(R) = 0 . 
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It is normalized by eq. (8.7). Hence we have a total of three condi
tions which restrict the choice of fir). 

Instead of specifying f(r) we may also specify h(r). 
f(r) is then given_by 

The function 

R 
f(r) a 1 - r g(r) [r g(r) h(r)]' (8.21) 

The function h(r) has to satisfy the following four conditions 

h(O) = 0 , 

h"(O) = 0 , 
(8.22) 

h(R) = 0 , 

h' (R) = 1/R • 

The flow field also has to satisfy the momentum equations. The 
analysis of these equations is more complicated because it involves, in 
additlon to the velocity and density functions, the pressure function 
p(r,z,t) and the viscosities ~ and ~', which in general are variable. 
We have tried to restrict our considerations to the special case with 
constant viscosities and classical Lagrange's approximation (i.e., 
g(r) : 1). We have found that the flow field, as defined by eq. (8.19), 
does not satisfy the momentum equations in this special case. The for
mulas for correction terms, which we shall derive at the end of this 
appendix, are therefore to be considered as approximations only. 

If g(r) : 1, then the flow field is given by 

u = 'll(z, t) f(r) 
u (t) 

= P f(r) z zp (t) (8.23) 

v • R -~~ h(r) 
u (t) u 

1 
r 

= R z:(t) h(r) = 'z!r! (1-f) r dr ,· (8.24) 

z (o) 
P = 'l'(t) =.Po _..p~~ 

zp (t) (8.25) 
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Note that according to eq. (8.24) the radial velocity component v is 
independent of i for the classical Lagrange's approximation. 

The divergence of the velocity u* of this flow is (see eq. (A.lS)) 

di 
* 1 a (rv) au . au u (t) 

vu =-- --+-=-=--2..:.....:.... r ar az az z (t) 
p 

(B. 26) 

The components of the forces caused by the viscous stress tensor are 
given by eq. (A.l8). In our case, assuming constant viscosities, we 
obtain for the r-component 

T 2~ v! [(r h')' 1 auf' = - -h) .... = r r r l.laz 

an u 
= [ -21J f' .... j.l f'] - =- J.l ~£' . az zp 

(8.27) 

The :·component of the force is 

1 u 1 
r = - J.l n [r f']' = J.l z ...E. - [r f' J' . z r zp r 

(B. 28) 

The local momentum equations are according to eqs. (A.l3) and (8,12) 

av av av ~ 
P at + pv ar + pu az + or = Tr (B. 29) 

P au + PV ~ + pu au + ~ = T • at ar ax ax X 
(8.30) 

For a flow field described by eqs. (B. 23) through (B. 24) eq • .(B. 29) is 

pR ~. G~ h+pR
2 ~J h h' + i?.- "~ f' 

(B. 31) 
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, Differentiating eq. (8.31) with respect to z, we obtain 

(B. 32) 

The function p(r,z,t) is therefore of the form 

(B. 33) 

£q. (8.31) might be used to determine the function p1(r,t) if the other 
terms in the equation are given. . 

Sq. (8.30) is in the present· case, i.e., for the flow described by 
eqs. (8.23) through (8.25) 

PZ f:t ® + pR(;!)z z h £'+ pz(~l f
2 

+ ::z = uz ~; (r £')' (8.34) 

or 

pf ~ ~ G-E.~ (R f'h+l) + ~!. ap2 
- J.l !. (r f')' = o u dt z u z az 2 • p p p 

(B.35) 

From eq. (8.35) we can conclude that the expression Cap2/az)/z is inde· 
pendent of z. The various te,rms in this equation are· ,products o£ func
~ions of r and t and the equation has the form 

(8.36) 

Such an equation can be satisfied identically only if either all &i(t) 
are .constant or all fi (r) are constant. The case with all £1 (r) = canst. 
corresponds to a slug flow in which we are not interested. Assuming the 
time functions g.(t) to be constant, we obtain first 

l. 

u 
g (t) = p ....2. == A 2 z p 
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or 

Eq. (8.37) can be integrated to yield 

zp(t) = zp(o) 
1 

l-At/p
0 

The corresponding velocity of the projectile is 

u (t) = z (o) ~ 1 

p p Po (l~At/p ) 2 
0 

The density as a function of time is 

p(t) :: A~"' p E-A !_) u 0 p 
p 0 

The first time function in eq. (B.3S) is then 

Let the value of the third time function be B. We obtain then 

ap2 u A 1 z 
- = B • z _.E. = B z - = A B p 0 z (o) zp ( t) az zp p 1-At/iJ 

0 0 p 

Eq. (8.35) takes now the form 

A(f+~ +R h f') + B - J.1 ! (r f')' = 0 • r 
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(B. 38) 

(B. 39) 

(8. 40) . 

(8.41) 

(B. 42) 

(B. 43) 



The functions f(r) and h(r) are related by eq. (B.21). We can there
fore express (B.43) in terms of h(r) only. We also multiply the equa
tion by R2j~. The result is 

(8.44) 

with the constants 

* R2 R u p 
A =-A= P 

J,l 'll' 
(8.45) 

and 

(8.46) 

The first factor in eq. (B.45) is a Reynolds number of the projec
tile. It is typically of the order 106. The first factor in eq. (8.46) 
for B* is a Poiseuille number of the flow. Its magnitude is of the 
order 104. The function h(r) has to satisfy the differential equation 
(8.44) and the four boundary conditions (8.22). Since eq. (8.44) is of 
third order only, the function h(r) will in general not satisfy all 
boundary conditions. We conclude, therefore, that Lagrange's approxi
mation is not consistent with a flow field which can be described by 
separation of variables, eqs. (8.23) through (8.25). 

In Section 5.2 we have nevertheless .used this flow field to obtain 
estimates of correction terms because we were not able to find an exact 
three-dimensional solution of Navier-Stokes equations which is also 
consistent with Lagrange's approximation. 

Next we compute the various correction terms for the average flow 
equations using the formulas of Appendix A and the flow described by 
eq·. (8.19). 
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The correction term Cm of the momentum equation is given by eq. 
(A.22): . 

a _ .2 2 2 . r R 
C• • Tz" p u - R2 J pu r dr J . (B. 4 7) 

Substituting the expressions (8.23) and (B.2S) for u and p respectively 
into eq. (8.47), we obtain 

R 

C a r7'* _2 - .2 2 ( 2 ( ) d 1 
m • az ~ u . - p u R2 J r r r r 

0 

. e -~2 ~ r r dr} :z (~ ih . 
0 

(8.48) 

Sq. 18.48) is of·course valid fo~any functions u ~ u (z,t)_ f(r) and 
p • p(z,t). In Lagrange's case p is independent of z, and u is linear 
in z. We obtain in this case 

2 . u (t) t R ~ em= 1 - R2 ) ~ r dr 2z p(t) z:(t) . (8.49) 

0 

The energy equation has several correction terms. First we consid
er the term Gel' given by eq. (A.29): 

c • i! !]! - ~ ( p !';, :u + } (r ) dr . (B. 50) 
el az R J [ z r ~ 

0 

We substitute the flow field formulas (B.l9) into this equation and 
obtain 

R 

c = p au - L ( rr f au + v Cr h);-, p dr = 
el az . R2 J L az J 

0 
R 

• 'P' au - .L ( ran (r -~ (r h)';\ 
az R2 J ~z g ) 

0 

69 

+ ~ a (p ti) (r h)·] p dr . 
i5 az 

(8.51) 



This expression can be transformed by partial integration and some 
algebra into 

c.1 ·i:~fU- 0 (rh)' pdr-H~~f (rh)' pdr. ca.sz) 
0 0 

Eq. (8.52) shows that the correction term Cel is zero in the following 
cases: 

(a) g s 1 and fi: .= 0, i.e •• the classical Lagrange's case; 

(b) g = l 
ap 

0, i.e., p and p independent of r; and-= ar 

(c) h: 0, or f: 1, i.e., slug flow. 

The second correction term of the energy equation, C8 2, depends on 
the local internal energy. According to eq. (A.30), 

(8.53) 

If the flow field is given by eq. (B.19), then 

r 
R 

a -- 2 2 = - p u - ( p e r dr - -
az R2p j R2 

0 0 

R 

~ puer 

• : z ~ ii ~2 r ~ (1- f) e r dr] . 
0 

(8.54) 

This correction term vanishes if the internal energy e is independent 
9f the radial coordinate r. 

The remaining correction terms, W0 and C~,· in the energy equation 
are cause.2_ £)' the replacement of the heat dissipation function ~ by the 
product -u Tz. The heat dissipation function 4? is according to ;:q. 
(A.24) . 

~. 2u [ 2h• 2 + t ~~ h+ ii ~2 
+ ~2 ,.Zh2 • @}2} 

+. f -t j ~ v h. + :~ ~ 
2 

(B.SS) 
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For the flow field described by eqs. (8.23) through (8.25) we obtain 

The average ~is by definition 

2 R 
~3:12/4>rdr. 

R o 

The correction term W0 is according to eq. (A.34) 

(8.56) 

(B. 57) 

w ,. L ( [~ au f' v h • 2~ .L ru a~ f2 + 
o R2 J az az \: av 

c~' - - JJ) -_E. f r dr = 2 an: u J 
3 az zp 

0 

• ~2 G~J ~ ~(f'h+2r) + c"· _ t •J fJ r dr . (8. 58) 

The correction term C~-is given by eq. (A.35). In the present case 
with constant viscosities we obtain by substituting eqs. (8.27) and 
(8.28) into eq. (A.35) 

R[ u u 
C = il T - .!_5 -~ v h _..E. f' + ~ u f z .-E. l (r 

t z R2 z z r 
P P. 

0 

(8.59) 

By partial integration and using eq. (B.21) we can show that 

(8.60) 
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Making use of eq. (8.60) we can express the correction terms as 
follows: 

i 0 ·(~) ~2 J[• R
2
h•

2 
+" @2 

h
2 

+ 2" ~] r dr + ~2 
(u' 

2 - 3 lJ) 

0 

and 
(8.61) 

Ct • U 'fz + c~2 !2 J t R2
h•

2 
+ u (~2 

h
2 

+ " z
2

f•
2
] r dr • (8.62) 

0 

The first term in eq. (B.62) is according to eq. (B.28) 

The correct~o~ terms W0 and C~ vanish for a slug flow. However, 
for such a flow u T z and cp are also zero. 
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FINITE ELEMENT STRESS 1\NALYSIS OF 
AXISYMMETRIC BODIES UNDER TORSION 

Ticn-Yu Tsui 
Army Materials & Mechanics Research Center 

Watertown, Massachusetts 

ABSTRACT. A finite element procedure for linear stress analysis of 
axisynunetric bodies subjected to torsional loads is developed. The formu
lation is based on the asswned stress hybrid model. Applications are made 
to cylinders and cones. Excellent agreements are obtained between the 
exact solution and the finite element results. 

I. INTRODUCTION. The present study is motivated by the consideration 
of the stress analysis of artillery projectiles. During firing, the projectile 
is subjected to a combination of various loads which are (l) axial load-
due to linear acceleration of the projectile, (2) centrifugal load-due to 
angular rotation of the projectile, (3) torsional load-due to angular accel
eration of the projectile, (4) internal load-due to setback on H.E. and (5) 
external load-due to gun tube constraint, band pressure and balloting. In 
viev.r of the complexity of the geometry of the projectile, a finite element 
analysis must be performed.in order to determine the stresses and deforma
tials in the projectile. Since the projectile has an axis of rotational 
symmetry, it is only logical that an axisymmetric ring element would model 
it more accurately and efficiently. In a MIT study [1], which was performed 
for AMMRC under a contract, an axisymmetric ring element was developed based 
on the assumed-stress hybrid finite element model. However, it can only 
treat axisymmetric loads of the projectile. 

It is the goal of the present analysis to develop an axisymmetric solid 
of revolution element which can be used to determine the stresses and deform
ations in axisymmetric structural bodies under torsional loads. The assumed 
stress-hybrid model is employed to derive the element stiffness matrix such 
that the results can be combined with that from the MIT study. 

Other finite element formulations for solution of axisymmetric structural 
"bodies under torsion can also be made. TI1e axisymmetric quadrilateral ele
ment, based on the displacement formulation in the ANSYS finite element program 
[2], can be used for modeling axisymmetric structures with non-axisymmetric 
loa:lings such as bending, shear or torsion. Different finite element formu
lations have also been developed for the solution of torsion of nonprismatric 
bars [ 3, 4]. 

II. DERIVATION OF ELEMENT STIFFNESS MATRIX. The assumed-stress hybrid 
model is based on a modified complementary energy principle [5]. It assumes 
compatible displacements along the interelement boundaries and a stress field 
which satisfies equilibrium within each element. 
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The total complementary energy of one finite element is given by 

where 

8ijkl compliance constants of the material 

a . . 
1] 

= stresses 

v = volume 

A boundary area 

T. surface traction 
l 

u. = prescribed boundary displacement 
l 

The function ~ is a minimum when the stresses satisfy the equilibrium 
condition. In deri ~ing the element stiffness matrix, the displacements 

( 1) 

along each boundary of the finite element are expressed in terms of the nodal 
displacements ~and certain interpolation functions L, such that the displace
ment compatibility conditions with the neighboring eTements are satisfied. 

u = La - -· (2) 

The element stresses in the interior of the element are then expanded in terms 
of a finite number of stress parameters B -

cr = PB (3) - ..__ 
where P is chosen to satisfy the homogeneous equilibrium equations. The 
surfac~ tractions can be written in the form of 

T = RB ( 4) - ......... 
where R is obtained by applying the element boundary conditions to P. Substi-
tutint'Eqs. (2) to (4) in Eq. (1) one obtains, -

(S) 

where 

(6) 

and 

(7) 
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The best approximate solution for S for the problem is obtained by 
setting anc/ai to zero. The result is-

H S - G q = 0 
flll/lltttil'.., ~ ....... 

From which 1 

S = H -IG q - - --
The first term in the expression of nc (Eq. (1)) represents the total strain 
energy U in the element. By substituting Eq. (9) into U one obtains: 

By definition~ the strains energy can be written as follows: 

1 T 
U=-2 q Kq - ,.,. -

where K is the element stiffness matrix. -

(8) 

(9) 

(10) 

(11) 

By comparing Eqs. (10) and (11), one obtains the element stiffness matrix for 
the hybrid stress model: 

K = GT H-l G (12) 
fi//IIIIW ,., , _.._... 

III. FORMULATION OF AXISYMMETRIC SOLID OF REVOLUTION ELEMENT BY ASSUMED
STRESS HYBRID MODEL. Since only structural problems in the shape of body of 
revolution are considered, an axisymmetric solid of revolution element is 
developed. For convenience, the cylindrical coordinates are used. Let u, 
v and w denote, respectively, the components of displacement in the radial (r), 
tangential (8) and axial (z) directions. The relationships between the com
ponents of displacements and the strain components are: 

au 
e:r = 3T 

e:e :; ~+ (;)V 

r rae 

aw 
€: = a; z 

(13) 
au av v 

Yre 
:; -+ a;-rae r 

:::: 
au aw 

Yrz -+ ar az 

av dW 
Y ze = -+ az rae 
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The equilibrium equations are: 

aar 1 \h:re d't' -0' e rz · 
0 +--+ --+ = r ~e az r 

'a 1 rz 1 area a a T z rz 
0 --+ ---+ --+ --= ar r ao az r 

cl'T re 1 acre ar
0 

2r ra 
-+ ---+ 

__ z + --= 0 ar r ae az r 

In the application of these equations to the torsional problem the 
semi-inverse method may be used and the components of displacements u and 
w are assumed to be zero. It can be shown that the solution obtained on 
the basis of such an assumption satisfies all the equations of elasticity 
and therefore represents the true solution of the problem [6]. Substituting 
in Eq. ( 13) u = w = 0, and making use of the fact that from symmetry the 
displacement v does not vary with the angle o, one obtains: 

g = e:e "' E: =- Y rz = 0 r z 

av v 
Y re = ar-- -

r 

av 
Y az =-az 

(14) 

(15) 

Equation (15) together with Hooke's law determines that of all the six stress 
components a , crB, a , 1 , r 9, r 0 only r 9 and r 6 are different from zero. 
As a result Bf tfiis,ztherfirst two 5f Eq. (l4) are 1aentically satisfied, and 
the third of these equations becomes: 

arra a-rez 2rre 
- + ---- + -- "' 0 (16) ar a.z r 

Hence, in the subsequent formulation of an axisymmetric solid of revolution 
ring element one is only concerned with the displacement v and the equilibrium 
equation given by Eq. (16). The ring element has four nodes and a general 
quadrilateral cross-section in the r-z plane (Fig. 1). 
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- Axis of Revolution 

Fig. 1 General Quadrilateral Axisymmetric Solid of Revolution Element in 
Global System 

A. Element Displacement Assumption~ 

In the assumed-stress hybrid model, the interpolation function must be 
selected in such a manner that it assures the displacement compatibility 
between neighboring elements. Thus, for the 4 node 4 degree-of-freedom axi
synunetric element the appropriate choice is a linear interpolation. In terms 
of the nodal quantities it assumes the following form: 

(1-S) (l+S) 
v = -2-vi + 2~vi+l (17) 

S is the boundary coordinate which is normalized far each element side such 
that it varies between -1 and +1. v. and v. 

1 
are the values of vat the nodes 

i and i+l with v5 = v1. Eq. (17) is
1
the inUrpolation function for the ith 

side of the element (1 = 1, 2, 3, 4). The value of rand z along the ith side 
can be related to the nodal coordinate ri, zi in the same manner as the dis
placement interpolation function; i.e. 

r = 
(1-S) 
--2- ri 

(l+S) 
+ -2- ri+l 

(I-S) (I+S) 
z "' --2- zi +~~-z 2 i+l 

·When interpolation of the displacements in the interior of an element is 
required, the following bilinear interpolation function may be used: 

v ::: P.v. 
1 1 

where v. is the value of vat the ith node of the element. P. is defined by 
the following equation: 1 

P. = (1+~-~) (l+n.n) 
1 1 1 

77 

(18) 

(19) 
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r,; and n are related to r;z. by the following equations 

1 4 
z (r; ,T1) E P.z. 4 i=l 1 ~ 

4 {21) 
1 r (z;. n) = 4 E P.r. 

i=l 1 1 

Equation (21) describes a coordinate transformation between a general quadri
lateral in the r-z plane and a square (with side length equal to 2) in the 
r;-n plane (Fig. 2). 

( -1) l)e-----+-----.. (1) 1) 

(-1,-1) (1. -1) 

Fig. 2 Solid of Revolution in Transformed ~-n System 

B. Element Stress Assumptions 

There is no prior knowledge concerning the selection of proper stress 
assumptions except they must satisfy the equilibrium equations exactly. In 
the present analysis, the following stress assumption is chosen: 
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Substituting Eq. (22) into Eq. (16), one obtains 

1 cr 62 + 66 + 261 r + 2a2 + 2a3 r = o (23) 

In order for the assumed stress (Eq. (22)) to satisfy the equilibrium (Eq. (16)) 
exactly, the following relationships must hold: 

As a result, the stress assumptions (Eq. (22)) becomes 

By comparing Eqs. (3) and (25). one obtains: 

cr = -
a = ,., 

p "' -
C. Definition of Compliance Matrix 

The matrix S in Eq. (6) is the compliance matrix that relates stresses . -.2. to struns :;.,.: 

E; "' s CJ ..... _ .... 
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(27) 

(28) 
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In the present study (for an isotropic material) S is given as follows: 

1 r (ol+v) 

~= E L 
and 

D. Calculation of Matrix li 

For an axisymmetric element, the matrix H in Eq. (6) may be written as -
H = -

Using the coordinates transformation defined in Eq. (21) and performing the 
a-integration analytically, the expression for H becomes 

' -
r and z can be written in terms of c and n as 

r = ao + alz; + a 2n + a3 ~;n 

z :; bo + blr; + b2n + b3z;;n 

where 

1 
+ r2 + r3 + r4) ao "" 4 (rl 

1 
- r4) al = 4 ( -rl + r2 + r3 

1 
a2 = 4 (-rl - r2 + r3 + r4) 

1 
a3 = 4 (rl - r2 + r3 - r4) 

(30) 

(31) 

(32) 

(33) 

(34) 

(35) 

and the b.'s are defined similarly with z. substituted for ri. 
jJj is defined by 1 

The Jacobian 
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where 

Al = 

A2 = 

a ( z. r) 
a(c,n) 

a2bl alb2 

a3bl alb3 

A3 = a2b3 a3b2 

E. Calculations of Matrix 

(36) 

(37) 

G 

For the calculation of the matrix ~in Eq. (7)) expressions for tractions 

and displacements along the boundary are required. TI1e traction T
8 

for the 

i th side of ru: element are given in terms of the stresses by 

where 

zi- 2 i+ 1 
( \) 2) i = ---,{,.--_ --

1 

Substituting Eq. (25) into Eq. (38), one obtains 

F"rom Eqs. (4), (27) and (40), one obtains 

TI1e boundary displacement are related to the nodal displacements, q, as -
u = L q - --
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(40) 
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with 

Linear boundary displacements are assumed as given by Eqs. (17). By defining 

(1-s) 
0 

L1 = 
-2-

- 0 
(1-s) 
-2-

and (l+s) 

L2 
-2- 0 

= - 0 (l+s) 
-2-

The matrix L for each side may be readily written as: -
Side 1 L = [l;,l : L2 : 0 0] - .... 
Side 2 L = [0 !:.1 lz 0] -
Side 3 L = ...,. (0 0 : L ..... 1 !.:.zl 

Side 4 L = [£:2 : 0 0 !:.1] -
The contribution to the matrix G from each side is now given by -

1 RT (S) L (S) r(S) IJI dS £.= 21T 1_1 - -
The Jacobian, !JI, is simply half the length of the side and the total value 
of G is obtained by summing the contributions of Eq. (46) from each side. A 
Gaussian integration rule is used for the evaluation of Eq. (46). 

When the matrices H and G have been formed, and _11 has been inverted - -

(44) 

(45) 

(46) 

(note that H is symmetric and positive definite), the element stiffness matrix, 
k, is deternrined by -

IV. NUMERICAL EXAMPLES. In order to examine the adequacy of the element 
developed in this study, it is employed to analyze two problems with known 
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analytical solutions. '111e first problem is the torsion of a solid cylinder 
(Fig. 3) and the second one is the torsion of a truncated cone (Fig. 4). 
The exact solution [6] of each problem is given here along with the figure. 

)"' 

Tr 
Tze = J 

'ez 

r 

I ; 

Fig. 3 Torsion of Solid Cylinder 

4 
na 

J = -2-

r 

Fig. 4 Torsion of Truncated Cone 

T 
c = -

2n - COSet. 

The results of the finite element solution of these problems compared 
with the exact solutions are shown in Tables 1 and 2. Study of the convergence 
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of the finite element solutions versus the total number of elements used is 
also indicated in the tables. As it can be seen that an excellent comparison 
is obtained between the finite element solutions and the exact solutions in 
the solid cylinder case for the various mesh sizes employed. In the case of 
truncated cone, excellent agreement is achieved for the T 6 stress in the 
larger mesh size case. z 

It should be added here that other forms of stress assumptions were alSo· 
studied including second and third order terms. However, less than satis
factory results were obtained. 
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Exact Location 

Solution 

~ ) 

62.88 1. so 

73.36 1. 7S 

83.83 2.00 

94.31 2.25 

104. 79 2.50 

115.27 2. 75 

125. 75 3.00 

~~ 

TABLE I 

Comparison of Finite Element Solution and Exact Solution (Solid Cylinder) 

(Length of Cylinder = 12", Radius = 3, 0") 

96 Elements 24 Elements 

0. 75 1. so 2.2S 1.5 3.0 4.S 

62.96 62.89 62.87 62.87 62.91 62.85 

73.38 73.37 73.34 

83.87 83.84 83.71 83.71 83.89 83.81 

94.33 94.31 94.31 

104.77 104. 78 104.80 104.60 104.80 104.81 

115. 19 115.26 115.2 8 

8 Elements 

3.0 6.0 

62.S4 63.00 

93.69 94.S7 

12S.S5 12 s. 80 12S. 72 125.27 12S.93 125.66 124.85 126.17 



CQ 

"" 

Location 

z 

1.5 

3.0 

4.5 

6.0 

7.5 

9.0 

10.5 

TABLE 2 

Comparison of Finite Element Solution and Exact Solution (Truncated Cone) 

(Length of Cone = 1211
, Sma 11 End Radius = 1. 5", Larger End Radius • 3, O") 

T ze tre 

Exact 96 24 Exact 96 24 r Elements Elements Elements Elements 
! 

1.687 653.73 564.73 930.52 81.69 95.53 24.71 

1. 875 476.70 455.14 . 384.60 59.59 60.76 70.10 

2.062 358.07 353.93 403.34 41.75 43.13 30.71 

2.25 275. 87 276.03 263.42 34.48 32.42 33.26 

"~-< .• 

2.437 216.94 218.00 225.63 27.11 25.25 21.76 

2.625 173.72 174.74 173.97 21.72 20.16 19.57 

2.813 141.27 141.91 139.62 17.66 . 16.33 13.17 

·-- - - -------------
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THREE-DIMENSIONAL ELASTIC STRESS AND DISPLACEMENT ANALYSIS 
OF FINITE GEOMETRY SOLIDS CONTAINING CRACKS* 

Jonathan Kring, John Gyekenyesi, and Alexander Mendelson 
Lewis Research Center and 

U.S. Army Air Mobility R&D Laboratory 
Cleveland, Ohio 44135 

ABSTRACT. The line method of analysis is applied to the Navier-
Cauchy equations of elastic equilibrium to calculate the displacement fields 
in finite geometry bars containing central, surface, and double-edge cracks 
under extensionally applied uniform loading. The application of this method 
to these equations leads to coupled sets of simultaneous ordinary differen
tial equations whose solutions are obtained along sets of lines in a dis
cretized region. Normal stresses and the stress intensity factor variation 
along the crack periphery are calculated using the obtained displacement 
field. The reported results demonstrate the usefulness of this method in 
calculating stress intensity factors for commonly encountered crack geom
e~ries in finite solids. 

INTRODUCTION. The main goal of fracture mechanics is the prediction 
of the load at which a structure weakened by a crack will fail. Knowledge 
of the stress and displacement distributions near the crack tip is of funda
mental importance in evaluating this load at failure. During the early 
development of crack mechanics most of the effort was focused on through
thickness cracks which could be characterized as two-dimensional. However, 
part-through cracks are the most common type of crack defect found in actual 
service conditions (ref. 1). 

Because of the geometric singularity associated with any crack type 
problem, only limited analytical work has been done in the past on these 
problems. Early theoretical solutions for three-dimensional flaw config
urations usually involved the discussion of cracks in infinite or semi
infinite solids (refs. 2 to 8). For this reason, results for finite geom
etry stress intensity factors are usually given in terms of magnification 
factors applied to some convenient reference solution. In addition, con
siderable scatter exists in the reported results as obtained by different 
i:n.vestigators (ref. 9). In our work these difficulties are avoided by 
S·::>lving the fini tc dimensional problems directly. 

Recently, approximate solutions of the finite geometry surface crack 
problem were obtained by the boundary integral equation method (ref. 10) 
a11d the finite element method (ref. 11). An alternate semi-analytical 
method suitable for the elastic solution of crack problems is the line 
method of analysis. Successful application of this method to finite 
geometry solids containing cracks has been demonstrated by Gyekenyesi 
and Mendelson (ref. 12). Although the concept of the line method for 
solving partial differential equations is not new (ref. 13), its appli
cation in the past has been limited to simple examples. The basis of 
this technique is the substitution of finite differences for the deriva
tives with respect to all the independent variables except one for which 

*This article has been issued a NASA Technical Memorandum No. 73717. 
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the derivatives,are retained. This approach replaces a given partial dif
ferential equation with a system of simultaneous ordinary differential equa
tions whose solutions can then be obtained in closed form. These equations 
describe the dependent variable along lines which are parallel to the co
ordinate in whose direction the derivatives were retained. Application of 
the line method is ~st useful when the resulting ordinary differential 
equations are linear and have constant coefficients. 

An inherent advantage of the line method over other numerical methods 
is that good results are obtained from the use of relatively coarse grids. 
This use of a coarse grid is permissible.because.parts of the solutions 
are obtained in terms of continuous functions. Additional accuracy in 
normal stress distributions is derived from the fact that they are ex
pressed as first-order derivatives of the displacements and these deriv
atives can be analytically evaluated. Inherently inaccurate numerical 
differentiation is required only for evaluating the shear stresses, but 
this presents no important loss of accuracy since they are an order of 
magnitude smaller than the normal stresses. For-problems with geometric 
singularities, additional accuracy is derived from using a displacement 
formulation since the resulting deformations are not singular. 

It is the purpose of this report to present a simple and systematic 
approach to the elastic analysis of three-dimensional, finite geometry 
solids containing traction-free cracks. The need for these specific solu
tions has existed for a number of years.in fracture .toughness testing. 

REDUCTION OF THE NAVIER-CAUCHY EQUATIONS TO SYSTEMS OF ORDINARY 
DIFFERENTIAL EQUATIONS~ Within the framework of linearized elasticity 
theory~ the equatiorts of elastic equilibrium in terms of displacements 
are 

(>.+G) .£!. + G v 2 
ax u. 0 

(X + G) ae + G v2 
6y v"" 0 

(>.. + G) ~ + G v2 w • az 0 

where the body forces are assumed to be zero and the dilatation is 
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For a finite solid with rectangular boundaries, we construct 
three sets of parallel lines (fig, l(a)), Each set of lines is parallel 
to one of the coordinate axes and thus perpendicular to the corresponding 
coordinate plane. An approx~m~te solution of equation (1) can be ob
tained by dev~loping solutions of ordinary differential equations along 
the x-directional lines. As seen in the figure, ther are a total of 
t = !'<'Y x NZ such l::.nes where NY is the n'-'"''!:;er of lines along the y
dirt:etion and NZ is the num.ber of lint~s ;,long the z-direction in a given 
plane, respactively. We defi~e the di along these lines as 
u1, u2, •• , , u1 • T:1e derh·.atives of t:'he l·e.:ticnal displacements. 
on these lines w~.th res).)ect to y are 2efir.e.d as v'/1 • v'b, ... , v'i\, 
and the derivatives of th~ z-~irectio~al displacenents with respect to 
z s.re defin~d as w'i1, w'i2• ... , w'i.. T::(?~e displacements and deriva
tives can then ~e rei~r~ed as fu~ctio;~ of x only since they are vari
ables On :;.:-2irect:ioc'al lL:.:;s. ·,,':-:e.n the.se cefini tio;1s are used, the 
ordinary diff~r<:ntial equ::<tion alcng a line ij (a. double sub-
sc.ript is -...s;;;d h-=re for s icity of writing) in figure l(h.) may be 
written as 

2 
d ui · (1 - 2v) 
---~:J. + -·~····~ .. -·-··-

! 2 2 (1 - v) c.x 

c..nd 

i + 

i 1 
+ ~-2 ( ui · ..1.1 + u · · 1) i h ,]• l.,J- I 

£ .. (x) 
l.J 

z 

dv 
' ~·~-' ay 

f., (x) 
.). ___ _;_~"' 0 

I 2(1 ~ v) (5) 

(6) 

Sl~ilar dif~~~ent~al equations are o~t&ined along the other x-directional 
1 i·nes. Si;;;ce each equation h2.s the tenrs of the displacen::ents on the sur
r:·u:H~:ing l:~;-;":''3, t~:"':Se eqt:aUcns cDnstitute a system of ordinary differential 
e:;::·,;.d .. cr:s !:or t:•e displacE:neL: .. ts ul, u2, ••• ~ u\ • 

The set of 1 second ord2r differential equaticns by (5) 
c&n be re2uced to a set of 21 first order differential equations by treating 
the Lerivatives of the u's as an additional set of unkno~~s, i.e., 
ce.fi ning 



du1 du2 u ... --, u = -- etc. 
l+l dx l+2 dx' 

(7) 

The resulting 2\ equations can now be written as a single first order 
matrix differential equation · 

.!!£ • A U + R(x) dx 1 
(8) 

where U and R are column matrices of 2\ elements each and A1 is a 
21 x 2\ matrix of the constant coefficients appearing in equations (5) and 
(7). 

In a similar manner, to solve equations (2) and (3), ordinary dif
ferential equations are constructed along the y- and :-directional lines 
respectively. These equations are also expressed in an analogous form 
to equations (8); they are 

dV - = A V + S(y) dy 2 
(9) 

dw 
- • A W + T(z) dz 3 (10) 

Equations (8) to (10) are linear first-order ordinary matrix dif
ferential equations. They are, however, not independent, but are coupled 
through th~ vectors, R, S and T whose components are given by equations 
similar to (6). The elements of the coefficient matrices A1, A2, and 
A3 are all constants, being functions of the mesh spacing and Poisson's 
ratio only. 

Noting that a second-order differential equation can satisfy only 
a total of two boundary conditions and since three-dimensional elasticity 
preble~ have three boundary conditions at every point of the bounding 
surface, some of the boundary data must be incorporated into the surface 
line differential equations. Hence, conditions of normal stress and dis
placement are enforced through the constants of the homogeneous solutions 
while shear stress boundary data must be incorporated into the differential 
equations of the surface lines. The application of the specified shear 
conditions permits the use of central difference approximations when sur
face line differential equations are constructed. The details of con
structing these equations are found in reference 14. 

SOLUTION OF THE SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS. The 
systems of ordinary differential equations (8) to (10) can be solved 
by any of a number of standard techniques. The method used herein was 
basically the matrizant or Peano-Baker method of integration (ref. 15). 
For equation (8) the solution can be written as 



0 

iK -A 11 
1 

e R(n) ·~ 

with similar solutions for equations (~ and (10). U(O) is the initial 
value vector~ determined from the boundary conditions. The conversion of 
given boundary data into required initial values is discussed in more 
detail in reference 14. 

The matrizant eAlx is generally evaluated by its matrix series. 

(11) 

For larger values of x, when convergence becomes slow, additive formulas 
may be used. In addition, similarity transformations can be used to diag
onalize the matrix A1. These various techniques for improving the ac
curacy are discussed in detail in reference 14. 

Since equations (8) to (10) and their boundary conditions are highly · 
coupled, it is generally impossible to directly evaluate their solutions. 
Thus, a successive approximation procedure must be employed where assumed 
values must be used initially for the required unknowns. The cyclic 
resubstitution of the obtained solutions into the coupling vectors and 
the boundary conditions will usually converge to the correct solution, 
depending mainly on the accuracy to which the required matrizant can be 
evaluated. 

Once the successive approximation procedure has converged and the 
displacement field in the body has been calculated, the normal stress 
distributions can be obtained directly by using the stress-displacement 
equations. The shear stresses, however, can be evaluated only through 
finite difference approximations for the required displacement gradients. 

STRESS INTENSITY FACTOR. The stress intensity factor KI was at 
first obtained from the calculated stresses and displacements by extending 
the usual definition 

(12) 

to discrete data, where R is measured from and is normal to the crack 
front and n is the singularity. It was found, however, that due to the 
coarseness of the grid used, the usual plotting and extrapolating techniques 
gave results that were erratic and of questionable accuracy. This was 
compounded by the fact that the precise crack tip location is not really 
known except that it is approximately midway between two lines, one of 
which has zero displacement specified in the crack plane and one of which 
has zero stress specified. It was found, however, that by using two terms 
in the stress and displacement series expansions around the crack tip, 
good results could be obtained even with th~ coArse grid used. Furthermore, 
this also permitted us to determine the actual crack tip location from the 
computed results. The method utilized is as follows. We take 
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v/ • a. y•O (13) 

(14) 

where a. is a function of Poisson's ratio, n was assumed to be -1/2 
and r is the crack edge position correction measured from the originally 
assumed midpoint position. Using displacement data from three adjacent 
nodes to the crack edge in equation (13), values of a K

1
, L

1
/K

1
, and r 

are calculated for each value of z, with R also measured from the 
half-way point between nodes specifying boundary stresses and displacements, 
respectively. Substituting values of Lr/Kr and r into equation (14), 
we can calculate KI as a function of the corrected crack edge distance, 
p • R - r. A plot of ln KI versus ~ as --r,fp -+ 0 can then be used to 
obtain Kr• In a similar manner, a can now be calculated from equation (13), 
where the corrected crack edge distance with the displacement data is 
p • R + r. 

APPLICATION TO TENSILE FRACTURE SPECIMENS CONTAINING CRACKS. A great 
amount of experimental work has been done in fracture mechanics (ref. 16) 
through the use of crack-notched specimens. In the past, many different 
types of specimens have been used to determine a material's fracture toughness. 
The most common early specimens employed in these tests were the center
cracked and double-edge-notched bar specimens. Figures 2(a) and 3(a) show 
the finite rectangular bars with through-thickness, traction-free central 
and double-edge cracks, respectively. Because of the symmetric geometry and 
loading, only one-eighth of each bar has to be discretized as shown in 
figures 2(b) and 3(b). 

NUMERICAL RESULTS. - Center-Cracked Tensile Fracture Specimen. The 
solution of this problem was obtained by using two different sets of lines 
along the coordinate axes so that the convergence of the .finite difference 
approximations could be checked. In a given direction, uniform line spacing 
was used in all computations with no other restriction being placed on the 
selection of the grid size. The crack edge location with respect to the 
imposed grid was initially assumed to be halfway between nodes specifying 
normal stress and displacement boundary conditions, respectively. Sub~ 
sequently, using the obtained near crack tip stresses and displacements, 
a more accurate crack edge location was established for calculating the 
stress intensity factor. This approach was considered acceptable since 
the results from the two sets of lines at corresponding points did not 
change, although the crack edge to node distance was considerably decreased 
for the finer mesh. The successive approximation procedure required for 
decoupling the three sets of ordinary differential equations was terminated 
when the difference between successively calculated non<1.imensionalized 
displacements, which are of the order of unity, at every point was less 
than a present value (lo-6). As expected, the convergence rate of this 
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successive approximation procedure was greatly dependent on the initial 
guess for the required unknowns in the coupling vectors and boundary condi
tions. For maximum computer efficiency, diaplacemant data obtained from the 
use of coarse grids ~as interpolated to obtain improved starting values 
for the computations involving the final spacing of lines. The required 
initial quantities for the preliminary coarse grid calcualtions were taken to 
be ~ero in our work. All calculations were performed on a UNIVAC 1100/40 
computer, using double precision arithmetic. 

For the selected geometry, the crack opening displacements and normal 
stresses from our analysis and those from Raju's finite element method 
(ref. 17) are compared in Table I. Although in our solution of the gross 
displacement and stress fields, the minimum corrected crack edge distance 
is p m 0.042c, crack opening displacements and stresses can be calculated 
from equations (13) and (14) at any value of p for which these equations 
are assumed to be accurate (p • 0.40c or less in this problem). As seen 
from Table I, there is good agreement in most displacements; with the normal 
stress at the surface showing the greatest difference. 

The dimensionless crack opening displacement is shown in figure 4. 
Agreement with the finite element results is seen to be very good. It is 
noteworthy that the results correspond to elliptical crack profiles in all 
cases. 

An indication of the accuracy of our technique for computing the stress 
intensity factor is seen in figure 5. This figure shows the stress intensity 
factor variation across the bar thickness. The results obtained in tef
erence 17 using a finite elements method for a geometry almost identical 
to one of the geometries in this paper is also shown. It is seen that very 
good agreement is obtained between two completely different methods. In 
addition, Isida's plane solution (ref. 18), corrected for finite width and 
length, is also shown in this figure for comparison. Note that these results 
indicate a small increas in KI at the surface with increasing bar thickness. 
lnterestingly, for bars with t > 3c, K1 increas,a gradually with z, 
reaching a maximum near z • 0.85t, and then decreases rapidly to its surface 
value. 

Surface crack Tensile .Frac;ture Specimen. Figure 6 ahowa a finite geom
etry bar containing a traction free rectangular surface crack. Because of 
the symmetric geometry and loading, only one-fourth of the bar has to be 
diacretized as shown in figure 6(b). 

Selected results of the. dimensionless sgdace crack opening displacements 
are shown in figure 7. Note that the crack opening increases rapidly with 
-crack dept~ for 0.21 ~ a/t ~ 0.87, slightly exceeding even the surface 
crack displac;ement of a through-thickness crack at a/t • 0.87. The plane 
strain solution for a finite width center cracked bar is also shown in figure 7 
for reference. Final displacement values in this report were obtained from 
a set of 100, 140, and 140 x-, y- 1 and z-directional differential equations, 
respectively. A typical computer run for this system of equations takes 
approximately 30 to 40 minutes of CPU time and 720 K bytes of storage. 



In order to show the singularity of the stresses, the y-directional 
normal stress in the crack plane is plotted in figur£ 8 for a/t • 0.536. 
The results clearly indicate the singular nature of o along the crack 
periphery. Y 

Double Edge Crack Tensile Fra~ture Specimen. Our last example is the 
finite bar with double edge cracks. The crack opening displacements for this 
problem are presented in figure 9. The stress intensity factor variation 
as a function of bar thickness is shown in figure 10. In both, results 
from the finite element method are shown for comparison. Agreement is 
again excellent. 

CONCLUSIONS. The line method of analysis presented affords a practical 
way for analysis of three-dimensional crack problems, at least for bodies 
with reasonably regular boundaries. Because parts of the solution are ob
tained as continuous functions along the lines chosen, relatively good 
accuracy can be obtained with coarse grids. Results of the analysis includQ 
the displacements and normal stresses at every node inside the body from 
which the stress intensity factor variations were easily calculated. In 
addition it should be noted that the common semi-elliptical surface crack 
problem could also be analyzed by merely changing the boundary conditions 
at certain nodes in the crack plane. Introduction of plasticity into the 
analysis could also be accomplished by changing the coupling terms in 
equations (8) to (10). Since these have to be determined by an interative 
process in any case, it would seem possible to solve the elastoplastic prob-
lem by a simple extension of the present method. Whether this 3Pproach is 
practical requires further investigatlon. 
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FULLY PLASTIC DEFORMATION IN ANISOTROPIC 
ANNULAR PLATES UNDER INTERNAL PRESSURE 

P. C. T. Chen 
Benet Weapons Laboratory 

Watervliet Arsenal 
Watervliet, New York 12189 

ABSTRACT. The problem considered is an elastic-plastic, annular 
plate radially stressed by uniform internal pressure. The partially 
plastic deformation problem is extended to the fully plastic case. The 
plate is elastically as well as plastically orthotropic but isotropic 
in its plane. The exact solution is obtained on the basis of the J 2 
deformation theory, the Hill's yield criterion and a modified Ramberg
Osgood Law. Numerical results for the stresses, strains and displace
ment will be presented and discussed. 

1. INTRODUCTION. The problem considered is an elastic-plastic 
annular plate radially stressed by uniform internal pressure. For 
ideally plastic materials, the stress solution for this statically 
determinate problem was first obtained by Mises [1] and the correspond
ing two strain solutions were obtained by the present author on the 
basis of both J2 deformation and flow theories [2]. For elastic-plastic 
strain-hardening materials, an exact solution for the partially plastic 
deformation problem was recently reported in (3] for the isotropic case 
and in [4] for the anisotropic case. Analytical expressions were 
derived but only the effect of geometric ratio on the stresses was 
briefly discussed in that technical note. 

In the present paper, the partially plastic deformation problem is 
extended to the fully plastic case. A unified treatment is given here 
for both cases. The plate is elastically as well as plastically 
orthotropic but isotropic in its plane. The material model is assumed 
to obey the J2 deformation theory, the Hill's yield criterion and a 
modified Ramberg-Osgood law [5]. The exact solution will be presented 
and the effect of strain hardening on the stresses, strains and displace
ment for the complete range of loading will be discussed. 

2. BASIC EQUATIONS. Assuming small strains and neglecting inertia 
forces in the axisymmetric state of plane stress, the radial and 
tangential stresses, Or and ere, must satisfy the equilibrium equation, 

(1) 
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and the corresponding strains, Er and Ee , are given in terms of the 
radial displacement, u , by 

Ee ; u/r • (2) 

We shall assume that the plate is elastically as well as plastically 
orthotropic but isotropic in its plane, E ~ Er = Ee, v = vrO = ver• 
vl = vrz = vez are the elastic constants, and R is the plastic strain ratio 
related to the yield stress ratio w, plastic Poisson's ratio Up by 
1- (Zw2)-l =Up= R/(l~R). According to the simple deformation theory, 
the strains are related to the stresses by 

E- 1Cor-vcr6) + 

E- 1ca6-vcrr) + 

-1 -1 
(E 5 -E )Cor-upcre) 

(E 5 - 1 -E- 1 )Ccr9 -~por) 
where Es is the secant modulus on the effective stress-strain curve 
with E5 = cr/£ and 

(3) 

(4) 

If a modified uniaxial relation of the Ramberg-Osgood type is assumed [5], 
we have 

and the initial yield surface is defined by the ellipse o = cry. 

Since the compressibility of the material is taken into account, the 
longitudinal strain Ez can be determined by 

Er + Ee + Ez ~ E-l(l-v-v1)(0r + o8) , 

which holds in the elastic as well as plastic region. 

The boundary conditions on the problem are 

(6) 

(7) 

Where a, b and P are the inner, outer radii and internal pressure, 
respectively, and t denotes some monotonic parameter such as P or the 
elastic-plastic boundary p. In addition, all stresses, strains and 
displacement must be continuous throughout the entire region. 
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In the following, the solutions will be presented in terms of 
nondimensional quantities defined by 

a = a/b, ~ = r/b, B = p/b, A = Play , 

sr = or/cry• s6 = cr9/cry• s = cr/cry , 

er = E8r/Oy• ee = Ece/cry• ez ~ E8z/cry (8) 

3. SOLUTION IN THE PLASTIC REGION (a< S < 8). Following Nadai 
for isotropic problems [6], we introduce the parametric representation 
(0 _:: ~ _:: rr/2) 

Sr = -S cos~/sin2o 

s9 = -s cos(~ + 2o)/sin2o 

which satisfies equation (4) identically and leads to the following 
equation upon substituting into the equation of equilibrium, 

(9) 

~-ld~ = [sin2o(tano + tan~)]- 1 (tan~d¢ - s-1dS) • (10) 

By the extended Michell theorem [7], the stress solution for the present 
problem is independent of v. So choose v =~pin (3) and make use of (2), 
(5), (8) and (10), we hav_e __ _ 

~-ld~ = [-sin2o(coto + cot¢)]-1(cot¢d¢ + ns- 1dS) • (11) 

The above two ordinary differential equations form a system and can be 
integrated exactly if we know the boundary values for S and ¢ at ~ = a 
or f). These values at the two boundaries of the plastic region will be 
determined in the next section. Since S and ~ are functions of ; and 
B. the notation s~a = sc;.a). ¢s6 = ¢(E,8) are introduced. After some 
manipulation, the results are presented in the following form: 

5;el5es = GC~;a· ~eeJ • 

CB/s)2 = F(~;s• ~BB) • (12) 

where 

cotO cos~66 ]" 
G(~~S· ~88) [: sin~aa - exp ~n-l)cotO (~66-~i;S~ 

sin~;e - coto cos~;a n2+cot2o 
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sin(¢~s+o) 

sin(rp 813+o) 
X 

~n sin¢ss - coto t sinrpt;B - cote 

cos<f>s~ 
cos<f>.;~ 

ncsc 2 o 
n2+cot 2o 

and o is the anisotropic parameter defined in the first quadrant by 

(14) 

tan2o = (1-~p)/(1 + ~p) = 1/(1 + ZR) = l/(4w2-1) , (15) 

The solution for the strains in the plastic region (a<~<B) of an 
elastic-plastic plate with finite n can be obtained from (3)-and (6), 
using (5), (8) and the above stress solution. After some manipulation, 
the equations for the dimensionless strains can be written as 

er -S~B sin(¢ss+2o) -s~ 13cos(¢t;s+2o)(cos2o-v)/sin2o 
e8 = s~S sin<f>.;s - ssB cos¢.;8Ccos2o-v)/sin2o . 

ez = [(2sin6)s~13 - (2sinc-v1 /sino)S~ 13] cos(¢.;8+8) (16) 

4. DETERMINATION OF THE BOUNDARY VALUES. For small internal 
pressure (A< A*), the plate will be elastic throughout (a<~< 1) and 
the solution-is omitted here. The critical value A* to cause incipient 
plastic deformation is 

2 [ ) lt]-1/2 A* = (1-a ) 2 (1 + ~P) + 2 (1 - ~p a (17) 

For values of p larger than p*, the plate becomes plastic in the inner 
region. 

The foregoing solution in the plastic region (a < ~ < 8) has been 
derived on the assumption that we know the boundary values for s and ¢ 
at .; ~ B. These values at the two boundaries at s = a and B will be 
determined in this section for the partially-plastic as well as fully
plastic case. 
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A. Partiall -Plastic Deformation (A* < A < A**). In this case, the 
plate will be plastic in the · ner region (a < ~ < B) and still elastic in 
the outer region CB < f, < 1). In the outer elastic region, the equations 
for the dimensionless stresses and strains are 

1 [(l - v) + 
2 

(1 + v) 

2 -4 2 1/2 - v1/(sin 8 + S cos 6) . (18) 

The above equations together with the continuity requirement of the stresses, 
strains and displacement at the elastic-plastic interface lead to 

tan¢ 66 

(19a) 

(19b) 

At the inside surface, ~ ~ a, ¢ = cjlaB , equations (12) with the boundary 
condition (7) reduce to 

and 

A. = saS cos¢as/sin2o 

CB/a)2 = F(¢as , ¢asl ' 

5as15SS = G(¢aB ' ¢ss) ' 

The :five equations (19a to e) are sufficient to determine the five 

(19c) 

(19d) 

(19e) 

unknow~s B, ¢ss• s86 , <Pq.s• SQB i~ terms of _A.. Alternatively, we can 
dete:rmwe A., ¢ss• ssa• cpaS• ::;aS 1n tenus of B. The latter approach has 
been chosen in obta1ning numer1cal results. The partially-plastic 
deformation reaches its upper limit when B increases to 1. The correspond
ing pressure factor is /..**, 

B. Fully-Plastic Deformation (A.> A.**). In this case, the plate 
will be plastic in the entire region (a < t, < 6) and S = 1. Equations (9) 
and (12) with the boundary conditions (7) reduce to 

¢11 = Tr/2 , 

A = sal ¢a1/sin2o , 
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;)_ 

(1/a) = F(*a1' *11) ' (ZOe) 

and 5al/Sll = GC*al' *II) . (20d) 

The four equations (20a to d) are sufficient to determine ¢al' Sal' ¢11 , 
s11 in terms of A. 

Once the boundary values for S and * at ~ = a and S are determined, 
the solution for the stresses, strains and displacement in the plastic 
region can be calculated as shown in the preceding section. 

5. DISCUSSIONS OF RESULTS. Since the deformation theory is used, 
the validity of the above solution should be assessed by applying 
Budiansky 1s criterion [8] which requires the following inequality to be 
satisfied, 

n-1 n-1 1/2 
[(ns~ 6 -1)/(Si;S -1)] .?_ (n tan*~;s tano-1)/(tan¢1;(3 + tano). (21) 

It has been verified numerically that all the values of S~;s and ¢~;s 
reported here satisfy the inequality. We may discuss the effects of 
elastic constants (E, v, v ), plastic material constants (cr, n, R) and 
geometric ratio (a/b) on t~e stresses, strains and displacefuent for 
various values of pressure factor (Play)· Some typical results for the 
distribution of stresses and strains in the 2219-T87 aluminum plate with 
E = 10.5 x 10 6 psi, v = v1 = .3, cry = 5.5 x 10~ psi, n ~ 9, R = 1, b/a 3 
were presented in [3]. The effects of geometric ratio on the stresses at 
the inside surface of several partly-plastic plates with v = v1 ~ .3, 
n = 9, R = 1 and b/a = 2,3,4,10 were reported in [4]. Neither the 
numerical results for the strains and displacement nor the effect of strain 
hardening and anisotropy have been discussed. In the following additional 
results will be given. 

The emphasis herein is on the effect of strain hardening in a partly
plastic as well as fully-plastic annular plate radially stressed under 
uniform internal pressure. In order to compare with the elastic-perfectly
plastic solution given in [2], we choose b/a = 2, v = v1 = 0.3, R = 1 and 
n = 3,9,15, oo • The numerical results for the stresses, strains and 
displacement are presented in graphical form for the complete range of 
loading. For the partially plastic case, all the results can be 
expressed as functions of radius of elastic-plastic boundary p. These 
are shown in Figures 1-4. The effect of strain hardening (n) on the 
radial stress or pressure at the inside surface for various sizes of 
plastic zone is shown in Figure 1 and the corresponding effect on the 
circumferential stress at the inside surface, in Figure 2. The effect 
of strain hardening on the stresses is quite significant as shown in 
the above figures. The differences become larger as the size of plastic 
zone expands. It is interesting to point out that the stresses at the 
inside surface corresponding to initial yielding is independent of strain 
hardening but depend on geometric ratio and anisotropic parameter as 
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shown in [4]. The numerical results for the radial and axial strains at 
the inside surface for various sizes of plastic zone are presented in 
Figure 3 and the corresponding results for the radial displacement or 
circumferential strain at the inside surface, in Figure 4. The differences 
for all strain components become larger as plastic zone expands, however, 
those differences for circumferential strain are very small. In Figure 4, 
we also present the results for the residual circumferential stress at 
the inside surface as a function of radius of elastic-plastic boundary. 
The results were obtained by assuming elastic unloading when the pressure 
corresponding to any size of plastic zone was removed completely. As 
shown in Figure 4, the effect of increased strain hardening (i.e., a 
smaller value of n) is to decrease the magnitude of the compressive 
residual circumferential stress. Since the smaller value of this 
magnitude is less favorable and larger pressure is required to reach it, 
we conclude from this point of view that the strain hardening effect is 
undesirable. Other considerations such as reduced ductility and reduced 
fatigue resistance also support this conclusion. The best candidate is 
a high strength material with little strain hardening. 

For the fully plastic case, the results are no longer functions of 
radius of elastic-plastic boundary p but they can be expressed as functions 
of internal pressure or radial expansion as presented in Figures 5 to 8, 
In all these figures, the results for the complete range of loading are 
given with broken lines for elastic ranges, solid curves for partially
plastic ranges and dotted curves for fully plastic ranges. The radial 
and circumferential stresses at the inside surface for several values of 
n are shown in Figure 5. The effect of strain hardening (n) on the 
stresses is quite significant as shown here. For large stresses, the 
curves for finite n in this figure approach radially. The numerical 
results for the radial and axial strains at the inside surface are 
presented in Figure 6 and the corresponding results for the radial 
displacement or circumferential strain at the inside surface, in Figure 7. 
The effect of strain hardening (n) on the strains and displacement can be 
seen from these two figures. We also present the results for the 
residual circumferential stress at the inside surface as a function of 
inside radial expansion in Figure 8. Again, the assumption of elastic 
unloading is used after removing the pressure completely. It should also 
be noted that the present solution has been obtained on the basis of 
small strain assumption. All the strain results reported here are indeed 
small since they must be multiplied by the yield strain, cry/E, which can 
take on a very small value, However, for a given material with a given 
yield strain the validity of the small strain approximation may be 
violated. The large strain approach to this problem should be examined. 
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COMPUTER SIMULATION OF SHOCK PROPAGATION 
IN THE ONE-DIMENSIONAL LATTICE* 

John D. Powell and Jad H. Batteh 
Physical Sciences Branch 

Ballistic Modeling Division 
US Army Ballistic Research Laboratory 

Aberdeen Proving Ground, Maryland 

ABSTRACT. The equations of motion for the atoms in a one-dimensional 
lattice subjected to steady shock compression are solved numerically. 
The atoms are assumed to interact through a nearest-neighbor, Morse
type potential. The effect of the initial state of the lattice upon 
the shock profile is studied by considering two sets of initial con
ditions. In the first, the atoms are at rest in their equilibrium 
positions prior to compression by the shock wave; in the second, the 
lattice is initially in thermal equilibrium at approximately room 
temperature. The lattice is found to support the propagation of well
defined, stable pulses (solitons) and the physical implications of 
these pulses are discussed. 

I. INTRODUCTION. In the past decade or so, computer-molecular
dynamic techniques have been used by a number of different investigators 
to study shock propagation in discrete crystal lattices. The work has 
been motivated by a belief that the usual continuum approximation may, 
at least in certain cases, fail to describe the effect adequately. These 
investigations have, in our opinion, raised but failed to answer some 
important questions regarding the existence of steady state and the 
approach to thermal equilibrium behind the shock front, For this reason, 
and because of the importance of shock propagation to detonation theory, 
we have in the last few months initiated a program in computer molecular 
dynamics. As an initial effort, we developed in-house a computer code 
which solves the atomic equations of motion for a one-dimensional lattice 
subjected to shock compression. The results for the one-dimensional case 
are of some interest in themselves, but this case really represents only 
an initial effort in the development of a full three-dimensional code. 
We now describe the results of the calculations, emphasizing particularly 
how and why they differ from the continuum results. 

II. MODEL AND EQUATIONS. The model employed is shown in Fig. 1. 
It consists of a one-dimensional, monatomic, chain of N atoms, each 
having mass m, which interact through some interatomic potential. At 
time T=O, the first particle is subjected to steady compression at a 
nondimensional velocity of unity - it is unity because we normalize all 
the velocities in the calculation to the compression velocity - and this 
compression produces a shock wave which propagates through the crystal. 

* For more detailed discussion, see John D. Powell and Jad H. Batteh, 
"Shock Propagation in the One-Dimensional Lattice", BRL Report (to be 
published). 
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Model for simulating shock propagation in a one-dimensional, 
discrete lattice~ 
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The classical equations of motion of each atom describing the response 
of the lattice to the shock wave are then solved numerically. We have 
considered several forms of interatomic potential but, for purposes of 
discussion, will consider only the Morse interaction here. 

The differential equation of motion for the jth particle in the 
lattice is just given by Newton's second law, namely, 

d
2

S. ;f "' !A { exp [ -2A(Sj-Sj_ 1)] - exp [ -A(Sj-Sj-l)] 

- exp [ -2A(Sj+l-Sj)] + exp [ -A(Sj+l-Sj)]} . 

In this expression, S. is the nondimensional displacement of the jth 
particle, r the nondi~ensional time, and A a parameter which represents 
the nonlinearity or anharmonicity of the lattice. Hereafter, it will be 
referred to simply as the nonlinearity parameter. In this equation, we 
assume that only nearest-neighbor interactions are important- i.e., 
that only the j-1 st and j+l st particles exert an appreciable force 

h .th 
on t e J • 

There is, of course, an equation such as this for every particle 
(several hundred in our calculation), and the equations are coupled 
because the force exerted on a given particle depends upon the position 
of those adjacent to it. 

III. THE INITIALLY QUIESCENT LATTICE. In our initial calculations, 
we assumed for simplification that all atoms in the lattice were initially 
at rest in their equilibrium positions prior to being excited by the shock 
front. The results of the calculations can be understood most easily by 
c:omparing the velocity-time trajectories for several particles in the 
lattice and determining what aspects of the general shock profile can be 
understood therefrom. Results are for the case A = 1.0. 

Therefore, in F~~· 2, we consider initially the velocity-time 
trajectory of the 25 particle in the lattice subsequent to its 
excitation by the shock. In all graphs we have arbitrarily readjusted 
the time axis so that, at time T~O, the particle first feels the effect 
of the shock. Prior to that time, it is at rest in its equilibrium 
position. Just behind the front, we find that the velocity of the 
particle varies along rather well-defined pulses whose amplitude decreases 
with increasing time. Although it is not shown in the graph, the ampli-
tude of the velocity oscillations eventually approaches some asymptotic 
value which increases with increasing A. If we view a particular particle, 
then, these pulses appear to propagate into the lattice from the end at which 
compression is occurring and it is found that the speed with which they 
propagate decreases with decreasing amplitude. Thus, they tend to tRread 
apart as they propagate. By the time the shock has reached the 500 
particle in the lattice, shown on the lower half of the figure, we find 
extremely well-defined pulses, having reached an amplitude of about 2, 
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Figure 2. Velocity-time trajectories for the initially quiescent, Morse
potential lattice for the case A=l.O. 
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in the vicinity of the front. The pulses arfhmore distantly spaced in 
time than when the shock front was at the 25 particle owing to the 
spreading effect just mentioned. These well-defined pulses have been 
observed to propagate in other nonlinear, dispersive media; they main
tain their shapes upon collision with one another (demonstrated in the 
next section) and are referred to as solitons. Physically, they repre
sent a balance between the nonlinearity which tends to steepen the pulse 
and dispersion which tends to spread it out. Dispersion is simply a 
characteristic property of discrete lattices in which the higher-frequency 
components in the pulse propagate more slowly than the lower-frequency 
components. 

The conclusion for this case, then, is that, unlike as is assumed 
in continuum theories, the profile is not steady because of the spreading 
effect and the lattice does not approach thermal equilibrium at a higher 
temperature behind the shock front because of the propagation of well
defined pulses. Essentially, all the energy deposited into the lattice by 
the shock wave is propagated in the form of solitary waves and no energy 
remains for thermalization. Results similar to this have been obtained 
by Tasi* for the case of a slightly nonlinear, cubic interatomic potential 
for which he solved the equations of motion using an elegant perturbation 
technique. 

IV. THE LATTICE AT NONZERO INITIAL TEMPERATURE. The calculations 
of the preceding section are somewhat of a compromise to physical reality 
because, as was stated previously, it was assumed that initially each 
atom was at rest in its equilibrium position. It was therefore desirable 
to next determine the effect of nonzero ambient temperature upon the 
propagation of the solitary waves. For this reason, we modified our 
code to account for a nonzero initial temperature. Specifically, we 
randomly assigned, according to a Maxwellian distribution, velocities 
to all the particles in the lattice. The initial energy of the lattice 
was equivalent to that in a corresponding lattice in thermal equilibrium 
at roughly room temperature. The lattice was then allowed to oscillate 
freely and we employed several checks to ensure that it was in a state 
of thermal equilibrium. We then subjected this lattice to shock com
pression in the same manner as before. 

In Fig. 3 we show the velocity-time trajectory of the 145th particle 
in the lattice just after the shock front has reached it. Again the 
shock front arrives at time T=O on this arbitrary time scale. There is 
some suggestion of solitary waves propagating in the lattice but, owing 
to the thermal background, the shape of the pulses is not so well defined 
as in the previous case. In fact, though it is perhaps not evident in 
this figure, in some cases we studied the shapes of the pulses were so 
poorly defined that we were unable to determine whether they were actually 
solitons or simply large perhaps unstable variations in the thermal 
background. In an effort to resolve this point, we redid the calculation 
and instantaneously stopped the compression when the shock wave was at 

* J. Tasi, J. Appl. Phys. 43, 4016 (1972); 44, 4569 (1973); 44, 
2245 (1973). 
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the !40th particle. We then set every atom in the lattice beyond the 
140t at rest in its equilibrium position so that we essentially had 
the shock-compressed lattice next to a cold lattice. Our belief was 
that the thermal background would proceed slowly into the cold lattice, 
whereas the high-amplitude solitons should propagate in rapidly and we 
could therefore separate the two effects. 

The result of the calculation is s¥Rwn in Fig. 4 in which is plotted 
the velocity-time trajectory of the t~S particle after the com-
pression had been stopped at the 140 Note that we indeed find solitons, 
of varying amplitude this time but, near the front, the amplitudes are 
higher than in the case for the initially quiescent lattice. If we wait 
a time much longer than is shown on the graph, we will eventually see 
the thermal background from the hot shock-compressed lattice propagating 
into the cold lattice. As before, we found that the pulses propagate at 
a rate which increases with increasing amplitude. 

Since the solitons have velocities that vary with amplitude, one 
can easily calculate at what point in the lattice two solitons should 
be coincidtRt and interact. In Fig. 5 we show such an interaction. 
At the 170 particle the solitons are still separated and propagating 
to the left. The higher-amplitude, faster-moving pulse is btfiind the 
slower. By the time the solitons have propagated to the !85th particle, 
a nonlinear interaction is occurring and finally, at the 200 particle, 
the pulses have separated and assumed their original shapes. The 
resultant disturbance in the region of interaction, of course, is not 
a simple linear superposition of separate amplitudes because the differ
ential equations are nonlinear. Consequently, we see that the solitons 
are extremely stable entities that do not scatter irreversibly even when 
they collide with one another. 

From the calculation, we can conclude that owing to the spreading 
effect of solitons of different propagation velocities, the profile 
is again nonsteady in time. Despite the fact that solitons propagate 
in the vicinity of the front, it is interesting to ask if any thermal
lization of the energy deposited by the shock wave occurs. Unfortunately, 
at this point we have no complete answer to this question but the evidence 
seems to suggest that it does. Specifically we have calculated the 
velocity distribution function for atoms which were well behind the shock 
front at several different times and found that it is approximately Max
well-Boltzmann and remains essentially constant in time. The distribu
tion function consistently corresponds to a temperature that is about 
three times the ambient temperature of the lattice. Our tentative specu
lation then - and it is only speculation at this point - is that the 
perturbation induced by the initial thermal oscillations will prevent the 
formation of, or perhaps lead to the decay of, some of the solitons that 
might otherwise form and that this energy eventually becomes thermalized. 
Additional study of the effect will be necessary before firm conclusions 
can be drawn. 
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V. SUMMARY AND CONCLUSIONS. To summarize, we have found that in 
the one-dimensional case the propagation of solitons tends to prevent 
the rapid establishment of thermal equilibrium behind the shock front, 
and the spreading effect prevents the shock profile from approaching a 
steady state as is generally assumed in continuum theories of shock 
propagation. Consequently, the transition region between the equili
brated region of the crystal ahead of the front and that behind the 
front grows as the shock propagates into the crystal. 

In the near future, we intend to extend the calculations to three 
dimensions and to more realistic, perhaps impure, crystals to see if 
similar effects persist in that case. If so, we believe that these 
effects may be significant in the study of shock-induced detonations. 
Most current theories assume that the transition region can be ignored 
and that the only effect which the shock has is to raise the temperature, 
pressure. and density of the crystal to values higher than the ambient 
values. Chemical reactions then occur in a thermally equilibrated part 
of the crystal. It would appear, however, that since the transition 
region grows, chem;cal reactions may occur in a region characterized by 
extreme nonequilibrium and it is important to assess the effects of this 
environment upon ~hemical reaction rates. It is unlikely, for instance, 
that such rates c~n be characterized by an Arrhenius ~ type relation 
whose validity is 'dependent upon the existence of thermal equilibrium. 
We hope to investigate this problem in greater detail once the calcu
lations have been extended to three dimensions. 
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A PERTURBATION EXPANSION OF THE NA¥IER-STOKES 
EQUATIONS FOR SHOCK WAVES 

Jad H. Batteh and John D. Powell 
Physical Sciences Branch 

Ballistic Modeling Division 
US Army Ballistic Research Laboratory 
Aberdeen Proving Ground, MD 21005 

ABSTRACT. A perturbation expansion is developed for the steady
state Navier-Stokes equations describing one-dimensional shock propa
gation in an ideal gas. The temperature dependence of the viscosity 
and thermal conductivity is accounted for, though the specific heat 
and Prandtl number are assumed constant. It is shown that if the first 
n-1 terms of the expansion are known, the solution for the nth term 
can be reduced to a quadrature. The expansion is evaluated explicitly 
to second order in the shock strength. A comparison of the second
order approximation with a special-case, exact solution indicates good 
agreement even for rather strong shock waves. The perturbation solu
tion provides a simple, analytic technique for determining the effect 
of temperature-dependent transport coefficients on the structure of 
weak shock waves. 

I. INTRODUCTION. For sufficiently weak shock waves, the 
variation of the flow variables through the front can be determined 
from the Navier-Stokes equations. In general, these equations are too 
complicated to solve exactly and one must usually resort to numerical 
techniques. It is desirable to supplement the numerical solutions 
with approximate, analytic solutions wherever possible since they 
permit simpler calculations for the range in which they are valid and 
generally lead to greater physical insight. In this paper, we will 
describe a perturbation expansion we have developed for solving the 
steady-state Navier-Stokes equations describing the propagation of a 
planar shock wave in an ideal gas. The approximate solution we obtain 
from the expansion offers a simple, analytic technique for evaluating 
th~ effect of temperature-dependent transport coefficients on the 
structure of weak shock waves. 

Figure 1 shows a typical shock profile in the co-ordinate frame 
in which the shock wave is stationary. In the laboratory frame, the 
shock actually propagates into a stationary gas with a speed u. in 

1 

tht; negative x-direction. As it propagates, the shock wave compresses 
and heats the gas and sets it in motion so that the density and 

* A more detailed treatment of this presentation can be found in 
Rt:Jference (1). 
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Figure 1. Steady-state shock profile in the stationary frame. 
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temperature behind the front, denoted by pf and Tf, respectively, are 

greater than the corresponding values, p. and T., ahead of the front. 
1 1 

In the stationary frame, the flow velocity behind the front, uf' is 

less than that ahead of the shock wave. The width of the shock front 
is typically several molecular mean free paths and decreases as the 
strength of the shock increases . 

. !}.· THE FLOW EQUATIONS. The shock profile in the stationary 
frame is determined by the steady-state hydrodynamic equations which 
express the conservation of mass~ momentum and energy: 

d 
dx (pu) = 0 (1) 

du dP 
XX 

0 (2) pu- + <IX dx 

de dQ p du 
0 • (3) pu- +- + 

XX dx dx dx 

In these equations, e is the specific internal energy of the gas, Q 
is the energy dissipated due to heat conduction and P is the approprixx 
ate element of the pressure tensor. 

Equations (1) - (3) are general and exact, but they contain 
insufficient information to determine the flow variables. To close 
the set of equations, it is necessary to specify a form for the thermal 
conduction and the pressure element, as well as an equation of state. 
For sufficiently weak shock waves, where the gradients in the flow 
variables are small, the thermal conduction is adequately represented 
by Fourier's Law 

dT 
Q = - K dx ' (4) 

where K is the thermal conductivity and the pressure term by Stokes' 
hypothesis 

du 
pxx = p- 413 W dx ' (5) 

where P is the pressure and~ is the viscosity. The conservation 
equations, together with Fourier's Law and Stokes' hypothesis, are 
generally referred to as the Navier-Stokes equations. Finally, we 
assume for this analysis a perfect gas so that the equation of state 
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can be written as 

y-1 P=--c pT 
y p 

(6) 

where c is the specific heat at constant pressure and y is the ratio 
p 

of that specific heat to the one at constant volume. The values of 
c and y are assumed to remain constant during the shock compression. 
p 

It should be emphasized that the Navier-Stokes "equations are 
valid only for relatively weak shock waves. For strong shocks, the 
gradients of the flow variables become large and this fact precludes 
the use of Fourier's Law and Stokes' hypotehsis. One must then resort 
to more complicated analyses based on the Boltzmann equation. 

It is convenient to define a shock strength parameter, e, according 
to 

(7) 

where M is the Mach number given by the ratio of the shock speed u. to 
1 

the sound speed in the gas, c. The Mach number approaches unity for 
weak shock waves and increases without bound with increasing shock 
strength. Consequently, e approaches zero for weak shock waves and 
has a maximum value of 1/y which is less than unity. 

We choose to nondimensionalize the flow velocity and the tempera-
ture according to 

11 '=' u/u 
0 

(8) 

2 
T/T (9) t (1-yt: ) 

0 

where u is the average velocity across the shock wave and T is the 
0 0 

average temperature. These average quantities can be determined 
directly from the Rankine-Hugoniot conditions (2) which relate the 
final values of the flow variables behind the front to the initial 
values ahead of the shock. In terms of the shock strength parameter, 
the averages are given by 

Ti+Tf l-ye: 2 
T = ~--= (l-ye) (l+t:) T. 

0 2 1 
(10) 

ui+uf u. 
1 u ~2- l+t: 0 

(11) 
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The transport coefficients, ~ and K, are allowed to vary with 
temperature, but we take advantage of the fact that their functional 
dependence is similar in the temperature range of interest. Consequently, 
the thermal conductivity and viscosity are represented by 

K "" K
0
f(t) 

~ "" ~ f(t) 
0 

where K and ~ are constants and f(l) == 1. 
0 0 

Finally, we define a nondimensional co-ordinate 
piui 

y==--x 
~0 

(12) 

(13) 

(14) 

por weak shock waves, the length scale ~ /p.u. is on the order of a 
0 1 1 

molecular mean free path. 

Since Equation (1) representing conservation of mass can be inte
grated directly, the Navier-Stokes equations can be reduced to a pair 
of coupled, nonlinear differential equations. The two remaining 
equations can be written in terms of the nondimensional variables as 

4 dn yn(l-n) + 3 yf(t)n -+ T) - t = 0 dy (15) 

1 dt 4 dn + _ll +y) 
[ Cn-1)

2 
-

2 

J 0 . Pr dy - 3 n dy 2f(t) E "' (16) 

In Equations (15) and (16), f(t) represents the temperature dependence 
of the transport coefficients and 

JlC 
Pr "' .:......£ 

K 
(17) 

iS the Prandtl number which is of order unity for gases. For this 
analysis, Pr is a constant since c is assumed to be a constant and 

p 
~ and K have the same dependence on temperature. 

Equations (15) and (16) a;;_·e to be solved subject to the boundary 
conditions specified by the Rankine-Hugoniot relations, namely 
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11(-oo) 

t ( -oo) 

l+E 11("') = 1-E: 

(1-yt) (l+r:;) ; t(oo) (l+yE:) (1-E). 

(18) 

(19) 

III. PERTURBATION EXPANSION AND FORMAL SOLUTION. We now proceed 
to solve Equations (15) and (16) by a perturbation expansion. In deter
mining the form of the expansion, we make use of two observations. First, 
the boundary conditions, Equations (18) and (19), indicate that the 
variation of 11 and t across the shock is of order r::. Since e approaches 
zero as the shock strength decreases, it emerges as a natural choice 
for the perturbation parameter. Second, both theory and experiment 
indicate that the shock thickness varies as 1/(M-1) for weak shocks, 
which in turn varies as 1/r::. TI1erefore, we expect that dt/dy and d11/dy 
will be proportional to E: 6t and E 6n, respectively. Actually, this 
judgement does not have to be made a priori but emerges during the 
perturbation expansion procedure as the only consistent ordering of 
the derivatives. 

* These two observations suggest expansions for 11 and t of the form 

n E E:j cp.(q) 
j J 

(20) 

t E E:j e.(e:y) 
j J 

(21) 

where cp
0 

= 6
0 

= 1. The series given by Equations (20) and (21) 

correspond to expanding the velocity about its midvalue and the tempera-
2 ture about the value T (l-yE: ) which approaches the midvalue as the 

shock strength diminisRes. 

In order to determine the functions~· and e., the expansion is 
J J 

substituted into Equations (15) and (16) and the resulting equations 
solved separately to each order in e:. For the sake of brevity the 
details of the expansion procedure will be omitted. A more detailed 
treatment 0f the perturbation expansion and resulting solution can 
be found in Reference (1). 

Selecting the lowest order terms in the two equations results in an 
ordinary differential equation for cp

1 
which can be solved to yield 

t/Jl = - tanh (Ar) (22) 

where 
r €:Y 

All sums extend from 0 to oo unless otherwise noted. 
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and a relation between e1 and <P 1, 

e1 (1-y)tl. (23) 

The constant A in Equation (22) is given by 

A :;;;: 
3(y+l)Pr 

8Pr+6(y-l) 
(24) 

Furthermore, the constant of integration has been chosen so that y=O 
represents the location of the midvalue of the velocity profile. 

n For n ~ 2, solving the system of equations for order e results 
in a differential equation for <P which can be written as 

n 

(25) 

where T 
1 

is a rather complicated function of the n-1 preceding ¢. 
n- J 

and e .. Since T 
1 

is not a function of <P ore , Equation (25) is a 
J n- n n 

linear, ordinary differential equation which has the formal solution 

¢n = sech
2 

(A.r) [ fosh
2 

(Ar)Tn-l dr J . (26) 

Again, en can be related algebraically to ¢nand the preceding ¢j and ej. 

Consequently, it is possible to obtain, at least formally, as many 
terms in the expansion as one wishes by repeatedly evaluating the 
integral in Equation (26). In practice, this soon becomes difficult to 
do analytically since T 1 becomes progressively more complicated as n 
increases. However, wenwere able to evaluate the integral explicitly 
to obtain the second-order term, that is the term in the solution of 

2 order s . The resulting second-order approximations to the velocity 
and temperature profiles are given by 

u 
n2 = ( u-) = 1-e tanh (Ar) + E

2A sech2 (A.r)tn sech (A.r) (27) 
0 2 

2 (l-ye ) u 
0 

) 

2 
~ 1 • E ( y-1) tanh (Ar) (

2

S) 

+ E
2 {- A(y-1) sech

2 
(Ar) £n sech (A.r) 

+ y [ (l-4A/3) sech
2

(A.r) - 1 J } 
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where 

A 1 
_ 3(y2-1)(4Pr-3) 

[4Pr+3(y-l)]
2 - (y-1) (df) 

dt t=l 
(29) 

IV. DISCUSSION. It is apparent that as r + ± ~the second-order 
solutions, given by Equations (27) and (281 are in identical agreement 
with the Rankine-Hugoniot relations, expressed in the form of Equations 
(18) and (19), for all shock strengths. Of course, agreement at the 
endpoints does not guarantee that the approximate solutions adequately 
represent the entire profile. In an attempt to estimate the range of 
validity of the approximate solutions, we compared them with a special
case calculation which is known to have an analytic solution. 

As first shown by Becker (3), the steady-state Navier-Stokes 
equations can be solved exactly for the case where ~ and K are temper
ature independent and Pr = 3/4. We have compared our approximate 
solutions with the exact solution for that case with y equal to 5/3. 
In Figure (2), we show the first- and second-order approximations to the 
velocity profile for a Mach number equal to 2. This value represents 
approximately the maximum Mach number for which the Navier-Stokes equations 
themselves are valid. For this case, the exact solution is indistinguish
able from the second-order approximation, the difference being less than 
1% throughout the entire range of r. Although the results are not 
reproduced here, the second-order approximation to the temperature ratio 
was also found to be within 1% of the exact solution at M=2. 

The agreement was even better for smaller values of M, as would be 
expected. As M increased, the deviation between the exact and second
order profiles increased; but even for a Mach number of 10, the difference 
was less than IS%. Of course, the results at large Mach numbers are only 
of academic interest since the original equations are then no longer valid. 

These results are somewhat surprising since other expansions using 
M-1 as a perturbation parameter are valid over a much smaller range. It 
appears that in this case the choice of an expansion parameter significantly 
affects the accuracy of the approximation. 

There are, in fact, two indications that suggest that E is a more 
appropriate expansion parameter than M-1. First, s never exceeds unity 
as the Mach number increases, whereas M-1 increases without bound as 
M + ~. Second, with our nondimensionalization we were able to satisfy 
the boundary conditions exactly for all Mach numbers with, at most, a 
second-order approximation, whereas all the terms in the series are 
required if M-1 is used as an expansion parameter. 
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Figure 2. Comparison of first- and second-order solutions for temperature
independent transport coefficients. Becker's solution for n 
is not shown since it was found to be coincident with n2. The 

results are plotted for the following values of the parameters: 
M=2, Pr=3/4, y=S/3. 
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The.second-order approximation can be used to examine the effect 
of temperature-dependent t2ansport coefficients on the shock profile 
since the terms of order e in Equations (27) and (28) depend on df/dt 
at t=l. For example, simple kinetic theory (4) predicts that for a 
hard-sphere gas the Prandtl number is equal to 2/3 while the viscosity 
and thermal conductivity are given by 

)1 ::; 
].10 

K = K 
0 

t 

t 

~ 

!,: 
2 

(30) 

(31) 

In Figure 3, we have plotted n2 as calculated from Equation (27) for 

the case in which M=2, Pr=2/3, y=S/3, and )1 and K are given by Equations 
(30) and (31). The profile is compared with the solution for n2 obtained 

by holding ].1 and K constant at their upstream values. Both profiles are 
plotted as a function of the dimensionless parameter z = \ep. u. X/].1 •• 

1 1 l 

It is apparent from the figure that including the temperature-dependence 
of the transport coefficients changes the value of n2 by as much as 12% 

at this Mach number. The broader front in the temperature-dependent case 
is to be expected since the dissipation is enhanced by allowing \1 and K 

to increase with temperature. 

V. SUMMARY. We have developed a perturbation expansion for the 
Navier-Stokes equations describing steady-state, one-dimensional shock 
propagation in an ideal gas. Formally, the expansion can be evaluated 
to any order by quadrature. The second-order solution has been determined 
explicitly and this solution appears to accurately represent the shock 
profile for the range of Mach numbers in which the Navier-Stokes equations 
themselves are valid. The expansion provides a simple, analytic method 
for investigating the effect of temperature-dependent transport coeffi
cients on the shock profile. 
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A GENERALIZED COMPARISON PRINCIPLE AND HONOTONE METHOD FOR 

SECOND ORDER BOUNDARY VALUE PROBLEMS IN BANACH SPACES* 

S. R. Bernfeld 1 , V. Lakshmikantham1 , S. Leela 1•2 

Ab~.>.tJc..ac..t 

A generalized comparison principle for second order differen

tial inequalities is established in a Banach space where the in

equalities are given relative to an arbitrary cone. In case the 

Banach space is the real line the comparison principle reduces to 

the classical maximum principle. 

The comparison principle is then used to develop a monotone 

method to generate two-sided bounds on solutions of nonlinear boun

dary value problems for ordinary differential equations in a Ba

nach space. 

1. Int.Jtodu..mon 

Monotone methods have been used to generate maximal and mini

mal solutions of nonlinear boundary value problems for both ordin

ary and partial differential equations. This study was originally 

motivated by the problem of extending the chord method as used by 

Keller [8] and Sattinger [11], who considered nonlinear partial 

differential equations containing n6 gradient term. The inclusion 

of a gradient term was first introduced by Chandra and Davis [5] wbo 

considered the ordinary boundary value problem 

u" = f(t3u~u') 
Biu = a.u(i) + (-J)i+ls.u'(i) = 

t. t. 

Here f e C[[0~1] x R x R~ R]~ a 0,a1 ~ 0~ 

(1.1) 

(1. 2) 

They assumed that f depended linearly on u'. This restriction 

*Research partially supported by U. S. Army Research Grant DAAG29-
. 77-G0062. 

!Mathematics Department, University of Texas at Arlington, Arling
ton, Texas 76019 

2Mathematics Department, State University of New York, College at 
Geneseo, Genesco, New York 14454 
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on u' was eliminated by Bernfeld and Chandra [2]. The approach 

that is used in [5] and [2] is to first ascertain the existence of 

a lower solution u0 (t) and upper solution v
0
(t) such that 

u0 (t) ~ v 0 (t). By assuming a Nagumo Condition [3] on f(t~u~u') 

one is able by standard methods to obtain a uniform estimate on 

the derivative of any solution z(t) of (1.1) such that u
0
(t) 

< z(t) < v (t) t € [0~1]. These conditions imply the existence 
~ - 0 

of solutions of (1.1) and (1.2). In order to obtain the monotone 

iterations, one linearizes f(t~u~u') in the variable u about 

any element z(t) such that u 0(t) ~ z(t) ~ v 0 (t). More precise

ly consider 

(1.3) 

where F(t~u,u',z) = f(t,z~u') + Hu - Hz~ where u0(t) ~ z(t) 

~ v
0
(t) and ~ is an upper bound on ifu(t~u,u'Ji for t E 

[0,1], u 0(t) ~ u(t) ~ v
0
(t) and lu'l ~ N, where N is obtained 

from the Nagumo Condition. The existence of solutions of (1.3) 

and (1.2) follows as in the problem (1.1),(1.2). By using the clas

sical maximum principle one obtains for each z(t) such that 

u
0
(t) ~ z(t} ~ v

0
(t) a unique solution w(t) of (1.3), (1.2) 

such that u
0
(t) ! w(t) ~ v

0
(t). If we define the mapping A to 

be governed by the rule W = Az, then by the maximum principle 

one has that Au0 ~ u0, Av0 ~ v0 and A is monotone on < u 0 ~ 

v 0 >~ that is, z
1 
~ z 2 -y Az 1 ~ Az 2. Finally by defining the 

sequences u = Au 1 ~ v = Av one shows that {u } and {v } 
n n- n n-1 n n 

converge uniformly and monotonically to the minimal and maximal so-

lutions respectively of the BVP(l.l), (1.2). 

The extension of these results to ~ and infinite dimen-

sional systems of the type (1.1) is important, for parabolic equa

tions of the form 

(1.4) 

can be approximated, using the ~ethod of lines, by n-dimensional 

and infinite dimensional systems of type (1.1) (see Liskovets [9] 

and Thompson [13]). Chandra, Lakshmikantham, and Leela [6] exten

ded the development of the monotone method to the Banach space E 

of bounded sequences X= {c.}, i € z+. In particular they con-
~ 

sidered the BVP(l.l), (1.2) in which f 6 C [[0~1] x Ex E, E], 
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c\~.o Si scalars, a0,a ~ 0, 60, S1 > o .. b
0
,.b

1 
e E. Their results 

of course included ~ as we can identify Rn as a subspace of 

E. 

One of the biggest problems in extending the scalar case is 

the lack of a suitable maximum principle in higher dimensions. In 

[6] a comparison principle in E was developed which played the 

same role as the classical maximum principle for the scalar prob

lem. All inequalities are assumed to be componentwise. An appro

priate existence theorem in Banach spaces is used in which the mod

ified function approach is the principle tool. In particular ap

propriate compactness type conditions are imposed on f in terms 

of the measure of noncompactness (see J, Chandra, v. Lakshmikantham, 

A. R. Mitchell [7]). The comparison result allows us to assert 

that the solution of (1.1), (1.2) lies between U0(t) and V
0
(t), 

the lower and upper solutions respectively. (See also R. Thompson 

[14] for a good discussion of existence in the space E.) The com

parison principle thus becomes the main tool in the development of 

the monotone method. Conditions such as quasimonotonicity on f 
and the restriction that f~(t,u,u'):: f.(t,u,u.') are necessary 

" 1.- 'I.-
in order to successfully develop the monotone method. Recall, for 

example, that in ~. n > 1, the only known methods showing that 

U0 (t) .::_ V0(t), where U
0
(t) and V/t) are lower and upper so

lutions in the usual sense 

u0" ~ f(t,u0rtJ,V0'(tJ), 

V0" .::_ f(t,V0(t)lV0'(tJ), 

are to require that 

more conditions on 

f.(t,x,x'):: f.(t,x,x.'). One can require 
1.- 1.- 1.-

uo and V
0

, thus eliminating the restric-

tions on f, but this seems to be incompatible with the develop

ment of the monotone method. 

As in scalar case the comparison principle yields the unique

ness of the solutions of system (1.3) and leads to the subsequent 

development of the monotone operator A (see Section IV). 

In this note we shall extend the comparison theorem to arbi

trary Banach spaces E. We shall deal with the second order dif

ferential inequalities in which the inequality relation is induced 

by a cone K in E. We shall discuss the natural development of 

the monotone method but not present the details here. Our rQsults 
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will include those in [5), [2], [6) and complement the results of 

R. Thompson [15]. We will be more precise about this later. 

Let B be a Banach space with norm 1·1 and let B* denote 

the set of continuous linear functionals. Let K be a cone in B 

which induces a partial ordering 2 as follows: x ~ y if and only 

if y - X € K. 

A linear functional ~ e B* is called a positive linear func

tional if ~(x) > 0 whenever x e K. Let K* denote the set of 

positive linear functionals. Notice then that K is contained in 
t 

the closed halfspace c~ = {x e B I ~(x} ~ o, ~ a positive linear 

functional}. Thus the positive linear functionals are support 

functionals and since K is a cone in B, then K is the intersec-

If KG~ K* 

and K = n {c~ I ~ e KG} then we say KG generates K. Let Ku 

= {~ e KG I 11~11 = 1}, and K the closure of K in the weak u u 

tion of all the closed half-spaces which support it. 

star topology. 

Denote by int K, the interior of K and if int K I 0, then 

K is called a solid cone. It is interesting to note that X e int 

K if and only if there exists £ > 0 such that ~(x} .::_ E for all 

~ e Ku. 

3. Compa!lMan RMutt 

As indicated in the introduction an essential feature of the 

monotone method for (1) (2) is the application of a comparison 

principle, which in one dimension, is the classical maximum prin

ciple. We will state the comparison result and indicate its impli

cations. 

We consider the boundary value (1.1), (1.2), where f: 

I x B x B ~ B is continuous with I= [0,1]. Let K be a cone 

in B generated by 

Definition: 

K. u 
We say 

nonincreasing in x with respect to 

~(x} = ~(y), ¢(x') = ¢(y') implies 

~ ~(f(t,y,y'J) for all ~ e K. u 
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For the case in which 
n 

B "" R , 1 < n ~ oo, where K is the 

cone generated by the positive projections, this condition on f 
implies that f.(t~x_,x') ~ f.(t~x~x.'). This can be seen by let-

~ ~ ~ 

ting x = y, and thus obtaining f.(t_,x_,x') = f.(t~x~y') when-
t- ~ 

ever x.' = y. 1
• If for example f(t_,x,x 1) is linear in x and 

~ t. 
x' then f(t,x,x') = P(t)x' + Q{t)x, where P(t) is a diagonal 

matrix and Q(t) is a matrix in which q .. (t) < 0 i ~ j. 
~.J 

We consider a fa~ily of functions {ZA.(t)}~ A> 0, t e [0,1]
1 

and we shall write Z(A~t) ZA.(t). We say thls family is admis-

sible if Z(A_,•) is E C2[I,B] for each A and Z(·~t) is con-

tinuous in A for each t and Z(OJt) 0 for 0 < t < 1. The 

family is said to satisfy a uniformity condition at A = 0 (A = oo) 

if for each cf> e K ¢ (Z>JtJ) + 0 as A + 0 uniformly for t e u 
[ 0., 1] (¢(ZA(tJ) + w as A + ro uniformly for t € [0_,1]). An ex-

ample of such a family is {A Z(t)}, A> 0, Z(t) continuous, 

ct>(zrtJ) > 0 for each t e [ 0 J 1] and for each <P e K . 
u 

We are now ready to state our main result of this section. 

TfteoJt.em 3. 1 Let B be a Banach space and K a cone in B. As-

sume f(t~x,x') is continuous and quasl.monotone nonincreasi.ng in 

x with respect to K. Suppose V and W are lower and upper so

lutions of (1.1) and (l.2) respectively; that is, V,W e C2 [I,B] 

and for t e I, i = 0,1 

V"(t)?.. j(t~V(t),V'(tJL 
fv"(t) .::_ f(t~W(t)~W'(t))_, 

iv <b. 
• - 1-

B?.-W > b .. - ~ 

(3.1) 

Let {ZA(t)} be an admissible family satisfying a uniformity con-

dition at A = 0 and A oo such that for each t e [0,1] and 

for each <P e Ku 

cp'(zA"(tJ) < cp(f(t .. f/(t) + ZA(t)_,fv'(t) + ZA '(tJ)) (3.2) 
- <jl (f ( t _, Ti ( t) .. Tl ' ( t) ) ) 

and yOzA(O) > 0 nlzA(l) > o. Then V(t} .:=:. W(t) on I. 

This theorem includes a result of Schroder [12, references 

therein] who considered the case in which B = R. Moreover our 

result includes the comparison theorem :in [6] which was concerned 

with the case B = Rn 1 < n < ro, In that case K is the set of 

vectors all of whose components are greater than or equal to zero 

and K are the positive projections. u 
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that 

B-+B 

to 

We now apply Theorem 3. 1 to the case in which f i.s linear, 

is, f(t 3 x,x'J = Q(t)x + P(t)x'~ where P(t) and Q(t) map 

linearly. Then the quasimonot.onicity of f with respect 

~(Q(tJx) > ~(Q(tJy). K implies that x < Y~ ¢(xJ = ~(y) then 

Q(t)x is quasimonotone nonincreasing in x '.thus with respect to 

K. Moreover we find that <!> (P(t)x ') = ¢; (P(t)y ') when 

¢(y 1 ) (in case B = Rn 1 .:;_ n .:::_ w, this implies that 

¢(x,) 

P(t) is a 

diagonal matrix, where K is the cone of vectors whose components 

are nonnegative). We thus arrive at the following corollary assum

ing all the hypotheses of Theorem 3.1 in the special case that f 
is linear. 

Co4o!lahy 3.1 Suppose that 

(i) W e C2 [I~B] and for t e I 

W" ..s_ P(t)W' + Q(t)W3 BiW > 0_, i = 0_,1_, 

where Q(t) is a quasimonotone nonincreasing linear mapping with 

respect to K and P{t) has the property that ¢(P(t}x') ~ 

cp(P(t)y') whenever <f>{xf)= ¢(y 1
) for eac.h ¢ € K. 

u 
(ii) let {ZA.(t)} be an admissible family satisfying a uni-

formity condition at A. 0~ X= 00 such that for each t e [OJ1] 

and for each ~ € K u 
cp(rzx")(t)) < cp(Q(t)Z:x_(tJ) + <t>(P(t)Z:x_'(tJ) and BO(zA.(OJ) > 0:. 

B 1(Z:x_UJ) > o. 
Then W(t) ?_ 0. 

The proof of this corollary follmv-s from Theorem 3.1 by let

ting V ~ 0. In the case B = R this corollary corresponds to 

the generalized maximum principle [10, p. 8). 

We observe that the generalized comparison theorem has much 

flexibility because for a given f(t:.x,x') one may have many cones 

in which f is quasimonotone. Moreover we do not require the 

cones have an interior, as is often assumed, for the strict in

equalities used here are in terms of linear functionals. Thus al

though x > 0 usually implies that x is in the interior of a 

cone, we only require ¢(x) > 0 for each 

in cones with no interior such as in zP. 
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4. Monotone Me. . .thod 

We shall briefly discuss the monotone method here. 

The first step is to obtain existence of solutions of (1.1) 

and (1.2). We do this by using the modified function approach [3] 

combined with a Nagumo condition, assuming the existence of lower 

and upper solutions V(t)~ W(t) respectively with V(t} < W(t). 

The system (1. 3) is developed as follows: assume, as before, 

f(t~x,y) is quasimonotone in x with respect to K. Let 

f(t~x,y) be continuously differentiable in x and y, and for 

t e I, V(t) ~x ~ W(t) and IYI ~ N (obtained using Nagumo con

dition, see [3]), the Frechet derivative of f with respect to x, 

DJ, satisfies for each z e B 

DJft,x,y)[z] ~ Q(z), (4,1) 

where Q(a) is quasimonotone nonincreasing in a with respect to 

K. We then define for any element n(t) such that V(t) < n(t) 

< W(t) 

F(t,x~x') - F(t,x,x',n) 

= F(t~n(t),x') + Q(x - n(tJ). 

Using the above arguments it can be shown that the boundary 

value problem (1.2) and 

(4. 2) 

has a unique solution x(t) such that V(t) < x(t) < W(t) for 

each n(t) such that V(t) ~ n(t) ~ W(t). 

For each n € C(I~B) such that V(t) ~ n(t) ~ W(t) on I, 

define the mapping A by 

An= x 

wh(!re x is the unique solution of the boundary value problem 

(4.2), (1.2). Using Theorem 3.1 one can establish that A is a 

monotone operator on the segment <V~W>::: {u € E : V(t) < u < 

W(t), t e I}. If we define the sequences 

V ~ AV lJ W ::: AW lJ n n- n n- (4. 3) 

where v0 = V and f/
0 

= W we can state our main result of this 

seetion: 

Th(~onen1 4. 1 Assume f : I x B x B -)- l3 is completely continuous 

and that the hypotheses of Theorem 3.1 is satisfied. Assume the 

operator Q defined in (4.1) is completely continuous and that 
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F(t~xJx') satisfies a Nagumo condition. Then the sequences {v }, n 
{wn} defined by (4.3) converge uniformly and monotonically to the 

minimal and maximal solutions V . , W respectively of the mt.n max 
boundary value problem (1.1), (1.2) on <V~W>. 

If there exists a unique solution of (1.1), (1.2) then these-

quences v J fy n n converge uniformly to the solution, and we thus 

have a constructive technique to obtain solutions. 

One may weaken the assumption of complete continu::i.ty by assum

ing conditions on f in terms of the measure of noncompactness [7]. 

One application of our work arises in the study of stochastic 

differentj.al equations. For example, recent work in [4) suggests 
~ 

that an appropriate model for the birefringence of a solution of 

proteins polymerizing under an electric field is the system (1.1), 

(1.2). Here the Banach space B would be the space of distribu

tion functions over (O~wJ since at any given time the length of 

the polymers form a certain type of distribution which varies with 

time. 

Finally there has been other work concerned with the problem 

with which we have addressed ourselves. In particular Amann and 

Crandall [1] have obtained a monotone method for nonlinear semi

linear elliptic boundary value problems. 
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COMPARISON THWREMS FOR SECOND-ORDER LrnEAR DIFFERDITl.lL EWJ.TI~S 

Leon Koti.n 
Cormnunica.tioll3/ .Automatic Data Processlnt 'Laborato::r7 

U. s . .J.:rrgy Electronics Command, Fort. Monmouth, Nev Jeraet 07703 

1. Introduction. We coll3ider t.be equation 

(1) Lu ~ u• + pu' - qu • 0 

and Bolutiorus u - u(x) which are positive on an i.nterva.l 

(2) < x1 ·= m. 

Adopting an idea sugge~ted by Garrett Birkhof!, we use Sturmi an

type •rruments to determine how rnajorizing p • p(x) or Q • q(x) 

-- i. e., replacing p or q with a larger function -- affects the 

:mag~ tude of the positive solution. This leads to some inter-

esting 'corollaries; e. g.-, if u is a positive soluti?n of 

< 2 
( ru 1 ) 

1 - qu "' 0 on I :with 0 <_ rq = c on I and u 1 ~ cu/r at ~' 

then u ;;; u0e:xp(c[~ dt/r(t)). These results appear to be new 

even though the technique is classical. 

Throughout, we shall let u0 = u{Xo), v0 = v(Xo). 

2. P~jorizing the coefficient p. Typical is our first 

result, in which we compare the damping coefficients p ~ two 

equations of the fonn (1). 

Lemma 1. Let u be a positive solution of (1) and v v(x) 

~positive solution of 

( 3) v" + p 1v 1 
- qv 0 

on the .in t e :rval I. 
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(i) If p ~ p
1 

and v' ~ 0 on I, and u'v-uv 1 ~ 0 at~' then 

u/u0 ~ v/v0 on I. 

(ii) If p ~ p1 and v' ~ 0 on I, and u'v-uv' ~ 0 at Jeo 1 then 

u/u0 § v/vo on I. 

(iii) If p ~ Pl ~~d v' ~ 0 on I, and u'v-uv' ~ 0 at x0, then 

ulu0 ~ v/v0 on I. 

(iv) If p ~ p1 and v' ~ 0 on I, and u'v-uv' ~ 0 at xa' then 

u/u0 ~ v/v0 on I. 

Proof. Nultiply (1) by v and (3) by u and subtract, getting 

w' + pw,;. (p1-p)uv', where w: u'v-uv•. Thus(exp(f~p dt)w)'"' 

1-x rx 
(p1-p)exp( XO p dt)uv' whence, for case {i), exp{JXO p dt)w ~ 

w(::r"') ~ 0. Thus w : u 'v-uv' ~ 0. Dividing by uv > 0 and 

integrating complete the proof of the first case. The other 

cases are proved similarly. 

Example 1. Consider the functions v = exp(±cx2/2), with 

0 < c = const., which are linearly independent solutions of 

v" - v'/x - c
2
x

2
v = 0. Then when Lu = 0 and x0 > 0, 

(i) If p ~ -1/x and u' (Xo) ~ cXou0, then u ~ u0exp[ c{x2-~2)/2). 

(ii) If p ~ ·1/:r. and u' (x
0

) ~ -cx
0
u
0

, t:·,en u ~ u0e.xp (:c(x2-.xo2)/2]. 

(iii) Reverse all inequalities in (i). 

(iv) Reverse all inequalities in (ii). 

Now assume 0 < q E c1(I) and consider 

(4) v" + (2aq~ - q 1 /2q)v 1 - qv = 0, 

with solutions 
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(5) v = exp[(-a±Ja2 t-l)]~ q~t) 
on I. Then Lemma 1 immediately yields the following result. 

Theorem 1. Let u be a positive solution of Lu ~ 0 on I 

with 0 ( q E c1(I). Than with a= const. and bt ~ -a±(a2+1)~, 

ile ha.ve 

(i) 
., ) 

If p § 2ay_~2 - q '/2q on I and u 1 ~ b+q~ at Xo' then 

u ~ u0exp lb+J~ q:~ dt] on I. 

( ii) !f p "i:: h--1'z - --~.' /~ ·1 on I and u 1 ~ b _q~ liu at zo, then 

u '§ u0exp ~-{,.~ J~ ut} on I. 

(iii) n.,w<~rs.a J.ll inc:quJ.litl~s in(i). 

(iv) hevtlrSC! all ine~.1ualities in (ii). 

The special cases ·1 :: 0 (whence b± = !l) and p ~ 0 are 

particularly interesting. Tak:ine the extreme case that both 

a. "' 0 and p :; o, we have the 

Corollary. L1)t u be a positive solution of u·• - ':J.U "' 0 

on I, with 0 < Y. (: c1(I). Th..;n 

(i) If l! I ..:::. 0 on I and u' > 4.~ .:a.t xo, then u ~ uo·:!;;q:) ( fx: q~t) ::0 

(ii) I1' q' <:.. 0 r and 
,::,·J 

then u iu
0

exp(-fxq;ltlt) on u' ~ -q "'U at xo, 
y'i) 

(iii) i~;ver,Je an i.n:.~'·lua.ll ties in (i}. 

(iv) ;t.t~v~3rse 111 ine•lU 'll i t.ies in (ii). 

3. }~aj oEt~.i~.- .~he . coefficient ':C. Nov; we compare the 

Theor'3m ? • L~t \l 'lnd v be positive solutions of (1) and 

(6) v 11 + pv 1 - ·11v ·'"' O, 
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respectively, on I. If q ~ q1 on I and u'v-uv' i 0 at XV' then 

u/uo ~ v/v0 on I. 

Proof. Multiply (1) by v and (6) by u and subtract, 

getting w' + pw = (q-q1 )uv, where w: u 1v-uv 1 • Then 

J
,x rx 

(exp( p dt)w]' ~ (q-q1)uv exp(jx p dt). 
Xo 0 

~le complete the proof by integrating and considering the signs 

Th-3 conclusion of Theorem 2 is clearly valid, verbatim, 

when u and v are positive solutions of the self-adjoint equations 

(1~ 1 ) 1 - qu = 0 and (rv•)• - q1v ~ 0 on I, with r > 0. Now 

consider in particular the self-adjoint equation 

(7) (rv')' - (c2/r)v"' 0, r = r(x) > 0, c =canst. ·-j:. 0, 

Hi th a solutj_on 

( G) v = u
0 

,-,::.:p ( c ~: d t/ r ( t) ) . 
J 

") 

on I, Hith r > 0 and q > 0. (i) If r,11; c<· on I and u 1 ~ cu/r 

(X 
at :x:0 , then u :S u0exp(c;xr) dt/r(t)}. (ii) Rover<Je s.ll in·Jqual-· 

iti3s in (i). 

Another application of Tht3orem 2 is 

Corolla!"'J 2. L-~t u be a positive solution on I of 

u" + 2fu'- q_u = o, f E c1(I). Then for any c =canst., ue have 

(i) If q ~-f2-f 1 +c 2 on I and u' ~ (c-f)u at x
0

, than 
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u ~ u0exp[c(x-xo) - ~x: f(t)dt] on I; (ii) Reverse all ine~ual· 
ities in (i). 

Proof. ~Dply rneorem 2 to the equation 

v" + 2fv' + (f2+t 1-c2)v • O, 

witn a solution v = e:xp( ex - J X f( t)dt). 
Xo 

!~:ample 2. If we now consider the exact equation 

v" + pv' + p'v = 0 and apply Tneorem 2, we find that if u is a 

positive solution of Lu = 0 and if q ~- -p 1 , then 

u :i:_ exp(- ~x: p dt)[u0 + a J~exp(j~ p ds)dt], 

•;here a ;;;, ( u '+pu) L .. 
'0 

Similarly, by considering the equation v" + pv 1 

obtain 

o, we 

Corollary 3. Let u be a pc,siti ve solution of Lu "' 0, and 

j y (t 
suppose that u0 + u 1 (x0) x;e:>..'P(- JXo p ds)dt > 0 on I. Then 

(i) If q -~ 0, then u ~ u + u'(x,..,)j:gexp(- (t p ds)dt,· and 
- 0 ·v ~ )y'D 

( ii) Reverse all inequalities in (i). 

4. The. differenf:~~~-!_n_<!!(I~:~.''ll=!:_t_;_!:_-:): Q_. Similar techniques 

pe~t us to derive a result reminiscent of c~plyein's([l, p. 139], 

[J, p. 15]), v1hich requires that q ~ 0. The following theor€:m 

aliminates that condition at the expense of requirine that u ~ 0 

and v > 0. :inile tr.is result is kn01m [2, pp. 27-28], we include 

it, !"wre bec"-u.::e it is an 2-lmost trivial cc::olls.r; of Tl:ecre;:-: 2. 
,..., 

I'h.:,;yrem J. Let v bs a given positive function E C ... (I) a..11d 
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u be an:; posit:..ve solution of (l) on I. T.'ler; (i) r Lv ~ 0 on I 

and u'v - uv' & 0 at x0, then u/u0 ~ v/v0 on I; and (ii) Reverse 

all inequalities in (i). 

Proof, The given function v satisfies (6) with q1 : (v'1+pv 1 )/v. 

Since ql-q L(v)/v, the conclusion is an immediate consequence 

of Theorem 2. 

Now by considerir~ convenient cocrparison functions v and 

applyint Theore~ 3, we obtain the following result, which is 

independent of the damping coefficient p. 

Corollary l, Suppcse Lu = 0 on I. {i) Let q ~ 0; if 

> '"' · 1 ( ) >. 0 th > I ( J. • .; ) Let q :=.< 0 ,· if u0 ... 1.na u r'O = , en u :::::. u0 on • ... 

u > 0 on I and u 1 (x0) ~ 0, then u ~ u0 on I. 

Proof. Consider the constant function v - u0 and apply 

Theorem 3 for the cases Q ~0 and q ~ 0. 

Similarly, by cc·nsidering the function v = ecx, we obtain 

Corollary 2. If u is a positive solution of (1) on I and 

p 2+4q ~ 0, then u ~ u0e;xp ((u '/u) l:x (x-x
0

)] on r. On the other h.:~.nd, 
'"() 

the last inequality is reversed if c2+pc-q~ 0 on I, where c:;. u•(xo)/u0 . 

l. Z. F. :Seckenoacn ~s," 

L .. ~: Yr:-rk, l9b5. 

fress, NeN York, 1973. 
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THE COLLAPSED CUBIC ISOPARAMETRIC ELEMENT 
AS A SINGULAR ELEMENT FOR CRACK PROBLEMS 

S. L. Pu, M. A. Hussain and W. E. Lorensen 
Benet Weapons Laboratory 

Watervliet Arsenal 
Watervliet, New York 12189 

ABSTRACT. For the 12-node quadrilateral isoparametric elements, it 
is shown that the inverse square root singularity of the strain field at 
the crack tip can be obta~ned by the simple techniqu~ of collapsing the 
quadrilateral elements into triangular elements around'the crack tip and 
placing the two mid-side nodes of each side of the triangles at 1/9 and 
4/9 of the length of the side from the tip. This is analogous to placing 
the mid-side nodes at quarter points in the vicinity of the crack tip for 
the quadratic isoparametric elements. 

The advantages of this method are that the displacement compatibility 
is satisfied throughout the region and that there is no need of special 
crack tip elements. The stress intensity factors can be accurately 
obtained by using general purpose programs having isoparametric elements 
such as NASTRAN. 

1. INTRODUCTION. The direct application of the finite element method 
to crack problems was studied by a number of investigators [1-3]. No 
special attention was given to the singular nature of stress and strain 
at the crack tip. Because of the large strain gradients in the vicinity 
of a crack tip, it requires the use of an extremely fine element grid near 
the crack tip. By comparing the finite element result of displacement 
components or stress components at a nodal point with the corresponding 
asymptotic result of displacement or stress components at that node, the 
stress intensity factor could be estimated. The estimated value of stress 
intensity factor varies over a considerable range, depending on which node 
is taken for computation. This results in poor estimates if displacements 
are taken at nodal points either very close to or far away from the crack 
.t~. 

An improved finite element technique was developed by Wilson [4]. It 
combined the asymptotic expansion of displacements in a small circular core 
region surrounding a crack tip and the finite element approximation outside 
a polygon approximating the circular arc of the core region. The displace
ment fields obtained from these two approximations are not, in general, 
continuous along the asymptotic expansion-finite element interface except 
at discrete nodal points. 

An alternative finite element approach to crack problems is the use of 
special elements in the region of the crack tip, e.g. [5-7]. In [5] Tracey 
employs quadrilateral isoparametric elements which become triangular around 
the crack tip. The displacement functions of the two types of elements are 
selected such that displacements are continuous everywhere and the near tip 
displacements are proportional to the square root of the distance from the 
crack tip. 
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aenshall and Shaw [8] and Barsoum (9] showed that special crack tip 
elements were unnecessary. For two-dimensional 8-node quadrilateral ele
ments, the inverse square root singularity of the strain field at the 
erack tip is obtained by collapsing quadrilateral elements into triangular 
elements and placing the mid-side nodes at quarter-points from the tip. 
The quarter-point quadratic isoparametric elements as singular elements 
for crack problems have been implemented in NASTRAN by Hussain et al [10]. 

In order to reduce the computer core requirement and to simplify the 
modeling of a structure, better known but lower order finite elements have 
been aband~ed in favor of cubic 12-node isoparametric quadrilateral ele
ments as described by Zienkiewicz [11]. In this paper, the concept of 
quarter-point quadratic isoparametric element is extended to 12-node cubic 
isoparametric elements. The correct order of strain singularity at the 
crack tip is achieved in a simple manner by collapsing the quadrilateral 
elements into triangular elements and by placing the two middle nodes of 
a side at 1/9 an4 4/9 of the length of the side from the tip. The 12-
node isoparametric elements have been implemented in NASTRAN. Both mode 
I and mixed mode crack problems are computed by NASTRAN using the 
collapsed elements to assess the accuracy. The stability of results is 
discussed when the collapsed triangular elements are used. 

2. THE 12-NODE QUADRILATERAL ISOPARAMETRIC ELEMENT. A typical 12-
node quadrilateral element in Cartesian coordinates (x,y) which is mapped 
to a square in the curvilinear space (~,n) with vertices at (± 1, ± I) is 
shown in Figure 1. The assumption for displacement components takes the 
form: 

12 
u = I Ni(~,n)ui 

i=l 

12 
v =I N1 (~.n)vi 

i=l 

(1) 

where u,v are x,y components of displacement of a point whose natural coor
dinates are ~,n; ui,vi are displacement components of node i and Ni(~.n) is 
the shape function which is given by [11] 

(2) 

:1,60 



for node i whose Cartesian and curvilinear coordinates are (xi,yi) and 
€ti,ni) respectively. The details of the shape functions and the numbering 
sequence are given in Figure 1. 

The same shape functions are used for the transformation of coordinates, 
hence the name isoparametric, 

12 
x = I N1 C~.n)xi 

i=l 

12 
y= _LNiC;,n)Yi 

1'"'1 

The element stiffness matrix is found in the usual way and is given 
by [9~10] 

[K] = /
1 

/
1 

[B]T[D][B] det IJid;dn 
-1 -1 

where [B) is a matrix relating joint displacements to strain field 

[B) = [ ••• Bi. ' .. ] , aNi 
0 

ax 

[Bi] 0 
aNi 

= ay 

aN. 
_2:. aNi 
ay ax 

(3) 

(4) 

(Sa) 

and [0] is the material stiffness matrix and is given for the case of plane 
stress by 

1 
1 \) 0 

[D] E v 1 0 (Sb) 

0 0 (1 - v)/2 

,. 
in which E is Young's modulus and v is Poisson's ratio. 

161 



The Jacobian matrix (J] is given by 

ax .2r. ilN· 1 
a~ a~ - ... 

a~ 
[J] = .. 

xi Yi ax !r aNi 
an an - ... an 

whenever the determinant of [J] is zero, the stresses and strains become 
singular [8-10]. The derivatives of shape functions are 

+ ~ (1 + ;;1.)(1- n~)(9n. - 2n- 27n1-n
2) 256 1 1 

(6) 

(7a) 

(7b) 

3. THE CRACK TIP ELEMENT. In an 8-node quadratic isoparametric element, 
Henshell and Shaw [8] and Barsoum [9] found independently that the strain 
became singular at the corner node if the mid-side nodes were placed at the 
quarter points of the sides from the corner node. This singularity is 
achieved in a similar way for a 12-node isoparametric element by placing the 
two middle nodes at the 1/9 and 4/9 of the length of the sides from the 
common node of two sides. 

For simplicity, let us consider the singularity along the side n = -1 
of Figure 1. In general the cubic mapping functions are 

x = ao + al~ + a2~2 + a3~s 

u = bo + bl~ + bz~2 + b3~3 
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For t = -1, -1/3, 1/3 and 1, the corresponding values of x and u are 

The constants a's and b's in terms of these values of x and u are 

- R. ao - --- (-1 + 9a + 98) ' 16 

a2 = ~! (1 - a - B) , 

t a1 = I6 (-1 - 27a + 276) 

9R. 
a3 = I6 (1 + 3a - 36) 

To have singular strain at x = 0 (t; 
vanish at t; = -1. From (8) we have 

d · dx must = -1), the reduce Jacob1an, dt;' 

For t dx = -1, d~ = 0 leads to the equation 

2 
6 = 2a + 9 

I d h h · · 1 · t f du n or er to ave t e 1nverse square root s1ngu ar1 y or dx • 

du = du dt; = (b + 2b
2

t; + 3b t;2)/dx 
dx d~ dx 1 3 dt; 

(10) 

(12) 

(13) 

x mus~ be a quadratic function of ~ so that the inverse gives t; as a function 
of xl/2. This leads to a3 = 0 or 

1 + 3a. - 36 = 0 (14) 
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The solution of (13) and (14) gives 

a = 1/9 and e = 4/9 

Equations (8) and (9) become 

X = ! (1 + I;) 2 
4 

or I; = -1 + 2 ~ 

9 ( 3 3 u4) C%-)3/2 + 2 -ul + u2 - u3 + N 

From b 7) it is clear du has singularity of the order l. at x = 0. 
dx rx 

(15) 

(16) 

(17) 

The inverse square root singularity at x = 0 along any other ray emana
ting from node 1 can be achieved by degenerating the quadrilateral element 
into a triangular element with the side 10, 11, 12, 1 collapsed to a point 
at the crack tip and placing grid points 2, 9 at 9./9 and 3, 8 at 49./9 from 
the tip, Figure 2, where t is the length of the sides corresponding to 
n = ± 1. For simplicity and without loss of generality we take B = 0 and 
the Cartesian coordinates of nodal points as follows: 

-

Node 1 2 3 4 5 6 7 8 

x/i 
1 4 1 

2+cos a l+cos a 4cos a 
0 9 9 3 

cos a 
3 9 

~ 

y/t 0 0 0 0 
sin a 2sin a sin a 4sin a 

3 3 9 

Using (3), 

x/t ~ NA + N8 cosa 

y/R. = N8 sina 

where 

1 4 +~N 1 1 + E,;) 2 (1 - n) N =- N +- N + N + - N = - (1 
A 9 2 9 3 4 3 5 3 6 8 

1 2 4 1 1 
NB = 3 Ns + 3 N6 + N +-N +-N = 8 (1 + !;) 2 (1 + n) 

7 9 8 9 9 
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cos a 
9 

sin a 
-r 

(18) 

(19) 



The determinant of Jacobian is 

This shows the strain is singular at x = 0 (~ = -1) along any ray from 
x = 0 since IJI = 0 at ~ = -1 for all n. From (19) and (18) and using 
polar coordinates x/~ = pease, y/~ = psin0, where p = r/~, we obtain 

1 1/2 
~ = ·1 + 2p2 [cos(e - I)/cos(I)] 

n = tan(e - ~)/tan(~) 
2 2 

(20) 

(21) 

For a more general collapsed triangular element in Figure 2 when a , 0, 
these two equations take the forms 

1 1 1 ! 
; = -1 + 2R'2" , R2 = p2[cos(0 - a + 6)/cos(a - 6)] 2 

2 2 

(22) 

n = tan(e - a + B)/tan(~) 
2 2 

"The displacements components u,v at a point (~,n) of the triangular 
element of Figure 2 are 

where 

12 
u = I Ni(~.n)ui = A0(n,ui) + A1(n,ui)(l + Q 

i=l 

+ AzCn,u1)(1 + ~) 2 + A3 (n,ui)(l + ;) 3 

12 
v = ,l Ni(~.n)vi = A0(n,vi) + A1(n,v1)(1 + s) 

1=1 " 
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The displacement derivatives are 

where 

au = au 3f; + au an = 1 4 aAo(n,ui) 
ax a~ ax an ax -(l_+_(_)_2 (- I)(1 + n) --a-n-

1 2 aAI 
+ .(1 + ~) 1: [A1 - 2 (1 + Tl)an] + .... 

au- au~ au an - 1 4[(1 + cosa) - n(l - cosa)] 
ay- a; ay + an ay - (1 + ~)2 tsina 

aA0(n,ui) 

an 
1 

+ --- ••• ,.+ ...... 
(1 + ~) 

Similar expressions for av/ax and av/ay with ui replaced by vi. 

It can be seen that both 3Ao(n,ui)/3n and 3A0(n,vi)/3n vanish for 
all n if 

Hence for the strain field to have the inverse square root of 
singularity at r = 0, the nodes l, 10, 11, 12 which are collapsed into 
one point must be tied together. This is analogous to the constraints 
given in [12] for quadratic isoparametric elements. Using multiple 
constraint. conditions, equations (24), the displacement components at 
(~,n) relative to the tip may be written in the form 

1 
1 2 

u = 16R [36F1(n,ui) + F3(n,ui) + 36{P2(n,ui) - F1 (n,ui)} 

1 
R2 - 36F2 (n,ui)R] 

1 
1 2 

v = f6R [36F1(n,vi) + F3(n,vi) + 36{P2Cn,vi) - F1Cn,vi)} 

1 

R2- 36F
2

(n,vi)R] 
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where 

- (1 - 9n2)[(1 - nJu4 + (1 + nJu7] 

and F1(n,vi) etc. are obtained by replacing ui by vi. 

(27) 

c 4. DETERMINATION OF STRESS INTENSITY FACTORS. The collapsed triangular 
elements around the crack tip have the correct order of singularity at the 
tip. The continuity of displacement components is insured throughout the 
region and because of the use of higher order polynomial for the displace
ment field, the nodal displacements obtained from the finite element method 
.should be quite accurate. If nodal displacements are substituted into the 
left hand side of the well known near crack tip displacement formula [13]. 

the coefficients d's and a's can be approximately determined by a finite 
number of terms on the right hand sides of (28) and (29). The stress 
intensity factors K1 and K2 are related to d1 and a1 by 
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In (28) and (29), 

where 

5 3 1 Dul (n,0) = (n - l/2)cos (n - 2)0 - (K + n - 2)cos (n - 2)0 

Du2(n,0) = ncos(n - 2)0 - (K + n + l)cosne 

Au1(n,0) = (n- l/2)sin(n- fJ0- (K + n + l/2)sin(n- 1/2)0 

Au2(n,0J = nsin(n - 2)0 - (K + n - 1)sin0 

Dy1(n,0) = -(n- 1/2)sin(n- t)0- (K- n + ~)sin(n- })0 
Dvz(n,0) = -nsin(n - 2)0 - (K - n - 1)sin n0 

1 5 . 
Av1(n,0) = (n- 2)cos(n- 2)0 + (K- n- l/2)cos(n- 1/2)0 

Av2Cn,0) = ncos(n - 2)0 + (K - n + l)cos n0 

K = { (3 - v) I (1 + v) 

3 - 4v 

for plane stress 

for plane strain 

(31) 

(32) 

There are a number of ways to estimate the stress intensity factors from 
the finite element displacements nea7 a crack tiy. On the right hand side of 
(28) and (29), we may retain only r 1 2 term orr /2, r, ... up to rP terms, 
and on the left hand side we may use u and v actually ~~2ained from (25) and 
(26) or only the part of u and v which correspond tor term in (25), (26) 
[14,15]. Detailed discussions are.given in [16). The simple, yet accurate 
way to obtain the stress intensity factors is the use of v(r0 ,n) and v(r0 , -n) 
for K1 and u(r0 ,n) and u(r0 , - n) for K2 [16]. 

= 
l2i 2G v(ro,n) 

r 0
112

(K + 1) 
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l2i 2G v (r0 , -rr) 

r 0
1/ 2

(K + 1) 

(33) 



= .ffff 2G u (r0 ,'IT) 

r li2 (K + 1) 
0 

= • .fjjf 2G u(ro,·1T) 

r 112(K + 1) 

K2 (1T) + K2 ( ·1T) 
~ = ....;;;..... _ ___.::::;...__ 

2 
(34) 

where u(r0 ,1T), v(r0 ,1T) are rectangular components of displacement of, the node 
at r = r0 , e = 1T relative to the node at the crack tip referring to the local 
coordinates with crack tip as origin and the crack on the negative x-axis. 
This technique gives good results if 1% of the crack length is used for r 0 
and i = 9r0 • For a mode I crack, K1 is given by either K1(1T) or K1(-1T), 
K2 is zero. For a mode II crack, K1 is zero and K2 is given by either 
K2 (1T) or K2 ( -1T) • 

5. NASTRAN IMPLEMENTATION. The NASTRAN implementation of the 12-node 
quadrilateral follows that of the 8-node quadrilateral as described in [10]. 
The dummy user element facility of NASTRAN is used. This requires coding 
routines to calculate element stiffness matrices and stress recovery 
computations. Modifications to existing NASTRAN source code are made to 
provide proper output formats for the element. Stress intensity factors 
for mode I and II are calculated using equations (33) and (34). *All stiff
ness computations are performed in double precision while stress recovery 
is performed in single precision. Element stiffness matrix computation 
requires 10 seconds/element on an IBM 360/44. 

6. NUMERICAL RESULTS. Three mode I and one mixed mode crack problems 
are chosen for numerical computation of stress intensity factors. The 
geometries and loads of mode I tension test specimens are given in Fig, 3. 
The idealization of a half of the single edge crack is shown in Fig. 4. A 
similar idealization is used for a quadrant of a center crack or a double 
edge crack. Three collapsed triangular elements surrounding a mode I 
crack tip are shown in Fig. 5. Nodes 1 through 10 are numbered counter
clockwise similar to nodes 19 through 28 but they are coincide with the 
crack tip. At the crack tip, the multiple constraint conditions given by 
equations (24) are either applied or not applied. The multiple constraint 
has little effect on numerical results of stress intensity factors for the 
test problems studied here (see table 1). This is probably because the 
differences among u1, uz, ••• u10' and among v1, vz •.• ,vlo are very small 
in the elastic range when the nodes 1, 2, ••• ,10 are not tied together. 

For each specimen a reference value of K1 is used for normalization. 
For a central crack with a/b : 0.4, K1 : 1.966 [17] is taken as exact. 
The exact value for the double edge crack is K1 = 2.00 [18], and for the 
single edge crack is Kl = '5.728 [19. using.! .st formula for F(a/b) on 
page 2.11]. Table 1 g~ves ratios of K1 obtained from cubic isoparametric 
elements to the corresponding exact value of K1 for various values of r 0 /a 
where r 0 is the distance between the crack tip and the nearest node and a 
is the crack length. 

*Three-point Gaussian quadrature is normally used to calculate each partial 
integration of the double integral (4). As an option, four-point Gaussian 
quadrature may be used instead. 
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r 0 /a 0.01 0.015 0.02 

Multiple Constraint No Yes No Yes No Yes 

Center Crack 
a/b = 0.4, H/b = 4.0 0.981 1.013 0.982 0.999 0.983 0.994 
Exact K1 = 1.966 

Double Edge Crack 
a/b = 0.4, H/b = 4.0 1.000 1.021 0.998 1.007 0.999 1.002 
Exact K1 = 2.00 

Single Edge Crack 
a/b ~ 0.4, H/b = 4.0 0.980 1.003 0.980 0.991 0.982 0.988 
Exact K1 = 3.728 

An obliqued edge crack in a rectangular panel under uniform tension is 
solved by Freese using modified mapping collocation method [20]. The NASTRAN 
program is used to solve the combined mode I and mode II crack problem using 
six collapsed triangular elements around the crack tip as shown in Figure 6. 
For a 45° edge crack with a/b = 0.4, H/b = 2.0, K1 and K2, from readings of 
Bowie's graphs (Figure 1 - 16(a) and (b) of [20]), are approximately 1.86 
and 0.88. The idealization and boundary conditions of the slant edge cracked 
panel are shown in Figure 7. Numerical results of K1 and Kz are tabulated 
in Table 2 for r 0 /a = 0.01 and for various other conditions. Again the 
multiple constraint conditions, namely u1 = u2 = ... = u19 and v1 = vz = 
••• = v19, give little effect on values of K1 and K2• Numerical results 
using cubic isopararnetric elements for the test problems can also be found 
in [16,21]. 

TABLE 2. K1 AND K2 FOR 45° EDGE CRACK BY NASTRAN 

B.C. INTEGRATION MULTIPLE CONSTRAINT Kl K2 

1 3 X 3 No . 1.89 0.95 
1 3 X 3 Yes 1.89 0.96 
1 4 X 4 No 1.83 0.92 
2 4 X 4 Yes 1.84 0.93 
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7. THE STABILITY OF COLLAPSED TRIANGULAR ELEMENTS. In a recent report 
by Hussain and Lorensen [22], it was found that a slight perturbation in 
placing the mid-side node opposite to the crack tip for a collapsed 8-node 
quadrilateral element led to unstable results in stress intensity factors. 
This unstability can be shown in the collapsed 12-node quadrilateral element 
if one or both middle nodes of the side opposite to the crack tip been 
slightly perturbed from their nominal positions. 

Let node 5 be perturbed as shown in Figure 8. 
quantities with an asterick we have 

Denoting the perturbed 

'* 2 + cosa 
xs/! = 3 + e: 

(38) 

* . 
y /1 = ~ + e:' 

5 3 

A general point (x,y) given by equation (18) will be displaced at 

x*/1 = l (1 + ~) 2 [(1 - n) + (1 + n)cosa] + £ ~ (1 + ~)(1 - n2 )(1 - 3n) 8 32 
(39) 

*; 1 2 , I 9 2 y 1 = 8 (1 + ~) (1 + nJ s1na + £ 32 (I + ~J (I - n ) (1 - 3n) (40) 

Along the line n = -1/3, and replace y* by r sine in (40) we have 
I 

3£' r j 1 + ~ = -.- L-1 + j· 4sin8sina r' 
Sl.n(l ·1 + ·-

. 3£'2 ! 
(41) 

Since (1 + ~) is a common factor in displacement components, equations (25) 
and (26), it is seen that the singularity required, for the crack problems 
disappears along at least the'ray n ·= -1/3 in the collapsed triangular case. 

As a numerical example, the central crack tension specimen of Figure 3 
(a) is again used. If the idealization remained the same as shown in 
Figure 4 except that the collapsed elements of Figure 5 were replaced by 
those of Figure Sb (where nodal points 20, 21, 23, 24, 26 and 27 are on a 
circular arc), the computed stress intensity factor changed from its almost 
exact value K1 = 1.962 to K1 = 1.421 (nearly 30% error). If only nodal 
points 26 and 27 were perturbed to their new locations of Figure Bb, the 
stress intensity factor would become K1 = 1.457 (a 26% error). 
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8. CONCLUSIONS. By a simple manner, the 12-node isoparametric 
elements can be used to form a singular element for two-dimensional elastic 
fracture mechanics analysis. The elements have been successfully implemented 
in NASTRAN which can now be more efficiently used for more accurate predic
tion of stress intensity factors of complicated crack problems. The 
middle nodes of the side opposite to a crack tip in a collapsed triangular 
element should be accurately located to avoid unstable results. The 
extension of collapsed triangular elements as singular elements to three
dimensional brick elements can be easily done as in [9,10]. 
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Figure 1. Shape Functions and Numbering Sequence For a 12-Node 
Quadrilateral Element, 
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10 9 8 7 

II 6 
NODE x/1 y/1 

1 0 0 

12 5 2 ~ cosB/9 sinS/9 

3 4cosf3/9 4sinS/9 

I 2 3 4 
4 cosB sinS 

- ~- ~ 

5 (2cosl3+cosa)/3 (2sinl3+sip.a)/3 

.6 (cosf3+2cosa)/3 (sin8+2sina)/3 

7 cos a sina 
. 

8 4cosa/9 4sina/9 

IJ 
9 cosa/9 sina/9 

10 0 0 

11 0 0 

12 0 0 

Figure 2. A Normalized Square in (~,n) Plane Mapped Into a Collapsed 
Triangular Element in (x,y) Plane with the side C = -1 
Degenerated into a Point at the Crack Tip. 
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(a) Center Crack 
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(b) Double-Edge Crack 
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I /0 10 .. I 
(c) Single-Edge Crack 

Figure 3 •. Three Tension Test Specimens. 
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Figure 4. Idealization of a Half of the Single-Edge Cracked 
Tension Specimen. 
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Figure S. Three Collapsed Triangular Elements Surrounding a 
Mode I Crack Tip. 
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Figure 6. Six Collapsed Triangular Elements Surrounding 
a Mixed Mode Crack tip. 
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Figure S(a). Node 5 Perturbed to 5*. 
(b). Nodes 20, 21, 23, 24, 26, 27 Perturbed From 

Their Nominal Positions. 
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BIVARIATIONAL BOUNDS 

* Peter D. Robinson 
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ABSTRACT. Let H be a real Hilbert space 
( , ) , and let g E H be an arbitrary vector. 
variational type are presented on the quantity 
solution ~ E H of an arbitrary equation F~ ~ 

bivariational approximation to (g,~), namely 

with symmetric inner product 
Upper and lower bounds of 
( g, ¢) associated with the 
D. The bounds are based on a 

J('l',cl>) = -('I',Fcl>) + (g,cl>), 

and do not depend on any decomposition of the operator F. Applications to both 
linear and non-linear problems are indicated. 

I. 

space H 
INTRODUCTION. Let A 
with inner product ( 

be a self-adjoint operator in a real Hilbert 
, ) Associated with the linear equation 

M = f 

in H is the well-known Rayleigh-Ritz variational functional 

R(cl>) = -(cl>,A<ll) + 2(f,4>), ell E H , 

which is stationary about 

R(~) = (f,~) 

for variations in 4> around ~, the solution of (1). If A is strictly 
positive, so that for all 4> E H 

ct<¢>,4>) > (¢>,Act>) > f3(ct>,IZ>), 13 > 0 , 

then variational bounds 

* On leave from Bradford University, England. 

---------------------------------Sponsored by the United States Army under Contract DAAG29-75-C-0024. 
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are available <11~!1 denotes the Hilbert space norm <~.~>~12 >. If A is 
indefinite, but nevertheless satisfies for all ~ e H 

then instead of (5) we have the variational bounds 

(6) 

(7) 

Results like (5) and (7) are useful when ~ cannot be found exactly, but 
upper and lower bounds on the quantity (f,~) are required. Other variational 
bounds can be derived which depend on decomposing all or part of the linear 
operator A in the form T*T [!- ll, but such decompositions are not always 
available, or convenient (e.g. A might represent an integral operator, or an 
unwieldy differential operator; or equation (1) might stand for a batch of 
simultaneous equations). For simplicity and generality we do not consider them 
here. 

The question arises: can we find corresponding bounds on (g,¢) for 
arbitrary g e H? 

II. LINEAR PROBLEMS. 

(i) A self-adjoint 

Consider the pair of equations in H 

A¢ "' f, AljJ "' g 

for which 

(g,¢)"' (£,1}!) . 

Since for any parameters s and t we have the identity 

<sf+ tg,s¢ + tljJ)- (sf- tg,s~- tljJ); 4st<g,¢> 

(8) 

(9) 

(10) 

appropriate subtraction of two pairs of bounds like those in (5) for each of the 
combined equations 

A(s¢ ± t1}!) ~ sf ± tg 

leads to bounds on <g,~). If A satisfies {4), and the ratio s:t is 
optimized, we obtain the result 

J + ~s - nc :5. < g, ¢ > < J + r,s + nc 

with 
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J ('¥' ~) -('¥,A~} + (ljl, f} + (g, It>} = (g, ¢>} - <ow ,M¢ > , ( 13) 

S(\f',¢>) <A~ - £,Aif' - g} = <Ao¢,Aol)i> , (14) 

C('!',lt>) = liM>- til IIAif'- gil= IIAo<PIIIIMwll (15) 

o<t> ~ - cjJ, ow = lj1 - lJJ , (16) 

and 

f. = 
1 1 1 1 1 1 (17) - (- + -) n "' 2 's - a) . 2 e a , 

The bounds in (12) are bivariational in character, and reduce to (5) when '¥ = It> 

and f =g. If A satisfies (6) rather ti1an {4), we take a -y, S = +y 
in the foregoing, to generalize (7). 

The functional J('¥ ,4>) is a bivariationa1 approximation to < g,cjJ), and 
it generalizes the Rayleigh-Ritz variational functional R(lt>). 

(ii) A not self-adjoint 

When A is not self-adjoint, the bivariational approximation J('!',~) 

is still available, but is now associated with the pair of equations 

A¢ = f, A*lji = g , (18) 

A* denoting the Hilbert space adjoint of A. If A satisfies condition (6), 
it can be shown (iJ that the bivariational bounds 

1 ~ 1 
J-- c < (g,¢) < J + c 

y - y 

hold, with 

Rather better bounds can be derived whenever 

.!_ ( ill, (A + A*) ~} > o (It>, It>}, 
2 

o > 0, for all It> e H , 

(19} 

(20) 

(21) 

i.e., whenever the self-adjoint part of A is strictly positive. Then it can 
be shown [.?_] that 

J -
1 1 

< c - s > .::_ < 9 , <P > < J + 28 < c + s > (22) 

with 

S('¥,c!>) (M>-f,A*Ijl-g}. ( 23) 
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The different bounds in (12), (19) and (22) are all obtained by adding to 
or subtracting from the bivariational functional J appropriate "correcting" 
functionals, which are themselves bivariational approximations to zero. Other 
techniques [5 - 7] depend on constraining the vectors ~ and ~ so that the 
second order-term <o~,Ao~> in J takes a definite sign. Decompositions of 
the operator A are usually involved. 

III. NONLINEAR PROBLEMS 

The idea of "correcting" a hi variational approximation to ( g, ~} works 
for arbitrary nonlinear problems of form 

F~ = 0 

in H, provided that F satisfies reasonable conditions. The functional 

J ('I'' 4l) "' - (~, F~} + ( g, 4l } 

generalizes that in (13), and is associated with the pair of equations 

Fcf> = 0, F' (¢) *l)i = g , 

(24) 

( 25) 

(26) 

F' (cf>) being the linear Gateaux derivative of F at ~· Regarding J(~,~) as 
a mapping from H x H into the reals, its Gateaux derivative at ('!',~) is 
described by the mosaic 

and thus will be the null operator when ('!',~) = (l)i,cf>), the solutions of (26). 
The true variational character of J(~,~) is thus established. The original 
problem (24) is embedded into the larger problem (26), with ~ playing the role 
of a sort of Lagrange multiplier. Full details of the analysis are given in [8]. 

It is interesting to note that, if 'I' can be chosen in terms of ~ so that 

F'(~)*'l'=g, (28) 

then formally 

J = (g,{4>- F'{4>)-lF~}) = (g,N4>), (29) 

N~ being Newton's approximation to ¢. The functional J thus generalizes 
Newton's approximation in a certain sense, and it does not demand knowledge of 
unpleasant inverses. 

To establish bivariational bounds on (g,cf>) in the form 

J - c ~ ( g,cf>) < J + c , (30) 
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where C is a positive bivariational approximation to zero, we assume that 

and 

for all 

41
1

,4>
2 

e S C D(F) C H and '¥ e :JC D(K) n D(F'*) • 

Then it is straightforward (see [8]) to show that a suitable 'correcting' 
functional is 

(31) 

(33) 

(34) 

We note that condition (31) is required even if F is linear (cf. (6)). 

It implies uniqueness of $ in S, and holds for example when F$ = G~ - ~ 

where G is a contraction operator, or when F$ ;::: M + f(~) with A self
adjoint and bounded as in (4), and df/d~ suitably bounded. Condition (32) 

indicates that the nonlinearity of F is not too fierce. It is satisfied if 
either 

IIF4l - N - F'(4> )[4> -4> lll < ~kll4l- 4> 11
2 

1 2 1 1 2 -2 1 2 
(with K(lf) = kJI'¥11> (35) 

or (for function-spaces with suitable innerproducts} 

(with (36) 

In a practical situation, the cirtical task can be to find a suitable subset 
S of the domain of F for which the conditions (31) and (32) hold good. 

IV. ILLUSTRATIVE EXAMPLES 

Reactor problems 

The different bounds for linear problems can be illustrated by reference 
to neutron diffusion in a reactor, described by the equations 

0 ::: t .:::_ T, r e V , ~ .} (37) 

~(~,t) = 0 on av for all t, 

The total numbex:; of neutrons absorbed in time T is proportional to ( 1, $) 

where 

T 

J J 4>1 (~,t)4>2(~,t)d~dt. 
0 v 
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In a steady-state situation, bounds on 
Rayleigh-Ritz approach in I if f(~) 

theory of II(i) can be used when f(~) 

situation, the theory of II(ii) applies 

{ 1, ~} can be found from the s irnple 
is constant (cf. [~]); otherwise the 
is varying. In a time-dependent 
with (38) as inner product (see [!]l. 

Pointwise bounds on solutions 

By taking g as a suitable kernel function, it is often possible to use 
bivariational theory to obtain pointwise bounds on solutions. For example, if 
equation (1) represents the Fredholm integral equation 

b 
~(x) +A J k(x,y)~(y)dy = f(x) , 

a 
(39) 

andif g(x) =k{x',x), boundson (k,cp} leadtoboundson cp(x') [4,9). If 
k is symmetric, the auxiliary equation in (8) is actually the one spe;ifying 
the reciprocal kernel, and interesting theoretical developments ensue. The 
bivariational method is a simple yet powerful practical tool in this situation [~]. 

The same kind of approach can be used for differential equations, with g 
as the Green's Function for a suitably simple part of the differential 
operator [10). 

Nonlinear problems 

The nonlinear diffusion equation 

d 2 ~ 1 2 
- - + (1 + ~) + - {1 + ~) 0, 

dx2 4 
-1 < X 

(40) 

!jl ( -1) ;;;;;; 0, ~(1) = 0 

is discussed in [~], and bounds on ( 1,~} are evaluated. This quantity could 
be, for example, the amount of heat stored in a metal bar with ends kept at 
temperature zero which was suffering a nonlinear heat-loss to the surroundings 
at temperature -1. A monotonicity theorem can be employed to determine a suit
able subset S for the determination of the critical constants in the 'correct
ing' functional C. 

The nonlinear integral equation 

TI/2 
J sin(x- y} ~(y)dy ~ 

1T(X- y) 
l 

~ {x) 
0 

occurs in conununication theory, and the cosine transform { cos px, ¢ (x) } of 
cp(x) is proport~onal to the signal strength. Bivariational bounds on this 
quantity are reported in [~). 

(41) 

Applications to wide classes of problems are evidently feasible, and much 
development remains to be done. 
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V. SOME GENERALIZATIONS. Instead of (g,q>) in the foregoing, we can 
work with a more general inner product g(¢). The auxiliary equation in (26) 
must be replaced by 

F ' ( 4>) *1/J ;;; 9 I ( ¢ ) 0 (42) 

It is possible to construct a suitable correcting functional when g(<jl) has a 
bounded second derivative. 

Adaptations can be made to the theory to take explicit account of boundary 
terms occu~ring in the sp~cification of adjoint operators (cf. (1-3]). 
Generalization to complex spaces is not difficult (see (7; 11]),-and the theory 
can be set in more abstract spaces which need not even be normed (see {12]). 
The bivariational method has proved efficient in calculating dynamic polarizabil
i"ties for two-electron atoms at arbitrary complex frequencies ( (~]). 
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SOME GENERIC PROPERTIES OF A LOGIC MODEL 
FOR ANALYZING HARDWARE MAINTENANCE AND DESIGN CONCEPTS* 

James T. Wong William L. Andre 
Mathematician Research Engineer 

U.S. Army Air Mobility Research 
and Development Laboratory 

Ames Research Center 
Moffett Field, California 

ABSTRACT 

A mathematical structure for diagnostic logic modeling was formulated, 
which allows the intrinsic properties of a complex Logic Model to be 
studied in an abstract setting. As a result, it was found that a 
loop-free Logic Model is a partially ordered set and that every 
permutation of the elements in the terminal set of a finite partially 
ordered set S partitions s into disjoint subsets. Based on these 
results, it was deduced that the minimum number of test points required 
for conclusive detection of malfunctioning components for a loop-free 
system is equal to the number of elements in the terminal set; this set 
constitutes the optimal choice for test points. Also~ it was established, 

for each permutation of the elements in the terminal set, a relative 

failure diagnostic strategy was defined in accordance with Bellman's 
Principle of Optimality. Finally, for the purpose of illustration, some 
examples are given. 

* Published in Proceedings of the Symposium on "Applications of 
Decision Theory to Problems of Diagnosis and Repair, 11 June 1976. 
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COMPUTER GRAPHICS IN A PRODUCTION ENVIRONMENT 

William D. Johnston 
Analysis and Computation Division 

National Range Operations Directorate 
US Army White Sands Missile Range, NM 

Abstract 

This paper examines the mathematical and software techniques required for 
an efficient, high·production graphics system. It is shown how appropri 
design of both software and mathematical procedures will lessen the workload 
of the customer and reduce throughput time, while satisfying all of the pro
duction requirements. Such procedures a~ designed to isolate the causes of 
irregularities that may arise during the computer solution, and give the user 
explicit directives as to corrective action. Also discussed are the software 
and operational techniques require~ for information security purposes within 
the graphics system, as well as the metho of software acquisition for spe
cific areas of the system. 

Although primary emphasis is on mathematics and software, as applied to 
production graphics systems, this paper also examines the following areas: 

a. The classification of production vs. demand graphics. 

b. User requirements and demands. 

c. System operational procedures. 

d. Hardware. 

e. The evolution of the White Sands production graphics system--an 
existing high-production system that produces 15,000 plots per month. 
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I. Production vs. Demand Graphics 

The need for graphics falls generally within these two categories, with 
each type fulfilling specific requirements. Since the needs of the organiza
tion will dictate whether a production system is desirable, it is important 
to distinguish between the two systems and define their characteristics. 

The demand (or interactive) graphics system has in recent years become 
an extremely powerful and highly developed tool in which the user normally 
accesses a real-time video terminal from which he can produce hard copy prints 
with an appropriate plug-in device. When equipped with or attached to a 
processor (micro or otherwise), the images may be edited, rotated, or other
wise modified through keyboard or light-pen entry. Demand graphics systems 
find their utility in research and development, interactive graphical 
analysis, and in any situation where the user requires instant presentations 
or prints in relatively small quantities. 

Production graphics systems on the other hand are allied with the need 
for systems which can generate large quantities of plots, where the plot 
itself is not a tool in the development process, but a graphical overview of 
some operation or event. To that end, the plot is not intended to be the 
source of specific samples of data, and it is neither expected nor intended 
that the analyst will apply a ruler to the plot to extract specific and 
precise data from it. For that purpose there exists the detailed point-by
point data listing generated by the data processing equipment. The plot, 
meanwhile, provides the analyst with an overall picture of the event, and 
quickly reveals trends, disruptions or deviations, and the probable outcome 
of the event being plotted. 

The need for a true production graphics system exists anywhere there 
is a large volume of data being generated and where there is a need for 
graphics to either supplement, or, to a limited extent, stand in for the 
actual data listings. In these cases, it is desirable that the plots be 
generated through the use of standardized procedures requiring little action 
on the part of the initiating party. Furthermore, the graphics system itself 
should draw all titles, numerical annotation, and other legends on the plots 
so that there is no need for a clerical post-processing step. In other words, 
when the plot comes out of the graphics system, it should be ready for imme
diate insertion in the final data report. 

The important factor in deciding whether a production system will be 
beneficial to a particular organization is the volume of graphics to be 
produced, including the production of graphics that are desired, but not 
possible or practical under the existing system. If the operation requires 
relatively few plots (on the order, say, of one or two hundred per day), or 
if there is a need for interactive analysis, a small demand system will 
probably be quite effective. Conversely, an organization that reduces large 
volumes of data and produces numerous reports containing graphics will find 
the efficiency of a production system very attractive. 



II. User Requirements and Demands 

The customer's demands often exceed his requirements, and it is the 
responsibility of the production manager to decide which services can and 
should be provided. These decisi. ons affect both hardware and software, 
and can be intelligently made only after close consultation with the users 
themselves. Obviously, the requirements may vary widely from one installation 
to the next, and specific recommendations for one operation could well be 
partially or wholly invalid for another. Nevertheless, there are several 
general points that must be reconciled between the production manager and the 
graphics customers. 

The first and most important of these is turn-around time. The user 
invariably wants fast turn-around, and indeed, it may be possible to provide 
finished plots in a matter of hours, or even minutes. But this might well 
require keeping an equipment operator on duty at all times, when it would 
actually be more efficient to group the graphics jobs so that the actual 
plotting is done only at certain regular times. Such a system generally 
guarantees turn-around on some basis such as four, eight, twelve, or twenty
four hours. 

In actual practice, there are very few cases which require turn-around 
in less than twenty-four hours, through the user may think otherwise. The 
primary method to reduce the customer pressure on turn-around it to provide 
him with quick-look printer plots on his computer listing. To be effective, 
ho~ever, the printer plots must be of sufficient usefulness to satisfy his 
curiosity and his anxiety for the next few hours, until the actual finished 
plots are returned. Whether this very important requirement is met depends 
upc,n the design of the printer plot program, which in turn will be discussed 
in more detail in the section dealing with software. 

Another frequent demand is for larger plots in order to obtain increased 
resolution. As was mentioned previously, however, the objective of prorluc
tion graphics is not to provide a source for specific precise data elements. 
Furthermore, increased plot size entails increased capital outlay for equip
mer.ct, as well as increased periodic expenditures for consumables--not to 
mention the logistical annoyance of finding a p1ace to store the larger 
sheets of paper. Almost all production graphics requirements can be met 
with plots (or series of plots) on standard 8 1/2 x 11 inch paper, which 
permit direct inclusion in the published report. The greatest problem 
here is in convincing the customer of this fact, especially if he has been 
accustomed to a larger size in the past. Experience shows that this is 
nothing more than a matter of conditioning, and if the user can be convinced 
to at least _fX.1_ a standard size plot for a period of time, he will come to 
find it satisfactory in every respect. 

The desire for multicolor graphics is another aspect that is more 
re~ated to conditioning than to actual need. There are certainly many cases 
where it is useful to have two or more plot traces on the same grid, and 
there must be some way to uniquely identify each one. This may be done by 
changing the color of the individual trace, or by changing its mode (i.e., 
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by drawing a point or symbol plot, as opposed to a line plot). While the 
multicolor plot is pleasing from an aesthetic point of view, it does leave 
the door open for error on the part of the equipment operator, and in the 
long run it may turn out to be completely useless if it must be reproduced 
in black and white within a printed report. Consequently, the multicolor 
capability is not necessarily as useful as it would first appear, whereas 
the single~color multi-mode plot can not only fully satisfy the trace identi
fication requirement, but is actually superior for reproduction purposes. 

The final customer requirement to he mentioned here is that of system 
capacity, or the total number of plots that the system is capable of producing 
in a given period of time. The demands on graphics systems are similar to 
the demands on all data processing equipment in the real world, in that any 
increase in capacity will automatically be met (or exceeded) by an increase 
in demand. In other words, capacity breeds demand. This is not meant as a 
humorous aside, but as a statement of a very real fact that computer systems 
personnel have had to deal with for many years. And this is not in itself 
all bad either, since increased graphics capability can often speed up the 
work of the analysts and data report users by eJ imi.nating some of the need 
to pore over long data listings. In any case, as long as the minimum essential 
capacity for the operation is met, the only major concern beyond that is to 
ensure that any excess capaclty of the system is not so great that it results 
in purely wastefu] expansion of usage, manpower, and materials. 
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III. Operational Procedures 

Basic operational procedures in a production graphics system must satisfy 
a number of important goals. First, of course they must satisfy the plotting 
requirements of the customer, but they must do so in an efficient manner if 
high production is to be achieved. Some of the areas that must be encompassed 
are the issues of on-line/off-line operation, security, scheduling, and 
reliability. 

The choice between on-line or off-line operation of graphics hardware, 
as an operational matter, often goes hand-in-hand with the customer's interest 
in turn-around time. The customer, of course, visualizes greatly improved 
turn-around by operating the equipment on-line. Without a doubt, this mode 
has its advantages--generation of the plots at the time of the original com
puter reduction, elimination of the need for an off line plot tape, and even 
increased speed of operation of the graphics hardware in many cases. All 
of this, but at what cost? The most damaging aspect is that the most expen
sive component of all--the computer itself--is bound by the mechanical speed 
of the graphics hardware (even to a certain extent in a multiprocessing 
system). Additionally, one or more I/O ports may be continuously tied up, 
not to mention the fact that an operator must be on call at all times. 

By operating the graphics equipment off-line, the data transfer rate is 
at full tape speed, and the tapes themselves can be grouped so that operating 
personnel for the graphics equipment need to be available only during certain 
specific time periods. Consequently, operating personnel requirements are 
reduced somewhat, and the computer mainframe is not hobbled by the compara
tively slow speed of the plotter hardware. Turn-around can still be provided 
on some satisfactory pre-arranged basis, such as four, eight, twelve, or 
twenty-four hours. The optimum scheduling depends on the volume of graphics 
generated, the operating characteristics of the hardware, and the shift hours 
of the operating personnel; but this usually has to be modified somewhat 
to take into account customer requirements and other influencing factors. 
Some experimentation is to be expected when establishing a new production 
system. 

Probably the most neglected aspect of graphics operations is that of 
physical and information security, and graphics security often takes second 
place to other areas of data processing security. Possibly this is due to 
the fact that the investment in graphics hardware is usually small in compari
son to the remainder of the ADP equipment, and improper use of materials or 
sHrvices is not as likely. Nevertheless, physical security affects informa
t:Lon security, and classified graphics must be just as closely guarded as 
any other security sensitive information. 

The most straightforward method of handling the problem is to locate 
the graphics equipment in a physically secure area. This could well be in 
the same room as the computer itself, though some types of graphics hardware 
emit fumes or dust which would preclude such an arrangement. 



The customer, on the other hand, is sure to want hands-on access to the 
equipment. This must be carefully avoided in order to prevent interference 
with the operating personnel, and also to prevent possible breaches of 
security. His desire to be present during the plotting process will be 
greatly diminished if he is supplied with useful quick-look printer plots, 
and if the turn-around time is reasonable and dependable. 

Once physical security is achieved, the job of information security 
b~comes a matter of establishing an awareness of the importance of the 
security of classified graphics, and of course strict accountability and 
absolute adherence to those procedures established by the installation 
security office. 

Though there are many additional operational questions that must be 
resolved within any given system, the last matter to be addressed here is 
that of reliability. This refers not only to hardware reliability which is 
a maintenance responsibility, but to operational reliability. In other words, 
the customer must be able to reasonably expect that his plots will be delivered 
to him within the established schedule. The greatest pitfall is failure 
to maintain appropriate communications with the hardware maintenance personnel. 
It is the operator who will di.scover malfunctions, and he should immediately 
report all details of the problem to the maintenance section. A foolish, but 
very common occurence is to shut the machine off and expect the maintenance 
people to find the trouble during their regular calibration or PM checks. 
The odds are that they won't find it, and no amount of shifting the blame 
will get the customer's plots to him any faster. 

In an off-line system where tapes are grouped and the actual plotting 
done at specific times, there is a temptation during slow periods, when 
only a few tapes are generated, to hold them over until the next scheduled 
plotting session. This may at first glance appear to improve efficiency, but 
it is more likely the case that the operator who would have had only a little 
bit to do will then simply have nothing to do. Then the customer will 
come knocking on the door at the regular time, only to find out that the 
turn-around (which he probably thought was too long in the first place) has 
been increased not by a heavy workload but, incomprehensibly, by a light 
workload. 

On the other hand, total inflexibility can be just as disastrous. If 
the operations manager is aware of an upcoming increase in production, it is 
his duty to prepare in advance by scheduling additional periods of operating 
time. 
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IV. Software 

A. General Requirements 

Software is a critical component in the production graphics systems, 
wherein the mathematician/programmer has an opportunity to develop software 
which will not only satisfy all of the production and user requirements, but 
will also reduce throughput time and lessen the customer's workload. One 
must not make the mistake, however, of assuming that all software must be 
developed in-house to obtain maximum efficiency. There are, for example, 
certain basic routines which perfo1~ such mundane tasks as buffering and 
writing the output tape, drawing alphanumeric characters, etc., which are 
normally supplied by the hardware manufacturer at minimal (or zero) cost. 
These routines are generally quite versatile and efficient as supplied, and 
it is simply not possible to develop substitutes in-house at lower cost. 

It must also be realized that not all types of graphics software are 
either necessary or economically justifiable within a given system. Probably 
the best example of this is in the area of three-dimensional or perspective 
graphics. Most every organization has an occasional application where 3-D 
capability would be nice to have, but the acquisition or development of such 
routines is costly enough that the economic justification in terms of poten
tial benefit should be carefully scrutinized before cornrniting funds or 
resources. 

The major portion of the software for a production graphics system 
must, however, be developed in house, and though it must in certain ways be 
tailored to the specific needs and requirements of the particular installa
tion, there are many features which are essential to any high-efficiency, 
high-production system. Software design is heavily influenced by the fact 
that often the customer is an analyst/technician with little or no background 
in mathematics or programming, and as such he has a tendency to suspect the 
operation of the plot program before suspecting the data in the event of a 
malfunction. 

In actual practice, most abnormalities are in the data itself, and 
well-designed graphics software will reveal this to the user on the listing 
generated during the plot run on the computer. Typical examples are: (a) 
the analyst used the wrong data tape. (b) He used the right tape, but was 
looking at the wrong listing. (c) He plotted the wrong parameters. (d) The 
dat.a was in different units from those stated. (e) The input data file was 
blank. 

The software, then, must first of all rn1n1m1ze the effort required by 
the user to initiate a run. This is accomplished by providing him with 
clear and complete documentation beforehand, and by incorporating features 
in the program that minimize his workload and chance for error. For example, 
where there are a number of possible selections for a given plot option, the 
most commonly used selection should be used under default conditions. In 
other words, the mere act of not specifying any selection should be understood 



tc1 mean thar the 11 standard" selt>ct ion is to be used. If the various options 
;JH' lo be spccifit>d on cards, the layout should, of course, be orderly and 
1-,~_::at, 

Without d(•1v.ing into the innumerable graphics options concerning form 
and sty:le, He c:an look sped. fically at those features whose availability 
can either diminish the possjbility for error initially, or isolate the 
cRuse nf nn irregularity once it does occur. 

The fir:;'. uf t:lvc!C'e i~; the 1naltcr of the selection of the minimum and 
m'"x_irnum pl•)ti ir1;' I iln_-;ts. The spt>cific techniques are described in detail in 
a foll.owing c;,•c-t i;1n, !n:L c\ta[ed briefly, there must be a system whic:h will 
dt.<Lr:,mntic<l_Uy !::-<"l.ect l_jm:i.ts and increments that are pleasing to the eye, 
contain all of the dara, ~nd do not extend unnecessarily far beyond the 
l·imi_ts of the -'lct·uaJ data. The :implemenlat ion of this single option elimi
n8tes thP source of many errors by doing ilway with manual scanning of data 
a;~d nci;mal ca-lcu!at.ion of appropriate round limits and increments. There 
ii1J~'3t, elf cc>ur.sc, exist the nbili Ly to easily override the option in order to 
5 Irc~crt spe_(' i fi.c 1 i.m:i l.s when dec> ired. 

C:J~iloh:i_ cf': I a:,clin;', ancl numerical dnnot at ion of axes must be done by the 
)-'.Lotter ns a parL r.J thf' p1oLt Lng process. Any clerical post-processing 
~_otyp fr.•:-- th:ic; pdi ["J:_-;e is prr:ne to error, and Ln any case will increase the 
: u Cr;-- annmd t i;·uc d r<Jmdtica Lly. Security classification labeling, where 
dpprr,rn-idtc, is al::-;o hnndled in the sank' manner. When classified plots 
arc pru]wrl~Y n1n.rked <:iL the timE they are generated, their susceptibility 
l:"o m·iC>h:mdling is lcssE~IH'd, and t:lH'-' overnll security posture is improved. 

The rrH.::Lhod tJf ~--:pecific_:at ion hy Lhc user of headings and legends may 
•.ar-:y, but n. (Jttnlog or table of :;talldard headjngs might be maintained where 
therE-' is fre<jt.enl rl'petition. The•_ appropriate headings would then be intro
ddncd upon n·cu(<,n.ition tlf a unique project number of other code. Numerical 
annotat_i_on, 011 the other hancl, ~;hould always be generated automatically on 
the basin of the minimum and maximum plotting 1-Lrnits in use, with no addi
tional ar:t·ion ur e:nLrics rcqui.red on the part of the initiator. 

'I'lw.rc :nuf_;t he a degree of f1l'xibility hl the handling of input data if 
i lw sy.sU•m ic; not to hrcak clm,lll undc:r varying mission requirements. usually 
i-,; a productiOJJ gr~phics sysLvm there wi 1 l he some standard data format that 
v.Ti! I b~C w:ecl for the hulk of the process Lng, hut: there remain the odd cases 
tl1at appear from time t__o t_i_me j_n L_ot ally foreign data formats that require 
r::umc Corm of 1:rnpldcs procu;~~ing. One' upproach is to read the data, rewrlte 
-j l in standard f o1ma.t, then n'ad i l <Jga_i_n. Much of this I/O can be avoided, 
tlrough, if tlw griiphics soft ware llns some provision for direct entry of 
data. This rnight be through a ~~uhroutirle call, or thro:1gh a common storage 
block. With ~;uch a prov i_r; ion, it is only necessary to provide a small 
rout Lne which is capahle of rcad_i_ng or rH:e_i_vinz the nonstandard data, and 
t.he re111a:indcr of the data t lilD~o fer is <-H.'Comp1is1Jed through what is effectively 
c:or c·-to-core mr..>vewPn 1:, 

Many graphics malfunctions rcc.oults from the fact that the data to be 
plotted is noL in the units of mc,asun_' that the custome-r believes them to be. 
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In some cases this will result in total failure of the job to produce the 
required plots, whereas other cases may in a built-in bias throughout 
the plot. The first situation is not particularly dangerous since it is quite 
clear that some specification must have been in error. On the otl1er hand, 
the second case generates an insidious error that may go entirely undetected 
(e.g., plotting yards instead of me , there is not a lot 
that we can do to prevent the customer's careles::;ness i.n this matu~r, but it 
is possible to incorporate into the graphics software a procedure for units 
conversion of at least the more common measurement units. ConvE:rsion factors 
would be stored table-wise and referenced by an ate code 
during initialization. Digressing somewhat to a point that should be kept 
in mind, is that although most conversions simply require 0 mul.Lip1icative 
operation with a single factor, there are a few cases that require an addi
tional operation with an additive factor (degrees Farenheit to degrees 
Centigrade, for example). The implication is that it may be necessary to 
maintain two tables--one for each type of factor--and this may be a considera-
tion in terms of core conservation if a number of conversions are to 
be made available. Another alternative is to ~imply make provisions to 
allow the user to enter the specif-ic factor(s) himself, doing away with the 
need for convers:ion factor tah1t~s withi.n the graph.ics [:; ftww:e. 

It has already been seated Lhat Lhe provision of quick-look printer 
p.lots .is essenU al in <.1 production t_:raplli c:s operation. There are a number 
of good reaons for inclusion of the i lily, not the least of whi c:h is to 
reduce customer pressure on turn·-;nouncl tiwe by t ernporarily satisfying his 
curiosity. This in turn makes it easier to deny him physical access to 
the plotter equipment, where we want to maintain high security. In order 
for the. printer plots to acc.omplish this, they must be informative, comp-lete, 
and easy to read. Also, one should not overlook the fact that there are 
many occasions whE:re a hi olution plot is not needed, and a pr.inter 
plot is all that the customer dcslrcs. Consequently, the option should exist 
to generate only the printer plots when so requested, withouL having to 
unnecessarily generate the regular plots. 

If the printer plot is to sat.isfy the user, it must :incorporate a number 
of features that allow it to convey as much information as possible at the 
least possible cost in terms of processing <md core storage. The detail:; of 
these features are further described in Section IV.C. 

As to be expected, irregularities will occur from time to time in the 
prc,cessing of grapht cs data, and though Uw graphics software cannot prevent 
them, it can in many cases provide Lhe nwans to quickly isolate the cause 
of the problem. One of the most valuable tPchniques in this respect is the 
accurate accounting of all data points processed. 'fhis means nothing mol-e 
the.n accounting for all points examined, and classifying them as to whether 
thE.y were actually plotted, or were blank, off-scale, or otherwi.~;e unusable" 
A summary of the accounting for each plot is then printed on the customer's 
computer , or on the plots themselves if In the event 
of a failure, the analyst will know exactly how many data points were pro
vided to the p1ot program, and what their di_sposition was. Th.is information 
will often point directly to the cause of an unexpected maJ.function. The 
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beauty of this feature is its simplicity; very little processing time or 
storage is required. A sample algorithm is included in a later section. 

It has not been the intent here to enumerate all conceivable options 
in a graphics program, but instead to describe a few of the more important 
features which can reduce user effort, minimize errors, improve throughput, 
and aid in troubleshooting those problems which are inevitable. Nevertheless, 
all plot options specified by the user should be carefully checked for errors 
by the graphics software during its initialization phase, and substitutions 
made for erroneous entries where practical. In all cases, explicit informative 
diagnostics should be given. 
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B. Automatic Selection of Minimum and Maximum Plotting Limits 

The automated selection of plotting limits can save the analyst con
siderable time and effort that would otherwise be spent carrying out this 
task manually, and it is not particularly difficult to design a routine 
which can efficiently select limits which are aesthetically pleasing, which 
contain all of the data, and which do not extend unnecessarily far beyond 
the limits of the actual data. 

To begin with, the raw data contains a range of values, and there will 
exist some absolute minimum and maximum value for both the ordinate and 
abscissa. When it comes time to plot the data, we must have some idea of its 
bounds if the plot is to be meaningful. The retrieval of the absolute min 
and max values can be achieved by guess, by manual scanning of the data, or 
by some automated process accomplished by the software. Once obtained, 
these absolute limits are usually of such a nature that they must be rounded 
in order for the plot to be easily readable. 

The first decision to be made is the manner in which the absolute 
limits are to be retrieved. Manual processing is out of the question in a 
production system, but there are still several automated processes to 
choose from. The first of these is to place the entire data set in core and 
scan it for the min and max values. Obviously, this system is practical 
only for those trivial cases where the data set consists of no rnore than 
a few thousand pairs of coordinates. Since no production graphics systems 
can tolerate this type of constraint, it must be discarded. The second 
method is to read through the entire set of data while it resides on tape 
or mass storage, saving and updating the minimum and maximum values in the 
process. Once accomplished, the graphics program will have to reread all 
of the data to carry out the actual plotting. This is a functional method 
which may be the only alternative in some cases, but it is wasteful of I/0 
effort since all of the data must be read twice. 

The ideal method of handling the problem is to have the program which 
initially generates the data save and update the min and max values as each 
data point is generated. This requires a degree of coordination between 
the parties responsible for the data reduction software and those responsible 
for the graphics software, but if accomplished, rereading of the entire data 
set becornes unnecessary and the savings in 1/0 processing tirne are signifi
cant. 

Once the raw or absolute mlnlmum and maximum values are known, appropriate 
round limits can be selected which will make the plot more readable. 
Naturally, there must be a simple method to permit the user to insert any 
li:nits he desires (he may want to plot only a particular segment of the 
data, for example), but the must also have within it 
some method of intelligently altering the raw min and max values such that 
round numbers will appear at the extremities of the axes, as well as at 
the intermediate increments. In other words, not only must the endpoints 
have round numbers associated with them, but the increment per unit of axis 
length must be an appropriate round number also. 
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The process of selecting the round limits and increment must be 
optimized, for if the resulting range is unnecessarily broad the plot will 
contain a great deal of blank space while the plot trace itself is overly 
compressed. Needless to say, limits which fail to include all of the 
available data are totally unacceptable. Finally, the routine devised for 
the task should not be so zealous as to attempt to improve upon limits which 
are already optimum, as frequently occurs when data is generated artificially 
during simulations. 

The general form of an appropriate algorithm 
a Fortran IV subroutine which incorporates all of 
is usable without modification, is also included. 
generated by the routine are included immediately 
listing. 

is shown in Figure 1, and 
the desired features and 

Some samples of limits 
following the program 

Automated selection of plotting limits can be the salvation of the 
harried data analyst, but there are a few minor pitfalls to be guarded against. 
The most obvious of these is that auto limit selection can cause smooth data to 
appear rough. For example, a plot depicting a sequence of very small radar 
range errors would automatically be expanded to fill the whole page. While 
the data is displayed accurately, the visual impression is that the errors 
are quite large. In cases like these, it is better to enter standard limits 
so that all plots of the same type will be uniform. 

A second pitfall is that a single piece of erroneous data, if it is 
itself a minimum or maximum, can upset the selection process. The graphics 
software has no way of detecting such an occurrence, and must assume that 
it has been provided with accurate data. Most data reduction software 
provides some degree of editing and filtering, however, so the frequency 
of this type of problem is minimal. When it does occur, the analyst has no 
recourse but to manually select more appropriate limits and rerun the plot. 

Another minor problem arises when the plot is to have a logarithmic 
scale, and either negative data or negative limits exist. Whenever log plots 
are used and a negative limit is generated, care must be taken not to attempt 
to take the log of that limit. Also, one can see that if the round limits 
are generated on the basis of the raw data, the resulting log scale usually 
will not meet the requirements originally set forth. The most practical 
procedure is to first check the raw limits, substituting zero for a negative 
one when necessary. Then take the logs of these raw limits, with the computed 
log values in turn being supplied as input to the round limits subroutine. 
This gives the log scale on the axis a more acceptable appearance, and 
simultaneously avoids an unresolvable condition within the log function. 
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Obtain axis length and raw 
minimum and maximum values 

-" 

Calculate the increment per unit 
length, based on the raw values 

~ -

Separate the raw increment into 
its mantissa and characteristic 

..L-' 

Round up the mantissa to a "standard" value 

~ 

Recombine the rounded mantissa with the 
characteristic to produce the round increment 

t 
Find the first integral multiple of the round 
increment which is below the raw minimum, 
and use this value as the round minimum 

~ 
Compute the round maximum by 
finding the product of the axis length 
and the round increment. and adding 
this value to the round minimum 

No Round max 
;: raw max? 

Yes 
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0001 oooo7o 1JOG 
0001 000ll7 bOOL 
0001 0002:30 850L 
0000 R 000015 GMIN 
0000 I 00001~ NMANTS 
0000 R 000000 STDINC 

00101 
00101 
00101 
00101 
Oll101 
00101 
00101 
00101 
00101 
00101 
00101 
00101 
00101 
00101 
00101 
00101 
ooio1 
001 () 1 
00101 
00101 
00101 
0 0 101 
00101 
00101 
00101 
00101 
00101 
00101 

1• 
2• 
3• 
4• 
5• 
c• 
7• 
a• 
9• 

10• 
ll• 
12• 
13• 
14• 
15• 
1c• 
17• 
18• 
19• 
20• 
21• 
22• 
~3· 
24* 
25• 
26• 
27• 
e:s• 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

0001 ooooJ1 JooL 0001 000056 JSOL 0001 00010:3 500L 
0001 000162 700L 0001 000170 750L 0001 000177 800L 
0001 0002:3~ 900L 0000 R 000023 FMNTIS oooo R oooo2o GINC 
0000 I 000024 I 0000 000035 INJP$ 0000 I 000025 K 
0000 I 000022 NPWR 0000 R 000030 PDIFF oooo R oooo21 PwR 
0000 R 000027 TEMP 0000 R 000031 TMAX 

SUBROUTINE RNDLIM IGIVMIN• GIVMAXr GLENTH• RNuMIN• RNDMAX• RNDINC)RND00001 
RND00002 
RND00003 
RND00004 

ROUND LtMITS ROUTINE FOR GRAPHicS• DECEMB~R 1976• 
WILLIA~ 0• JOHNSTON• NR-AD-S• WHITE SANDS MISSILE RANG£• 
NEW ME :. lCO 88002• 

THIS ROUTINE GENERATES OPTIMIZED ROUNu LIMITS AND INCREMENTS 
FOR PLOTTING PURPOSES• BASED ON GIVEN RAW MINIMuM AND MAXIMUM 
VALUES AND A PREDETERMINED AXIS LENGTH. 

FOR THE PURPOSES OF THIS ROUTINE• •MI~lMUMt AND •MAXIMUM• 
SIMPLY REFER TO THE NUMERicAL VALUES AT THE TwO EXTREMITIES 
OF A GIVEN AXIS. THERE ARE NO RESTRICTIONS ON THEIR VALUES• 
HOWEVEH• AND EITHER MAY BE ALGEBRAICA~LY ~REATER OR LESS 
THAN THE OTHER• 

THE ROUTINE IS DESIGNED FOR APPLICATIUNS WHERE THE NUMERicAL 
ANNOTATION ON THE PLOT WILL BE AT INT~GRA~ MULTIPLES OF THE 
BASIC UNITS OF AXIS LENGTH (INCHES• C~NTIMETERSr ETc.>. 

GIVMIN 

GIVMAX 

IS THE RAW GIVEN 'MINIMUM' SUPPLIED BY THE 
CALLING ROUTINE· 

I~ THE RAW GIVEN 'MAXIMUM' SUPPLIED BY THE 

RND00005 
RND00006 
RND00007 
RND00008 
RND00009 
RND00010 
RNDOOOll 
RND00012 
RND00013 
RND00014 
RNo00015 
RNDOOOlc 
RND00017 
RND00018 
RND00019 
RND00020 
RND00021 
RND00022 
RND00023 
RND00024 
RND00025 
RND00026 
RND00027 
RND00028 

0001 000105 550L 
0001 000211 830L 
0000 R OOu016 GMAX 
0000 I 000026 MINT 
0000 R 000017 RANG£ 

000002 
000002 
000002 
000002 
000002 
000002 
000002 
000002 
00000.! 
000002 
000002 
000002 
000002 
000002 
000002 
000002 
000002 
000002 
000002 
000002 
000002 
000002 
000002 
00000,2 
000002 
000002 
000002 
000002 

1-' 
w 

\ 



00101 
0 0 101 
00 10 1 
00101 
00 101 
00101 
0 0 101 
00101 
00101 
00101 
00101 
0 0101 
00101 
0 0101 
Oil101 
00101 
00101 
00101 
00101 
00103 
00103 
00 104 
0 0 104 
00104 

08184 0 1 4 
00104 
0 0104 
0 0104 
0 0106 
00106 
0 0 106 
00110 
00111 
00111 
0 Ull1 
0 0 111 
00 111 
0 0 112 
0 0112 
0 0 112 
0 011 2 
0 0112 
00113 
00 115 
0 0116 
00117 
00120 
00120 
0 0 120 
001 20 
00121 
0 0121 
00 122 
0 0123 
00125 
00125 

29• 
Jo• 
.H• 
J2• 
3.3• 
J4• 

J5• 
.3&• 
J7• 
.38• 
j9• 
4 0• 
.. 1. 
42• 
4.3• 
44• 
45• 
<+&• 
47• 
'+a• 
'+9• 
so• 
~1· 
~2· 

53• 
~'+· 
~5• 

~&· 
o1• 
~s· 
~9· 
bO• 
b1• 
o2• 
b.3• 
b4* 
b5• 
oo• 
b7• 
68• 
o9• 
7o• 
71• 
72• 
73• 
74• 
75• 
7o• 
77• 
78• 
79• 
~:~o• 

81• 
~2· 
b3• 
~4· 
as• 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

E 
c 
c 
c 
c 
c 
c 
c 

c 
c 
c 
c 
c 
c 
c 

c 

c 
c 
c 
c 

c 
c 
c 
c 

c 
c 
c 

c 

c 

:300 

GLENTH 

RNDMIN 

RND o~AX 

RNDINC 

CALLING ROUTINE. 

IS THE GIVE N LENGTH• I N A"Y UoH TS OF MEASURE• 
SUPPLIED BY THE CALLING RvuTINE, 

IS THE COMPU TED ROUND •Mii~ lMUM' VALuE RETURNE() BY 
THE RNDLIM ROUTINE, 

IS THE COMPUTED ROUND 'MA~lMUM' VALUE RETURNED BY 
THE RNOLIM ROUTINE. 

!S THE COMPUTED ROU N8 INCHE~ENT <PER uNIT QF 
XIS LENGTH) RETURNE By THE KNDLIM ROUTINE• 

RND 00029 
RND00030 
RND000 31 
RND00032 
RNDOu033 
RND00034 
RND00035 
RND0003o 
RND00037 
RND00038 
RND00039 
RND00040 
RND000'+1 
RND000'+2 
RND000'+3 
RNDOOO'+'+ 
RND000'+5 
RNDOOO'+b 
RND00047 

DIMENSION STDINc<121 RND00048 
THE VALUE OF NMANTS MUST BE EQUAL TO lHE UIMENSION· oF STDINC• RND00049 

DATA NM ANTS /12/ RND00050 
THE TAtiLE OF STANDARD INCREMENT J ~NTI~SAS• WHICH FOLLOWS• MAY RND00051 
CONTAIN ANY NUMBER OF STANDARD INcREM~NTS IBUT SEE NOT£ RND00052 
ABOVE), AND MAY CONTAIN ANY DESIRED VALUES FOR THESE RND80853 
INCREMENTS· HOWEVER• THE STANDARD IN~REMENTS IN THE TABLE RND 0 54 
MUST BE LISTED IN ORDER BY INcREASING VALUE• ANo THE LAST RNo00055 
ENTRY IN THE TABLE MUST BE EQUAL TO T~N TIMES THE VALUE OF RNDooo5b 
THE FIRST ENTRY IN THE· TABLE• RND00057 

DATA STDI~C 11·0• 1,5, 2·0• 2·5• 3.0• 4,0, 5•0• 6•0• 7,0• 8•0• RNDU0058 
1 9·0• 10.01 RND00059 

SAVE T~E GIVEN MINIMUM AND MAXIMUM VALUES. RND00060 
GMIN : GIV M: N RNDOoOb1 
GMAX : GIV MAX RND00062 

COMP UTE THE RANGE BETWEEN THE GIVEN MLNIMuM AND GIVEN RNDU0063 
MA XI MUM VALUES• THE SIGN OF THE COMPvTED RANGE WILL INDicATE RND00064 
DI RE CTION. (POSITIVE IS INCREASING L~FT TO RIGHT OR RND00065 
BoTTOM TO TOP· NEGATIVE IS THE REVER~(), RND00066 

RANGE : GMAX - GMIN RND00067 
IF THE GIVEN MINIMUM AND MAXIMUM VALU~S W~RE EGUAL TO EACH RN000068 
OTHER• OR IF THE GIVEN AXIS LENGTH IS ZERU• SET ALL RETURNED RNU00069 
VALUE~ TO ZERO AND RETURN TO THE CALLiNG PROGRAM• AS NOTHING RND00070 
CAN BE DONE· RND00071 

IF (!RA NGE ·NE• o.O) .AND. (GLENTH .GT. O•Oll GO To 300 RND00072 
RNDM I N : 0·0 RND00073 
RNDMAX : o.o RND00074 
RNDINC : 0.0 RND00075 
RETURN RND00076 

COMPUTE THE ABSOLUTE VALUE OF THE GIV~N INCREMENT• THIS IS RND00077 
THE R~ w !NCREMENT AS COMPUTED FROM TH~ GIVEN MINIMUM AND RN000078 
MAXIMU~ \A LUES• AND THE LENGTH OF THE AXI~. RND000 79 

GI NC : ABSlRA NGE I GLENTHI RND00080 
COMPUTE THE POWER <THE CHARACTERISTIC) OF THE GIVlN INCREMENT,RNDOo081 

PWR : AL0G10(GlNCI RND00082 
IF (PWR •LT• 0·01 PWR : PWR - 1·0 RND00083 
NPWR : PWR RND00084 

COMPUT~ THE MANTISSA OF THE GIVEN INCKEMENT. RNOU0085 

000002 
00000;,: 
000 002 
000002 
000002 
000002 
000002 
000002 
000002 
000002 
000002 
000002 
000 002 
000002 
000 002 
000002 
000002 
000002 
000002 
000002 
000002 
000 0 02 
000002 
000002 

080802 
0 0 02 
000002 
000002 
000002 
000002 
000002 
000002 
000002 
000004 
000001+ 
000004 
000001+ 
000004 
OOOOOo 
OOOOOo 
OOOOOo 
OOOOOo 
000006 
000010 
00 002 2 
000023 
000024 
000025 
000025 
000025 
000 025 
000 031 
000031 
00003'+ 
000040 
000049 
OOOU'+q 

/ 

...... 

"" 



-
00126 
00126 
00126 
00127 
00132 
00132 
00132 
0013'+ 
00135 
00136 
00137 
0011+1 
001161 
001141 
001162 
001142 
0011+2 
001'+2 
001142 
001'+2 
001142 
001'+2 
0011+3 
0011+14 
0011+5 
0'01'+6 
001'+7 
00151 
00153 
00155 
00156 
00157 
00161 
00162 
001b3 
00163 
00163 
00163 
00163 
001b:3 
0016:3 
001b3 
001oJ 
0016:3 
00163 
00163 
0..1163 
00163 
OIJ 163 
00163 
00163 
00165 
00166 
00170 
00172 
0017 .. 
0017'+ 

~6· 
cl 7* 
bd * 
cl9* 
90• 
9 h 
':i2* 
9:3* 
9~+• 
95* 
96• 
97• 
':i8* 
99* 

100* 
101* 
102• 
10:3• 
l UI+* 
105* 
1U6• 
107* 
108* 
109* 
110• 
111* 
112* 
11:3• 
11'+* 
115* 
11 0 * 
117* 
118* 
119• 
1~o• 
121• 
1~2· 
12:3* 
12'+* 
125• 
1~6· 
127• 
128* 
1l9* 
130* 
13 1* 
1j2* 
1jJ• 
1J'+* 
1J5* 
1.36* 
1j7* 
1.38* 
1.39* 
1'+0* 
1'+1* 
1'+2• 

350 FMNTIS : GlNC I 10·0**NPWR 
C FI ND T H~ FI RST STANDARD I NCREMENT. MANTiSSA (IN THE TABLE) 
C WH IC H IS EQUAL TO OR GREATER THAN THE COM~uTEO RAW MANTISSA• 

00 500 I=1•NMANTS 
IF IFMNTIS oGT· STDINCIIll GO TO 500 

C COMBINE THE TABLE VALUE MANTISSA AND THE COMPUTED POWER 
C ICHARA(fERISTICl TO GET THE COMPUTED rtOUNU INCREMENT• 

RNDINC : 5TCINCII) * 110·0**NPWRl 
K : I 
GO TO 600 

500 CONTINUE 
550 K : K + 1 

C COMBINE THE TABLE VALUE MANTISSA AND THE ~OMPUTcD POWER 
C ICHARACTERISTICI TO GET THE COMPUTED KOUNu INCREMENT. 

RNDINC : STDINCIK) * 110·0**NPWRl 
C THE STATEME NTS FROM HERE THROUGH STAT~MENT 750 SELECT A NEW 
C MI NIMUM VALUE, WHICH IS AN INTEGRAL MULTIPLE OF THE ROUND 
C INCREME NT AND IS THE FIRST SUCH VALUE EQUAL TO oR LESS THAN 
C THE GIVEN MINIMUM (OR THE FIRST VALUE GREATER THAN THE GIVEN 
C MINIMUM IF THE GIVEN MINIMUM IS GREATeR THAN THE GIVEN 
C MAXIMU~ . • THE SIGN OF THE INCREMENT IS CHANGED IF NECESSARY 
C To SHOW PROPER DIRECTION• 

600 MINT : GMIN I RNOINC 
TEMP : MINT 
RNDMIN : TEMP * RNDINC 
POIFF: ABSIIRNDMIN- GMINl I RANGEl 
IF IGMIN •LT• O·Ol GO TO 700 
IF (RANGE .GT. O.Ol GO TO 800 
IF IPDIFF ·GT• O.OOOll RNQMIN : RNOMIN + RNOlNC 
RNDINC : -~NDINC 
GO TO 800 

700 IF !RANGE •GT• OoOl GO TO 750 
RNOtNC : -~ . ~INC 
GO TO 800 

750 IF IPDIFF ·GT· O·OOOll RNDMIN : RNDMIN - RNDlNC 
C THE STATEMENTS FROM HERE THROUGH STAT~MENT 900 SELECT A NEW 
C MAXI MUM VALUE WHICH IS AN INTEGRAL MU~TIPLE OF THE ROUND 
C I NCREMENT AND IS THE FIRST SUcH VALUE ~REATER THAN THE GIVEN 
C MAXI MUM lOR THE FIRST VALUE LESS THAN THE GIVEN MAXIMUM IF 
C THE GIVEN MAXIMUM IS LESS THAN THE GIVEN MINIMUM)• 
c 
C IN A FEW CASES• THE PROCEDURE WILL RE~ULT IN ROUND MINIMUM 
C AND MAXIMUM VALUES WHicH DO NOT INcLU~E THE GIVEN MAXIMUM 
C VALUE. IN SUCH I NSTANCES• TRANSFER I S MAuE TO 
C STATEMENT 550 TO SELECT THE NEXT HIGH~R STANDARD I NcREMENT 
C MA NTISSA• AND THE PROC ESS IS REPEATED wiTH A NE w ROuND 
C INCRE MEN T TO GET NEW ROUND MINI MUM ANU MAXI MUM VALUES• . 
C IF THE TABLE OF STA NDARD I NCREMENT MA~TIS~AS HAS oEEN 
C EXHAU5TED• THE CHARACTERISTIC MUST BE lNCKEASED BY 1• AND 
C THE ScAN OF STANDARD INCREMENTS WILL ~TART OVER AT THE 
C BEGI NNING OF THE TABLE. 

800 TMAX : RNDMIN + IRNDINC * GLENTH) 
IF !RANGE ·LT. O.Ql GO TO 850 
IF ITMAX .GE. GMAXl GO TO 900 

830 IF (ABSII&MAX- TMAXl I RANGEl •LE• 0•0001) GO TO 900 
IF (K •LT• NMANTSl GO TO 550 

C RAISE THE CHARACTERISTIC BY 1 AND GO oACK TO RECOMPuTE A NEW 

RND00086 
RN D0U 087 
KND00088 
RNDU0089 
RND00090 
RND00091 
RND00092 
kND0009:3 
RND0009'+ 
RND0u095 
RND00096 
RND00097 
RND00098 
RND0 U099 
F<ND00100 
RND00101 
RND00102 
f<ND00103 
RND0010'+ 
RND00105 
RND00106 
RND00107 
RN000108 
RND00109 
RNOOOllO 
RND\10111 
RND00112 
RND00ll3 
RN000ll4 
RND00115 
RND00116 
RND00ll7 
RND00118 
RND00ll9 
RND00120 
RND00121 
RND00122 
RN00012:3 
RND0012'+ 
RND00125 
RND00126 
RND00127 
RND00128 
RNDOo129 
RNDO ODO 
RND00131 
RND00132 
RND0013:3 
RN000134 
RND00135 
RND00136 
RND00137 
RND00138 
RND00139 
RNDOOl'+O 
RND00141 
RND00142 

000056 
00005o 
000 056 
000070 
000070 
uooo1o 
000070 
000071+ 
000017 
000101 
000105 
000105 
000105 
000105 
000107 
000107 
000107 
000107 
000107 
000107 
000107 
000107 
000117 
000127 
000132 
000135 
000141 
0001'+1+ 
0001'+7 
000156 
000160 
000162 
000161+ 
000166 
000170 
000170 
000170 
000170 
000170 
000170 
000170 
000170 
000170 
ooo17o 
000170 
000170 
000170 
000170 
000170 
000170 
000170 
000177 
000202 
ooo2o5 
000211 
000217 
000217 

...... 
V1 



-
,.... 

..._ 

00174 
00176 
01)177 
00200 
00202 
00203 
00~04 

1'+3· 
.1'04• 
1'+5• 
.l'+o• 
147• 
Ha• 
149• 

C ~OUNO INCREMENT. 
NPWR : NPiiK + 1 
GO TO 350 

850 IF lTMAX .GT. GMAXI GO TO 830 
900 RNOMAX : Th'X 

RETURN 
END 

RND00143 
RND00144 
RND00145 
~ND00146 
RND00147 
RND00148 
RND00149 

000d7 
00022S 
ooo22o 
000230 
000234 
000235 
0003.0o 



GIVEN LIMiTS! 
COMPUTED riOUND LIMITS: 

.2063310+03 

.2o5oooo+o::. 
.2220620+03 
.2250000+03 

GIVEN AXIS LENGTH! 8.00 
COMPUTED ROUND INCREMENT: .25ooooo+o1 

R~SULTING AXIs ANNOTATION AT INTEGRAL MULTIPLES OF THE BAsiC UNITs OF AXIS LENGTH• STARTING AT ZERO LENGTH: 

•2o5oooo+o3 
•2250000+03 

·2o75ooo+o3 ·210000o+o3 o2125ooo+o3 

GIVEN LIMITS: 
COMPUTED HOUND LIMITS: 

·131oooo+o6 
·1350000+06 

-.26ooooo+o5 
-.3000000+05 

:215ouoo•o3 .2175ooo+o3 

GIVEN AXIS LENGTH! 11.00 
COMPUTED ROUNO INCREMENT: 

o22ooooo+o3 

-.15ooooo+o5 

R~SULTING AXIS ANNOTATION AT INTEGRAL MULTIPLES OF THE BASIC UNITS OF AXIS LENGTH, STARTING AT ZERO LENGTH: 

•1351)000+00 
•1500000+05 

GIVEN LIMiTS: 

o1200000+QO 
·0000000 

·1o5oooo+06 
-.15ooooo+o5 

-.8300000-02 

,q000000+05 
-.3oooooo+o5 

COMPUTED ROUND LIMITS: -.1000000-01 
-.5560000-04 

.1500000-02 

.75oooou+o5 o6000000+05 

GIVEN AXIS LENGTH! 4,60 
COMPUTED ROUND INCREMENT: 

o4500U00+05 

.25ooooo-o2 

R~SULTING AXIS ANNOTATION AT INTE~RAL IULTIPLES OF THE BASIC UNITS OF AXIS LENGTH• STARTING AT ZERO LENGTH: 

-·1000000-01 -.7500000-02 -.s..,ooooo-02 -.2500000-02 

GIVEN LIMITS: 
COMPUTED KOUND LlMITS: 

·4961121+05 
,4960000+05 

.5J07621+05 
,5020000+05 

.ooooooo 

GIVEN AXIS LENGTH! 15.00 
tOMPUTED ROUND INCREMENT: ,4000000+02 

RESULTINb AXIS ANNOTATION AT INTE~RAL ~JLTIPLES OF THE BASIC UNITS OF AXIS LENGTH, STARTING AT ZERO LENGTH: 

o49oU000+05 
•499"000+05 

GIVEN LlMl TS! 

.4964000+05 
o4996000+o5 

ol.9o8000+05 
.5oooooo+o5 

.4972000+05 
o5004000+05 

COMPUTED ROUND LlMITS: 
·2237670+04 
·2400000+04 

.1403355+03 

.ooooooo 

,4976ooo+os 
·5008ooo+o5 

.4980000+05 

.5o12ooo+o5 

GIVEN AXIS LENGTH: o.OO 
COMPUTED ROUND INCREMENT: 

.4984000+05 
·50loooo+o5 

-.~+oooooo+o3 

RESULTING AXIS ANNOTATION .AT INTEGRAL MULTIPLES OF THE BASIC UNITS OF AXIS LENGTH, STARTING AT ZERO LENGTH: 

•2400000+04 ·2000000+04 ·1600000+04 ·1200000+04 .aoooooo+o3 ,4000000+03 • 00000 0 '-1 

• 2225000+0.3 

o3000000+05 

,4988000+05 
.5o2ooou+o5 

...... ......, 



GIVEN LIMiTS! 
COMPUTED KOUNO LIMITS! 

·5631400+03 
o5400000+C:. 

--------------- -·------· 

.7714500+03 

.7860000+03 
GIVEN AXIS LENGTH! 8.20 
COMPUTED ROUND INCREMENT! .3000000+o2 

RESULTING AXIs ANNOTATION AT INTEGR~~ :l ~LTIPLES OF THE BASIC UNIT5 OF AXIS LENGTH, STARTING AT ZERO LENGTH: 

o540u ooo+o3 
o780u000+03 

.s7oooco+o3 ·6000000+03 o6300000+03 

GIVEN LIM! TS! 
COMPUTED MOUND LlMITS: 

·5631400+03 
.5500000+03 

• 7714500+ 03 
.7750000+03 

o6600ooo+o3 .69QOOQ0+Q3 

GlvEN AXIS LENGTH! 9.00 
COMPUTED ROUND INCREMENT: 

.72ooooil+03 

.2500000+02 

RESULTI NG AXIS A~NOTATION AT INTEGRAL MULTIPLES OF THE BASIC UNIT~ OF AXIS LENGTH, STARTI~G AT ZERO LENGTH: 

·550" 000+03 
·750 0000+03 

o5750000+03 
o7750000+03 

·6000000+03 o6250000+03 

GIVEN LIMiTS! 
COMPuTED KOU NO LIMITS: 

o5631400+03 
.5500000+03 

• 77145oo+o3 
o8000000t03 

o65ooooo+o3 .6750000+03 

GIVEN AXIS LENGTH! 1o.oo 
COMPUTED ROUND INCREMENT: 

o7000Q00+03 

.2500000+02 

RESULTIN~ AXIS ANNOTATION AT INTEGRAL MULTIPLES OF THE BASIC UNITS OF AXIS LENGTH, STARTING AT ZERO LENGTH: 

o550u000+03 
o750u000+03 

GIVEN LI"'lTS! 

.575oooo+o3 
o7750000+03 

- - ~ 000000+03 
·8000000+03 

.6250000+03 

COMPUTED KOUND LIMITS: 
o5631400+03 
o5600000+03 

o7714500+Q3 
.7800000+03 

o6500000+03 .6750000+03 

Gi vEN AXIS LENGTH! 11.00 
COMPUTED ROUND INCREMENT: 

o7000000+03 

.2oooooo•o2 

RESULTING AXIS ANNOTATION AT INTEGRAL MULTIPLES OF THE BASIC UNITS OF AXIS LENGTH, STARTING AT ZERO LENGTH: 

o560U000+03 
·72000 00+03 

GIVEN LIMiTS! 

o5800000+03 
.7I+0000o+o3 

o600000Q+03 
o7600000+03 

o6200000+03 
.7800000+03 

COMPUTED rlOUNO LIMITS: 
-5631400+03 
o5600000+03 

.7711+500+03 

.soooooo+o3 

,6~+ooooo+o3 o66Q0000+03 

GIV EN AXIS LENGTH! 12.00 
COMPUTED ROUND INCREMENT: 

·6800000+03 

.2000000+02 

RESULTI N~ AXIS ANNOTATION AT INTEGRAL MULTIPLES OF THE BASIC UNITS OF AXIS LENGTH• STARTI NG AT ZERO LENGTH: 

·56uuo00+03 
•7201.1000+03 

o5800000+03 
· H00000+03 

·600 0000+03 
o7€>000Q0+03 

-6200000+03 
o7800000+03 

o640000u+0.3 
.8oooooo+o3 

.6600000+03 ·6800000+03 

• 1 -: .; uoou+o3 

.7250000+03 

.725u000+03 

o7000000+03 

1-' 
00 

.7000000+03 



C. Quick-look Printer Plots 

Though printer lots are of low resolution by nature, they are intended 
not to take the place of high-resolution plots, but to give the data analyst 
something to look at while the final plots are being processed. They can 
serve to reduce customer pressure on turn-around time, and reduce customer 
desire to be physically present in the plotting room. But if they are to 
fully satisfy the user, the printer plots must be the same in every detail 
possible as the final plot. That is, the printer plot must be fully labeled, 
must have some form of grid, and must be numerically annotated using the 
same limits. 

One exception to this is that in a production system, the physical size 
of the printer plots remains constant (usually being des:ilgned to fill one 
full page), regardless of variations in size of the high~resolution plots. 
The reasons are two-fold: First, any reduction in size below one page 
will further reduce the resolution to an unacceptable level, and second, 
what little advantage might be gained by expansion is more than offset by 
the increased complexity of the program. The only significant drawback to 
constant-size printer plot is an aesthetic one: Intermediate numerical 
annotation points do not always fall at the same increments as on the 
high-resolution plot. Remember, though, that the information conveyed is 
the same, and the printer plot's purpose is only to serve the user until 
the final plots are delivered a few hours later. 

There are a great many printer plot styles in existence, serving a 
variety of special purposes, but generally speaking, the production graphics 
system should confine itself to a straightforward rectangular format. The 
data itself is then represented by appropriately placed symbols within the 
printed grid. Both the utility and simplicity of such a system are hi.ghly 
attractive. 

It should become clear as one undertakes the design of printer plot 
software that no part of the plot can be printed out until all of the data 
has been processed, since there is no way of knowing until completion 
whether a given line of print contains all of its required data points. 
(There are exceptions, but the program must be able to plot all data--not 
just the exceptions.) In other words, the entire plot must be stored some
where for the duration of the plotting process. This docs not mean that 
all of the data must be stored, but that an array of print characters must 
be maintained and updated as the plotting progresses. 

As an example, assume that the printer plot is to consist of a 
rectangle that measures 50 by 100 increments. This will require 51 lines 
by 101 print positions, for a total array of 5151 characters. The s-Lm
plistic approach would be to set aside an array of 5151 words and update 
the word corresponding to the plotted point. But this is needlessly 
wasteful of core storage since each word has the potential of holding 
several characters. If, for example, each word can hold six characters, 
then each line of 101 characters can be contained in 17 words, and the 51 
lines then occupy a total of only 867 words--a net savings of 4284 words. 
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This method does require character manipulation and masking operations 
by the software, but they are both simple and straightforward, lending them
selves to either Boolean functions, or better, to the FLD bit manipulation 
function where available. For that matter, they can even be accomplished 
by integer division/multiplication processes, though not nearly so 
conveniently. 

A representative printer plot program which incorporates all of the 
desired features is included at the end of this section, along with some 
samples of its output. While some may find application for the program in 
its present form, the actual purpose of its inclusion here is simply to 
demonstrate a working program which has all of the features required in a 
production graphics operation. This sample routine was prepared for use 
on a UNIVAC 1108 with 36-bit words and UNIVAC character codes, so use on 
machines with different word lengths or different character codes would 
require appropriate changes. 
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................ ___________________ ..... _______ , _____________ .. _~~--- - - - · -- __ _ _ ,-

SUBROUTINE PRNPLT ENTRY POINT 0013~~ 
PLOTPT ENTRY POINT 001373 
PRINTP ENTRY POINT G01~02 

STORAGE USED: COOEI1l 001~051 oATA(Ol 0020561 BLANK COMMONI2) 000000 

EXTERNAL REFER~NCES IBLOcK, ~AMfl 

0003 XPil 
0004 NWOU$ 
coos Nl02$ 
0 006 NlOl$ 
0007 NERR2S 
0010 Nl03$ 
0011 NERR3S 

STORAGE ASSIGNMENT IBLoCKr TYP~• RELATIVE LOCATION• NAME! 

0001 oooo<+7 161G 0001 oooo7o 172G 0001 000111 2 03(, 0001 OOol6Q 22~G 
0001 OOOlH 236G 0001 000243 256G 0001 0002~4 261(, 0001 ouo256 270G 
0 001 00 0300 305G cool ooo332 314G 0001 000363 .325b 0001 ooo377 335G 
0001 000~71 '+05G 0001 ooo6o~ ~14G 0001 000605 416~,; 0001 ooo655 ~~lG 
0001 000705 ~61G COOl 0007~1 ~77G 0001 000761 506G 0001 001015 52~G 
0001 oolo51 546G 0001 001106 565G 0001 001134 6031.> 0001 ooooo7 &120L 
0001 oooo23 6l~OL COOl 100030 6200L 0001 001221 632(, 0001 oooo63 o350L 
0001 000104 6450L cool lJQ1251 650G 0001 001275 662" 0001 001<:.76 o64G 
0001 00015.3 7Q.3QL 0001 oool66 7o5oL 0001 000241 710uL 0001 OOo422 7390L 
oooo 001716 7731F oooo 001727 7741F 0001 000622 7750L 0001 OOu635 7760L 
0001 000646 777QL oooo 001732 7771F 0001 ooo662 778oL oooo 001735 7781F 
oooo 0017'+0 7791F 0001 000711 7795L 0001 000716 7800L 0001 ooo735 7820L 
cool 000766 7840L oooo 0017~6 7£,51F 0001 001021 786UL oooo 001752 7881F 
oooo 001755 790lF 0001 001112 7910L 0001 001121 792uL ouoo 001762 79.35F 
0001 001212 7945L 0001 001226 7950L 0001 001242 7955L 0(101 00!255 7960L 
0000 1 001o70 lA 0000 1 001677 lAA 0000 I 001671 18 0000 1 00154.3 !BLANK 
0000 I Q01660 !CLASS 0000 I 001655 IFIVEM 0000 I 001657 ILIST 0000 I 001557 !MINUS 
0000 1 001~51 1PLUS 0000 I 001654 ISIXBK 0000 I 001656 15IXM 0000 I 001565 ISTAR 
0000 1 001663 1TW 0000 1 000000 IWORD 0000 I 00166~ 1XW 0000 I 001665 1YW 
0000 1 001704 ..JA 0000 1 001705 ..JB 0000 1 00157.3 ..JCLASS 0000 I 001675 ..JTEMP 
0000 1 001701 K 0000 1 00160.3 KCLASS 0000 L 001661 LMIRX 0000 L 001662 LMIRY 
0000 I 001703 MASKBK 0000 1 001672 N 0000 I 001673 NA 0000 R ~01615 XANNOT 
OQOO R 001713 X1NCT 0000 R 001666 XPRFAC 0000 R 001712 XPRINC 0000 R 001711 YANNOT 
OQOO R 001707 YINCT 0000 R 001667 YPRFAC 0000 R 001706 YPRINC 

00101 
00101 
00101 
00101 

1• 
2• 
3• 

SUBR0UTINl PRNPLT IXM1N• XMAX• YMIN, YMAX• ITlTLE• lX~ABL• PRNiJ QOOl 
PRN i.J00 02 
PRN0Q00.3 
PRN00004 ~· 

c 
c 

1 IYLABL, MIRX, MIRY, KL~SSl 

ouo1 000172 233G 
0001 00 02 57 273G 
0001 000~12 3~1G 
0001 uooo71 <+51G 
0001 uOl030 536G 
0001 ooool5 oDOL 
0001 ool235 &~lG 
0001 00 0125 7000L 
00 00 ool715 7701F 
0000 ool73o 7761F 
0001 000676 7790L 
0000 ool743 7o.31F 
0001 oo1o56 7o90L 
0001 oo12o1 79~0L 
0000 I 001653 I 
0000 I 001700 IC 
0000 002014 IN..JPS 
0 000 I 001674 ITEM~ 
0000 1 OQ1676 ..J 
0000 I 001623 v r LABL 
0000 1 001702 MA5K 
0000 R 00171~ • LNCMP 
0000 R 00171J 1;NCMP 

OOO Ol 
~00 0(.. , 

. aocc 1. 

o~OOO(j~ 



00101 
00101 
00101 
00101 
00101 
00101 
00101 
00101 
00101 
00101 
00101 
00101 
00101 
ooio1 
00101 
00101 
00101 
00101 
00101 
00101 
00101 
00101 
00101 
00101 
00101 
ooui1 
00101 
00101 
00101 
00101 
00101 
00101 
00101 
00101 
00101 
00101 
00101 
00101 
00101 
00101 
00101 
00101 
00101 
00101 
00101 
00101 
00101 
00101 
00101 
00101 
00101 
00101 
00101 
00101 
00101 
00101 
00101 

s• 
6• 
7• 
s• 
9• 

10* 
ll• 
12• 
1:3• 
1'+• 
15• 
1o• 
17• 
18• 
19• 
20• 
<:1• 
~2· 

2:3• 
,'+. 
l5* 
26• 
27• 
l8* 
~9· 
:30• 
.31• 
.32* 
.3:3• 
.34• 
:35• 
.)6* 
:37• 
;;s• 
.39• 
'+O• 
41• 
'>2• 
'>3• 
'+'+* 
.. s• 
'+6* 
'+7• 
'+8• 
'+9• 
so• 
51• 
!:l2* 
!:>3* 
54* 
!:)5* 
!:)6* 
57• 
sa• 
~9· 
oo• 
bl• 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
.c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

PkiNTER P~OT ROUTINE FOR PRODUCTivN GkAPHICS• MAY 1969, 
Wl~LIAM D• JOHNSTON• NR-AJ-S• WHITE SANDS MISSILE RANGE• 
NEw MEXICO 88002 

THE PL)TS GENERATED BY THIS ROUTINE ARE FUL~Y LABELED 
ANJ N~MERlCALLY ANNOTATED. LABEL~ AR~ PROPERLY CENTEkEDo 

Tv INITIALIZE THE PRNPLT PROGRAM• A CALL IS MADE AS 
FO~LOws: 

CA~L PRNPLT <XMIN• XMAX• YMIN• YMAX• ITITLEo lXLABL• 
IYLABL• MIRX• MIRY• KLASS) 

WHERE: 

XMIN IS THE VA~UE OF THE X-AXIS AT THE LEFT 
END• 

XMAX IS THE VALUE OF THE X-AXIS AT THE RIGHT 
END• 

YMIN IS THE VALUE OF THE Y-AXIS AT THE S0TT0M 
END• 

YMAX IS THE VALUE OF THE Y-AXIS AT THE TOP 
END• 

I TITLE 

IXLABL 

IYLABL 

NOTE: XMIN MAY bE LARGER THAN XMAX AND 
YMIN MAY oE LARGER THAN YMAX• 
THESE ARE SIMPLY THE VALUES AT 
THE END POINT~ oF THE AXES AND 
THERE ARE NO RESTRicTIONS ON 
THEIR VALUES• 

IS A '+-WORD ARRAY CO~TAINING THE TITLE 
TO BE WRITTEN AT THE TOP OF THE PLOT. 
THE TITLE MUST B~ LEFT-ADJUSTED IN 
THE ARRAY• AND U~USEU CHARACTERS TO THE 
RIGHT MUST BE BLANK-FILLED. 

IS A 4-WORD ARRAY CO~TAINING THE LABEL 
TO BE WRITTEN ALONG THE X-AXIS OF THE 
PLOT. THE LABEL MUST BE LEFT-ADJUSTED 
IN THE ARRAY• ANu UNUSED CHARACTERS TO 
THE RIGHT MUST B~ BLANK-FI~LED• 

IS A 4-WOR[ ARRAY CONTAINI NG THE LABEL 
TO BE WRITTEN ALONG THE Y-AXlS OF THE 
PLOT. THE LABEL MU~T BE LEFT-ADJUSTED 

PRN00005 
PRNOO OOo 
PR N00007 
PRN00008 
PRN00009 
PRN00010 
PRN00011 
PRN 00012 
PRN0 001:3 
PRN 0001'+ 
PRN00015 
PRNOOOlo 
PR N00017 
PRN00018 
PRN00019 
PR N00020 
PRN00021 
PRN00022 
PRN00023 
PRN00024 
PRN00025 
PRN00026 
PRN00027 
PRN00026 
PR N0 0029 
PRN00030 
PRN00031 
PRN00032 
PRN0003.3 
PRN00034 
PRN00035 
PRN00036 
PRN00037 
PRN00038 
PRN00039 
PRNOOO'+O 
PRN0004l 
PRN00042 
PRN0004.3 
PRN00044 
PR N00045 
PRN00046 
PRN00047 
PRN00048 
PRN000'+9 
PR Nooo s a 
PRNOO O:> l 
PR N00052 
PRN 0 0 C~3 
PRN (I (J Qfl ~· 
PRN 4005 3 
PRN~Q05o, 
PRNl!Q O!'P 
PRN(i~ 0511 
PRN~ 0 059 
PRNQQ060 
PRNQ0061 

oooooo 
oooooo 
oooaoo 
oooaoo 
oooooo 
000000 
oooooo 
000000 
OOOOOu 
oooooo 
ooouoo 
ooouoo 
000000 
oooooo 
000000 
oooooo 
000000 
000000 
000000 
oooooo 
ooooo o 
000 000 
oooooo 
000 000 
000000 
000000 
000000 
000 000 
000000 
000000 
000000 
000000 
000000 
00000(1 
000000 
000000 
000000 
000000 
oooooo 
ooooo o 
000000 
ooouoo 
000000 
000000 
oooooo 
000000 
000000 
oooooo 
000000 
000000 
oooooo 
00000 0 
OOO u{ L 
ooo c o.:. 
0 0 ( I ( , 0 (1 

OQ(, ~ C,( 

OO ~O Q~ 

. N 
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00101 
00101 
00101 
00101 
00101 
Ou101 
00101 
00101 
00101 
00101 
00101 
00101 
00101 
00101 
00101 
00101 
00101 
00101 
00101 
00101 
00101 
00101 
00101 
00101 
00101 
00t01 
00101 
00101 
00101 
00101 
00101 
00101 
0 0101 
00101 
00101 
00101 
001 0 1 
0 0101 
0 0101 
00101 
00101 
0 0 101 
OlJ 10 1 
00101 
00101 
00101 
00101 
0 0 10 1 
0 0 101 
0 0 101 
0 0 101 
0 01 0 1 
OOlOl 
00101 
00101 
00101 
00101 

o2* 
o~• 

o&4• 
o5• 
oo• 
o1* 
os• 
09* 
1o• 
71• 
72• 
7J• 
714• 
75• 
76• 
17• 
1a• 
79* 
bO* 
81* 
tl2* 
d-'* 
d'4* 
as• 
86* 
C~7• 

sa• 
c!9• 
90* 
91* 
92* 
9-'* 
9"* 
95* 
Y6* 
9 7• 
98* 
99• 

100• 
1U1• 
102* 
10-'* 
1u14* 
l OS• 
106* 
107• 
108* 
109* 
110* 
111* 
U2* 
11-'* 
1114• 
us• 
116• 
117• 
us• 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

· C 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

MIRX 

MIRY 

KLASS 

IN THE ARRAY• ANU UNuSEU CHARACT[RS TO 
THE RIGHT MUST s~ ~L ANK-FILL~D. 

IS AN INTEGER FL~G Tv IND!CATE WHETHER 
OR NOT TO PLOT ThE MIRROR IMAGE OF THE 
X-COORDI ~ATE• Wrl~N ~ET TO Oo THE DATA 
IS PLOTTED NORMA~LY• WHEN SET TO 
NON-zERO, THE MI~kOR IMAGE OF THE 
X-COORDI NATE IS ~LOTrED• 

IS AN INTEGER FLAG TO INDicATE WH£TH[R 
OR NOT TO PLOT TH~ MI RROR IMAGE OF THE 
Y-COORDI NATE• WHlN ~~ T TO 0• THE DATA 
IS PLOTT~D NORMA~LY• WHEN S[T TO 
NON-zERO, THE MI KROR IMAGE OF THE 
Y-COORDI NATE IS PLOTTED• 

IS A ONE-CHARACTeR HuLLERITH CODE• 
LEFT-ADJUSTED IN ThE WORD• REPRESENTING 
THE SECURITY CLA~SIFICATION TO BE 
PRINTED ON THE P~OT• 
= 'U'• UNcLASSIFiED 
: •C•o CONFIDENTiAL 
: •S•• SECRET 
= 'T'• TOP SECRET 
: BLANK, NO CLAS~IFI~ATION WILL BE 

PRINTED• 

AFTE1 INITIALIZATION• THE DATA IS PLOTTED ON A POINT-BY
POINT BASIS THROUGH THE FOLLOWING CALL: 

CALL PLOTPT txr Yl 

WHERE X AND Y ARE THE X AND Y PARAMET~RS• RESPECTIVELY, 

ONCE ~LL DATA HAS BEEN PLOTTED• THE PLOT IS PRINTED OuT 
THROUGH THE FOLLOWING CALL: 

CAI.L PRINTP 

THE ABOVE PROCEDURES MAY BE REPEATlO ~S MAN' TIMES AS 
DESIR~C FOR ADDITIONAL PRINTER PLvTS• 

PRN00062 
PRNU 006~ 

PR N00 064 
PR N000b5 
PR N0006o 
PRN00067 
PRN00068 
PRNOOOo9 
PRNOQ070 
PRN00071 
PRN00072 
PRN00073 
PRN0007'4 
PRN00075 
PRNOu076 
PRN00077 
PRN00078 
PR N00079 
PRN00080 
PRN00081 
PRN00082 
PRNU0083 
PRNOQ08'4 
PRN00085 
PRN00086 
PRN00087 
PRN00088 
PRN 0 0089 
PRN00090 
PRN00091 
PRN00092 
PRN00093 
PR N0009'4 
PRN00095 
PRN00096 
PRN00097 
PRN00098 
PRN00099 
PRN00100 
PRN00l01 
PR NOOl :14 
f r<I'I ~O~ U~, 
f- "~ O O~ O 't 
PR /'-H! OlO :i 
PR t~~ Ol06 
PR N•l0 t 07 
PRNV O ~ O~ 
PR i~O Ol09 
PRN OO 10 
PR J'l OOq1 
PRI~ Ooua 
PRNO OlU 
PRNOOlh 
PRNOOll& 
PRN0011o 
FRN00117 
PRNDOUe 

ooo ooo 
uooooo 
ooouo o 
000000 
000 000 
ouoooo 
000000 
000000 
000000 
000000 
ouoooo 
000000 
000000 
000000 
000000 
oooooo 
000000 
000000 
000000 
000 000 
000 0 00 
000000 
000000 
OuOOOO 
000000 
000001.) 
OOOOOu 
00 0000 
000 000 
000000 
000000 
000000 
ooouoo 
000000 
00 0000 
0 00000 
000000 
000000 
000000 
000 000 
OOOOO (J · 
00000 
OOOOOu 
000000 
oooooo 
000000 
000000 
OOO OOJ 
00 : :l . 
0 0 . iJ J I 

oo u Ju~ 
000 0 0 
0000 (' •. 
0000 0 . 
uoo oo, 
000 1) 01, 

ooo oo,, 

N 
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00101 
00101 
00101 
00101 
00101 
00101 
00101 
00101 
00101 
00103 
00103 
0010~ 
00105 
00106 
00106 
00106 
00106 
00107 
00107 
00107 
00107 
00111 
00111 
00111 
00111 
00113 
00113 
00113 
00113 
00115 
00115 
ooll5 
00115 
00117 
00117 
00123 
00123 
00123 
00125 
001~5 
00125 
00125 
00125 
00125 
00125 
00125 
00125 
00125 
Ou125 
00125 
00125 
00132 
00133 
00135 
00136 
00137 
001~1 

119• 
1.:o• 
121• 
1,2• 
1.!3• 
1~4· 
1.!5• 
126• 
1.::7• 
14!8• 
129• 
1jO• 
1.H• 
1j2• 
1j3* 
1j4• 
1j5* 
136• 
1.H• 
138• 
1j9• 
140* 
141• 
1'+2• 
1'+3• 
144• 
1'+5• 
1'+6• 
147• 
1'+s• 
149• 
1::~o• 
1:,1• 
1:::.2• 
1~3· 

15~· 
1~5· 
1:::.6• 
1:::.7• 
1=>8• 
1:::>9• 
leo• 
161* 
1b2* 
1t>3* 
164• 
1b5• 
1b6• 
lo7* 
1b8* 
lt>9• 
170* 
171• 
172• 
173• 
174• 
175• 

c 
c 
c 
c 
c 
c 
c 
c 
c 

c 

c 
·C 
c 

c 

c 

c 

c 
c 

c 
c 

c 
c 
c 
c 
c 
c 
c 
c 
c 

&120 

IMPLICIT ~OGICAL <LI 

DIMENSION 
DIMENSION 
DIMENSION 

IWORDC51•171r IBLANKC61• IPLUS<bl• lMlNUSCt>lr ISTARC61 
JCLASS(4o21• KCLASS<5•2lr XANNvT(6lo JYLABL<2~l 
IX~A8L(4lo IYLABL(4lr ITITLE(~I 

DATA 
1 

(IBLANK(II• 1=1•61 10007777777777· U770U77777777• 
o7777 00777777• u777777007777• 
o77777777oo77• u7777777777ool 2 

DATA 
1 
2 

DATA 
1 
2 

DATA 
1 
2 

<tMINUS<I>• I=1·61 lo~loooooooooo• uoo4looooouoo• 
ooooo41oooooo• uooouoo4louoo• 
ooooooooo4100• uoooooooooo411 

<IPLUS<Il• 1=1•61 I0420000000000r OU04200000000• 
0000042000000• OUOOOu0420000• 
0000000004200• 0UOOOU00000421 

<rSTAR<t>• I=1•61 lo5ooooooooooo. ooosooooooooo• 
ooooo5ooooooo. ooooouosooooo• 
ooooooooosooo• ooooooooooosol 

DATA ISIX~K 16H 

DATA ILlST 161 

I• IFIVEM 16H----- lo ISIXM I&H------1 

DATA 
1 

(JCLASS<l•II• 1=1•21 16HUNCLAS• 6HS!F1Eul• 
<JCLASS<2•II• I=l•21 16HCONFt0• 6HE~TIA~I, 
<JCLASS<3oll• I=1r21 16HSECRET• 6H I• 
(JCLASS<4•Il• !=1•21 16HTOP S• 6HE~RET I 

2 
3 

THE STATEMENTS FROM HERE THROUGH ~TAT~MENT 7400 ARE ~OR 
INITIALIZATION OF THE PRINTER PLOT. 

!CLASS : 0 
IF (KLASS .NE• 'U'l GO TO 6120 
ICLASS : 1 
GO TO 6200 
IF <KLASS .NE• 'C'I GO TO 6130 
!CLASS = 2 

PRNU0119 
PRN00120 
PRN00121 
PRN00l22 
f-'RN00l23 
PRN00124 
PRN00125 
PRN00126 
PRN00127 
PRN00128 
PRN00129 
PRN00130 
PRN00131 
PRN00132 
PRN00133 
PRN00134 
PRN00135 
PRN00136 
PRN00l37 
PRN00138 
PRN00139 
PRN00140 
PRN0014l 
PRN00l42 
PRN00143 
PRN00144 
PRN00l45 
PRN00l46 
PRN00147 
PRN00l48 
PRN00l49 
PRN00150 
PRN00151 
PRN00152 
PRN00153 
PRN00154 
PRN00155 
PRN00156 
PRN00157 
PRN00158 
PRN00159 
PRN00160 
PRN00161 
PRN00162 
PRN00163 
PRN00164 
PRN00165 
PRN00166 
PRN00167 
PRN00168 
PRN00169 
PRN00170 
PRN00l71 
PRN00l72 
PRN00173 
PRN00174 
PRN00175 

oooooo 
000001) 
00000(.1 
ooouoo 
oooooo 
00000(.1 
oooooo 
00000(1 
ooouoo 
oooooo 
oooooo 
ooouoo 
oooooo 
oooooo 
oooooo 
ooooou 
oooooo 
oooooo 
oooooo 
oooooo 
oooooo 
000000 
000000 
oooooo 
000000 
000000 
000000 
oooooo 
000000 
ooouoo 
000000 
ooouoo 
oooooo 
oooooo 
oooooo 
oooooo 
oooooo 
oooooo 
oooooo 
oooooo 
ooooou 
oooooo 
oooooo 
oooooo 
000000 
oooooo 
000000 
oooooo 
oooooo 
oooooo 
000000 
oooooo 
oooooo 
000003 
00000:::. 
000007 
000011 

N 
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001102 
0 01103 
001'<5 
001106 
001107 
00151 
00152 
00153 
00154 
00156 
001o0 
oo1o3 
001b4 
oo1o6 
00170 
ou171 
00174 
00175 
00177 
00201 
00202 
00205 
002 06 
00210 
00212 
00212 
00212 
00213 
0021" 
00211J 
002114 
00214 
002l't 
00214 
Oil211l 
00211l 
00214 
00215 
00216 
00 217 
002d 
00 223 
00226 
002 30 
00232 
00235 
002100 
ou2 10 1 
00 2 '+ 2 
002103 
002104 
002106 
ou25 0 
00 252 
0025l 
002~1+ 
00251+ 

17o• 
177• 
178• 
179• 
1dO• 
1o1• 
1b2• 
1d3• 
1dl0• 
1b5• 
1oo• 
liH• 
1d8• 
1o9• 
19 o• 
191• 
192• 
193• 
1910• 
195• 
1'lo• 
197• 
19o• 
199• 
2uo• 
201• 
~u2• 
20J• 
2u10• 
~us• 
2 0o• 
2U7• 
2ua• 
21J9• 
210• 
211• 
<:12• 
213• 
21 10 • 
2 15• 
21&• 
217• 
218• 
219• 
2.0:0• 
2.:1• 
2..:2• 
<: 23• 
2..:10• 
z .:s• 
~~6· 
227• 
' 'e• 
2.:9• 
zJo• 
2·H• 
2J2• 

GO TO 6200 
61JO IF <KLAss .NE . • s• 1 GO To 51100 

ICLASS : .3 
GO TO 6200 

ol40 IF (KLASS .NE. 'T'I GO TO 620C 
!CLASS : '+ 

b200 LMIRX : •FALS~ · 
LMIRY : •FALSE· 

c 
c 

c 
c 
c 
c 
c 
c 
c 
c 

c 

IF <MIRX .NE• Oi LMIRX : .TRUE• 
IF (MIRY .NE• 01 LMIRY : .TRUE. 
DO 6300 1=1•4 
ITW : 5 - 1 
IF <ITITLE<ITWI oNE. ' tJ GO TO 6350 

6300 CONTINUE 
ITW : 0 

oJ50 DO 6'+00 I=1•4 
Ixw = 5 - 1 
IF !lXLABL!IXWI •NE•' •I GO TO o450 

6400 CoNTINUE 
IXW : 0 

6450 DO 6500 I=1•4 
IYW : 5 - f 
JF ( IYLABL. JYWI •NE• ' 'I GO TO 7000 

6500 CONTINUE 
IYW : 0 

COMPUTE THE X AND Y AXIS PRINTER PLOT MULTIPLYING 
FACTORS. 

7000 XPRFAC 
YPRFAC 

: 100·0 I (XMAX - XMINI 
: 50·0 I (YMAX - YMINl 

lA = 1 

THE STATE MENTS FROM HERE TO STATEMENT 7100 TRANSFER THE 
Y-AXl5 PRINTER PLOT LABEL INTO TH~ ARkAY '~YLABL' 
<DI MENSIONED BY 241• WHICH WILL B~ PR1NTED OUT 
VERTIL~LLY. ONE CHARACTER oF THE LA8~L IS PLACED IN THE 
FIRST CHARACTER OF EACH WORD OF THE ~YLABL ARRAY• WHEN 
THERE ARE FEWER THAN THE MAXIMUM UF 4 WORDSy THE LABEL 
IS CENTERED IN THE ARRAY• WITH TH~ UNUSED WORDS ON EAcH 
ENu BLANKED OUT• 

IB = 3 • (4 - IYWI 
IF <I B .E Q. ol GO TO 7050 
IF <lY W •EG• 01 18: 24 

7030 DO 7040 I=IA•IB 
70~J0 ~YLABL<II : ISIXBK 

IF < lB •EQ• 2~JI . GO TO 7100 
7050 DO 7080 1=l•IYW 

DO 7070 N=1•6 
19 = IB + l 
N A : ( 6-N) • 2 
ITEMP : IYL.ABL!II I 8••NA 
~TEMP : ITEMP I 64 

7070 ~YLABL<IBl : IITEMP - (64 • JTEMPII • 8••10 
7080 CONTI NUE 

IF <IB ·GE• 2~1 GO TO 7100 
IA : IB + l 
IB : 24 
GO TO 7030 

PRN00176 
PR N00177 
PRN00178 
PRNU0179 
PRN00180 
PR N0 0181 
PRN00l82 
PRN0018J 
PRN0018'+ 
PRN00185 
PRN0018b 
PRN00187 
PRN00l88 
PRNoJ0189 
PRN00190 
PRN00191 
PRN00192 
PRN0019.3 
PRN001910 
PRN0Q195 
PRN00196 
PRN00l97 
PRN00198 
PRN00199 
PRN00200 
PRN00201 
PRN00202 
PRN0020.3 
PRN00204 
PRN00205 
PRN0 020& 
PR N00207 
PR N00208 
PRN00209 
PRN00210 
PRN00211 
PRN00212 
PRN0021.3 
PR N0021'+ 
PR NOQ215 
PRN00216 
PRN00217 
PRN00218 
PR N00219 
PRN OQ;.:2(, 
PRN OO<:<; l 
PRN00 222 
PRN 00~ 23 
PR NU 02'J '+ 
PRNu oa2~ 
PRN 00226 
PRN (j 02n 
P :.. NQ 02l;E, 
P~N0 02Z'4 
P~N002lQ 
P~N00~~1 
PfH~002~2 

00001.3 
00001 5 
000017 
000021 
000 02.3 
000025 
000030 
000030 
000031 
000035 
000047 
0000'+7 
000052 
0000o1 
000061 
000 0&3 
000070 
000073 
00010£ 
000102 
000104 
000111 
000114 
000123 
00012.3 
000123 
000123 
000125 
000131 
000131 
000131 
000131 
000131 
000131 
OOO lll 
000131 
000131 
00013a 
0001100 
0001'+4 
000146 
000153 
000160 
00016~ 
00016o 
0001710 
000174 
000177 
000203 
000214 
00021 , 
OO OC'2c 
co o<. ;: 
O Ov< ~ 
ooc. ;.~ 
OOQ4:) 
ooci;;~ 

N 
V1 



00254 
00254 
00254 
00254 
00254 
002!;)4 
00255 
oo2.:.o 
002o3 
OU2b5 
002b7 
00272 
00275 
00277 
00301 
00.)0 2 
oo3o3 
00304 
00307 
00:311 
00312 
00313 
00316 
00;317 
00320 
00:321 
003~2 
00323 
00324 
00:327 
003:31 
00333 
00:3:34 
00337 
00340 
00343 
00345 
00347 
00351 
00353 
00353 
00:353 
00353 
003~3 
00353 
00.353 
00353 
ov.353 
00.353 
00:354 
003!;)4 
00354 
00354 
00354 
00354 
00354 
00354 

2.33• 
c:.34• 
'J5• 
~Jo• 

"~7· 
2.36• 
2.39• 
2'+0• 
241• 
2-+2• 
~'+3• 

2'+'+• 
~'+5• 

24o• 
" 47• 
2 -+ 8• 
2'+9• 
250• 
251• 
2:l2• 
2:l3• 
2:l4• 
2!:>5• 
256• 
2!:>7• 
2!:>8• 
"!:>9• 
c:oo• 
lol• 
2o2• 
2o3• 
2o4• 
2o5• 
~ob• 

~o7• 
2o8• 
Zo9• 
270• 
271• 
<:72• 
273• 
274• 
275• 
276• 
277• 
278• 
279• 
c:cso• 
281• 
'-o2• 
O:d3• 
2CS4• 
'o5• 
2do• 
21:17• 
2d8• 
2o9• 

c 
c 
c 
c 
c 
c 

c 
c 
c 
c 
c 
c 
c c 
c 
c 
c 
c 
c 
c 
c 
c 

7100 

7120 
7140 

71oo 
7180 

7300 

73oO 
7380 
7390 
7400 

THE STATEMENTS FROM STATEMENT 710u THkOUGH STATEMENT 
7400 INITIALIZE THE PRINTER PLOT bRIO. THIS IS 
ACCOMPLISHED BY FIRST BLANKING OUl TH~ ENTIRE GRIDr THEN 
MA~KING THE GRID PATTERN INTO THE ARRAy. 

DO 7140 l=l•~l 
DO 7120 J;!rl"/ 
lWORDIIrJI ; :SIX~K 
CONTINUE 
00 7180 1=1•51•10 ' 
DO 7loO J=1•16 1 

IWORDIIrJI ; ISIXM 
IWORD!Ir171 : IFIVEM 
IAA ; 5 
IB = -4 
IC : lOb 
DO 7400 IA=l•2 
IF CIA •EG• 21 IAA : 10 
IB ; lB + 5 
IC ; lC - 5 
DO 7390 K=IB•IC•lO 
ITEMP : IK-11 I 6 
J : ITEMP + 1 
!TEMP : ITEMP • 6 
N : K - ITt:.MP 
MASK : IPLUS(Nl 
MASKBK : IdLANKIN) 
DO 7300 I=l•5lrlAA 
lWORD!IrJ) : OR! ANDCIWORDCirJlr MASKBKir MASK l 
IF CIA .EQ• 2) GO TO 7390 
MASK : IMINUSCNI 
DO 7380 ~A=2,47r5 
JB : JA + 3 
DO 7360 z=JArJB 
IWORDIIrJl :OR( ANDCIWORDCI•Jlr MASKBKlr MASK l 
CONTINUE 
CONTINUE 
CONTINUE 
RETURN 

THE ST~TEMENTS FROM HERE TO STATEMENT 7700 
PLOT THE POINT ON THE PRINTER PLOT. THESE STATEMENTS 
ARE EXECUTED ONCE FOR EACH PLOTTEu POINT• 

ENTRY PLOTPT CXr Yl 

COMPUTE THE COORDINATES (TAKING THE MIRROR IMAGE IF 
REQUIRED> OF THE PLOTTED POINT ON THE PRINTER PLOT. THE 
COORDINATES ARE CKrllr WH~RE K IS THE NUMBER OF SPACES 
FROM LEFT TO RIGHTr AND I IS THE ~INE NUMBER FROM TOP TO 
BOTTOM• 

PRN00233 
PRN00234 
PRN00235 
PRNUU23o 
PRN00237 
PR NU0238 
PR N0 Q239 
PRN00240 
PRN0Q241 
PRNOu242 
PRN00243 
PRN00244 
PRN00245 
PRN 00246 
PR N0Q247 
PRN0024t; 
PRNOQ249 
PRN00250 
PRND0251 
PRNOQ252 
PRN00253 
PRN00254 
PRN00255 
PRN0025o 
PRN00257 
PRN00258 
PRN00259 
PRN002o0 
PRN00261 
PRN00262 
PRN00263 
PRN00<:64 
PRNOo265 
PRN00266 
PRN00267 
PRN00268 
PRN00269 
PRN00270 
PRN00271 
PRN0Q272 
PRND027.3 
PRN00274 
PRND0275 
PRND0276 
PRN00277 
PRN00278 
PRND0279 
PRN00280 
PRN00281 
PRND0282 
PRND0283 
PRN00284 
PRN00285 
PRND028o 
PRN00287 
PRN00288 
PRN00289 

000237 
0002.37 
000237 
0() 0237 
000237 
0002.37 
000244 
000244 
000244 
000257 
000257 
000257 
000257 
000261 
ooo2o7 
000271 
000273 
000.300 
ooo3oo 
000312 
OOO.H5 
000.32.3 
000.33~ 
ooOJ3o 
000340 
000343 
000345 
000350 
00036.3 
000.363 
000.370 
00037~ 
000377 
0()0402 
00040::, 
000412 
000425 
000425 
000425 
000425 
000425 
000425 
00042!:> 
000425 
0001125 
000425 
000425 
000425 
000425 
000430 
0004:>0 
0004.30 
0001130 
0001130 
000430 
000430 
0001130 

N 
0\ 



~ 
C) 

00356 
00.3~7 

003o1 
00362 
ooJo4 
ouJo6 
00.366 
00.366 
00.31:>6 
ou366 
00370 
00371 
00372 
00373 
00373 
0\!.374 
00~75 
00375 
00375 
00375 
00375 
00.375 
00375 
00375 
00.375 
00375 
00376 
00376 
00376 
00377 
00401 
00401 
00401 
00'+02 
00402 
00402 
00404 
00407 
00410 
00412 
00423 
Ou423 
00424 
00426 
00426 
!)0427 
001027 
00427 
00'+31 
00432 
00435 
00436 
00437 
00445 
00446 
00447 
00455 

2'10* 
C!'J1• 
<::'1<!• 
<:9.3• 
294• 
295* 
296• 
297* 
<::98• 
299• 
.300* 
301* 
3u2• 
JU3* 
3U4* 
Jus• 
306* 
307• 
3U8* 
Ju9• 
.310• 
3U* 
312* 
31.3* 
~14* 

315• 
~16• 

.317• 
318* 
319* 
.3-'0* 
JC!1• 
3~2· 
~lJ• 
.3-'4• 
325* 
30::6• 
.3.:.7• 
.328* 
3-'9* 
.3.30• 
3.31• 
.3.32• 
333• 
.334* 
:l.35• 
.3.3&• 
3.n• 
3.38* 
3.39• 
.340* 
3101* 
3'+2* 
j'+J* 
3'+4• 
.3'+5* 
3'+6* 

K : IX - XMINl • XPRFAC + 1.5 
IF IlK .L~. Ol .OR. (K .GT. lOll) RETURN 
I : ly - YMINI * YPRFAC + 1.5 
IF (II ·L~· Ol •OR• II ·GT. 5111 RETURN 
IF ILMIRXl K : 102 - K 
IF I•NOT• LMIRYI I : 52 - I 

C J tS T~E NUMBER OF THE WORD <FROM LEFT TO H1GHTr 1 TO 
C 171 JN WHICH THE PLOTTED POINT LI~S. 
C N IS T~E ACTUAL CHARACTER lOR o-BIT BYTE! ~ITHIN THE 
C WORD• THAT THE PLOTTED POINT OCCU~IES. 

ITEMP : IK-11 I 6 
J : ITEMP + 1 
ITEMP : IT~MP * 6 
N : K - ITEMP 

C MAS< IN AN ASTERISK FOR THE PLOTT~u POINT• 

c 
c 
c 
c 

IWOROIIoJl :OR( ANO(IWORDIIrJl• IBLANK(Nil• ~STARINll 
RETURN 

C THE STATEMENTS FROM HERE TO STATEM£NT 8500 wRITE 
C OUT THE PRINTER PLOT• 
c 
c 
c 

c 
c 

ENTR't PRINTP 

WRITE (ILIST• 17011 
7701 

c 
FORMAT ( 1H1 I , 

TRANSFER TO STATEMENT 7750 IF NO CLASSIFijCATION LA6EL IS 
TO BE '•RITTEN· c 

c 
c 

IF (!CLASS •EJ• Ol GO TO 7750 
STORE THE CLASSIFICATION IN FIVE LOCATIO~S AND WRITE IT 
OUT. 

DO 7120 I=1•5 
KCLASSI1•11 : JCLASSIICLASSrll 

7720 KCLASSII•ll : JCLASSIICLASSr2l 
WRITE IILIST• 77311 IIKCLASS<I•Jlr J:1r2lr I=1r51 

7731 FORMAT 11H • 13011H•lr lr 1H • 7Xr 2A6r 4114Xr 2A61, I• 1H r 
1 1JOI1H*I l 

7741 
c 

7750 
c 

WRITE IILIST• 77411 
FORMAT llH I 

TRANSFER TO STATEMENT 7800 IF THEHE IS NO TITLE • 
IF IITW ·EG• Ol GO TO 7800 

TRANSFER TO THE APPROPRIATE WRITE STATEMENT TO WRITE oUT 
A CENTERED TITLE. c 

GO TO 177&0• 7770• 7780• 7790lr ITW 
7760 WRITE IILIST• 77611 ITITLE(ll 
7761 FORMAT 11H r 70Xr A61 

GO TO 77% 
7770 WRITE IILIST• 77711 IITITLEIIlr 1=1•21 
7771 FORMAT 11H • 67Xr 2A6l 

GO TO 7795 
7780 WRITE IILIST• 77811 IITITLEIIl• I=1•3l 
7781 FORMAT (1H r 64X• 3A61 

PRN00290 
PRN00291 
PRN00292 
PRN00293 
PRN00294 
PRN00295 
PRN00296 
PRN00297 
PRN00298 
PRN00299 
PRN00300 
PRNOOJ01 
PRN00302 
PRNOOJOJ 
PRN00304 
PRN00305 
PRN0030o 
PRN00,307 
PRN00308 
PRN00309 
PRN00310 
PRN00311 
PRN00J12 
PRN00313 
PRt~00.314 

PRN00315 
PRN00.316 
PRN00J17 
PRN00318 
PRN00319 
PRN00320 
PRN0032l 

. PRN00322 
PRN00323 
PRN00J24 
PRN00325 
PRNOOJ2o 
PRN00327 
PRN00328 
PRN00J29 
PRN00330 
PRN00331 
PRN00332 
PRN0033.3 
PRN00334 
PRN00335 
PRN0033o 
PRN00337 
PRN00338 
PRN00339 
PRN00340 
PRN00341 
PRN00342 
PRN00343 
PRN00344 
PRN00345 
PRN00346 

000430 
00044j 
000'+&.3 
000'+7o 
00051& 
00052.3 
000523 
000523 
000523 
00052.3 
ooo53u 
000534 
00053o 
0U0543 
000543 
000545 
000553 
000553 
00055~ 
00055,3 
00055:, 
0005':1.3 
00055,3 
000:':15.3 
00055j 
00055,3 
00055() 
00055b 
00055b 
000556 
ooo5oJ 
0005o.3 
0005&3 
00056,3 
0005b,3 
0005&3 
000~&5 
000~71 

00057<! 
000:J75 
000bl4 
000o14 
000&14 
000b22 
000622 
00062.:. 
000b22 
000&22 
000o23 
000b35 
000644 
000b44 
000o4,; 
OOOooQ 
000660 
000662 
000074 

N 
'-I 



00'+56 
00457 
00'+65 
00'+66 
001+66 
00'+66 
00~70 
00'+71 
00'+72 
00473 
00'+74 
00'+75 
00475 
00475 
00475 
00'+76 
00501 
00502 
0050'+ 
00512 
00513 
0051'+ 
00515 
00516 
00517 
00521 
005.30 
005.31 
005.33 
005.33 
00533 
005.3.3 
005.35 
005'+0 
005'+1 
005'+3 
00552 
00553 
00554 
00555 
00556 
00557 
00561 
00571 
00572 
00574 
00575 
oo576 
00576 
00576 
00576 
00577 
00600 
00601 
00602 
00605 
00606 

.347• 

.3'+8* 

.349• 
J~o· 
J51• 
.352• 
J~J· 
3~'+· 

.3~5· 
j56* 
357• 
.358• 
359• 
Joo• 
361• 
3b2• 
Jo3• 
.3o'+• 
.365* 
3b6• 
Jb7• 
.3b8• 
3o9• 
J7o• 
.371• 
.372• 
.373• 
.37'+• 
.375• 
.376• 
377• 
.378• 
.379• 
.380• 
3tH• 
.3"2• 
jdJ• 
Jo'+• 
3o5• 
.366• 
.3o7• 
.368* 
.369• 
J9o• 
.391• 
.392• 
J9J• 
.394• 
395• 
.396• 
.397• 
.3 98• 
.3 99• 
400• 
401• 
402• 
403• 

c 

7790 
7791 
7795 

GO TO 7795 
WRITE IILIST• 7791) IITITLEIIl• I=1•4l 
FORMAT 11H • 61X• 4A6) 
WRITE IILIST• 7741) i 

c 
7800 

COMPUTE THE INCREMENT FOR THE PRII~~ER PLOT Y-AXIS 
NUMERICAL ANNOTATION• 

YPRINC : 0•2 • IYMAX - YMINl 
YINCT : ABSI0.001 • YPRINC) 
YINCMP : 6•0 
N : 9 
IA : 1 
IS = 1.3 

C THE STATEMENTS FROM HERE TO STATEMENT 7860 WRITE OUT THE 
C FIRST 1.3 LINES AND THE LAST 14 LINES OP THE PHlNTER 
C PLOT• 

c 
c 
c 

c 
c 
c 

7820 DO 7860 I=IA•IB 
N : N + 1 
IF IN •EQ. 10) GO TO 7840 
WRITE IILIST• 7831! IIWOROII•Jl• J:1•17l 

7831 FORMAT 11H • 22X• 17A6l 
Go TO 7860 

7840 N : U 
YINCMP : YlNCMP - 1·0 
YA NNOT : YMIN + IYINCMP • YPRINCl 
IF IABSIYANNOTI .LE. YINCT) YANN0T : 0.0 
WRITE IILIST• 78511 YANNOT• (IWORD<I•JI• J=1•17l 

7851 FORMAT (1H • 5X• E16·6• 1X• 17A61 
7860 CONTINUE 

IF IIa ·EQ• 511 GO TO 7920 
THE STATEMENTS FROM HERE THROUGH STAT~MENT 7910 WRITE 
OUT THE 24 LINES IN THE CENTER OF THE PRINTER PLOT WHICH 
CAN CONTAIN PART OF THE Y-AXIS LA~EL• 

DO 7910 I=14rJ7 
N : N + 1 
IF (N •EQ. 101 GO TO 7890 
WRITE IILlST• 7881! JYLABLII-13), (IWORDil•J), J:1,17l 

7881 FORMAT (1H • A1• 21X• 17A6) 
GO TO 7910 

7890 N : 0 
YINCMP : YINCMP • 1.0 
YANNOT : YMIN + (YINCMP • YPRINCl 
IF <ABS(YANNOTl oLE. YINCTl YANNOT : 0.0 
WRITE IILIST• 79011 JYLABLII-1J), YANNOT• IINORD<I,Jl• J=1•17l 

7901 FORM~T (1H • A1• '+X• E16•6• 1X• 17A6l 
7910 CO NTINUE 

7920 

IA : 38 
IB = 51 
GO TO 7820 

COMPUTE AND STORE THE SIX VALUES USED TO NUMERICALLY 
ANNOTATE THE X-AXIS• THEN WRITE OUT THE X-AXIS NUMERicAL 
ANNOTATION• 

XPRINC : 0•2 • IXMAX - XMINl 
XINCT : A~SI0.0005 • XPRINCl 
XINC MP : -1·0 
DO 7930 1=1•6 
XINCMP : X!NCMP + 1.0 
XANNOT<Il : XMIN + (XINCMP • XPRINCl 

PRN00J47 
PRN00348 
PRNOOJ'+9 
PRNOOJ50 
PRN00351 
PRN00J52 
PRN00J5J 
PRN00J5'+ 
PRNOOJ55 
PRN00J5o 
PRN00J57 
PRNOOJ58 
PRN00J59 
PRN00.3b0 
PRN00:361 
PR N0Q362 
PRN00:363 
PRN00364 
PR N00365 
PRN00366 
PR N00367 
PR N00:368 
PRN00:369 
PR N00370 
PRN00371 
PRN00:372 
PRN00:373 
PRN00374 
PRN00:375 
PRN0031b 
PR NL 0377 
PR N00378 
PR N00379 
PRN00380 
PRN00381 
PRtW0382 
PR N00:38J 
PRN0038'+ 
PRN00385 
PRN00:386 
PRN00.387 
PRN00388 
PRN00389 
PRN00390 
PR N00391 
PR N00J92 
PRN00393 
PR NOo39'+ 
PR N00.395 
PRN00396 
PRN00397 
PR N00398 
PRN00399 
PRNOO'+OO 
PR N0040l 
PRN00402 
PRN0040.3 

000674 
00067& 
000711 
000711 
000711 
000711 
00071& 
000721 
00072'+ 
00072& 
0007.30 
000732 
0007.3~ 
0007.32 
0007.32 
000735 
000744 
0007'+7 
000751 
0007&4 
000764 
ooo7o& 
ooo77o 
000773 
000777 
001004 
001022 
001022 
001022 
001022 
001022 
001022 
001030 
0010.3.3 
0010:3& 
0010'+0 
001054 
00105'+ 
0010so 
001060 
00106.3 
001067 
001074 
001113 
00111.3 
00l11j 
00111!> 
001117 
001117 
001117 
001117 
001121 
001124 
001127 
001134 
00113'+ 
00113b 

N 
00 



-
00607 ~o~· 
00611 4uS• 
00613 ~u6• 
00616 ~07• 
00616 ~os• c 
00617 '+09• 
00621 ~1o• 
00t~21 411• c 
00621 412• c 
00623 ~13• 
00624 ~14• 

00627 415* 
00630 ~1&• 
00&36 417* 
00b37 418* 
00645 419* 
006'+6 ~2o• 
00654 421* 
00654 1+22• c 
00656 ~,3. 

006&0 ~,4. 

00671 425• 
00671 42&• c 
00672 1+27• 

.J 

IF (A9S(XA NNOTIIII .LE. XINCTl XANf\IOT< I I : 0. (i 
79:30 CONTINUE 

WRITE IILIST• 79351 ( XANNOTI I I • I=1•61 
7935 FORMAT (1H • 8X• 6(~X• E16.611 

TKANSFER TO STATEMENT 7960 IF THEKE IS NO X-AXIS LABEL• 
IF ( IXW ·E~· Ol GO TO 7960 
WRITE <ILI5T• 77411 

TRA~SFER TO THE APPROPRIATE WRITE STATEMENT TO WRITE OUT 
A CEN)ERED X-AXIS LABEL• 

GO TO 17940• 7945• 7950• 79551• IXW 
79~0 WRITE (ILIST• 77611 IXLABL(11 

GO TO 7960 
7945 WRITE (ILI~T• 77711 <IXLABL(IIr 1=1•21 

GO TO 796() 
7950 WRITE <ILIST• 77811 (lXLABL(II• I=1•31 

GO TO 7960 
7955 WRITE (ILIST• 77911 (IXLABLIII• I=1•'+1 
7960 IF <ICLASS ·EQ• Ol RETURN 

WRITE OUT THE CLASSIFICATION LASE~. 
WRITE (ILIST• 77411 
WRITE (ILI~T• 77311 
RETURN 

<<KCLAsS<I·~I· J=1•21• I=1•5l 

END 
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D. Accounting of Data Points Processed 

Inevitably, some graphics jobs will not produce the output that the 
customer expected, and the resourceful graphics programmer will prepare 
in advance for this contingency if he is to avoid spending many of his 
future days troubleshooting other people 1 s production problems. Since 
most production graphics problems are in fact caused by the customer's 
inattention to the input data, what we would like to do is give him infor
mation with every plot that will allow him to discover the cause of the 
malfunction before he resorts to contacting either the software develop
ment personnel or the operations personnel. 

The single most valuable tool in this respect is the simple matter of 
accurately accounting for all data points processed by the graphics soft
ware. This usually consists of nothing more than a swmnary of the total 
number of points examined, along with a breakdown of their disposition as 
to whether they were actually plotted, were off scale, and so forth. If, 
for example, the user receives a blank plot, the summary can immediately 
tell him whether the expected data W<ts even presented to the plot program 
in the first place, and .if it was, the summary will indicate the probable 
cause of its failure to be plotted. 

It is useful to classify the status of data points according to how 
they are handled by the plot program. A sampling of some commonly used 
classifications are: 

Blank--A data point that has been replaced by a blank or transparent 
word that serves as filler where the particular parameter 
does not exist because it was not available or was not recorded. 

Off-scale--A data point which has either or both coordinates lying 
outside the limits specified by the extremities of the axes. 

Outside start or end times--Where the option exists to specify further 
restricting limits (usually based on some interval of ti.me), a 
data point that is on-scale, but not within the start or end 
time limits. 

Thinned-out--A data point that passes all of the above tests, but is 
thinned out to reduce the density of the plotted points. 

An examination of the clHJracteristics of these various conditions will 
show that they should be tested in the order listed, in order to provide 
the most meaningful information to the analyst. Some categories can be 
broken down even further, such as off-scale data points which could be off 
i~ X, Y, both X and Y, and so forth, but this is usually not necessary. 
Figure 2 shows a practical approach to the overall accounting process, 
and the following page shows an of what the summary might look like 
on the user's computer listing. 
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Another useful feature which is related to the accounting of data 
points is to save and print out the coordinates of the first and last data 
points plotted, and if desired, the first and last points examined. This 
gives the analyst the ability to track down at least two specific data 
elements at the extremities of the plot when troubleshooting a malfunction. 
Core and processing requirements for this task are trivial. 

Finally, the plots and grids themselves should be counted, and 
summarized at the end of the job. The grids are counted separately since 
several plots may be placed on a single grid, so the number of grids is not 
necessarily the same as the number of plots. A typical summary might 
state something like 11 126 PLOTS pN 84 GRIDS." This way, the analyst knows 
at a glance whether the job was completed in its entirety. 
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V. The White Sands Production Graphics System 

White Sands Missile Range is one of the world's busiest test ranges, 
where enormous quantities of data are collected by both optical and electronic 
means. A wide variety of data reduction programs reduce the raw data on a 
production basis in order to provide the range users with complete and 
timely data reports for use in analysis of the individual test missions. 
Most of these reports contain considerable graphics, which are generated by 
a production graphics system which has undergone a number of changes over the 
years. 

Prior to 1971, several large flat-bed plotters were in use, producing 
a total of fewer than fifty plots per day. These machines were operated 
off-line, and the customer had to run the computer job, retrieve the plot 
tape, personally deliver the tape to the plotting room along with a work order 
specifying grid size, scale factors, plot mode (point or line), ink color, 
and so forth. The user specifications were entered into the plotters through 
switches, and the equipment was manually calibrated for each plot, based on 
the stated paper size and scaling factors. Once completed, the customer 
picked up the plots and tape, disposed of the tape as necessary, then turned 
in the plots to a reports section to be manually labled and annotated. The 
entire process was not only tedious, but susceptible to human error at every 
stage. 

Due to an increasing workload, and a continuing obsolescence of the 
existing graphics equipment, a changeover was made that converted the graphics 
operation to a high-production system that eliminates all human intervention 
that affects the content of the plots. The operational procedure is shown 
schematically in Figure 3. 

The core of the system is a CalComp Model 835 CRT plotter which draws the 
plots on a cathode ray tube and automatically records them on 35 mm film. 
The customer himself simply submits his job to the computer, where an off-line 
plot tape is generated. The computer listing, with full and complete printer 
plots, is returned directly to him, while the plot tape is automatically 
delivered directly to the plotter without any action on his part. Plot 
tapes are grouped at the plotter (classified tapes, of course, are handled 
separately), and at designated times of the day all of the tapes present are 
run. The operator has only to mount the tape, push the start button, and 
dismount the tape when finished. 

Every plot is fully labeled and numerically annotated (inclduing security 
classification when needed) as it is drawn. The operating speed of the plotter 
is such that a single plot generally takes no more than five seconds to 
complete, even though the grid itself must also be drawn. The film, of 
course, advances automatically between plots. A tape containing thirty 
complete plots can be fully processed by the operator in three minutes or 
s,o. The graphics software generates a header and trailer frame at the 
beginning and end of each job for identification purposes, along with a 
unique serial number which is recorded in small numerals in the far corner 
of each plot. 
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Once all tapes have been recorded, the film reel is removed and processed 
in a small automatic developer which requires little more than that the opera
tor mount the reel, push the loose end of the film in a hole, turn on the 
water, and watch it wind up on a reel on the other side. The processing time 
for a 200-foot reel (1600 plots) is about 15 minutes, though preparation and 
cleanup require a few minutes additional. 

The film is then taken to a semi-automatic printer for final printing. 
The plots vary in size, according to their intended use, and the customer 
specifies the size at the time of the computer run. The operator at the 
printer does have to change paper sizes when instructed to do so by the 
customer's header frame. Maximum plot size is 11 by 17 inches. The printing 
process requires about fifteen seconds per plot. 

Upon completion of the printing, the plots are returned directly to the 
user. Since all labeling and annotation is done by the plotter, there is 
no further clerical process, and the plots may be inserted directly into the 
data reports. Once the finished plots have been delivered, the tapes are 
automatically degaussed, and the film is handled as classified waste. 

Naturally, there is a degree of flexibility built into the operation to 
handle special requirements such as the occasional expedite priority job. 
And not all graphics at White Sands are processed on this system. There 
are a number of other plotters available, and various organizations use them 
for special purposes. 

As carefree as the operation sounds, it has not been without its problems. 
Perhaps the first to become apparent was due to the fact that the system 
prints in only one color--black, on white paper. It was very difficult to 
convince the old-timers, who were accustomed to multiple ink colors, that 
they could live just as well with plots using one color in multiple modes 
(line, point, symbol, etc.). Next was the matter of size. The system can 
produce plots up to 11 x 17 inches, which is really quite large, but the 
previous plotters could handle 30 x 30 inch paper. No one knew what he would 
do with a plot greater than 11 x 17, but many were still hard to convince. 

Overall reliability did not turn out to be as good as expected, either. 
This was primarily due to the fact that there are three major links in tqe 
chain: the plotter, the developer, and the printer. If just one of them 
breaks down, the entire system grinds to a halt. The problem is controlled 
primarily by increased attention to preventive maintenance. The particular 
model of plotter, incidentally, has been discontinued by the manufacturer, 
and at some future date this may impact the maintenance program, but it 
has had no effect as yet. 

With the increased capability of the system came increased demand. 
Whereas graphics requests had been running at a few hundred per month, peak 
output under the present system has soared to over 15,000 plots per month. 
The increased use of graphics, however, has cut the need for detailed data 
listings in some areas, and often facilitates the analyst's job. Some 
samples of typical output from the White Sands production graphics system 
are shown on the following pages. 
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MATHEMATICAL TRADE-OFFS FOR 
HANAGFRIAL CONTROL 

John L. Lazaruk 
Systems and Economic Analysis Division 

Office of the Comptroller 
l.J.S. Army Communication:; Cqrnmand 

Ft. Huachuca, Az. 85613 

ABSTRACT. Recent investigations in system theory have generated a 
mathematical definition of a trade-off. This concept arlses naturally in the 
context of economic decisions, systems analysis, and systems engineering. 
This paper presents a mathematical structure of a trade-off between system 
or subsystem attributes which insures that the suboptimization process in
herent in the design of large scale systems yields an optimization of the 
overall system design. In addition, 8 methodology is developed based on a 
hierarchy of functions associated with the life cycle of large scale systems 
using mathematical trade-offs for the ma~agerial control of the engineering, 
implementatlon, and operation of large scale systems. 

1. INTRODUCTION. Large scale system exhibit certain cha~acteristics 
such as an overall purpose, the interaction of h~mans and machines, and a 
variety of subsystems which transcend the expertise of a single discipline. 
Generally, the user, operator, and builder are distinct. Examples of large 
scale systems are military weapon systems, communications systems, and 
social welfare systems. 

The characteristics of a large scale system lead to~ hi~rarchy of 
of functions correspondins to Figure 1. 

HIERARCHY OF SYSTEM FUNCTIONS 

USER 

OPERATOR 

BUILDER 

------~----------·------------~ 

FIGURE 
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The hierarchy is based on the interrelationship of functional purposes. 
The o~erall purpose of the system is to satisfy the requirements of the 
~ser. The user requirements are satisfied thro~gh the operation of the 
system by an operator. Thus, the system is built for the operator to 
satisfy the requirements of the user. 

As a result of this tri-level hierarchy of system functions, corres
ponding hierarchy of effectiveness can be constructed as in Flgure 2. 

HIERARCHY OF SYSTEM EFFECTIVENESS 

OPERATIONAL EFFECTIVENESS 

PERFORMANCE PARAMETERS 

ENGINEERING CHARACTERISTICS 

FIGURE 2 
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The operational effectiveness level of a system pert~lns to ~haract~ristics 
of conditions which are of concern or are experienced by the user. An 
example of a measure of operational effectiveness is the length of time the 
system takes to satisfy a user•s requirement, speed of service. The per
formance parameters are the characteristics or conditions which are of 
concern or are experienced by the operator. An example of a performance 
parameter is the percentage of the time a system is capable of performing 
its intended functions, the system availability. The engineering character
istics are the last level in the hierarchy of system effectiveness discussed in 
this paper. The engineering characteristics are the conditions or charac~ 
terlstics the builder uses to produce a system, an example is the mean time 
between failures, MTBF of a system component. 

These three aspects are also visible in the basic structure of a system. 
The black box model of a system exhibited in Figure 3 can be related to 
the tri-level hierarchial structure of system effectiveness. 

INPUTS 

BLACKBOX SYSTEM MODEL. 

TRANSFORMATION 
PROCESS 

FIGURE 3 

OUTPUTS 

The base of the effectiveness hierarchy, engineering characteristics, 
correspond to the technical specifications of the transformation process. 
The performance parameters correspond to measurements of the way the 
transformation process performs. The operational effectiveness of a system 
corresponds to measurements of the way the system's input/outputs effect 
the user. 

A major implication of this structure in the management of large scale 
systems is a delegation of responsibilities and a process of suboptimization. 
This process is a result of decomposing a system into components which 
are then optimized or improved independently of one another. What is 
proposed in this paper is a method of controlling the suboptimization 
process to insure actions taken with respect to the components are compatible 
with the overall objectives of the system and its optimization by using 
trade-off functions in the hierarchial structure described above. 
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2. MEASURH\ENTS NJD TRADE-OFF FIINCT IONS: 

Coombs, Raiffa, and Thrall (reference 3) define a measurement as a 
function from a set objects to a mathematical system. This paper is 
concerned with two types of measurement: measures of effectiveness and 
preference measures. If S is a set of systems and R is a subset of real 
numbers, a measure of effectiveness is a function ~:S+R. If_ P is a 
partially ordered set, a function p:S+P is a preference measure if 
p(x)~p{y) for x,yES implies x is as good as y. 

In the management of large scale systems, there are generally many 
attributes, characteristics, or conditions for which a manager is responsible. 
If {pi:S+Pi} represents managerial preference with respect ton different 

attributes, a preference measure T:S+P which is compatible with the managerial 
preference of the individual attributes should have the following property: 

(1) l.f x,ysS and Pi (x)~pi (y) for each i, then -r(x)~T{y). 

This property is equivalent to one of two properties used by Wymore 
to define the concept of a trade-off between orderings in reference 11. 
The second property in Wymore's definition is equivalent to 

(2) If x,y£S such that Pi (x)__:::.pi {y) for each i and there exists j 

such that Pj(x)>pj(y), then T(x)> T(y). 

As is often the case, a measure of effectiveness may also be a 
preference measure where the partial order is the naturil order of 
the real numbers. For a given attribute, more is generally better. 
However, it is possible that an increase in a particular attribute 
may not cause one system to be preferred to another system with a 
value for the attribute. In fact, the US Army Logistics Management 
Center has published an analysis which includes indifference curves 
which bound regions in which an attribute may be better for one 
alternative than another and yet the decision maker is not willing 
to say the one alternative is better than the other. This means 
that there exists situations in which the function representing the 
preference for the combined set of attributes does not satisfy 
property (2). A function, T:S+P will be called a trade-off function 
over {p.:S+P.} if property (1) is satisfied. 

I I 

The next Theorem is fundamental to the methodology for the management 
of large scale systems described in this paper. It is the essential 
characteristic of trade-off functions for use with the hierarchial manage
ment structure for large scale systems which w2s described in Section I . 

Theorem 1: Let A be a set of preference measures of a set of systems, s' 
{Ak} a partition of A. If Ok:S+Pk is a trade-off over Ak and T:S+P is a 

trade-off over .{ok:S-+Pk}, then T is a. trade-off over A. 

and 

Proof: If x,ysS such that p (x)~ p (y) for each pEA, then ok (x)~ ok (y) for 

each k. Therefore, T(x)~ T(y). Thus, T is a trade-off over A. 
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The next Theorem provides the basis for insuring that,the suboptimization 

process described in Section I is compatible with the preferences for the 
system expressed by a trade-off function. Before proceeding with the theorem, 
a definition of completeness is needed. 

A set of systems, S, is complete with respect to {p. :S-+P. }, a set of 
I I . 

preference measures, if for any element, a, in the cartasian product of 
p (s) there exists yES such that p. (y)> a. for each i. 

I - I 

Theorem 2: If S is complete with respect to {p.:S -+P.} and T:S-+P is a 
I I 

trade-off function which satisfies property (2) and each P. and P are 
I 

linearly ordered, then T(x) is a maximum over T(S) if, and only if, 
p1(x) Is a maximum over Pi (S) for each i. 

Proof: If T(x)>T(y) for each yES, suppose there is a j such that 
Pj{y)> Pj(x). Since Sis complete, there exists zcS such that Pj (z)~ Pi (x) 
for i~j and p. (i)>p.(y). Since Tis a trade-off which satisfies property (2) 

J - J 
T(i)> T(x). Thus T(x) is not maximum over T(S). 

If Pi (x) is a maximum over pi (S) for each i then, for ysS pi (x)~pi ~y) for 

each i. Hence, T(x)~ T(y) since Tis a trade-off. 

3. MANAGERIAL CONTROL THROUGH TRADE-OFFS 

The structure of the managerial problem in the design of large scale 
systems under consideration in this paper has four elements: 

(1) A set of characteristics or conditions which require separate 
expertise and also define the system management situation in the sense 
that preferences in the performance of the system are based on the 
characteristics specified. This means that the characteristics and/or 
conditions specified are complete. 

(2) A method of measuring each of the characteristics determined in 
the first element ~bove. 

(3) Standards or tolerances which are used to compare the characteristics 
measures in order to insure the compatibility of the attribute values with 
the overall objective of the system. 

(4) The means to alter the characteristic whose difference from the 
standard exceeds the tolerance. 

The model which forms the basis of the managerial control theory presented 
in this paper concentrates on the first three elements. It is assumed that 
the manager by definition has the last property. What we are concerned with 
is providing the responsible managers with the inforn~tion required to perform 
the control function rationally and effectively at each hierarchial level. 
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The first step in the methodology of managerial control of systems through 
trade-offs is to establish the top level characteristics or conditions to 
be controlled. The top level attributes in the management of large scale 
systems should be relatable to the user functions in the functional hierarchy 
described in Section I . The characteristics or conditions for the operator's 
managers to be concerned with are traded off by upper level attributes. 
Proceeding in the same manner through all the levels of the functional 
hierarchy, the measures established at each level are trade-offs of lower 
level attributes and are traded off by the higher level ~ttributes. 

Theorem 1 insures that the higher level attributes are trade-offs of 
subsets at each lower level. Theorem 2 supplies conditions under v1hich the 
suboptimization process necessary in large scale systems is consistent with 
the overall objectives of the system. 

4. TRADE-OFFS IN A COMMUNICATION SYSTEM (An Example) 

The purpose of a communication· system is to transfer information between 
two or more points. Figure 3 is a model of a simple communication system 
providing circuits between two points. 

1 

2 . . . 
N 

F1 gure 4 

Suppose the measurable purpose or overall objective of the system is to 
provide a required number of circuit hours per month where a circuit hour 
is defined as one circuit operating for 1 hour. Availability is a measure 
of the time a circuit is useable. It is expressable in terms of two 
engineering criteria which measure the maintainability of the system, 
Mean Time Between Failure (MTBF), and Mean Time to Repair (MTTR). 

The availability, Av, is defined to be MTBF 
MTBF + MTTR 

If A is the failure rate in failures per hour and P is the repair rate 
in repairs per hour, then p 

Av = A + p 

It can be shown that the availability is a trade-off over 1/X and p. 
Assume each circuit in the system has the same maintainability character
istics. The number of circuit hours per day for the given system is a 
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trade~off betwee~ the number of circuits and the availability of each 
circuit as represented by the following equation: 

where 

CHD == 24NAv 

CHD =Circuit Hours Per Day 
N =Number of Circuits 

Av =Circuit Availability 

Figure 4 summarizes the functional hierarchy and the appropriate measures. 

FUNCT I Of~AL LEVEL 

USER 
OPERATOR 

BUILDER 

Figure 5 

MEASURE 

CHD 
N 
Av 
N 
1/;\ 
p 

The standards or tolerances on N,l/A and pare established or linked to 
the user requirements through the trade-off relationship. 
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RADAR CROSS-SECTION DATA REDUCTION 

Ernest J. Sanchez 
National Range Operations Directorate 
U.S. Army White Sands Missile Range 

Abstract 

The main theme of the paper is the exact solution for the normalized 
backscatter cross-section of a perfectly conducting sphere utilizing Mie 
Theory. The Mie equation was used along with spherical Bessel and Hankel 
functions, Recurrence Relations and Mie Theory with proper boundary con-

. ditions applied. The paper takes you through step by step procedure of 
the exact solution plus the tie-in of these results to the Radar Cross
Section Data Reduction System. 

The problem of the scattering of electomagnetic waves from a sphere 
has received considerable attention due to a large extent to the fact that 
the rigorous solution has been known for a long time. 

The rigorous solution, known as the Mie series, allows numerical re
sults to be obtained to a high degree of accuracy. 

The subroutine utilized for the Mie series calculation is ADECRS. The 
most critical part of subroutine is the evaluation of the required Bessel 
and Hankel functions. ADECRS was modified from a Fortran II prooram written 
by J. Rhe~n~lein at M.l.T. for calculating the scattering of ~lectromagnetic 
waves by a lossless, layered spherical Dielectric or Eaton lens. ADECRS 
contains built-in checking procedures, which are independent of the calcula
tion algorithms to insure that sufficient accuracy in these functions as 
well as in other parts of the calculation is retained to give at least five 
significant figures in the result. The results from ADECRS have been com
pared with other published data for accuracy. 

The exact _solution for the backscatter cross-section for a perfectly 
conducting sphere is computed on the Univac 1108 computer utilizing double 
precision throughout the Fortran V subroutine ADECRS. 

Following the method of Mie, as outlined in Stratton. the backscatter 
cross-section of a perfectly conducting sphere is represented by 

- nr 2
. [ r (-l)n (2n + 1) (as - b5

) ]
2 

o - -- n n 
s 2 n= 1 p 

The paper contains an introduction. a mathematical analysis and deriva
tion of Radar Cross-Section ~quations; a bibliography, plus 17 illustrations 
and a glossary section. 
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I. ltlTRODUCTI ON 

A. Program Objective 

The RCS165 Module is a collection of subroutines v1i th a main program 

monitor developed for the A-Scope, AGC, and AGC-VCO radar cross

section (RCS) data reduction. RCS165's main function is to convert 

the digitized raw data to useful radar cross-section data on a daily 

production basis. 

A new version of the Radar Cross-Section Data Reduction System v:as 

deemed necessary due primarily to the many additions and changes 

that have been made to the subroutines for greater clarity, complete

ness, efficiency and new program requirements. 

The author would like to express his thanks to Liz Duran our secretary, 

for her tireless effort in typing this new document version. 

B. Changes from the Previous Version 

This is the first version of the program under MIPS. 

C. Operating Environment 

RCS165 utilizes Fortran V, and operates on the Univac 1108 ~~th the 

EXEC 8 operating sy~tem as a Stand Alone Program. This module is of 

an auxiliary nature. 

Core storage area is conserved by the utilization of overlaying tech

nique (segmentation) in the subsystem. 

A total of ten major output formats-are generated by this system to 

cover all present WSMR requirements. Tape Record format and listing 

information was typed so as to allow for-zeroxing of a specified 

format as requested by user without having to include other formats. 

246 



• MATinJ'JITJCAL ANALY.:.IS MID LOGIC 

A'. MATHEMATICAL ANALYSIS 

The following glossary is provided so that readers may find most 
of the definitions and description symbols utilized in this section in one 
place. Many of the tenns not defined here wi 11 be defined in the text in 
order to provide greater clarity and continuity. A term will normally be · 
underlined to denote a definition. 

Sections 2 through ::.2 con·i:ai n the derivation of the major equations 
utilized in the radar cross-section data reduction subsystem module 1 RCS165. 
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1. GLOSSARY (cOt:TltnlED) 

A-SCOPE 

Type A or A-Scope is a type of data presentation where the echo strength 
or target amplitude is indicated by vertical displacement (Y-axis) of the 
luminous spot and range by horizontal (X-axis) displacement on a cathode-
ray tube. There is no angle information displayed on this type of data 
presentation. 

Optical cameras are setup and calibration procedures are followed for 
A-Scope recording on film. The data is recorded on 35 mm film in three 
ways; Type I film is video pulse streak camera recording (strip film), 
Type II film is framing camera recording, and Type III film is intensity 
modulation streak camera recording. The timing on film is !RIG timing. 
This technical report covers the data reduction of strip and frame film 
data. A-Scope type data is primarily utilized when target discrimination, 
individual RCS for entire pulse, peak RCS, or other signature analysis 
is required. 

Another type of presentation is Type P or the plan position indicator 
(PPI) scope where a radial displacement of the spot from the center of the 
screen indicates range and the direction of the radial displacement indicates 
azimuth angle. 

A third type is Type B in which vertical displacement indicntes range 
and horizontal displacement indicates azimuth angle. There are 1nany other 
display systems in current use! but only the A-Scope type is currently 

:·being reduced at WSMR. {See f1gure 2.1) 

AUT0~1ATI C GAIN CONTROL ( AGC) 

The function of the AGC is to maintain the d-e level of the receiver 
output constant and to smooth or eliminate as much of the noiselike amplitude 
fluctuations as possible without disturbing the extraction of the desired 
error signal at the conical-scan frequency. One other purpose of the AGC 
in any receiver is to prevent saturation by large signals. 

The digitized AGC data recorded on radar field tape is pre-calibrated 
on the boresight tower in 5 db steps from 0 db-noise level. This data 
is then stored in the Milgo ARCADE Computer memory and during mission the 
target video is referenced to stored AGC precal. ARCADE is an abbreviation 
for Automatic Radar Control and Data Equipment. The reference AGC level 
is then recorded on radar field tape. The digitized raw data is produced 
as a positive displacement above the noise level. Each radar launches their 
own spheres and conducts the sphere calibrations immediately after mission 
completion. This type of data is normally converted to peak RCS. 
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' 1. GLOSSARY {CONTINUED) 

signal 
amplitude 

transmitted pulse 

sweep calibrated range 

A-SCOPE DISPLAY SYSTEM· 
· (Figure 2.1) 
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strong echo 
return 

weak echo 
return 

receiver noise 
(grass) 



1. GLOSSARY (CONTINUED) 

AUTOMATIC GAIN CONTROL-VOLTAGE CONTROL OSCILLATOR (AGC-VCO) 

AGC-VCO describes a type of raw data available from the FPS16's. The 
detected video is recorded on analog tape by a telemetry ~otion utilizir.g 
FM methods. The data is later digitized to machine counts and from there tc 
engineering units of db through the use of pre or post step calibrations. This 
type of data is normally converted to peak RCS. 

BEAMWIDTH (eb) 

The symbol theta sub b denotes beaml'li dth. The ·w; dth of the beam is 
usually specified by the beam angle between half-power points. This is the 
angle between lines on opposite sides of the beam axis along which the cower 
density is half as great as it is on the axis. The beam angle serves as a 
measure of the angular accuracy and angular resolution of a radar set. 

DEC I BEL (db) 

A unit for expressing the mag~itude of change in electrical power level. 
The bel is the fundamental division of a logarithmic scale expressing the 
ratio of two amounts of power, the number of bels denoting such a ratio being 
the logarithm to the base 10 of this ratio. The decibel is one-tenth of a 
bel. For example, with P1 and P2 designating two amounts of pm1er in \'/atts 
and n the number of d,ecibels denoting their ratio, 

pl 
n(db) = 10 log1o --P--

2 

DECIBEL REFERENCED TO ONE SQUARE METER (dbsm) 

If X is in square meters and X f is equal to 1 square meter then re 

X(dbsm) = 10 log 10 (X/Xref), 

In this technical report, radar cross-section is computed in square meters 
first, and then the above equation is utilized to compute dbsm. 
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1. GLOSSARY (CONTINUED) 
ELECTROMAGNETIC WAVE 

An electromagnetic wave consists of coupled electric (E) and magnetic 
(B) field oscillations. 

FOOT 

The definition of a foot is the one used by the United States Coast and 
Geodetic, rather than the international definition of one inch equals 2.54 
centimeters. This was selected since all ·the site surveys are based on this 
definition. Exactly 3937 feet are equal to 1200 meters exactly. These valu2s 
were obtained from IRIG Document 104-64, "A Glossary of Range Terminology." 

FREQUENCY (f) 

The number of waves (cycles) that go by a point in a unit of time 
(seconds). It is normally seen as megacycles (~k) for radar frequency; such 
as, 5490 Me per second for an FPS16. 

PEAK TRANSMITTED POWER (P
0

) 

The parameter P is actually the nns pm1er during the pulse. It is 
usually expressed in ~egawatts or 10 9 milliwatts. 

POLARIZATION 

For a plane electromagnetic wave, the electric field vector must always 
point in a direction perpendicular to the direction of propagation. If this 
direction is constant, the electric field lies entirely in one plane and 
the electromagnetic wave is said to be linearly polarized. If the direction 
rotates with time at a constant rate the wave is said to be elliptically 
polarized. A circular polarized wave is a special case of elliptical 
pol~rization. (See vertical and circular polarization). 

-· ···, 
·' 
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1. GLOSSARY (CONTirlUCD} 

POLARIZATION (CIRCULAR) 

If the electric field vector appears to be rotating clockwise to an 
observer looking in the direction of propagation, the polarization is said 
to be right circular or right elliptical. Counterclockwise rotation looking 
in the direction of propagation is, of course, designai~d left circular or 
left elliptical. This is the IEEE standard definition. The reader should be 
warned that many authors use the opposite definition. The FPS16's did have 
the capability for circular polarization at one time, but this has been 
removed. 

POLARIZATION (VERTICAL) 

Linear polarization can be divided into two orthogonal polarizations 
which are called horizontal and vertical polarization with the planes containing 
the electric field lying parallel and perpendicular to the earth's surface. 
The FPS16's transmit and receive a perpendicular (vertical) field. Associated 
with each electric field there is a magnetic field whose direction is 
perpendicular to both the electric field and the direction of propagation, 
but polarization is defined in terms of the electric field vector. 

POWER RETURN OR POWER RECEIVED (Pr) 

The radar receiver ret.urn pmver is not measured directly but rather is 
recorded as a power level (S) so many db above (or below) the receiver 
nois~ power (N). The receiver noise power is considered to be constant for 
all practical purposes but may contain a slight drift. The raw data from 
A-Scope, AGC, AGC-VCO, and the sanborns (strip charts) is therefore 
a record of the ratio (S/n) expressed in decibels (db). All four types 
of raw data can be expressed as a positive displacement above noise or In 
direct proportion to the step calibrations. 
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1. GLOSS/\RY (CONTI ilU[ D) 
. 

POYNTI r~G VECTOR 

The poynting vector describes the flow of energy in an electromugnetic 
wave. Its direction is that of the Have and its magnitude is equal to the 
rate at which energy is being transported by the wave per unit cross-sectional 
area (watts/m2 ). 

To 

(Figure 2.2) 

The variations in an electromagnetic wave occur simultaneously in both 
fields so that maxima and minima occur at the same times and places. The 
direction of the electric and magnetic fields are perpendicular to each other 
and to the direction the wave is moving. Waves are therefore transverse. 
The speed of the waves depends only upon the electric and magnef1cpropet-ties 
of the medium they travel in and not upon the amplification of the field 
variations. 

PROPAGATION VELOCITY 

The propagation velocity is the velocity of light in a vacuum. The 
value obtained from IRIG Document 104-64 is 299.7925 meters per microsecond. 

PULSE DURATION (T) 

The symbol tau denotes pulse duration which is the length of time a 
transmitter emits energy. Pulse duration determines range resolution. A 
pulse duration of one microsecond would result in a ranqe resolution cell 
of approximately 492 feet or 1 microsecond = 149.89625 meters. 
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1. GLOSSARY (COiH!t~UED) 

PULSE REPETITION FREQUENCY (PRF) 

PRF is the rate at which pulses im:; transmitted for a periodic pulse 
train; for example, lGO rRF or 160 pulses every 10'' :.. seconds. One of 
the uses of a radar·'s PRF is to determine maxi111urn range ft'OIT1 1vhich echoes 
can be returned without ambiguity. The propagation velocity (c) is divided 
by 2PRF. An example would be R(max) = 299.7925 m per 11 sec divided by 
2(160 pulse per lOG 11 sec) which is approximately equal to 936,852 meters 
or about 580 statute miles . 

. RADAR CROSS-SECTION ( o) or ( RCS) 

The symbol sigma or RCS denotes radar cross-section or altel'natively 
back-scattering cross-section. It's defined as the area interccptin~ that 
amount of power which, when scattered isotropically, produces an ech; equal 
to that observed from the target. An alternate definition is the cross
sectional area of a perfectly conducting sphere that would return the same 
power to the radar as does the actual target. RCS is normally expressed in 
M2 or dbsm. A third definition is the area which 1·:ould intercept sufficient 
power out of the transmitted field to produce the given echo by isotropic re
radiation. All three definitions are essentially equivalent to each other. 

The FPS16's are monostatic or back-scatter radars. This means that the 
receiving and transmitting antennas are one and the same. Back-scatter 
cross-section of a sphere (o ) is the value in M2 or dbsm computed in sub
routine ADECRS by the utilization of !·lie ·theory for exact solution of a 
perfectly conducting sphere. 

Range is defined as the propagation velocity multiplied by delta time 
divided by 2. Delta time is the time required electromagnetic energy wave 
to travel out to object being tracked and back. 
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1, GLOSSARY (CONTINUCO) 

SIGNAL STRENGTH (S) 

A measure of the power output of a radar at a particular location, 
nonnally the radar receiver. To measure signal strength (S) at radar 
receiver, a sphere calibration should be utilized. 

SlGNALwTOWNOISE RATIO (S/N) 

In radar, the ratio of the value of the signal to that of the noise. 
The ratio is expressed in decibels and is· expressed as the ratio of rootw 
mean-square signal voltage during the pulse to root-mean-square noise voltage, 
as measured at any point in the iwf portion of the receiver following the 
introduction of substantial gain and restriction of the noise bandwidth. 

HAVELENGTH (A) 

The symbol lambda denotes the wavelength of the energy transmitted 
by radar in meters per cycle. It is calculated by dividing the propagation 
velocity (c) by the frequency of radar. 

WHITE SANDS CARTESIAN SYSTEt~ (I~SCS) LEFT HANQ. SYSTH~ 

A Cartesian coordinate system with origin at the intersection of latitude 
($0) 330 05'0.000" North and longitude (A 0 ) l06o 20'0.000" \·Jest. At this origin, 
the XV plane is tangent to the Clark Spheroid of 1866 with the semi-major axis 
(a) equal to 6,37E,206.4 meters and the semi-minor axis (b) equal to 
6,356,583.8 meters. The eccentricity squared major (e2) = l-b2ja2 is equal 
to 0.00676 86579 97291. The eccentricity squared minor ((el)2) is equal to 
0.00681 47849 45915. The origin has a value of 500,000.00 feet East (E 0 ), 
500,000.00 feet No1·th (N 0 ), and 0.00 feet for (Z ). TheY-axis is an 
east-west line in the tangent plane passing thro8gh the origin and increasing 
positively eastward. The X-axis is a north-south line in the tangent plane 
passing through the origin and increasing positively northward. The Z-axis 
is perpendicular to the tangent plane and increasing positively uoward. There 
are numerous systems available for WSMR-provided data which are fully documented 
in Data Reduction Division Technical Report titled, "Coordinate Systems Related 
to HS1·1R," July 1964 where above values were obtained. 
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2 • RADAR RAHGE EQ!Jf\T I ON 

In this derivation, no propagation effects are considered. The radar set 
and the missile arc assumed to be isolated bodies in space. The antenna is 
positioned so that muximum radiation is directed toward the object. 

The te1111 "target" will refer to the object \'lhos~ radar cross section is 
desired. 

let R = the slant range from the radar to the target 

P
0 

= the peak power of the rectangular pulse transmitted from the antenna. 

This peak power. P , is spread over the spherical wavefront traveling out
ward from the antenna. 0 When the wavefront reaches the target, the area of its 
spherical surface is 4nR2 , and if the radiation were uniform in all directions 
the power density at the target would be P0 /4"R 2 . Because the antenna is 
directional, the distribution of power is not uniform. The pm,:er density is 
greater than P0 /4nR2 at the target and less at other positions on the wave
front. Thus the power density at the target is 

( 2. l} 

where Gt is a factor greater than 1 to take account of the concc~tration of 
energy 1n the direction of the missile. A fictitious antenna that radiates 
unifonnly in all directions is called an isotrooic antenna, and Gt is called 
the pow~~ of the transmitting antenna relative to an isotropic antenna. 
The gain Gt is the ratio of the actual power density at the target to the 
power dens 1 ty that \·.'oul d be produced by an isotropic. antenna. Part of t'le 
transmitted wave is reflected from the taroet. Wavefronts of the reflected 
wav~ are expanding spheres c~ntered at the-target. Suppose, temporarily, 
the target is a sphere having a perfectly conducting surface and cross 
sectional area. Such a sphere collects the power in an area a of the incident 
wave and reradiates this power uniformly in all directions, provided the dia
meter of the sphere is large relative to the lenqth of the radio waves. The 
reflected wavefront has an area of 4nR2 when it reaches the radar antenna, and 
therefore the pm·Jer density of the reflected wave at the radar antenna is 

(2.2) 

Actual targets may extract more or less energy from the transmitted wave than 
that contained in their cross sectional area. Furthermore, they absorb some 
of this energy and reradiate only the remaining part, and the radiation is 
usually far from uniform in direction. Nevertheless, the reflecting ability 
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of any target can be described by an area o~ called the section 
of the object, which is the cross sectional area of a pe ng 
sphel~e that would return the same pm·1er to the radar as does the actuol target. 
Equation 2.2 thus applies to all targets if o is considered to stand for 
radar cross section. 

The p01ver absorbed from the reflected wave by the radat antenna is propor
tional to the power density of the wave when it reaches the antenna. Therefore, 
the received power, Pr' is: 

(2.3} 

(The Radar Equation) 

where A is the constant of proportionality. This constant has units of area 
and is called the effective area of the receivino antenna. Equation 2.3 is 
kn01·m as the radar-·-·· 7 

In the FPS16 1 S the antenna disk is a circular paraboloid which is the 
surface generated by rotating a parabolic curve about its axis. The prop
erties of the parabola which makes it particularly useful for focusing 
radiant energy into a directional beam are characterized by two ray con
siderations: First, any ray from the focus is reflected in e direction 
parallel to the axis ·of the parabola; and second, the distance traveled by 
any ray from the focus to th~ rabola and by reflection to a plRne per-
pendicular to the parab6la axis is independent of its path, and therefore 
such a plane represents a wave front of uniform phase. 25 

Calculations of the antenna efficiency based on the aperture distri
bution set up by the primary pattern as vJell as the spillover indicate 
theoretical efficiencies of about 80 per cent for paraboloidal antennas 
when compared across the aperture, poor polarization characteristics, and 
antenna mismatch reduce the efficiency to the order of 55 to 65 per cent 
fer ordinary parabolic reflector. It should be noted that the antenna 
aperture of a parabolic reflector is the area projected on a plane 
perpendicular to its axis and is not the surface area.~ 

The aperture efficiency factor, Neta sub a (n ) is included for variations 
in illumination over the rture. A circular ao8rture with edoe illumination 
re~duced to suppress rate lobes will haven equal to 60 per cent. 26 

a 
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2. R/\0/\R f~ANGE EQU/\T~CONTINUCD) 

The theoretical gain for circular aperture may then be represented by 

(2.4) = 

r 
if >> 1 where r is the radius of the reflector and l3mbda (the wave-

lEngth) is the propagation velocity divided by the frequency of radar. 25 
For the FPS16,r/A is approximately equal to 32. 

The half angle subtended by paraboloid at focus is about 35 degrees 
for a gain efficiency of aperture of about 60 per cent. 

The beamwidth in degrees may be approximated utilizing the following 
equation for circular aperture. 

(2.5) 8 
b 

where D is the diameter of reflector. 

Thu~ equation 2. 3 may be rewritten in the form: 

(2.6) p = 
r 

If the same antenna is used for transmitting and receiving we have Gt = Gr = G 
and we may write 2.3 as 

( 2. 7) 

This latter form will be used in the rest of the section to derive the 
necessary formula. 
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3. 13/\CKSCATTER CJ<OSS-SCCTIOiJ FOH A PERFECTLY CONDUCTiiJG SPIIERC (os)-

The problem of the scattering of electromagnetic waves from a sphere 
has received considerable attention due to a large extent to the fact that 
the rigorous solution has been known for a long time. 

The rigorous solution, known as the Mie series, al1ows numerical results 
to be obtained to a high degree of accuracy. 

The subroutine utilized for the Mie series calculation is RCSCRS. The 
most critical part of subroutine is the evaluation of the required Bessel 
and Hankel functions. ~c.:::Ci'..S v1as modi fi cd frcm a Fortran I1 program v:ri tt0n 
by J. Rheinstein at t>l.I.T. for calculating the scuttering of electromagnetic 
waves by a lossless, li1yered sphet'ical OiC.'lcctf'ic or Eaton lens, see 
references. RCSCHS contains built in checking procedures, which are in
dependent of the calculation algorithms to insure that sufficient accuracy in 
these functions as well as in other parts of the calculation is retained to 
give at least five significant figures in the result. The results from 
RCSCRS have been compared with other published data for accuracy. 

The exact solution for the backscatter cross-section for a perfectly 
conducting sphere is computed on the Univac 1108 computer utilizing double 
precision throughout the Fortran V subroutine RCS CRS. 

Fc·llm·!ing the method of Mie, as outlined in Stratton, 22 the backscattE.'r 
cross-section of a perfectly conducting sphere 1s represented by 

(2.8) 

Since the values of the real and imaginary coefficients Re {a LIm {a}, n n 
Re {b } , Irn {b } , decrease rapidly for n > p, it is necessary to carry sumrnuti on 

n n 
only to n ; 2p + 5 or a maximum value for n of about 245 for r/>. = 19.00. The 
following notation is utilized. 

(2.9) p == 
2nr 

A 

where r is the sphere radius, and A- velocity of light/frequency. 
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J. CROSS -SECT! 

(2. 10) 

where jn (p) and hn(
2

) are spherical Gessel and Hankel functions and 
primes denote differntiation with respect to argument. 

(2.11') [ . ( )J I [p hn U') (p)J - P Jn P 

The above equation was utilized along with spherical Bessel and Hankel 
functions which are evaluated right in the program RCSCRS by the use of 
recurrence relations. 

Most of the problems and difficulties that are encountered are related 
to the generation of the necessary spherical Bessel and Neumann functions 
and to the evaluation of the determinants. 

The spherical Bessel and Neumann functions are calculated by the sub
stitution of A (p) and A n(p) for j (p) and n (r), respectively. These n - n n 
functions are related by 

jn(p) n 2n I 
(2.11-1) ::: p A ( P ) _{2r __ n_~_ TJ 

n 2n + 1 ! 

and 

(2.11-2) nn(p) :;; 
-(n + 1) A_n(p) p 

2n n! 

The function A (p) can be evaluated very simply since -n 

(2.11-3) 
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J. BACKSCATTER CROSS-SECTION FOR A PEHFECTLY COtHJUCTI NG SPHERE ( l's ){ CO:H ltHJ[O) 

(2. 11-4) 

and the recursion relation 

(2.11-5) 11 -n -1{p) = 11 -n{p) - ---------
4(-n - 0.5}(0.5 - n) 

can be used for calculating higher orders. 

The function An{p) is more difficult to evaluate. 

Assume that the argument is p and the largest desired order ism. Choose 
k equal to approximately the maximum of m + 20, p + 30 or 35. Then set 

{2.11-6) 

(2.11-7) H (p) = lQ-6 
k-1 

then, employing the recursion relation. 

{2.11-8) 
p2 Hi + 1 (p) 

Hj-l(p) ::: Hj(p} - -~-"'-...:.--l.....----

4{j + 0.5)(j + 1.5) 

determine all Hj(p), j k- 2, k- 3 •... , 1 
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J. BACf~SCATTER CfWSS-SECTJOfl rOR fl PERFECTLY COfWUCTING SPHERE (o
5

)(CONTINUED) 

Evaluate 

p 

(2. 11-9) II (p) = 
1 

sin p 

and determine the ratio 

(2.11-10) Y = II (p) I H (p) 
1 1 

It will then be found that 

(2.11-11) 

where n = 2,3,4, ..• , m 

and that the required functions are evaluated. 

The functions obtained in this manner may be checked by employing the relation 

(2.11-12) 

The detenni nants, as emp 1 oyed, have a form 1vhi ch may be evaluated ; n a 
relatively simple manner. If c(i ,j) denotes the element in rm·l i and column 
j,- the nonzero terms are c(i ,i-1), c(i ,i), c(i ,i+l), c(i ,i+2), fori odd, and 
c(i,i-2), c(i,i-1), c(i,i), c(i,i+l), fori even. Hmvever, c(l,O). c(2,0), 
c(2N-l,2N+l). and c(2N,2N+l) do not exist. 

After some mani pul ati on of the determinants, the ~1i e coefficients may be 
put into a form such that 

(2.11-13) 

2 
·N n 
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J. B/\CKSC/\TTER CHOSS-SECT!Oi'J FOR A PE!(fECTLY CmJDUCTlNG SPHCRC (('s)(COiHII:~ED) 

and 

(2.11-14) = 

The determinants N and D are identical except for the terms c(l ,1) and n n 
c(2,1). Similar fonns are obtained for the coefficients b by simnly multi
plying each element of rows 2i + 1, i = 0,1 ,2, ... by th~ fact:Jr di + 1). 
where E = 1 for a dielectric in free space. All c(i ,j) are real. 

If the above notation is employed, the determinant may be evaluated by 
the following scheme. 

Eva·luate 

(2."11-15) 8(2,2) ::; c(l,l) c(2,3) c(l ,3) c(2,1) 

(2."11-16) 8(2,1) c(l ,1) c(2,4) - c(l ,4) c(2,1) 

I :: 3 

(2."11-17) 8(1 ,1) ::: c(I,I-1) 8(2,2) - C(I,I-2) B(2,l) 

(2."11-18) B( 1 ,2) c(I + l , I - 1) 8(2,2) - c(I + l, I-2) B(2,l) 

(2 .. 11-19) 8(2,2) = c( I + 1 ' I) 8(1,1)- c(J,I) 8(1,2) 

( 2- "11- 20) 8{2,1) = c(I + 1, I+ 1) 8(1,1)- c(I, I+ 1) B(l,2) 

Then set I= I+ 2 and recompute B(1,1), B(l,2), etc. The value of the 
detenninant is the value of B(2,2) when I has reached th~ value 2N - l. 
This scheme for evaluating the detern1inants was found by employing Laplace's 
expansion by minors. As a check, the dete~1inants are evaluated a second time 
by employing a similar scheme found by a different form of Laplace's expansion. 

A simplified flow chart follows to aid readers through subroutine 
RCSCRS. (see figure 2.2-1) 
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b;d in data I 
.j. 

[calculate arauments for~ functions! 
+ 

!calculate ~n and ~-n] 
error 

Test An and lt_n 1 

.j. 

pn ntout 

Evaluate elements of determinant for 

]Evaluate deteminant! 

.!substitute Cifferent c(l,l) and c(2,1)1---------' 
l 

loetermine Mie coefficient] 
+ 

Evaluate determinant aaainl 
+ 

I Dete~i ne ~1i e coeffi ci er.t a_9ai n j 
+ 

-~ 1 error 
Com are Mi e coe __ ffi ci ents.!.... ~-~-~________,. -- - ::.n ntout 

Compute determinant elements forb n, 

Comoute and write backsc~tter cross-section\ 

(Figure 2.2-1) 
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J. BACKSCATTER CROSS-SECTION FOR A PERFECT! Y COND!Jr.TING SPHERE (': ) (CO:liiNPFD) 
s 

The data in table and plots has been normalized so as to be dimensionless. 
The following table is included to orovide the oosition of the minima and 
maxima of the normalized backscatter from a conducting sphere. 

POSIT ION OF MAXIl-lA CROSS-SECTION POSITION OF MINIMA CROSS-SECTION 

r/'A o/nr2 r/).. o/r.r2 

0.1636 3.65495 0. 2775 0.285041 

0. 3717 1.96958 0.4707 0.505600 

0.5659 1.58864 0.6626 0.634592 

0.7578 1. 41048 0.8543 0.716232 
0.9495 1. 30698 1.0458 0.772456 

1.1413 1.24023 1.2374 0.813423 

1.3331 1 . 19398 1.4292 0.844286 

1. 5249 1.16016 l. 6210 0.868137 

1. 7169 1.13451 1.8130 0.887011 

1.9089 l. 11453 2.0051 0.902239 

2.1011 1.09864 2.1973 0.914714 

2.2933 1. 08576 2.3896 0.925057 

2.4857 1.07515 

(Figure 2.3) 

The following plots were generated from RCSCRS data and were plotted to 
four significant figures utilizing the EAl 3440 digital plotter. 
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L.. SIGNAL STRENGTH 

Signal strengtt1 (S) is the measurement of the po\'tcr output of a radar at 
a particular location. To generate (S), a sphere calibration should be E:n;rloyed. 
The signal strength in milliwatts may be computed utilizing 

(2.12} s 

. (2.13) S(dbm) ~ 10 log (S/1 milliwatt) 
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5. SIGNAL-TO-NOISE RATIO (S/N 
' 

The radar equation as derived by D. Barton is as follows for i-f signal -
to-noise ratio utilized to measure radar effectiveness. 

(2.14) p· = 
r 

s 
N 

= 

This i-f or "single pulse" S/N ratio does not measure the over-all 
effectiveness of the radar, but serves as an intermediate step in a number 
of further calculations . 

Departure from free-space propagation conditions must be accounted f or 
by appropriate components of the total system loss factor L or by modificatic r. 
of the antenna gain G. 

The transmitted power is assumed to lie within the bandwidth B of the 
receiver, after reflection from the target and propagation thro ug h the medium. 

In the above equation NF is the operating receiving system noise f actor, 
Sis the signal strength, k 0 is Boltzmann ' s cons tant , (1.38 X lC - 23 watt per 
cps per degree Kelvin), T0 = 290° K, B is the equival ent noi se bandwi dt h of 
the receiver in cps. A more rigorous discussi on of the above may be fo und 
in Radar System An alysis by David K. Barton whe re thi s secti on has been 
taken from. 
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6. SPHERE EQUATION 

The sphere equation is basically the radar range equation in which th~ 
units of P have been converted from watts to db. ~e will assume in this 
subsectionrthat the values P0 , G, A, and c in equation 2.14 are constant. 
The assumption that o and aspect angles be constant at all times means, for 
all practical purposes. that a sphere must be the object tracked. 

w;th the above assumptions equation 2.14 becomes: 

(2.15) P =-..!._ where K = (P G2A 2
o ) I (4n)3kT BNF L 

r Rlf o s o o 

By taking the log of both sides of 2.15 we obtain 

(2.16) log Pr = log K- 4 log R 

Multiply both sides of 2.16 by 10 

(2.17) 10 log Pr = 10 log K- 40 log R 

Since 10 log Pr = Pr (db) + 10 log Pref for Pr in watts and Pref the 

reference power, we may substitu·e in 2. 17 and get 

(2. 18) Pr(db) + 10 log Pref = 10 log K- 40 log R 

Or 

Pr(db) = - 40 log R + 10 log K- 10 log Pref 

But K and Pref are constant and thus we can make the substitution 

And obtain 

(2.19) 

b = 10 log K - 10 log Pref 

P (db) = - 40 log R + b (The sphere equation) r 

Thus the received power in db varies 1 i nearly as the 1 og of the range \vhen 
the target being tracked is a sphere or has constant cross section. 
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6. SPHERE EQUATION (COIHHJUED) 
"" 

A BBAR is then computed to be utilized in cross-section equation later. 
The equation is written: 

(2.20) 

Or 

(2.21) b{db) = l E~ b 
n 1 = 1 i 
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7 . CROSS-SECTION EOUATJON 

The problem with using the range equation directly to solve for radar 
cross section is that of determining P , G, and A. While P and > arc not 
difficult to calculate, G is extremely 0 hard to find in a pr~ctical situJtion. 
The reason is that receiver gain must also be considered. Henceforth G will 
be used to mean "1101-1er gain" in the system. Also, it may be possible on 
some radars to vary P and >. 1-Je may assume hov1ever, that for a short time 
interval, say one or £wo hours, that P

0
, and G, and>. remain constant. This 

assumption means that the radar operators must not change these values during 
this time period. 

In this subsection the notation 1-1ill be as previously described but an 
additional subscript twill mean that term refers to the target, an swill mean 
the tenn refers to the sphere. e.g., P has been used for received power, 
thus Prt means power received from the target and P means power received 
from the sphere. r.s 

To derive the cross section equation we will divide the range equation 
for the target by the range equation for the sphere, then solve the resultant 
for ot . It is assumed that throughout the target and sphere tracks that P , 
G. and >. remain the same. Thus we have: 0 

p G2t.2o 

prt :; 
0 t 

( 4n) 3 R '1 
t 

(2.22) 

(2.23) 
P G2>.2o 

P rs = 0 s --"·--
(4n)3R 4 

s 

Therefore 

(2.24) = 

Hence we get 

(2.25) 
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7. CROSS-SECTION EQU/\T!Ofl (COtlTINUED) 

Since the power tem1 in 2.25 refers to pov1er received, the subscript r 
is usually dropped and tile equation v!ritten: 

(2.26) 

The cross-section equation 2.26 is further changed by letting: 

(2.27) 
0 

RFAC = ---'s~ 
p R 
s s 

Taking the log of both sides, then multiplying both sides by 10 and 

using definition log ~Z = log X - logy - log Z on equation 2.27 vie get: 

(2.28) 

Since X(db) 

l 0 1 og RF AC = 1 0 1 og o s - ( 1 0 l og P s + 40 1 og Rs ) 

= 10 log ( X ), we may substitute in 2.28 and we have 
X ref 

Then utilizing 2.20 we get 

(2.29) RFAC(db) = 10 log os - b 

Taking the antilog of 2. 29 we obtain in watts, 

(2.30) RFAC = loo.l[RFAC (db)] 
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7 • CROSS-SECTJO~~ EQUATION (COt!TlNUEO) 

Taking the antilog of power received from target, we have in watts, 

{2.31) 

All parameters are now in proper units and are used conjunctionally to fonn 
new cross-section equation as follows: 

{2.32). (The Cross-section equation) 

To obtain at in db per squar~ meter (DBSM), we use the definition 

X 
X(db) = 10 log (-- ) where Xref ::: 1 m2 

X ref 

and we get 

{2.33) 
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8 • ASPECT OR V_JEW /l.f\GLE ( o) 

The a~ct or vic·~~1nole_ denoted by the symbol theta is the angle betwcP.n 
the tot~T VCIC<::1t.Y ve::or an•~ t:~e slant I"Cinge vector. This can also be 
dt:flned :!S the angle betw~~en unit vect(lr dlonq longitudinal axis of target 
~nd a unit vector along the radar line of sight . 

... 

mi s::: i1 e path 

~----- -- ~--

LAUNCH SITE 

(Fi:Jure 2.9) 

The vector SR is defined as· follows: 

(2.34) SR = D + o
1 

+ o 
X Z 

' , ~------- radar LOS 
...... 

' 
RADAR SITE 

F~·o:n the cii s t.&nr.e fo~r:oul r.; \IE' chtai r; the magnitude of the s 1 ant range 
vr:ctot: as fo 11 ow!; : 

i2 --~) \ .• .l...> 

(2.36} 

( 2. 37) 

SR = jsRi 

ox = 

Dy = 

Dz ': 

(Xtgt 

(Ytgt 

+ D 2 + y 

Xrad) 

y rad) 

(Ztgt - zrad} 

D 2 
z 
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8. ASPECT OR VJHI /\iJGL[ (()) (CONTINUlli 

The vector vt ; s dcfi ned as foll 0\•IS: 

(2.38) Vt=V +V +V X y Z 

The magnitude of the velocity is as follows: 

(2.39) 

(2.40) 

(2.41) 

(2.42) 

(l~.43) 

A· B = A B cos o. 

1\·8 
cos o. = -- where 

AB 

if A= A . + A . + A k. 
11 2J 3 

and B = B . + B . + B k 
11 2J 3' 

o < a < 1! - -

then A·B = A B + A B + A B 
1 1 2 2 3 3 

By utilizing the dot product definition 2.43 we get 

(2.44) a. = arc cos 

- {V D + V D + V D ) 
XX yy ZZ 
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8. ASPECT OR VIUJ 1\NGl.C (n) (CONTINUCO) 

Now a is defined as follOI'>'S: 

If a is negative radians, set o =a+~ 

If a is positive radians, e =a 

where o :::. e ::_ 'll 
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9 · ROOT MEAN SQUARC ( Rt·1S) EQUI\TI ON 

The root-mean-square (RMS) of the deviations from the mean is derived 
as follows: 

Let y = l r~ y 
n 1 = 1 i (Arithmetic mean) 

For large values of n (certainly n>30), the following equation is used 
for RMS. 

(2.45) RMS :: 

For a small population (n~30), the following equation is used for RMS. 

(2.46} RMS = 
r~ 

l = (y. - Y) 2 
l 

n - 1 

For norma 1 dis tri buti on, we wi 11 uti 1 i ze the fo 11 O'lli ng , 

.Y - 2RMS y - 1 RMS y y + lRMS y + 2RMS 

(Figure 2.10) 

where one standard deviation on either side of mean covers 68.27% of 
the area underneath the curve, ±2 deviations is 95.45% and =3 deviations is 
99.73%. 

Root-mean-square de vi ati on is utili zed in subroutines RCSLSQ, RCSCII.L, 

and RCSXSC. 
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lO. CURVE FITTING AND TilE f1ETHOD OF LE/\ST SQUARES 

In this derivation, the notation and wording has been changed to conform 
with other sections of this appendix. 

Let us start with a scatter diagram in figure below 

X 

y 

( F i g u re 2 . 11 ) 

where x is a dependent variable and y is independent. 

From the scatter diagram we can pass a smooth curve which "fits" the 
given set of data as in figure 2.12. 

X 

y 

{Figure 2.12) 

We will call ·R. the difference between x. and the smooth curve. This 
difference R. is cAlled the deviation. It i~ also sometimes called the 
error or resldual and may be positive, negative, or zero. 

DEFINITION: Of all smooth curves approximating a given set of data points, 
the curve having the property that 

R2 + R2 + ••. + R2 
1 2 n 

The above may be rewritten as 

is a mini~um is called a best fitting curve. 

{2.47) E~ R~ = S where S is at a minimum 
1 = 1 1 

A curve having this property is said to fit the data in the least square 
sense and can be lin~ar, quadr~tic {parabolic), cubic, or a fourth degree 
curve, or larger according to method used. We will derive the linear curve 
below. 
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10 • CURVE FITTING /\rm THE I~ETHOD OF L [/\ST SQU/\RES (CONTINUED) 

The least square line is derived as follows: 

Let y = Ax + B 

y = f(x) 

It follows that 

R. = B + Ax. - y. 
1 1 1 

R. = f(xi) - y. 
1 1 

let S = 1:~ R? 
1 = 1 , 

(2.48) s = I~ , = 1 (B + Ax. , - y. )2 
1 

Taking the derivative and setting the results equal to zero we obtain the 
following: 

(2.49) (B ~ Ax. - y.) = 0 
1 1 

(2.50) aS 
2 1:~ x. (B + Ax. - y.) = 0 --

1 1 = 1 1 1 oA 

Let us substitute 

l:~ n 
1 

x. = IX, and I y = E y from here on ; n. 1 = 1 
i = 1 i 

Dividing both sides of equations (2.49) and (2.50) by 2 and clarifying we 
get the following set of nonnal equations 

( 2. 51) 

(2.52) 

Bn + Arx - ry = 0 

Brx + Arx2 - ry.x. = 0 
1 1 
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lC CURVE FITTl NC /\NO TilE ~1CTII0[) Or LC/\S1 SQU/\HE~ONTJ Nl}ED) 

Solving simultaneously and letting 1\ = g we get 

rxy l r.y 
A= Q = 

- - l:X 
(2.53) n 

c 1 Ex 2 --EX Ex n 

the coefficient A in y =Ax+ B. and 

{2.54) B = 
l (Ey r x2 -Ex Exy) n 

1 tx 2 - - EX EX n 

Nov1 by substitution we may change equation 2.54 to obtain 

B = 
l Ey Exz - l rx Exy 
n n 

c 

The above equation is further manipulated to 

B = 

which can be factored out to 

B = _!:L (rx2 -
nc 

Ex Ex 

n 
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10. CUHVE FITTING AND THE f·1ETHOD OF LEAST SQUAr~ES ( CONTINU!::O) 

Now by substitution we have 

I 
( B = Cr.y Dzx 

nC nC I 

which by further clarifying and remembering that A = g we may alter to 

(2.55) B=~-A~ n n 

the coefficient B in y = Ax + B. Hence equation 2.53 and 2.55 are utilized in 
subroutines to compute coefficients A and B. Curve fitting using the method 
of least squares is utilized in RCSLSQ for "unskewing" the pulse on film due 
to photographic process. 
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11. STANDARD ERROR OF EST1MATE 

If we let yest represent the value of y for given values of x as estimated 
fr.om y = Ax + B, a measure of the scatter about the regression 1 i ne of y on 
x is given by 

{2.56) s = 

n 

which is called the standard error of estimate of yon x. 

Squaring equation 2.56 we have 

s2 = 

n 

Now we substitute Yest = Ax + B and obtain 

E (y - Ax - B) 2 

s2 = 
n 

Expanding above we get 

r[y(y - Ax - B) - Ax(y - Ax - B) - B(y - Ax - B)] 
n 

Now we clarify the above expression by first applying the definition on 
surrunations 

l:{ax + by - cz) = ·a Ex + b r.y - cn 
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11. STANDARD ERROR OF EST! MATE (CONTI NlJG.Q)_ 

and then utilize the normal equations 2.51 and 2.52 to obtain 

52 = ry 2 - Any - BEy 
n 

Taking the square root we finally have 

(2.57) s = ~ _I:::::.Y~....-2_-~A~~::..:.x:.L.y_-.....:B:..:I;..L.y __ (The standard error of 
estimate of y on x) 

The coefficients A and B used in equation 2.57 are obtained from equation 
2.53 and 2.55. The standard error of estimate is utilized in RCSLSQ and 
RCSCLl for co~puting threshold value. 
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12. DENSITY OF A CHAFF CLOUD 

The Density of a Cr.:1ff Cloud is defined here as the radar CTtlSS-section 
per volume. The radar cross-section ot(m2 ) is as shown in cqunt:ion (2.32). 

·---_..;..... 
····~·-Radar 
Site 

(Figure 2.1J) 

The beamwidth 0t is approximated utilizing equation (2.5) for circular 
aperture where the frequency of the radar and the diameter of the reflec
tor are taken into consideration. 

The constant for depth penetration is the transmitted pulse duration T 
in microseconds converted to kilometers as described in the glossar~·. 

The area of a circle is nr 2 . The radius r of the circle was found by 
using ~he following equation where SR is the Slant Range in kilometers. 

( 2. ;s) ,0h, 
r = SR sin~ 

The volume V is defined as the area of the circle multiplied by the 
pulse duration, tau)and the units are kilometers cubed. 

( 2. 59) 

The density D is then 

( 2.60) D- ot(m2) 
- 1rr2T 

where the units of measurement are RCS(meters squared)/Volume(kilometers 
cubed). 

This computation is incorporated into subroutine RCSXSC only. 
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II. UJ,TilEHi\TlCAL JiNJ\J.Y~J.~ AlJD LOGJC 

B. Lor,ical Procedures 

All deck setups have been standardized between each subroutine for 
confonni ty within itself and with other data reduction subsystems. 

The modvLi may be utilized to process one subroutine by itself or 
to process a multi-call ''stacked job" in a computer pass or run. 

Flexibility is built into the subsystem for future expansion or grO\IIth. 
This can be accomplislled by followine the technique presen-cly used in this 
system for addition of new subroutines to meet additional WS!-J.R data reduc
tion requirements. 

The author wishes to acknowledge all contributions to the "state of 
the art 11 of radar cross-section data software programs and technical reports 
by various people throughout the years, especially Darold W. Comstock, 
Richard H. Dale, Eugene H. Dirk, Jr., and Leonard D. EricY$on, in NR-A, 
White Sands Missile Range, and Grahc..m Hall, Harlan F. Lerum, J.V. Migliorato 
and Neil E. Feichtner at the Air Force Ballistic RE-entry System/Ballistic 
Missile research System (ABRES/E.ms), Data Center at Hol1oman Air Force 
Base. The list is not necessarily complete, and the author apologizes for 
a,ny omissions. 

Due to the dynamic aspects and continual evolutionary process in-
volved in data reduction, the "state. of the art' 1 of radar cross-section data 
is continually being improved upon because of advances in computers and 
computer technology, scientific equipment, and the discovery of better data 
reduction and programming techniques; hence suggestions, ideas, contributions, 
or valuable criticism are welcome, and will be incorporated in future versions. 

A simple definition of radar cross-section data is the size of an object 
as it appears to a radar regardless of its actual size. There is no simple 
relationship behJeen the actual size and the radar cross-section. One of the 
methods used to find this relationship is by the use of scale models in an 
indoor test range called radar anechoic chambers. The models are place on 
turn tables so that various aspect (view) angles may be obtained. Another 
method is by use of sphere drops or sphere raises by balloon as a method of 
comparison. The sphere technique is the method used in this report. Radar 
cross-section can then be defined as the cross-section area of a perfectly 
conducting sphere at the same range as the target which would return the 
same power as the target. Normally, a tethered sphere is lofted on a 
balloon or a sphere is dropped from an aircraft after a mission has been 
completed. The power return bounced back and the slant range is measured 
and recorded for sphere and this becomes the BBAR value in the reduction 
of mission data. Radar cross-section is then computed from BBAR, power return 
from mission, slant range from radar trajectory data, the radar theoretical 
back-scattering cross-section for a perfectly conducting sphere of known 
size and frequency, and the radar equation. The ECS165 module utilizes 
the fact that radar cross-section depends on radar frequency, the angle at 
which beam strikes target, the polafization of the signal, plus many other 
radar constants and variables unique to each radar such as RAM, R~IPART, 

FPS16, TTR, HAPDAR, RTMS, DR, and MAR. The flexibility to handle above 
mentioned radars is built into the subroutines comprising this monitor. 
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B • Logical Procedur(> (CONTINUED) 

There are three distinct types of data that are handled by RCS165 
For better clarity. each one will be discussed separately. 

The first is A-Scope. A-Scope is a type of data presentation where the 
echo strength or target amplitude is indicated by vertical displacement 
{Y-axfs) of the luminous spot and range by horizontal (X-axis) displacement 
on a cathode-ray tube. There is no angle information displayed on this 
type of data presentation. The radar signal or burst of energy is bounced 
off the target and optical cameras are setup and calibration procedures are 
followed for A-Scope recording film. The data is recorded on 35 ~m film 
in three ways; Type I fi1m is video pulse streak camera recording {strip 
fi 1m) , Type I I is framing car.1era recording. and Type I I I fi 1r.1 is intensity 
modulation streak camera recordir.g. The timing on film 1s !RIG timing. 
This technical report covers the data red~ction of strip and fram! film data. 
The film is assessed and then read on our PFR-3 A-Scope Film Reader System. 
The A-Scope f11m Reader System (:\FRS} \'tas designed ty Lincoin Laboratory, 
Massachusetts Institute of Technology as a part of an Advanced Research 
Prcj~ct f\g2r.cy (ARPA) ?:"Oject and huiit by Information International Incor
por~tPd, Camb~idge, Massachusetts to read film on a semi-automatic basis. 
The P.fR Sy;tem utilizes the Prograrrrned D2.ta Processor (PDP-1) computer to 
operete and control input-output devices. A-Scooe type data is primarily 
utilized vihen target discrimination, individuzl RCS for entire pulse, peak 
RCS, or other signature analysis is required. 

Tlte seco'"!d type is the Automatic Gain Control (AGC) type. The digitized 
AGC data recorded on radar field tape is pre-calibrated on the boresight tower 
in 5 db steps from C db to noise level. This data is then stored in the Milgo 
(ARUm:) Computer r.leli.ory and· during mission the tarf;~t video is referenced 
to stor2d AGC precaJ. ARCAD: is an abbreviatio~ for Automatic Radar Control 
and Data Equipment. The referEnce AGC level is then recorded on radar 
field tape. The digitized raw cieta is orod~ced as a positive displacement 
above ·thr: noise level. Each radc.r l:u;n.::.h2.s their ovm spnercs and conducts 
the sphere calibrations immediately after mission completion. This type of 
data is normally converted to peak RCS. 

The third type is the Automatic Gain Control -Voltage Contl·ol Oscillator 
(AGC-\ICO). The detected viceo is recorded on analcg tape by a teiemetry van 
station utilizing Hl methods. The data is later digitized to machine counts 
and fro:n there to engineering units of db through the use of pre or post 

-step calibrations. This type of data is normally- converted to peak RCS. 
All three types utilize sphere calibrations. The third type utilizing 
telemetry is used very little for obtaining peak RCS as type two is faster. 
Type three is utilized more for radar system analysis work. 
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B. Loaical Procedures ( CotlTINUED) 

Radar signature data and radar cross-section data Nre two terms that are 
synonymous and are used interchar:geaoly in this report. 

Radar Cross-section is often measured in OBSM (db per meters squared) which 
is plottNi as shm-m in figure ·1.1. Analysis of this pattern would in~~<.ate 
shape of vehicle, the number of protrusions, \'Jhether target is spinning and if 
so at what rate, plus other information according to needs of customer. RCS 
is often plotted against time, altitude, aspect angle, and slant range. 

Figure 1.2 shm·ts the characteristics of instrumentation Radar Ati/FPS16 and 
Figure 1.3 is a map of the "on range 11 rad<Jr sensor instrumentation sites for 
FPS16, chain, surveillance, and project radars. 

Target discrimination and penetration aid techniques are but two of the 
many areas dependent on the output of a proqrem 1 ike RCS165. One of the 
fields where c:.nalysis vf R.CS data is requird i:s in re-::::ntry bcdy studies. 
As a vehicle re-enters the atmosphere, the shock 1vaves formed cause a 1 ayer 
of e1ectrons on the body of the nhicle. Thi'l plasma sheath causes a drastic 
chan9e in cross-section as compared to free space cross-section. The ionized 
field or wake which follows the vehicie also causes a reduction or enlargernent 
of cross-section. The study of this phenomena in signature data analysis can 
be utilized in the development of antiradar signature de::oys or in the deter:n·in
ati or: of enemy wa)'heads in a mass of '"'e-entry vehi c i es by cross-section data 
predictions. Its mea:;tJrements (the 1·ecognition of shapes such as conical, 
cy::ir.dric~i ~ spherical~ or any ~eo:netrical combination) and numerous other 
technique; are nm-t being refined t:y Signature Data r~nalyst contracto:--s through
out the natic~. The s·ignature Analyst can then be expected to cor:'e up with a 
reasonabla approximation of the ur,k!IOWil boC:y by knowing the characteristic 
returns of certain bodies and th~ recognition and c~taloging of different 
shapes. 3 0 

Since warhead must be identified in ti~2 for defensive action, a 
computer is necessary. A computet·, hmvever, tends to take things too literally: 
if a return differs slightly from the description wMich is given to it, the 
ccxnputer \•ri 1l not recognize the object. But r1ith ne1., computers ~vhi ch are 
capable of learning and with i~prov2d optical technioue for pattern 
recognition, perhaps this problem is closer to a solution. 

Another big area where RCS Dlta Analysis plays an important role is 
in Electronic Counte1~easures (ECM) studies. ECM embraces such techniques 
as jarrrning triJnsmitters, set-on receivers, false target repeater, simula
tion of different aircraft radar signatures by the use of decoys, chaff 
clouds cut to an appropriate size to resonate at the frequency of the t'adar 
to be ja~ed, and other techniques by which the enemy is denied the use of 
the electromagnetic spectrum for radar, communications, navigation and 
guidance.3 1 
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D. Loc:icnl Procedun·;; ( COl'TltJUED) 

The future of RCS is very bright ind~ed. The resolution cap~hility 
of radar is constantly being upgr~ded. With the use of synthetic-soectrum 
radar. chirped radar, phiJsed-array systems, etc., the resolution should 
improve to the point where the imaq~ of a distant target will correspond more 
to its physical than its electrical features. 

The beh:1vior of wake and plasma phenomena is becoming better under
stood as more advances are made. Coupled with new approaches to co~puter 
printout, this should provide displays of greater validity. The entire 
fie1d of RCS in re-entry physics, radar profiling, passive radar detection, 
and large-scale air traffic control has barely been opened. 2 9 
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TABLE OF CHARACTERISTICS OF INSTRUiil"IHATI.Q!!_£_A_pAR AN/FPS-16 ;:r, ,n ,2B 

System Noise Figure 
I.r. Center Frequ~ncy 
Bandwidths 
local Oscillators 
AFC 
Non-Tracking I.F. 

Range 
Gate Hidths 

/lid<>d Tracking 
Naximum Slew Rqte 
Maximum Tracking Rate, 
Automatic Lock-On 
Servo Band11i dth 

f-;~nge ·Accuracy 

1\idc.J Tracking 
Maximum Slew Rate 
l~aximwn Tracking Rate 
Servo Bilndl"li dth 

Scan 

Angle Accuracy 

Potentiometer 
Sycro 
Dig ita 1 

RECEIVER SYSlUI 

- < 11 db 
- 30 fJ,C 
-Hide 8.0 MC, NJrrow 1.6 MC 
- Two - Skin and C2acon 
- Skin or BeJcon 

Non-gated menuJlly gilin controlled receiver, 
video added to tracking video for display only 

RANGE TRACKING SYSHM 

- 1,000,000 vards 
-Pulse widths 0.25 11S, 0.5 IJS, 1.0 us 

Acquisition 1.0 I'S, 1.25 1-S, 1. 75 11S 

Trackir>g C.:; ~-s, 0. iS 1's, 1.25 . ~ 
- Yes 
- 40,000 ya•·ds ~er srcond 
- 12,000 yar~s per second 
- Search ±1000 VJrcts, and euto lock 
-Continuously ·~djustab~r ~JJnually or autor'1,JticCJlly 

between 0.5 ens (K = 2000) and &.0 rps 
(K ., ?.V•J) v 

v 
- !3.S tQ ~15 y~rds 

p.NGLE TRAQU_NG SYSTUl 

- Yes 
-Azimuth 48° per second, Elevation 37" per second 
- Azimuth ~2° per second, Elevation 22.5" per second 
-Continuously adju5ti;lble rBnual1y or duttrnatically 

betwrcn 0.5 cps (Kv ~ 150) and 4.0 cps (Kv = 300) 
- Circle scan of adjustable radius anrl rate. Also 

sector scan in azimuth and elevation 
- ±0.05 mil to ~0.3 mils 

DATA OUTPUTS 

•· An11y or· Navy speeds 
~ Seria I straigl1t bi nilry 

Range 20 bits (0.5 yard quanta) 
Angle- 17 bits ( < .05 mils quanta) 

(Figure 1.2) 
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TABLE OF CHARACTERISTICS OF INSTRut1ENTATION RADAR AN/FPS~ 16 26 ,27 ,2e 

Axes 
Weight 
Plunging Capability 
Azimuth Coverage 
Elevation Coverage 

ANTENNA PEOEST/\L 

- Azimuth and Elevation 
- 12,000 pounds 
- Yes 
- Continuous 360° 
- 10° to 190° 

ANTENNA SYSTm 

Size 
Feed 
Gain 

- 12 foot diameter parabola 

Beamwidth @3 db pts 
Polarization 
Rotary Joints·and Waveguide 

TYPE - MAGNETRON 

- 4 - Horn Monopulse 
-44.5 db 
- 1.2 degrees 
- Vertical 
- 3 Megawatt capability 

TRANSMITTER 

Peak Po~1er Max. Duty Cvcle 

R-113, R-123, R-127 

Eight Other FPS16's 

3MW 5450-5825 MC 0.001 

1 MW Fixed Tuned 5480 .': 35~1C 0. 0010 
250 KW Tunable 5450 - 5825MC 0.0016 

PRF- Internal: 3MW-12 steps between 142 to 1707 PPS 
Internal: lMW-18 steps between 71 to 1707 PPS 
External: Any PRF between 160 to 1707 PPS 

Pulse Width- 0.25 ~s, O.S~s and l.O~s 

Coding - Up to 5 pulses within Duty Cycle Limitations 

(Figure 1.2) 
CONTINUED 
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TABLE OF CHARJI.CTERISTICS OF II1SlRti1EttTATION RIIDAR !lri/FPS- Hi 26 , 27 ,a 

Range 

Angle 

Noise Figure Measurement 
Tt·ansmi tter Power 

DISPLAYS 

- Dual A-Scope 
Dials 
Digital-Oct~l numeral 

- Dials 
Digital-Octal numeral 

MONITORING 

Range and Angle Servo Performance 
Significant Wavefo~ns 
~l9nificant Voltages and Currents 
Strip Chart Recorder and Signal Patch Panel 

.!JSE 

Provides real-time infon':at"ion to he Missile Flight Safety Officer, 
tr~.jcctory, ~-!:cope, ,'\GC ~;:;t~ tot'.·~ rroject, acquisition cht•• too:~~·· 
r<l!'l!Je data g'ltherirg systcrns, a11d ,- :·to•·ing data for drom:s und targ·21; 
aircraft. transmit digital data 1n real time. 

(Figure 1.2) 
CONTINUED 

II. 51 
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A NONUNEM SINGULMLY PERTURBED VOLTf.RPJ\ INTEGRODifFERENTlAL 
EQUATION OGCURRING IN POLYMER RHEOLOGY 

1), 2} 1) A.s. Lodge , J.B. McLeod , and J.A. Nohell), J), 4 ) 

l~athematics Research Center, University of Wisconsin, Madison,Wisconsin 

ABSTRACT 

We study the initial·value problem for the nonlinear Volterra 

integrod ifferential equation 

t 

- p.y'(t} = J a{t-s)F(y{t},y(s})ds (t) O) 

(+) { -oo 

y (t) ::: g (t) ( -oo < t ::S 0 ), 

where · I! > 0 is a small parameter, a is a given real kernel, and r, g 

are given real functions; ( +) models the elongation ratio of a homogeneous 

filament of a certain polyethylene wh5.ch is ~tretched on the time interval 

(-oc, 0], then released and allowed to undergo elastic recovery for t > 0. 

Under assumptions which include physically interesting cases of the given 

functions a, F, g, we discuss qualitative properties of the solution of { +} 

and of the corresponding reduced problem wh.en J.1 = 0, and the re)ation 
+ between them as J.1 -0 , both for t near zero (where a boundary layer 

occurs} and fer large t. !n particular, we show that in general the 

filament does not recover its original length, and that the Newtonian term 

- ll y 1 in (+) has little effect on the ultimate recovery but significant 

effect during the early part of the recovery. 

Sponsored by: 

l) Tho United States Army under Contract Number DMG29-75-C-0024; 
2 )National Scienca Foundotion under Grant Number ENG 75-18397; 
3 ),rhe United States l\.rmy under Grant Number DAHC04-7 4-G- 0012; 
4 ) National Science Foundution under Grant Number MCS 75-218 68. 
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1. Introduction. 

We study the nonlinear Volterra integrodifferential equation 

t 
(1.1) - ~ y 1(t) = J a (t-s) F (y(t). y(s))ds ( t > 0; I : d/dt) 

-oo 

subject to the initial condition 

(1. Z) y (t) = g (t) ( -oo ( t ~· 0 ) • 

This initial value problem arises as a mathematical model for a process 

in polymer rheology which is described in Appendix A. In the specific 

problem discussed there 11 is a positive parameter related to the viscosity~ 

and the given real functions a,F. g take the forms 

m 
(1. 3) a (t) = 2.: ak exp (- tj-rk) 

k= 1 

where and are positive constants, 

(1. 4) F (Y. z) 
3 2 

= y 1 z - z • 

and 

{ 1 if -ro < t s -t
0 <1Q > 0) 

(1. 5) g (t) = 
dt+t0 ) 

if -t < t 0 • e 
0 

~ 

where " is a positive constant (see equc.tions (AS). (A 21), (A 24), (A25) 

in 1\ppcmclix A). The unknown function y measures the ratio of the 

e>.'tended length to tho original length of a homogeneous filament which 
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is stretched in accordance with (1. 2) on the time interval ( -«:, 0] and 

then released o The equation (lo1) then describes the process of elastic 

recovery o Also of interest, both mathematically and physically, is the 

reduced equation 

{lo 6) 
t 

0 ::: J a (t-s) F ( y(t), y(s))ds (t > 0)" 

-oo 

with y (t) = g (t) on (-oc, 0), and in particular the relation between 

+ the solutions of (1.1), (1.2) and of (1.6) as 1.1-0 ; for small tJ. > 0, 

(1.1), (LZ) may be regarded as a singular perturbation of (1.6). 

The purpose of this paper is to discuss the qualitative behaviour of 

solutions of (1.1), (1. 2) on the one hand and of (1. 6) on the other, and 

the relation between them as tJ. - 0 + o Our analysis is not confined to the 

specific forms of a, F, g in (1. 3) - (1.5 ), but rather we abstract the 

essential properties of these functions. Two results of particular interest 

are : (i) in general, the filament does not return to its original length, as 

confirmed by experiments (see Appendix A and Theorems 4 and 5); 

(ii) similarly to behaviour in singular perturbation problems for ordinary 

differential equations, the solution of (1.1), (1. 2) for small 1.1 > 0 

decreases rapidly as t increases near t = 0 to the solution of (1. 6), 

becoming close to it in a "boundary layer" time interval of order 1.1llog 1.11. 

and thereafter remains close (Corollary 3 .1 and Theorems 7 and 8). The 

introduction of the Newtonian term -1.1 y' in (1.1) has little effect on the 

ultimate behaviour of the solution. 

From the mathematical point of view the theory of integrodifferential 
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equations with decreasing convex kernels and with nonlinearities consisting 

of functions of one variable is well known, see e.g. [ 7 ]. [ 18] where 

references to other literature are given. A part of the novelty of the 

present analysis is that F in (1.1) and ,(1. 6) is a function of two 

variables, y(t) and y(s). 

We acknowledge with pleasure the various helpful discussions with 

colleagues during the preparation of this paper, in particular with M.G. 

Crandall, R .w. Dickey, F. Howes, J .J. Levin, S .Q. Londen, S. V. Parter, 

A. Pazy, D.F. Shea, Q.J. Staffans, L. Tartar, and w. Wasow. 

2.. Statement of Re suits. 

Let lR denote the real numbers, m+ the positive real numbers, 

and Ck the set of k times continuously differentiable functions. 

We make the following assumptions on the functions a, F, g 

throughout: 

l 
1 

a(t) > 0 , a 1 (t) < 0 (0 a E C [ 0, ro); :s t(ro); 

(Ha) 
1 log a(t) is convex ( 0 t < ro), i.e. a € L ( 0, ro); :s 

a'(t)/a(t) is nondecreasing; 

F : m.+x lR+ - lR; F(x, x):;::: 0 for every x > 0 ; 

FE c 1 (JR+XlR+) and F
1
(y,z)) 0, F

2
(y,z)< 0 

+ (y, z E lR ), where the subscripts denote partial differentiation; 

{ g : (-ro., 0) - lR+; g(-co):;::: 1., g(O) ) 1 ; 

g E C {-co, 0] and g is nondecreasing. 
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It is readily verified that the specific functions defined in (1. 3) - (1. 5) 

satisfy (HaL (HF) and (Hg) respectively. While for the majority of 

results these are the only conditions required, some additional assumptions 

are needed in Theorems 4 and 5, cQrollaries 2.1 and 3.1, and Theorems 6 at 

The first result concerns the global existence and uniqueness of 

the solution of (1.1), (1. Z) for a fixed ~ > 0 and gives some useful 

properties of the solution. 

J'heorem l· Let {H a), {HF ), (H
9

) be satisfied. Then for each 1-l ) o, 

~he initial value problem (1.1), (1. Z) has a unique solution cp (t, tl) on 

[0, c:o) satisfying the following properties: 

(Z .1) q,• (t,!J.) < 0 and 1 < cp (t, 1-l) ::::; g(O) (Ost(C()); 

satisfy (H ) 
g 

and if 

then t0..e corr_~~ponding solutions 
{ 

.!i 9p 9 2 

(1. Z} satisfy 

g
1
(t) 2:. g

2
(t) (-oo < t s 0), 

q,1 (t,~J.), <:> 2 (td~. ) (1.1 ), 

(O:st(cc); 

{ 

if I-ll> 1-l 
2

, then the corre spending s.olution s <.?i (1.1), (1. 2) 
(Z. 3} 

satisfy cj>(t,IJ- 1) > cj>(t,J.l- 2 ) (O<t<cc)· 

An immediate consequence of (Z, 1), {Z. 3) is 

Let (H ), (HF ), (H } - a g 
be satisfied. Then for each fixed 

~· > 0 one has 

{Z. 4} a(Ji) ~ lim cj>(t,p.) exists and a(!J.) 2: 1 
t -DO 
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Theorem 1 is proved in Section 3. 

Remark 1.1. -'At In the special case a (t) = A e , 

satisfies ~-. (Ha) (with a(t) =-A.). conclusions 

be strengthened respectively to the following: 

A > 0 ~ )... > 0 which 

(2.1) and (2.4) can 

(2 .1') cp 1{t,!J.) < 0 and 1 < y 0 < cp(t,tJ.) ~ g{O) { 0 s t < ro), 

(2. 4 1 ) ct~) = lim cp(t,JJ.) exists and a(iJ.)::: Yo> lJ 
t-oo 

where (see the proof of (2. 8) in Theorem 3) y 
0 

is uniquely defined by 

the equation 

0 

J A.s e F(y
0

, g{s) )ds = 0 . 

-co 

The proof of Remark 1.1 is carried out .in the course of proving {2 .1) 

( Case (ii) ) • 

Remark 1. 2. If one is interested only in global existence, rather than 

further properties of solutions of (1.1), (1. 2 ), then the following existence 

result can readily be established. 

Proposition I. Let a E L1
{o,oo), a(t)') 0 (0 ==:t(ro); let g 

+ + + satisfy (H
9 

); let F E C (:R X JR ) , F(x, x) = 0 for every x E lR 

and F(y,z) < 0 for y( z and F(y,z)) 0 for y > z(O(y,z(cc). 

Then for each fixed 1-1 > 0 the initial value problem (1.1), (1. 2) has 

at least one solution on 0 < t < oo. 
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The proof of this result follows from the following observations: {i) under 

the present hypotheses (1.1), (1. 2} has a local solution on 0 s t < t
0 

(see e.g. [17, Lemma 1.1], also [16)); (ii) if y(t} isanysolutionof 

(1. 1 ), (1. 2) on 0 :::S t < oc ~ then a slight modification of the early part 

of the proof of Theorem 1 shows that 1 < y{t) :S g(O} ( 0 s t < co}; 

(iii) in view of (i), (ii), every such local solution can be extended (but 

not necessarily uniquely) to the interval [ 0, oo) (see e.g. ( 17, Lemma 

1. 2 ), also [ 16] ) . 

We next obtain some estimates of the solution <!> (t,!-1) of (1.1), 

(1.2) which are useful for the study of the asymptotic behaviour as 

t - oo, and which will be used to deduce the existence of a solution of 

the reduced problem (1. 6). 

Theorem 2. Let (H ). (HF ). (H ) be satisfied . - a . g Then there exists a 
--~- ~ 

constant K
1 
> 0 (independent 9.! 1-1) and constants 1-1

0 
> 0 and 

1".1 '"" 

K = K(J-1
0

) > o such that the solution <j>(t,iJ.) of (1.1), (1.2) satisfies 

th~ estimate 

00 

(2.5) 0(-cp'(t,j-L) :::S ~ exp(-K
1
t/J-1)+Kja(s)ds (O:st(oo; O(J-LSJ.Lo). 

t 

As a consequence of Theorem 2 and the logarithmic convexity of a, one 

obtains 

Corollary 2 .1 • J.!, .!!:!_addition, 

(2. 6) 
00 J ta(t) dt < oo 

0 
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~ satisfied, then there exist con stunts ~ 0 > 0 and K ::. K (~ 
0 ) > 0 

such that 

00 

(2.7) o < ~(t,~)-a(~) ::s K J<s-t)a(s)ds (Ost(oc; O(~s~ 0 ), 
t 

where a ( ~ ) = lim ~ { t, ~ ) . 
t-oo 

Theorem 2 and Corollary 2 .1 are proved in Section 4. 

Concerning the reduced problem (1. 6) we prove the following global 

results. 

Theorem 3. Let (H a). (HF). (H g) be satisfied. Then (1. 6) has ~ 

unique (continuous) solution ~O on [ 0, co) satisfying the following 

properties : 

(2. 8) if Y 0 = ~0 ( o) , then 1 < y
0 

< g (O) ; 

if ( -d - >..t a t) ..,.. A e , A > 0, >.. > 0 , then 

(Z. 9) 
1 

~0 E C [ o, oo), <Pc) (t) < o and 1 < <Po (t) ~ y0 ( o s t < oc); 

if a (t) s: Ae->..t, A> o, >.. > o, then <P
0

{t) s: y
0 

( 0 ~ t < oc); 

(2 .10) then the corre spending solutions 
{

.li. 91, 9z satisfy (H
9

) and .li_ g
1(t) 2= g

2 (t) (-co< t :s o). 

<P(
0
1>, <P~Z) of {1.6) satisfy 

(2 .11) 

4> ~1 ) (t) 2=: <P~Z) (t) ( 0 s t < oc) ; 

if 4> ( t, 1-1) g the solution of (1.1), (1. 2) for a fixed ~ > 0, 

and .!f. ¢
0

(t) .!.§.the solution of (1. 6), then <P
0

(t) < cp(t,J-1) 

(O:st(co). 
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As a consequence of (2.. 4 ), (2.. 9 ), · (2. .11) we have the first statement in 

Corollary 3.1. Let (Ha), (HF), (H
9

) be satisfied. Then 

(2. .}2) a -0 - lim 
t-oo 

q, 0 (t) exists and 1 < a <a( 11 ) • - o- ... , 

->..t !f. a(t) ::::: A e 1 A> 0 1 >-.. > 0 1 then, in fact, a 0 = y0 > 1 . If also 

(2. 6) holds, then 

(2. .13) lim a ( J-L ) ::: a 
+ 0 

J-L-D 

00 

(2. .14) o < q, (t, J-L ) - <P 0 (t) ~ a ( 1-l ) - a 0 + K J ( s - t) a ( s) d s ( o ~ t < oo j o < 1-l ~ 1-lo) • 
t 

Theorem 3 and (2 .13 ), (2 .14) are proved in Section 5. In Theorem 8 

below we establish a more precise result than (2 .13 ), (2 .14) under some 

additional assumptions. 

Remark 3 .1. An estimate similar to (2. 5) holds for the solution <Po of 

the reduced problem (1. 6), (but, of course, without the term ; exp(-K
1
t/tJ. )). 

This can be proved as a special case of the proof of Theorem 2 by obtaining 

an estimate of the form (4. 6) in Section 41 where f is now independent 

of J.L, and using it and an estimate of the form (4. 4) (also now independent 

of J-L) in (5 .12) of Section 5. Consequently, (2.. 7) also holds with 

4>(t,J-L) replaced by q,
0

(t) and a(JJ.) by a
0

, and with 0 ~t < oo. 
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The next task is to establish the physically important fact that the 

limiting value a (ll) of the solution cj> (t,IJ.) of (1. 1), (1. 2.) as t ..... ce 

satisfies a ( ll) > 1 ( ~ > 0 ), rather than the weak form a ( ~) ;:: 1 in 

(2.. 4) • By properties (2 .11 ), (2. .12.) it suffices to prove a 0 > 1 

(a = 
0 

lim cj>
0
(t)). 

t-eo 

Theorem 4. Let (Ha)• (HF ), (H
9

) be satisfied. !:L in addition, 

(Z. 6) g satisfied, then 

(2 .}5) 

We remark that in the special case - >..t 
a (t} = A e , A > 0, >.. > 0, there 

is nothing to prove since q, 
0 

(t) = y 
0 

> 1 .. Theorem 4 is proved in 

Section 6. 

Theorem 4 is best possible in the following sense. 

Theorem 5 . Let (H a), (H g) be satisfied and let 

(2 .16) 

(2 .17) 

(2 .}8) 

F(y, z) :::: y - z • 

J 00 
sa(s) ds = 

0 
co , 

lim 4> 
0 

( t ) ::: 1 , 
t -00 

when q,
0 

!.§_the solution eJ (1.6) with F satisfying (2.16). 
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Remark 5.}. F(y, z) = r
0

(y- z), where r
0 
> 0 is a constant, is, being 

linear, the simplest form of F consistent with assumptions (HF ) . 

Remark 5. 2. A similar proof applied to (1.1), (1. 2) shows that if the 

hypotheses of Theorem 5 hold, then lim cf> (t, i-l) = 1 , where ~ (t, i-l) 
t-oo 

is the solutionof (1.1), (1.2.) with F satisfying (2..16). 

Theorem 5 is proved in Section 7 • 

In connection with the last statement in Remark 3 .1 it is of 

interest to note that such an estimate for q,
0 

, (2. 7), can be proved inde

pendently of Theorem 2, and we state this fact as a separate result in 

Theorem 6. However, it should also be noted that the estimate (2. 5) 

(for ~O) described in Remark 3 .1 cannot be obtained from Theorem 6. 

Jheorem 6. Let (H
0

), (HF)' (Hg) be satisfied, and let (2. 6) hold. Then 

!_here exists.§! constant K > 0 such that, _!i a(t) ¥- A e -X.t , A) o, X. ) o, 

(2.19) 
oo. 

0 < ~0 (t) - a-
0 
~ K J (s - t)a(s)ds 

t 

Theorem 6 is proved in Section 8 . 

(0 ~ t < 00) , 

. Remark 6 .1. One can also prove the estimate (2. 7 ) for the solution ¢(t, f.J.) 

of (1.1), (1. 2) in the manner of Theorem 6, without using (2. 5 ) . 

Our next task is to establish the existence of a boundary layer in a 

neighbourhood of t = 0 as f.J.- 0 +. For this purpose we consider the 

following approximation of the problem (1.1), (1. 2) for small t ;:: 0: 

0 
(2. 20) -1-Lv'(t) = J a(-s)l'(v(t),g(s))ds (t > O:v(O) = g(O)) • 

-CO 
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lt will be observed thul (2. 20) 1:::; not a Volterra equation, but nets ruther 

like Bn ordinary differential equation. Performing the stretching transformation 

(2. 21) t :::f-lT 

and setting W(T) = v(t) transforms (2. 20) to 

(2. 22) 
0 

dw J · - dT = a(-s)F(w(T),g(s))ds 
-CO 

(T > 0: w(O) ::: g(O)) , 

Theorem 7. Let (Ha)' (HF)' (H
9

) be satisfied. Then the initial value 

problGm (2. 22) has £!. unique solution w = s (T) . existing gg 0 < T < oo 

and satisfying the follovdng properties: 

(2. 23) 
-KT 

lim ;CT) = y
0 

= ~0 (0); o < ~(T) - y
0 
~_(g(O) - y

0
)e co< T <co} , 

T-.. oo 

where q,
0 

is the solution of (1. 6) (~Theorem 3) and K is some .r.ositive 

constant. 

Moreover, if q>(t, !J-} is the unique solution of (1. 1), (1. 2) in 

Theorem 1 and if s (t/!J-) is the uniaue solution of (2. 20) for fJ. > 0, then 

for~ t
0 

> 0 there exists a constant K > 0 (independent of J-1) 

such that 

(2. 2-1) 

The estimate (2. 24) ostablishes the existence of a boundary layer in a 

positive neighbourhood of t ::: 0, Theorem 7 is proved in Section 9. 

+ In Corollary 3,1 we showed that a(!J-) - a
0 

as fJ. ...... 0 , so that 

the solutions ¢(t, p.) of (1.1), (1. 2) and ~0 (t) of (1. 6) do not differ by 

much for small 1-1 > 0 and for large t. Our final result makes this 
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pre'clsc, under the additional as~umptions that. ta(t) c L
1(o, w) and 

FE C 2(lR+ X Dl+). 

Theorem R. Let (Ha)' (HF)' (H
9

) be satisfied. In addition, assume thot 

z + + 
FE c em xm.) andthat (2.6) holds. Thentherccxistconstnnts K>O, 

it
0 

> 0 and ~ function 
1 

y E C [ o,co ), y positive, bounded und !lQ!l-

decreasing, such that 

(Z. 25) · ~0 (t) < ¢Ct,f-L} < q,
0

(t} + (g(O) - q,
0

(0}}exp{-Kt/J.L) + y(t)J..!-!Jog f.J.I 

(0 < t < CO : 0 < II < II ) , - r- ro 

In particular, M an·immediate conseauence of (2. 25), there exists.£ 

constnnt K > 0 such that ----

(2. 26) 

Theorem 8 is proved in Section 10. 

The method of proof of Theorem 8 uses the notions of upper and 

lower solutions of (1.1). The necessary preliminary material, which follows 

the lines of well known results (see e. g. [ 6], [ 19]) is collected in 

Appendix B. The inequality (2. 25) is established by showing that the 

solution "'o of the reduced problem (1. 6) is a lower solution of (1.1) 

on 0 < t < co and by showing that 

w(t,f-L) = q,
0

(t) + (g(O) - ¢
0

(0))exp(-Kt/f-L) + y(t)f-L llog f-L I 

is an upper solution for suitably chosen K and y (1. e. that 

- ~w'(t) < J t a (t- s) F (w(t), w(s) )ds for O(t(oc, 

where w(t) = g(t) on - c:o ( t ( 0). Inequality (2. 25) then follows from 

ProJX>Sition 2B, Appendix B. 
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The question arises wlwlher the order 0~11 I log p.l) in ( 2. 2.6) is 

best possible. In the linear case it is not; for if F()•, z) ; y - z, one 

can establish the inequality 

cf! (t) < ¢(t,Ji) < <t (t) + (g{O) w ¢
0

(o))exp(-Kt/J.L) + ..,(t)J.L 
0 0 

for 0 ~ t < co and 0 < 1-L .5_ f..l.o, by the method of .proof of Th eorcrri 8. 

In addition, one can compute a(p.) and a
0 

in the linear case by the 

method of Laplace transforms and show that a(p.) - a
0 

is precisely 

of the order J..L· In the general case, however, we have been unable to 

improve the estimate (2. 25). 

1· Proof of Theorem 1. The classicul Picurd successive iJpproximations 

(or the I3anuch. fixc;d point thco;em) applied to the integrated form of {1.1), 

· (1. 2.) show that for each fixed ll > 0 there is a unique local solution 

cf>(t, Ji) existing and in c1 
on some interval [ 0, T) , T > 0. To show 

that this solution can be continued (necessarily uniquely in view of the 

assumptions) to the interval [ 0, co), it suffices to estoblish the 

.inequalities ( 2.1) on any intervul on which the solution ¢ (t, p.) exists. 

For then the solution satisfies Q. priori upper and lower bounds, independent 

of T, and hence can be continued to the interval [ 0, w) by a stondard 

result [ 17] . 
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To establish (2..1) on any interval on which <j.'(t, p.) exists we 

hnve from (1. 1), (1. 2) 

0 
( 3. 1) . -p.c}'(O,p.) = J a(-s)F(g(O),g(s))ds • 

-CO 

The integral clearly exists since a £ L 
1 
(0 

1 
co) and F( g(O), g(s)) is 

bounded on (-co 1 
0] by (HF),(H ). From {H ), a(-s) > 0 (-oo < s ~ 0} 

g a 

and from (Hf)' (H
9

), F{g(O),g(s)) ~ 0 (-o: < s ~.0), with the strict 

inequality holding for large negative s; therefore, q,' (0, J.L) < 0. Since 

l . 
4> £ C , one has by continuity that q,• (t 1 

J.L) < 0 (0 < t < a) 
1 

for some a > 0. 

We claim first that 

(3. 2) (0 ~ t < ct) • 

Indeed, <f>{O, p.) ::: g(O) > 1, and by continuity (3. 2} holds at least on 

some interval to th c right of t ::: 0. Suppose 0 < t
1 
~ a is the first 

point ut which q.(tl' fl) ::. 1, and 1 < q,{t, 11) < g(O) (0 < t < t
1
). From (1.1) 

we have 

0 t 
(3. 3) ·-p.<f> (tl'v}::: J a(t1 - s)F{l,g(s))ds + J 1 

a(t
1

- s)F(l,q.(s, 11))ds. 
-CO 0 

By (Ha)' a(t1 - s) > 0 (-oo < s < t
1

), and by (HF)' (Hg)' F(l, g(s)) ~ o 

.on ( -CQ, OJ, with the strict inequality holding near zero. Since ¢ is 

strictly decreasing on [ 0, t
1
], we also have F(l, ¢(s, f-l)) < 0 (0 < s < t

1
). 

Therefore each integral in (3. 3) is negative and ¢'(t , f-l) > 0 which, 
. . l ' 

in view of <j:;' (t, J.L) < 0 (0 < t < a), is impossible; this proves (3. 2). 
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We next cluim: 

(3 I 4) ~'(t,J.l)<O, 

for ns long as the solution exists. Indeed, s'-lpposc for contradiction 

that a> 0 is the first point at which 

(3 I 5) cf>'(a,J.l)::: 0 and cp'(t,JJ.) < 0 co ::. t < a> I 

By the argument of the preceding paragraph we have 

(3. 6) "1 < ¢(cr,J.l) < g(O) • 

To prove (3. 4) we compute cp"(a, J.l) from (1.1) and we shall obtain an 

obvious contradiction of (3. 5) by showing that 

(3. 7) ct>"(a,!-l) < 0 : 

this implies that no such. a > 0 satisfying (3. 5) exists and proves (3. 4). 

Indeed, differentiating (1.1) (justified by (H ) , (HF), (H ) - note that by a g 

1 
.(H ), a' E L (O,ro )) one has 

a 

t 
-J.l<J>"(t,!-!-)::: J u'(t- s)F(<jl(t,J.l),~,(s,J.l))ds 

-CO 

(3. 8} 

t 
+ q,'(t,!J.) J a(t- s)F

1
(¢(t,!J.), ¢(s,J.l))ds . 

-CO 

Putting t :::.a and using (3. 5) gives 

a 
(3. 9) -p.cf'(a,!-1}:::: J a'(a- s)F(<j>(a,p.},¢(s,p.))ds. 

-00 

Thus to prove (3. 7) we wish to show that 

a 
(3. 10) l(a) .= J a'(a- s)F(cjJ(a,J.l),<?fs,p.))ds > 0. 

~co 
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Vve shall need to consider two cases: 

->..t 
ln C()se (i) a(t) satisfies (H ) with a(t) ~Ac , A> o, >. > 0 (i.e. 

a 

a'(t)/a(t) ~ ->.): 

->.t 
in case (ii) a(t) satisfies (H ) with a{t) = Ae , A > 0, ). > 0. 

a 

Case (i). Define a number -~, ~ > 0, .by the relation ¢(a,J-1) = g(-~); -~ 

exists in view of (3. 6) and (H ·). Since g may take the constant value 
g 

cHa, J-1) on some interval J C (-co, 0 ], we define - ~ uniquely by taking 

it to be the right-hand end point in such a case. We then have 

-~ 0 
(3.11) I(a) = J a'(a- s)F(g(-f3),g(s))ds + J a'(a- s)F(g(-~),g(s))ds 

-CO ~~ 

a 
+ J a'(a- s)F(<j>(a,~-t),q,(s,~))ds 

0 

Since ¢'(u·,JJ.) "'0 we also have from (l.J) 

( 3. 12) 
. -~ 0 

0 = J a(a- s)F(g(-(:S),g(s))ds + J a(a -. s)F(g(-(3),g(s))ds 
-CO -~ 

a 
+ J a(a- s)F(¢(a,J.l),¢(s,J.l))ds, 

0 

We next define the function o· by the relation 

u{s) = a'(a- s) (-co < s <a) , 
a(a - s) 

and we observe that the log convexity of a implies that cr(s) is 

negative and nonincreasing: moreover, since a'(t)/a(t) ~ ->., >. > o, ::r(s) 

is _strictly decreasing, at least on some interval contained in (-co, a]. 
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We rewrite ( 3.11) in the equivalent form 

(3.13) 

where 

-I> a 
l{o:) :: J u(s}h(s)ds + J ~r(s)h(s)ds 

-00 -f3 

t(a- s)F(g(-~), g{s)) 
h(s) = 

a(a- s}F(¢(a,f.1),¢(s,p)) 

(-c:o<s<O) 

(0 < s .:5. a) ; 

we a1sowrite (3.12) in the equivalent form 

{3 .14) 
-f3 Q 

0 :: J. h(s}ds + J h(s)ds • 
-00 -f3 

From the definition of -f3 and (3. 6) one has 1< g(-(3} <·g(O). Therefore, 

{3.15}. h(s) > 0 (-o::J < s < -(3) 

with strict inequality for large ncgi3ti vc s, and 

(3 .16} h(s) < 0 {-f3< s< a). 

Combining (3 .13), (3 .14) yields 

{3.17) 

But 

.(3.18) 

(3 .19) 

-f3 a 
I{a) = J (u-(s) - u(-f3))h(s)ds + J ({f(s) - <T(-p))h(s)ds 

-w -f3 

u(s) 2: ~r(-(3) (-co < s .:5. -f3) , 

v(s) :5. <T(-~) (-~ < s :5. a) , 
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with strict !ncquulitics holding either for s ncgutivc und lu~gc or for 

s ncar a. UsJng (3.15), (3.16) and (3.J8), (3.19) in (3.17} shows that 

each integral in (3ol7} is nonnegative and at least one of them is positive. 

This proves (3 .10) and hence also (3 o 7) and (3. 4). The proof of the glohal 

existence and uniqueness of the solution <jl(t, J.L) of (1.1), (1. 2) and 

of property (2.1) in case (i) is then completed by a straightforward 

continuation argument. 

Case (ii) o The above balancing argument establishing (3. 7), and ~ence 

-H (3. 4), cannot be used when a(t) = Ae , A> 0, >.. > 0, since for this 

case it is readily established from (1.1) and (3.9) that ¢"(cr,J.L):::: 0 

whenever cp' (cr, •1) :::: 0. Instead we proceed as follows. 

Define the number y
0

, 1 < y
0 

< g(O), by the equation 

(For the proof of the cxi stencc of a unique y 
0 

with this property in the gcncrol case of a (t), which also <:~pplics here:, 

see the proof of (2. 8) ln Section 5.) Since us in cusc (i) q:'(O,p) < O, 

-:>..t 
a repetition of the argument ( 3.1) - ( 3, 3) above \vith a (t) ;:: Ae , A > 0, 

>.. > 0, and "1" rcploced by y
0 

in ( 3. 2) and the paragraph following 

(3.2),showsthat <j.(t,J.L)>y
0 

for t:=:o, solongas ¢'(t,J.L)<O. To 

show that ¢' (t, p.) < o for all t > 0, differcntiction of (1.1) with 

-H 1 . a(t) :::: Ae , A> o, >.. > o, yields t1e equat10n 
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Wllll 

1 10 X.s c}(01 tJ.):::g(O). I}'(O.p.)_:::-~ _
00

e F(g(0}1 g(s))ds(O. 

Since F1 > 0 1 ).. > 0 1 1-1> 0 1 an elementary argument shows that 4' (tdL) < o 

so long as the solution l}(t, 1-1) exists. This completes the proof of (Z .1 ') 

in case (ii). 

To prove (2. 2) subtract the equations (1.1) for q,
1 

nnd ¢
2 

and 

apply the mean value theorem obtaining 

t 
-J.LC¢J.Ct,JJ.)- 4-z(t,J.l)) = (¢

1
(t:J.l)- ¢

2
Ct,tJ.)) [

00 

a(t- s)F
1

(o-{t),¢
1
(s,JJ.))ds 

t 
+ J a(t- s)F 2(~ 2 Ct,tJ.),T(s))(<J>1(s,p.)- ¢

2
(s,JJ.))ds, 

-00 

where o-(t) isbetween ¢
1

(t,p.) and q,
2

(t,J.L) and T(s) isbetween 

ct>1<s.,J.L> and ¢
2

(s,JJ.). Let t==t
0 

bethelastpointforwhich 

cpl(t,p.) 2: ¢z(t,J.L): i.e. <jll(to,J-d::: 4>z(to,f.i), while cjll(t,J.l) > ¢2(t,J.l) 

for -co< t < t
0

• Since g
1
(t) > g

2
(t), -ro < t :::_ o, it is clear that 

t
0

?:. 0. !3oth integrals exist since a { L
1
(o,lQ), r ( c

1
, and ~V ¢

2 

satisfy (2.1) (or (2.1')). From the definition of t
0 

and F 
2 

< 0 one has 

-JJ.(¢i<t0 , f1) - 4>z(t
0

, f1)) < o, with the equality sjgn holding if and only 

if g
1

;=:g 2 on (-ro,O]. Since p.>O thislmpJ.ies <t·J.<t0 ,J.L)-¢~(t0)>0 
for gl ¢ g

2 
and this is impossible. 

To prove (2. 3) put z(t)::::: ¢(t,J.L
1
)- <j:.(t,JJ.

2
). Then from (1.1), (1. 2) 

one has z(O) = 0 and 

1 1 ° z'(O) = (-- + -) J a(-s)F(g(O),g(s})ds > 0. 
l-1-1 J.1 z - t() 
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By continuity suppose that there. exists T > 0 such that z(t) > 0 (0 < t < T) 

and z(T) : 0. Then 

1 T 
+- J a(T:.. s)F(¢(T,J.1

2
),¢(s,J.1 ))ds . 

P. 2 -oo z · 

T 
But by (2.1) J a(T - s)F{¢CT, p..), q.{s, p.. ))ds > 0 (i ::: 1, 2). Therefore 

-00 1 1 

f.ll > J.lz implies that 

1 T . 
z'(T} >- J a(T- s){F(¢(T,J.1

2
),¢(s,!-L

2
))- F{¢{T,!.t

1
),¢(s,p.

1
))}ds, 

J.ll -00 

which by the definition of T and cr(t,p.
1

) = ¢(t,p.
2

) = g(t) on (-oo,o] yields 

1' 
(3. 20) z'(T) > .l_ J a(T- s){l'(tj;(T,l.Lz),q.(s,rl )) - F(q.(T,!J..,),¢(s,!J.l))}ds. 

Ill 0 2 (.. 

Applying the menn vuluc theorem in (3. 20) gives 

!3. 21) 

where {,{s) is between ¢(s, IJ.
2

) and ¢(s, J.ll). Sinc8 a(T - s) > 0 

and r
2

<o byassumptionandsince q·(s,J1
2
)-¢(s,J.1

1
)<0 ori O<s<T 

by the definition of T, {3. 21) implies that z'(T) > 0, Therefore the!"e 

cannot exist a T > 0 such that z{T) = 0; this proves (2. 3}, and completes 

thEl proof of Theo::-em 1. 
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f. Proof of Theorem 2 and Corol1.1ry 2.1. Let q, be the solution of (1.1), 

(1. 2), We return to equation (3. 8) obtained by differentiating (1.1) und 

we write (3. 8) in the form 

(4 .1) 

where 

( 4. 2) 

(4. 3) 

t 
G(t, f!) ~ f 

-00 

t 
f{t,p.) J a'(t- s)F(cp(t,p.),¢(s,,.t))ds. 

-00 

Since r
1 

> 0, a ( L
1(o, oo), a(t) > 0 (0 s t < 00 ), and since ¢ satisfies 

( 2 .1), we have by (H
9
.), 

(4.4) 

where 

(4. 5) 

0 < yA :5. G(t, p.) :5. rA (O~t<oo, tJ->0), 

y = inf r
1
(y,z), r =sup r

1
(y,z), S = [l,g(O)] X [l,g(O)] , 

s s 

00 

A = J a(s)ds • 
0 

We next show that there exists a constant K) 0, independent of 

p., such that 

(4. 6) 

()() 

lt{t,p.) I< K J a(s)ds (0 :'5. t < oo, 1-L > 0) , 
t 
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0 
11 =- J a'(t- s)r(~·Ct,l1) 1 g(s))ds , 

-00 

t 
lz = J a'(t- s)F(q>(t,l1),¢(s,~))ds • 

0 

Consider IZ first and recall, from the proof of Theorem 1, that 

F(4'(t,~),q>(s,~)) < 0 (0 < s < t). Since a'< 0, one has,on letting 

_ a' (t - s) 
u(t - s) - a(t _ s) and on using the log convexity of a, that 

(4. 7) 
t 

0 < IZ < (- ti(O)) I J a{t - s)F(¢(t, Jl), 4>(s, J1))ds I . 
0 

But now {1.1) and conclusion (2 .1) of Theorem 1, together with ·a simple 

consideration of signs of the terms on the right-hand side of (1.1), shows that 

t 0 
(4.8) If a{t- s)f(¢{t,J1),¢(s,,l))dsi:;J a{t- s)F{¢(t,J1),g{s))ds. 

0 -00 

Moreover, the boundedness of q, and g and the continuity of F imply that 

0 co 

(4. 9) J a(t- s)F(4:(t,p.),g(s))ds < sup IF(q-(t,p.),g(s))! J a(s)ds . 
O<t<C? t 

Combining (4. 7}, (4.8), (4.9) shows the existence of a constant K, 

independent of ~, such that 1
2 

satisfies the estimate {4. 6). In a 

similar way one fj nds on using the log convexity of a that 

sup 
O<t<OO 

-OO<s<O 

00 

IF(<}(t, J1), g(s)) I J a(s)ds • 
t 

Combining the cstimutcs for 1
1 

and 1
2 

establishes ( 4. 6). 
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Returning to (4.1) we have. 

(4.10) 
d 1 t t 
-d (-ci•'Ct,JJ.)exp(- J G(s,J.l)ds)) = f(t,p.) exp(l j G(s,p.)ds). 

t 1-lo 1-l 1-lo 

By(4.6)onchas, for O<t<oo and 1-l>O, 

IH ) I 1 t K 1 t co 
(4.ll)t,IJ. exp{- J G(S,JJ.)ds) ~- exp(- J G(s,JJ.)ds +log J a(s)ds) 

.... ... 0 ... ... 0 t 

1 . 
Before integrating (4 .10) observe that by a, a' E L (0, oo) and by the log 

convexity of a one has 

d
dt (1 Jt G(s, J.!)ds + log J co a{s)ds) = G(t, !J.) 

J.1 0 t .... 

00 

J a '(s)ds 

a (t) 
co 

J a (s)ds 
t 

= Ql!...,y._j+ t . = G(t,r~) + 0(1) {O < t < oo, 1-1 > O). 
1.1 00 .... 

J a(s)ds 
t 

A simple but tedious calculution then shows that by use of (4.4), (4.6) in (4.11) 

.... .... 
there exist constants Jl.o > 0, K == K(J.L

0
) > 0 such that 

t f(t ) 1 t 
(4.12) If ,p. exp(- J G(s,,~)ds)d~ f 

0 .... 1.1 0 

~ 1 t co 
s K cxp{- J G(s,J.L)ds + log{J a{s)ds)) (0 < t <co: 0 < J.1 s J.Lo) • 

.... 0 t 

Then integrating {4.10) and using (4.12) . and 

1 0 
-~.'(0,1.1) =- J a(-s)f(g(O), g(s))ds , 

1-l -00 
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as well as conclu:;ion (2.1) of 'Theorem 1, yiddz the c:>timote (2. 5 ) , 

where K
1 

::; yA. This completes the proof of Theorem 2.. 

Proof of CNollory 2 .1. Integrating (2. 5 ) from t to infinity und using 

conclusions (2.1) and (2. 4) of Theorem 1 yields 

~K t/u 00 00 

.., 1 r ""J J 0 < c} ( t , 1.1.) ~ a ( f.l- ) < Ke + K ( a (::; ) d s ) d; ( o < 1.1. < 1-1 
0 

: 0 ~ t < oo) 

t t 

an integration by parts gives 

-K t/•• oo ..., - 1 r ..., 

(4.13) 0 < q,(t,f.l-)- a(!-1-) < Ke + K J (s- t}a(s)ds (O < J.L ~ J-l
0

: o < t < 00) 

t 

Since a(t} is log convex, log a(t) is bour.decl below by an affine 

function: thus there exist constants -13t a-> 0, p > 0 such that a(t).?. 0'8 

(0 <. t < c.o). Hence given any t > 0 there exists a constant which we - 0 

again cull 1.1.
0 

> 0 such that the integral term in ( 4.13) do.11inutes the 

firsttermfor t
0 
~t<oo. O<p. ~ p.

0
; this1 togetherwith (4.13), 

establishes (2. 7) for O<P.~l--Lo· and one obtains the 

estimate (2. 7) with t = 0 
0 

by an appropriate modification of K. 

This completes the proof of Corollary 2 .1. 

5. Proof of Theore!!l 3 and Corollary 3 .1. We observe first that if q,
0 

is a (continuous) solution of (1. 6} for t :::::: 0, then q, 0(0} = q,0 ( 0+) 

must satisfy 

0 
(5 .1) 0 = J a (- s) F ( cp 

0 
( 0) , g-{ s) ) d s • 

-t() 
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This integral clearly exists for any number q,
0 

(0) since 1 a E L ( 0, oc) 

and (HF), (H
9

) hold; moreover by (HpL the integral in (5 .1) is a 

continuous, strictly increasing function of (the parameter) q,
0 

(0). The 

integral is negative if one chooses q,
0

{0) :::: 1; it is positive if one chooses 

q,
0 

(0) ::o g(O). Therefore, there exists a unique number q,
0

( 0) ::: y 
0 

for 

which the integral in (5 .1) vanishes and clearly 1 < y
0 

< g(O). This 

proves (2 • 8) • 

We postpone to the end of this section the proof of the existence 

and uniqueness of the solution 

1 
q,

0 
E c [ o, co) (with 

¢
0 

of (1. 6) and of the fact that 

+ ¢o(O) =: ¢o{O )) I and we proceed to 

establish the remaining conclusions of Theorem 3. If 

then differentiation of {1.6), justified by (Ha)• (HF)' (H
9

). yields 

t t 
(5.2) 0::: J a'{t-s)F(q,

0
{t).q,

0
(s))ds+¢0(t) J a(t-s)F

1
(¢

0
(t),¢

0
(s))ds 

-ro -ro 

(0 =s t < ro)· 

We shall establish conclusions (2.9)- (2.11) by using (5.2). Note that 

the coefficient of cp' in 
0 

(5. 2) is bouncied away from zero by 

A simple calculation shows that in the special case -At a(t) o= Ae , 

A > 0 , >.. > 0, we have cp 1 (t) o= 0 for t) 0 {from (5. 2)). so 
0 

that q,
0 

{t) o= y 
0 

for t 2: 0, and this proves the remark below {2. 9). 

-At If a(t) ]# Ae , A) 0, >.. >o, we wish to show that (2.9) is 

satisfied. From (5. 2) we first have 
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( 5 .3) 

0 
J a'(-s)l'(y

0
,g(s))ds 

-00 
-ct>~ (0) •. 0 

J a(-s)F
1
(y

0
,g(s))ds 

-00 

By (H ) , (HF), (H ) the denominator in ( 5. 3) is positive. To determine 
a g 

the sign of the numerator we note first that by the definition of y 
0 

0 
(5 .4) J a(-s)F(y

0
,g(s))ds = o, 

-CO 

and by the log convexity of a, repeating the argument in Theorem 1 which 

shows that the integral I(a) > 0 in (3.10) (here we take a= 0, 

cl;(tr,J-1) = y
0

, Q(S,J1).= g(s); and define -f3, f3 > o, by the relation 

g(--f3)::oy
0

), wefind 

0 
(5.5) J a'(-s)F(y

0
, g(s))ds > o • 

-CIO 

Therefore,. by (5.3); (5.4), (5.5 ), one has <J>(,(O) < 0. 

Since <Po ( ClO,oo), by continuity o:1e has cp0(t) < o, 0 ~ t <a·, 

for some ,l' > 0, We claim, as in the analogous part of the proof of Theorem 1 

(see the proof of ( 3. 2)), that 

(5. 6) (0 :::_ t ~ a) , 

Since cp (0) = y > 1 one bus by continuity that (5. 6) holds on some 
0 0 
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intcrvul to tltc right of t :: 0. Letting 0 < t
1 

;~ Q be the first point 

we 

substitute in {1. 6) with t = t 
1 

and sec that the right-hand side is 

strictly negative. This contradiction proves (5. 6). 

We next show that 

( 5. 7 ) cfl' (t) < 0 
0 

(0 < t < ro} • 

Here the procedure differs somewhat from the analogous part of the proof 

of Theorem 1 in that we do not need to compute <P(). Suppose t = a- is 

the first point at which 

(.S .. 8) «f>~(cr) = 0 and <l>o(t) < 0 (0 < t < cr} . 

Moreover, by (5. 2} we have 

0 cr J a'(cr- s}F(¢
0

(cr),g(s)}ds + J a'(a- s)F(q,0 (cr),~'1 0 (s))ds 
-00 0 

(5 .9) cf>~(cr) = 0 a 
J a(a- s}F

1
(¢

0
(a),g(s))ds + J a(cr- s)F

1
cq,

0
(a),¢

0
(s))ds 

-00 0 

The denominator in ( 5. 9} is clearly positive by (H ) , (H ) , (H ) .. The 
a F g 

balancing argument, involving (1. 6) with t = cr and the log convexity of 

a which has been previously employed in the proof of (3 .10) and (5. 5), 

shows that 

0 a 
J a'(cr- s)F(q,

0
(a),g(s})ds + J a'(a- s)F(¢

0
(cr),<?

0
(s}}ds > 0. 

-~ 0 

Therefore ¢0(a) < o, contradicting (5.8) arid proving (5.7 ). This 

completes the proof of (2. 9). 
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'l'hc proof of properly (ZJO) 1~ slmil~r lo th\.lt of (2. 2) in Theorem 1 

and is omitted. 

To prove property (Z.ll) we observe first that since <!'(0, 11) = g(O) 

and since cfl
0

CO) = y
0

, (2.11) is true at t = 0 by (2.8 ), and therefore, 

by continuity, ( 2.11} is true in some interval of t > 0. Suppose tl1at 

~{t,p.)- ¢
0

(t} is zero for the first time at t = t
0 

>0 and cp(t,J.l) -· q,
0

_<t) > 0 

(0 < t < t_
0

). Then from (1.1), (1.6) nt t = t
0

, one obtains by subtraction 

to 
(5.10) -JJ.<j>'(t

0
,J.1) ::o J· a(t

0
- s)[F(¢(t

0
, 11),q,(s, 11))- F(~0 Ct 0 ),cj>0 (s)j]ds. 

0 -

Applying the mean value theorem to the difference under the integral 

{note that ¢(t
0

, 11) = q,
0

Ct
0

) by the definHion of t
0

) and using F 
2

Cy, z) < 0 

and <j>(s, 11 ) - q,
0

(s} > 0 (O ~ s < t
0

), it is evident that the right-hand 

side of (5.10) is negative. This implies that cp'(t
0

, J.1) > 0 which 

contradicts (2 .1) and proves (2 .11). 

It remains to prove the existence, uniqueness and differentiability 

of the solution q,
0 

of (1. 6) for 0 ::s t < ~- Let 0 < E < t;::;: T <co 

and let (J--Ln )~= 0 be an arbitrary sequence with Jln+l < P.n, lim lln = Q. 
_ 00 n---co 

Consider the sequence {¢(t, J.ln)}n=O of solutions of the initial value problem 

(1.1),(1.2) on E.St,ST. ByTheoreml, l<<)>(t,J.ln)<g(O), and 

cfl(t,J.ln+l) < cp(t,J.ln}, E ::s t :S T, n = 0,1, ... ; therefore, z(t) = lim cp(t,J.ln), 
n-co 

E :s t ::S T, exists. By the estimate (2. 5) of Theorem 2 the sequence 

00 
( -1> (t,J--1

0
)) n;; 

0 
is equicontinuous on the interval -e ,:s t 5 T for 
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0 < 1-1
0 
~ 1-10 , and so, by the Ascoli-Arzel~ theorem and the fact that the 

sequence is already known to converge pointwise to z(t}, we see that the 

convergence to z(t) is uniform for t ~ t < T, t > 0 being arbitrary, and 

so z{t) is continuous for t > 0. Passing to the limit as n - oo in 

the equation (1.1) for cp(t, 1..1. ), we see, again using· the estimate ( 2. 5) n 

and Lebesgue's convergence theorem, that z{t) satisfies (1. 6) for t > 0. 

Since 

( 5. 11) 

we see in the limit as n - oo that z{t) is a nonincreasing function of 

t and so z(O+) exists. If we define z(O) ;:: z(O+), then clearly z(t) 

satisfies (1. 6) for t ::; 0 as well as for t > 0. 

Identifying z with the required solution q,
0

, we can show q,
0 

to be continuously differentiable by forming difference quotients in (1. 6), 

applying the mean value theorem and showing that we can pass to the limit 

to prove both the existence of q,0 and the equation ( 5. 2). 

To prove uniqueness let U 1 v E C [ o. T] • T > 0 arbitrary 1 

u(O} = v(O} = y 
0 

, u(t} = v(t) = g(t) on - oo < t < 0, be two continuous 

solutions of (1.6) on [ 01 T] with u(t), v(t)) 1 on [ 01 T]. Then 

by (HF) and the mean value theorem we have 

0 
(5.12} 0 = (u(t)-v(t))[j a(t-s}F1 (; 1ct.s)~g(s))ds -oo 
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for some sl(t,s), sz(t,s), s3(t,s) between u(t) and v(t), and for some 

Tl 1(t,s), Tlz(t, s) between u(s) and v(s). But then 1 a E L ( 0, ro), the 

continuity of F 1, F 2 , F1 > 0, and the continuity of u, v on [ o, T ], 

together with Gronwall's inequality applied to (5 .12), imply that 

u(t) a v(t)1 0 :S t :S T, where T > 0 is arbitrary, establishing uniqueness 

of a continuous solution q,
0 

of (1. 6) on [ 0, oc) with q,
0

(t) > 1 , 

0 :5 t < ro. This completes the proof of Theorem 3. 

Proof of Corollary 3 .1. To establish (Z .13) note first that by Corollary 

2. .} , q, ( T, 1-1) ...... a(p.) as T ...... ro uniformly in 1.1 for 0 < p. :5 1.1
0 

. Let 

T\) 0 be given. Using (2.4), (2.11), (2.12) choose T > 0 so large that 

ja{j.l.) -cp{t,l-l)l < j and o < q,0 (t)- a 0 < '1 for t:::: T, o < 1.1 ::s l.lo· By 

+ the convergence of cp(t, p.) to cp 0(t) as 1-1 -0 on o < t < oo choose 

o<~o:5!J.o sufficientlysmallthat O<<PCT,f-1)-<Po(T) < T• O<p. :S!J.o· 

Then 

-for 0 < 1-1 _:::: ...,
0

, proving (2 .13). 

The first inequality in (2 .14) follows from (2 .11). To prove the 

second inequality in (2 .14) note that 

q, (t, 1.1) - q,
0

(t) :::: q,(t, 1-1) - a (1.1) + a ( 1-1) - cp
0

(t) 

< lj>(t,l.l)- a{!-1) + a(p.)- ao , 
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where the last step follows by Theorem 3; (2 .14) now follows by 

estimating q,(t,p.)- a(p.) by (2.7). This completes the proof of 

Corollary 3 .1. 

6. Proof of Theorem 4 • In view of the monotonicity property (2 .10) of 

solutions of (1. 6) with respect to the function g, it suffices to prove the 

result for the function g given by 

(6 .}) 
{ 

11 + 6 
g(t) = 

if t < -'11 1 {j > 01 '11 > 0 • 

(Strictly speaking, this function g does not satisfy the hypothesis (H
9

}, 

being discontinuous, but it is readily verified that the proof below would be 

essentially unaltered if the given g were replaced by a continuous g 

approximating sufficiently closely to it.-) Since 1 ::s g(t)::; 1 + 6 1 -c::c(t .:-:: o, 

property (2. 9) implies that 1 ::s.: q,
0

(t) :::: 1 + 6, 0 ::s.: t < oo • This means 

thattheargumentsof F in (1.6} arecloseto 1, if 5)0 is 

sufficiently small which will be the case in what follows. For this reason 

and in order to simplify the calculations we assume, consistent with (HF } 

and without loss of generality, that 

(6. 2) 

note that F(x,x):::: 0 (x > 0) implies that F
1
(x,x) "'~F 

2
Cx,x). 

Substituting (6 .1) into (1. 6) yields (note a ( · 11 
(0, co)) 

-'11 0 
(6.3) F(q,

0
(t),l} J a(t- s}ds + F(¢

0
(t),l + o) J a(t- s)ds 

-CO -~ 

t 
+ J a(t- s)F(q)

0
(t),¢

0
(s))ds::: o. 

0 
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Using (6. 2 ), the mean value theorem, and F E c1 ( lR x lR) yields 

( 6. 4) 

-~ 0 
(cfl

0 
(t) - l)J a{t ~ s)ds + (q,

0 
(t) - 1 - 6) J n{t - s)d:; 

-~ -~ 

0 t 
+ o(b) J a(t - s)ds + J a(t - s)(q,

0
(t) - ~0 (s))rls 

-00 0 

t 
+ J a(t - s)[ o{4'

0
(t) - cp

0
(5})) ds = o , 

0 

1 \ 0 
where (by a E L (0~ C()), a(t) > 0) the terminology w(t) ::: o(o) J a(t- s)ds 

~ 

mcansthatforevery t>O onehas Jw(t)f<r.6J a(s)d£ for t2:_0 
t 

and for li > 0 sufficiently small. An equivalent form of (6. 4) is 

~ t t+'l 
(6. 5) (cp

0
(t) - 1) J a(~)d£ - J a(t - s)(¢

0
.(s) - 1)ds .= & J a(€,)dt, 

0 0 t 

00 t 

+ o(o} J a(€,)ds + J a(t - s)[ o(¢
0

(t) - ~>0 (s))) ds 
t 0 

Since 1 :5. ¢
0 

(t) :5. 1 + b on 0 :5. t < ~, (HF) implies that the 

first term in (6. 3) is positive, while the second and third terms are 

negative. Thus the t.'lird term in (6. 3) must be in modulus less than the 

first term. This in turn implies that the last term in (6. 5) (or the last 
00 

integral in (6. 4)) must be o( b) J a (£)d£. Therefore, putting z(t) = ¢
0 

(t) - 1 
t 

in (6. 5) yields the ectuivalent equation 

t+~ 00 

(6. 6) z{t)A - a* z(t) = ~ J a(s)ds + o(b J · a(s)ds) (0 .$. t < 00 ) , 

t t 
co 

whc,rc * denotes the convolution and A = J a(s)ds. 
0 
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We shall now ~pply u simple Taubcriun theowm for (rcul) J.e>fJloce 

transforms [ 20; Theorem 4. 3
1 

Po 1fJ2.) to ~olutions of (6o 6). Put 

(6 0 7) 
t+T) 00 

~(t) .= J a(s)ds 1 w(t) = J n(s}ds 1 
t t• 

co 

(6 0 8) .... J -pt z(p) = e z (t)dt (p > 0) 0 

0 

Since z is bounded and continuous on [ 0, oo), 
1 A, 

and since a E L (0, oo), Z(p) 

.... .... .... 
as well as ~(p} and w(p} exist for p > 0. Noting that A = a(O) 

that multiplication of (6. 6) by e -pt and integration preserves the 

reJation when p is real, we obtain on solving for z(p) 

. A .... 

(6. 9) "'c ) = b,~(p) + c;_(o )w(p) < > O) • 
z P · a (0) - a (p) P 

By assumptions (H }. (2. 6 ) , nnd Lebesgue's dominated convergence a 

theorem, and integration by parts vve also h<lve 

00 cc co 

(6.10} : (0} = J J a(s)dsdt = J sa(s)ds , 
0 t 0 

(6.11) 
..., co NTl oo oo oo 
~(0) = J J a(s)dsdt .$. J J a(s)dsdt = J sa(s}ds 

0 t 0 t 0 

Moreover, by Fubini's theorem and (2.6) 

00 

(6.12) d A J -pt dp a(p) = - te a (t)dt 
0 

(p > 0) ' 

so that by the mean value theorem and (2. 6 ) 6 

co 

(6 ol3) A, ,. J a(O) - a(p) ... p ta{t}dt + 
(p - 0 ) • 

0 
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· · · (' l n, 1 , 1, l ( t. • -,, 1 o o , ! ~ 1
..:; ; ! 2 C l \ f.. ~ ll C' L . ~ 1 

1 
t. . ; 

1 
c . l ; ) 

2 
2 ~ • l n ;: 

(6.14) 
"' l: ( & \ z(p) - __ .'.J 

p 
+ (p - 0 ) • 

The above-mentioned Tauberian theorem, together with the fact that 
lim z(t) exist, then implies 
t-

z{t)- 1:{6) > o (t - .; "~) ' 

e:n~ by '.'he ceiinition of z (6.15) yields 

~· 0 (tl- 1 + K(&J > 1 (t - -+ co) ~ 

br & > 0 sufficlcntJy srn;:;ll. Thi2 completes the proof of Theorem 4. 

7. rr. 5. Using (2.16), eCJil.Jtl0n (1. fJj Jr..::;y l>c \';rittcn ill 

the fo:·m 

0 

( 7. 1) A y ( t } {l ::' y ( t ) ::: j 2 ( t - s ) g ( s ) d s ( 0 -~ t < CX'•) ' 
-CO 

00 t 

v,:h ere A ::: J a ( s)C:s 

0 

and a* y(t):;; J a(t- s)y(s)dso LC'ttins:;, as in 
0 

tj·Jc prooi of Theorem 4) y(t) ::o z(t)- 1, 

(7: 2} ]',z(t) o :;; z(t) = G(t) {0 :5. t < If") ' 

0 
(7. 3) G(t) = J a(t.-- s)(g(s) - l)ds {0 :5. t < co) • 

co 
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We proceed as in the proof of Theorem 4, but tnking any g satisfying (H ) • 
g 

rather than the special g of ( 6.1). Taking the Laplace transform and 

.... 
noting that A = a(O) we obtain 

.... 

( 7. 4) 
.... 
z(p) = G(...__o..:..,..) _ 

aco)·- a(p) • 

By 'Theorem 3, lim z(t) = z
00 

exists and z
00 

2:. 0. If Z
00 

> 0, a standa:-d 
t- 00 

Abelian theorem for Laplace transforms [ 20, Cor. lb, p. 18 2) stat8S that 

z 
.... 00 +. 
z(p) .., - (p- 0 ) • We shall apply this result to ( 7. 4) for p real. p 

Since by (H ) g(t)?. 1 (-oo < t::;, O), and since g is nondecreasing g 

with g(t) > 1 near t = 0, we have by Fuhini 's theorem 

(7. 5) 

00 0 
0 < G(p) = J e -pt J a(t ·· s)(g(s) - ])dsdt 

0 .,.ro 

0 00 

= J (g(s) - 1) J c -pta(t - s)dtds (p > 0) • 
-00 0 

Let £>0 begiven;chooseanumber N=N(c)>O, 

divide the interval ( - 00 , 0) into two parts, such that 

{ 7. 6) g(s) - 1 < e {s < - N) • 

Then (7.6) used in (7, 5) yields 

and using (H ) 
g 

0 co 

0 < G(p) < £ J e -ps J e -pea(O)dOds + 0{1) + 
(p .... 0 ) J 

-ro -s 
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or equivalently 

00 :0 

fl. 7) 0 < G (p) ~ c J epcr J e -~Oo(O)d8d~r + 0(1) 
-1-

(p -~ 0 ) . 
0 (T 

By an integration by parts and a e we also hu ve 

00 co 

(7. 8) ~(0} - ~(p} "' J (1 - e -pt)a(t)dt ::: J (1 - e -pt)epte -pta(t)dt 

0 0 

DO 00 

:: p J ·ept J e -pBa(O)dOdt > 0 (p > 0) • 
0 t 

Therefore, (7. 7), (7.8) substituted into (7.4) yields 

oo ro 

c J ept J e-pOa(O)dOc!t + 0(1) 

(7.9) 0 t 
z(p} < ----=-----------

co 00 

+ (p ..__.. 0 ) • 

p J ept J e-pOa(O}ciOdt 

0 t 

But by (2.17 ) 

oo ro 

J pt J -pB lim+ e e a(O)dOdt ::: + ro, 
p-..o o t 

and this fact used in (7. 9) shows that for uny :: > 0 

;.. £ 1 
z(p) < - + o(-) 

- p p 
+ (p - 0 ) . 

Since c > 0 is arbitrary, zen > 0 is impossible. This completes the 

proof of Theorem 5. 
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8. Proof of T~corcm 6. Let q,
0 

be the unique solution of (1. G) (see 

l'heorcm 3). Thu!; q•o sali!;fics 

0 t 
(8o1) J a(t ~ s)F(4,

0
(t), g(s))ds + J a(t- s)F(¢

0
(t), q,

0
(s))ds = o (O .s t < oo) • 

-~ 0 

1 
·By a c L (O,ro), (Hf)' (H

9
), and the boundcdness of ¢

0 
there exists 

a constant K > 0 such that 

0 . ~ 
{8, 2) 0 < J a(t - s)F(¢

0
(t), g(s))ds < K J a(s)ds (0.::; t < oo) • 

-~ t 

(The first inequality in (8. 2) follmvs by simple consideration of signs in (8. l).) 

.Applying (HF) and the mean value theorem we have 

which by the bounciednes s of ¢
0

, F 
1 

> 0, and the continuity of F 
1 

implies that there exist constants M
1

, M
2 

> 0 such that 

Using (8. 2), (8. 3) in (8ol) shows that 

(8 0 4) 

where 

(8 0 5) 

t 
J a(t - s)(~0 (t) - <J>

0
(s))ds = 4J(t) 

0 

00 

'fs(t) = ocf a {s)ds) • 
t 
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Let 

(8. 6) z(t) :: 9
0

(t) - cr
0 

(a
0 

:: lim ~0 (t)) • 
t ..... 00 

Then, from (8. 4), z satisfies the linear Volterra equation 

t t 
(8. 7) z(t) J a(s)ds - J a(t - s)z(s)ds ;:: ~(t) (0 < t <co} • 

0 0 

t 00 00 

'W-iting J a(s)ds :: J a(s)ds - J a(s)ds and noting that z(t) is 
·o o t 

bounded shows that (8. 7) may be written in the form 

(8. 8) 

00 

z(t}A - a::< z(t) :: w(t) (0 s t <co; A :: J a{s}ds > 0) 
0 

00 00 

w(t) :: ~(t) + z(t} J a(s)ds = ocf a(s)ds) ( 0 < t < 00). 

t t 

We now solve (8. 8) by Laplace transforms. By the argument of 
00 

Theorem 4 and using J ta (t)dt < co, we find that if 
0 

co 

~(0) = J w(t)dt t- 0 
0 

(note that this integral exists in view of the estimate satisfied by w 

1 
and ta(t) c L (0, co)), then 

z
00 

:;; 0. 11lerefore, 

(8. 9) 

lim z (t) ~ z :/:- 0. But, by Theorem 3, 
00 

t- co 

co 

J w(t)dt ::: o . 
0 
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Now intcgr.Jtu (H.B) over [ 0, 1'), 1' > o,. ohtuiniug 

T T T 
A J z(s)ds - J a * z(t)dt = J w(t)dt . 

0 0 0 

But, by (8.9), the last equation can be written as 

T T ~ 

(8.10) A J z(s)ds - J a * z(t)dt "' - J w(t)dt • 
0 0 T 

Interchanging the order of integration in the double integral on U1e left-

hand side of (8.10) and using the estimate for w in (8.8), as well as 

ta(t) E L
1
(o,oo), yields 

T T T-s oo 
(8 .11) A f z(s)ds - f . z(s) f a{cr)drrds == O(j (t - T)a(t}dt) (0 ~ T < oo) • 

0 0 0 T 

Using the definition of A and combining the two integrals on• the left-har,d 

side of (8 .11) yields 

T oo oo 

(8.12) j z(s) f a(v)do·ds = ocf (t - T)a(t)dt) . 
0 T-s T 

Finally, using the fact that z is decreasing on 0 < T < oo, we cbtain 

from (8.12) 

T T oo 
z(T) j j a(cr)dcrds = O(j (t- T)a(t)dt)), 

0 T-s T 

which on interchanging the order of integration yields 

T c:o 

(8. 13) z(T) f aa(cr)do- = o(f (t - T}a{t}dt). 
0 T 

This implies (2.19) and completes the proof of Theorem 6. 
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!l_. Pwof of Theorem 7. Dy stnndunl results the initlnl v.:tluc problem ( 2. 22) 

hos a unique locnl solution w :.: f. (t) having 

0 
{9 .1) -t'(O) = J a(-s)r(g(O),g(s))ds > 0. 

-co 

Thus s dccrcnses initinlly. To continue the lccul solution we proceed simi-

larly to the proof of Theorem 1. First, we show thot for as long as 

t '(T) < 0 one has 

where y
0 

is (see Theorem 3) the unique value for v.rhich 

0 
(9. 3) J a(-s)F(y

0
,g(s))ds:.: o. 

-CO 

We observe that equation (2. 22) may be regarded as an autonomous 

ordinary differential equation having tJ-1e point y
0 

as its only critical point. 

Recall from Theorem 3 that (s(O) =)g(O) > y
0

• If s assumes the value 

y 
0 

at T :.: Tl, then by (9. 3) 

0 
-t'(T

1
) = J a(-s)F(y

0
,g(s))ds:.: 0, 

-00 

which is impossible if s '(T
1

) < 0. This proves (9. 2). On the other hand, 

t'(O) < 0 implies.by continuity that ~'(T) < 0 for 0 .5_ T <a, a> 0. If 

a> 0 is the first point at which s • (a) :.: 0, then 

0 
o = -V {a) = J a(- s}F(t (a), <J(s }}ds . 

-00 
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This b)• uniqueness of y
0 

implies thut ~(a) = y
0

, nnd therefore 

w = ~(T) nnd 

point ( Q', y 
0

) , 

(9. 4) 

w := y would be two solutions of (2. 22) through the 
0 

contradicting ur.iqucnc:::; s. Therefore, 

t I (T) < 0 I 

for as long as the solution exists. Now (9. 2}, (9. 4) and a standcrd 

continuation argument yield the global existence and uniqueness of the 

solution w = t (T) of (2. 22) such that 

(9. 5) (0 < ,. < oo) , 

which implies that. lim t (T) = ~co exists and sc.o 2:. y
0

. 
,. ..... 00 

To prove (2. 23) w·e combine (2. 22) and (9. 3) obtaining 

{9. 6) 
.QS_ 0 

- dT = ~00 a(-s)(F(~(T), g(s)) - F(y
0

, g(s))ds (0 ~,. < oo) • 

Applying the mean value theorem and (HF) yields the existence of a 0 (T,s), 

0 < O(T,s)( 1, such that 

(9. 7) 

CIO 

Let S = [ y
0

, g(O)] X (I, g(O)], A = j a(s)ds > 0, By (HF) 
0 

y = inf F 
1 

(y, z) > 0 • 
(y,z)E S 

Therefore using this and (9. 5) in (9. 7) gives the differential inequality 

(9. S) (0 < ,. < oo) • 
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Integrating (9. 8) nnd using the inJtL:.l comlition t,(O) = CJ(O) yields 

the second st~tcmcnt in (2. 23), which also 'implies the first statement in 

(Z. 23). 

Applying the transformution (2. 21) it is clear th.Jt y{t) = s (t/!-l) is 

the unique solution of the initial vulue problem ( 2.. 20) for 1-l > 0, 0 < t < X>, 

Thus 

0 
d t - .... - ~(-) 
dt 1.1 

= j a(-s)F(s(J.), g(s))ds (J.J. > o, 0 < t < ro) 
-CO J.1 (9. 9) 

tCO) = g(O) • 

l.et ¢{t, J.J.) be the unique solution of (l .1), (1. 2) on 0 .::5 t < ~, f.l. > 0 

(see Theorem 1), which can be written in the foi·m 

('9.10) 
d 0 

- J-1 d t ¢ ( t , !-l) = J a ( - s ) F ( ¢ ( t d~ ) , g ( s ) ) d s 
_C() 

0 
+ t J a'(-s + B(t, s)t)F(¢(t ,!-l),g(s))ds 

_C() 

t 
+ J a(t- s)F(<j>(t ,~-.d,ct-(s,!-l))ds (0 < t <co, fJ. >OJ, 

0 

where 0 < O(t,s) < 1 comes from the npplicntion of the mean value 

theorem to a(t - s)- a(-s). Note that since F(¢(t ,f.l),g(s)) is bocnded 

and a'£ L1{0
1

o:>), the secorid integral in (9.10) clearly exists. Subtracting 

(9.9) from (9.10), using the mean value theorem once more, and 

observing that the last two terms in (9.10) are O(t) as 

uniformly in 1.1 > 0, yields 
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(9 .11) d t t 
~IL .dt [ ¢(l, p.) ~ t (;)) : ~ (l ,1-d[ q•(t, 1·!) - t (p)) i O(t) 

(t - o+' uniformly in IJ. > 0) , 

where 

(9 .12) 
0 

) J t . t 
~l(t,p. = a(-s)F

1
(£(-)+9(t,s,J .. t}(q,(t,IJ.)- g(-)),g(s))ds 

-00 IJ. IJ. 

cO 

0 < e{t,s,p.)( 1. Letting S ~ [ l,g(O>) X [ l,g(O}), A= J a{s)ds, and 
0 

using (Ha)' (HF), (H
9

) implies 

(9.13) fnf mct,J.L) ~ yA > o, 
o_st_st

0 
~>0 

where y = inf r
1
(y,z) is independent of Jl· ·Using (9.13) in (9.11), 

s 
integrc:;ting (9 .11), and applying the initial condition <j>(O, J.L) ::: ~ (0) = g(O) 

yields the existence of a constant K = K(t
0

), independent of 1-1, such that 

(0 < t < t : IJ. > 0) - - 0 

t _YA(t-s) 
~ Kt f e 1J. . d s s K t 

ll O yA ' 

which is (2. 24) with K ::; K/yA. This completes the proof of Theorem 7 • 
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JO. P10of ('I( 'I11em<'m ~. We show thilt - -· -----

(10. J) 

where 9
0 

is the solution. of (1. 6), 1 s an upper solution of (1.1) for 

0 <t < CIO for suitable choices of the constant K > 0 and the function y. 

By Appendix B it suffices to show that w defined by (10 .1) for 0 ;£ t < O'J 

and w(t) = g(t) (-ro < t < 0) satisfies the 5ntegrodiffcrential inequality 

t 
(10. 2) -J.~.W'(t, J.L) < J a(t - s)F(w(t, 1-d, w(s, ~))ds (0 < t < oo) • 

-ro 

We begin by defining y and K in (10. 1), For reasons which 

will become apparent b.e1ow let 

(10. 3) 

where 

Y(ro) 

t ro 

y(t) = y
0 

exp(K
1 
J <J ~(,-)dT)d<r) 
0 . t]" 

(0 ~ t < C'J) 

y
0 
> 0, K

1 
> 0 are constants specified below. In view of 

BK
1 exists with Y (oo) = Y 

0 
e , where 

co 

B = J 'fa(-r) d-r 
0 

Thus the function w defined by (10 .1) satisfies the inequality 

(2.6), 

(10. 4) 1 :=s w {t, 1-1) :=s g(O) + Y (oo) 1-1 I log 1-1 I (O=st<~)· 

Let J denote the closed interval [ 1, 2g { 0)] and let R denote the 

rectangle J x J . Let M > 0 be a constant such that 

(10.5) sup ( IF(y, z)l .. lr
1
(y, z}l .. lr

2
(y_, z)l, IF11(y, z)l .. lr12Cy, z)l, IF22 CY .. z)l) == M 

(y, z) E R 
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and let m > 0 be a constant such that (see ( HF )) 

(10. 6) inf F 
1 

(y, z) ~ m • 
(y,z) £ R 

111cn lor nny choke of 'Yo, K
1

, indepcncl0nt of 11, one has Ior J-1. 

sufficiently Smull that the points 

for 0 ::::_ s ::5_ t < CX): this statement is also true for t < 0 since 

w(t,f.l) = q-
0

(t) = g(t) for t < 0. Therefore the vnlues of F and its 

first and second purtial dcrivutives nt these points arc by (10. 5) bounded 

by M. 

Wedefine K in(lO.l)by K=~mA, 
co 

'~here A = J a(s)ds. 
0 

\Vith these definitions of K and y it rcnu:d ns to verify {10. 2). 

·we begin by doing this on the interval. 0 < t ;; i f.Lilog f.!. I. To simplify 

the exposition let RHS denote the integral on the right-hand side of {10 .2) 

for t on any intHval under consideration. \Ve shall also suppress t!"!e 

parameter f.1 in w{t, p.) when no confusion arises. By the mean vnlue 

theorem we have for 0 < t::;. ~ p.llog t-tl: 

t 
(10. 7) RHS = J a(t - s)r(cw - <:>

0
)(t) + 9

0
(t), (w - q,

0
)(s) + <J,

0
(s))ds 

-00 

= (w-4>
0

)(.t) Jt a(t-s)F1 (£(t, s), 11 (t, s))ds + 0 (p.llog Ill), 
-oo 

where we have used the facts that 4>
0 

satisfies (1. 6) and that 
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(w- ¢
0

}(s) = 0 for s < 0. In {10. 7) the 0-term does not exceed 

2Ma(O) I I 
K 1.1 log f.!. {(g(O) - q,

0
(o)) + y(t)f.lllog 1.11} 

and the point (s(t, s), TJ(t, s)) lies in R. Thus (10.1), (10. 6) used in (10. 7) 

yields 

(10.8) RHS;:: mA{(g(O)-q,
0

(0))e-Kt;{L +Y{t)fJ.Jlogf.ll} +O(f.1Jlog f.lJ-). 

We can clearly choose y
0 

in (lo. 3) sufficiently large that the term 

mAy(t)!J.Ilog !J-1 in {10. 8) is at least twice the 0-term if f.1 is sufficiently 

small, and we leave K
1 

arbitrary at the moment. Then (10. 8) certainly yields 

(l 0. 9) - Kt/p. 1 I I 
HH S ~ m.l:l. { ( g ( 0) - q, O ( 0)) e + z yO f.l- 1 o g 1.1 } • 

On the other hund, it follows from (10.1) and (10. 3) using 'f'(t) > 0 (0 < t < .::o) 

that 

(10.10} 

and so from the choice of K that for f.l sufficiently small the desired 

inequality (10. 2) holds on the interval 0 < t s ~ f.1 I log l.l.l . 

·we next verify (10. 2) on the intervc.l l,, )log ,,·J < t < K \vherc K 
Kr r- - 2 2 

is a positive constant, ind8pcndent of p., to be determined. Observe 

that for t?: -~ 1.1 )log f.!. I: 

(10.11) (w - q,
0

)(t}::, ·y(t)p. ]log p.l + O(p. 
2

) • 

Thus by the mc3n vulue theorem and the fact that w(t} = 4>
0

(t) = g(t) (-co < t < 

one has 
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t 
(10.12) RHS = (w- ct>

0
)(t) J a(t- s)F

1 
(~Ct. s), 11 (t, s)) ds 

-oo 

2JJ.I1og f-11/K 
+ J . a(t - s)(w - q,

0
)(s)F 2 ( s (t, s),, (t, s)) ds 

0 

t 
+ J u(t - s)(w - ¢

0
)(s}F 

2 
(; (t, s),, (t, s)) ds (t::: ~ f.! I log I-ll), 

ZJ.l hog f-11/K 

where the point (€,(t,s), 11 (t,s)) lies in R. Lc.t 1
1

, 1
2

, 13 denote the 

first, second, and third integrals in (10.12). Then by (10.1), {.lO. 5), und 

y nondecret:lsing one has 

(10 .13) I 1
- 2Ma(O) 2

1 
12 Ma(O) I 

2 
::, K . y(t}l-l log 11 + K f.!(g(O) - 4>o (0 )) , 

and similarly 

(10 .14) 
t 

h 
3

] ~ M[ y(t)f--l!log p.J + O(p. 
2

)) J a(t - s)ds • 

2 p.jl 0 g p. I /K 

Note that 1
2

, 1
3 

are each negative while 1
1 

is positive,and for p. > 0 

sufficiently small 

(10.15) li > -1 mA y(t)f-1 hog p.J . 

Hence if K
2 

is chosen independent of p. and sufficiently small, it 

follows from (10 .12) - (10 .15) that for f.1 suffici0ntly small 

(10.16) RHS > ~ rnAy(t)f-1 hog 1-1! (. 2fL -I log J.L I ::S t ::S Kz ) . 
K 
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From (10.1), (10.3) one has again (10.10) valid·on the interval being 

considered. Comparing (10.10) and (10.16) one finds that (10.2) is 

satisfied on the interval ~ 1-1 I log 1-11 s t :s K2 , with K2 chosen as 

above, if !.l. > 0 is sufficiently small. Note that in this and the previous 

part of the proof we have not used the special form of Y(t) in any 

significant way. 

Finally, we establish (10. 2) for any t> K
2

• For any such t 

(10.12) is valid and the estimate for 1
2 

given by (10.13) holds. 

In fact, (10 .13) can be strengthened to give 

1121 :s 2~ a ( t- ZJ.l- l~og l-L I ) Y ( 21-1 I iog 1-11 ) 1-12 I log 1-112 

+ ~ a (t - 2J.L l~og I-ll) 1-1 ( g(O) - q,o(O)) ' 

and since a 1/a is bounded, we have 

2 1-1llog 1-1 I 2 1-1 I log 1-1! 
a ( t - K ) = a (t) - K a'(,.) , 

where 

<-r<t, 

and so 

a ( t -
2 

1-1 I log 1-11 ) = a (t) ( 1 + 0 ( 1-1 I log f.L I ) ) • 
K 

Hence, for 1-1. sufficiently small, 
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(10.17) + ~ a (t) ~ ( g ( o) - cp 0 ( 0)) • 

Fwther, since a 'fa is bounded, it follows on integration that 

(10 .18) 

is bounded. 

a (t) / J 00 

a (,.) d -r 
t 

We can write 

J + J 
{ 

2~ l1og f.LI I K t } 

- co 2 J.l I log J.l I/ K 

a(t- s) r 1 ( ;ct, s), T)(t, s)) ds 

Certainly, 

0 
11 > mY (t) f.L l1og f.L I J a (t- s) ds 

-oo 

00 

:: m Y {t) J-1. I log ).1. I J a ( -r ) d 1' , 
t 

so that, if J.l is sufficiently small, we can use (10 .1 7) and (1 0.18) 

to obtain 

(10 ·19) t m Y (t) J-l I log JJ.I J 00 

a( T) dT • 
t 
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But, from (10 .10) and Theorem 2. (or more precisely Remark 3 .1), 

the left-hand side of (10. 2} does not exceed 

(10. 2.0) 

We have already remarked in the proof of Corollary .2 .1 that a(t) ~ a e -~t 

for positive constants a, f3, and that consequently the second term in 

(10. 20) is negligible compared with the first if 1.1. is sufficiently small, 

t?!: K2 • Comparing (10.19) and (10.20), we see that (10.2) is 

certainly satisfied for 1.1. sufficiently small and t ::::: K
2 

if 

Now 

t 
= J a(t-s) [(w-<J>

0
}(t)F

1
(;<t,s), 11 (t1 s}) 

21.1.llog 1.1.!/K 

The hypothesis F(x, x) = 0 implies that Fl (X, x} :::: - F z(x, X) I and the 

bounds on the first and second partial derivatives of F imply that the 

first derivatives of r
2
jF 

1 
are bounded by 2M2 jm2

• Hence the 

expression in [ ... ] in (10. 21} may be written 

(10.22} 
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From the application of the mean value theorem in which they arise, we 

see that 

t<t,s) = ct>
0

(t) + e(t,s)(w-q>0 )(t), 

, (t, s) = q>
0

(s) + 9(t, s) (w- q>
0

) (s), 

where 0 < e < 1 

Thus 

and 

( w - q,o)(t) zM2. 
- 1 - - 2- I ; (t, s) - 11 (t, s > l (w-cpo)(s) m 

(10. 23) 

But since, in the range of integration with which we are now concerned, 

2 JL I log J.L I / K s s :::; t 

we have 

(w - cp 0 }(t) - 1 = 
(w- <}

0
)(s) 

(Y(t}-Y(s)) J.L llog p.j + (g(O)- cp
0
(0))(e-Kt/f.L_ e-Ks/J.L) . 

Y c s > ~ I log ~ I + ex~ 2 > 
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If 1.1 is sufficiently small, the denominator does not exceed 

! Y(s)I..Lilogp.l, andusing (10.3) wehave 

(10.24) 
t cc 2 

2: 
3 ~ J ( J a(-r)d-r) da-

s (T 

But we have already remarked that a is bounded below by a negative 

exponential~ so that 

a( -r) ::: - t:s,ae 

Futther, for 1-L sufficiently small, 

1 

1.1 
2 

I log 1-11 

e- Ka-/1-L -t:sae 

For this is equivalent to saying that 

if 

::: 2 I log 1-L I - log I log 1-L I , 

a- ::: 21-L I log 1-L I / K • 

and this is certainly true even if a- = 21-L I log 1-L I /K and f.1. is 
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sufficiently small. Hence, if !-1. is sufficiently small and K
1 

(still at 

our choice) is fixed large enough, the 0-term in (10. 24) does not 

exceed half the first term, and substituting back in (10. 23) and noting 

that (w- q,
0

) (s) is small for s in the relevant range s ~ 2!-1. I log ~-tl /K 

and !-1. sufficiently small, we see that the right-hand side of (10. 23) is 

not less that 

(10.25) 

Finally, from Theorem 2 (or more precisely Remark 3 .1), 

t 

If 
s 

I 
q,
0 

( cr ) d cr 

"" t C() 

:s K fs ( J a( -r) d -r) d cr 
cr 

and so, if K
1 

is fixed sufficiently large, (10. 25) is not less than 

Substituting this into (10. 22) and then into {10. 21), we conclude that 

112 + 13 > 0, and the theorem is proved. 
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Appendix l\ St<ltcmont of phvsicul problem und formul.1tion 

of mnthcmuticul mortcl 

Molten plastics commonly exhibit l3rgc qlastic recovery; for example, 

* a filament of a certain polyethylene ('Melt 1' at lSO"C}, when clongntcd 

·at a rute of 1 em/sec/em from an initial length of, say, 1 em to a length 

of 55 em and then released, will reach a final length of about 5 em [ 15) . 

Such clastic and other rheological properties are of .interest in the process-

ing of plastics and rubber and also as examples of materials with 'memory' 

The correct equations for describing the isothermal behaviour of 

a given molten plastic are not yet known. One set which has been used 

with some success [ 8] for 'Melt 1' can be expressed ·as follows in body 

tensors: 

(Al) 
-1 av -l(P t) Jt -1 

;!!.(P,t) + P.Y (P,t)::: -, at' + a(t- S).Y (P,s)ds 
-00 

(A2) :s det _y(P-, s) ::: 0 {-00 < s::; t) 

(A3) ~ • :!!. ( p, t) c=: p (g - :s ) 

(A4} R{.Y(P, s)} = o (- 00 < s ::; t} . 

{Al) is the so-called 'rubberlike liquid' constitutive equation relating 

the symmetric contravariant stress tensor ]!.(P, t) at particle P and 

-1 
time t to the values of the reciprocal Y of the symmetric covariant 

* 9 ":the U. S. production (8 X 10 lb) of polyethylene in 19 73 exceeded that of 
any other one polymer. 
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metric tc:n!;or ,Y(P, s) nt lime~ in l11c lntc;vL.d -ro < s ~ t (St!C (1\lZ) bclt,w). 

The mntC'rinl propcrUcs arc determined by the nonnc(Jntivc con::;tJnt 1) und 

the nonncg;:~tivc constants a
1

, ... ,am' T
1

, ... , Tm in the •memory function' 

{/\ 5) a(t) 
m 

= l: a exp( -t/T ) 
r=l ~ r 

{a > 0. T > 0) • 
r- · r 

(See (A Z6) and the subsequent explanation; for other possible constitutive 

equations see [ 1] and r 5).) 

lf the integral term Y.·ere omitted, (AI}, .with the constant volume 

condition (A2), would describe an incompressible Newtonian liquid of 

viscosity T'l and could be used, with the stress equation of motion (A3}, 

to derive the Navier-Stokes equations; there would be no elastic recovery 

possible. !!. and 2: are contravariant vectors describi:Jg acceleration 

and body force per unit rna s s, respectively i p denotes the density. 

p is a scalar function of P and t, of the nature of a hydrostatic 

pressure, introduced in conjunction with the incompressibility condition 

{A2). '\l in (A3) denotes the covariant derivative operator formed with 
""""t 

'V(P, t}, and the dot denotes contraction [ 8, p. 19 3) • (A4) expresses 

the vanishing of the fourth rank Riemann-Christoffel curvature tensor R 

constructed with ,Y{P, s); this expre£ses the fact that the body manifold 

is Euclidean at each instant s and so admits a body coordinate system 

thot is instantaneously rectangular Cartesian ~t s [ 8, p. 202]. 

Equations (Al - 4) are sufficient in number to determine, in principle, 

the .unknown variables .:!!. , Y, and p whE::n the.rem:"lining quantities 

(together with suituble boundary and initiul conditions) are given. 
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When referred to un arbltr\try body coordinutc system 
3 

B : {P) - m , 

(Al) und (AZ) yield cqui..ltions 

ij t 
(A6) n

1J<f.,t) + p(~,t)/~c~,t) = -11. ayat(C,,t) + J a(t- s)/JCLs)ds, 
-00 

(A7) ( -00 < s < t) - ' 

where f. in this and in similar contexts is short for (£ 1 ,; 2 ,~ 3 ), the 

. ij ij 
coordinates of P 1n B; n , y , and y.. denote components of .!!.., 

lJ 
-1 y, and "'j_, respectively, i,j::::l,2,3. Foranarbitre.ry B, {A3) 

yields a complicated set of equations, One can, however, always choose 

a B that is Cartesian at the instant t at which {A3) applies (i.e., B 

issuchthat y .. (S,t) isindependentof ~ for i,j=l,Z,3), anda 
lJ 

space coordinate system C : {Q} ..... R
3 

that is rectangular Cartesian; 

(A3) then yields the following three partial differential equations: 

(A8) (i = 1' 2' 3) . 

The motion of the body is now described by the three equations 

(A9) 
i i 

x = f (~, s) (i ::: 1' 2' 3) , 

where x1 denote the coordinates in C of the place Q occupied by 

particle p at time s. t denotes the components in c of the external 

body force per unit mass. 

(A4} yields a very complicated set of nonlinear, second order partial 

differential equations in yij(s, s) whose solution is of the form 
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(1\10) (i,J = l, 2, 3) 

for urbitrary n and rcctungulnr Cartcsbn C [ 3, 11) . We muy thus use 

the three functions f
1
C£,s) in place of the six functionz yij(s,s) (~· 'Yji(t,,s}) 

as unknowns. On using (AlO) and the matrix equation 

(All) 
ij • -1 

[ y (!;' s)] = [ )'ij {~' s)) ' 

ij . 
we may express (A6) and (A7) in terms of " , r, and p: on substituting 

the resulting expressions for ,/i into (AS), we finally obtain three non-

linear, partial-integra-differential equations, w!"iich, with the sir.glc 

equation resulting from (A7), yields a set of four equations for the four 

unknown functions I, p; the independent variables are e, 1 s. 
~ ' 

The final equations are nonlinear in f, p althouyh the ntbberlike 

liquid constitutive equation (Al) is linear-in the tensors :!!.; .r-1
. The 

nonlinearity comes from the constant volume condition (A2) and from th c 

zero-curvature condition (A4) \v!"iose soh.1tion (AlO) is quadratic in the 

unknown functions f. The nonlinearity arisj_ng from the procucts in the 

left-hand side of (A8) can be removed trivially by choosing B to coincide 

with C at time t, so that t\g, t) s 1 
and af las j = o

1
j at time t. 

A very ccnsiderable simplification cf the above equations is obtained 

for flow histories which are homogeneous (or uniform) ur:der conditions in 

whid1 the inertial and body force terms on the right-hand side of (l\3) can 

be neglected. Such histories are of little or no interest in classicu.l 
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hydrodynumic:; (where the constitutive equr~tions urc given by (J\1) with 

a(t) s 0) but .urc of fundumcntnl importuncc in polymer rheology where 

highly viscous molten plastics can be subjcctqd to uniform elongation in 

filament form or to two-way stretching in sheet form; results of carefully 

controlled experiments of this type can be used to test the applicability of 

constituti vc equations such as (Al). A flow history is homogeneous if, 

for any two instants s, t, 

which it can be shown that 

the operators a/at and 

p to be independent of P, 

we have .Y1 y(P, s) ::;; 0 [ 8, p. 247), from 

-1 Y.t;Y (P, s) ~ 0: since .:y't commutes with 
t 

J a(t - s).,, ds, it follows from (Al) (taking 

as a trial solution)·that \! n(P,t) -r- 0 (show-

inq that the stress is homogeneous) and hence also that (A3} (with the 

right-hand side zero) is satisfied. It also follows from the above defini-

tlon of a homogeneous flow history that a body coordinate system 

B : P -+ ~ exists that is Cartesian in every state, i.e. , which is such 

thclt y
1
/;, s) is independent of ~ for all s [ 8, p. 247}, and hence 

(A4) is satisfied. The behaviour in homogeneous flow histories with inertial 

and body forces neglected is thus governed by (A6) and (A7) with ~ 

absent, and there is no longer a need to introduce a space coordinate 

_i • d ij th system or the functions 1: one can mstea use yij or y as e 

unknowns, for example, in the case of problems involving the calculation 

of :free elastic recovery: in such problems, the flow history (and hence 

yij (s)) would be specified throughout some intcivul 
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for ~l < s < t, the stress would be zero, and the elustic recovery would 

be determined by solving the set (1\6) (with n
1
j = 0) and (A7) for p(t) 

and '~'tj(s) (t
1 

< s < t). These equntions thus form a simultnneous system 

of nonlinear Volterm integrodifferential equations1 in which the nonlinearity 

arises from the incompressibility condition. 

In this paper, we consider the particular case of the above in which 

the specified flow history is one of simple elongation (at constant volume). 

The variable p can be eliminated, and the recovery behaviour is then 

governed by a sing!e nonlinear Volterra equation, which we now derive. 

In any B, the separation P 
0

P at time t between any two 

neighbouring particles P 
0

, P is given by the equation 

CAlz) CP.0 P)t
2 

= l:L y .. <s~t)c£ 1 &; 1 

i j 1) 

where ~i and s1 + b£
1 

arethecoordinatesin B of P
0 

and P. 

for any two times s, t, there are three material lines through any given 

P 
0 

that are mutually orthogonal at s and at t; in the strain s -.. t, 

infinitesimal material line elements tangential to these three material 

lines at P 
0 

change in length by factors \ (P 
0

, s, t) which are given by 

the positive roots in X. of the equation 

2 
(Al3) det{y ij(L t) - x. yijC;, s)} = o . 

The factors \ are called 'principal elongation ratios'. A flow is 

'shear fre~' if there exists a body coordinate system B that is alwuys 
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orthogonul, i.e., such thut "Vtj = 0 when if.. j [8, p. 81). l'or a 

shcnr-frcc flow, the principal clongntion ratios nrc given by the length 

chnngcs of the coordinate lines, and the roots of (/\13) urc given by 

(1\14) (1=1,2,3). 

For a shear-free flow that is homogeneous, B is always Cartesian, i.e., 

* the 'Vii are independent of ; . A shear-free flow is a 'simple elongation' 

if two principal elongation ratios, A 
2 

and A 
3 

say, are always equal; 

the ;
1- coordinate lines are then called directions of elongation. The 

constant volume condition (A 7} reduces to the equation AlA 
2

>.. 
3 

:o:: 1 and 

hence, for simple elongation at constant volume, we have 

(Al5) 

We now consider the following problem: 

-00 < s < - t 
- 0 

Zero stress: no flow: B rectangular Cartesian: hence 

•ij ij 
1T = 0' "{ .. = 'Y = c .. 

lj lJ 
(Al6) 

Homogeneous simple elongation at constant volume and 

constant rate K, i.e. , 

(Al7) 

Zero stress; free elastic recovery: 

(AlB) 
ij 

'U' =0. 

* And hence >..
1 

are independent of P 
0

. 
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We wish to cnlculuto yij(~, s) for 0 < s ~ t. 1\.s a trlul solution, 

1t is rcosonablc to suppose that the elastic recovery will involve a homo

geneous simple elongation ut constant volume with the ; 
1
-coordinate lines 

again as directions of elongation (or contraction). For convenience, we 

write 

(Al9) 

Since the entire flow history is a homogeneous simple elongation at 

constant volume, we have, from {All), (Al4), (Al5), (Al6}, and (Al9), 

11 . -2 
Y c; , s > = Y c s >, 22 33 ) y <t' s) ·= y c; J s} = y(s}' 

/j :: 0 (i =1- j) • 
(-00 < s .$. t) (AZO) 

From (Al6) and (Al7}, we have 

{. 
y(s) = 

exp{ K (s + t
0

)} 

(A21) 
(-oo<s<-t) - 0 , 

( -t
0 

< s .5. o) • 

y(s) is to be calculated for 0 < s .5. t so as to satisfy (A6) and (A7). 

(A7) is satisfied by {AZO). Using {AZO) and (AlB}, the six equations 

(A6) for t > 0 reduce to the following two: 

(A22) (i = j = 1) 
~z t 

-2 dy (t} J -2 p(t)y (t) = -'11 dt + a(t - s)y (s)ds , 
-00 

(A23) (i = j ::: 2) 3) 
~t 

p(t)y(t) = -'11 dt + J a(t - s)y(s)ds • 
-00 

The unknown function p(t) may be eliminated by multiplying (AZZ) by y
3

(t) 

and then subtracting (AZ3). The resulting equntion may be written in the form 
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(J\24) 
f!yitj t 

- f.l dt. :.: J a(t - s)F(y(t), y(s))ds 
-CO 

{t > 0) J 

where 

(A25) 
3 2 

11 ::: 3q, F{y,z) :: (y /z)- z. 

These are the equations used in the text above. Finally, we add some brief 

remurks about the physical basis and applicability of the rubberlike 

liquid constitutive equ3tion (AI) which has been discussed elsewhere 

[8, pp. 143, 223-236). 

(AI) has been derived from two different molecular theories: the 

'bead-spring' theory of Rouse and Zimm for ·Jery'dilute solutions of deform-

able long molecules in an incompressible Newtonian solvent of viscosity 

1), and the network theory of Green and Tobolsky, Yamamoto, and Lodge 

which is developed for concentrated polymer solutions and undiluted or 

molten polymers. It is curious that two different molecular theories 

should yield constitutive equations of the same form, but the re3son for 

this is known: the differences between the two sets of equations at t.l-Je 

molecular level do not survive the averaging process used to go from the 

molecular quantities to the macroscopic quantities !. and ::!.. which 

appear in the constitutive equation (l\1) [ 9] • The memory function cor.stants 

a , T are specified in terms of three unknown constants by the bead- spring 
r r 

theory but are not specified by the net\'v'Ork theory, which also leaves 1) 

unspecified. 
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According to the network theory, the integrul term in (I'd) uris en from 

the thermul motion of u network composed of long, deformable polymer 

molecules temporarily linked together at a few points called cntonglcmcnts 

or tempor~ry junctions which ure ossumcd to be creoted and lost ut 

const.:mt rates w!tich are unuffectcd by the flow history. The concentration 

N(t)dt of network strands which were created in the interval (O, dt) 

and are still in the network at time t (o 'stmnd' being that part of a 

polymer molecule lying between two consecutive junctions) is given by an 

equation of the form 

m 
(AZ6) N(t) ::: L: 

r=l 
C exp( -t/T ) 

r r 

where, for simplicity, it has been assumed that the set of all strar.ds 

can be sorted into m subsets, labelled l, 2, ... ,m, such that, in the 

th 
r subset, all strands were created at the same rate C (per millilitre) 

r 

and have the same probability 1/T per second of leaving the network . r 

[ 10] . The memvry function in (Al) is given by the equotion a (t) ::: kTN(t), 

where k is Boltzmann's constant and T is the absolute temperature. 

Thus a = kTC > o, and (A5) is proved. r r 

According to the network theory, then, it follows that a(t) > 0, 

because there is always a nonzero concentration of strands of age t, 

and that a'(t} < 0 because strands of age t(> 0) can only be lost and 

not created; strands are crented with age 0 only. It also follows from 

(A5) that 
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(AZ7) 

(-l)ku(k)(t) > 0 

and u(k+l)(t)/u(k)(t) } 
(k = 0, 1) z, ... ) . 

is nondccrcusing 

(k) th . 
a (t) denotes the k donvativc of a(t). ·(.1\27) represents the 

properties of a(t) some of which are used in the present analysis. 

The constitutive equution obtained by putting '1 = 0 in (Al} leads 

to the 'reduced' equation (1. 6) and has been tested for 'Melt 1' by comparing 

the predictions with results of a series of experiments performed by 

Meissner [ 13, 15] . The constants in (AS), with m = 5, were chosen to 

fit stress growth data in simple elongation at low rates. (Al) ('with 11 = 0) 

then gave good agreement with stress growth data in simple elongation at 

higher rates, with elastic recovery data following elongation and following 

shear, and with stress growth .data in shear flow [ 8, pp. 225-231: 2; 4), 

provided that the total strain from rest was limited to moderate values; 

at higher strains, there was serious disagreement between theory and data: 

the predicted stresses and the predicted recoveries were greater than the 

observed. The present analysis of the elongational recovery problem shows 

that inclusion of the term in 11 leads to a reduction in the predicted 

recovery, which is in the right direction to give better agreement with 

experiment. The term in Tl has been added to represent the possible 

effect of the presence of a viscous solvent (in the case of a concentrated 

polymer solution) or of polymer of low molecular weight (in the case of a 

molten polymer). The possible effects of such a term are also of some 
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interest in connection with certain 'fast-strajn' tests of the G::1usr:iun 

network hypothesi::; which huvc recently been propo:::>ed us a possiLlc 

method of testing ccrtnin of the network theory nssumptions whc:n scp~rotcd 

from the others [ 8, pp. 231-236; 12] . It is recog nizcd, however, th~ t 

other modificutions to (Al) are required if better agr~ement betwP.en all 

the predictions and data referred to above is to be obtained [14). It 

should, perhaps, be acldl?.d that the homogeneous elo!1gation with neglect 

of inertial and body forces treated in the present analysis repre:.ents a 

reasonable idealization of the conditjons of Meissner's elongation 

experiments on 'Melt 1': a long filament of high viscosity ( 5 X 10 5 poise) 

floated on a bath of an inert oil, and the ho:nogencity of elongatior.. v.·a s alway~ 

checked by weighing samples into which the filument was cut after clongatio::1: 

the variation of elongation ratio along the iilament was about 3<;:, or less [ 15] . 
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Appendix B : Upper and lower solutions 

Our purpose is to collect the results on integrodlffcrcntiLtl incqu~alitics 

needed in the proof of Theorem 8. These arc mthcr simllur to classicnl 

result5 of this type for ordinnry diffcrcnti.Jl equations and Volterra cquntions 

·developed e.g. in [ 6] and [ 19]. However, our situation is sufficiently 

different that it is simt:>ler to give an independent short exposition 

. of what is used, rather th~n to apply more general known results. 

In what follows let D u(t) denote the lower left-hand Dini 

de.rivati ve, D- u(tj the upper left-hand Dini derivative, D u(t) 
+ 

+ the lmver right-hand Dlni derivative, and D u(t) the upper right-hand 

Dini derivative of a continuous function 
·+ 

u. When D u(t) = D+u(t}, 

we denote this common value by u' (t), . + the ri_ght-hand derivative of u, 

and similarly u' (t) denotes the left-hand derivative of u. 

It will be convenient to write the initial value problem (1.1), (l. 2) 

in the form 

t 

(Bl) 
-tJ.y'(t) = J F{y(t), y(s))ds + f (y)(t) 

. o a 

y(O) = g(O) (IJ. > 0: 0 < t < oo} , 

\'.'here 

(B2) 
. 0 

f (y)(t) = J a(t - s}F(y(t), g{s }}ds • 
a -oo 

Throughout this appendix we shall assume 

(83) a(t) 2:. o, o E t 1(o, oo), I' satisfies (HF)' 
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n1c busic result needed is (com pure Theorem 1. Z.l of [ 6]): 

Proposition In. l.et the i:lSSUtnptions (D3) be Sutisfic:d. I.e! v,w ( C([O,'{): m), 

y > 0, be given functions sotisfying the followincr properties: 

(84) v(O) < w(O) , 

(85) 

t 
-l!D_v(t) :z.J a(t- s)F(v(t),v(s))ds+f

6
(v)(t} (0 < t < -y), 

0 

t 
-liD w(t) < J a(t - s}F(w(t), w(s))ds + f (w)(t} (0 < t < )') • 

- a 0 ' ' 

Then v(t) < w(t) (0 :5. t < y). 

Proof. Define the set z· = { t E [ o, y) : w(t) < v(t)}. If Proposition lB is 

false the set Z * ¢:_ ~et t
1
_ = lnf Z. By {84), t

1 
> 0 and 

{B6) 

Taking h < o, lh I small, one has v(t
1 

+h)< w{t
1 

+h)_ and 

v(t
1 

+h) - v{t
1
) w(t

1 
+ h) - w{t

1
) 

h > h 

Taking the limit inferior as h - 0 this implies 

and therefore, 

(j-1 > 0) • 

Applying this and v(t
1

) = w(t
1

) in inequ_alities (DS) yields the inequality 

tl tl 
(B7) J a(t

1 
- s)F(v(t

1
), v(s)ds < J a(t

1
- s)F{w(t

1
), w(s))ds . 

0 0 
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On the other h;JnG., the dcfin!tirm of t iJnd (136), to~1cthcr vvith 
l 

the ussumption r < o 
2 

{0 < s < t ) - 1 , 

sothat~ sinc:e a(t)~O, 

(BS) 

tl 
s)F(v(t

1
), v(s))ds > J a(t 

0 1 
- s)1(w(t1 )~w(s)jds. 

Thus (BS) contradicts (B7) and the set Z = ¢. This proves Proposition 113. 

1?efinition. \Ve shall ~ thut w is an upper solution of the initial vuluo 
~ -- -~------- ~-~~~-

J>roblem (I31) _on 0 < t < y if and .QI!_lv if w ( C([Q, y); R). w(O) > g(O). w~ (t) 

t . 

-~J-w: (t) < j a(t - s)f(w(t), w(.s)}cis + f (v.•\(t) (0 < t < y) . 
' a , 

0 

Jc. sirr,ilar definition holes for a lower solution \'>'ith the ir.equolities reversed. 

\Ve remark that c.s a consequence of Theorem 3 the soldion <i'o of the 

reduced equation (1. 6) (recall that it was proved in Theorem 3 that 

q0(t) < 0 (0 < t < ro )) is a lower solution of (1.1) (or (Bl)) on C < t < co 

The main result for the applic::Jtion in Theorem 8 is: 

hooosition ZB. Let the ~Jssor:~otion_c-. (B3) b2 satisfied. Let 6 be the 
-~---- -·-· --- -- -- -----.-·-- ·- L~ -~-- ---•- ---·-·-- • •- --~ • ---

v be a lmvc-r solution 

.<:! (Bl} on 0 < t < y. Then 

(B9) v(t) < ¢(t} < w(t) (0 < t < y) . 
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In Theorem 8 one takes v(t) = q,0(t), where q,0 is the solution of (1. 6 ), 

and one shows that w given by (10 .}) is an upper solution. 

Proof of Proposition 2B. We shall prove the second inequality in (B9); 

the first is proved in a similar way. Since w(O) > g(O) the result follows 

directly from Proposition lB with v replaced by cp, D_ v by cp 1
11 

and 

D_ w by w+ (t) (and one uses Lemma 1. 2. 2 of [ 6] ) • 
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VIBRATIONS OF A HELICOPTER ROTOR BLADE USING 
FINITE ELEMENT-UNCONSTRAINED VARIATIONAL FORMULATIONS 

J. J. Wu and C. N. Shen 
Benet Weapons Laboratory 

Watervliet Arsenal 
Watervliet, New York 12189 

ABSTRACT. In the past several years, a numerical method has been 
developed which is a generalized Rayleigh-Ritz - finite element discretiz
ation using the combined concept of Lagrange multipliers and adjoint 
variables. This approach enables one to deal with problems associated with 
nonconservative forces, coupling effects and all types of ·boundary conditions 
in a routine fashion; and it appe~rs promising in solving the vibration and 
dynamic stability problems associated with the complicated equations of a 
helicopter rotor blade. This paper presents the first application of the 
general method to the vibration problem of such a rotor blade. 

The basic differential equatipns in this paper are taken from the 
linear, but fully coupled set developed by Houbolt and Brooks in 1956. 
These equations are further reduced to a simplest possible case and yet 
still containing the coupling of flap and root torsion modes. An uncon
strained, adjoint variational statement has been established which is both 
the necessary and sufficient condition for the coupled differential equa
tions and some general, but physical meaningful boundary conditions. The 
finite element matrix equations are then derived from this variational 
statement illustrating the way that coupling terms could be handled in 
general. 

The numerical results from some demonstrative ~xamples show that 
instability of flutter can occur in the range of operational rotor speed 
due to the coupled motion of flapping and root torsion without any aero
dynamic force, if the torsional spring (or the pitch control link) is 
not sufficiently stiff. This instability docs not appear to have been 
reported previously. 

1. 11\l'fRODUCTION. An analytical investigation on vibrations and 
dynamic stabil-ity of helicopter rotor blades usually consists of two phases 
(1) the derivation of the governing differential equations to include para
meters and variables considered physically important, and (2) the fornrulation 
of solutions for the equations derived and data interpretations. 1bis paper 
deals with the second phase of such an investigation. 

Due to the slenderness of a helicopter rotor blades, its aerod:~amic 
cross-section and the requirements on the craft's rraneuverability, there 
are a large number of interacting parameters and the resulting differential 
equations are, as a rule. nonlinear, coupled in terms of field variables. 
In addition, the aerodynamic forces, coriolis forces due to rotation of the 
blade are nonconservative in nature and the effects due to structural damp
ing and various bp\J!ldary conditions must be evaluated. 
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Considerable attention has been given recently to the derivation of a 
consistent set of nonlinear differential' equations together with aero
dynamic forces. This fact is amply demonstrated by the work of Friedman 
and Tong [1) and that of Hodges and Ormiston [2) .. In both references [1] 
and [2], brief reviews on earlier work on helicopter blade equations can 
be found. As for obtaining solutions to these equations there does not 
appear to exist a general and efficient method to deal with the difficulties 
associated with nonlinearities, nonconservative forces, coupling terms, 
various boundary conditions, damping effects and periodic excitations. For 
example, ~Iiller and Ellis [3], Ham [4] and Friedman and Tong [1] have 
obtained approximate solution by including in their solution formulation 
only the lowest modes of vibrations, Hodges and Ormiston (2,5] employed 
Galerkin technique in their numerical examples. One of the disadvantages 
of this approach is its inability to handle general boundary conditions. 

Using the combined concept of adjoint variable and Lagrange multipliers. 
variational statements can be established for a wide range of linear prob
lems with nonconservative forces and very versatile boundary conditions·[6]. 
Thus a generalized Rayleigh-Ritz approximation scheme can be established 
for the obtaining of solutions of these otherwise difficult-to-solve prob
lems. In conjunction with finite element discretization, this approach 
has been amply demonstrated in such applications as nonconservative stabil
ity, damping effects and very general boundary conditions [7,8,9]. In the 
present study, the solution formulation is limited to the blade vibration 
considering only the coupling of flapping and root torsion. Although the 
present method can conceivably be extended for solutions of nonlinear prob
lems, it is desirable first to have a thorough understanding to solutions 
of linear problems. For this purpose, one can go back two decades and use 
the equations consistently derived by Houbolt and Brooks in 1956 [10]. The 
original set of equations was derived for elastic distributed torsion. It 
can be adapted to model root torsion if proper boundary conditions are 
introduced. This is shown in Sections 1 and 2. The physical justification 
for emphasizing root torsion over the distributed torsion was due to the 
pitch control link at the inboard end of the blade and was used by Miller 
and Ellis [3] and again by Ham [4]. It should be clear that, in the 
present formulation, to include distributed torsion is simply a ~atter of 
increasing the number of degrees-of-freedom of the discrete system. The 
basis of the solution formulation and the technique of handling the coupling 
terms are given in Sections 3 and 4. Finally, the numerical results 
obtained indicate that "flutter instability" can occur simply due to the 
coupling effect considered without any aerodynamic loads. 

2. STATEMENT OF THE PROBLEM - DIFFERE~~IAL EQUATIONS. As a first 
step to demonstrate the application of the unconstrained'variational -
finite element formulation to helicopter rotors, the vibration of a rotor 
blade considering the coupling of flap and ioot torsion modes of motion 
is analyzed (Figure 1). For this purpose, the linear set of equations, 
derived by Houbolt and Brooks, including the coupling flap and distri
buted torsion is rewritten here [10]: 
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(Elw" - TeAcf>)" - (Tw 1) 1 - (~2mxecp) I + m(w + ecp) "" Lz• (1) 

- [(GJ + TkA2)cf>1)1 - TeAw" + n 2mxew 1 

n2~Ck2 k2 ' mk2 
.. 

+ mew + + ee
0

)cp + cp "" M 
m2 ml m 

(2) 

where w ~ w(x,t) and ¢ = cf>(x,t) denote the flapping deflection and distri
buted torsion of the rotor blade respectively. A prime ( 1) denotes differ
entiation with respect to x, the coordinate along the blade elastic axis 
and a dot (·), differentiation with respect to the time t. Other symbols 
are defined in the following and are consistent with the notation in 
reference [10]. 

EI = 
GJ ~ 

= 

e 

= 

= 

= 

km = 

n = 

T = T(x) = 

Lz = 

M = 

flexural rigidity of the cross section. 

torsional rigidity of the cross section. 

length of the blade. 

chordwise distance between elastic axis (E.A.) and centre 
of gravity (C.G.) of a cross-section, positive if C.G. is 
ahead of E.A. 

chord~ise distance between E.A. and centre of tensile area 
(C.T.) of a cross section, positive if C.T. is ahead of E.A. 

chordwise distance at the root between E.A. and the axis 
about which the blade is rotating, positive if E.A. is ahead. 

polar radius of a gyration of the tensile area of a cross
section w.r.t. E.A. in a cross-section. 

radius of gyration of the total area of a cross-section about 
the major neutral axis (axis 1-1 in Figure 2). 

radius of gyration of the total area of a cross-section about 
an axis perpendicular to the major neutral axis and through 
E.A. (axis m2-m2 in Figure 2). 

polar radius of gyration of the total area of cross-section 
about E.A. (k2 = k2 + k2 ) . m ml m2 

blade angular velocity. 

/" mfl2xdx, which is the tensile force at location x. 
X 

B<fLC?dynamic lift per unit length of the blade. 

aerodynamic torque per unit length of the blade. 
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In reference [10], a more general set of linear equations with fully 
coupled flap, lag and distributed torsion modes of motion were derived. 
The coupling terms have been shown to be due to the noncoincidence of the 
elastic centre, centre of gravity and tension centre, the centrifugal force 
and the built-in angle of twist. For a rotor blade without the built-in 
twist angle, the lag mode of motion is uncoupled from the general set of 
equations and the remaining coupled equations are Eqs. (1) and (2) 
considered here. 

Since only the "free vibration" of the rotor blade with a coupling 
between flexural and root torsion is considered in this paper, the terms 
due to aerodynamic forces are set to zero and the torsional displacement 
is only a function of time and not a function of x. Thus 

M = L "" 0 z • <P = <Pet) 

and Eqs. (1) and (2) reduce to the following: 

Eiw"" - (Tw')' + mw - S12me¢ + me~ = 0 

n2m(k 2 - k2 + ee )¢ + mk 2 
<P - Te w" 

m2 ml 0 m A 

+ mfl2exw' + mew = 0 

(3) 

(4) 

(5) 

In Eqs. (4) and (5), it is also assumed that the blade has constant 
E, I and m throughout its length. To simplfy solution formulations as 
much as possible, Eqs. (4) and (5) will be transformed into dimensionless 
forms and appropriate dimensionless parameters will be introduced. This 
process will also facilitate parametric studies. 

Let 
•. 

w = w 
"! ¢ = <P 

= X f = t (6) 
X I c 

-where the constant c has a real time dimension and will be defined later in 
Eqs. (12). Eqs. (4) and (5) become 

(7) 

and 

(8) 
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where 

J!,3 
Multiplying Eq. '(7) by EI, one has 

c2 Multiplying Eq. (8) by m.l!.2 , one has 

Now let 

2. mR. 4 
c =-

EI 

- k - km k=- k =~ 
t' m R. 

Si = en 

Eqs. (10) and (11) then become 

a4_w. _ ~ crcX.J~J + a2w _ fi2e¢ + ;; a2
4> = 0 ax 4 ax ax at 2 at 2 

379 

(9) 

(10) 

(11) 

(12) 

(13) 



,and 

With all quantities in Eqs. (13) and (14) in dimensionless forms, 
one can omit the bars altogether and write: 

and 

w'"'- (Tw')' + w- S'2
2 ecj:> + ecj:> = 0 

!'22k2cj:> + k! ~ - TeAw" + !'22exw' + ew = 0 

Furthermore, it is assumed that 

At 
w (x, t) = w (x) e 

cj:>(t) "' cj:>eAt 

(14) 

(15) 

(16) 

(17) 

Thus the final set of equations upon which the present solution formula
tions are based, is the following: 

(18) 

and 

(19) 

3. AN UNCONSTRAINED VARIATIONAL STATEMENT AND BOUNDARY CONDITIONS. 
Some of the unique features of the unconventional variational formulation 
are that all the boundary conditions are natural boundary conditions and 
that the set of the differential equations, together with all the boundary 
conditions, is the direct consequence of a variational statement and vise 
versa. The construction of such a variational statement is simply a process 
of integration-by-parts from a bilinear functional of the original differ
ential equations multiplied by the variation of the adjoint field variable, 
into some other bilinear functional with lowest possible derivations of 
both the original field variable and the variations of the adjoint variable. 
With a proper choice of the generalized Lagrange multipliers, any physical 
meaningful boundary conditions consistent with the physical meaning of the 
given differential equations themselves can be resulted from the variational 
statement as natural boundary conditions. This general process was treated 
elsewhere [7] and will not be repeated here. Presently, an unconstrained 
variational statement will be given which leads to the original differential 
equations and a set of a very general boundary conditions. 
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with 

and 

Let us consider the variational statement 

oi = o 

11 = f1
[w''w*" + Tw'w*' + ), 2 ww* + e(A. 2 - n2 )<pw*]dx 

0 

* *' +. k1 w(O) w (0) + k2 w• (0) w (0) 

(20a) 

(20b) 

(20c) 

where a star(*) denotes the adjoint variables and the variations are totally 
unconstrained. The Lagrange multipliers k1, k2 and k3 are the spring con
stants, in dimensionless form, for deflection, bending and torsion at the 
hub (x = 0) respectively. To show that the unconstrained variational state
ment of Eqs. (20) leads to the original differential equations and the 
necessary boundary conditions, one considers 

. (oi) w,<P = o (2la) 

where (oi)w.<P means taking the variation of I with w,<P not varied. Thus 

with 

* *' + k1w(O)ow (0) + k2w'(O)ow (0) (21c) 

and 

(21d) 
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Performing integration-by-parts, onA arrives at 

1 * (ol) = f [w'"'- (Tw')' + ). 2w + e(>. 2
- 0 2 )4l]ow dx 

1 w,cf> 0 

+ W11 (1) QW* I (1) [w"tl) ~ T(l)w' (l))ow* (1) 

- [w"(O)- k
2
w'(O)]ow*'(O) 

* + [w'"(O)- T(O)w'(O) + k1w(O)]ow (0) (22a) 

and 

Thus Eqs. (21) is the necessary and sufficient condition for the following 
differential equations and boundary conditions: 

D. E.: 
w"" - (Tw')' + >. 2w + e(>. 2 

- 02 )cp::: 0 

B.C.: 

W'' (1) = o. w'" (1) = 0 -. 

W'' (0) - k2 w' (0) = 0 

w"' (0) - ~
2 

w' (0) + k1 w(O) = 0 

and 

Note that in Eqs. (24) the fact that 

and 

has been used. 

T(l) = 0 

T(O) = ! Q2 
2 
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(23a) 

(23b) 

(24a,24b) 

(24c) 

(24d) 

(24e) 

(25) 



It is observed that the boundary conditions of Eqs. (24c) and (24d) 
represent very general support condition's at the hub. The special case 
k1 = ~ and kz = 0 corresponds to a hinged blade, while the case k1 = ~. 
kz = ~ corresponds to a hingeless blade. These two special cases are the 
oniy ones considered in the literature. The boundary condition (24e) 
indicates a coupling between the flexural motion w and root torsion at 
the hub due to the centrifugal forces and the noncoincidence of the elastic 
axis and the tension axis. 

4. MATRIX EQUATIONS FROM FINITE ELEMENT DISCRETIZATION. In this 
section, we shall briefly describe the formulation of the matrix equation 
of the approximate solution from the variational statement given in the 
previous section. From Eqs. (21), one can write 

or, 
(ol) w,<fl 

cor) "' = o ; w,"' 

= f1 (w'ow*" + Tw' ow*• - e02¢low*)dx 
0 

* * 2 /1 * * + k1w(O)ow (0) + k2w'(O)ow '(O) +A. (wow + e<flow )dx 
0 

+ f1
[02k2 <flo<fl* + eAT'w'o¢1* + en2xw'o<fl*]dx + k3¢lo¢l* 

0 

(26) 

It should be noted that Eq. (26) is a quite general equation. Various 
types of approximate solutions can be obtained depe~ding on the choice of 
the coordinate functions. The motivation of using the finite element 
discretizations, which corresponds to the choice of a set of piecewise 
analytic functions, is twofold: for the ease of extending this formulation 
to problems of irregular geometry and for the adaptations to general finite 
element computer systems. 

In the present formulation, however, only blades of uniform cross
sections will be considered and the elements are assumed to be of the same 
length. Thus, one introduces a local (element) coordinate s which relates 

·to the global (entire blade) coordinate x such that 

s = s(i) = L(x - i-l) (27) 
L 

where L is the number of-elements and i denotes the i-th element. Using 
the notation 

· for simplicity and ._noting that 

ds = Ldx 

w'(x) = Lw(i)'(s). etc. 
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one then has, from Eq. (26): 

where 

and 

(oi) . = o 
w, <P . 

L 1 c·) *C'J = }: {/ L3w 1 "(f,;)ow 1 "(f,;)df,; 
i=l 0 

+ J1L T(i)(~)w(i),(~)ow*,(i)(~)d~- en
2

<P /ow*(i)d~} 
0 L 0 

+ k
1

w(1J(o)ow*(l)(O) + kzL2w~i)'(O)ow*(i),(O) 

+ A2 r {! f1w(i)U;;)ow*Ci)(f;)dt,; +elf> f 1 o/(i)(~)dE;} 
i•l L 0 · L 0 -

+ en2 J 1 [~ + (i- l)]w(i),(~)ds b<f!*} + k3<f>o<P* 
L 0 

+ A2 { ~ $6$* /df,;(i) +I~ J1w(i)(!;)d!;H<P* 
L 0 i=l L 0 

At this point, it 'is appropriate to introduce the shape function and 
generalized coordinates. Let 

where the superscript T denotes the transpose of a matrix, 
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(30) 

(31) 

(32) 

(33) 



and 

W*(i)T = { *(i) *(i) *(i) *(i) } .... w1 wz w3 . w4 (34) 

Using Eqs. (31), (32) and in terms of W(i), w* (i), Eq. (30) becomes 

(oi) ,~, = o 
w,'f' 

L . * c· )T 1 T 1 T 
=: LoW 1 {L 3f a"a" dE;- bL[j t; 2a'a' dE;+ 2(i 

i-1 0 0 

+ {L2 - (i - 1) 2 } f1
a'a'Tdt]W(i)} 

0 -

+ I 6w*(1)T(- 2ebL) 
i=1 -

1 
f adE;, 4> 
o-

1 T 
l)j ~a'a' dE; 

0 

+ o~*(l)T k
1 
:CO)~T(O)W(l) + o~*(l) k2 L 2~'(0)~'T(O) ~(l) 

L *C)T 1 1 (") e 1 
+ "z \~1o~ 1 "L fo~::?ds w 1 + ~ fo~ds ¢} 

* * + o¢ 0 2k 2¢ + a¢ k 3 <P 

+ 6¢* I 2(e- eA)bL f1sa'T(s)ds + (i- 1)f
1
a,rds w(i) 

i=l 0 0.... -
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. Or, 

cor) A. = o 
, W•'l' 

= ~ o!*(i)T {L 35 - bL[~ + 2(i - 1)~ - (L 2 
- (i - 1) 2

) !]} !(i) 
i=l 

L *(")T *(")T . (1) 
+ i~lo~ 1 

(- 2 ebL)£ $ + o~ 1 [k 1 ~ + k2L ~]~ 

+ olfl 

* + olfl 

L 
+ A2[ I ow*CiJT [ l A wCi) + ~ P If!] 

i=l ... L .. .. L .. 

* L (i) I 2(e - eA)bL c:T + (i - l)ET) w 
i=1 

where the element matrices are defined as follows, 

1 T 
/

1 T A = aa d;, /
1 T B = a'a' d~. C = J a"a" d~ 

o- -.. o-- - o- .... 

1 T J1
E/a'a'Tdf, D = f ~~'~' d~. E = 

0 0 ... -

F = ~(0) aT (O), G = a'(O)a'T(O) 

1 1 1 
p = J a d~, r = J a' d~. s = f ~ a' df, - q ... ... 0 ... 0 ... 

The numerical values of these matrices are given in the Appendix. 

In terms of the global coordinates defined in the following 

and 

(37) 

(38) 

(39) 

w*T = {w*(l) w*Cl) w*(l) w*(l) w*C 2) w*( 2) w*(L) w*CL)} (40) 1 '2 3 4 3 4 •••• 3 4 
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One has from Eq. (37): 

(61) .+. = 0 
w,'+' 

The global matrices EKqiJs··. M(
13
·j)• i,j = 1,2 are assembled from the element 

matrices defined in 8 in the following manner. 

*T- L (")T 6~ K11~ = I ow* 1 {L3 (c + bB) + bL(2D- B-E) 
i=l - - - -

L (")T 
ow*TK $ = I ow* 1 c- 2ebL p)$ 

12 i=l 

o$*R22$ = o$*Cn2k 2 + k3)$ 

ow*~ w = ~ ow*(i)T! A wCi) 
- 11- . l - L -1= 

L L ~ PT wCi) 
i=l L - -
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(41) 

(42a) 

(42b) 

(42c) 

(42d) 

(42e) 

(42£) 

(42g) 

(42h) 



• J: *T S1nce uW = {ow*.T ocp*} in Eq. (41) is unconstrained, Eq. (41) leads 
directly to - • 

cE + A 2~)~ = o (43) 

which is the final matrix eigenvalue equation to be solved. 

S. RESULTS AND DISCUSSION. Prior to the presentation of the demon
strative numerical results, -it-will be worthwhile to make some observations 
on the nondimensionalized differential equations (15) and (16) and the 
boundary conditions (24). 

i. For e = 0, the flapping motion w(x, t) and the root torsion ¢(t) 
are essentially uncoupled. The eigenvalue solutions of w reduce to that of 
a rotating beam and agree well with the available data of Boyce, DiPrima 
and Handelman [11]. The torsional vibration frequency has only one eigen
value solution and, if eA ~ 0 also, it varies linearly with the rotor speed 
n as expected. 

ii. For e f 0 and eA = 0, the motions are generally coupled. It is 
observed that if e and ¢ both change sign, the equation remains unaltered. 
Thus, as far as eigenvalues are concerned, they depend only on the absolute 
values of e. The solution of ¢ for a negative e, however, is 180° out of 
phase compared with the one for a positive e of the same magnitude. 

111, For e # 0 and eA # 0 the motions are generally coupled. It is 
observed that if e, eA and ¢ all three change signs, the governing equa
tions remain unaltered. 

Some demonstrative calculations will now be given*. The eigenvalue 
). is generally a complex number. 

). "' :AR + D. 1 (44) 

From equations (17) and (44), it is clear that the system is unstable of 
divergence when >..R is nonzero positive and >. 1 0. When A.R 0, on the 
other hand, AI (LAMBDA)** represents the nondimensional frequency of 
vibration and it can then beplotted against the nondimensional blade 
rotating speed n (OMEGA), as shown in Figures 3 through 7. When A. is 
complex, one of the square roots of ). 2 must have nonzero positive real 
part. The system is then unstable since A appears in the equations only 
as ). 2 • The value of A generally become complex as the two branches of 
the frequency curve coelesce. The "critical11 speeds can be located in 
these figures by noting these points of coelescence. 

*An extensive parametric study of a rotor blade instability in vacuum due 
to the coupled flap-(root)torsion motion will be presented in a separate 
paper forthcoming. 

**The symbols appeared in the parentheses are those used in Figures 3 
through 7. 
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For these sample calculations here,, the parameters used are typical 
for a medium size rotor blade of 20 ft. in length, for example. It is 
further assumed that (the nondimcnsionalized quantities) 

e(E) = 0.003, 

km1 (KM1) = 0.0025, 

e0 (E0 ) = 0 

km2 (KM2) = 0.0100 

The boundary conditions at the hub are those of a hingeless blade. The 
values of k1(K-l) and kz(K-2) are set to 10 8 as approximations to infinity. 
The torsional spring constant k3 (K~3) has been set to zero. 

In Figure 3, eA(EA) is taken to be 0.003. Thus 

eA -eA 
r (GAMMA) = 7 = "":a = 1. oo .. 

Here the lowest branch of AJ is essentially for the torsional motion. The 
second and third lowest branches are essentially the first and the second 
for flapping motion. For the range of rotor speed shown*, 0 ~ n < 25, the 
coupling is not sufficient to have instability. In the subsequent figures 
as eA = 0.0015, O, -0.0015 and -0.003 (and y = 0.5, 0, -0.5 and -1.0), 
the effect of coupling becomes more and more severe. In Figure 4, the 
two lowest branches of eigenvalues appear to draw closer compared with 
those in Figure 3. They actually coelesce in Figure 5 at a critical 
speed about n = 16.5. As eA continue to decrease (increase) in algebraic 
sense while holding e a positive (negative) constant the critical speed 
of flutter instability tends to decrease and thus the structure becomes 
more critical. This is observed in Figures 6 and 7. 
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APPENDIX 

The numerical value of some of the matrices used in Section 4 are 
given here. 

13 11 9 13 
25 210 70 420 

11 1 13 1 
210 105 420 140 

1 T 
A = J aa d~ = 

9 13 11 ,- o-- . 13 -
70 420 35 210 

13 1 11 1 -
420 140 210 lOS 

6 1 6 1 
5 10 5 10 

1 2 1 1 
~ ~ 

1 T 10 IS 10 30 
B ;;:;; J a'a' d~ = - o- - 6 1 6 1 - -

5 10 5 10 

1 1 1 2 

10 30 10 15 

12 6 -12 6 

1 T 6 4 - 6 2 
c = J a"a" di;: = - 0- - -12 -6 12 -6 

6 2 - 6 4 
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(A-1) 

(A-2) 

(A-3) 



12 1 12 1 - --
35 14 35 35 

1 1 1 1 --
14 lOS 14 70 

1 T 
E = I s2 ~'~' ds = 12 1 12 1 (A-S) - 0 

35 14 35 35 

1 1 1 3 
35 70 35 35 

1 0 0 0 

(A-6) 
T F = a(O)a (0) = 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 1 0 0 
(A-7) 

0 0 0 0 

0 0 0 0 
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1 

2 

1 

12 
1 

p "" J ad~ =: (A-8) 
1 o- -
2 

1 
~ 

12 

-1 

1 0 
r = J a'd~ = (A-9) 

o- 1 

0 

1 
2 

1 
12 

s = J1t;, a'dt;, = 1 (A-10) 
0 - i 

1 . 
12 
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Figure 1. Problem Configuration. (Elastic axis is shown to coincide 

with the axis of torsion in the figure.) 
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Figure 2. Paraineters ReJatE:d to Off-sets of Variou"' Axis. 
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EFFECT OF DAMPING AT THE SUPPORT OF 
A ROTATING BEAM'ON VIBRATIONS 

J. D. Vasilakis and J. J.-Wu 
Applied Mathematics and Mechanics Section 

Benet Weapons Laboratory 
Watervliet Arsenal 

Watervliet, New York 12189 

ABSTRACT. The paper presents a formulation for the study of damping 
effects in dynamic structural problems and a specific application. A finite 
element formulation is first derived from the versatile unconstrained vari
ational approach. The vibration of a rotating beam is used here as a con
crete example. Viscous damping terms at the support can be present due to 
either local deflection or rotation.- These terms can obviously affect the 
frequencies of the rotating beam. They are easily incorporated in the 
present formulation using the concept of unconstrained variations. Numer
ical data will be presented to demonstrate the qualitative as well as quan
titative effects on the vibratory behavior of this rotating beam due to such 
damping terms. 

1. INTRODUCTION. The applicability of the unconstrained adjoint vari
ational statement in solving nonconservative stability problems has been 
shown in a series of articles [1-4]. The problems involved the stability 
of beams or columns subject to concentrated or distributed tangential loads. 
The problems are solved by finding the variational statement associated with 
the differential equation and they are rendered unconstrained by incorporating 
the geometric boundary conditions into the variational statement through the 
use of Lagrange multipliers. With the variational statement now available, 
the problem is discretized and solved using finite elements. Various types 
of external forces and geometric boundary conditions can be handled using 
the above techniques. It is the purpose of this paper to incorporate into 
the above-mentioned formulation the effect of support damping and to examine 
its effect on the solution. The specific problem chosen was that of a 
rotating cantilever beam of constant cross section. 

This problem was chosen for its application to a simplified helicopter 
blade and although no nonconservative forces are considered the solution 
technique outlined above is applicable. 

The effects of support damping on the vibration response of beams has 
been investigated by others. Fu and Mentel [5] and Mentel [6] considered 
support damping due to viscoelastic layers applied to the ends of a beam 
in its supports. The effect of translational (axial) damping was found to 
be of the same order in terms of energy dissipation at the supports as that 
of material damping. Material damping effects were found to stiffen the 
beam which increased both, the resonance frequency and the energy dissipa
tion at the supports. They also found that rotational motion dominates the 
damping properties if all parameters are suitably optimized. Ruzicka [7] 
presented an evaluation of the resonance characteristics of undirectional 
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vibration isolation systems including directly coupled (Kelvin/Voight) and 
elastically coupled (Zener) damping elemfrnts. His results were mostly for 
the Zener model and he found that resonant frequencies of vibration isola
tion systems with viscous damping may increase or decrease with an increase 
in the viscous damping coefficients depending on the stiffnesses in the 
system. MacBain and Genin treated support flexibility in a series of 
papers. Support and material damping was introduced in [8]. The support 
is viewed as a complex rotational support stiffness based on bounds for 
the elastic modulus found in their earlier papers. They find that when the 
support damping constant is an optimum, the support loss factor is also an 
optimum, and system loss factor reaches a maximum value. This same value 
of the support loss factor is also that which critically dampens the system 
1n free vibration. 

The results presented here show the effects of support damping on the 
flexural frequencies of vibration of the rotating beam with both deflection 
and rotation flexibility at the support. 

2. PROBLEM STATEMENT. The geometry of the problem is shown in Figure 1. 
The beam has a constant cross section of area A, density p, Young's modulus, 
E, and moment of inertion, I. The beam rotates about an axis fixed at one 
end of the beam and is flexibly supported at that end by a deflection spring, 
k1, and a rotation spring, kz. Viscous dashpots, c1 and cz, are assumed in 
parallel to the deflection and rotation springs, respectively. The beam 
rotates at constant angular velocity, n. S(O) represents support reaction. 

The differential equation governing the motion is given by [9] 

n2pA 1 pA .. 
U11 

II - ~ G [ ( .Q, 2 - X 2 ) U I ] + - U = 0 
2EI EI 

and the boundary conditions are 

at x = 0 

at x = .Q, 

c2 • k 
u"(O) 2 I 

- U I (0) - U (0) = 0 
EI EI 

cl . 
u1

" (0) + -- u (0) + 
EI 

k 
--.!. u(O) 
EI 

u"(t) = 0 

u"' (t) = 0 

s (0) U I (0) = 0 
EI 

(1) 

(2) 

(3) 

The differential equation and boundary conditions are rewritten using 
dimensionless variables and parameters defined by the following: 

402 



u X rG 2 pA£" - EI 1/2 
u "' - X "' - Q 0: t "' [pAR. II] t R, £ 2EI 

c1t ~2 
cl "' 

(EipA) 1/ 2 c2 "' 
(EipA)l/Zi 

k R, 3 k2t 1 
kl "' k2 

EI EI 

Time is removed by assuming displacements to have the form 

Then the differential equation becomes (dropping the bar symbol): 

and the boundary conditions 

X "' 0 { 

u" (0) - (:Ac 2 + k
2
)u' (0) = 0 

u'" (0) + (:Aq + k 1)u(O) - Qu' (0) "' 0 

x "' 1 l u" ( 1) = 0 

u"' (1) = 0 

The eigenvalues, :\, will be complex, 

The frequencies will be given by 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

w = (10) 

and for this problem, :\R < 0, i.e., the real component of the eigenvalue 
is negative and no instabilities should exist. 

3. VARIATIONAL STATEMENT. To find the form of the variational 
statement, the differential equation is multiplied by an arbitrary variation 
of the adjoint field variable, 6v(x), and integrated over the beam length. 
Integration by parts indicates the form of the variational statement and 
~:he natural boundary conditions. The geometric boundary conditions are 
attached with the values of the springs and dashpots playing the role of 
Lagrange multipliers. The variational statement is finally given by 
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oJ =. o (11) 

where 
1 

J = f [u"v" + Q[l - x 2]u'v' + :A 2uv]dx + 
0 

+ (A.c1 + k1)u(O)v(D) + (:Ac 2 + k2)u'(O)v'(O) (12) 

Performing the· variation of J with respect to u and v, one can arrive 
at the original boundary value problem as well as its adjoint. In this case 
the two problems are identical. 

4. FINITE ELEMENTS. To solve the problem using finite element tech
niques, the beam must be divided into segments and the nodes defined. The 
value for the unknown variable within each element must then be expressed 
in terms of the nodal values of the function through the use of interpo
lating shape functions. A global expression, or matrix is then formed and 
the eigenvalues found. 

The procedure begins by taking the variation of Equation (12) and 
allowing the variations in the problem variable, ou(x), to be zero, 

1 f [u"ov" + Q(I - x 2)u'ov' + A. 2uov]dx + 
0 

The beam is divided into L elements, letting 

= L {x - i-1} s L i = 1,2,3 •.• L 

(13) 

(14) 

be the running coordinate in each element. Substituting Eq. (14) into Eq. 
(13): 

+ i2u(i)6v(i)]d~ + (A.c1 + k1)u(l)(O)ov(l)(O) + (A.c 2 + k
2
)• 

L2u(l)' (O)ov(l)' (O) = 0 (15) 

In order that the displacements and their derivatives within an element 
be expressed in terms of their nodal values, the coordinate vectors 
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and 

V(i)T = {V(i) V(i) V(i) V(i)} 
1 2 3 4 

are introduced. uCi), u2Ci) repre~ent the 9isplacement and slope at the 
left end of the it~ element and U~1 ) and ui1 ) represent deflection and 
slope at the right_7~d. A similar interpretation applied_ to the adjoint 
coordinate vector V\ 1 ). The transform is indicated by T. 

(16) 

Hermitian polynomials are used to relate the displacements within an 
element to its nodal values, hence, the following shape function is assumed, 

So that 

u(i)Cs) = aT(~)U(i) 

vCi)(~) = aT(~)vCi) 

Substituting Eq. (18) into Eq. (15) 

L (")T Q Q Q _ A2 _ C) 2 u 1 
{L 3c + [QL - 1 Ci - 1) 2 ]8 - IE - 2(i - 1) I o + r- A}ov 

1 

i=l 

where 

J
L -T 

A ~ a(s)a (s)d~ , 
.0 

B = J 1a'C~JaT' Cs)d~ 
0 

c "' J 1 a"c.;Ja.T"c~Jd~ 
0 

E"' J 1 ~ 2a'C~Jar'C~)d.; 
0 

o = J1 a'Cs)ar' Cslds, A= acoJarcoJ 
0 
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Regrouping of (19), 

where 

p(i) ~ A/L i = 1,2 •... L 

RC1) = + c1H + c 2FL 2 i = 1 

i = 2,3, ... L 

1 (. 
- -2 ~ 

L 

(21) 

(22) 

(23) 

i = 2,3, .•• L 

(24) 

Using certain continuity conditions between the element nodal values 

(i) (i-1) (i) (i-1) 
ul = u VI = v 

3 3 (25) 

(i) (i-1) v(i) = v(i-1) u = u 
2 4 2 4 

One can write 

U(T){A 2 [P] + A[R] + [S)}oV = 0 (26) 

where now 
- (T) {U(l) u (1) uCI) uCl) uC2) uy) ... uiL) u (L)} u = 

1 2 3 4 3 4 

.-T {V(l) vClJ vCI) v (1) vC2J vC2) ••• v(L) viL)} v = 
1 2 3 4 3 4 ' 3 4 

[P], [R], [S] are N x N matrices (N = 2L + 2). Since oV is arbitrary, the 
eigenvalue problem reduces to 

(27) 

for the eigenvalues of the problem. 
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An existing subroutine was used to find the eigenvalues which required 
the standard eigenvalue problem form 

{[A] + ).[I]}U "' o · (28) 

The equation 

(29) 

can be reduced to Eq. (28) by defining 

W"' AU (30) 

This leads to the matrix equation 

(31) 

which is in the required format. The drawback here is that the order of 
the matrix has been doubled. Equation (31), however, is the form used for 
computing the eigenvalues. 

5. RESULTS. Figures 2 and 3 show the effects for zero damping at 
the support. Figure 2 shows the effect of the rotation spring (k2) only 
on the frequency with load as a parameter. The deflection spring is 
assumed to be infinitely stiff. For Q = 0, the beam is only vibrating 
and is not rotating. One can see that a stiffening effect occurs, i.e., 
the vibrating frequencies increase with an increase in the rotation spring 
constant. The frequencies rapidly approach those for a fully clamped vibrating 
and rotating beam. These results also fall within the bounds computed by 
Boyce, DiPrima and'Handelman [10]. In Figure 3, the rotation spring is 
assumed to be infinitely stiff and the effect of varying the deflection 
spring is shown for different loads. Again, in general, there is a stiffening 
effect as the deflection spring value increases. For very small values of 
the deflection spring, the first vibrating frequency decreases slightly for 
increased loads, although only Q = 0 and 200 are shown. As k1 is increased, 
there are cross over points after which higher loads do imply higher 
frequencies. 

Figure 4 shows the effect of rdtation damping at the support of a beam 
having rotation flexibility at the support. The deflection spring is 
assumed infinitely stiff and the deflection dashpot is zero. TI1e figure is 
for a specific value of the rotation spring, k2 = 1, and shows the first 
two eigenvalues for each of two loads, Q = 0 and Q = 100. A stiffening 
effect is found for increasing damping for Q # 0. For Q = 0, there is very 
slight decrease for very small damping values. Fo~ smaller rotation spring 
constants, and zero load frequencies decrease with increased damping as 
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shown in Figure 4 by the portion of the,results for kz = .1. These results 
are better shown in Figure S. The results in Figure 4 are irteresting since 
one would expect a decrease in frequency as damping is increased. Stiffen
ing effects due to damping are found elsewhere (5] and could be due to the 
manner in which it is introduced in the problem. Figure 4 also·shows that 
the results for the fully damped beam are approached rapidly as damping 
is increased. Figure S shows the vibrating frequencies on a complex 
plane for a beam with rotation flexibility and damping. The load is zero 
(non-rotating beam) and the rotation spring is kept at k2 = .1 while the 
dashpot value changes. The arrows adjacent to the curves show the direc
tion of the values on the curve as damping increases. For zero damping, 
the results are purely imaginary and are approximately .54 and 15.5 for the 
1st and 2nd frequencies. As damping increases, the frequencies become 
complex with the imaginary components decreasing for the first eigenvalue 
and increasing for the second. The behavior of the first frequency is 
interesting. As the damping value increases, the imaginary component 
vanishes (as also seen in Figure 4) as if the system becomes critically 
damped. However, the real component can also be followed on the complex 
plot and the beam appears to vibrate again in this first mode as damping 
increases further. For sufficiently large damping the frequencies seem 
to approach those 'for a beam which is damped at the support. Points on 
the real axis represent zero motion but move with changes in damping 
values to points on the real axis where it is intersected by a branch or 
mode. Figure 6 shows the same results for load Q = 25. A final result for 
rotation flexibility is shown in Figure 7 for k2 10. Here the rotation 
spring is relatively stiff and the fully damped results are rapidly 
approached with initial effects for near zero dashpot values overshadowed. 

The effect of support damping on the frequencies on beams with 
deflection flexibility are shown in Figures 8-10. A decrease in frequency 
with increased damping is seen here. Figures 9 and 10 show the effect on 
the complex plane for Q = 0 and Q = 200, respectively. 

Finally, Figure 11 shows the results of a case when both rotation 
spring and deflection spring flexibilities are allowed. Little effect 
on frequency is noted as the rotation spring is varied while the deflec
tion spring and dashpot remain constant in value. An almost parallel 
increase in frequencies are found when the rotation dashpot is increased 
in value. The investigation into the response of the beam with all springs 
and dashpots finite was limited to those shown. A study should be per
formed to indicate areas where the effects on beam response will be most 
pronounced. 
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Figure 7. Effect of Support Damping on Frequency 
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AN EVALUATION PROCEDURE FOR INCOMPLETE GAMMA FUNCTIONS 

Walter Gautschi 
Mathematics Research Center 

University of Wisconsin-Madison 
Madison, Wisconsin 53706 

ABSTRACT. A computational procedure is developed for evaluating Tricomi's in

complete gamma function y*{a~x) = {x-a/r(a)) J e-tta-ldt, and the complementary 
0 

incomplete gamma function r(a,x) = j e-tta-ldt, both in the region x ~ 0, -m <a < ~ 
X 

Each of these functions can be obtained from the other by means of simple interrP1ation
ships. The choice of primary function, i.e., the function to be computed first . wi11 
be dictated by considerati~ns of numerical stability and computational convenie •. ~e. In 

* the strip 0 < x < 1.5, -m <a< m, the choice goes to y (a,x), which is easily 
evaluated by Taylor's series. This entails certain difficulties for r(a,x), when a 
is very close (or equal) to a nonpositive integer, but these can be dealt with by a 
careful analysis of the limit behavior of r(a,x) as a • -m, m = o. 1, 2, ... The 

* function y (a,x) continues to serve as primary function in the region a> x > 1.5, 
where it can be effectively evaluated by a continued fraction due to Perron~ In the 
remaining region x > 1.5, a< x, the primary function is taken to be r(a,x), and 
is evaluated by a classical continued fraction of Legendre. 

The complete paper ~s available as MRC Technical Summary Report #1717, February 
1977. 





A METHOD OF EVALUATING LAPLACE TRANSFORMS WITH 
SERIES OF COMPLETE OR INCOMPLETE BETA FUNCTIONS 

Alexander S. Elder 
Emma M. Wineholt 

Propulsion Division 
US Army Ballistic Research Laboratory 

Aberdeen Proving Ground, Maryland 21005 

ABS1'RACT. In a previous paper factorial series were used to calculate 

ordinary and modified Bessel functions of the second kind. In the 

present paper the factorial series is generalized so that Laplace integrals 

in which the integrand has a branch point at the origin are represented 

by a series of beta functions. To effect the required transformation, 

forn1ulas for calculating Stirling numbers of fractional order were derived; 

these were used in the same manner as the Stirling numbers of integer 

order are used to calculate the coefficients of a factorial series. 

Formulas for calculating K
0

(x) and K
1

(x) have been derived and programmed, 

using these modified Stirling numbers. Formulas for calculating I (x) 
0 

and r
1 

(x) have been derived and programmed using series of incomplete 

beta functions in a similar algorithm. Results for K
0

(x) and K1 (x) agree 

to thirteen significant figures when x>8 and for I
0

(x) and r1 (x) when 

x>l5. The modified Stirling numbers increase very slowly with order 

and index since gamma functions do not occur in the definition. 

Consequently no problems with overrun of the electronic computer occurred 

during the course of the calculations. 

1. INTRODUCTION. Factorial series for Bessel functions, confluent 

hypergeometric functions, and certain other special functions can be used 
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to check the accuracy of calculations for these functions provided the 

argument is not too small. Generally, if a function is analytic in the 

right half plane, including the imaginary axis, and can be represented 

as a Laplace transform, then a factorial series cau be derived which will 

converge in the right half plane. Buchal and Duffy (1) obtained 

factorial series for Hankel functions, Coulomb wave functions, and 

Mathieu functions. These authors also studied the convergence properties 

of the factorial series for the Hankel functions iu considerable detail, 

Their results showed that factorial series were more accurate than Hankel 

asymptotic series for the same argument. The analysis was based on 

Bernoulli polynomials as discussed by Doetsch (2) and Milne- Thomson (3). 

The analysis in this paper is based on an algorithm of Wasaw (4) 

which uses Stirling numbers of the first kind to calculate coefficients 

for 'the factorial series. The Stirling numbers of the first kind 

increase very rapidly with order, eventually obtaining overrun in the 

electronic computer. Moreover, the factorial series for complex argument 

is awkward if there is a branch point at the origin. Rosser (5) 

obtained a generalized factorial series for modified Bessel functions 

of the second kind by direct manipulation of the Laplace transform and 

also established the convergence properties. His analysis is quite 

difficult and requires a separate treatment for each case. In this 

paper we derive Stirling numbers of the first kind and fractional order, 

leading to a generalization of Wasaw's algorithm. Overrun in the 

computer is eliminated by scaling the Stirling numbers of integral and 

fractional order by omitting the gamma functious in the definition. 
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A further generalization of factorial series is required if the 

Laplace integral representing the function is evaluated between finite 

limits. If a factorial series is regarded as a series of beta functions, 

it is logical to represent a Laplace integral with finite limits in 

terms of a series of incomplete beta functions. The new series obtained 

by this method is convergent even though the corresponding factorial 

series may be divergent. 

2. MODIFIED STIRLING NUMBERS OF THE FIRST KIND AND FRACTIONAL ORDER 

Stirling numbers of the first kind are defined as coefficients which 

occur when a factorial is expanded into a polynomial (6), (7). 

x (x~l) (x-2) ... (x-n+l) 
n 

L: 
m=o 

m 
X 

Clearly m must be an integer in the above equation. However, a 

generating function involving logarithms is not subject to this 

restriction. 

00 

m: 

or 

[•n (1 +x~ m • r (m+l) 
00 

n 
5

(m) x 
n n: 

s(m) 
n 

' I xl < 1 

n 
X 

r (n+l) . 

(1) 

(2) 

(3) 

In order to avoid the gamma function and non-integral indices we define 

w<v) by the equation 
n 
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[£.n (l+x)J v 
00 

L: 
k=o 

w<v) x v+k 
k (4) 

where v may take on fractional as well as integral values, When the 

W~v) have been calculated, Stirling numbers of the first kind may be 

obtained from the following equations. 

where 

s (m) = r (n+l) w<m) 
n n-v I r (m+l) 

k n - v 

To find W(v), divide Eq (4) by xv and evaluate the limit of 
0 

each side of resulting equations as x + 0. We obtain 

(S) 

(6) 

(7) 

w<v) , 1. (8) 
0 

We can also prove that 

and W(o) 
0 

0 

1. 

k > 1 (9) 

(10) 

We now derive a sequence of triangular equations for calculating 

w<v) 
1 , 

w<v) 
2 ' .... ' w<v) in turn. 

£, Let 
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y(x) = [~n (l+x)]v (11) 

and u(x) (x+l) Qn (l+x), (12) 

Then u(x) y' (x) = vy(x) (13) 

00 

w (v) But y(x) L: v+k 
k 

X 

!{,~0 

00 

w<v) y' (x) :::: L: (v+k) x 
v+k-1 

(14) 
l<"'O 

k 

u(x) 1 2 1 3 1 4 k xk , k>l (15) 
= X + 2 X - 6 X + 12 X - •" + (-1) k(k-1) 

On inserting these series into Eq (13), carrying out the indicated 

multiplication and equating coefficients of like powers of x on each 

side of the resulting equation, we find 

w(v) w<v) 
0 0 

v+l w(v) + 1 (v) - v=vw 1 1 2 1 

v+2 w<v) + v+l w<v) 
1 2 2 1 

v ... v w(v) 
6 2 
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On re-arranging tl:ese equations we find 

w<v) 1 
0 (16) +- v= 1 2 

2 w<v) + v+l w<v) \) 
0 (17) -6 :: 

2 2 1 

3 w (v) + v+2 w<v)_ v+l w<v) + 
\) 

0 (l8) 3 2 2 6 1 12 

and in general 

R.-1 
tW(v) + ~ (-l)t+k+l 

t k=o 
v+k w<v) = 0 . (i-k)(i-k+l) k (19) 

To find a recurrence formula involving different orders, differentiate 

Eq (4) with respect to x and then multiply both sides of the resulting 

equation by (x+l): 

00 

v [tn (l+x)) v-l = ~ 
k=o 

W(V) (V+k)(x+l) X v+k-l 
k 

If we replace v by (v-1) in Eq (4) and multiply both sides of the 

resulting equation by v, we find 

00 

v [in(l+x)] v-l = ~ 
k=o 

w<v-1) 
k 

v+k-1 
\IX 
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On comparing coefficients of like powers of x in the last two equations 

we find 

w (v) 
k+l 

[ v w<v-l) - (v+k) w<v) J I [ v+k+l J • 
k+l k 

H 1 1 W(v+l) from Wk(v+l) and Wk(v+l), H1"gher ence we can ca cu ate k+l 

(22) 

order numbers can be generated in succession in the same manner, The 

(v) (v) (v) 
values of W

0 
, W1 ... , W

2 
must be calculated from Eq (19) before 

the recurrence formula given by Eq (22) can be used; a double entry 

table is finally obtained. 

Wasaw uses Schlomlich's definition of factorial coefficients in 

his development of factorial series (7) : 

n-1 
x (x+l) (x+2) ... (x+n-1) L: r n 

m 
n-m 

X (23) 

It follows that the factorial coefficients and Stirling numbers of the 

first kind are related by the formula 

rn = (-l) n-m 5 (m) 
n-m n 

We define 

v(m) 
n-m 

(-l) m-n r(m+l) s<m) I r(n+l) 
n 
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and for fractional orders 

00 

[ - ~n (1-x) ]v = ~ 
k""O 

v<v) 
k 

v+k 
X 

Finally, we obtain the following recurrence formulas in the manner 

indicated previously: 

v<v) 
k+l 

v(v) = o 
k 

[ v v<v-1 ) + (v+k) v<v) l I [v+k+l] 
k+l k 

3. GENERALIZED FACTORIAL SERIES 

We now derive an extension of Wasaw's algorithm for a Laplace 

\ 
I 

(26) 

(27) 

(28) 

integral to functions with a branch point at the origin. The branch 

point involves fractional powers, in the same context as Watson's 

Lemma (8); logarithmic branch points are not considered. Assume 

F(x) 

and let 

1"" f (t) e-xt dt 
0 

t = - ~n (1-u) 

then. 
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(29) 

(30) 



1 
F(x) =j 

0 

If 

00 

f <t> = I. 
n::o 

then 

00 

F(x) 

x-1 f[-tn(l-u) ] [1-u] du , 

v+n a t , v>-1, O<t<l n 

•n .Jr [-~n(l-u) ] v+n [1-u] x-ldu, 

0 

On referring to Eq (26) we see 

F(x) E 
n=o 

Now 

B (a,S) 

so that 

00 

F(x) L: 
nr:o 

00 1 
L an V~v+n) [ u v+k+n (1-u) x-ldu . 
k=o o 

00 

~ a V(v+n) B (k+n+v+l,x) 
k=o n k 

We enter the terms in a double entry table; then by summing the 

diagonals, we obtain the Cauchy sum of the double series (9). Let 
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(32) 

(33) 

(34) 

(35) 
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k+n=9. 

and define 

9. 

L 
n=o 

then 

00 

F(x) }: 
£=o 

On noting that 

B(v+Hl,x) 

a 
n 

v<v+n) 
9.-n 

bt B(v+Hl,x) . 

( ) 
v (v+l) • • . (vH) 

B v,x (x+v)(x+v+l) .•• (x+vH) 

and using Pochhammer's symbol to represent the factorials, we find 

00 

F(x) B (v ,x) l 
9.=o 

in a formal sense. By analogy with conventional factorial series, 

(37) 

(38) 

(39) 

(40) 

(41) 

the series should converge in a half plane which lies to the right of 

the imaginary axis. Details of the required analysis will not be 

considered at this time. 
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4. ON A SERIES OF INCOMPLETE BETA FUNCTIONS. Since a generalized 

factorial series is in fact a series of beta functions, it is natural 

to represent a Laplace integral with finite limits of integration as a 

series of incomplete beta functions. The lower limit of integration 

can be taken equal to zero without loss of generality. Assume 

F(x) 
T 

[ 
- tx e f(t) dt, T>o 

Let 

t= 1-e-T 

then 

F(x) x-1 f[-in(l-u)] [1-u] du. 

On referring to Eq (26) we find 

Since 

00 

F(x) t a v<v+n) 
k=o n k 

E 

i 

B E(a,6) • JEt a-l (1-t) a-l dt 

0 
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we find 

00 

F(x) L: 
n=o 

t a Vk(v+n)B (v+k+n+l,x) 
k=o n e: 

(47) 

or 

00 

F(x) '"" 'L: 
i=o 

bi B e:(v+Hl,x) (48) 

on referring to Eqs (37) and (38). 

To compute the incomplete beta function, set 

v+i= a (49) 

and use the formula 

B (o+l,x) = B(x,o+l) - B1 (x,o+l) e: -£ 
(50) 

The beta function on the right side of Eq (50) was expressed in terms 

of gamma functions, as shown in Eq (51): 

B(x, 0+1) = r (x) r (0+1) I r (x+O+l). (51) 

The gamma functions were obtained from the subroutine CDLGAM by 

H. Kuki (10). This subroutine is valid for both real and complex 

values of x. 
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The incomplete beta function on the right side of Eq (50) is given 

by the integral formula 

1-£ 

Bl- e(x, 0+1) = 1 tx-1 (1-t) 6 dt . 
0 

(52) 

On expanding the binomial factor in the integrand and integrating term 

by term we find 

Bl-£ (x,O+l) 

+ o(o-1) 
2! 

X (1- £) 
=~~-

X 

o (1- eyK+l 
l! (x+l) 

o(o-l)(o-2) 
3! 

(1- e)x+3 

(x+3) + ... (53) 

This series is satisfactory if o is small, but is subject to round-off 

error if 6 is large and positive. To overcome this difficulty, integrate 

the right-hand side of Eq (52) repeatedly by parts. We find 

X 

0 0 (1- £) x+l o-1 
£ + x(x+l) £ B1_ £ (x, 0+1) 

X 
(1- e:) 

o(o-l)(l-£)x+2 o-2 o(o-l)(o-2) ... (6-m) R 
+ x(x+l) (x+2) £ +.' .+ x(x+l) (x+2) ... (x+m) m 

where 

R = B1 (x+m+l, o-m) . 
m - e: (55) 
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We choose m so that 

1 < 6-m < 2. (56) 

Then the terms of the series given by Eq (54) are positive when x is 

real and positive, and consequently the round off error should be small. 

R "' m 

The remainder R is calculated from Eq (53). m 

(l- e:) x+m+ 1 

x+m+l 
--'.(~6 -.,..::m=--:-=le!..) ...>.;( 1=--,..,:-e:::!,.)_x+m_+_Z + _,_(_a -=-m_-,.--1.:;_) ,..,_( 6'----.,-m~-_..2 )'-(.._1_--'"e:"--) x_+m_+~3 

1! (x+m+2) 2! ,(x+m+3) 

All the terms of this series after the first term are negative, and 

(57) 

decrease rapidly in magnitude. Hence the error in calculating R should 
m 

be small. 

5. CALCULATIONS. We calculated the modified Bessel functions 

<X> I 

Jf~ e-xt(t 2+2t)-~dt 

0 

(58) 

(59) 

2 

£ 
-xt 2 _J. 

e (2t-t ) 2 dt (60) 

X 2 
(h) e 1 -xt 2 t 
r W r (1) o e (2t-t ) dt. (61) 
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On referring to Eqs (29) and (32), we see that 

v = - t (62) 

in Eqs (58) and (60), and 

v = i (63) 

in Eqs (59) and (61). Hence the modified Stirling numbers Vk-t+m and 

V t+m are required for the coefficients of the factorial series. A k 

short table of these numbers is given in Table 1. 

-~ Next, the coefficients a for the series expansions of (l+tt) 2
, 

n 
-~ ~ l 

(1-!t) ', (l+tt) 2
, and (1-!t) 2 were calculated from the appropriate 

recurrence formulas, as shown in Table 2. 

The coefficients bi were calculated from Eq (38) for each of the 

four cases listed above. In addition, the partial sums 

c = m 

were calculated in order to study the convergence of the factorial 

~ 

(64) 

series. The series ~ Cm must converge if the corresponding factorial 
@ 

series is to converge. This condition is apparently violated for the 

functions I
0

(x) and r 1(x), which shows why the factorial series for these 

functions apparently diverged. These results are given in Table 3. 
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(v I 
TABLE 1• ,OOIFIEO STIRLING NU~BERS, V 

K 

K c 1 2 '2 It 5 ... 
" 

-.5 l.CCC -.250 -.073 -.039 -.026 -.019 ••• .s t.cco .250 .135 .oc;a • 068 .054 ••• 
:..s !.COO .750 .594 .4~2 .421 .369 ••• 
2.5 t.coo 1.250 1.302 1.289 1.253 1.209 ••• 
3.5 1.COC 1.750 2.260 z.t:07 2.844 3.007 ••• 
4.5 l.COC 2.250 3.469 4.570 5.538 6.380 ••• 
5.5 t.ccc 2.750 4.927 7.305 9.142 12.156 ••• 
6.5 t.cco 3.250 6.635 10.<;35 15.924 21.410 ••• 

~ 7.5 t.ccc 3.750 8.594 15.586 24.616 35.493 ••• 
w a.5 l.COC 4.250 10.802 21.383 36.411 56.061 00 ••• 

9.5 t.coo 4. 750 13.260 28.451 51.966 85.112 ••• 
1C.5 1.COC 5.250 15.969 36.<;14 71.999 125.010 ••• 
11.5 1.coc 5.750 18.927 46.ec;a 97.291 178.523 ••• 
12.5 l.CCO 6.250 22.135 58.529 128.687 248.849 ••• 
13.5 t.ccc 6.750 25.594 71.<;30 167.092 339.653 ••• 

14.5 l.COC 7.2SO 29.302 87.227 213.476 4~5.091 ••• 
15.5 !.COO 7.750 33.260 104.544 268.869 5S9.846 ••• 
16.5 t.coo 8.250 37.469 124.COB 334.365 779.160 ••• 
17.5 l.COC 8.750 41.927 145.742 411.121 998.863 ••• 
18.5 l.CCC 9.250 46.635 169.S72 500.356 1265.403 ••• 
l<J.S !.CCC 9.750 51.594 196.523 603.31t9 1585.880 ••• 
2!J.5 1.coc 10.250 56.802 225.820 721.1t47 1968.078 ••• 
21.5 !.CCC 10.750 62.260 257.eea 856.053 2420.1t92 ••• 
22.5 l.COC 11.250 67.969 292.852 1008.638 2952.363 ••• 
23.5 l.OCC 11.750 73.921 330.836 1180.733 3573.708 ••• 



~ 
w 
1.0 

N 

1 
2 
3 
4 
5 

6 
7 
e 
'il 

10 

11 
12 
13 
14 
i5 

16 
17 
i8 
19 
20 

21 
22 
23 
21t 
25 

TAetE 2. BINOMIAL CCEFFICIENTS FOR SE~IES EXPANSION 

-.5 
U+.S'tl) 

C.IOOCCCOCCOE 01 
C.25000CCCCCE OC 
C.9375CCOCCOE-Ol 
C.3'10625CCCOE-Cl 
O.l1089f4375E-Ol 

C.16<ii042~6€8E-02 
C.35247EC273E-02 
C.lt36~C5127E-02 
C. 76711117E3E-03 
C.3622472286E-03 

C.l72Ct:74336E-03 
c.a2.12JC9331E-04 
C.3t;J5Ct:4ESBE-04 
C.l89l€58ll<i!E-04 
C.t;l2145€7€8E-05 

G.44087C50€1E-05 
C.2135466524E-05 
C.l036329342E-05 
C.5C37712CSlE-Ot: 
C.2452510355E-06 

C.ll95628048E-06 
C.5835803568E-07 
Ce28515E5E34E-07 
C.13947~7419E-07 
C.68286«;56S7E-OS 

.s 
(1+.5*1) 

OalCCCCCCCOOE ~1 
-o.zsccccccooe oo 
-0.3125CCCCOOE-01 
~0.78125COCOOE-02 
-0.24414C6250E-02 

-0.8544921875E-03 
-0.3204345703E-03 
-0.125€850098€-03 
-0.5114078522E-04 
-0.213C866C51E-Q4 

-O.q05fl€0716E-05 
-0.39lC62349lE-05 
-O.l71C897777E-05 
-0.7567432476E-06 
-0.3378318C70E-06 

-O.l52C243131E-06 
-0.6E886Cl689E-07 
-0.31403~1946E-07 
-O.l439346309E-07 
-0.66285f8527E-08 

-0.3065712944E-C8 
-0.14233f6724E-08 
-0.6631594q64E-09 
-0.3C99549820E-09 
-O.l452913«;78E-09 

-.5 
u-.s•r• 

OelOOOOOOOOOE ul 
-0.2500CCOOOOE 00 

0.9375COOOOOE-Ol 
-0.3906250000E-Ol 

Oel708984375E-Ol 

-0.76qQ429688E-02 
0.3524780273E-02 

-O.l636505127E-02 
o.76711177B3E-03 

-0.3622472286E-03 

O.l720674336E-03 
-0.8212309331E-04 

0.3935064888E-04 
-O.l8ql858119E-04 

O. 'H21458188E-05 

-0.4408705081E-05 
0.2135466524[-05 

-0.1036329342€-05 
Oe5037712081E-CI6 

-0.2452570355E-06 

0.1195628048E-06 
-0.5835803568E-07 

0.2B51585834E-07 
-O.l394797419E-U7 

0.6828695697E-08 

.5 
n-.s•rr 

O.lOOCCOOCOCE 01 
o.zsocooccoce oo 

-0.3125COOOOOE-Ol 
0.781250000CE-02 

-0.244140625CE-02 

0.854492187!E-03 
-0.3204345703E-03 

O.l25885009EE-03 
-0.5114078522E-04 

0.213C866051E-04 

-0.905El9071EE-05 
o.39l062349te-os 

-O.l710897777E-05 
0.756743247fE-06 

-0.3378318070E-06 

0.1520243131E-06 
-0.688860lf89E-07 

0.314039194tE-07 
-0.143934630gE-07 

0.6628568527E-08 

-0.3065712944E-08 
O.l423366724E-08 

-0.6631594964E-09 
0.309954982CE-oq 

-O.l45291397€E-09 



..,.. ..,.. 
0 

M 

1 
2 
3 
4 
5 
6 
1 
a 
9 

10 
ll 
12 
13 
14 
15 

as 
86 
B1 
88 
89 
90 

c ., 
CFOR I (X)) 

0 

O.lOCCCOCCOCE Cl 
o.ccccccGccoe co 
o.e33!~3!!33E-C1 
C.l04lfEEE67E CO 
Oell875CCCOCE CO 
O.l329€~1lllE CO 
O.l4E317~628E CO 
C.l655f91~64E CO 
Oel849€87Cl5E CO 
0.207016!777E CO 
0.232043S054E CO 
C.2605COCS52E CO 
0.2928E72E53E CO 
C.3296~2S445E CO 
0.3716Cl!404E CO 

• 
• 
• 

C.448f264!25E C4 
0.5158S81C27E C4 
0.5932S5C354E 04 
o.6e23459l92E 04 
C.7848106406E 04 
0.9027163E86E 04 

TABLE 3. PA~TIAl SU~S, C 
~ 

c 

" 
( FOI< 1 (X} ) 

1 

O.lCOOCOCOOOE 01 
o.cccccccoooe oo 

-0.83!3333333E-01 
-O.l04lf66667E 00 
-O.lll8C55556€ 00 
-O.ll5625COOOE 00 
-0.1183139054£ 00 
-O.l208354001E 00 
-0.1235905120£ 00 
-O.l267699119E 00 
-0.1304793276£ 00 
-O.l34789S414E 00 
-0.13975~9840€ 00 
-O.l4~4462447E 00 
-0.1519C85092E 00 

-0.2132930456E 03 
-0.2421390452E 03 
-0.2749495588€ 03 
-0.3122761345E 03 
-0.354747S056E 03 
-o.4o3oezobsee 03 

c 

" 
CFOP: K (XJl 

0 

O.lOQOOOOOOOE 01 
-o.scccooooooF. oo 
-0.4l~6666667E-Ol 
-0.4l66666667f-Ol 
-o.2447916667E-Ol 
-O.l814236111E-01 
-O.l3927l2467E-Ol 
-O.ll21135086E-Ol 
-0.9297Cl9245E-02 
-0.7891392514E-02 
-0.6820430172E-02 
-0.598ll69633E-02 
-0.5308l28754E-02 
-0.4757997793E-02 
-0.4301053015£-02 

-0.4049428750€-03 
-0.3988377918€-03 
-0.3928963534€-03 
-0.3871123l62E-03 
-0.3814797435E-03 
-0.375S929875E-03 

c 
M 

(FORK CX)) 
1 

O.lOOOOOCOCOE 01 
o.socooocoooe oo 
0.291666~667£ 00 
0.208!3!!3!3E 00 
Oal616319444E 00 
Oel3203l2500E 00 
O.ll15o89071E 00 
Oa9658668155E-Ol 
0.85144393S9E-01 
0.7612lll0!3E-Ol 
0.688Zi67917E-01 
0.6280056847E-01 
0.5774504858E-01 
0.5344141367E-Ol 
o.4973l81aese-ot 

o.e4t6639314E-02 
o.83673004~6E-02 
o.a2702634~ae-oz 

O.Bl75449148E-02 
0.8082l820~5E-02 
0.79921902COE-02 



The beta functions and incomplete beta f~nctions required in the 

series expansions for K
0

(x), K1 (x), I
0

(x), and r
1 

(x) were calculated 

from formulas discussed previously. Sample tabulations are shown in 

Table 4. Finally, the modified Bessel functions were calculated for 

a limited range of variables. These results are shown in Table 5, 

6. RESULTS AND CONCLUSIONS. These series expansions in terms 

of beta functions and incomplete beta functions were derived in order 

t:o check the accuracy of our Bessel function subroutine (11) (12) with 

independent calculations. The error analysis of our subroutine by 

theoretical methods would be very difficult, especially for the section 

involving continued fractions. Hence computational efficiency is a 

secondary consideration for the new series expansions. Addressing the 

c:onunent of the reviewer*, we believe our algorithm for the incomplete 

beta function is as efficient as the continued fractions of Segun (6) 

when x is large, as Eq (54) can then be used without the remainder. 

We have not made any specific comparison for small values of x. 

Since factorial series are a method of sununing certain asymptotic 

series, they are most effective for large and moderately large values 

of the argument. The convergence is slow when x: is small, so that 

an excessive number of terms is required. Round-off error may occur in 

the coefficients b~ and in sununing the series. Alternate methods of 

calculating Bessel functions, such as quadratures, are required when 

x is small. Subroutines used for checking should not use continued 

fractions or other procedures used in the subroutine, to insure the 

calculations are in fact independent. 

'I: See ACKNOWLEDGMENTS 
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TABLE 4. INCO~PLETE AND CO~PLETE eETA FUNCTIONS 

X = 15. 

v +Ul 

.sc 
t.sc 
2.50 
3.50 
4.5C 
5.5() 
6.5{. 
7.50 
s.sc 
11.50 

lC.SC 
11. 5,~ 
12.50 
13.50 
l4.5C 
15.5C 
16.5C 
17.50 
18 .. 5C 
19.50 
2:0.5C 
21.5(. 
2 2. 5•: 
23.50 
24.50 

£ = .86466 

INCOMPLETE 

C.4614745534E CO 
O.l488!:27592E-Ol 
O.l353~978llE-02 
O.l933282586E-03 
C.3657561650E-04 
O.E44G526E82E-05 
C.2264531600E-05 
C.6846258310E-C6 
0.2282C86089E-06 
0.8254353824E-C7 
C.32CC661713E-07 
o.t317921920E-o7 
0.571928314CE-C8 
0.2599673602E-08 
O.l2!J423877E-08 
Ce605.1 f'57576E-09 
0.3075988334E-C9 
O.l611229288E-C9 
O.E675827411E-10 
0.47<;11096l2E-10 
0.27C8002559E-10 
C.l5t3762750E-10 
C.S211092752E-ll 
o.ss26560982E-ll 
0.!373275674E-ll 

COP'PLETE 

0.4614745534E CO 
O.l488627592E-Ol 
O.l353297811E-02 
o.l9332B2587E-03 
0.3657561650E-04 
0.8440526885E-C5 
0.2264531603E-05 
0.6846258336E-06 
0.2282086112E-06 
o.e254354022E-C7 
0.3200667886E-07 
c.t317922071E-07 
0.5719284458E-08 
0.2599674753E-08 
O.l231424883E-08 
0.6052766375E-09 
0.3075996027E-OS 
O.l611236014E-09 
o.a675B86229E-1C 
0.479ll61052E-10 
0.2708047551E-1C 
C.l563BC2107E-10 
0.9211437068E-ll 
o.552&B62241E-ll 
0.3373539290E-ll 



T~eLE ~. ~CCIFIEC BESSEL FL~CliO~S 

)( I 0) I ()() I< (X) I< (X, 
0 1 0 1 

15. r.~39f:tS.!7~3E CE: 0.?2El24S22CE D6 C.S81S~36482E-07 C.l014172937E-06 IBF 
15. ~.;?c;e~S!733E C6 c.?2Sl24S22CE C6 C.SBlS536482E-~7 O.l0141729!7E-06 SUA 

2C. 0.4355f2e2~EE CS 0.424549733c;E 08 C.574l237615E-C9 0.5883057970E-C9 IRF 
zc. ~.435~€28£56E C8 0.4245497339E 08 C.57412~7Bl5E-C9 0.58830~7910E-C9 SUB 

25. D.5774~ECtC6E lC 0.5657E6513CE 10 C.3464161562E-ll o.153277e073E-ll IBF 
25. C.5774~ECt06E lC o.:6:7etstJOF 10 0.3464l61562E-ll C.3532l7S013E-ll SUA 

3f. r.7Blt122S1eE 12 C.1t:E5!2C3t1SE 12 o.2132477496c-13 ~.2lf1732CC2E-13 IBF 
3r. • C.78lt122S7EE 12 Q.76S532C38qE 12 c.zt3247749nE-I3 0.2161732CC2E-13 sue 

.p. 

.p. 3~. C.lC1~!EEi€5E 15 O.l0~7~4l261E 15 O.l!31C35149E-l5 C.134~9178!4E-15 I fl F w 
3 5. C.lC13!~E~E~F 15 0.10~7S412elE 15 O.l?~lC35149f-15 G.l34~917A34E-15 SUB 

4C. C.l48947747~E 17 O.l47C73G6l6E 17 0.8392e611C~E-l8 (.84~71319~5E-1B I~F 
4(. C.l4eG417479F 17 O.l47013~616F 17 o.eJc;zecltroE-Ie O.S497l319!5E-18 SUB 

4::. C.2<:'e3414..:75E l~ 0.2CfC133462E 19 0.5~33456123E-20 0.53923945S4E-20 IBF 
4~. C.2D€~~14C15E lS 0.2CfC133462E 19 C.5333456123E-2C o.5392394594E-20 SUP' 

t:::{'l 
-''*. C.2932~537e4E 21 0.29C3C7€59CF 21 0.341Cl67750E-22 C.3444102227E-22 I fl F 
5' f' • C.29325537e4E 21 ~.2SC3C7e59CE 21 C.341Cl67750E-22 0.3444102227E-22 SUB 

513. C.414E7eS561E 23 0.4llC€98645E 23 C.2191310218E-24 G.2211142272E-24 IBF 
5'5. c.414e7e~;oiE 23 o.~llOe98645f 21 C.2lgl~lC21BE-2~ 0.221114~272E-24 SUB 

if. C.58S4(77G5t~ 25 o.:E~47=15ReE 25 O.l4l~E97841=-26 t.l425632027E-26 lBF 
6(. C.5e94C77C5l:E 25 Q.5E44151588E 25 C.l413897841E-26 O.l4256320~7E-26 SUA· 

65. C.84C3C3~E4tE 27 0.€33814E547E 27 C.91~4467121E-29 C.9224619528E-29 IBF 
65. G.E4C~C~~E46E 27 O.E33814f541E 27 C.9154467321~-29 C.92246lg528E-29 SUf.\ 



The generalized factorial series for K
0

(x) and K1 (x) yield accurate 

numerical values when x is only moderately large and the Hankel 

asymptotic series is not sufficiently accurate. On the other hand, the 

new series for I
0

(x) and 1
1 

(x) have the same range of accuracy as the 

Hankel asymptotic series, and do not offer any computational advantage. 

This is probably due to the apparent divergence of the series for the 

partial sums of bt. 

The generalized factorial series for K
0

(x) and K1 (x) are being 

extended to the complex plane. Programming of generalized factorial 

series for the ordinary Bessel functions is in progress. Alternate 

methods of calculating I (x) are also being considered, as the results 
n 

obtained in this paper fell short of our expectations. 

The modified Stirling numbers as defined in this paper are more 

useful for computations involving Wasaw's algorithm than the original 

Stirling numbers, as problems arising from very large numbers and 

overrun of the computer registers are entirely avoided. The method of 

scaling employed in this paper, which merely involves the omission of 

gamma functions in the definition of Stirling numbers is more effective 

than the method of scaling used in previous paper by the authors (13). 
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APPROXIMATION OF IRREGULAR SURFACES 

Helmut M. Sassenfeld 
US Army TRADOC Systems Analysis Activity 

White Sands Missile Range, New Mexico 88002 

ABSTRACT 

A method is outlined to approximate irregular (empirical) surfaces 
z = f(x,y) in the real domain, provided z is single-valued when the 
inverse functions x and y may be multi-valued, using sets of 
quadratic and linear expressions for constant and variable z values 
and/or superposition of simple analytically described surfaces. The 
parameters of the approximation elements are geometrically identifiable 
and so easily obtained from graphs or numerical values of z. A pro
cedure is given to interpolate between the approximation curves that 
applies a simplified gradient and insures unambiguous z approximations 
in the given domain. The interpolation algorithm further contains an 
associative look-up that considerably reduces the computational effort 
for highly detailed approximations for points in close vicinity. The 
method achieves fairly good approximations with much fewer parameters 
than polynomial approximations and/or grid point data sets. The 
restriction to easily treatable approximation elements makes for com
putational effectiveness and analytic simplicity. The method is being 
used to approximate terrain for simulation; it can effectively be 
applied to approximate other functions f(x.y) especially those that 
require large amounts of data in digitized form. Two examples of 
applications to terrain are given. 
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INTRODUCTION 

The methods to approximate irregular surfaces·descr1bcdl1ere 
resulted from an attempt to approximate terrain by . .,:a~imited num
ber of analytical e~:pressions in order to overcome ~tne need for 
huge amounts of digital terrain data for combat simulation;--espe
cially since data of that kind were only cvailable-for a few areas. 
The approxir.~tion by_ analytical functions also reduces the effort 
of line of sight computation, i.e., determination whether direct 
line (of sight) between two points on the surface is obstructed by 
some part of the surface itself. The process of line of sight 
computation does use a significant amount of computing resources 
for severa 1 combat r.mde 1 s. 

The methods presented here are de facto empirical, i.e., even 
in principal any desired accuracy of approximation can be obtained 
by reapplying the process; the process can become more cumbersome 
after applying a limited set of approximation elements and then to 
find more approximation elements to obtain another order of magni
tude of accuracy. This does not invalidate the objective, Hhich 
is to approximate the gross structure of an irregular surface by 
simple means and not to achieve utmost accuracy. 

Two distinct approaches to approximate $urfaces are presented 
here, the contour line approach (Ref 1) and the superposition of 
elementary surfaces. The first method is more effective for 
"rugged" surfaces v.•i th few macro structure e1 ei:"lents. Tne second 
has the advantage of greater simplicity and also easiness of 
extending the approximated surface without recomputing the approx
imation elements and still achieve continuity beyond the original 
area of consideration. 

The two methods are described and exa~ples given. ·The process 
of line of sight determination is .also outlined briefly since it 
is of such basic interest to the current application of the method. 

CONTOUP. LlHE .APPROXHV\TION 

We assume that "the surface z = F{x,y) to be approximated is 
continuous and single valued. The inverse functions x = g(x,z) 
andy= g(x,z) may be multivalued. Then the surface can be de
picted by c set of curves Zv ==- F1x,y1 =-canst (contour lines). The 
z may be sets of several disL.l"n.ct curves for a given 7. • Curves 
t&r different zv do not intersect. A set of such cont~ur lines 
is depicted in Fig. 1. 
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Fig. 1 

For ease of description we will refer sometimes to z as eleva
tion. 

We approximate the contour lines by sets of quadratic or linear 
expressions. Frequently contour lines hav8 pronounced indentations 
or bulges. Such curves can be approximated by defining pseudo con
tour lines. Pseudo contour lines are analytically simple approxi
mation curves and that have elevation differentials for certain 
points assigned along their arc. This avoids the use of higher 
order approximation elements that result in lengthy expressions. 

Fig. 2 
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A~~roximation Elements 

We will restrict the choice of curves to ellipses, parabolas 
and polygons as el em2nts for the approxir..ation of con~our 1 i nes 
and pseudo contour lines. The ffiain reason for this restriction is 
the e=se in obtaining the relevant parameters from given contour 
lines and also to allow explicit line of sight computations wl1ich 
are im~ortant for our application of the method to combat modeling. 

'"\ s. 0 
• X 

-----~---·--------- --> 

Fig. 3 

Ellipses. An ellipse is defined by five parameters, but for prac
tical purposes we will use six parameters (two are not independent), 
i.e., the coordinate vector to its center and the four ~arameters 
of its transformation matrix. Given coordinate vector s~ of the 
center in the k coordinate system, then the transformatlon 

0 

(l) Si = (Xi ,yi) = (SO-Sol. )• Tl. = 1 1 la- 1cosx 0 xi b- 1cosx0y;J 
Ti - 0 i - 0 i a cosy x b cosy y 

'-

reduces the equation of the ellipse to a unit circle 

(2) +i +i s . s = 1. 

It is also true that a point si is inside the ellipse if the 
scalar product is less than one and outside if the scalar product 
is larger than one, a simple criterion that will be used later. 

Parabola. We will use parabolas (Fig. 3) given by three points 
and defined by the equation 

{3} -+ +2 -+ + s = ut + vt + s 2 
+ u = 
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The vectors ~ and ~ can be precomputed from the !v. The dimen
sionless parameter tis -1. o, and +1 for si, 52 , and s3 respect
ively. Note that there are actually three different parabolas 
possible through three points and 'the labeling of s determines the 
11 mid-point 11 and the desired parabola. v 

Polygons. Polygons are represented by sets of straight lines 
according to the equations (Fig. 3). 

(4) s = s + (s + - s )t v = 1. 2. 3 ... n(mod n) 
v v 1 v 

The points should be labeled cylically. For the sides (or 
points on the sides) of the polygons is 0 <t <1, a criterion that 
will be used later to decide whether a point Ts inside the polygon. 

Pseudo Contour Line Approximations 

To approximate pseudo contour lines we also need to define a 
6Z at given points on the curves defined above. As can be seen 
on Fig. 2. The fact that we have an 11 i ndentati on 11 or a ''bul ge 11 

depends on the sign of 6Z. The abruptness of change from a 
''smooth 11 contour line depends in addition to the amount of /IZ on 
the closeness of other contour lines. For an ellipse pseudo con
tour lines can be approximated for four points at the intersections 
with the coordinate system K; by 

(5) z = 4 ("+ "+ -~ "+ ) ( ) Z + 1: g • g + I g · g I 6 /2 I g l · l g I n v=l v v v v 

where g is the coordinate vector of the point on the ~ircumference 
for which the elevation is to be established and the 9v are the 
unit vectors of the given points with 6v elevation differentials. 
The sums of the scalar products with their absolute value really 
indicate that there are never more than two terms o1 the sums, 
namely the two 9v that limit the quadrant in which g is located. 
The interpolation actually uses a Fourier form to avoid the use 
of transcendental functions. 

Procedure 

To approximate a surface by elements as defined above one 
establishes from the contour lines the approximate center points 
and axes of ellipses (for those contour lines that resemble 
ellipses) and precomputes the parameters of the transformation 
matrix. For the other contour lines one chooses either parabo1as 
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through three points or polygons with convenient points. Parabolas 
can be chained to form any variety of curves. With all derived 
parameters precomputed one obtains a set of parameters that describes 
the approximating surface and will be referred to as the structure 
set. To regenerate the approximate surface one proceeds as outlined 
in the next chapter and the algorithm. 

Interpolation 

Once we have established a set of approximation elements and their 
parameters we can describe the contour lines of a surface as shown 
in Fig. 1. For a point on the area under consideration we have to 
compute the z- value (elevation), but since normally a point would 
not fall on a contour line we have to interpolate between adjacent 
contour lines. The correct interpolation is along the gradient. 
To obtain the gradient in a system (set of approximation elements) 
is equivalent of using an irregular curved linear coordinate 
system. There are also cases where there are more than two 
adjoining contour lines (Fig. 1) and the minimum distance must be 
chosen. Since the gradient and especially its length between a 
point and an approximated contour line cannot be computed explicitty 
we are using the simplifications indicated below. 

Fig. 4 Fig. 5 

For ellipses we use the distance between the point A and the 
periphery of the ellipse along the straight line that goes from 
the center of the point A (Fig. 4). Using the transformation 
indicated in (1) we receive for the distance with 

(6) -+ -+ ) + (pA-s. ·T· = w. 
1 1 1 

and ( + -+ ) + p -s ·, = w A K K K 
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and if the respective values of 2 --canst are Z; and; this 
interpo1ates to v 

(7) ::: + zkor:') 1 (D .
1
" 

1 1 
+ m = 1 or 2 

For m"'l we have linear interpolation and for m=2 we have pythag
orean interpolation which saves the computation of square roots 
in the numeric process. For confocal ellipses these approximations 
can be made mare accurate, see reference 1. 

For parabolas the distance from a point to the ~arabola is 
a?proxi~ated as follows. One uses a center point that, for all 
p~actical c~ses, is inside the parabola and reasor.ably far a~ay 
from the parabola itself. Such a point is halfwa~ between the 
intersections of lines orthogonal to s5 --s2 and s 1 - s2 through 
the points p3 and p1 respectively and the bisector of the angle 
P1 p2 P3 as sh:J•m in Fig. (5). 

-+ 
The point p is defined as c 

\ 8} 

__,.. __,.. 
s = s . 

lJ '\) lJ 

-+ 
s 

\) 
-s = s- 1 is , 

]J\1 ]JV ]J\1 

For the distance b2tween point A and the parabola we obtain the 
approximation 

2 2 -~ -+ -+ -+ -+ 
(0) DAp = TA PeA-peA peA = Pc PA \-' 

:rA :: [2<vx~>t.£.. + <(sL-15/l) X u>Jh 

.. [: 0- S]/)' o:: =<(s2-PA). Pck>-y -+ s2 
"A 

-+ -+ -+ 

s ;;; <peA X v> "Y = <peA X u> 

..... -+ t 2 sl <a X -c> = a c a c 
X y y X A 

If~~ is lar~er than_onE the point A lies ou~s1oe th~ validly 
de 1ned port1on of tne parabola. There are formulas for these 
pa hological c2ses, reference 2. 
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Tge point A is outside the defined area of2the parabola if 
tAsl and TA~l. The point A is inside if tA~l and l<TA. 

Algorithm for surface ]eneration and interpolation. 

Given a set of approximation elements ei whose components are 
identification as to type (ellipse, parabola or polygon), the ele
vation zv, indicators of pseudo or non-pseudo contour line, and all 
parameters required to describe the approximation element. It is 
practical to order the set of ei into a matrix as follows begin
ning with the lowest Zv (largest area) go the next higher zv con
tained in the same area and forth to the highest contour line 
contained in the first area. Then build the second group from 
the lowest zv where there were more than one contained in a contour 
line. Continue until all sets are used. For concave portions 
of the surfaces one should start from the contour line that covers 
the largest area and go up and down similar to the above. The 
order in which the groups (sets of e;) are counted is irrelevant. 
The ordering in the above fashion is computationally expedient. 

To obtain the z coordinate for a given point A one proceeds as 
follows. Check the ei (starting with the first group) for the 
element that contains the point A, using the respective formulas 
above. If such an e~ is found one proceeds to the next higher 
e~+i of the same group until one finds the eo that do not contain 
it. One interpolates then between e0 and ea-1. If the next 
higher elevations are in another group that contains the point, 
one follows that group. 

When large numbers of points are needed that are close together 
a simple adaptive procedure can be used. The highest element 
that contained the previous point is saved and the next point is 
tested against it first. If the new point satisfies the test no 
further search is needed. If the new point does not satisfy the 
same test with ei, one proceeds to the next lower one and starts 
a full search if necessary. If the consecutive points to be 
analyzed are close together the searches are very short therefore 
saving considerable computer time. (See also Ref. 1) 
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In this c.~;JruC!ch to t:;Jprc:;xk.::te a given surface, a set of S:.i!"

faces is su~eri~~osed in such a ~ay that for any given point P{x,y) 
~he hicr.est of o;.e or more overlappin~ surfaces defines the result 
surfac~. This results in a unique surface as long as the element 
surfaces are c:~v~x with respect to the base plane z=O. If con
ceve surfece el~~ents are used a limitation witi1 respect to z rn~st 
uc givi:n s:;ch that the ''ends 11 do not protrude (Fig. 7). 

>: 

Fig. 7 

In principle, any kind of analytically describable surface can be 
used as an approximation element, however, as in the case of contour 
line approximation we will restrict ourselves to quadratic or poly
quadratic1 surfaces. First, the general shape of such surfaces if 
very clear and therefore more suitable for empirical composition of 
a surface, and second using quadratic surfaces results in explicit 
formulas for line of sight determination. 

Given a set of surfaces z. 
is defined as 1 

f.(x,y) 
1 

then the resulting surface 

( 10) Maxf;(x,y) ::; Z (x ,y) l, 2, 3 ..• n 

with fk(x,y) ::: z* kC; 
k 
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-;.~,r -,.,-,: '>· ,' .• ;.--· - ~~ _," -"""-" c- r,._,., r' """' f"" ,~.,.,,-t ~~ ''1 ..... ~.-.1"'"~ ...... I k\ .,.) , L.11C.;... C1 .,_ ~.....v•l~.,.."- L: 1 ... \1...._ 11:;:: t ~~~~ ...._k ..... ';I 

~~~~es cf ~. y ~n~ z ~us: b~ ree~ v21ues. ~ ~~~ver an T .. \x,y) 
produ:~s ~ complex z v~lue for 2 ~iveG poin~ (xA•YA) the v~lue 
15 to b:: ~xcluded froiT. th2 r;-.:::>.iiT-JrT s:o-2rch (10). · 

To ap~roxir~te a given surf~:e bv this ~ethod one can structure 
th::: seorch for the proper set ot" f; (x,_y) iteratively. 

i7 z ~ F(x,y) is the g~ven surface to be approxim~ted then 
I . ' ' { .. ,..:. 1 ) 

:::z(v) . , , ' z \ •- I J = i<c >: \ '1.. 1 

.- ): ,y) F(x,y) \ I i ) i \. 

rn 
t-'- X .r- ( v ) f X _y J 

(o) 
-I \ 

Effi (X ,y) z '~0 e:nc r\X,)') ;:; + 
-~:::: 1 I ·c:. I i \ ' 

1 

whEre ~w:x,y) is the remaining error after the m-th approximation. 
This method is conve~gent in the general C.'!Se considering a broad 
choice of f~(x,y) and that F(x,y) is real, one-valued and contin
uous rvtr t~e co~siter2d area. lr ~ractice, however, with succes
sive iter~:io~s, the structurE of ~he residue surface tends to gain 
cJ~plexity ~ue to the re~e~ted di~ferencing process. Therefore, 
it is g~nerally better to change the first and second set offi(x,y) 
rc ~(, r'\' t~.~r, ~~y.i ng _ t~ c ~ t~ i ~ higher ~~curacy by ~ddi ng ~~re sets. ~f 
f. "'J(x,y) ,,,,en wlll ctso HlU'E·cse · ... ne co::Jpu'toi:lOr.al 2TTOrt. Tn1s 
i~ cc;";;·.::r:S~i:-<:te v•ith the o::;jective of the approxior.ation method to 
ach~:::ve c r~~so~ab1e aDprGximation with rel~tively few parameters, 
b~t nor :o 6Chieve G~most ~ccuracy w~th ~he addition of a large 
nu~ber of b2se data. 

;..P?ROUt1ATJ Oti SUr:FACE S 

P.s stc.tec be-;'or:::, :o.ny r,or:-~~r,gGi~r cor,tin:Jous function can be 
L'sed c.s ar, :::~;:;r·:::;xi,.:-,;:;tio~. eioo::2nt. i=or prO:Jc:.:ica1 r::e:sons 1·Je 

~ill r~strict the cnoice to ouadratic (polycJa~ratic) surfac~s. 
h'e will c:se surface e~e~::2nts t)·,c.: c.:-e expressed by the foliowing 
equatior. 

f I '~-
\ Z/ C J l or 2 

.~e ~~us s1;~s c.n~ :~2 r2?r~sent 2n o11ipsoi~, :~l an elliptical 
:·,c.r2:Jo,c··,G. ih:: n.inL'S signs d'->scr~tle similar surfaces but they 

--are co~cave with respect to the x-y plc.ne, see Fig. 9 .. 

-:-he bcsi 
similar 
the coo:-

form (12) is ach·ieved b_y c. coor·cn.:::c.E: trt::nsforii.a-t.-ion 
o (1), however three di~ensionally. We will 2ssume that 
ir,cte systems of the approxi1~.atior: e1e~:ents have their 
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:-c.xes parallel to thE- .:C: coorcinate syste%, hence the approxir.,ate 
directional cosines are zero. ~e can therefore handle the approxi
mation elen~nts with the same two-dimensional vector ~~ as in 
equation (1). 1 

( ]3) .... ; 
s (X ,y) = 

and the a;Jproximation surface is defined as 

( 14) c () 
Z(x ,y ) = Max f ( x ) . .y i , ' 

+i -+i)ljp 
t·~axc.(l---s • s , -

Io utilize the approxirr;ation elements the relevant parameters 
SY and the coefficients of the matrix T· have to be determined. 
S~nce one knows only the surface that n~eds approximating these 
parameters have to be derived from the given set of contour lines. 
The relationships for maximum elevation and minimum elevation 
to be considered by an ele~nent are evident from Fig. 8 and Fig. 9. 
With 

,L ,,, , r~ n 
~ ·-----7l 
C.cr1Cq,.e ~~!~ ,._ lj( !1 

· n- c \ 
---· ,] ' / ;>~ 

~·· _ .. - I -·--·--,? 

f
! - (: C l',v'~ Y, 

, r~ , _ __::__ ......-----· ·~ 
._ · I r · r 

\! 1-\1\ X. ---1 ·~-, -· .. ------~-;... 
I 

Fig. 8 FiS'. 9 

equation (12) this leads to 

( 15) p = 1 or 2 

The minus sign applies to conc~ve surface elements. The same 
formula applies forb in the yl-z plane. Note that the plane depicted 
in Fig. 8 and Fig. 9 is the transformed K- rJordinate system going 
through the center of the ellipsoid or ot~er approximation element. 
When convex and concave surface elements are used it is important to 
note that curvature of the concave element must be less than all 
adjacent ones. see also Fig. 6. A sufficient criterion for this is 
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and 

fl,c.x ( c /c. .c /b ) 
c c c c 

< 

< t~in(c /a .c /b) 
\>V\1\' 

for all adjacent surfaces(index v) and the "axes" of the concave 
surface (index c). 

7his criterion is CJmbersome to use in its exactness. For 
practical purposes it is usually quite obvious whether the concave 
surface is flatter thar. the adjoining surfaces. 

!Ql.y_C?_LJ_c_d rat i c Surfaces 

If in equation (12) p=l/2 the approximation surface is 

{ 16) 

2 < ;, 

:;; Maxf. 
i 1 

(x,y) 
. i . i s ·S < 

. i . i ) 
f>!,a X [ l . + ( 1 -S · S ) '] 

; 1 

1 

The p~ofile of such surface in the x-z 
For $1.~1 <0 we have a partially 
concave surface and its extent is not 
easily evident ~hen used in actual 
c.pprcximations. 1 The larger~ the 
steeper the curve. For practical 
purpcses it is best to restrict the 
choice to l:;;2 and l=4. As Fig. 10 
shows one can use L to move the point 
of zero curvature further up, as long 
as L<h. 

plane is shown in Fig. 10. 

The relation between a and ~ is given 
by equation (17). 

Fig. 10 

TWe are-talking he-re about obvious shape without having done a 
point by point computation of course any point of that surface 
can be co~puted ex~ctly if desired. 
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c = H-l 

The formula for b2 is identical to (17) with the respective H 
and b. 

LINE OF SIGHT DETERMINATION 

For applications of surface approximations to terrain in con
junction with combat models it is of primary importance to know 
whether the straight line between two points on the surface is 
obstructed (intersected) by other parts of the surface. Because 
that computation has to be repeated numerous times it is imperative 
that the computation be simple and short. 

For contour line approximation the algorithm is briefly as 
follows.* The parametric representation of the line between two 
points with the position vectors PA and p8 is 

This equation is transformed according to equation (1) and then 
T is determined by using equation (2) and similarily by equations 
(3) or (4) with respect to other approximation elements. If T1 or 
T2 of the intersection is between O<T<l and z = ZA + (zs-zA)T1 2 
is less than the elevation of the intersecting contour line, the' 
line of sight is obstructed. If none of the approximation elements 
(contour lines) is obstructing, line of sight exists. This involves 
a search algorithm. It can be shortened for numerical purposes by 
starting the search for an adjacent point by checking results 
(obstruction element) of the last point first, since it is likely that 
the same contour obstructs again (Ref 1). 

Fig.ll 

*Detailed explanation is given in Ref 2. 
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For superpositioned surface the line of sight can be determined 
as follows using the ellipsoid as an example 

W. th .... ( ) d + + (+ + )T d + ( o o o) 
1 PA = xA,yA,zA an p = pA + p8-pA an sE = sx,sy,sz 

one obtains 

® = T. 
1 

0 

0 

0 0 c 

for T1 and T2 T1 z = (±D-e)/a 
• 

02 = a(l-y) + e~, a = q~A 

The conditions for line of sight are: 

oz < 0 

oz > 0 either T, or both O<T<l 

.... ; +i s . s - 1 

~o Obstruction 
Obstruction 

For elliptical paraboloids the same conditions apply, however a, e 
and yare different with respect to the contributing z- components. 

For polyquadratic surfaces enveloping elliptical paraboloids are 
used as a first approximation, which is then refined, if necessary, 
for certain conditions. A detailed discussion is given in Ref 2; 
it goes beyond the scope of this paper. 

RESULTS 

The methods of surface approximation have been applied to some 
real terrain. Fig. 12 shows a graph of contour line approximations. 

A comparison of digital data and various degrees of approximation 
by surface superposition was made for a terrain. The results are 
shown in Table 1 below. Note that the given values for the mean 

A~~rox. Elements Mean Std. Deviation 

6 2.5% 5.7% 
12 0.5% 4.1% 
16 0.1% 3.7% 
19 0.2% 3.6% 

TABLE 1. Steinbach Terrain Comparison 
and standrad deviation are taken from the difference between approxi
mation and digital data, and related to the maximum elevation. The 
approximation uses only about l/40th of the data that the digital 
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representation requires to achieve the deviation of only 3.6% in 
the above case. 

Figure 13 and Figure 14 show a relief and a plot of contour 
lines for the Steinbach Terrain, this case was also used in the 
comparison shovm in Table ·r. 

Figure 15 shows a line of sight map of the same terrain, i.e., 
all blank parts of the terrain are visible from the observation 
point(*}. The digits indicate elevation intervals in multiples of 
50 meters. 
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GROUP THEORETIC METHODS IN 

BIFURCATION THEORY 

D.H. Sattinger 

School of Mathematics 

Minneapolis, MN 55455 

I. Bifurcation at Multiple Eigenvalues. 

Suppose we want to investigate the bifUrcation of solutions of a 

system of equations 

G(:>..,u) "' 0 

in the neighborhood of a known solution (:>.. 'u ) 
0 0 

Assume 

I~ = G (:>.. , u ) is a Fredholm operator of index 0 and that 
0 u 0 c 

(1) 

n =dim ker G (:>.. , u ) > 1. Then by the Lyapounov- Schmidt method[ 4] we 
u 0 0 

ean reduce the bifUrcation problem to that of solving a system of 

algebraic equations 

F. ( :>.. , z
1

, ••• , z ) = 0 
1 n 

i 

If G(t..,u) is an analytic operator then the 

1, ... ,n 

F. 
1 

are also analytic. 

(2) 

In practice the computation of even the lowest order terms of the 

F. is a non-trivial matter, especially if (1) is a particularly complicated 
~ 
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system of equations, as in elasticity or fluid mechanics. Moreover, given 

n equations in n unknowns virtually anything can happen in the way of 

solution sets and their stabilities, and the algebraic problem can be 

quite complex. There is a natural assumption we can make in such prob-

lems which not only allows us to bypass the numerical difficulties 

inherent in the Lyapounov - Schmidt procedure but which also provides 

us with a general approach to bifurcation at multiple eigenvalues and 

with a way of classifying bifurcation points at multiple eigenvalues. I 

will assume that the mapping G is covariant with respect to a trans-

formation group ~ • That is, let T be a representation of ~ : g 

and assume that 

T G(X,u) ~ G(X,T u) g g (3) 

This is a natural assumption in physical theories and is a mathematical 

expression of the axiom that the equations of mathematical physics be 

independent of the observer. 

From (3) it follows that 

so if u is a solution which happens to be invariant under the entire 
0 

group J, , Tg u ~ u , we have 
0 0 
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T L = L T g 0 0 g 

where L = G (X ,u ) 
0 u 0 0 

Therefore N = ker L is invariant under 
0 0 

T , and T IN is a finite dimensional representation of ,it • Let 
g g 0 

me write the bifurcation equations (2) in the form F(X,v) = 0 where 

v EN and F: C x N ..... N 
0 0 0 

Theorem l. If G(X,u) is covariant and T u = u then so is 
g 0 0 

F: T F(X,v) = F(X,T v) • (See [4]) 
g g 

Let me now expand F in a power series in v: 

F(X,v) = A(X)v + B
2

(X,v,v) + B
3

(x,v,v,v) + •••• 

Then we must have 

T A(X) = A(X)T -g g 

T B
2

(X,v,w) = B
2

(X,T v,T w) g g g 

Throughout this talk I will make the assumption 

N is irreducible under T 
0 g 

From (4) and H
2 

it follows (by Schur's lennna [3]) that 

A(X) = a (X)I 

469 
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(5) 



where I is the identity. 

2 a(A.) = c
1

). + c2 ). + •••• 

Suppose for convenience A = 0 and 
0 

Then by various scaling arguments[ 4) the 

bifurcation problem can be reduced to an analysis of the equations 

(6) 

where Bk is the first nonvanishing term in F , homogeneous of degree 

k . Equations (6) are called the reduced bifurcation equations. It can 

be shown ([5] Theorem 7.2) that the stability of the bifurcating solutions 

can be determined to lowest order from an analysis of the Jacobian of 

(6) at a solution. 

The group theoretic approach, then, is to compute the lowest 

nonvanishing term Bk , find all solutions of (6), and determine their 

stability in the neighborhood of the branch point. 
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II. Bifurcation in the presence of 0(3). 

Today I will show how the above program can be carried out in a 

specific case, namely when the group in question is 0(3) , the group 

of rotations of the sphere. There are a number of classical bifurcation 

problems in which this situation arises, for example the buckling of 

a perfectly uniform spherical shell, or the onset of convection in a 

spherical mass. The latter problem and its possible connection with 

convection in the earth's mantle and plate tectonics has been discussed 

recently by F. Busse.[l] 

Our first task is to construct the 2nd or 3rd order covariant mappings 

B(v,w) or B(u,v,w) • It is important to keep in mind that these are 

completely symmetric mappings: B(v,w) ~ B(w,v) • 

The irreducible reps of 80(3) are of dimension 2t + 1 , t ~ 0,1, •.. 

t and are denoted by D • To get quadratic mappings we consider the 

t t tensor product D ® D acting on N® N. Let us recall the Clebsch-

Gordon series ([ 3], p. 233) 

(7) 

This means that N® N decomposes into a direct sum of invariant irre-

ducible subspaces t V· 

_2-c, 2-t - 1 _L o 
N ® N ~ V. ffi V ffi ••• ffi v- ffi ••• ffi V 

and precisely one of these subspaces, namely Vt , transforms like D-e,. 
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Since we require 

this is precisely the one we want. 

Now in the above decomposition y2~ contains symmetric tensors, 

_ _?.C, -1 v- anti-symmetric tensors, and so forth. Accordingly vL will 

be symmetric iff t is even • Therefore 

for odd ~ there is no quadratic term 

and we must go to cubic terms. 

Let's consider the case of even ~. I will construct the mapping 

B using Lie algebra methods which are well known in the theory of 

angular momentum coupling in quantum mechanics. Since B can be assumed 

to be completely symmetric we can work with polynomials and write 

F. (z1 , ••• ,z ) = r: a .. k zJ. zk 
J.. n . k J..J J, 

We begin with the infinitesimal generators of the rotation group 

These satisfy the commutation relations 
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where eijk is the completely anti-symmetric tensor. Now put 

-iJ 
3 

These operators satis~ the commutation relations 

(8} 

The operators J± are the familiar ladder operators of quantum mechanics. 

Let N be an irreducible (real) invariant vector space which transforms 

like D.{, under S0(3} • Then the complexified space N + iN has a 

basis f such that (see [3], Chapter 7) 
m 

J3 fm = mf m 

J± fm = f3±m fm±l 

f = (-1).{..-m f 
m -m 

where 

-t_sm_s.t. and f3 =J(.t.-m)(.t.-tm+l) m 

(9) 

This basis may be constructed using the commutation relations 

(8). We now represent N as the vector space of linear polynomials in 

z_t, ..• ,zt, where the variables z act as the f in (9) . m m 
Denote 
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by K[z_t, •.. ,zt) the ring of polynomials in the independent variables 

z_t••·•Zt. K is isomorphic to the algebra of symmetric tensors over 

N • (There is a natural correspondence between tensors over N and 

multilinear transformations of N into itself; See [4]) • We now 

extend the o~erators J
3 

and J± to be derivations over K : 

J(af + ~g) = a Jf + ~ J g 

J(fg) = f J + (Jf) g g 

(1.0) 

where f , g EK and a and ~ are scalars. It is natural to extend 

the J's in this way since they are Lie derivatives. 

I apologize if I have lost the reader with what may seem to be 

meaningless algebraic abstractions; but now, using (9) and (10), I am 

ready to ~resent a simple algorithm for the construction of the polynomials 

Fm(z_t••••zt) • The procedure should be familiar to those readers who 

have studied angular momentum coupling in quantum mechanics. We require 

the F to transform in the same way as the z m m 

J
3 

F == mF m m 

Consider first the quadratic terms in Fm (The linear term of F 
m 

is a scalar times z ; since the representation is irreducible the 
m 

linear term must be a scalar multiple of the identity.) For quadratic 

terms 
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Since F is to be a sum of quadratic terms and J
3 

F ~ m F we m m m 

require (j +k) "" m • So 

In particular (when t is even) 

2 
Ft ~ Goztzo + alztzt-1 + ••• + Gt/2(ztj2) 

Furthermore J F ~ ~. F = 0 , and this condition gives us a set of 
+ t 'V t 

linear equations for the coefficients G
0

, ••• ,at/
2 

• For example, in 

the case t ~ 2 we have 

a ~ 
0 

+ 2b 131 ~ 0 
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once F.{, is known we get F .t,-l from 

and so forth. In this way we can construct all the F 's . 
m 

This procedure extends immediately to higher order terms. For 

example to get 3rd order terms we write 

and apply 

to get a linear system of equations for the Aijk • For .{, = 1 there 

is only one solution but for t=3 there are two independent solutions. 

In fact, the condition J+ Ft = 0 leads to five equations in seven 

unknowns. 

For the quadratic case the general mapping is given in terms of the 

Clebsch-Gordon coefficients 

or the Wigner 3-j coefficients 
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Much is known about the 3 - j symbols, since they are of prime importance 

in atomic spectroscopy. Here is a generating function for them 

([3), P• 261) 

jl~ j2~ j3+m3 (~ j2 

~) I xl ~ x3 
~ = 

-j.<m. <j. 
l.- l.- l. 

J(jl iii).)! ( jl-IIJ.)! (j2+~)! (j2-~)! (j3~)! (j3-~)! 
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III. Special Results. 

Let me discuss some special results which can be obtained for 

low -t: -t = l, 2 , 3 , 4 • 

l. -t = l (vector fields). The reduced bifUrcation equation~.:; are 

X z 
0 

For real solutions we require 

solution set is 

a 

z 
m 

(-l)m z 
-m The entire (non-trivial) 

The parameter a depends on the specific physical problem. We must 

have X/a > 0 for bifurcation, so the bifUrcation is supercritical if 

a >O and subcritical if a < 0 • By rescaling we can assume X/ a= l • 

Then the orbit of solutions is 

z =cos e 
0 

= _ sin e e -i cp 

.fi 

These solutions are all axisymmetric. They are orbitally stable when 

they appear supercritically and unstable when they appear below criticality. 
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2. .(, = 2 (second order tensors) 

Again we get only axisymmetric solutions (Busse [1]) • This time 

the branch is transcritical. The eigenvalues of the Jacobian of the 

reduced equations are 

3,0,-1,0,3 

The two zeroes are a consequence of the rotational invariance of the 

equation and the fact that the orbit is two dimensional. There is one 

unstable mode subcri tically and two 

rstable 

\ 

" 
stable ', unstable 

... 
...... unstable .... --

unstable modes supercritically. We 

therefore have in this case the 

possibility of hard buckling (snap

through instability) • 

3. .(, = 3 • The interesting thing about this case is that there are 

two independent covariant mappings Viz. 

and 
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This means the bifurcation equations take the form 

X z = A F ( z) + B G( z) 

where the parameters A and B depend on the external physical constants 

of the problem. This situation occurs in the Benard problem and gives 

rise to mechanisms for pattern selection[5], [6] 

4. .t = 4 . (Busse [ 1 J ) There are many solutions to the bifurcation 

equations in this case. Two special ones are 

1) axisymmetric solutions: z± = ••• = z = 0 , z ~ 0 • 
1 ±4 ° 

eigenvalues of the Jacobian are 

20 20 10 10 -5 -5 -l,O,O,Sf•Sf•:f•:f•Sf•Sf 

The 

The axisymmetric solutions are thus unstable on both sides 
of criticality, with 3 unstable subcritical modes. 

2) octahedral symmetry 

z =!5 
0 

This solution was found by Busse. The eigenvalues are 

20 20 20 5 5 
O,O,O,-l,l''l''l''7'7 

This solution thus has one unstable subcritical mode. 

Here are the quadratic polynomials for the case .t = 4: 
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2 
- z

3 
z 1 - z z + z

1 jl4 - 14 .)5 2 0 7 fi 

F -lz z +_!_z z --6-z z +-9~z z 
1 - r-:;2 4 -3 3 2 2 1 1 

..;c:. .ji4 - 7fi - 7.fi6 ° 

F - 1 zz + 3 zz -~zz __ 9_zz 
0 - £5 4 -4 2 ;;;5 3 -3 v ./ ..; ./ l4 J5 2 -

2 l4 J5 l -l 

Tbe others may be obtained from the relation 

F ( z '·' ••• z , ) -m "" ft.,_, Fm(z_t''''z.t) 

+-9-l 
14../5 ° 

.t~,6,8 , Busse [1] also fmmd special solutions for these cases too. 

Blllise used an extremum principle to determine the physically relevant 

solution. I will discuss that principle in the final section. It 

indicates that the axisymmetric solutions are not the physically 

r<;levant ones. Busse conjectures that for .t"' 6 the relevant solution 

has the symmetry of a dodecahedron. 
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IV. Gradient Structure of the Bifurcation Equations. 

The extremum principle I referred to above is the following. For 

~ even the reduced bifurcation equations can be written in the form 

(ll) 

where 

Consider the function 

l ~ 1 ~ 
p(z) ~ F z - E (-l)m F z 

= 3 -~ m m - 3 -~ m -m 

For ~ even the Wigner coefficients are completely symmetric and there-

fore 

Consequently our reduced bifurcation equations have a gradient structure, 

and this fact is independent of the structure of the original equations 

G(h,u): It is a purely group theoretic result. 
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Therefore our bifUrcation equations (11) are the Euler-Lagrange 

equations for the minimax problem 

where 

Min p(z) 

I zl ~1 

-t. 
= r: 

-t 
z z 
m m 

(-l)m z z 
m -m 

The function p is a third order invariant for 0(3) . That is 

p('l' z) = p(z) for all g E 0(3) • In terms of the infinitesimal 
g 

generators this is equivalent to 

The norm I Zl 2 is the second order invariant. 

Leon Green (School of Mathematics> University of Minnesota) and 

I 11ave succeeded in casting the bifurcation problem in a slightly 

different way. Consider the Clebsch-Gordon series 

ani the associated representation 
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on (t + 1) X (t + 1) symmetric matrices A • This representation is 

unitary relative to the inner product 

(A, B) * == tr A B 

Furthermore, the third order invariant (there is only one) is 

1 2 * P(A) = 3 tr A A 

Now the highest weight space, the one that transforms like D{. in 

(12), consists of symmetric tensors (A A+) so we may rephrase our 

bifurcation problem as 

subject to 

Min ::!: tr A3 
3 

tr A
2 

= 1 and tr A B. 0 
J 

where the B. are symmetric matrices which lie in the lower weight 
J 

invariant subspaces. In particular, tr AI= tr A=O. For {.==2 

we get the bifurcation equations 

So far we have only been able to apply this approach in the case .{. 2. 

(which we have solved completely); but it is interesting because of its 

similarity to L. Michel's approach to symmetry breaking problems in 

physics. [2] • 
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ORDINARY DIFFERENTIAL EQUATIONS IN INFINITE 
DIMENSLONS AND ACCRETIVE OPERATORS 

Michael G. Crandall 
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Madison, Wisconsin 53706 

ABSTRACT. In the last ten years a nonlinear theory of evol\Ition problems which 
has applications in classical ordinary differential equations, nonlinear diffusion 
problems, Stefan problems, control problems as well as many other areas has been 
developed. This is the sense in which this theory has applications and the basic re
sults of the theory are described. 

INTRODUCTION. There is a nonlinear "theory" of evolution problems which provides 
existence, uniqueness and continuous dependence results for a spectrum of problems 
ranging from some in classical ordinary diffenmtial equations to others involving the 
hea~ equation, the wave equation, nonlinear diffusion, a single conservation law, the 
Stefan problem, quasi-variational inequalities of evolution as well as many more. An 
expository introduction to this subject is qiven in [5] while [1] provides a develop
ment in depth. However, these sources both need updating in view of recent developments. 

The current paper is intended to supplement these sources by summarizing the basic 
results while incorporating some recent advances from the literature. Section 1 con
sis~s of a brief informal discussion of the relationship of the abstract results of 
Sec•cion 2 to applications. Section 2 summarizes the results of interest rather tersely -
it :;hould be read as a supplement to [ 5 J or [ 1] • 

1. Orientation. In classical ordinary differential equations one studies initial
vahle problems of the form 

{~~ + A(u) = 0 
(1) 

u(O) u
0 

whe.re A maps a subset D(Al of lR N into lR N. Under mild conditions it is .proved 
that (1) has a unique solution on some time interval and that this solution depends 
nic·ely on A and u

0 
in various senses. These results imply that models met in many 

,applications are "well-posed". In these models u represents the state of the system 
under consideration. For example, u might be a list of numbers qiving the positions 
and velocities of a finite collection of particles. We are going to discuss some exis
tence, uniqueness and continuous dependence results for {1) where A is a mapping in 
some Banach space. The relationship of these results to applications is very much the 
same as in the classical case. That is, many applied models involving partial differ
ential equations can be abstractea in the form (1) where A is an operator in an in
finite dimensional Ban~ch space {rather than in some mN) and A will satisfy the 
assumptions made in th'e next section. Thus the abstract theory provides us with the 
ability to think about a wide spectrum of problems simultaneously as well as basic facts 
about their solutions. HoweveT, just as the classical well-posedness theory does not 
give any detailed information about, for example, the solutions of the three body pro
blem, the theory discussed here does not give detailed information about particular 
solutions of particular problems. 
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We begin by sketching how particular problems in partial differential equations 
can be regarded as special cases of the abstract Cauchy problem 

{ 

du + 
dt 

u{O) 

A(u) f(t) 

In CP(A,f,u0), A maps its domain D(A), which is a subset of a Banach space K, into 

X (or A:D(A) c X ~ X), f: [O,T) ~ X is a strongly integrable function, T > 0 is re
garded as fixed hereafter and u

0 
E: X. 

As an example, we choose the nonlinear diffusion problem 

(DE) u - (k(u)u ) f (x,t), X E (0 ,1) , t > 0 
t X X 

(NDP) ( i3C) u (O,t) .. u (1 ,t) 0, t > 0 
X X 

(IC) u(x,Ol = u
0

<xl, X ( (0,1) 

In (NDP) we may regard the unknown function u(~,t) as the temperature of a one-dimen
sional 'rod. The rod has insulated ends, a temperature-dependent conductivity k(u) and 
is being heated externally. Let us think of (NOP) as an equation describing how the 
whole temperature field varies as t varies. That is, we will reqard (NDP) as telling 
us thi rate of change of the function t + u(•,tl which assigns to the time t the 
"state" of the rod-namely,.the temperature field at that time. We write u(t) for this 
temperature field. The ways of thinking "t + u(t)" and the classical "(x,t) ~ u(x,t)" 

1 
are related by u(t) (x) = u(x,t). A good state space for this problem is X= L (0,1). 

The requirement that u(t) oo L
1
(0,l) simply corresponds to the heat energy in the rod 

being finite at the time t. We rewrite the equation u - (k(u)u ) ~ f(x,t) in the 
du t x x 

following way: Replace ut by dt since we now are thinking of u as a function of 

t whose values are in X- In the same spirit we replace - (k(u)u ) by A(u) where 
X X 

A(v) ~ - (k(v)v') '. In words, to compute A(v), where v is a function of x, differ
entiate v, multiply the result by - k(v) and differentiate again. The expression 
f(x,t) will likewise be replaced by f(t) where f(t) E X for each t. Now the equa-
tion ut - (k(u)u ) f(x,t) is abbreviated to du/dt + A(u) = f(t). 

X X 

The boundary conditions (BC) are handled by incorporation into the domain of A. 
Set 

D(A) = {v E X : v and v' are absolutely continuous 
and v' (0) = v' (1) = 0} 

That is, every function in D(A) satisfies the zero flux condition at x = 0 and x = 1. 
With these identifications the abstract Cauchy problem CP(A,f,u

0
) contains all the in-

formation (NDP) contained. This rewriting of (NDP) in the above form attains significa~ce 
only when we have information about the solutions of CP(A,f,u

0
l which is of interest for 

(NOPl. Such information is the topic of the next section, 

-Section 2. one of the most basic and general approaches to the solvability of 
CP(A,f,u

0
) involves approximation by implicit difference schemes. An implicit differ-

ence approximation to CP(A,f,u
0

) on 

{0 = t
0 

< t
1 

<•••< t < T} of [O,t 1, 
n- n 

[O,T] is defined by a partition 
n 

a corresponding sequence {gi}i=l ~X 
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starting value 
n 

{gi}i=l and 

v(t) = v(t.) 
1 

x
0 

.; X. A solution of the approximation defined by {t
0 

< t
1 

x
0 

ls a piece~ise constant function v: [O,tn] ~ X satisfying 

for t E (t. 
1
,t.) and 

1- 1 

(l) 

{ 

v(Ol "" x
0 

v(t.) - v(t. 
1
1 

1 1
- + A(v(t.) )= g, for i 

ti - ti-l 1 1 
1,2, • • • ,n 

t' }, 
n 

The implicit difference approximation is £-approximabe to CP(A,f,u
0

) on [O,T] if 

(i) 0 < T- tn < e:, ti- ti-l < c for i = 1,2,•••,n 

n ti 
(2) (ii) I ! II f <•> - gi lid< < E 

i=l ti-l 

(iii) llxo - uoll :5_ e: 

The function V: [O,t I ~ X is an e:-difference approximate solution of CP (A, f,u
0

) on 
n 

ro ,•rJ if it is a solution of an c-approximate implicit difference scheme on [O,T). 
We have: 
The~rem l (Converqence of solutions of difference approximations): Assume there is ~ 

w" lR such that {. Jlx- x + ;I.(A(x) - A(~)) II ~ (1-;l,w) II x- ~II 
(3) 

for x,x E D(A) and ;1, > 0 

Let u
0 

E D(A), T > 0 and be an Ek ~~Hfference approximation to on 

(o,·r] where lim Ek = 0. 
k...., 

Then there is exactly one continuous function u: [O,T) ~ X 

such that lim \\vk {t) - u{t) \\ 
,k...., 

"" 0 uniformly ~ compact subsets of [O,T}. 

Assumption (3) is the only restriction on A, replacing the (Lipschitz) continuity 
and/or compactness one is accustomed to. Here some simple examples for orientation: If 
A is Lipschitz continuous with constant L, then w = L works; if X = lR and A is 
nonincreasing then w = 0 works: if x is a Hilbert space and A is linear, perhaps 
unbounded, self-adjoint and A 2. 0, or A is skew-adjoint, then w = 0 works. If (3) 
holds one says that A+ wi is accretive or -(A+ wi) is dissipative. Some differen
tial operators and spaces in which they have accretive realizations are: (a) A(u) -6u 

in LP, 1 :5_ p :5_ ""• {b) a 1 -1 a 
A(u) = -tl(u l, a > 0, in L and H ,(c) A{u) = -(6ul , a > 0, 

a!i (gi(u)) in L
1

, (e) A(u) ,-jl a!i ~~~i~q-l ~~J for q > 1 
n 

"" A(u) I in L ,{d) = 
i=l 

"" A{u) = g{grad u) in L Theorem l is proved in [6). in LP, 1 .::_p < CO I (f) 
.t 

Assuming that the hypotheses of the above theorem are satisfied, we denote the iimit-
ing function u whose existence is asserted by K(A,t,u

0
). One simply defines 

u"" K(A,f,u0
l to be the "solution" of CP(A,f,u0l on [O,T) if K(A,f,u

0
) "exists" 

{i.e. the hypotheses of the theorem hold; in particular {3) holds and e:k-difference 

approximate solutions vk with e:k ~ 0 exist). 
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It would seem natural to discuss the.· relationship betwc.en the notion "K(A,f,u
0
)" 

of solution of CT'(A,f,u
0

J and more tr.viltiunal ideas of a solution,which require the 

existence of derivatives, next. However, it is more convenient to turn to the question 
of when K(A,f,u

0
) exists first. 

?verywhere ~elow we assume that Ill holds and f: [O,T) + X is strongly integrable. 
The simplest condition which guarantees the existence of' K(A,f,u

0
) is: 

rerc exists A > 0 such that R( I+AA) X for .-o < A < Ao' 0 
(4) 

where R(I+.\A) is the ran•Je of I+:\A 

Indeed, then every implicit difference approximation to CP (A, f.u
0

) on [O,T) with 

max(t. - ti-l) < "o has a solution. For, given v(ti-1) and g.' we can (by (4)) choose 
l l 

v(t.) ,so that v(t.) + ( t. - ti_ 1 )A(v(ti)) == v(t. 
1

) + (ti - ti-l)gi and hence satisfy 
l l l 1-

(1) . If ;; > 0, then xo = uo sat.isfiPs ( 2) (iii) and we can satisfy ( 2) (i) and ( ii) 
T 

with t "' T by choosing a step function g: [0, Tl .... X satisfying f
0 

l!r<r)-g(tl\1 dr < 
n 

and let'ting { t
1

, t
2

, • • •, tn l be the nodes of 

t. - t < E) and g. = g ( t -) . If f 0 
1 i-1 - 1 l 

g (with points added as needed to achieve 

we can choose g. " 0 and t. = iT/n for 
1 1 

c 

n lar'ge enough so that T/n < c. If 
R(I + lA) =X for \ > 0,· th"n A 

A is accretive (i.e. (3) holds with w = 0) and 
is c3lled m-accretive. This case frequently occurs 

in applications. 

Much more subtle conditions than R(I + lA) "' X 
c-difference approxiMate solutions. For examr.Je, if 
Theorem 2. Let 

guarantee the existence of 
f = 0 one has: 

-l 
lirn inf I dJ.:;tance (R( I+· .1\), x) 0 for x " D(l\) 

" .. 0 

Then exists for e_\'E'_!_'i U E 
0 

D(A). 

This theorem is proved in [8]. Req11irinq that K(A,f,u
0

) exist for every integrable 

f: [O,T) -> X and u
0 

t D(A) implies that R(T+·A) =X for > 0, and :\w < 1 (if the 

graph of A is closed). The proof of this fact involves showing that K(A,f,u
0

) exists 

whenever u
0 

t: D(A) and 

(5) 
{y:lim inf >.-l distance (R(I+I.A) ,x+Ay) 

) l 0 

for x C D(A.) l for almost all t t 

() 

(O,T) 

generalizing Theorem 2. See [ 8 ] concerning a qeneralization of Theorem 2 to cover a 
range of quite differ~nt possibilities. 

We now discuss the relationship between K(A,f,u
0

) and more classical notions of 

solutions of CP(A,f,u
0

1. A function u: [O,T] -+ X is a strong .§_C?_lution of 

on [O,T) if: ( i) u (0) 

-- Jt 
( ii) there is an integrable function 

that u(t)-u(s) w(<)dT 
5 

t '~ wl, 
1 ( o "' XI :1 · l · • · t d. o u ,1:. an,- lmp 1es u exls san 

t,s E (0,'1'] (this condition on u 

u 1 = w a.c.), and 
u' (t) + A(u(t)) c" f(tl a.e. t' [O,T). We have: 
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Theorem 3,(a) Let CP(A,f,u
0

l 

exists and u = K(A,f,u
0

l _ 

exist and 

closed and (5) holds, then u 

~ ~ strong solution u on [O,T]. Then 

is a strong solution of CP(A,f,u
0
l. 

(c) Let u ~ K(A,f,u
0

l exist, u
0 

E O(A) and f: [O,T] ~ X be of bounded variation. 

Then u is Lipschitz continuous. 
~ In addition to the conditions of (c), assume that X is reflexive and the graph of 

isclosed. Then u is~ strongsolution of -CP(A,f,u0 l-on_~O.Tf:'" --------A 

T~e proof of Theorem 3(a) uses the fact that int~qrable functions can be well appro
mated by Riemann sums. See (7, Sections 4 and 10] for a more aeneral result. Similarly, 
[7, Section 10] can be adapted in order to prove (b). The result of {c) can be deduced 
from the estimate 

t 
< J. e -wt II f ( T) - g ( T) II d t 

s 
(6) /wt llu<tl - v(t) II - e-ws llu<sl - v(s) II 

which holds whenever u = K(A,f.u(O)), v = K(A,q,v(O)) and 0 < s < t < T- Finally, 

(d) folfows from the fact that if X is reflexiv•;, then u: [O,T] _..X is in wl,
1

(0,T;X) 
iff u is absolutely continuous and (b) . 

The final type of result we want to consider is the dPpendence of K(A,f,u
0

l on the 

data A,f,u
0

. Inequality (Gl implies that K(A,f,u
0

l is Lipschitz continuous in 

uniformly for A satisfyinq (3). Var•:inq A al<>o, one has: 

f 

Theorem 4. Let 

R(l+AA l = X for small 
n --- -----

El2~ lim xn = xo' then 

and 

\ 

be a sequence £!._ operato_I_?_ satisfyi~ (3) ~ the same w 

> 0. If y • X and x
0 

+ A(xn) = y for n = 0,1,2, 

lim K(An,f,unOl K(A,f,u
00

) uniformly on [O,T] provided 

and 

and 

im-

Thus K(A,f,u
0

J depends continuouslv on the initial data, the forcing term and the 

the equation. For example, within the context of our nonlinear heat flow model, one could 
interpret changing the conduction coefficient k(ll) as varyina A. and then deduce that 
the solution of (NDP) depends continuously on k(u). A proof of Theorem 4 can be found in 
[2]. Recently, this continuous dependence result (in a somewhat different form, see [4]) 
was used to expl~in in a simple way a numerical method for the Stefan problem ([3]). 
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HARMONIC FUNCTIONS ON REGIONS WITH REENTRANT CORNERS, PART I 

J. Barkley Rosser 
Mathematics Research Center 

University of Wisconsin-Madison 
Madison, Wisconsin 53706 

ABSTRACT. It has been known for quite a while that if a function u(x,y) 

harmonic in a region with reentrant corners, there are almost certainly 

infinite discontinuities cif the first derivative of u in the neighbor-

hood of the reentrant corner (or corners) . Simple examples are for an 

L-shaped region or T-shaped region. Some instances of these have been 

treated by conformally mapping the region into the interior of a rectan-

gle. .Attempts to solve the problem as first p:::>sed by a finite difference 

scheme or a finite element scheme will usually give poor approximations 

near any reentrant corner because the finite differences or finite ele-

ments have large truncation errors when a first derivative is infinit.e. 

When conformal mapping is tried, the conformal maps are usually only 

appr·::rx:iroate, and similar errors arise, for more or less s i.milar reasons. 

In view of recent work giving convergent expansions for u in the 

neighborhood of r·e<mtrant corners (see "Calculation of Potential in a 

Sector, Part I," by J. Barkley Rosser, MRC TSR #1535) one can now give 

accurate solutions for such problems. Some experiments with such regions 

are :reported. 

Spon!Sored by the United States Army under Contract No. DAAG29-75-C-0024. 
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1. Background. A function u(x,y) is said to be harmonic if 

(1.1) 0 . 

We approximate (1.1) by the familiar difference formula 

(1.2) u(x + h,y) + u(x - h,y) + u(x,y + h) + u(x,y - h) - 4u(x,y) ~ 0 

The error involves fourth derivatives of u. We suppose that these exist 
and are reasonably well behaved. This is usually the case, so for a long time 
it has been customary to seek an approximate solution for (1.1) by solving the 
set of linear equations resulting from using various values of (x,y) in (1.2). 
If h is small, so that the error in (1.2) is small, the solution of (1.2) 
gives good approximations to the values of u at a set of grid points. 

Unfortunately, if h is small, then one has a very large number of 
linear equations to solve, and the labor of computation is very great. Until 
the advent of the computer, one compromised by using a fairly large value of 
h, to curtail the calculation, but one had to be content with not a very good 
approximation. 

One effort to use computers to improve this situation is embodied in item 
[1] of the Bibliography, by Kantorovich, Krylov, and Chernin. If.one has 
values for u prescribed on the boundary of a rectangle, the tables in [1] 
allow one to get fairly quickly the solution of (1.2) inside the rectangle. 
(This can now be done ~nore quickly by means of the Fast Fourier Transform, so 
that [1] is now obsolete.) 

To show the effectiveness of their tables, the authors of [1] undertook to 
find the solution of (1.2) inside an L-shaped region (see Fig. 1). They 
prescribed values for u around the boundary, and used the Schwarz alternating 
procedure. Specifically, they first guessed values along CF. Using these 
with the boundary conditions, the tables gave the solution of (1.2) inside the 
rectangle ABFG. In particular, they gave values along HC. Using these with 
the boundary conditions, the tables gave the solution of (1.2) inside the 
rectangle HDEG. This led to a better guess for the values along CF. Using 
the better guess, the process was repeated. After a modest nunilier of repeti
tions, the procedure converged to give about six decimal accuracy. 
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I 
E 

Hf------ D 
c 

A "------------ B 

Figure 1 

This was t:he solution of (1.2) inside the L-shaped region. As noted, the 
error of (1.2) as an upproximation to (1.1) depends on fourth dcrivatlvcs of u. 
In [2] and [3], \>Jhich appeared six t_o four years before [1], Wasow and Lehman 
had shown that in the neighborhood of a reentrant corner (such as C in F'i9. 1) 
one should expect to have an unbounded first derivative. \1ith an unbounded 
first derivative, one cannot: expect good behavior front fourth derivatives. So, 
in the neighborhood of C in Fig. J, one should- expect the solution of (1. 2) 
(which was obtained in (1]) to be a poor approximation to the l>Ol,ution of (1.1) 

2. Two lemma~. To get some comprehension of the results of Hasow alld 
Lehman in [2] and f3), we use two lcliU8as, ,,•hich \·le state here without prl',of. 

Lemma 2.1. Let a < b. 
where a second derivative for 
the Fourier series for f(x) 

(2.1) f(x) 

2 

Let f(a' := f(b) "'0. Let f(x) have almost every~ 
a < x < b which is of bounded variation. 'l'hen 

in the interval a < X < b, 

00 

I D sin 1Tln(~~-
m b - a 

m=l 

b 
11m(x - a) 

(2. 2) D 
rn b - a 

J f(x) sin dx , 
b - a a 

converges very rapidly, and a large number of the 
qu~ckly by means of the Fast Fourier Transform. 
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By "converges very rapidly" is meant that jD I goes to zero at least of 
-3 m 

the order of m Thus one can truncate the series on tho right of (2.1) after 
500 terms and reasonably expect to get from six to eight significant decimal 
places correct. And the Fast Fourier Transform will enable one to calculate the 
needed 500 coefficients very quickly. The reasoning to establish this lemma is 
given in pp. 6~8 of [4). 

part of the boundary of 
on this straight line 

f(s) and its first n 
derivative be bounded and 

Lemm.2._2.2. Let u(x,y) be harmonic in a region, 
which is a straight line segment. Let u(x,y) = f(s) 
segment, where s is length along the segment. Let 
derivatives be continuous, and let the (n + 1)-st 
continuous except at a set 
tivc of u(x,y) of order 
boundary. 

of points of measure zero. Then each partial deriva
< n has a continuous extension t_o the straight line 

Thm. 2.3 on p. 27 of [5) states this for a special case. The truth of ~10 
lonuna in general follows easily from the special case. 

In the present report, we shall confine our attention to the case where the 
proscribed values of u around the boundary are quite smooth; say that the third 
derivative .is bounded and continuous except at a set of measure zero. It is 
planned to write a sequel to [5] explaining how to handle a variety of irregular
ities along the boundary. Certain sorts of irregularities that could occur along 
the boundaJ~Y can be "removed" by the methods given on pp. 221-222 of [6). So it 
does not seem unduly restrictive to confine our attention to harmonic functions 
u (x, y) which are qui tc smoot.h around the boundary. In the present rcpo:r:: t \'e do so. 

Let u(x,y) be such a harmonic function in the L-shaped region of Fig. 2. 

~··~- D 
(2,0) 

(0,0) 

(-2,-2) 
B 

(0, 2) 

Figure 2 
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Indeed we will shortly specialize to prescribing that on the boundary in Fig. 2 
we will have 

(2. 3) 
1 2 2 

u(x,y) = 2 tn{ (x + 1) +. (y - 1) } • 

In Fig. 2 we have shmm three-quarters of a circle of radius 
at the origin. We undertake to determine the behavior of u(x,y) 
three-quarters circle. 

A and center 
inside the 

(s) Choone u (x,y) a function which in the interior of the figure is harmonic 
in the neighborhood of the sides BC and CD, including the three-quarters 
circle (one can take A quite small if need be), and \o,~hich takes the same values 
along BC and CD that are prescribed for u(x,y). Instructions for finding 

such a function u(s) (x,y) are set forth in [5]. If we have prescribed the 
particular boundary conditions (2.3) for u(x,y), such a function is 

(2.4) l~{3 £n(z + 1- i) + £n(z + 1 + i) 
4 

+ ~n(z- 1- i) - ~n(z- 1 + i)} 

where we have taken 

(2.5) Z = X + iy . 

It can easily be verifi~d that the right side of (2.4) satisfies (2.3) along 
the entire x-axis and the entire y-axis. Also (2.4) is harmonic except at the 
four points z ± 1 ± i. ~ro keep the three-quarters circle inRide the region 
where (2 .4) is harmonic, it suffices to tuke 1\ < /2'. We choose such e_ value 
for A, and proceed. 

(s) 
Since u(x,y) and u (x,y} tal{e the same values along BC and CD, \>Je 

conclude that along these two segments 

(2. 6} u(x,y) - u(s) (x,y} 

is zero. 

Measure the angle e as usual, counterclockwise around the origin from CD. 
On the three-quarters circle, we ,.,ill have (2.6} a func{~~n of e only, since 
we have fixed A. Call this f(6). As u(x,y) and u (x,y) take values 
ahmg BC and CD that are differentiable an infinite number of times, it 
follo\<JS from Lenuna 2.2 that f(B) is infinitely differentiable as 6 approaches 
0+ and (3n/2)-. For 0 < 6 < 371'/2, f(O) is the difference of tNo harmonic 
fu~ctions, and hence is infinitely differentiable. So for 0 < 6 < 3n/2, f(B) 
ha:::; derivatives of all ordc~rs. 

As (2.6) is 0 on BC and CD, we have 
a '"' 0 and b 3n/2 in Lemma 2.1, and conclude 
ing Fourier series expansion for 0 < 6 < 371'/2; 
Because of the rapid convergence, we see that 
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(2.7) 

is a harmonic function for 0 < r < A and 0 < ·e < 31f/2. It equals f(8) for 
r == A, and is 0 for 8 == 0 or 8 == 37T/2. But (2.6) satisfies these same 
conditions. As a harmonic function is uniquely determined in a region by its 
values around the boundary, we must have (2.6) equal to (2.7) inside and on the 
three-quarters circle. Solving for u(x,y), we must have u(x,y) equal to the 
sum of (2.4) and (2.7) inside and on the three-quarters circle. 

For the particular boundary conditions which we have cl1osen (see ( 2. 3)) we 
have D * 0 in (2.7). So if \ve fix a value of 6, 0 < 6 < 37T/2, and approach 
the ori~in along that ray, (2.7} will have an infinite first derivative. As (2.4) 
is harmonic inside the entire circle of radius A and center at the origin (\1e 
took A< /:2), it has well behaved derivatives of all orders at C. So u(x,y) 
must have an infinite derivative as r approaches zero. 

Of course, if it had turned out that o
1 

"" D2 == Dtl == o5 = O, then u(x,y) 
would have had well behaved fourth derivatives.· But it did not turn out that 
way. In [2] and [3), Wasow and Lehman m<tde a study of the asymptotic behavior 
of harmonic functions near reentrant corners. 'rheir studies were quite general, 
covering curved boundaries and a \'lide variety of conditions. The ser ios they got 
were only asymptotic, but series like (2.7) were typical (except that (2.7} 
converges). Indeed, we arc lucky with our particular problem, in that our 

u(s) (x,y) is harmonic in the neighborhood of the corner. More generally, u(s) (x,yl 
contributes additional complications, such as terms involving logarithms. 

In view of this, one wonders why the authors of fl) mo.naged to get such good 
resul t.s near the reentrant corner. This came about as follows. In order to be 
abln to check if their procedure was giving the right answers, they took a problem 
in which the answers were known. They cbose u(x,y} a function that was well 
behaved over a much 1arger region than that shown in Fig. l. F1:om it, they read 
values around the boundary, and proceeded to solvn, getting back u(x,y) of 
course. Since they started with a function that was well behaved ov~7.l: a large 
region, including the reentrant corner, they insured that D = o2 

= n
4 

= D,. = 0 1 . ;) 

in (2.7). So of course they had well behaved fourth derivatives, and (1.2) was 
an excellent upproxima tion to (1.1) , and their answers agJ."Ced closely with the 
true values. Very comforting for them, but very misleading for the reader. !lad 
they used the boundary conditions (2.3), their answers would have been very poor 
near C. On the other hand, they probably did not~ have a way to get the correct 
answers for the boundary conditions ( 2. 3) , and so \vould not have known if they 
had good answers or not. 

3. 'l'he solution iJ!side a rectangle. This brings us to the crucial ques
tion. HO\v does one get correct answers with boundary conditions like (2.3)? 
F'irst we have to have a tc~chnique for carrying out a solution inside a rectangle, 
which we now explain. Given a rectangle with smooth boundary conditions prescribed 
around its perimeter, how does one determine a u(x,y) which is harmonic in the 
interior and takes the prescribed values on the perimeter? 
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Figure 3 

Considm~ 

* (3 .l) u (x,y) ~ u(x,y) -A- Bx - Cy - Dxy 

'1'::1is is harmonic, a.nd has smoo·th boundary condi 'L]_ons. It i" easy to choose A, 
* B, C, and D so that u (x,y) takes the value zero at each corner of the 

* r,~ctangle. Along i-Jw top h~t u (x ,y) =-= f (x), for a < x < b. Our choice of 
A, B, C, and D assures that f(a) = f(b) "' 0 •. Also, as \,·e were assuming smooth 
boundary concht.ions, let ur:> say thal that assures that f (x) has almost every
where a second deri vat.i.ve for a < x < b which is of bounded variation. So 
f(x) satisfies the conditions of I,c>mma 2.1. We get its Fourier expansion, (2.1), 
wL th the D defined by (2. 2). Consider 

m 

00 

(3. 2) D 
m 

. 1rm (y - c) 
s~nh ------

b - a 
-----,~~~-------

. 1 1lffih 
s lrl1 b---=--a 

11m (x - a) 
sin~----

b - a 

where h is tbe height of the rect:anc;_jle and c is the value of y at the 
bottom of t.he rectangle. Clearly ut. (x ,y) is harmonic. It is zero along the 

left side of the rectangle (x = a), it is zero along the right side of the 
rect.angle (x = b), it is zero alcmg the bottom of the rectangle (y = c), and 
it: equals f (x) along the top of t:hc rectangle; that is, on the top it aqrees 

* with u (x,y). We carry out an analogous construction for each of the other 
three side:; of the rectangle, and udd togrother the resulting four series. Since 

* -the sum ag::-ees \vi th u (x, y) on the entire pedmeter, it has to be equal to 
·~ 

u (x,y) throughout the rectangle. 'Then we determine u(x,y) from (3.1). 

Armed with this technique, let us :return to the problem of Fiq. l. Values 
of u(x,y) have been prcsc:ribod around tllc boundary (for example, see (2.3)). 
\\le guess values along CF. 1-Ji th t.he boundo.ry conditions, this gives values 
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around t:he perimeter of the rectangle ABPG. As described just above, we get. a 
harmonic function insidF> this rectangle which takes the prescribed boundary condi
tions. It gives us values along HC. With these and the boundary conditions, 
we have values around the perimeter of the rectangle HDEG. From these, we get 
values in the interior, including along t.lw line CF. This will be an improvement 
over our first guess. 

~'i'e repeat the process. In an actual calculation, with the conditions (2.3), 
it took about fifteen iterations for convergence. However, because the Fast 
Fourier Transform gets the D very quickly, the calculation to convergence did 
not take very long. However, mit did not converge to the u (x ,y) we wen~ seeking. 
Recall that in Lemma 2.1, it \vas required that f(x) have a S(~cond derivative of 
bounded variation. But t:he u(x,y) defined by conditions (2.3) has o.n infi.nitc 
first. derivative as one approaches C along CF. 

This seems too bad. However, the procedure we just described is not v:ithout 
value. In fact, it will be the one \''e ·.viJl use in the end, but with a slight 
modification. Our difficulty (refer to Fig. 1) is that, along ~1e lines BF and 
HD, the function u(x,y) that we are trying to determine does not have almost 
everywhere a second derivative of bounded variation. If we shm1ld try this 
procedure on a u(x,y) which docs have almost evct·ywhere a second derivative of 
bounded variation aJ.ong the lines BF and HD, we would succe(~d admirably in 
determinin~J" that u (x ,y), and in terms of rapidly converging Fourier series. All 
we need for u(x,y) is to know its values around the boundary, and to be o.ssurcd 
tlEtt it .is sufficiently smooth along the lines BF and HD • 

.!:_ __ ~ __ :;;_~-~-gJ~!-_ _rn~?'~:iJ:_,i_c_~!:.ign. Recall tl1at the. u (x, y) we are seeking to 
determine equnJs (2.4) plus (7..7) inside and on llw three-quarters circle, and 
that (2.4) i.s very smooth. along the lines BF o.nd HD. Because of thi:s, we 
will show tba·t 

(4. 1) u (x,y) ·-
28 

sin 
3 

D (·£) 2 A 

4 
3 

48 
sin 

3 

has a 1:;ccond derivative of bounded variation along both the lines BF and HD. 
Along BC and CD, (4.1) equals the right side of (2.3), which is very smooth. 
Inside 1111d ou the three-quarters circle, (4.1) equals (2.4) plus the remainder 
of the series (2.7), which is smooth enough. And from the three-quarters circ1e 
out to F or 1:1, (4.1) is the sum of three harmonic functions out to a straight 
line border along which their boundary values arc infi.nitoly differentiable; by 
Lemma 2.2, all derivatives exist continuously out to the border. 

If \-Jc couJ.d somehow determine th~~ values of o
1 

and o
2

, we could dctecminc 

(4.1) by the procedure of the previous section. 
values of (4.1) c\J:ound the boundary; we had had 
the values of D

1 
and o

2 
could b8 defined (in 

We certainly can determine the 
to choose a value of A bf~fore 

fact, we had chosen A = 1 for 

our calculatjon), and the values of u(x,y) are given by (2.3). 
have just carefully ascertained, (4.1) ha.s a seconu derivative of 
variation along the lines BF ano HD. Being given the values of 
we could t:hen calcuJ.a te u (x, y) from ( 4 .1) . 
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So we arc faced w.ith the problem of determining n
1 

and n2 . 

tV'e remind the reader that a computer operntes lineat·ly. To calculate (4.1) 
by the procedure of the previous section, we would get the same numerical answers 
by either of the two following procedures. 

(1) Apply the procedure to the total function (4.1). 

(2) Apply the procedure first to u(x,y), getting some Fourier expansions 
then apply the procedure to 

2 

{it sin 
28 
3 

(4. 2) 

getting some Fourier expansions 
II s , then apply the procedure to 

4 

(4. 3) (Ar }3 sin 
48 
3 

getting some Fourier expansions s111 

expansions in·to 
and finally combine the various Fourier 

(4.4) 

Althouyh s1 will be a poor representation' of u(x,y), as we observed in 
II III 

thf• prevjous section, and S and s will be poor representations of (4 .2) 
and (4.3), for similar reasons, the combination (4.4) will be an excellent reprc
sent~ation of (4.1), since the linearity of the computer as~mres that it comprises 
the same numbers that one would get by applying the procedure of the previous 
section t.o 'Llle entirety of (4 .1). 

I II III 
With no more ado, let us proceed to determine s , S and s Consid-

ering 0
1 

and o
2 

as two (as yet) unknown parameters, \ve can take (4. 4) as 

represent.Lng (4.1). Subtracting (2.4) from (4.4), we will have a representation 
of 

(4. 5) 
(s) 

u(x,y) - u (x,y) -
28 

sin 
3 

48 
sin 

3 

That is, usjng (4.4) minus (2.4), we can actually calculate values of (4.5) at 
any points of the L-shaped region of Fig. 2, except that t..he values will coxne 
out. as linear combinations of n

1 
and o

2
• 

Observe that (4.5) is :>:ero on both the lines BC and CD, since (2.6) \vas. 
So, by the same method that we used to get the expansiou (2.7) for (2.6) inside 
and on the three-quarters ci:rcle, we can get an expansion like (2.7) for (4.5). 
Obviously, this expansion has to consist of {2.7) \v.ith the first t\vo terms 
deleted. So, when "'c t21kc m = 1 and 2 in (2.2) to get. o

1 
and n2 , we must 
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get the ·v-alue zero. But, as the vulues of f(x) in (2.2) are taken from (4.4) 
minus (2.4), the numerical quadratures to determine (2.2) must yield linear 
combinc::tions of D

1 
and D2 . Putting these linear combinations equal to zero 

for m = 1 and m = 2 gives us two simultaneous linear equat.ions for o
1 

and 

D
2

. We solve these. Putting the solutions into (4.4) gives Fourier expansions 

for (4.1). But no\\' we know D
1 

und and so can calculate u(x,y) from (4.1). 

5. Acknowledgements. In a Part II, we will report 111-1mcrical results for 
the problem considered above, and results for other problems that can be handled 
by similar techniques. I wish to express my gratitude to Gershon Kedem for his 
assistance with these activities. He carried out the needed _programming, and 
supervi~:_;ed the actual calculations. He also suggested simplifications, and 
helped me get my thoughts in order and keep track of the details. 
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ADAPTIVE ACCELERATION OF SSOR FOR SOLVING LARGE LINEAR SYSTEMS 

Vitalius Benokraitis 
Ballistic Modeling Division 

U. S. Army Ballistic Research Laboratory 

~BSTRACT. Symmetric successive overrelaxation (SSOR) for solving large, 
sparse systems of linear equations involves the estimation of a para
meter w. An adaptive procedure is outlined for improving the estimates 
for w and the spectral radius S(S ) of the iteration matrix S . These w w 
estimates are then used in the SSOR method with Chebyshev acceleration.. The 
objective is to achieve convergence in only a few more iterations than would 
"be required if the best possible values of w and S(S ) were used from the w 
·~Utset. The method is applied to obtain finite difference solutions of 
.a number of generalized Dirichlet problems. In certain cases, the number 

1 

of iterations required using the adaptive procedure increases like h-~. 
where h is the mesh size. 

1. INTRODUCTION. We shall be concerned with iteratively determining the 
N-vector u of a large, sparse linear system 

(1) Au "' b 

where A is a real, symmetric, pos1t1ve definite matrix of order N and b is 
.a given N-vector. Such systems arise in the finite difference solution of 
elliptic boundary value problems. Particularly, we shall develop an adaptive 
scheme based on the symmetric SOR (SSOR) iterative method with Chebyshev 
.acceleration. Related work which has recently appeared includes Axelsson 
(1972), Hayes and Young (1977) and Young (l974a, 1974b, l974c, 1977) . 

.2. BASIC METHOD. By defining 

where D "' diag (A) and L and U are strictly lower and upper triangular 
matrices, respectively, we may replace the system (1) by 

u = Bu + c. 
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The SSOR method (Sheldon (1955)) is then defined by forming a single SSOR 
iteration from a forward SOR iteration followed by a backward SOR 
iteration; that is, for n = 0, I, 2, ••• we set 

(2) 
uCn+~) = w(Lu(n+~) + Uu(n) + c) + (1-w)u(n) 

u(n+l) = w(Lu(n+~) + Uu(n+I) + c) + (1-w)u(n+~) 

where u(O) is an arbitrary initial approximation to the solution u, and w 
is a real relaxation parameter such that O<w<2. 

Elimination of u(n+~) in (2) gives 

u(n+l) = S uCn) + k 
w w 

where 

S = U L w w w 

Note that L corresponds to the familiar SOR iteration matrix. The w 
backward SOR operator U is defined analogously. w 

If storage for an extra N-vector is provided, the work required for 
one SSOR iteration may be reduced to about the work necessary for a single 
SOR iteration. The work-saving technique is due to Niethammer (1964) and 
is described in Benokraitis (1974, 1976) and Young (1977). The method has 
been rediscovered by Conrad and Wallach (1977). 

The SSOR method converges if S(S ), the spectral radius of the iteration w 
matrix S , is less than 1, which holds if O<w<2 and A is positive definite. w 
The rate of convergence is governed by the·ordering of the equations and by 
the parameter w. Assuming the natural ordering, Young (1974a, 1974b, 1977) 
has shown that for a certain discrete generalized Dirichlet problem one can 
choose a "good" w depending on bounds for the eigenvalues of B and LU so 
that the SSOR method converges with the same order-of-magnitude as the SOR 
method. For a finite difference discretization with mesh size

1
h, the 

number of iterations required for both methods increases like h- . 
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Therefore, even by employing Niethammer's work-saving scheme, there 
is little justification for using SSOR. However, the SSOR method can be 
accelerated by an order-of-magnitude by means of Chebyshev semi-iteration 
since the eigenvalues of the matrix S are real and non.negative. (Chebyshev w . 
semi-iteration was first studied by Varga (1957) and Golub and Varga (1961).) 
This approach is precluded for SOR with optimum w = wb since many of the 

eigenvalues of L are complex. (See Varga (1957) and Young (1971).) Also, 
wb 

there is no improvement when semi-iteration is applied to SOR with l<w<wb. 

(See Kincaid (1974).) For accelerating the Gauss-Seidel method (SOR with 
w = 1), see Sheldon (1959) and Young (1971). 

3. ACCELERATED METHOD. The optimum semi-iterative method based on SSOR, 
denoted by SSOR-SI, is defined by 

Here 
-p 

= 1 

p2 = (1 - cr2/2)-l 

2 

(1 
0 Pn -1 

2, 3, Pn+l = - ~) • n = ... 

where 
S(S

00
) 

0 = -2--.......:s (::,.,S~) 
w 

In order to apply the SSOR-SI method, we must determine the two parameters w 
and S(S

00
). Some ~.p_r_io_r_l_· methods for obtaining these parameters are discussed 

by Habet1er and Wachspress (1961), Evans and Forrington (1963), Young (1974a, 
1974b, 1977), and Benokraitis (1974, 1976). Since finding these parameters 
may take as much work as solving the original problem, we are led to con
sider adaptive techniques which approximate the parameters and at the same 
time improve the solution of the linear system. 
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4. FOUNDATION FOR ADAPTIVE METHOD. We begin by characterizing the eigen
values of S in terms of certain inner products. This result is due to 

w 
Habetler and Wachspress (1961). See also Young (1977). 

THEOREM 1. Let A be an eigenvalue of S where O<w<2 and let v be an associ
w 

ated eigenvector. Then A may be represented by 

(4) 

where 

(5) 

A = 1 - w(2-w) 

a = 

1-a 
-...::........:~2- = Hw,v) 
1-wa+w S 

(v, DBv) 
(v, Dv) 

S = (v, DLUv) 
(v, Dv) 

THEOREM 2. The representation ~(w,v) given by (4) for any vector v # 0 is 
a Rayleigh quotient with respect to the vector 

~ l 

w = (I-wU)D"jv 

and the symmetric matrix 

where 

That is, 

~ -~ U = D UD . 

(w ,S w) 
w 

~ ( w ' v) = --=----=--=-(w, w) 

Furthermore, S is similar to S and w w 

(6) ~ (w, v) < S (S ) = S (S ) . 
- w w 
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Proof: See Benokraitis (1974). 

We emphasize that (6) holds for any nonzero vector v, not just for eigen
vectors of S . However, the closer we approach a fundamental eigenvector, 
the closer w we shall be able to determine S(S) from Hw,v) given by (4). 
Therefore, it would be fortunate if somehow we ~auld determine the fundamental 
eigenvector without deviating from the path of improving the approximate 
solution of (1). A clue leading to the desired situation is contained in the 
following theorem (cf. Young (1974c)). 

rnEOR.EM 3. The pseudo-residual vector' 

(7). 

where u(n) is the latest SSOR-SI iterate, satisfies 

(8) 

Here 

P (S ) n c.u 

th where Tn(x) is then degree Chebyshev polynomial defined by the three-term 

recurrence relation 

T 1 (x) = 2xT (x) - T 1Cx), n > 1 n+ n n-

Proof: See Benokraitis (1974). 

We note that if P (S ) is replaced by S n then (8) reminds us of the power 
n w w 

method for computing the dominant eigenvector. With this motivation, the next 
theorem comes as no surprise. 

THEORE~1 4. The pseudo-residual vector o(n) given by (7) converges in direction 
to the eigenvector associated with the eigenvalue S(S ) as n tends to infinity. 

l.ll 

507 



Proof: See Benokraitis (1974). Also compare with Diamond (1971) and Hageman 
(1972). 

By Theorem 4 it is possible, then, to determine the fundamental eigen
vector with a little additional effort by computing the pseudo-residual vector. 
However, since 

0(n) = S u(n) + k - u (n) 
:: 

- (n) 
u - u 

(n) 
w w 

one SSOR latest SSOR-SI 
iteration iteration 

and since 

~(n) = S u(n) + k 
w w 

must be computed as part of the next SSOR-SI iteration u(n+l) (see (3)), the 
pseudo-residual vector is essentially obtained as a byproduct of applying the 
SSOR-SI method. 

5. ADAPTIVE METHOD. By using Theorems 1, 2, and 4 as a foundation we are able 
to present the basic structure for an adaptive procedure. For detailed descrip
tions of this method and several possible variations for the adaptive accelera
tion of SSOR, see Benokraitis (1974). 

We state the steps of the "algorithm" in outline form with a synopsis of 
the controlling theorem(s) in the heading. We use the word "algorithm" loosely, 
since admittedly much is left unspecified. 

I. Theorem 2. For any v ~ 0, ~(w,v) < S(S ). 
- w 

1. Choose, v1, v2 * 0. 

2. Observe 

a. ~1 

c. ~ 1 (w) =max (~ 1 , ~ 2 ) ~ S(Sw) 

vl,v2 

3. Minimize ~ 1 (w) with respect to w to obta'in estimate w1. 
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4. Choose ~l (w1) as SE(Sw
1
), an estimate of S(Sw

1
). 

is depicted in Figure 1.) 

(The situation 

II. Theorem 4. The pseudo-residual vector o(n) converges in direction to 
dominant eigenvector v. 

1. Set i = 1 

2. Iterate n times with SSOR-SI with parameters wi' SE(Sw_). test for 

for convergence 
1 

3. Compute 

o(n) = (S n(n) + k ) -
Ul w 

(n) 
u 

which approaches dominant eigenvector. 

4. Check if parameters should be changed. 

a. If <P(w.,o(n)) ,.;;;; SE (S ) do not change parameters. Go to II.2 
1 w. 

1 

b. IfHw.,o(n)) > SE (S .) continue to step III to change parameters. 
1 wi 

III. Theorems 1, 2, 4. 

approaches S(S ). w. 

As o(n) approaches dominant eigenvector, ~(w., o(n)) 
1 

1. 

2. 

1 

Set V "' "(n) . 2 u l+ 

Observe~- 1 (w). =max 1+ 
vk,k=l, 

,.;; S(S ) 
w 

.... ' 

3. Minimize ~i+l(w) with respect tow to obtain next estimate wi+l' 

4. Choose~- 1 (w. 1
) as SE (S ), an estimate of S(S ). Set i = i+l. 

1+ 1+ wi+l wi+l 

Go to II.2. Process is continued until convergence. 
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We briefly discuss how to choose n in step 11.2. Here we make use of 
the average and asymptotic average rates of convergence for the SSOR-SI 
method (Young (1971)). A strategy which produces acceptable results is to 
choose n so that the average rate of convergence after n iterations is 90% of 
the asymptotic average rate of convergence. The convergence rates are computed 
using the latest estimate of S(S ). That is, n is chosen to be the least n w 
which satisfies 

where 

r = 

n 
- ! log 2r ~ .9 (-log r) 

n l+r2n 

1 - 11-SE(Sw) 

1 + 11-SE(Sw) 

A word about the additional work required in the adaptive algorithm is 
in order. Mainly, the added expense comes in changing the parameters. This 
involves the computation of a and e. two quotients of inner products in the 
formula for ~(w,v) given in (4)-(S). For problems of the type discussed in 

Section 6, to compute a and e requires approximately 28J2 arithmetic operations 

if the mesh size ish= 1/J. One SSOR-SI iteration requires approximately 39J2 

operations. Therefore, four parameter changes are approximately equivalent to 
three SSOR-SI iterations in terms of work performed. Since no more than four 
parameter changes were required for the problems considered, the number of 
iterations for the adaptive algorithm should effectively be increased by about 
three iterations. 

6. N~ffiRICAL EXAMPLES. We present results for.a sample of the generalized 
Dirichlet problems considered. The results are given in graphic form in 
Figures 2-4. In each figure, we give the differential equation, the region 
considered and the boundary values. We replace the differential equation by a 
5-point symmetric difference equation (see Young (1977)). · 

The number of iterations required for varying mesh sizes is recorded for 
optimum, adaptive, and estimated SSOR-SI parameters. In the adaptive case, the 
subscript on the number of iterations indicates the number of parameter changes 
required. The estimated parameters are the values of Young (1977) which depend 
on bounds for the eigenvalues of B and LU. (For Problem 3, the results for the 
estimated parameters are not given since an excessive number of iterations are 
required.) The slopes s of the lines indicate that the number of iterations 

required for convergence increases like h-s. 
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For smooth and some discontinuous coefficients (Problems 1 and 2), the 
-li number of iterations required behaves like h , an order-of-magnitude better 

than SOR or SSOR. For cases involving higher discontinuity (Problem 3), the 

behavior is like h- 314 • 
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APPLICATION OF MACSYMA IN THE SOLUTION 
OF BOUNDARY VALUE PROBLEMS 

Elizabeth Cuthill and L. Kenton Meals 
Computation~ Mathematics and Logistics Department 

David W. Taylor Naval Ship Research and Development Center 
Bethesda, Maryland 

ABSTRACT 

MACSYMA (Project MAC SYmbolic MAnipulation System) is used to 
develop a number of solutions for a sample linear boundary value 
problem, and results are compared. 

A brief outline of MACSYMA capabilities is given followed by 
a general description of the class of problems treated, and the 
specific boundary value problem of this class used to exemplify the 
application of MACSYMA. 

A brief overview of the approach to solution with MACSYMA and 
a MACSYMA demonstration of this approach for one approximate solution 
of the sample problem is given. 

Ten approximations to the solution of the boundary value problem 
obtained using MACSYMA, are compared with the true solution by means 
of MACSYMA-generated error curves. 
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INTRODUCTION 

MACSYMA, Project MAC Symbolic Manipulation System [1], [2] 
was developed under the sponsorship of the Advanced Research 
Projects Agency of the Dept. of Defense by the Mathlab Group 
of the Laboratory for Computer Science (formerly Project MAC) 
at the Massachusetts Institute of Technology where it is 
installed and maintained. It is, however, available to a wide 
community of users via ARPANET, a national Defense Communica
tions Agency operated computer network. MACSYMA is an inter
active system that handles numeric as well as symbolic 
manipulation. Many applications of MACSYMA are cited in [3]. 

More than ten years ago a project was established in the 
Applied Mathematics Laboratory (now the Computation, Mathemat
ics, and Logistics Department) of the David Taylor Model 
Basin (now the David W. Taylor Naval Ship Research and Devel
opment Center) to exploit the combined capabilities of digital 
computers for carrying out extensive calculations and for 
manipulating mathematical operators in symbolic form. The 
symbolic manipulation system used was FORMAC [4], the computer 
system was the IBM 7090, and the problem area was the solution 
of boundary and initial value problems, especially those 
arising in mathematical physics. 

Two general approaches to the solution of such problems 
are: 

a. The determination of fixed points of operators by 
means of iterative techniques. 

b. The determination of a set of parameters which 
will minimize in some sense the difference between the desired 
solution and an approximating function. The approximating 
function will involve parameters and independent variables. 
Collocation methods, least squares methods, finite difference 
methods, methods based on Taylor series expansion, Galerkin's 
method, and many others can be viewed as being of this type. 

Some computer routines that were developed to apply the 
second of the above techniques to linear problems are given 
in [S]. These routines permitted the needed equations 
to be stated symbolically as part of the input (differential 
equations, equations required to describe auxiliary conditions, 
etc.), together with a numerical specification of the regions 
in which they were to be applied. The symbolic form of the 
approximating function to be used could also be part of the 
input. Then an approximate solution function was generated, 
which minimized an error norm in the least squares sense. 
This included collocation as a special case. The routines 
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developed proved very flexible and useful for curve fitting 
as well as for approximating solutions of problems involving 
differential equations despite the limitations of the 
computers then in use. It is the purpose of this paper to 
describe more recently developed MACSYMA programs of the 
same family. 

This paper contains, in addition to a brief overview of 
some related efforts, a description of the mathematical 
approach used in the computer programs plus some examples 
illustrating their performance. The accuracy of the solutions 
obtained is estimated. 

A recent review by Eason [6] on least squares methods 
for solving problems involving partial differential equations 
contains an extensive bibliography on this subject. Among 
the conclusions of the review is: one of the "major factors 
discouraging more wide spread use" of least squares methods 
seems to be "the presumption that least squares is clumsy to 
apply". We hope that our experience will help to dispel! 
that notion. 

The MACSYMA System 

MACSYMA has been described as an automated mathematical 
co-worker. This characterization finds justification in the 
fact that MACSYMA can do many mathematical operations, both 
symbolic and numeric, very rapidly when the appropriate 
instructions are issued by its user. 

Figure 1 lists some of the mathematical capabilities of 
MACSYMA along with features that enhance its utility. See 
the MACSYMA Reference Manual [1] for more details. 

Figure 2 is a reproduction of a sequence of instructions 
and MACSYMA responses illustrating the symbolic integration, 
differentiation, and simplification of a rational expression. 
Also included is the Taylor e~ansion in X about 0 of V l+x 
through the term containing X • Instructions typed by the 
user are underlined. Note that % references the preceding 
expression. 

The General Problem 

The problem area chosen for the application of MACSYMA 
is that of [5] which can be characterized in general as the 
solution of 

TV-g=O ( 1) 

where V is an element of a subset F of a linear space R 
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T is an operator defined in a domain F of R and 
maps F uniquely into R. 
g is a specified element of R. 

The solution is approximated by a function w of a set of 
parameters a 0 , al, ••• a 0 so that some norm of the difference 
of TV and TW des1gnatea by 

( 2) 

is minimized. 

More specifically, let 

L
0 

(V(x), x) = g(x) a..::_ X .s_ f3 ( 3) 

represent linear differential equation with x on the real 
interval [a., B] with linear homogeneous boundary conditions. 

L (V(x), x) = 0 at X =a. 
1 

L (V(x), x) = 0 at X =B 
2 

Assume a solution of the form 

p 
v = E a.f. (x) 

i=l l 1 

where the ~ are functions which may or may not satisfy 
the boundary conditions, i.e. 

Define 

i = l,Z, .... p 

p 
= Lk(r a.f.(x))-g(x) 

i=l l l 

p 
= r 

i=l 
a.Lk(f.(x))-g(x) 

l l 
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The problem is then to find an approximate solution in the 
form (6) to (3) with boundary conditions (4), (5) where 
the a's are chosen so that an appropriate linear combination 
of the norm of~k (a,x) in the appropriate domains will 
be minimized. 

Solution techniques 

Two approaches to the solution, the Weighted Least 
Squares method and the Galerkin method were used and the 
results compared. 

The Weighted Least Squares method can be expressed as 

min 
a l

e P 
(E a.L(f.(x))-g(x))2w(x)'Clx (9) 
i=l 1 1 

or equivalently, solve for a the systems of p linear equations 
in the a's given by 

a (s 
a~ ( )r:~, w(x) (a,x)dx)=O (k=l,2, ....... p) 

which reduces to the system 

p 
E 

i=l 
a

1 
J: w(x)L(£1 (x))L(fk(x))dx = f. w(x)g(x)L(fk(x))dx 

(k = 1,2, ....... ,p) 

(10) 

( 11) 

In a similar way the Galerkin method can be expressed as 
the system of equations given by 

or equivalently 

p 
L: 

i==l 
a. 

l 

(k= 1' 2' ... 'p) 
where the fk(x) satisfy the 
boundary conditions, 

(12) 

(13) 

Note the similarity of form in the expressions for Weighted 
Least Squares and Galerkin methods when w(X);l. 

The Specific Example 

The specific example chosen as a demonstration problem for 
the class is the following: 
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d2v + 2xd v + (l-x2)'v= l-x2 for 0< x < 1 
dx

2 
dx 

(14) 

with boundary conditions 

~ (0) = V(l) = 0 (15) 

The exact solution is known to be 

2 
V = 1 - e ~(x -l) (16) 

Several approaches to finding approximate solutions to 
equation (14) subject to boundary conditions (15) were taken. 
An appraisal of accuracy of each approach to the solution of 
this problem was made by comparing numerical results with 
(16) evaluated at selected points on the interval [0,1]. 

Several variations of the Least Squares solution and the 
Galerkin solution were programmed and carried out in MACSYMA 
Using an approximating function of the form 

n i+l 
V = I: a. ( 1-x ) 

i=l l 

(17) 

Solutions were obtained for n=4 using the continuous least squares 
and the continuous Galerkin methods i.e. solving equations (11) 
and (13) respectively for a=O, S=l. Solutions using approxi
mating function (17) with n=4 were also obtained by the discrete 
least squares Qethod where the integral form 0 to 1 was replaced 
by a weighted sum over the set of points 0(.05).95, first by a 
sum with uniform weight then by a sum with weights of 1/2 
at the boundaries so that a more accurate approximation to the 
integral is used. 

In the discrete least squares solution the system of 
linear equations in the function coefficients, a 1, was 
carried out by the Gram-Schmidt orthonormalization process 
applying a technique used by Cuthill (5] and described by 
Davis and Rabinowitz [ 7]. The discrete least squares solution 
was also carried out using the matrix inversion embodied in 
MACSYMA for comparison. 

It should be noted that the approximating functions (17) 
automatically satisfy the boundary conditions (15) for the 
problem. 

A second approximating function of the form 

n 
V = I: 

i=l 
a.x 

l 

i-1 
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was used and coefficients were computed using the least squares 
method. Since the boundary conditions (15) are not auto
matically satisfied by (18) it was necessary to give special 
attention to computing the coefficients in such a way that 
the boundary conditions would be satisfied. The problem was 
set up so that the appropriate boundary equations were being 
fit at X:O and X:l and that equation (14) was being fit on the 
set of points .05(.05).95. 

Two procedures were then used to enforce the boundary 
conditions. One of these was to assign a weight of 10 
to each boundary point and a weight of 1 to all other points 
and use a weighted least squares solution. 

The second procedure used was that of considering the 
boundary equations with the approximations substituted at 
the boundary points as a system of equations to be satisfied 
exactly and the differential equation with the approximating 
functions substituted at points internal to the interval, 
to be an overdetermined system of linear equations to be 
solved by the uniformly weighted least squares method. 
This is equivalent to a constrained least squares problem. 
These assumptions were effected by expressing the composite 
of these two systems as a matrix equation and partitioning 
the matrices appropriately. This led to two matrix equations 
that were solved simultaneously. The format used required 
that the boundary equations be given first. 

Solution Procedure with MACSYMA 

A general input procedure for setting up initial and 
boundary value problems in MACSYMA was developed and followed 
for the specific example chosen. Figure 3 outlines this pro
cedure. Symbols used in MACSYMA to identify the various entities 
are given where applicable. 

A MACSYMA demonstration of one of the programs following 
this procedure is given in the appendix. Exact rational 
arithmetic was used in these calculations to demonstrate 
the power of MACSYMA. The calculations could as easily 
have been done in floating point arithmetic. 
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V1 
N 
,1::--

INPUT PROCEDURE for LINEAR INITIAL and BOUNDARY VALUE PROBLEM3 

For all problems specify 

For D1.screte Problems specify 

The number of points NP 

The points x\)1 

For each point, the K ~1 
equation to be used 

The number of equations 

The equations 

The number of approximating functions 

The functions 

NEQ 

EQ[I) 

NF 

F'N [IJ 

For Continuous Problems specif·t 

The Region of Inte~ration 

The DJmain of applicability for 
each equation 

For all constrained problems specify 

The number of constraints· NEX ~ 1 
Identify the constrainin~ equations 

Figure 3 



ComQarison of R~~ults: The solution of the differential 
equation and comparisons of the various approximations to the 
solution are presented in graphical form using the plotting 
capability of MACSYMA. The plots were obtained on a Tektronix 
4014-l terminal with a 4631 Hard Copy Unit. Figure 4 is a 
graph of the exact solution function and Figures 5, 6, and 7 
are error curves for the approximating functions obtained. 

Table 1 is a HACSYMA printout of ten polynomials obtained 
as approximations to the solution of the differential equation. 
Table 2 identifies each of the polynomials with its source and 
givE~S the symbol used to mark the corresponding error curve in 
Figure 5, 6, or 7. 
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5 
57 3 9 1 8.8 1 6 7 11 2 i 117 ( 1 - X ) 

FASOL(X) = -------------------------
102130896598856382 

14 

1383811211092109221 (1- X) 
3 

10)112903198955!397 ( 1 - X ) 
.... -------------------------- + ·--------------------------

3081926897965691116 .2~65541518312553168 

2 
7 9 53 1 lJS 0 8 7 2 8 0 0 9 8115 ( 1 - X ) 

+ ------------------------~--
2671003311S70265932 

5 4 
FGASOL(X) = 0.052227298 (1 - X ) + 0.0123990587 (1 -X ) 

3 2 
+ 0.03080869114 (1 .-X) + 0.2980095 (1 -X ) 

5 4 
FAPV(X) = 0.051606234 (1 -X ) + 0.0157067273 (1 -X ) 

3 2 
+ 0.0262'{61153 (1- X)+ 0.3000119115 (1- X) 

F'LSAPV(X) = 

5 
4572728389014839909919683375932831139481040000000 (1 -X ) 
-------------~-------------------------------------------8860824 139 815566 982202625 57808 009116 916ll31109 69 3381 

4 
13917690330112571Pl7770l!SO 1lW3669306933880425lWOOO ( 1 - X ) 

+ ---------------------------------------------------------
8 8 6 0 8 2 4 1 3 9 8 1 55 6 6 9 8 2 2 0 2 6 2 55 7 8 0 8 0 0 9 !! 6 9 1 6 4 3'' 0 9 6 9 3 3 8 1 

3 
23282.59 82 386 7 56 90126120114 87 7 6115 8113'7 9009 03 31120000 ( 1 - X ) · .... ________ ..:... _____ --- ··--------------- ______________________ ..,._ 

8 8 6 0 8 2 !t 1 3 9 8 1 5 5 6 6 9 8 2 2 0 2 6 2 5 57 3 0 8 0 0 9 lJ6 9 1 6 ll 3 !j 0 9 6 9 3 3 8 1 

2 
2 6 58 6 8 G 0 0 8 7 3 3 2 3 G 2 4 55 3 2 2 6 9 1 ~ 7 1 9 55 1 9 2 8 8 7 4 52 1 911 6 9 2 2 50 ( 1 - X ) 

+ -------------~----------------------------~---------------
8 8 6 0 8 2lt 1 3 9 8 1 5 ~ 6 6 9 8 2 2 0 2 6 2 55 7 (50 8 0 0 9 !J6 9 1 611311 0 9 6 9 3 3 8 1 

Table 1 - Approximating Functions 
526 



5 q 
·FHAPV(X) = 0.052707125 (1 -X ) + 0.0125995092 (1 -X ) 

3 2 
-t- 0.0292615863 (1 -X ) + 0.29891991 (1 -·X ) 

5 . 4 3 
FULS1-(X) :: - 0.05508089!1 X 5.7278722E-3 X .- 0.035697244 X 

2 
- 0.296S6702 X + 4.7926395E-4 X+ 0.392789636 

5 4. 3 
niLS( X) = - 0.055173752 X - 5.6203716E-3 X - 0.03595056 X 

2 
- 0.29639734 X + 4.7991139£-5 X+ 0.39311364 

5 4 3 
~CLS(X) =- 0.055184639 X - 5.60691386E-3 X - 0.035980111 X 

2 
- 0.296378005 X + 0.393149674 

5 r 4 
FSOLFT(X) = 0.050618228 (1 -X ) + 0.015670215 (1 -X ) 

3 2 
+ 0.028779681 (1 -X ) + 0.29837708 (1 -X ) 

5 4 . 3 
FP6LFT(X) = - 0.053396624 X - 7.159276E-3 X.~ 0.038121192 X 

2 
- 0.29397657 X - 8.0931693£-~ X+ 0.393478915 

Table 1 ( cr f1tinued) 
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Symbol for 
Error Function 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Approximating 
Function 

FASOL(x) 

FGASOL(x) 

FAPV(x) 

FLSAPV(x) 

FHAPV(x) 

FULSl(x) 

FWLS(x) 

FCLS(x) 

FSOLFT(x) 

FPOLFT(x) 

Source of Approximating Function 

Least Squ~res, continuous, 
with ( l-x1 +1 ) 

Galerkin, continuous, with 
( l-xi+1 ) 

Gram-Schmidt Least Squares 
with (1-xi+l ) with integral 
replaced by sum over points 
0( .05) .95 

Ordi~ary Least Squares with 
(1-xJ.+1 ) using rational 
arithmetic. Integral re
placed by sum over points 
0( .05) .95 

Weighted Gram-Schmidt Least 
Squares with ( 1-x J.+l) using 
weight of 1/2 at x=O and 
weight of 1 at all other 
points. Integral replaced 
by sum over 0(.05)1.0 

Gram-Scnmfdt Least Squares 
with (x 1 - ) Integral replaced 
by sum over 0(.05)1.0 

Weighted Gram-S~hmidt Least 
Squares with (xJ.-1 ). Boundary 
conditions weighted 10, other 
points weighted 1. Integral 
replaced by sum over points 
0( .05)1.0 

Gram-Schmidt copstrained Least 
Squares with ( x1 -l ) • Boundary 
conditions forced. Integral 
replaced by sum over .05(.05).95 

Polynomial fit of the exact. 
solution, FN(x), using (1-xl.+l) 

Polynomial fit of the exa~t 
solution, FN(x), using (x1-l 

Table 2 - Identification of Functions 

528 



i 
-; .., .. ... -... 
l 
1 
! -'! 
' .. ... 

529 

• 
• .. :. 

.. 



• ,. 
• ... ., 
" , t-

1,11 ... 
II') .. .. 
Ul ... 

I 
I 

I 
I 

.... q 
\ 
\ 

Ill 
I .., 

G 

IM 

\ 

/ 
/ 

/ 
/ 

/ 

'~ 
' ' 

/ 
/ 

/ 

01 

' ' ' ' ' ' ' . \ · .. 

\ : 
\ : 
f 

:1 
.l 

:I 

530 

i 
> 

N 
I 

• ... 
M • l' 
X 



-::00 .. , .. • "" .... 
01 .. 
G> ... / 

/ 
/ 

I 
I 

C:'-31 : 
\ Ol:. 

\ ' . 

'. 

// 

/ 

'·. ,·. ,· .. 
......... 

531 

....... 
....... 

' "' ' ·. \ / 
··.Y 
/I 

~ :; 
/. 

"7· 
/ .. · 

/ .· 
/ . 

/ .· 

·~ ' ., 
......... ·.\ ""' . \ \ . I 

I: I 
./ 

-~·/ 
. /. ';:7 

./ 

Ul 

~ 
Ill 
I 

0:: .. • )'-

• . ... 
M • I' 

X 

0:: 
·• 
L 

)<. 



.... .... 
01 ... 
.. 

? .. .., 
...: ... ... 

532 

:{ 
• • ... 

I 

I 
I 

I 

/ 
I 

/ 
/ 

/ 

... 
I 

"' ~ 

.. 
I 

* ,.: 
• 
M • E 
> .. 
I 

"' 4! 
N 
I 

., ... 
• > 

• ... 
H • l' ... 

& 

& 

., .. 
E 

>< 

['-

Q) 
~ 

~" ..... 
~ 



RErERENCES 

[1) MACSYMA Reference Manual, The Math Lab Group, Project MAC, 
MIT, Version 8, November, 1975~ 

[2] Papers by J. Moses, W.A. Martin, and R.J. Fatemanin, the 
ACM Proceedings of the Second symposium on Symbolic and 
Algebraic Manipulation, Los Angelesi 0alif., March 1971. 

(3] L.K. Meals, "MACSYMA - A Resource for the Navy Laboratory 
Computer Network", David w. Taylor Naval Ship Research 
and Development Center, Computation, Mathematics, and 
Logistics Department, Departmental Report C.MLD-77-04 
(January 1977) 

[4] E. Bond, et al, FORMAC, an Experimental Formula Mani
pulation Compiler, in Assoc. for Computing Machinery 
Proceedings of the 19th National Conference, Aug 1964, 
ACM, New York. 

[5] E. Cuthill, "A FORMAC Program for the Solution of Linear 
Boundary and Initial Value Problems", Presented at ACM 
Symposium on Symbolic and Algebraic Manipulation, 
Washington, D.C., 30 Mar 1966. Abstract published in_ 
Communications of the ACM, ~' p. 550, 1966. 

[6) E.D. Eason, A review of least-squares methods for solving 
partial differential equations, International Journal for 
Numerical Methods in Engineering, Vol. 10, 1021-1046 
(1976). 

[7] P. Davis and P. Rabinowitz, Advances in Orthonormalizing 
Computation, in Advances in Computers, 2, (F. Alt and 
~· Rubinoff, eds), Academic Press, New York, 1961. 

533 



APPENDIX: MACSYMA demonstration of the solution or 

by the continuous Least Squares method using approximating functions. or the 

form ( 1 - x'i for 2 :s_ n < 7 
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(CII) DEPE~DENClES(V(X)); 
T1 HE: 1 ~SEC, 
(Dii) [V(X)) 

TC5) EO:-Dlff(V,X,2)·2'X 0 Dlff(V,X)+(1-l'X) 0 V•1-X'X; 
TlHE< 19 HSEC, 

2 
2 dt d v 2 

(D5) Y (1 - X ) • 2 X - • 1 - X 

Tc6) FN[l,J)::1-X'•tl+1); 
TlHE~ 2 HSEC. 

dX 2 
dl 

I + .1 
(D6) FN :• 1 ~ X 

I, J 

Tc7) HrN:GENHATRI~(rN,NF,1); 

GENHAT FASL DSl HAIOUT beins loaded 
loading done 
TlH£: 110 HSEC. 

l 
[ 
[ 
[ 
[ 1 
[ 
[ 
[ 1 

(D7) [ 
[ 
[ 
[ 
[ 
[ 
[ 
[ 
[ 

2 ) 
- X ) 

) 
3 ] 

- X ) 
) 

II ) 
- X l 

) 
5 J 

- X ] 
] 

6 ) 
- X ) 

) 
7 ) 

- I l 

(CII) FOil I TIIRU Nf DO( Ef[l):EV(LHS(EO),V:fN[l,1] 1 Dlff) 1 DlSPLAY(EF(l))), 
2 2 2 

Ef = (1 - X ) ll X + 2 
1 

3 2 3 
Ef = - 6 X + ( 1 - X ) (1 - X ) + 6 X 

2 

II 2 II 2 
Ef " - 8 X + (1 -X) ( 1 - X ) • 12 X 

3 

5 2 5 3 
EF = - 10 X + (1 - X ) (1 - X ) + 20 X 

II 

6 2 • 6 II 
EF :: - 12 X + (1 - X ) (1 -X ) + 30 X 

5 

7 2 7 5 
Ef - 1'1 X +. ( 1 - X ) ( 1 - X ) + 112 X 

6 

tll1£= 166 MSEC, 
(D8) DONE 
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(C9) FOR l T"RU NF DO FOR J THRU ~DO INT[l 1 J):INTEGRATE(EF[l)•EP{J),X,O, 
1); 

DEFINT FASL DSK MACSYH being loaded 
loading done 

LIMIT FASL DSK MACSYM being loaded 
loading don-e 

RESIDU FASL DSK MACSYM being loaded 
loading done 

SlN FASL DSK HACSYH being loaded 
loading done 

SCHATC FASL DSK HACSYH being loaded 
loading done 
TIME~ 8981 HSEC. 
(D9) DONE 

(C10) FOR 1 THRU NF DO,FOR J THRU I-1 DO INT(J,I):INT(l,J); 
TIME:= 89 MSEC. 
(010) DONE 

Tc11l KINT:GENHATRIX(INT,NF,NF); 
TIME= 21 MSEC. 

t 1196 167 2008 2~3 202011 853 
[ 
[ 315 56 1155 840 15015 280 
[ 
[ 167 67909 3917 2587901 219493 72931 
[ 
( 56 13860 630 360360 27720 8580 
[ 
'( 2008 3917 69616 277 8962118 . 122677 
( 
[ 1155 630 6435 18 450115 50110 

(011) [ 
[ 223 2587901 277 1093003 18583119 125115701 
[ --------
l 8110 3&0360 18 1150115 5511110 291720 
[ 

896248 [ 20204 2191193 1!15~3119 3&916532 176,&51 
[ --------
[ 15015 27720 450115 55440 765765 27720 
( 
[ 853 72931 122677 125115701 1763651 117470367 
r ........ _ ...... ____ ..., _______ 
( 280 8580 5040 291720 27720 554268 
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(C12) lNO[l,J):~lNTEORATE(£f[I)•RHS(EQ),X,0,1); 
TIHE• 1 HSEC, 
(1112) INC :: lHTEORATE(Ef' IIHS(EQ), X, 0, 

l, , i 

(C13) HING:GENMATRlX(lNO,Nf',1); 
'UHE• 1·170 HSEC, 

f 
1111 I [ 35 

[ ) 
( 179 

~ 
f 

120 

[ 1011 ~ 
[ ) 

(D13) l 63 

~ ( 53 
[ ] 
[ 30 l 
[ ] 
( 6428 l 
[ l 
[ 31165 ) 
[ ) 
[ '77 ] 
[ l 
[ 110 l 

(C111) AA:(HlNT··-1),HlNC; 
TIME: 2798 HSEC. 

[ 1-1380031311999339828900~985979855 
[ ----------------------------------
( 11663686919507035939586142897627209 
[ 
[ 21639878065592633670853528215808 
( ------------·-••*·-·----···----~-·· 

f 
13991060758521107818758428692681627 

9573751169919753387681595437768384 
( ------------------------------·--~-( 13991060758521107818758428692881627 

(11111) ( 
[ 77611151962811-550970280781221152~8 
[ -~--------------------------------[ .663686919507035939586142897627209 

I 870648031272132858221135755980758 
[ - --------~--·------·--*"~---------·-[ 13991060758521107818758428692661627 
(. 
[ li6286096750200931119676851B4765~U 
[ ---------·-----------------------· [ .66]686919507035939586142897627209 

(C15) AAN:EV(AA,NUHER); 
TIM£;: 10 HSEC. 

(D15) 

0,30315078 l 

)
) 

1.511669316£-3 

0.068~276511 1 
0.0166112309 ~ 

) 
- 6.222888E-3 ] 

. l 
9.921178611-E-3 J 
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(C16) ASOL:AA.MFN; 
TIME,. 18 MSEC. ., 

q62B6096750200933~9676851847654• (1 - I ) 
(D16) - - •• --.&636s69195o7o359395861i28976272ii9 ___ _ 

6 
8706-80312721328S822-3S7559B075B (1 • 1 l 

- ---;;;;1i>6ii75ii5211o781ii75ii4iii692ii81627 __ _ 
5 

7761115196284455097028078122452-8 (1 - X ) 
+ -----------------------------------------4663686919507035939586142897627209 

II 
957375~69919753387681595437768384 (1 - I ) 

+ ---------·-~--~·---~-----··-------~··-----13991060758521107818758428692881627 • 

. 3 
21639B7B065592633670B5352B215B08 (1 - X ) . . -----------------------------------------~ 13991060758521107818758428692881627 

"z 
1413B0031311999339B289004985979855 (1 - x·) . -------------------------------------------q6636B69195070359395B6142B97627209 

(C26) A.SOI.It:E:V(A.SOt.,RATSlMI'); 
TIME~ 576 KSEX:. 

7 
(D26) - ( 138B58290250602Bo0490305555429&32 X 

6 5 
- B70648031272132B58224357559B075B X + 232843556885336529108423436735744 X 

q 3 
+ 9573754699197533875815~5437768384 X · + 211i3987806559263367085352B215BoB X 

. 2 
+ 1124111009393599B01948b7014957939'565 X - 5505053333354052259995757t60108375} 

/139910&0758521 1078187581128692881627 
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(C27) FOR 1:0 THRU 1 STEP 1/10 DO 
(APP:EV(ASOL,X:I),AP:£V(APP,NUHER), 

SO:EV(1-EXP((X'X-1)/2),X:l,NUHER), 
£R:SO-AP, 
PRlNT(~X:",I,"APPROX:•,AP,•ASOLN~•,so,~ERROR:•,tR)); 

l• 0 APPROX~ 0.393~6933 ASOLNs 0.393.693- ERROR: 1,1175871£-8 
1 

Is -- APPROX• 0.390.2927 ASOLNt 0.390Q291 ERROR; - 1.71363353£-7 
10 , 

lc - APPROX= 0.38121639 ASOLN= 0.3812166 ERROR: 2,123q15.7E•7 ·s 
3 1•.-- APPROX: 0.36555166 ASOLN= 0.3655520- ERROR= J,7625q32E-7 10 " 
2 

Is - APPROX= 0,3q295328 ASOLN~ 0.3~295318 tRRO~= - 1.00582838£-7 
5 , 

x~- APPROX= 0,31271119- ASOLN: 0.312710725"ERROR~- 11.6938658£-7 
2 
3. 

Jz • APPROX= 0,273851111 ASOLN; 0.213850955 f;RROR: - 1.8fi2611515E-7 s 
7 

l• ·- APPROX: 0.22508315 ASOLN= 0.2250835 ERROR: 3.Q831-6q£-7 
10 

" l• • APPROX= 0.16~72952- ASOLN= 0.16~72979 ERRORe 2,fiqq9561E-7 
5 
9 

l= -- APPROX= 0.090627265 ASOLN: 0.09062706 ERROR: - 2.0582229£-7 
10 

lm 1 APPROX= i ASOLN= 0 ERROR= 0 
TIH£: 1908 HSEC, 
Ul27) DONE 

(C28) ERR:INT£GRAT£(EV((LHS(EQ)•RHS(EQ))••2,V:ASOLR,DlFF,RATSiHP),l,0,1l; 
TlKEs lij 5S HSEC. 311673501121115'5-11592119867565118 

( DZB) £9zss7so7sii679iiii37o2asiizzzo2976iios36s 
Tc29) Elll! .. :.l; 
TJK£-Z~C. 
(1)29) 

TIME• 112811 MSEC. 
(.D30) 

(C3U 

T.07572ll7t-5 

BATCH DONI 
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MOVING-WEIGHTED-AVERAGE SMOOTHING EXTENDED TO 
'I'HE EXTRENITIES OF TilE DATA 

T. N. E. Greville 

Technical Summary Report # 

ABSTRACT 

A symm<'trical moving weighted averag<' (MWI\) f<Yr smoothing observational data which 

may be regarded as equally spacecl measurcm.,nts of a function of one variable has the form 

where is an observed value, u 
J< 

(l) 

is the corresponding smoothed value, and the 

are real coefficients who»e sum is uni.ty, with c_j ~ cj . This procC>ss does not yield 

smoothed values of the first rn and the last m oLservations unless uc1.ditional data are 

available. 1\ natural method is suggested for extending the smoothing to ·the e);tremities 

of the data. 

If (1) is exact for polynomials up to the dcgn.lC 21! - 1, it can be written in the 

form 

where o is the finite difference taken centrally, E is clcfined by Ef (x) f (X + l) , 

and 

for some coefficients 

expansion 

rn-s 

q(E) L qj Ej 
j~-m+s 

If q(z) has no zero on the unit circle, there is a Laurent 

rq<:.:>J-1 ~ L 
j"'-"' 

~--------------·~~~----~----~~~----~------------------------Sponsored by the United States Army um1cr Contract No. DA/IG29-75-C-0024. 
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convergent in an annulus containing the unit circle. 

We regard the overall smoothing process as a matrix-vector operation 

u "' Gy , (2) 

where u and y are vectors of N components and G is symmetric with rows, except 

for the first m and the last m, that merely reflect the application of (1), We de-

termine the first m and the last m rows by taking 

G I - KT DK 1 

where K is the matrix of N - s rows and N columns that transforms a vector into 

the vector of sth finite differences of its components, and D is the symmet.ric matrix 

of order N - s 

t .. "'h ..• 
l.-) l.-J 

whose inverse is the Toeplitz matrix T "' (tijl "' (ti-jl, with 

The same vector u can be obtained by a computational short-cut. Let p(z) be the 

monic polynomial of degree rn - s whose zeros are those zeros of q(z) ly5ng within 

the unit circle, and let 

a(z) "' (z - 1)
5 

p(z) 
m 

zm - L 
j"'l 

a 
j 

Then, if the range of x is from A to B, recursively calculate fictitious extended 

values for x A - 1, A- 2, ... ,A-m by 

Similarly, calculate extended values for x = B + 1, B + 2, ..• , B + m recursively by 

Finally, apply (1) to the entire sequence of observed and extended values to obtain 

smoothed values for x =A, A+ 1, ... , B 

Schoenberg (1946) defined the characteristic function of (1) as 

m 
oj>(t) I 

j=-m 

542-
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and calls an MWA a smoothing formula if 

-1 < tj>(t) .::. 1 

with some ambiguity as to whether the inequalities should be strict for 0 < t < 2n 

It is shown here that the limit lim Gn exists for all N > 2m if and only if 
n ..)-ro 

-1 < tj>(t) < 1 for 0 < t < 2n 

lf 0 .::.4> (t) < 1 for 0 < t < 2n, (2) is equivalent to the minimization of 

where H ~ (D-l- KKT)-l is positive definite. This generalizes the Whittaker (1923) 

smoothing process. 

EXPLANATION 

The use of a moving weighted average of 2m + 1 terms to smooth equally spaced ob-

servations of a function of one variable does not yield smoothed values of the first m 

and the last m observations, unless additional data beyond the range of the original 

observations are available. Using Toeplitz matrices, Laurent series, and analogies to 

the Whittaker smoothing process, we develop a natural method of extending th~ smoothing 

to the extremities of the data. 

AMS(MOS) Subject Classification -

Key Words - Smoothing, Toeplitz matri~, Laurent series, Moving weighted average 

Work Unit Number 2 - Mathematical Methods 

Sponsored by the United States Army under Contract No. DAAG29-75-C-0024. 
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1. INTRODUCTION 

A time-honored method of smoothing equally spaced observations of a function of one 

variable to remove or reduce unwanted irregularities is the moving weighted average UIWA), 

An example is Spencer's 15-term average (Macaulay 1931; Henderson 1938), which can be ex-

pressed in the £orm 

1 
u = 

320 
(-3y 

7 
- 6y 

6 
- Sy 

5 
+ 3y 

4 
+ 2ly 

3 
+ 46y 2 + 67 

1 
+ 74y 

x x- x- x~ x- x- x- x- x 

(1 ,1) 

where is the observed value corresponding to the argument x, and u 
X 

is the cor-

responding adjusted value. Actuarial writers commonly refer to such smoothing of data as 

"graduation." 

More generally (Schoenberg 1946) a symmetrical MWA is o£ the form 

c. y . 
J x-J 

(1. 2) 

where m is a given positive integer and the real coefficients c. are such that c . c. 
I. J -J J 

and 
m 

l. cj "" 1 . 
j=-m 

such averages have a long history, that includes some eminent names, but the literature 

concerning them is little known in the general mathematical community. Among the early 

writers on the subject was the Italian.astronomer G. v. Schiaparelli (1866), who is chiefly 

remembered for his observations of tlle planet Mars. The majority of publications in this 

area have appeared in English and Scottish actuarial journals starting with John Finlaison 

in 1829 (see Maclean 1913). Probably the first writer to make a systematic investigation 

of such averages was the American mathematician E. L. De Forest (1873, 1875, 1876, 1877). 

His work, published in obscure places, was rescued from total oblivion largely through the 

efforts Of Hugh H. Wolfenden (1892-1968}, who also made impo~tant contributions to the 

subject (Wolfenden 1925). E. T. Whittaker (1923) suggested an alternative method of 

Sponsored by the United ··states Army under Contract No. DAAG29~7S.-C-0024. 
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smoothing, which has been widely employed, especially by actuaries, and will be referred to 

extensively later, because of numerous analo9ies to the .M\'IA procedure. The first ~riter to 

apply sophisticated mathematical tools to the study of these averages was I. J. Schoenberg 

(1946, 1958, 1953), who introduced the notion of the characteristic function of an NWA, 

and utilized it to formulate a criterion for judging whethm: a given average can properly 

be called a "smoothing formula." This criterion will be discussed in Section 10. 

2, THE PROBJ,EN OF SMOOTHING NEAR 'rilE EXTREHlTIES OF THE DATA 

When M\1A' s have been used by actu<~ries, th•~ ·argument :x: is usually age (of. a person) in 

completed years. When they are used for smoothing economic time series, x denotes the 

position of a particular observation in a time sequence. The latter area of application 

appears to stem largely from the work of F'rcderick R. Macaulay (1931), who was the son of 

an actuary. 

In either case, .a serious disadvantage of the method is that it does not produce ad

justed values for argumenh~ too near the extremities of the data. For example, Buppose 

Spencer's 15-term average is used to smooth monthly data extending from 1970 through 1976. 

The formula does not give smoothed valuces for the first 7 months of 1970 or the last 7 

months of 1976 unless dat<J can be obtained for the last 7 months of 1969 and the first 7 

months of 1977. Clearly, acquisition of data cxtencling farther into the past is less of a 

problem than acquisition of future data. 

Actuaries in America seem to have largely abandoned the use of MWA' s in favm: 

of Whittaker's method, which docs not have the disadvant.agE> described. It is likely that 

British actuaries may still usc these averages to some extE>nt. They appear to be currE>ntly 

employed by cconon1ic and demographic st<~tisticians (Shiskin, Young, and Husgravc 1967). 

Various suggestions have been mad<~ (De Fo;~;t<st 1877, Miller 1946, Grevillt:> 1957, 

1974a) fo'C dealing with the problem of' udjustment of data near the extremities, but none 

of them have won gceneral acct?.ptance. De Forest.' s (1877, p. 110) suggestion is so relE>vant 

to the subject of the present paper that it is worth quoting in full: 

"As the firBt m and the last m terms of the series cannot be reached djrcctly by 

thE! formula [of 2m + 1 terms), the series should be graphically extended by rn terms 

at both ends, first plotting the observations on p<tper as ordinates, and then extending 
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the curve along what seems to be its probable course, and measuring t.he ordinates of the 

extended portions. It is not necessary that this extension should coincide with what would 

be the true course of the curve in those parts. The important part is that the m terms 

thus added, taken together with the m + 1 adjacent given terms, should follow a curve 

whose form is approximately algebraic and of a degree not higher than the third." 

Elsewhere (Greville 1974a) I have proposed extrapolating the observed data by fitting 

a least-squares cubic to the first m + 1 values and a similar cubic to the last m + 1 

observations. 'l'his is very much in the spirit of De Forest's suggestion; it is not a long 

stop from graphic to algebraic extrapolation. 

Another approach (Greville 1957) regards the adjustment process as a matrix-vector 

operation. We write 

u Gy 

where y is the vector of observed values, u is the corresponding vector of adjusted 

values, and G is a square matrix. If a specified symmetrical MWA of 2m + l terms is 

to be used wherever possible, then the nonzero elements of G, except for the first m 

and the last m rows, are merely the weights in tho moving average, these weights moving 

to the right as one proceeds down tho rows of the matrix. In the first m and the last 

m rows special unsymmetrical weights, determined i.n some appropriate manner, must be in

serted. The matrix approach and the extrapolation are not wholly unrelated, since the final 

results of the extrapolation approach can be expressed in matrix form. 

It is the purpose of the present paper to show that when a given MWA is being employed, 

there is a natural, preferred method of extending the adj\lStment to the extremities of the 

data, strongly suggested by the mathematical properties of the weighted average. This 

natural method of extension seems to have eluded previous writers on the subject, as indeed 

it eluded me during the many years I have thought about the matter. The preferred method 

of extension has the interesting property that it can be arrived at either through the 

matrix approach or the extrapolation approach. In the latter case, one must employ a 

special extrapolation formula uniquely determined by the given l\IWA. Though the two ap

proaches appear to be quite different, they will be shown in Section 9 to be mathematically 

equ]valent, and they will give identical results except for rounding error. 
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In my own thinking I arrived at the procedure first through the matrix approach, 

guided largely by extensive analogies to the V.'hittaker proce::;s (which is most conventiEntly 

expressed in matrix terms). It was only later that I became a1.:are that identical reHUl ts 

could be obtained by means of an extrapolation algorithm. Thcm9h the matrix appn)0ch pro

vides far greater insight into the rationale behind the procedure, the extrapolation e~p

proach is simpler computaUonally. 'l'hernforc, we shall first describe i!nd illustrate the 

extrapolation algoritb:m, and shall then motivate and justify th(~ procedure by me<:~ns of the 

matrix approach. 

The extrapolation approach is mcrE>ly '' computational short cut, and ne<:~.rl y ,\lways the 

extendGd values obtained by its usc are highly unrealistic if regarded as extrapol<Jtc!d 

values of the function under observation. This fact is irrelevant, but has seriously 

"turned off" some uners. Hereafter I shall thorcfon! avoid the use of the words "E!Xtrap-

olate" <:~nd "oxtrapol<:~t:i.on," and shall speak of "c:>c.tension," "extended valuc~s," and "inter-

mediate values." 

It is emphasized that tbc p1·occdurc to be described (or any othc1· procedure for com

pleting the grachHltion) is recommended for US(;> only when ad eli. tional datil extend i.ng beyond 

tha range of the original data are not availablG. 

3. TilE l~XTENSION ALGOHJ'l'HM 

A weighted average of the form {l. 2) will be call cd :r: if it has 

the property that, in case all the observed values yx-j in (1.2) should happen to be th<.! 

corresponding ordinates of some polynomial P (x - j) of degn:<~ r m: less, them 

u 
X 

P(x) • (3 .l) 

In Clther words, an average that is exact for the degree r reproduces without change poly

nomials of degree r or less. If the weights m:e symrnetr ical, r rnnst be odd, and wee may 

write r = 2s - l This implies that r < 2m + 1, and therefore s < m . 

For a simple (unweightod) average, :r: >= l . For the ovex:whclming majority of HI-lA's 

used in practice, r c 3 The preference for cubics has a long history. De Forest (1873, 

p. :181) suggests that "a curve of the third degn?.a, which admits a point of inflexion •.. 

is better adapted than the CC!llll10l1 parabola to represent the form of a series whose 

sec<md difference changes its sign." 
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We shall usc the notntion of the calculus of: finite difforenccs, wherein E is the 

"displacement operator" defined by 

Ef(x) f(x + l) , 

and 5 is the "central difference" operator defined by 

Of(x) f (x + !) - f (x - l) 
2 2 

so that 

r/ f(x) f(x + 1) - 2f(x) + f(x - ll 

If the weighted averagG (1.2) is exact for tho degree 2s - 1, it can be written in the 

form 

where q(E) is of the form 

u 
X 

q(E) 
m-s 

\ q Ej 
L j 

j=-m+s 

(3. 2) 

(3. 3) 

with q . = q. . In a typi.cal smoothing formula q(E) has only positive coefficients, but 
-) J 

this is not necessarily the case. If q(z) is multiplied by 
m-s 

z to eliminate neg<Jtive 

expontmts, the resulting polynomial is of degi:ce 2m 2s . Because of the synunC!try of the 

coefficients, it is a reciprocal polyno!ni<ll. In othc!r words, if r is a zero of the poly-

nomial, it follows that 
-1 

r is a zero. We shall make the assumption that this poly:10mial 

has no zero on the unit circle. lf it docs have' such zeros, the extension of the t;moothing 

proc<;>ss to the extremities of the data is undefined. 

Let p(z) denote the polynomial of degree m - s with leading coefficient unity 

whose zeros are the m- s :r.eros of zm-s q(z) located within the unit circle. !n gen-

eral, some or all of these zeros are complex, but they must. occur in conjugate pai:rs, so 

that; p(z) has real coefficients. Now we define u polynomial a(z) of degree m and its 

coefficients by 

a(z) (7. - 1) s p (z) m 
z 

m 

L 
j=l 

Z
m-j 

a, 
J 

(3. 4) 

suppose the given data consist of N = B - A + 1 given values extending from x A 

to x "' B . We assume· that N > 2m + 1, so that ut least one smoothc~d value is obtained 
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by dh·ect application of the given ~1WA. Then we. obtain m intermediate values to the left 

of x "' A by successive arplication of tha racurrence 

(3. 5) 

Similarly, m intermediate values to the right of x "' B will be obtained by the analogous 

recurrence 

a. y .• 
J X-J 

Finally, application of the symmetrical MWA of 2m + 1 terms to the N + 2m observed 

and intermediate values gives adjusted values u 
X 

for x "'A, A+ 1, ..• ,B. 

For example, Spencer's 15-term formula (1.1) can be expressed in the form (3.2) with 

s "' 2, where 

q(E) 
1 -5 -4 -3 -2 -1 2 

320 
(3E + 18E + 59E + 137E + 242E + 318 + 242E + 137E 

Using a computer program to find the zeros of 
5 

z q(z), constn1cting the polynorniill P(z) , 

and finally applying the formula (3.4), we obtain for Spencer's 15-term formula 

a(z) "'z
7 

- .961572z6 - .372752z5 - .Ol5904z4 
+ .12348Sz

3 
+ .125229z

2 

+ .075887z + .025624 

The coefficients are rounded to the nearest sixth decimal place, except that the final 

digits of the coefficients of 
3 

z and 
2 

z have been adjusted by one unit to make the sum 

of the coefficients exactly zero. 

Note that in the trivial case s " m, q(z) is a constant and p(z) is unity. Thus 

the algorithm reduces bo extrapolation of the observed dat.a by sth differences (i.e., by 

fitting a polynomial of degree s- 1 to the first s observations). 

As a numerical illustration, Spencer's 15-term average has been applied to some 

meteorological data. Table 1 and Figure A show the observed and graduated values of monthly 

pl:ecipitation in Madison, Wisconsin in the years 1967-71. No adjustment has been made for 

the unequal length of the month~•. 
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1. Monthly Precipitation (Inches), Madison, Wisconsin, 196?-71. 

Observed Graduated Observed Graduated 
Year und Month Value Value Year and Month Value Value 

196? January 1.6) 1.11 1969 July 4,28 3.81 
February 1.1? 1.63 August 0.96 3.17 
March 1.49 2.24 September 1.35 2.33 
April 2.57 2.88 October 2.65 1.56 
ray 3.53 ),42 November o.?o l.o6 
June 6.46 3.?4 December 1.66 o.sz 
July 2.51 ).85 1970 January o.~~ 0.90 
August 2.?1 3.?5 February 0,16 1.25 
September 2.68 3.42 March 1.17 1.?8 
October 5.52 2,92 April 2.53 2.39 
November 1.83 2.31 May 6.09 2,94 
December 1.89 1,69 June 2,26 3.37 

1968 January 0.56 1.31 July 2,42 ;.63 
F'ebruary o.49 1.36 August 0,9? ),69 
March 0.59 1,87 September 8.82 ),.50 
Ap.r11 4,18 2,69 October 2,6,5 3.20 
Ma.y 2,02 ).49 November 1,06 2,71f 
June 7.82 3.91 December 2.12 2,28 
July 2,54 3.92 1971 January 1.48 1.94 
August 2,58 3.,5/-1- February 2.59 1.76 
September 4,45 2.97 March 1.52 1.74 
October o.85 2.45 April 2.42 1.81 
November 1.74 1.99 May 0.98 1.93 
December 2,89 1.64 June 2.27 2.02 

1969 January 2,26 1,56 July 1.65 2,1) 
February 0,18 1.81 August 3.96 2.21f 
March 1.47 2,)5 September 1.87 2.40 
AprU 2.?2 3.13 October 1.30 2,63 
May 3.45 3.81 ·Novenber 3.1H3 2.84 
June 7.96 4.05 December 3.64 3.28 

SOURCE I Observed values from U. s. Department of Commerce, National 

Oceanic and Atmospheric Administration, Environmental Data Service, 

Local Clim~tolggical Data 1 Annual Summar~ with Com~~rative Dat~. 

Madison 1 \H.scons1nE 12z2, National Climatic Center, Asheville, N. c.' 
1973. 
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For the convenience of t.he use:r:, the weighted-average coefficie11ts and the inter-

mediate-value coefficients for those averages that app13ar-to be in conunon usc or are found 

in publication~ accessible to me are given in the next section in Tables 2 and 3. The 

reader who is more interested in the justification of the! procedure and the rationale be-

hind it may skip at once to Section 5. 

4. 'l'l\BLES OF MOVING-AVERAGE AND EX'l'ENSION COEFFICIE:NTS 

Tables 2 and 3 show the! coefficients in the MWA and the corresponding <~xtension co-

efficie.nts (that j.s, c. and a.) for 21 weighted averages that have appeared in the liter-
J J " 

aturC!. Table 2 is devoted to the class of averages known to actuaries as minimum-R3 formu-

las and to economic statisticians as "Henderson's ideal" formulas. They are discussed 

more fully in Section 7. Tho values in Table 2 are shown to six decimal places. In both 

instances, a few final digits have been adjusted by one unit to make> the;; sum exactly unity. 

The moving-average coefficients are given to the nearest sixth decimal place except for the 

slight adjustments mentioned; ;rounding error in the computation of the extension coeffici-

ents rnily have introduced furthe;r 1;mall errors in some instancc!'l. 

'l'able 3 is concerned vlith 11 moving averages derived by various writers on an ad hoc 

basis and known by the names of their originators. The source notes fol: this table do not 

attempt to cite tho earliest publication of the for10ula in question, but merely indicate 

a convenient reference where it can be found. All these averages are exact for cubics ex-

cept Hardy's, which is exact only for linear functions. The coefficients in the averages 

of Table 3 are rational fractions with relatively small denominators, and the user will 

probably find it convenient to use as v.•eights tho intE>gers in the numcraton; of the co-

efficient.s, dividing by the common denoJOinutor as the final step. The column headings, 

therefore, arf' c. 
J 

multiplied by the cm11mon denominator. 

In both 'l'allles 2· and 3 advantage has been taken of t.he symmetry of the coefficients 

cj to rGduca the length of tho columns by approximately one-half. The manner of using 

the tables may ba illustrated by taking Spencer's 15-terro avorilge as an example. Equation 

(1.1) shows the calculation of the movinsT ave:~:·ages. The intermediate values Yx for 

x "' A - 1 to A - 7 are calculated successively lly the formula 
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yv ,961572y 
1 

+ ,372752y 
2 

+ .0159Q4y - .123488y - .125229¥ 
A x+ x+ x+3 x+4 x+5 

- .07S887yx+G - .02S624yx+? . 

The intermediate values for x = B + 1 to B + 7 are calculated by the identical formula 

except that the ''+" signs in the subscripts are changed to "-" signs. 

The extension procedure drastically reduces the number of values that need to be 

tabulated for a given weighted average, and makes it possible, for example, to give com-

plete information about 21 such averages in the reasonably compact Tables 2 and 3. How-

ever, the user who intends to apply a single weighted average to many data sets may prefer 

to tabulate the atypjcal elements of the smoothing matrix G for that weighted average, 

and so avoid the extr.a step of calculating the intermediate values. For the benefit of 

such users, a method of calculating the atypical rows of G will now be described. cTm;ti-

fication of the procedure will be giv~n in Section 9 (see equation (9.10)). We observe 

that the nonzero elements in each 1:ow of G except the first m and the last m rows 

The are merely the coeffici~nts cj of the wqA centered about tho diagonal element. 

elements in the first m rows of G, axcept for the first m columns, follow from the 

symmetry of G, and if G = (g.,), we have l_J 

9,. J. = c ... 
~ J-1 . 

This leaves only the square submatrix of order m in the uppal: left corner to be C.:l.lC\I-

l~ted. Let c denote the constant -~_5/pm-s' whcrG is the term frGc of in 

the polynomial p(z), and let denote thG square matrix of order m given by 

for i > j 

a .. for i= j l_J 

-a .. 
J-1 

for i < j 

Then the required submatrix in the upper left corner of G is given by 

The similar submatrix in the lower right corner of G contains the same elements, but 

with the order of both rows and columns reversed. 
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j aj 

9 .55941~0 

2. Moving-Average Coefficients (cj) and Extension 

Coefficients (a j) of Min1mum-R
3 

("Henderson's Ideal") 

Averages of 5 to 23 Terms Exact for Gullies 

Nun1ber of Terms 
7 9 11 

£1. 
cj a. cj aj cj aj J 

13 
c. 

J 

.412588 .331140 .277944 .240058 

aj 

1 ,293706 2 .2937o6 1,618034 ,266557 1.352613 .2!38693 1.160811 ,21l.f-337 1. 016301 

2 -.073426 -1 .058741 -.2)6o68 .1181~70 ,ll4696 .141268 .281079 .11}7)56 .)60880 

3 -.058741 -,)81966 -.00?873 -,287231 ,035723 -.140968 .065492 -.021625 

4 

5 

6 

-,040724 -.180078 -.026792 -.204545 0 -,160909 

-.027864 -.096377 -.027861J. -.1)8)30 

-.019350 -.056317 

a Calculated by formula ( 7 • .5) • 
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1.5 

j 
a. 

c,j aj 

0 .21151-l-2 

1 ,193742 ,903661 

~~ .14.5904 .39729.5 

3 .082918 ,o6475l 

4 ,024028 -,100710 

5 -,0141)4 -.1)5445 

2, Moving-Average Coefficients (oj) and Extension 

Coefficients (a. j) of M1nimum-R
3 

("Hcndereon 's Ide.:1.1") 

Averages of 5 to 2) Terms Exact for Cubics (continued) 

Number of Terms 

17 19 21 
a a a 

cj a.j c j aj c. a. 
,J J 

,189232 ,171266 .1,56470 

,176390 ,813444 ,161691 .739580 .149136 ,6?8000 

.141112 .41088.5 .1)14-96.5 .412090 .12842) .406495 

.092293 ,12h932 ,096658 ,166162 .0979)6 .193174 

• 042093 -. 04)1-J-56 ,05468,5 • 005097 • o6)0)8 ,046016 

,00246? -.11061~4 .01?474 -.0782.55 ,029628 ~.046290 

23 
a 

c,j a. 
J_ 

.144060 

,1J8Jl.9 .625880 

.121949 .)97207 

.097:395 .212,501 

,068)03 .07.5236 

,0)8933 ~.015313 

6 -.024499 -,094424 -,018640 -.106213 -,008155 -.099972 ,00)119 -.084020 ,01)1+)0 -.06)92'7 

7 -.013730 -.03512!'! -.020)70 -.065896 -,018972 -,08184-3 -.012896 -.084711 -.001+948 -.078?37 

9 

10 

11 

-,009961 -,02)052 -,016601 -.047103 -,017614 -,06)086 -.014527 -.070o64 

-. 007J78 •, 015756 -. 01)455 -. 0)441-ILI -, 015687 -, 048977 

... 005570 -.0111)4 -.010918 -.025714 

-.004278 -,008092 

•calculated by formula (7.5). 
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). Movine,-Avorage Coefficients (cj) and Extension 

Coefficients (a j) of Selected Noving Averages 

Spencer 

~!acaulaya b 
15-Term Woolhouse c d Hardy Higham6 f Karup 

j 864o. a. )ZOe l a; 125c. al 120c. aj 125c j a.j 625c. a •. 
J ,] 1 J .J J 

9 182 74 25 24 25 125 

1 171 ,919760 67 .961572 24 .885108 22 .739988 24 ,859550 114 ,820240 

2 127 .393023 46 .372752 21 ,421982 17 ,)86211 18 .399283 87 ,402924 

3 72 ,0552'7) 21 ,015904 7 • 028?21 10 ,124325 10 ,087040 53 ,114622 

4 1? ~.11~1il 3 -,123488 3 -. 076050 4 -,023648 J -.072?38 21 -.047133 

5 -17 -.140462 -5 -,125229 0 -.107285 0 -,08008? 0 -.lo4527 0 -,102491 

6 -19 -.084512 ~6 -.075887 -2 -.092723 -2 -.079459 M2 -.093953 -8 -.091791 

7 -10 -.029971 -3 -,025624 -3 -.059753 -2 -.049327 -2 -.05.5312 -9 -,060239 

8 -1 -.01800) -1 -.019343 -6 -.028636 

9 -2 -.007496 

a.Maeaulay 1931, p, 55, footnote 2. 

bMaeaula.y 1931, p, 55; HenderBon 1938·, p, .53. 
0 Henderson 1938, p. 53. 

~enderson 1938, p, 531 Benjamin and Haycocks 1970, p. 2)8. 

Elrenderson 1938, p. 53. 
f Henderson 1938, P• 53. 
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). Moving-Avera,ge Coeff1c1ents (c .) and Extension 
J 

Coefftcients (aj) of Selected Moving Averages (continut'.'d) 

Andr12wsg 
Spemcerh Hardy 1 Vauf;han j k 21-Term Wave-Cutting Formula A Kenchincton 

j 10080c j a.j 350c j a.j 65c 1 
a. 1440c 

1 aj 385c. aj J 1 

0 1688 60 5 182 45 

1 1579 • 700747 57 .729724 5 ,480996 1?9 .593256 44 ,52771}0 

2 1325 .l~06808 l~7 ,408707 6 .;68708 170 .396409 41 .370688 

3 950 ,1797lf9 33 .167281 7 ,267940 149 .2)0238 36 .236445 

4 551 • 02715.5 18 .00925.5 7 .166506 115 .096761 )0 .1286)8 

5 22.5 -.054,586 6 ~.069703 6 ~072964 72 -,000857 22 .043118 

6 -4 -.083701 -2 -,091513. 4 -.008222 29 -. 060076 13 -.018390 

7 .. 124 -.078256 -5 -.076165 1 ~. 0751}.54 ~s -.08)321 5 -.05)902 

8 -135 ... 054)68 -5 -. ()119051 ~1 -.097387 -26 -.079596 .. 1 -.067030 

9 -no -,0}1120 ··3 -.022502 ··2 -. 089039 -29 -. 056662 -5 -. 064-1344 

10 -61 ... 0121+28 -1 -.006033 -2 -.062016 -19 .. ,0213557 -6 -.050323 

11 -1 -. 024996 -6 -,007595 -5 -. 03203.5 

12 -3 -.015626 

13 ~1 -,004429 

{;Andrews and Nesbitt 1965, p. 18, 

h Haca.u1ay 1931, Po 511 Henderson 19)81 Po SJ, 
1nenjam1n and Haycocks 1970, p. 2)9. 

Jvaughan 1933, p, 437. 

kHe11derson 1938, Po 53. 
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5. Tim 1-IIIITTAKBR GRADUA"l'ION PHOCESS 

It is not the purp00e of this paper to consider the WhittakeJ: (1923; sec also 

Henderson 1924) graduation process in detail. HoweveJ:, since the natural method of ex-

tension of MVIA graduation to the extremities of the data was ardvcd at primarily on the 

basis of analogies to the Whittaker method, tJw latter must be described S\Jfficiently to 

make these analogies clear. The objective of the 11hittaker process is to choose gradu<>ted 

values u. (j =- A, A + 1, ... , B) in such a way as to n1inimize the quantity 
J 

where the weights w .• 
J 

B 

L 
j=A 

2 w. (u. - y.) 
J J J 

+ g 

the positive constant g, and the positive integer 

(5.1) 

s are chosen 

a prioT.i by th.o user. The solution is most conveniently expn~sr;ed in matrix notation as 

follows (Greville 1957, l974a). Let w denote the diagonnl matrix of ordC>J: N whose 

succefisivc d.i.agonal elements are the wj, let u and y be defined as in Section 2. and 

let K denote the rect<mgul ar matrix of N - s rows and N columns that t.ransforms a 

vector v into the vector of sth finjte differences of its components. Clearly the non-

zoro olements of K are binomial coefficients of order s with alternating signs (Greville 

1974a). "l'hen, the expn:,ssion (5.1) can be written jn the foJ:m 

(u- y)T W(u- y) + g(Ku)T K\l (5.2) 

where the superscript T denotes the transpose. It is easily seen (Grevillc l974a) that 

(5.2) is smallest when u satisfies 

T 
(W + gK K)u Wy (5. 3) 

It is not difficult to show (Greville 1957, l974a) that the matrix in the left member of 

(5.3) is nonsingular Jin fact, positive definite) and therefore 

T -l 
u (W + gK K) Wy . 

The remaining disc\lSSion will be limited to the so-called "'rype A" case, in which all 

the weights w. 
J 

are taken equal to unity, as this case has the greatest similarity to 

MWA graduation. Here W =I (the id~ntity), and it is cadly verified (Noble 1969, p. 147) 

th<:t.t 
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T -1 
(I + gK K) 

T -1 T -1 I - K (g I + KK ) K . (5.4) 

If the entire process of graduation, by whatever method or criterion, including data 

near the ends, is conceived in terms of matrix-vector multiplication (Greville 1957), so 

that 

u = Gy (5.5) 

for some matrix G, (5.4) suggests that it may be reasonable to consider mo.triccs G of 

the fotrn 

G = I - KT DK (5.6) 

for some square matrix D and some order of differences s . 

6. MATRIX DEVELOPMENT OF THE NATURAL METHOD OF COMPLE'riNG THE GRADUATION 

We suppose that N equally spaced observed values yj (j A, A+ 1, ... ,B) are to 

be graduated primarily by means of a given symmetrical MWA of 2m + 1 terms of the form 

(1..2), that is exact for the degree 2s - 1 We assume that N > 2m In other words, 

graduated values u. 
J 

for .. A+ m, A+ m + 1, ... B- m will be calculated from the 

given weighted average. This requiroment fixes the elements of the matrix G of (5.5) and 

(5 .. 6) with the exception of the first m and the last m rows. The nonzero elements of 

eac:h of the remaining N - 2m rows will be merely the weights in the moving average with 

thEl middle weight on the diagonal in each case. 

Our determination of the elements of the first m and the last m rows ~f G will 

be based on the general requirement that these rows sho.ll not be something extra grafted 

on1;o the main part of the matrix, but shall be an integral part of an overall matrix having 

a well defim~d structure, this structure having th0 greo.test possible analogy to that of 

thu corresponding matrix for the Whittaker process. We shall try to show that this general 

1·equirement leads almost inexorably to the following three assumptions about G for the 

MWA case: 

(i) G is symmetric and of the form (5.6); 

(ii) 

(iii) 

D is such that -1 
D exists and is a Toeplitz matrix (to be defined presently); 

the elements of D~l "' (d ~ . ) arc given by 
l) 
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where h, 
] 

h . is a coefficient in the Laurent expansion 
-J 

h(z) 
-1 

[q (2)] r 
j=- 00 

convergent in an annulus containing the unit circle. 

(G .1) 

(6.2) 

These three assumptions (together with the assumption stated in the first paragraph 

of this section about the rows of G other than the first m and the last m) uniquely 

determine G . The three assumptions require extensive discussion, explanation, and com-

ment, on which we now embark. 

Since analogy to the Whittaker process is to have the highest priority, and (5.4) 

shows that G for that process is clearly symmetric and of the form (5.6), these being 

very basic structural properties, there can be little question about assumption (i). This 

assumption implies that G is a diagonal band matrix of band witlth 2m + l, and its ele·· 

menb; arc now determined except for a square submatrix 'of cn:der m in the upper left 

corner and a similar submatrix in the lower right corner. It also jmplics th<'lt D is 

symmetric and is a diagonal band matrix of band width 2m - 2s + l . 

It may ba mentioned here that there is one basic, unavoidable difference between the 

Whittaker process and the MWA process. This is that, while .in the MWA process (with the 

natural extension) G is a diagonal band matrix, in the Whittaker process it is the in-

verse of such a matrix. In consequence of this difference, the Whittaker process is 

"global" (each graduated value depending on al-!_ the observed value>s), while MWA is "local" 

(each gradu<Ited value depending only on a fe\~ neighboring observed values) . This distinc-

tion carries over to the related matrix D, which, in the Whittakel: process, is not a 

diagonal band matrix but the inverse of such a matrix (of band width 2s + 1); from (5.4)' 

-1 
D 

-1 T 
g I + KK (6. 3) 

Assumption (i) fixes the elements of D except for those in a square submatrix of 

order m -s in the upper left corner and a similar submatrix in the lower right corner. 

Reverting to the expression q(E) of (3.2) and (3.3), we have 
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~) 

with 



d,. = q, . 
l.J l.-J (6.4) 

except withi.n the two submatricss mentioned. 

We define a Toeplitz matrix (see Trench 1974) as one in which all the elements on any 

diagonal line extending downward and to the right are equal. In other words, T ~ (tij) 

is a Toeplitz matrix when 

t .. "'t .. 
1J 1,-J 

for all i and j 

It is easily verified that D-l for the Whittaker process, given by (6,3), is a 

TCleplitz matrix. In fact, if 
-1 

D 

d' (-l)i-j ( 2s ) + -1 0 ij s+i-j 9 ij 

where Oij is a Kronecker symbol. 

Now, it is clear that the Toeplitz pxoperty is a very striking and obvious property 

of those matrices which possess it. Thus, in pursuit of our goal of maximum analogy be

tween the Whittaker and MWA processes, we would wish, if at all possible, to make D-l a 

Toeplitz matrix in the MWA case. Accordingly, let D-l = (d~ .) 
l) 

with d I = d~ . 
ij 1-J 

for all 

i and j • Since D is symmetric, 
-1 

D is symmetric and d:
5 

= dj Consider the 

series 

f(z) z: (6. 5) 
j=- 00 

(which may or may not converge). Because of (6.4) this series is a "reciprocal" of q(zl 

at least in the formal sense that if q(z) and f(z) are formally multiplied together, 

the product isunity. 

The latter fact does not uniquely determine the series (6.5). In order to achieve 

a unique determination, we invoke a further analogy between the MNA and WhittakGr processes. 

We require that i'n the MWA case thjs series converge in some region of the cotrtplex. plane. 

The corresponding series for the Whittaker case is rinite, and therefore converges every-

where. 

Now, a La\lrent serias like (6.5), if it converges anywhel·e, converges in an annulus. 
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Because of the sy1nmetry of the coefficients, if it converges for z ~ z
0

, it co~verges 

for Therefore, the annulus of convergence, if it exists, cont.ains the unit 

circle. Moreover, 
~1 

{q(z)) has a Laurent expansion (6.2) convergent in an annulus con-

taining the unit circle if and only if q(z} has no zero on the unit circle. 

Thus, assumption (iii} is the only possible assumption consistent with assumptions 

(i) and (ii) that satisfies the requirement that (6.5) converge in some part of the plane, 

and assumption (iii) implies that q(z) has no zeros on the unit circle. The prohibition 

against such zeros of q(z} was previously alluded to in Section 3, and further reasons 

'for insisting on it will be given in Section 10. 

In reality, the part of assumption (ii} that asserts the nonsingularity of D is 

redundant, because it is shown in Section 9 that if a Toeplitz matrix '1'(= D -1) is con-

structed in accordance with assumption (iii), then the square submatrices of order m- s 

in the upper left and lower right corners of D can be chosen so that DT I . 

In the typical case D is a matrix of nonnegative elements (this is true in the 

Whittaker case}, but this is not a requirement. (It is not true of Hardy's formula.) 

~:he matrix-vector formulation does not lead at once to a convenient method for cal-

culating the graduated values near the ends of the data. It will be shown in Section 9 to 

be equivalent to the extension algorithm described in Section 3, and also to the method of 

calculating the atypical elements of G described in Section 4. 

7. SPECIAL CLASSES OF MOVING AVERAGES 

Of particular interest are those moving averages known to actuaries as minimum-R3 

formulas and to economic statisticians as "Henderson's ideal" formulas. For a given number 

of terms 2m+ 1, this is the average (1.2}, exact for the third degree, for which the 

quantity 

(7 .1) 

is smallest (with the understanding that. c. 
J 

0 for I j I > m> • The "smoothing coeffi-

cient" ~ is defined as the quantity obtained by dividing (7.1) by 20 and taking the 

square root. 'l'he divisor 20 is chosen because this is the value of (7.1) for the trivial 

case of (1. 2) in which c0 = l and c. = 0 
J 

for j .,. 0 . 
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'l'he rationale for minimizing (7 .1) may be explained as follows (Greville 19.74a). If, 

for some and are given by (1.2), \~hich is the case for 

x =A+ m to B - m - 3, inclusive, then 

m 

): (7 .2) 

j=-m-3 

It has been customary to regard the smallness (in absolute value) of the third differences 

of the graduated values as an indication of smoothness, Therefore (7. 2) suggests that 

smoothness is encouraged by making the quantities t? c. 
J 

numericillly small, and minimizing 

(7,1) is a way of doing this. Tho formula corresponding to (7.2) for a general order of 

differences is 

m 
/i.s u (-1) s I (lis c.) 

Yx+j+s X j=-m-s J (7. 3) 

and the general formula for R is 
s 

2 m 
c.)2/(2s.l R I (ll s 

s 
j=-m-s J s 

(7. 4) 

There is some question whether Hende:n;;on', contribution warrants ilttaching his name 

to the "ideal" weighted overages. De Forest. (1873) treated extensively the formulas that 

minimize R.
4 

• 'l'he concept of choosing the coefficients c. 
J 

in order to minimize 

seems to have been .. first mentioned by G. F. Hardy (1909). These averages were fully dis-

cussed by Shc•ppard (1913) slightly earlier than by Henderson (1916). However, Henderson 

does seem to have been the first to give an explicit formula for the coefficient 

the weighted average minimizing R
3 

(Hendenoon 1916, p. 43; Macaulay 1931, p. 54; 

Henderson 1938, p. 60; Miller 1946, p. 71; Greville l9"/4a, p. 18). If we write k 

so that t 110 woighted average has 2k - 3 terms, the formula is 

c. 
J 

~_1s r <k - ll 
2 ~i~..L(!':: __ :~~U.Jk + ll 

2 
- j

2
J (3k

2 
-: 16 - nj

2
> 

8k(k
2 

- l) (4k
2 

1) (4k
2 

- 9) (4k
2 

- 25) 

c. 
) 

in 

m + 2, 

(7. 5) 

Weighted averages that minimize R have boen discussed frorn other points of view 
s 

by Wolfenden (1925), Schoenberg (1946), and Greville (1966, 1974b). 

Also deserving of special mention are th,, avera.ges (exact for cubics) that minimize 
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R sometimes called "formulas of maximum weight" or ''Sheppard's ideal" fo.rmulaa. 'l'hese o' 
are sometimes applied to physical measurements when the errors of observation can be rc-

garded as random "white noise" (see discussion of "reduction of error" in Section 8). The 

weights are given by 

Weighting coefficients (cj) 

3(3m
2 + 3m- 1) - 1Sj

2 

(2m - 1) (2m + 1) (2m + 3) 

and extension coefficients ta.l 
J 

for minimum-R
3 

(Henderson's ideal) averages of 5, 7, ••. , 23 terms are given in Table 2. 

8. COMPARISON WITH OTHER METHODS. PRACTICAL CONSIDERATIONS 

If a symmetrical MWA exact for the degree 2s - 1 is being used to smooth the main 

part of the data, it can easily be deduced, either from the extension algorithm described 

in Section 3 or from the matrix formulation of (5.5) and (5.6} that the unsymmetrical 

weightings proposed for smoothing the first m and the last m observations are exact 

only for the degree s - 1 , For example, all the avcruges represented in T<tbles 2 and 3 

with the exception of Hardy's are exact for cubics, and therefore their extensions to 

values near the ends are exact only for linca:r: functions. Hardy's weighted average is ex-

act for linear functions and its extension only for constants. 

'!·he Whittaker process has a similar prc)perty. At a sufficient. distanc0 from the 

ends of the data, rolynomials of degree 2s - 1 are "almost" reproduced by that process. 

In support of this rather loose statement the following heuristic argument is advanced. 

For the Whittaker process 

G (I+ gKT K)-l T 
I - gGK K . 

'rhus, if y is the vectOI' of observed values, the vector of corrections to the so values is 

T 
- gGK Ky . 

Now, the nonzero clements of KT K, with the exception of the first 5 and the last s 

rows, are binomial coefficients of order 2s with alternating signs. Therefo1:e the com-

ponents of T 
except for the first and the last (2s)th differences of K Ky, s s, are 

those of y (or their negatives if s is odd). Thus, if y is a vector of ordinates of 
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a polynomial of degree 

the last s components, 

'1' 
2s- 1, K Ky is a vector of zeros except for the first. s 

The components of 
T 

GK Ky are graduated values of those of 

and 

T 
K Ky, and therefore should be very small at some distance from the extremities of the 

data, Finally, multiplication by g, even though g is typically large, should give 

small corrections at a sufficient distance from the ends of the data. 

Some users may consider the reduction in degree of exactness near the ends of the data 

a disadvantage of the natural method of extension. Before I became aware of the natural 

method, I had proposed (Grcville 1974a) a different method of extension (already mentioned 

in Section 2) that does not have this particular disadvantage (though it has other short-

comings). This involves extrapolatjon by a polynomial of degree 2s- l fitted by least 

squares to the first m + 1 observations. A similar polynomial is fitted to the last 

m ; 1 observations for extrapolation at the other end of the data. There may be a gain in 

simplicity in using a single method of extrapolation for all symmetrical weighted averages, 

the particular extrapolated values depending only on the number of terms in the m<>in for-

mula. However, there is a loss in that the extension method is no longer tailored to the 

particular symmetrical aver~ge used. 

Like the natural method of extension, the method using extrapolation by least squares 

can be collapsed into a single matrix G . When this is done, the di.agon<ll band ch<:~rat:ter 

of the smoothing matrix is maintained, but the symrnetry is lost. '!'hough the matrix ap-

proach is less convenient for computational purposes, the djff<O'rent:es between the two 

methods "'re best elud.dated by comparing the first m rows of the respPr:tivc• matrices G 

This is done in Tables 4 and 5 for the case of the 9-term "ideal" formula. Here m "' 4 , 

but for convenience the fifth row is also shown. Its elements would be repeated in the 

subsequent rows, moving successively to the right, until we come to tho last four rows. 

While an average of as few as 9 terms would seldom be used in practice, this is a con-

venient illustration. 

As previously indicated, the first m rows and the last m rows of G may be rc-

garded as exhibiting unsymmetrical weighted averages which are to be used near the ends of 

the data to supplement the symmetrical average used elsewhere. The coefficients that ap-

pear in the last m rows are the same as those in the first m rows, but the order is 
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reversed, both horizontally and vertically. It should be noted that the cocffic.i,ents in 

the supplemental averages depend only on those of the underlying symmetrical average. They 

do not depend on N, the number of observations in the data set (which is the order of G). 

The coefficients in the supplemental weighted averages based on least-square extrapo-

lation, exhibited in Table 5, show two undesirable fe<J.tures. These are negative coeffi-

cients of substantial numerical magnitude, and successive waves of positive and negative 

coefficients as one proceeds from left to right along the rows. 'l'he number of such waves 

would increase as the number of terms in the underlying formula increases, 

In striking contrast is the character of the coefficients of the natural extension. 

Like the coefficients in the underlying synunetrical formula, each row exhibits a peak in 

the vicinity of the main diagonal of the matrix, tapering off to a single group of nega-

tive coefficients of reduced size near the edge of the diagonal band, 

In the least-squares method only a very small correction is made to the initial ob-

served value. The corresponding correction in the natural method is more substantial. 

The "second-difference cor.rection" is the coefficient of the second-difference term 

when the formula .is expressed in terms of increasing orders of differences .in the fo:nn 

The coufficient c does not depend on the subscript x - h, in which there is some free-

dom of choice. For the formulas based on least~squares extrapolation, which are exact for 

cubics, the fourth~difference correction is similarly def5.ned. 

Some writers (Miller 1946, Wolfenden 1942, Greville 1974a) hilV(' regarded the ob-

served values as the sum of "true" values u 
X 

and superimposed random errors e 
X 

If it is assllined that the errors e for different x are uncorrclated, and have zero 
X 

mean and constant variance 2 
0 for all x, then the variance of the error in the smoothed 

value u is 
X 

where 
2 

R
0 

is obtained by taking s ~ 0 in (7 .4). 'l'hus, 

be interp:ret.ed as the :ratio of reduction in the standard deviation of error that results 

from application of the \leigh ted average. 

While the assumptions underlying the preceding analysis may be questioned, never-

theless a good case can be made that, for any weighted average, R should be less than 

unity. Since is the sum of the squares of the coefficients in the average, can 
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4, Matr'..x Elements for the Natural Extension of the 9-Term Yd.nilliUIII-RJ Smoothing Formula., 

with Seccr.d-Differen~e Correction and R Value for Each Supplemental For.!lUla. 
0 

j Second-
Difference 

R 
1 1 2 3 4 5 6 7 8 9 Correction 0 

l. ~773854 ,J05888 ,025938 -.o64956 -,040724 0 0 0 0 -,41JJ ,8)60 

2 ,)05888 .360lo6 .270804 .113799 -,009873 -.040724 0 0 0 e1457 .5579 

3 .025938 ,270804 .357131 ,2782.54 ,ll8470 -.009873 -.040724 0 0 ,1931 .5429 

4 -.064956 .11)799 .278254 .338473 ,266557 .118470 -.009873 -.040724 0 .0744 .5441 

5 -.040724 -.00987) .118470 ,266557 .3)1140 .266557 .1184?0 -,009873 -.C40?24 0 .5:322 

V1 
0'1 

" s. !t'.a:t.rix Elements for the Least-5q':lares Extension of the 9-Terll! il!inimmn-RJ Smoothing 

Forr.mla with .Fourth Difference Correo'.;.ion a.r.d R Value for Each Supplemental Fornula 
0 

j Fourth-
Difference B 

i 1 2 3 4 5 6 7 8 9 Correction 0 

1 .135)50 ,058600 -.037900 ,05E600 -,014650 0 0 0 0 -,01465 .9928 

2 .025386 .,857731 .)15214 -.)45889 ,188282 -,040724 0 0 0 -,01534 .9962 

J -.206335 ,6.52571 .412341 .048375 .24-039.5 -.009873 -.040'724 0 0 -.41580 ,8)69 

4 -.140189 ,2)2497 .2991)6 .241547 .2991)6 .118470 -.00987) -.040724 0 -.68194 .5717 

5 -.040724 -.009873 ,118470 ,2665.57 .3Jll40 ,266557 .11[9-1-70 -.009873 -,040724 -.7552.5 • .5)22 



never be less than the maximum of the absolute values of tho coefficients. Thus; an aver-

age cannot be considered satisfactory if the absolute value of any coefficient is equal to 

or greater than unity. 

As indicated in Section 7, it has long been customary to regard a graduation as smooth 

if the third differences of the. graduated values are small in absolute value. If 

we have 

N 

L 9ij Y"+J'-1 , j=l ,.. 

and therefore 

(8 .1) 

where the subscript cif t:. indicates that the differences are taken with respect to i 

(i.e., down the columns of the matrix). If one avoids the corner submatrices, the nonzero 

elements in (8,1) are merely coefficients in the.underlying symmetrical average, and 

(8.1) reduces to (7.3). This was the rationale underlying the derivation of the mini.mum-

R
5 

averages, 

Of course, if G is symmetric, it makes no difference whether the differences are 

taken horizontally or vertically. When the symmetry of G is not assumed, care must be 

exercised. Many y(~ars ago (Greville 1947, 1948) I published what purported to be coeffi-

cients j~ supplemental averages to be used near the ends of· the data in conjunction with 

minimum-R3 and minimum-R
4 

symmetrical averages. The sprunetry of G was not assumed, and 

I made the error of deriving the unsymmetrical coefficients by minimizing their third dif-

ferences taken horizontally. The tables in question are therefore based on an incorrect 

assumption. Further it may be menti.oned in passing that in the 1947-8 formulation the 

diagonal band character was not maintained, since the supplemental averages contained the 

full 2m + 1 terms. 

Table 6 shows, for the natural and the least-squares extensions of the 9-term mini-

mum-R3 formula, those third differences of the matrix elements, taken vertically, that 

involve elements of the first five rows. The entries in the fifth row of Table 6 would 
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6. Thixd Differences of Ma.trix Elements for the Natural and Least-Squares 

Extensions of the 9-Term' M1nimum-R
3 

Smoothir.g Formula 

-
j 

1 1 2 3 4 .5 6 7 8 9 

r:atural Extension 

1 -.000046 .07.5817 -.006665 -.064956 -.077?48 .025917 .112299 -.040724 0 

2 .1)0190 .1010)6 .084297 -.027899 -.10)248 -.077748 .025917 .112299 -.040724 
l,..n 

-.0986)4 .05.5964 -.045662 0"1 J .0)9488 .112)48 -.10)248 -.ff17748 • 02.5917 .112299 \1) 

4 -.057216 -.0212!;.6 .o66051 .09.591.5 .045662 -.04,5662 -.103248 -.077?48 .025917 

5 .040724 -.112299 -.02.5917 .077748 .10)248 .045662 -.04,5662 -.10)248 -.077748 

Least-squares Extension 

l -.4)0376 .789377 .095655 -.709.595 .15744? ,02.5917 .112299 -.040724 0 

2 -.264548 .)92618 .142871 -.2.57320 -,0)))65 -.077?48 .02.5917 .• 112299 -.040724 

J -.092060 ,0))815 .119764 .091815 -.0698~0 -.10)248 -.07??48 
I 

.02.5917 .112299 

4 .018017 -.1)9944 ,0'4-.5169 .192841 ,013083 -.04)662 -.103248 - .. 077748 .02.5917 

5 ,04072LI. -.112299 -,.025917 ,077748 ,103248 .04,5662 -.04.5662 -.10)248 -.077748 



be repeated in subsequent rows, moving successively to the right. Casual inspection of 

the table shows that the third differences are numerically smaller for the natural exten

sion. All of these third differences are less than 0.14 in absolut~~ value. Twu of tho:>e 

for the least-squares extension exceed 0.7 in absolute value. 

It is instructive to compare the natural extension with the least~squares extension 

for the numerical example of Section 3. Though neither extension is recommended for use 

when additional data are available beyond the range of the original data set, nevertheless 

it may be of interest, purely for purposes of illustration, to choose a numerical example 

in which such additional data are available, and this has been done. 

Table 7 and Figures B and C show, for the first seven months of 1967 and the last 

seven months of 1971, t.he observed values of precipitation in Madison, Wisconsin, and the 

graduated values obtained by (i) natural extension of Spencer's 15-term average, (iil 

least-squares extension of the same average, and (iii) use of additional data. It will be 

noted that the least-squares extension is strongly constrained toward each of the two 

terminal observations (January 1967 and December 1971), This may be explained by the fact 

that all the values yx in (1.2) that enter into the calculation of these graduated values 

are included in either the m + 1 observations to which the least-squares cubic was fitted 

or the m extrapolated values obtained from the same cubic. On the other hand, the natural 

extension and the least-squares extension are very close together at the interface with the 

graduated values c<dculated in the standard manner. Thus, for the months of July 1967 and 

June 1971, all but one of the values yx entering into the computation (1.2) are identical 

for the two methods. 

For the months closer to the interface the graduated values obtained by introducing 

additional data are close to those of the natural extension. This is because the supple

mental unsymmetrical averages produced by the natural extension (unlike those of the least

squares extension) give relatively small weight to the observations more remote from the 

one being graduated (as does the underlying s~~etrical formula). For example, the values 

for the natural extension and those obtained by the use of additional data are indistin

guishabla in Figure B for April to July 1967. In the last months of 1971 the deviation 

is greater because the first two months of 1972 were exceptionillly dry. This could not 

have been predicted from the data for preceding months. 
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?. Extension of 1.5~Term Spencer Graduation of l'adison Precipitation 

Data to First Seven and Last Seven Months by Different Methods 

Extension of Graduation by 

Year and Obcerved Natural Least-Squares Additional 
Month Value Method Cubic Data 

1967 

January 1,63 1.11 1.62 1,56 

February 1.17 1.63 0,98 1,84 

March 1.49 2,24 1.3? 2.29 

April 2.57 2,88 2,)2 2.8.5 

May 3.5:3 3.42 ).07 3.36 

Jut:te 6.46 3.74 ;.61 3.?0 

July 2,.51 3.85 ),82 ).84 

1971 

June 2,27 2.02 2,00 2.05 

July 1,6,5 2.13 2,0J 2.2) 

August ),96 2,24 2,00 2.39 

September 1.87 2,40 1.97 2,51 

October l,JO 2.6) 2,08 2,50 

November 3.48 2,84 2.58 2,)1 

December ).64 ),28 ).8,5 2,04 
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Table 8 gives certain parameters for the various symmetrical wcight.ed averag:es that 

have been mentioned previously. The column headed "Error" requires explanation. This is 

the error committed when the formula in question is used to "smooth" a polynomial of degree 

four. This naturally tends to increase with the number of terms in the formula. Both R
0 

and tend to decrease with increasing numl.>er of terms. Though the "ideal" formulas 

have been derived to minimize they tend to produce small vah1es of R
0 

as well. In 

only one instance (Vaughan) does a "name" formula have a smaller R
0 

than the ideal formula 

of the same number of terms. The late Hubert Vaughan was an unusually keen analyst of ~!WA 

smoothing. 

It may be mentioned in passing that some writers (e, g., Henderson 1.938) call there

ciprocal of R~ the "weight" and the reciprocal of R
3 

the (smoothing) "power." 

9. PROOF OF EQUIVliLENCE OF THE MATRIX AND INTERHEOIATE-VALUE lll?PROACHES 

Though this proof involves only elementary mathematics, it is fairly long <md camp-

licated, and is therefore organized in the form of three lemmas and a theorem. 

Let 

p(z) 
m-s 

z 

where p(z} is the polynomjal defined in Section 3 whose zeros are the zeros of q(z} 

located inside the l'ni t circle. 

The quantities hj of (6.2} satisfy the recurrence 

m-s 
h. 

J 
L PR, h. R, 

R-=1 J-

for all positive j 

Proof. In an anm1lar region containing the unit circle, we have 

h(z} q(zl 1 • 

But, for a suitable (nonvanishing} constant c , 

-1 
q(zl = cp(z} p(z } 

In fact, c = -q /p • Therefore, 
-m-s m-s 
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e. Parameters of the Symmetrical W~ighted Averages Listed in Tables 2 and 3 

Nuniber R R3 Designation of Torma 0 E:r:ror 

Min1mum-R
3 

{Henderoon's ideal) 1 .5 • ?04.5 ,2?3.5 -,0?)64 

7 • .59?1 .114? -.296 4 

9 S323 .0,581 •• 760 4 

ll ,486,5 ,0331 -1.576 4 

13 ,4.')1.5 ,0204 -2,886 4 

1.5 ,4234 .0134 wit, 8)0 4 

1? ,4002 ,0095 -7.646 4 

19 ,)806 ,0066 -11.46 4 

21 .3636 ,0048 -16,,564 

23 ,JI.t·88 ,0036 -23.1&4 

r.acaulay 15 ,427:3 ,016.57 -4.,52& 4 

Sponcer 1.5 ,4)89 • 016.59 -3.866 
It 

Woolhouse 1.5 ,4602 ,06.54 -5.46 4 

Jftl.rdy 1? ,4059 ,0105 1~ o2 - 3,700
4
' 

Higham 17 ,4127 ,0179 -6,46 4 

Karup 19 .4036 ,0095 -7.86 4 

Andre~: a 21 .3707 ,00628 -14,96 4 

Spencer 21 ,J78LJ. ,00626 -12~66 
4 

Haroy, Havt:-cutting 23 o)))2 ,0154 -48.86 4 

Vaughan A 23 ,J41,5 ,00,50 -26,664 

Xenehington 27 .3202 ,0031 -22.40 4 

--
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-1 
cp(zl p(z J h(zl 1 • (9.3) 

~1 
Now, !p(z)] has an expansion in negative powers of z, with exponents not greater 

than -m + s, whose region of convergence contains the unit circle. Call it b(z) . Then, 

-1 
cp ( z ) h ( z) = b ( z) , 

from which it follows that (9.1) holds for all positive j, and the proof is complete. 

Let o
11 

denote the (unknown} square submatrix of order m - s in the upper left 

corner of D . Let be a matrix of m - s rows and 

by 

0 for i > j 

1 for i j 
pij .. 

-pj-i for 0 < j - i < rn - s 

0 for j - i > m - s 

Let P be partitioned in the form where and P2 

T ~ (tij) denote the Toeplitz matrix of order N - s defined by 

In oth•~r words, T is 
-1 

D 

hi . -] 

under assumption (iii) of Section 6. 

2m - 2s columns dnfined 

are square. Let 

Lemma 9.~. T is nonsingular and equal to D-l if D is completed by assigning 

T 
cl:'l 1?1 

together with a corresponding assignment of the square submatrix of order m - s in the 

lower right corner of D 

Note that if we try to form th<:! product DT, all elements of the product 

that do not involve the missing elem£~nts in tho corners of n have the correct values 

( 0 or 1) • We sh<1ll focus on the uppe:r l.P.ft corner; similar considerations apply to the 

lo1~er right corner, The lemma will be proved if it can be shown that the product DT is 

indeed the identity if o
11 

(and its counterpart at the lower right) is chosen in the 

manner indicated. 

Let D12 denote the squaro submatrix of D of order m - s immediately to the 
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right of o
11

, let be the submatrix corresponding to o
11 in the upper l~ft corner 

of T, and T
12 

the one immediately to its right. By symmetry the square submatrix of 

order m - s immediately below T
11 

is such that 

is The product DT wHl be the identity if 

D T T 
11 11 + 012 Tl2 I 

(and if a sjmilar :relation holds in the lower right corner). 

Let 

It is easily verified that 

(d .. ) 
1J 

be a square matrix of order m - s defined by 

(9.4) 

(9.5) 

Th•~ reader will note that replacement of o
11 

by n
11 

{and a corresponding replacement 

in the lower right corner) would make D a 'l'ocplitz matrix, It follows from the definition 

of h(z) in (6. 2) and tho Toeplitz char;1ctcr of the mat!:ices involved that 

I . (9.6) 

(The reader may think of the block immediately below o
11 

as moved up to tho left of n11 , 

and the block Tl2 moved to a position inunediately above It is clear from (9.6) 

that (9.4) will bc·:.;atiGhed if 

{9.7) 

It is easily verified that 

D [PT PT) [p2] = PT p ,.T p 
11 2 l pl 2 2 + 21 1 

Subst:itution of this result <J.nd (9.5) in the left member of (~l. 7) gives 

(9.8) 

But 

0 
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by Lemma 9 . l . Thus (9.8) reduces to and (9.7) is satisfied if 

This completes the prOOf, 

Let L denote the m by N submatrix of I - G "" KT OK consisting of the first m 

rows, and let A "' (a .. l 
l.J 

be the 

aij 

m by 

0 

l 

-a. 
J-i 

0 

N matrix defined by 

for i > j 

for i j 
(9.9) 

for 0 < j - i < m 

for j - i > m I 

where the coefficients aj were defined in (3.4). Let A
1 

denote the square submatrix 

of A consisting of the first m columns. 

Lemma 9. 3. 

(9.10) 

Proof. Let o
1 

denote the sub1natrix of D consisting of the first m rows, and 

let denote the square submatrix of ordc.>r m in the upper lcf1: corner of K. Then 

it follows from the placement of zeros in KT that 

L 

Let P denote an m by N - s matrix with the elements defined as in P (following the 

proof of Lemma 'L 1). It is easily verified that 

A = PK 

Let P
1 

denote the square submatrix of P consisting of the first m columns. Then 

Thus, 

But it follows from the proof of Lemma 9 •. 2 that and so 

L I 

as required for the pl·oof of the lemma. 
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Thoort•1n 9. 1. The extension method of Section 3 and the matrix formulation_of Section 

6 are equivalent. 

Proof. Let A
2 

denote the subm<Jt:dx of A consisting of the (m + 1) th to (2m) th 

columns and let 

Let 
(0) 

y denote the v<~ctor of the m int,nnediatc values obt.ainced from the observ<ttions 

by (3. 5). let 
(1) 

and 
(2) 

respectively, denote tho vectors y y 

vat ions and the (m + l)th to (2m)th observations, and let. y 

sisting of 
(0) 

followed by 
(1) 

Then, the extnnsion method y y 

-A (l) 
2 y 

Let G be the square m<:~t.Tix of order m defined by 

of the first m obser-

denote the. vector con-

requires 

g .. 
~J 

lly = 0, or 

(9.11) 

(wl"!i"re tho 

coefficients cj were defined in (1. 2)), and let G
12 

be the ~;ubmat>·ix of G 

the fixst il\ rows anu the (m + l)th to (;'m) th colmnns. Then the vector of tJ1P first 

m gr<:1duatcu values from the lni1trix formulation is, Ly Lemma 9.3, 

(1) •r Cll (2) 
y - cAl (A1 y + A2 y ) (9.12) 

By the extension methcJd, tho corresponding vector j s 

T (0) c' (1) + r·, (2) 
Gl2 y + y '12 y (9.D) 

But., since G 

G 

and 

'I'hus, (9.13) roduc:es to 

'l'he substitution (9.1.1) reduces thi.c to (9.12), as rcgui1~cd. 
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We note in passing that tlw computaticmal sbox_·t cut involving extended values has an 

analogu<e in tho case of Whi tt;tl:or smoothing. Especially in actuariiJl literature 1 the 

whittak(•r smoothin9 proco.s£' is sometimes called the difference-oquution method bocuu~'>e the 

difference equation 

\l 
X 

+ (-lls o2s u 
X 

(9.14) 

holds for x • A + s, A + s + 1, B - s It W<ts pointed out by 1\itkon (1926) that 

(9.14) is satisfied for x ~A, A+ 1, •.. , B if we introduce at each ~md of the data 

s extrapolated values of both yx and 

u yx X 
(x }\ 

As u "' 0 (x 11. 
X 

·-

u 
X 

j, 

j. 

satisfying ti1e conditions 

X B + j; j 1, 2, D • • r s) , 

X = B - j; 1, 2, ..... , s) 

Howt<ver, this obse1:vation is not helpful from a computational poj nt of Vif.'w. The attempt 

to utilize it merely increases the order cf the linear system to be solved from N to 

N + 2s . 

10. TilE CHIIF.ACTEIUS'l'JC FUNC'l'ION J\ND SCilOENBEH.G' S 
DEFINI'l'ION OF' A SMOOTHING FOl-tMUI.ll. 

Scho,~nberg (1946) defined the 

m 
¢ {t) I 

j=-m 
(10 .1) 

I'or n sy,nmctriciJJ. N\\TA this is a rc;;;,l function of the real variable t, and can be ex-

pn~ssed in the alternative form 

¢(t) 
m 

I 
j=-m 

c. cos jt 
J 

It is pcxiodic v:i.th period 211 and equal to unit.y for t = 21rn for aU integers n . 

~·he effect of MWA' s in eliminating or- r.educing cer.tain waves has been noted 

(Elphinstonc l9!:il, Hannan 1970). If tho input to th•! smoothing p~·oct~ss is a sine \vave, 

which may bo rt~presentod in the form 

C cos(rx + hl (10.2) 
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it can be shown by simple algebraic manipulation that 

where P "' 2n/r is the period of yx Thus, if ¢(2n/Pl = 0, the wave is annihilated 

by the smoothing process; the amplitude is severely reduced if it is close to zero. Thus 

MWA smoothing is related to the ''filtering• processes considered by Wiener (1949) and 

others. 

Schoenberg (1.946) defined a smoothing formula as an HWA whose characteristic function 

t(tl satisfies the condition 

I<~> <t> I < 1 (10.4) 

for all t , Later {Schoenberg 1940, 1953) he suggested th~ stronger conuition 

I• <t> I < 1 (0 < t < 211) (10.5) 

c. Lanczos (see Schoenberg 1953) pointed out that condition (10,4) is obtained by requiring 

that every simple vibration (10.2) be diminished in amplitude by the transformation (1.2). 

The results of Section 6 of the present paper suggest an alternativ<? definition of a smooth-

ing formula. using the subscript N to emphasize the fact that the order of G is the 

number of observations in the data set, we may say that (1.2) is a smoothing formula if 

(10.6) 

exists for all N. Schoenberg (1953, footnote 3) suggested a relationship between (10.4) 

and the c.onditions for exi~tence of the infinite powc'r of a matrix (Olclenburger 1940, 

Dresden 1942), but he did not elaborate the connection. He shall show that the existence 

of the limit (10.6) for all N is equivalent to a condition intermediate betv1ccn (10.4) 

and (10.5). The following lemma wjll help to elucidate the situation. 

Lenuna 10.1. Por a given T in (0, 2n), ~(T) = 1 if and only if q(T) 0 . 

Proof. From (3.1), (3.2), and (10.1) it follows that 

¢(t) 
1 2 it 2 J it 1- (-1) 5 (2i sin .,-t) s q(e ) ""1- (4sin "'t)s q(e ) . 2 2 

(10.7) 

Since sin 
l ;rr t 0, the lemma is est<:~blished. 
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There are two ways in which equality cnn hold in (10.4), namely </>(t) == 1 and 

¢(t) -1, and th<"! situation is different in the two cases. Lemma 10,1 shotvs that if 

$ (t) 1, q(z) ha$ a zero on the unit circle and consequently GN is not defined. No 

such problem arises if ¢(t) = -1 We aro therefore led to the intennedL'Ite condition 

-1 < 4> (t) < 1 (0 < t < 2·n) 1 (10.8) 

which we shall show t•) be equiw•lent to the existence of (10,6). 

Lemma 10. 2. If (10.8) holds, D is positive definite, 

From (9.2) we obtain 

q(l) 
2 

c[p(ll J • 

It follows from (1J.7) and (10.8) that q(eit) is po£:itive for 0 < t < 2rr Since it is 

a continuous function of t, it is nonnegative for t 0: that is, q(l) is nonnega-

tive. By tho definition of p(z), p(l) :f. 0, and c "' -~_5/pm-s does not vanish. 

Tlwrefore q(l) is positive and c is positive. 

Let t.he expansion of b (z) of Section 9 be given by 

b(z) 

It follows !'rom (9.3) that on tile unit: circle 

b(z) b(z -l) ch(z) 

Subctitu :ion of (10.9) gives 

ch. 
J 

(j .... -1, o, 1, ... ) . 

We note that the cor;fficients satisfy the difference equation 

b. 
J 

(j rn-s+l,m-s+2, ... ). 

If are the zeros of p(z}, it follOI4S that 

b "' j 

rn-s 
~ a rj 
I. k k 

k=1 
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for some constant coefficients '\ . Therefore the series in the left member of .(10.11) 

is absolutely convergent, 

Let B "' (bij} 

columns given by 

denote the matrix of N - s 

= 
{

0 

b .. 
m-s+J-~ 

It follows from (lO.ll) and (6.1) that 

rows and a denumerable infinity of 

(i > j) 

(10.12) 
(i .::: j) • 

(10.13) 

The structure of the right menlber of (10.13) shows that 
-1 

D is nonnegative definite; 

sincE! it is nonsingular, it is positive definite, and consequently D is positil.re definite, 

as required. 

Let ~l(t) be defined by 

~(t) 1- ¢(t) . 

Then (10.8) is equivalent to 

0 < ljJ(t} ~ 2 (0 < t < 21T) • (10.14) 

Let 1/Jmax denote the maximum value of ljJ(t), and let A = (aij) be the squax:-e matrix 

of o:~der N defin(.,J by (9.9). Let lvl denote t.he Euclidoan norm of a vector v . 

If v is any vector of N real compon(mts and ljJ(t) is positive in 

(0, 211) , 

1- 12 I 12 -1 Av I v < c ljJ • 
- rnax 

(10.15) 

Pro0f. Let v be an arbitrary vector of N real components, with jth compcment 

v. , and let 
J 

be the charactoristic function 

N 
eijt V(tl ~ v. 

j"'l J 

of v '!'hen, if a (z) 

it 
a(e ) V(t) = ijt w. e 

J 
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where, for j > m, w. 
- J 

is the ( j - m) th component of Av Moreover, it follows from 

(3.4), (9.2), and (10,7) that 

it -it 
$(t) = ca(e ) a(o ) . 

By Parseval's formula {_Schoenberg 1946) 

Similarly, in view of (10.17), 

I ~ 2 1 
Avl <

- 21T J 
27f 

't 2 2 la<eJ. >I \v(t) I dt 
0 

From {10.18) and (10.19), (10.15) follows. 

-1 
c 

21T 

It is easily verified that the symmetric matrix 

21T 
J $(t} lvtt) 12 

dt . 
0 

~T -
A A is indentical with 

(10.17) 

(10.18) 

(10.19) 

F = I - G 

except for the elements of the square submatrix in the lower right corner. In fact, the 

elements in the lower right corner of AT A are such that the entire matrix becomes a 

Toeplitz matrix if the first m rows and the first m columns arc deleted. It follows 

th<:~t F can be obtained from 
-T -cA A by subtracting a square matrix of order N whose 

elements are all zero except for the square submatrix of order m in the lower right 

corner. 

In fact, if 1\
1 

and A
2 

are defined as in the proof of Theorem 9 .1, it is ·easily 

verified that the !'lguare submat:cix of order m in the lower right corner of c.il? A is 

giV!:<n by 

while the corresponding submatrix of F is If, therefore, A is defined as 

the square matrix of order N having A
1 

in the lower right corner and zeros everY'~here 

else, we have 

F I - G 

Before stating t:ha theorem that is the main result of this section, we point out 

(Oldenberger 1940, Dresden 1942) that, for a given matrix c, lim en exists if and only 
n+«> 
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if Hither all eigenvalues of C lie within the unit circle, or else l is a siml'>le zero 

of ·the minimum polynomial of C and all other eigenvalues lie within the unit circle. As 

multiplication by G leaves unchanged vectors whose components arc successive equally 

spaced ordinates of a polynomial of degree s - 1 or less, it is clear that 1 is an 

eigenvalue. As G is symmetric, all its eigenvalues are real, and all zeros of its mini-

mum polynomial (including 1) are simple. Therefore the limit (10,6) exists if and only if 

all eigenvalues of G other than 1 are strictly between ~1 and 1 • 

Theorem 10. 1. The limit G; exists for all N if and only if the characteristic 

funct.ion .p (_t} satisfies the condition 

-1 < ,P(t) < 1 (0 < t < 211) • (10.8) 

Proof. Let (10.8) hold, and recall that (10.8) is eyuivalent to (10.14). Now we 

sha11 consider a particular value of N and, for convenience, drop the subscript N 

The eigenvalues of F are obtained by subtracting from 1 those of G We need to show, 

thenolfore, that the nonzero eigenvalues of F are positive and do not exceed 2. 

Since F = KT DK and D is positive definite by Lemma 10.2, F is nonnegative def-

inite. Therefore its nonzero eigenvalues are positive. Let v be an arbitrary nonzero 

real vector and consider the Rayleigh quotient, 

r = 

'1' 
v Fv 

T v v 

T -T - vT !? Av 
v A Av •. c 

c T T 
v v v v 

by J,emma 10.4. Since ;:.r A is nonnegative definite, we have 

by J,emma 10.3. Therefore (10.14) gives r < 2 Since the spectral radius is thE: maximum 

value of the Rayleigh quotient, this completes tht~ first part of the proof. 

l~e shall prove the converse by showing that if (10,8) fails, the limit (10.6) docs 

not exist for some N . There are two ways in which (10.8) can fail. Either t(t) may 

be ~~qual to L or I~ (t} I may exceed 1 • In the former case, as was pointed out im-

mediately following Lemma 10.1, G is not defined. 
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We consider therefore the case in which ~~(t) I > 1 for some t 

the N-vector whose jth component is 

v. 
J 

exp [iT (j - !L:!:_l.) l 
2 

Using an asterisk to denote the conjugate transpose, we have 

Except for the first m and the last m components we have 

and so 

* v Gv ~ ${T){N- 2m) + C 1 

v. v. 
J J 

T, and let v be 

(10. 20) 

1, and therefore 

(10,21) 

(10. 22) 

where c denotes the contribution of the first m and the last m components. Because 

of the symmetry of both the matrix elements and the vector components, C is real. Since 

all the vector components have absolute value 1, an upper bound to c is the sum of the 

absolute values of the elements in the first m and the last m rows of G • Call this 

We recall that c
1 

docs not depend on 

Now choose N sufficiently large so that 

N 

c
1 

+ 2rni<PCTl I 
N > I HT) I - 1 

Then 

and it follows that 

(N- 2m) I~CTll > N +lei. 

consequently, 

ltN- 2m) $(T) + cl > N, 

and therefore, by (10.21) and (10.22), 

lrl ~ lv**Gvl > 1 • 
v v 

It follows that the spectral radius of G i.s greater than unity, and the proof is complate. 
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It is easily verified that G"', when it exists, is the orthogonal projector on the 

eigenspace of G associated with the eigenvalue 1, that is, the space of N-vectors 

whose components are successive equally spaced ordinates of polynomials of degree s - 1 

or less. 

11. SMOOTHING FORMULAS IN THE STRIC'l' SENSE AND AN OPTIMAL PROPERTY 

At an early stage of the investigations underlying this paper I was trying to explain 

the natural extension of the MWA graduation to my colleague, I, J, Schoenberg 1 whose "'ark 

plays such an important role therein, and he asked me (.I thought with a slight show of 

impatience) "What does it minimize?" My answer was that it doesn't minimize anything, but 

is just a natural way of extending the MWA graduation to the ends of the data. This was 

to•:~ simplistic an answer, for we shall now show that it does in fact minimize "something." 

In a slightly more general form of the Whittaker smoothing method (Greville 1957) one 

minimizes the sum of the squares of the departures of the smoothed values from the ob-

se:rved values plus a designated pnr;itive definite quadratic form in the sth differences 

of the smoothed values. In other words, one minimizes 

T T 
(u - y) (u - y) + (Ku) HKu , 

where H is a given positive definite matrix of order N - m Minimization of this ex-

pression leads to the equation 

(I + KT HK)u y 

which han a unique solution for u since I + KT HK is positive definite. I showed 

(Greville 1957) that this graduation method has the interesting property that if roughness 

(opposite of smoothness) is measured by the term (Ku)T I!Ku, smoothness is always in-

crnased by the graduation. By Theorem 5.22 of Noble (1969), 

T -1 T -1 T -1 
(I + K I!K) "' I - K (H + KK ) K 

The last expression is of the form (5.6) and suggests that the use of an .MHA with the 

na1:ural extension might be regarded as a generalized Whittaker smoothing process if 

n -1 T -1 
(H + KK ) 
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Solving for li gives 

-1 T -1 
Hc(D -KK) •. (11.1) 

We are led to inquire, therefore, under what conditions an MWA is such that the right 

member of (11.1) is positive definite. Clearly H is positive definite if and only if 

the TOep1itz matrix 

is positive definite, 

-1 
H 

-1 T 
D - KK (11. 2) 

Schoenberg (1946, p. 53) remarks that it is desirable for an efficient smoothing for-

mula, one that achieves adequate smoothness without producing unnecessarily large departures 

from the observed values, to have its characteristic function satisfy the stronger con-

dition 

0 ~ If! (t) ~ 1 ' 

'!'his remark seems to have been little noted in the years since its publication. We shall 

call an MWA a smoothing formula in the strict sense if its characteristic function satisfies 

the conM tion 

0 ~ lj>(t) < 1 (0 < t < 21!) (11.3) 

and we shall show that (11.2) is positive definite for all N if and only if {11.3) holds. 

Theorem 11 .1. Let (10.8) hold. Then Q ~ D-l - KKT is positive definite for all 

N if and only if the MWA is a smoothing formula in the strict sense. 

Let (11.3) hold, let v be an arbitrary nonzero real N-vector, and consider 

the Rayleigh quotient, 

T 
r = v TQv = (cjBT vl2 - jKT v)2l/)vj2 (11.4) 

v v 

where B is given by (10.12). Let V (t) be defined by (10.16) .. 'l'hen, by Parseval' s 

formula, 

1 211' { l . . 2 2 
- J ]e- ).1.1-s :L.t h(e- 1 t} I lv<tl l dt 
21T 0 

-1 21! 
c J jh(eit) llv<t> 12 dt 211 

0 
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by (10 .10) . }loreover, again by Parsev'al' s fonnula, 

l 
2TI 

211 

J 2 1 s I 
1
2 (4si n 2-t:) V (t) dt 

0 

(11.6) 

It was shown in the proof of Lemma 10.2 that 

h(eit) = [q(eit)]-l is positive, for 0 < t < 2rr 

it 
q(e l is positive, and the~:efore 

By means of (11.5), (11.6), and 

(10. 7) ( (10.4) gi vcs 

r 
1 

211 
. 2 1 s I 

1
2 (4sm ~} ] V(t) dt 

1 
2rr f 

2rr 

0 

't 2 
h{eJ. ) ¢<tl lv<tl I dt > o , 

sincn any .,;eros of <jl(t) con&titute a set of measure zero. Since r is positive fo::-

arbitrary nonzero v, Q is positive definite. 

•ro prove the converse we shnll suppose that (11.3) does not hold and show thut r is 

negai:ive for ~wm~~ N and some v . Because of t.he hypothesis that (10.8) holds, ¢(t) is 

less than 1 We suppose, t.hero fore, that ¢ (t) < 0 for some t .. T in (0, 2rr) . Let 

v bo 9i ven by (10. 20) . By an argument similRr to th<Jt used in the proof of Lc"mma l 0. 2, 

it is oasily shown t.hat the' se-rices (6.2) for h(z) is alx;olutely convergent for z "' 1 . 

Thus, for any :o;ma1l positive quo;;nt:i.ty c, there exists a positive integer M such tl1at 

I lh.l 
j=N+1 J 

1 
< 2 E 

Thus, for N > 2M, the jth component of Qv, for j t-1 + l, M + 2, ~··t N- M, is V 

multiplied by a quantity less tb<m 

(11.7) 

By (10.7). 

h ( iT) ( , 2 1 ) S 
e - 4sln 2 T 

iT 
h(e ) ¢ (T) • (11.8) 

It W<LS sho1-m in the proof of r"erruna 10.2 that (10.8) implies h(eiT) > 0 • Thus, (11.8) is 

negnt:ive. Choose <. sufficiently sm<:'!ll so that (11. 7) is negative. 

* As in the pl:oof of 'l'heorem 10.1, we find that v v "' N, while 
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(11.9) 

where C denotes the contribution of the first M and the last M rows. As in the proof 

of Theorem 10.1, it follows from symmetry that c is real. Let 

where (2.s) is understood to vanish for negative j or j > 2s • Then 
J 

c < I cl < 2Mtl , 

since all components of v have absolute value unity. Now take 

+ c - nl 

+ E 

(11.10) 

Note that both nwne.rator and denominator of the right member of (11.10) are negative. 

From (11.10) we obtain 

it . 
(N - 2M) [h(e ) t(T) + c ) < -2Mn 

* and (11.9) then gives v Qv < 0, so that Q is not positive definite. This completes 

the proof of the theor<Om. 

It. is easy to construct an MWA that is a l'lmoothing formula in the strict sense. A 

trivial example i:; the formula 

However, none of the weight.<Jd averages in general use fall in this class. In particul<lr, 

using the properties of Jacobi po:tynomiah;, I have shown elsewhere (Greville 1966) that the 

characteristic functions of all minimum-R averages assume negative values i.n (0, 21f) • 
s 

Thus no such formula is a smoothing formula in the strict sense. 

There is, however, one family of moving averages, mentioned in the literature but not 

in general use, 'that are smoothing fo:nnulas in the strict sense. Elsewhere (Greville 1966) 

I have considered the limiting case of the rninimum-R fox:mulas as s tends to infinity. 
s 

In finite-difference forM, the rninimum-R~ MWA of 2m + 1 terms, exact for the degree 

2s - 1, is 
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where the operator p is defined by 

so that 
2 

)l 1 + !.Q2 
4 

Jtf(x) 
1 1 1 
2[f(x + 2> + f(x - 2)) 

The characteristic function i!:l 

ljl(t) 

which is nonnegative, with a single zero of order m - s + 1 at t "" 11 

By a tour de force it is possible to show that, for an MWA that is not a smoothing 

formula in the strict sense, but whose characteristic function Ratisfies (10.8), the natural 

extension docs nevertheless "minimize something." For the given HNA, let -p denote the 

minimum value of ~(t), and let y be chosen so that 
-1 

0 < y ! (1 + p) • 

1 - y (1 + p) .:: 0 Let a modified MWA, ux be obtained by taking 

u 
:X 

Clearly this is an MWA of the form (1. 2), 

m 

"x j~!m cj Yx-j 

Then 

(11.11) 

wi.th and for j 'I 0 • The modified t'!WA is a smoot:hi ng for-

mula in the strict sense, and its graduation matrix is G = I - KT DK, with 5 "'y D . 

The modified graduation minind.zes the quantity 

~ T ~ - T (u - y) (u - y) + (Ku) fiK~ (11.12) 

where 

(11.13) 

is: positive dt:finite. Using (11.11) and (11.13) to express (11.12) in terms of the original 

g:r·aduated values, we find that the quantity minimi,.;ed is 

T -1 'I' T A-1 -1 
(u - y) (u - y) + lu + l'Y - l)y] K Q Ktu + ()' - l)y] (ll.lA) 

where 
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A -l -l T 
\l•y D -JUC 

1s positive definite. Thus, the total smoothing operation including the "tails," based on 

An MWA that is a smoothing formula, but not in the strict sense, does in fact minimize the 

expression (11.14). Using statistical terminology, this expression may therefore be re

garded as a "loss function," b~t in that context is difficult to interpret and justify in 

practical terms. 
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NUMERICAL CALCULATION OF THE SOLUTION 
OF THE VISCOELASTIC DEFORMATION OF AN INFINITE 

FLOATING ICE PLATE UNDER A CIRCULAR LOAD 

Shunsuke Takagi 
U.S. Army Cold Regions Research and Engineering Laboratory 

Hanover, New Hampshire 03755 

The unresolved problem submitted to the 21st (1975) Conference of 
Army Mathematicians (Ref. 1) was completely answered with the aid of 
Professor Ben Noble, Director, Mathematics Research Center, University 
of Wisconsin. The theoretical insight gained in the above study 
enabled me to devise a simple numerical integral method as shown below. 

PRINCIPLE OF OUR NUMERICAL INTEGRATION 

Stated in general terms, our problem is to numerically integrate 
the integral containing a product of Bessel functions, 

where A and Rare positive numbers; ~(s) is finite in the range of 
integration, and asymptotically 

in which a is constant. The value of n in our formulas was >4. We 
shall change (1) to a finite integral. Let 

[Abs I]~= J: l~(s)Jl(sA)J 0 (sR)ids. 

(1) 

Choosing N so large that ~(s), J 1 (sA), and J0 (sR) may be replaced with 
respective asymptotic expressions, the upper bound of the right-hand 
side can be estimated: 

< -~ ~ ds Jooa ~~ 
- N Bn nSA rrSR 

2a 1 
=~-----

IRA nNn n 

-5 
< t "' 10 . 
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Choose N to make 

N" > _1!_ _1 _1_ • 
IRAn£ n 

Then we can convert I to a finite integral, 

We shall call [Abs I]~ the absolute remainder. 

(3) 

This method worked well, because n>4. If n is close to zero, 
this method does not work. A method for the general case is developed 
in Appendix B. 

FIELD MEASUREMENT 

Frankenstein [2] measured the deflection of a lake ice. He 
placed a tank on a frozen lake, filled it with water, and measured the 
deflection with the measuring rods at the distances as shown in Fig. 1. 
One of the results of his measurement is shown in Fig. 2. 

~~-I 

~I 
0 1.8 4.9 

Rods 
2 

I 1 9.8 

3 

I 
19.6rn 

Fig. 1. Field Measurement 

THEORETICAL CURVE 

We assumed the lake ice to be a linear viscoelastic material of 
the Maxwell-Voight type four-element model, as shown in Fig. 3. This 
model is known to satisfactorily represent the creep of ice [Jellinek 
and Brill 3]. 
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120 1-40 160 180 200 220 
Thne (rnln) 

Fig. 2. A result of Frankenstein's measurement (Ref. 2, Test 8). 

Maxwell 
Unit 

E 2 Voigt 
Unit 

Fig. 3. Maxwell-Voight four-element model. 
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First we solved the case of step loading, i.e., under the assumption 
that the circular load P of radius a was applied at time t = 0 and kept 
constant for t>O. The process of solution is shown in Appendix A. 
For our curve-fitting we need only the deflection solution, 

4 4 
p Joo { S {T-a2) -a T S h-al) } 

w - 1 + 2 -alT Jl(SA)Jo(SR)dS, 
- rrApR-2 o IOESC - IDESC 

in which the functions of the integral variable s are 

OESC = 
4 2 

(Ts +1+T) 
4 

- 4-r(S +E) 

al 

} 
4 -~DISC = 1f_+1+-r+ ESC 

a2 2(S +E) 

The radius a of the loading circle and the radial coordinate r are 
nondimensionalized to A and R, 

A=~ 
t 

r R = -t , 

by use of the characterisjic length 
4 Eoh 

t = , 
l2p(1-v) 

where E0 is defined by 

1 - 1 1 ---+-
Eo El E2' 

and h, p, and v are the thickness, density and the Poisson ratio, 
respectively, of the ice plate. Time t is nondimensionalized toT 

E0 t 
T =-. 

111 

Nondimensional material constants 

T = 

are used. 

Eo 
and E =-

El 
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We list in the following the asymptotic expansions of the non-Bessel 
factors. ~(a), contained in the integrands of the deflection solution (4), 
and the stress solutions (A.37) and (A.38) in Appendix A: 

_4 
al "' a 
a2 "'t(l+a-

4
} 

e-alT"' ~1-Ta~4 

e-azT "'e--rT 

The actual loading was the ramp/steady loading, as shown below: 

Fig. 4. Definition of the ramp/steady loading. 

To calculate the deflection under the ramp/steady loading, define 
the influence function w0 (T} by letting P=l in (4), 
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Then, deflection w(T) for O~T~T0 is given by 

and for T 0~T by 

J
To 

w(T) = 
0 

w0 (T-A)~dA , 

where 
Po 

p =-. 
To 

Substituting (6) into (7) and integrating with regard to A, 
we get the deflection w(T) for O~T~T 0 : 

where 

The absolute remainders are as follows: 
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[Abs U2 )~ < _T- N-4 
21TIAR 

Substituting (6) into (8) and integrating with regard to A, 
we get the deflection w(T) for T0~T: 

where 

The absolute remainders are as follows: 
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CURVE FITTING 

The material constants found by the curve fitting are shown in 
Table 1. They vary with the location of the measurement. 

TABLE 1 

Tank Rod 1 Rod 2 Rod 3 

Distance 1.8m 4.9m 9.8m 19.6m 

A. 2 6.5 20 5 

E 0.0005 0.007 0.05 0.1 

Eo(kg/m2) 1. 766xlo6 9.813xl0 7 6.869xlo8 9 .813xlo11 

n/E0(sec) 2.815xlo6 4. 896xl05 1.101x106 2.448xlo6 

TE(ramp)(m) 4.718x10- 3 5. 812x10- 3 2 .063x1o- 3 

TE(flat)(m) 4.727x1o- 3 2. 730x10- 3 2.884x10-4 2. 750x10- 3 

Material constants found by using the time-lapse curves 
of Frankenstein's concentrated load test (Ref. 2, Test 8) 

To show the significance of the material-constant variation with 
the measurement locations, we chose the material constants determined 
at Rod 1 of Frankenstein's concentrated-load time-lapse curve, and com
puted the deflections at the other measurement locations. Fig. 5 shows 
the comparison of the computed curves and the measured data. The left 
and right columns show the ramp and steady portions of the deflection 
curves, respectively. They are designated by (r) and (s) respectively. 
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TE• 2.42006x to-r 

Rod l(r) 

TE•5.81165: 10-~ 

Rod 2tr) 

TE• 4.09208~10-~ 

Ton~(s) 

TE•O. I 07849 

. . . . 

Rod 2(s) 

. . . .. 

TE• 3.73625x 10·2 

. . . . . 

(m) 0.1 

. . . . . " . 
0 

0.1 Rod 3(r) 

TE•9.9364.1xi0-3 

0.05 

0 
.. . . 

01 Rod 4(r) Rod 4(s) 

TE • 6.20518 ~ 10-~ TE• 7.62078 ~ 10-~ 

0.05 

0·~--~~40~0~~=;8;00~=c~l~20;;0 12f0;0;;,,,~4~8;00;===~M~O~O~~I~20~0~ 
Time !s) 

Fig. 5. Comparison of the calculated curves and measured points of 
Frankenstein's concentrated load test. Material constants 
are determined by use of the measurement at Rod 1. 

To express the degree of curve fitting we devised the trapezoidal 
error {TE). In Fig. 6, let a, A and b, B be two pairs of measured and 
computed deflections at two cons~cutive times t 1 and t 2, respectively. 

A b 

Fig. 6. Elements of TE 
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We squared A-a and B-b and. in case of the left figure where the errors 
are of the same sign. computed the area of the trapezoid whose bases are 
(A-a) 2 and (B-b) 2 and the height t 2-t 1 • In case of the right figure where 
the errors change sign. we calculated the sum of the areas of the two 
triangles whose bases are (A-a) 2 and (b-8) 2 and heights t 0-t 1 and t 2-t0 
respectively. where t 0 is the abscissa of the intersection. Let 
S be the area thus computed. Then the TE is defined by 

TE = ftf-
where the summation is over all the intervals and T the sum of the 
abscissa intervals. 

The TE indicates a sort of absolute maximum error. Its unit is m. 
If the deflections are of ordinary magnitude. the TE of order 10-3 and 
10- 2 means a good-and tolerable fit. respectively. If the deflections 
are very small, as in the case of Rod 4. the smallness of the value of 
TE does not mean much. We did not list the computed values at Rod 4 
in Table 1. 

We evaluated the TE for all the possible cases. They are shown 
in Fig. 7. The abscissa is the distance from the center of the 
load. The measurement locations are noted on the abscissa axis. The 
circled points are those whose material constants are used to compute 
a set of TE. The sets of TE thus computed are connected with solid 
lines and labeled with the appelations of the circled measurement 
locations. 

(m) 

0 

I 
I 
I 

Rod 2 

10 20 
Distonr-f! lml 

40 

Fig. 7. The TE of Frankenstein's distributed load test No. B. 
Ref. 2. 
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We carried out the curve fitting on the assumption of the linear 
viscoelasticity, i.e., that the material constants are kept absolutely 
constant during the increase of both the stress and the deformation. 
However, Dr. Andrew Assur, an ice mechanics expert, CRREL, notified me 
that the real material constants are nonlinear, i.e., that they change 
with the stress and the deformation. He told me that the variations 
shown in this paper are reasonable from the nonlinear viewpoint. At 
the writing of this paper we could not complete examination from the 
nonlinear viewpoint. 

ASYMPTOTIC DEFLECTION 

We shall show in the following that only one material constant is 
contained in the asymptotic formulas. Therefore, curve fitting must be 
performed for sufficiently small times. 

Referring to the asymptotic relationships in (5). one finds that. 
when T is large, both the step-loading formulation (6) and the ramp/ 
steady loading formulation (10) reduce to 

,. 
p K 

w :: 7TAp _q,Z A ' ( 11) 

where 

( 12) 

It is considered in this derivation that t>t>, and that only large values 
of B are effective in the integration. Letting 

x = eA, 

(12) becomes 

K = J: (1-e-TAX- 4 )Jl(x)Jo(~x)dx, (13) 

where 

( 14) 

( 15) 
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Thus all the material constants are lumped into the second factor of 
(15). The stress formulas, although not mentioned here, can be simi
larly transformed. 

As shown in the Appendix B, (13) cannot be analytically integrated. 
It must be numerically integrated. To effect the numerical integration, 
we have chosen the non-Bessel factor in (13) to become zero at x = ~. 
The absolute remainder is estimated: 

co T -4 
[Abs- K)N < -- N • 

- 21fiAR 

Graphs of integral K for the values of R/A = 0.2 and 2.0 are shown 
in·Fig. 8. When TA = oo, the non-Bessel factor becomes equal to one. 
At this limit, therefore, K = 1 when R < A, and K = 0 when R > A. 
As shown in the graphs, this limit is almost reached when TA > 1000. 

12 ., 
I '"I ·:-

1.0 

0.8 R 
A"·o2 

0.6 1 

K f 
OA ·j 

' 
02- ,J 0 _.-

'"I I oil! ._j_._j_,_J I "oi ~~ I I I I I 

0.12 l"'l'i'f I I_ ' I II j"--r-'"1 -.,-,1 
0.08 

K 0.04 
R 7\•2.0 

.. .o..J .. ~o.LlL_l I II IIIII I I I II "I' ~..J. .•. tJ ___ I I I' I" I 
10-3 10-2 10-1 10° 10

1 10
2 

10
3 10" 

TA 

Fig. 8. Graphs of asymptotic integra 1 K in (6.4). 

Exact integral K was formulated for the ramp/steady loading, and 
evaluated by use of a set of constants: To = 6xl0 3 sec, T = 10, 
E = l/6, n1/Eo= 6.12xl04 sec= 17 hrs., Eo= 7x10 8 kg/m2, and v = 0.5. 
These constants give £ = 29.31m and TA = t(2.48 x 10-3day-l) . As 
shown in Fig. 8, the asymptotoc integral K is very close to the exact 
integral in the range T > 0.1. The above constants were the values we 
used at the outset of t~e numerical computation for the rough estimate. 
We did not use other sets of constants to evaluate the integral K. 
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APPENDIX A 

·Analytical solution for the step loading 

The Problem 

We shall consider the vi3coelastic ice plate floating on water 
extending horizontally to infinity. (Historical background of the 
analytical study is mentioned in Appendix C.) We shall use the 
M&xwell-Voigt type four-element model (Fig. 3) to describe the visco
elastic deformation of ice. 

Using the notation of Fig. 3, one can show that this model gives 
the stress-strain relationship which we show in an operator form, 

(A.l) 

where t is time. To extend the one-dimensional relationship (A.l) to 
the three-dimensional relationship, we assume, as explained by FUigge (4] 
that £ and a are deviatoric,and relate them by 

a = 2Gt 

~here G. is the rigidity modulus relative to the three-dimensional defor
mation. Using (A.l), 2G is given as an operator, 

1 
- == 2G 

The differential equation describing the deflection w of an 
elastic plate on water is 

nv4w + pw = q ' 

4 where V is the biharmonic operator 

(A.2) 

(A.3) 

p the density of water, q the load per unit area, D the flexural rigidity 
def'ined by 
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D = 2Gb3/[ 12(1 - v) ] (A. 4) 

in which h is the thickness of the ice plate, and v Poisson's ratio. 
Substitute 2G from (A.2) into (A.4); substituteD thus found into {A.3); 
then·one finds the differential equation governing the viscoelastic 
deformation of a floating ice plate. 'We shall show this equation later . 
in the nondimensional form. · 

'We assume the load q to be step loading at t = 0 distributed uni
formly over the circle of radius a with the center at origin. Let r 
be the radial distance from origin. Then 

q = q U(t) 
0 

for 
< 

0 = r < a. 

= 0 for a. < r 

where U(t) is the ste~ function. Our problem is axisymmetric, and the 
biharmonic operator V reduces to 

= { a + 
~ 

L2- )2 • 
r ar 

We shall nondimensionalize our differential equation. We define 
the characteris~ic length 1 by 

where 

·1 
E 

0 

= 

= 

E h3/[12p(l - v)] 
0 

We have chosen E , rather than E1 or E2 , to define 1 because 
E is related to the gecondary creep [Nevel 5], which is the main 
igterest in our field observation. 

Let D
1 

be defined by 
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(A. 5) 

(A.6) 

{A.7) 

{A. B) 



Use of (A.4) and (A.8) to 

2D/E 
0 

Dl = 

S~bstituting G from (A.2) 

E 

into (A.9) yields 

Dl = 1/{E~ + 

Choose nondimensional time T, 

and a parameter T, 

T 

Then (A.lO) becomes 

T = E t/n 1 0 • 

= 

= 1/{E + 1 
a 
aT 

+ 

where 

It is noted that 

E = E /E1 
0 

0 ~ E ~ 1 

Clearing the denominator, (A.l3) becomes 

a (1 + T)aT + T} 

where use is made of the relation 

ET + n1/n 2 = ' 

which one can prove by use of (A.l2), (A.l4), and (A.7). 
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(A. 9) 

(A.lO) 

(A.ll) 

(A.l2) 

(A.l3) 

(A.l4) 

(A.15) 

(A.16) 



Define the nondimensional length R by 

R = r/t (A.l7) 

Replace D in (A.3) with D in (A.8) and (A.3) becomes 

(A.l8) 

where 

With D1 given by (A.l6), (A.l8) is the differential equation to be solved. 

The Solution 
-

Denote the Hankel transform of f(R) by f(S), 

-
f( s) = Joo f(R)J (SR)RdR 

0 0 

and the two-sided Laplace transform [ Van del Pol and Bremers 6] of 
g(T) by g(s), 

Joo g(T)e-sTdT 
S -oo 

Denote the inverse of (A.20) by 

Applying these two transforms, (A.l8) becomes 

where 

s(s + T) 
+ (l+T)S + T 
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(A.l9) 

(A.20) 

(A.2l) 

(A.22) 



Applying the two transforms to q in (A. 5), one gets 

(A. 23) 

where 

(A.24) 

and 

A = a/'l (A.25) 

Thus the transformed solution is given by 

Performing the Hankel inverse, 

(A. 26) 

Performing the Laplace inverse, 

(A. 27) 

To find L-1 (1/(l + D1s4 )), compute the partial fraction, 

l = - + 
l 

s s + a 2 

where -a 1 and -a 2 are the roots of the quadratic equation 

(A.28) 

They are given by 

= 
+ l + T + v'DESC 

2(6 + E) 
(A. 29) 
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where 

which transform to 

[t(B 4 + l) - 1] 2 + 4t(l - E) 

From (A.3l), it is clear that 

DESC " 0 

The roots o. 1 and a 2 are therefore a:.lways real. Moreover, inspection 
of (A.29) and (A.30) shows that both a1 and az are al"~ays positive. 

'l:hus one finds that 

1 B4h- a2l -a 
( ) l + e -----e 
l + DlB4 VDESC 

Substituting (A.33) into (A. ), solution w is found: 

-a 1T 

(A.30) 

(A.3l) 

(A.32) 

(A.33) 

w = 7T A~ Q, 2 r {l 
0 

+ 
S4 (t - a2) -o.2T 

e e }Jl(BA)Jo(SR)dS. 

and 

The radial and hoop stresses are given by 

a = 
r 

Changing D to D1 by use of (A.8) and r to nondimensional R by use of 
(A.l7). they become 

cr 
r 
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(A.34) 



a.nd 

where D1 . ( 
~s the operator on T given by A.l6). The two-sided Laplace 

transform yields 

and 

-
a 
r 

= - 6p~2(l.L + 
h R ClR 

where D1w is the Laplace transform of D1w . 

Using (A.26) one gets 

The Laplace inverse of this is 

1 
fjl T - a.l 

_l_ 
= 

s 1 + fila4 IDESC s + a.l 

Thus one finds 

= 

Thus the inverseof (A.35) is 
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-r - a.z l 

liiEsC s + Cl2 

(A. 35) 

(A.36) 



The inverse of (A.36) is 

= 

(T - al)e-alT - (T - az)e-azT 
------------- (32d(3 • 

Tabulation of a and cr8 becomes easier if linear combinations of (A.37) 
and (A.38) thatrdo not contain v are computed. 

APPENDIX B 

ANALYTICAL BACKGROUND OF THE NUMERICAL INTEGRATION 

(A.38) 

Bl. The follwing theorem shows the condition under which the integral (1) 
becomes either discontinuous or continuous at R = A. 

Theorem 1. The integral (1) is discontinuous or continuous at R = A when 
n in (2) is equal or larger than zero, respectively. 

Proof. We can rewrite (1) to a one-parameter integral 

I(a) = J: f(x,a)dx 

by letting x = (3A, i.e. a = R/A, where f(x,a) is continuous with 
regards to x and a. The condition that I(a) is a continuous function 
of a is that the integral (B.l) converges uniformly with respect to 
a (c.f. Titchmarch [7] p. 25). The integral (B.l) uniformly converges 
when n > 0, but does not when n = 0. 

B2. We shall consider in the following the integral (l) whose non-

(B.l) 

Bessel factor ~((3) is finite in the range of integration but asymptotically 
becomes zero on a more general form rather than in the specific form (2). 

Let an asymptotic expansion of ~(f3) be 

Rewrite (l) to 

m 
~(f3) - 1: ~ ((3) 

n=O n 

I = Io 
m 

+ ~ K 
n=O n 
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where 

and 

K = 1~~ (S)Jl(SA)J (SR)d~. n 
0 

n o 

We choose such an integer m that makes 10 fast convergent. We choose 
such a function tn (B) that makes (B.S) analytically integrable. The 
following Theorem is useful for the choice of ~n (B). 

(8.4) 

lB.5) 

Theorem 2. Let F(z) be an even function of complex variable z = x + iy 
that becomes zero at z = ~ and possesses only algebraic singularities 
(pole or branch points) on the upper half plane but no poles on the real 
axis. Then the integral 

where a and b are positive, transform to the following contour integrals, 

1 ll~m (1 
= a F(o) + TT_m F(z)Hl )(az)Jo(sz)dz, (B.6) 

when o<b<a 

(B. 7) 

when o<a<b 

+m 
where~w dz means the integral along the contour in Fig. 9, where 

radius£ is ·infinitesimal, and the cut is along the negative real axis. 

- E 

-ro 

Fig. 9. Contour of integrations in (B.6) and (B.7) 
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Proof. The proof in ref. [1] must be revised to the following: 

Consider the contour integrals 

I(a>b) = -
2
1 ·1;oo F(z)Hf d (az)J (bz)dz Jr-= 0 

when o<b<a, and 

when o<a<b. Use of the asymptotic formulas show that Ht 1 )(az)J
0

(bz) 
and Jl(az)H( 1)(bz) are zero on the infinitely large circle when 
o<b<a and o~a<b, respectively. Therefore we may consider only the 
contour along the real axis . 

(a) 

(b) 

. lr+«> () 
I(a>b) I j_oo F(z)H1 1 (az)J

0
(bz)dz (c) 

and 

Divide the real axis in three parts, -oo~-c,-c~s, and 
g-oo, Let z -x in the region -oo--c, and z = x in the region 
+c-w, Neglecting the infinitesimal terms, one gets 

F(z) = F(o) 

-2i/(Tiaz) 

and 

[2i/TI] ~og(bz/2). 

Then (c) and (d) become 

( 00 

I(a>b) 
+ J 0 

F(x)J 1 (ax)J (bx)dx 
0 
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(d) 

(e) 



and 

I(a<b) 
("" 

J F(x)J 1 (ax)J
0

(bx)dx. 
0 

Eq (e) and (f) prove (B.6) and (B.7), respectively. 

(f) 

B3. The need of Theorem 2 appears frequently in the mathematical study 
of the problems of floating ice plate and also the problems of elastic 
plate on an elastic foundation. A similar integral including only one 
Bessel function was proved by Dougal as early as in 1903 ([8] p. 138 and 
147). 

When t 0, our solutions of the viscoelastic plate reduces to the 
solution of the elastic plate. The elastic solution thus found is com
posed of the following integrals: 

M 
0 

roo 

J 
1 J (ax)J (bx)dx 

0--4 1 0 
l+x 

roo 

J 
_x ___ J1(ax)J (bx)dx 

0 l+x4 0 

Joo ~ J 1 (ax)J
0

(bx)dx, 

0 l+x4 

where s = AE 1/ 4 and b = RE 1/ 4 we can carry out these integrals by 
direct or indirect application of Theorem 2: 

bei(b)kei "(a) 
_, 

M = ber(b)ker "(a) + a when b~a 
0 

her "(a)ker(b) bei "'(a)kei(b) when a~b 

Ml = ber "(b)ker "(a) + bei "'(b)kei "(a) when b ~a 

= ber "'(a)ker "(b) + bei "'(a)kei "(b) when a~b 
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M2 = bei(b)ker~(a) + ber(b)kei~(a) 

bei~(a)ker(b) + ber~(a)kei(b). when a~b 

M and M2 are found by directly applying the theorem. M1 is found by 
d~fferentiating M with regard to b. Wyman [9] derived M

0 
by inte

grating a concent~ated-load elastic-plate solution over the loading 
circle. 

The continuity of M and M2 at a = b is obvious on the strength of 
Theorem 1. We will0 show, however, a direct proof in the following. 
We shall prove that 

her (x) ker ~ (x) 
_, 

bei (x) kei ~ (x) + X 

~ ber~(x)ker(x) bei .~ (x) kei (x) 

and 

(B.ll) 

bei(x)ker~(x) + ber(x)kei~(x) bei~(x)ker(x) + ber~(x)kei(x). 

To prove this, note that 

w1 (x) = ber(x) + i bei(x) 

and 

ber(x) + i kei(x) 

are the solutions of the differential equation 

d2w + 1 dw 
dxz x dx 

iw = 0. 

This can be proved by decomposing the equation 

(
d 2 + .! i_ v w + 
dx2 x dxj 

w = 0 

of which (B.l3) and (B.l4) are the solutions. 
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(B.l2) 

(B.13) 

{B.l4) 

(B.l5) 



One can find 

w1(x) 

w .. (x) 
1 

is equal to 

-1 
-x 

Thus one has 

ber(x) 

ber .. (x) 

that the Wronskian 

w2 (x) 

w"{x) 
2 

the identity 

+ i bei(x) 

+ i bei"(x) 

ker(x) .+ i kei(x) 

ker" (x) + i kei ~{x) 

1 
X 

of which the real part gives (B.ll) and the imaginary part gives (B.l2). 

Theorem 2 can be extended in many ways. Nevel [10] found that 

J~ F(x)dx 
0 

-~ 
= ~f;., F(z)togzdz 

for an odd function F(z) that does not have any pole on the real axis 
and vanishes at z = m. 

B4. It is impossible to apply Theorem 2 to the integrals of w at (4), 
or -at (A. 37), and o e at (A. 38) by the following reason. 

The function exp (-a2T) has essential singularities at the roots of 

because 

The function exp (-a1T) does not possess any essential singularities 
because the limit of 

tl} 
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is finite. However, the real part of a1becomes negative, and exp (-a1T) 
diverges, as le] + oo in a certain range of directions. 

Theorem 2 does not apply to integral K at (13) because the point 
x ; 0 is an essential singularity. 

Only the other alternative for the integration is the use of Barnes' 
integral method. It consists in substituting the integrals 

1 rooi r ( -s) CJ2x) v+2s ds 
= 21Ti J . r(v+s+l) 

-""1 

Jv(x) 

and 

J
-c~i i v+2s 

1 r(-v-s)r(-s)(-~Z) ds 
21Ti 

J-c-ooi 

(B .17) 

(B.l8) 

for J\l(x) and H ( 1)(z), where cis a real number satisfying c>R(v), z is 
complex, and x ~s real. One can usually exchange the order of integration 
to carry out the integration with regard to x or z. Then, one can carry 
out the rest of the integration in most cases by use of the theorem of 
residue. Only the forms (B.l7) and (B.tB~ serve this purpose. The other 
Barnes' representations of J\l(x) and H\1 1 (x) do not enable one to carry 
out the above two procedures. 

However, as mentioned by Watson ([11] p. 192), (B.l7) does not hold 
true for v = 0, and (B.l8) does not hold true when v ~ 0 and z is real. 
In these two cases, the integrands of (B.17) and (B.l8) become proportional 
to s-1 as s approaches i"" as the limite of the imaginary axis. Therefore 
we cannot use Barnes' integral method to carry out our integrals. 
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APPENDIX C 

Historical Background of the Analytical Study 

Since ancient times floating ice plates have been used to cross 
rivers and lakes. Recently traffic load has increased. Vehicles have 
become heavier; aircraft landing and parking also add to weights. In 
these several years oil companies started to use ice plates as drilling 
platforms. 

Formulation of the creep of a floating ice plate began after World 
War II with the intense development of the linear viscoelasticity theory. 
In 1947 Golushkevich (referred to by Kheysin [l] ) presented an analysis 
assuming that ice behaves elastically for volumetric deformations and 
viscoelastically for deviatoric deformations. Kheysin [l] used a general 
viscoelastic thin-plate theory to analyze the infinitely-wide floating 
ice plate. He used the Maxwell model (F:ig. 1), and considered only a con
centrated load. Nevel [12] also used the Maxwell model, but considered 
a distributed load. He limited his numerical computation only to the 
center of the load. 

William L. Ko, as reported by Garbaccio [14,15], used the Maxwell
Voigt type four-element model (Fig. 1), which is known to represent the 
creep of ice satisfactorily well [Jellinek and Brill 3]. In addition 
to thin-plate theory, Ko used Reissner's plate theory, which includes 
the deformation due to vertical shear forces. Garbaccio [ 15] 
numerically evaluated Ko's solution for specific values of material 
constants rather than for nondimensional parameters. Garbaccio's 
numerical answers show a strong effect of the discontinuity of the load 
distribution on the values of deflection. It is reasonable to suspect 
that his numerical evaluation may contain some errors. 

Yakunin [1.6, 17] bas solved the same problem as Ko, but Yakunin used 
only thin-plate theory. Unfortunately, only an abstract of Yakunin's 
work is available to the western researchers. 

Katona [18] and Vaudrey and Katona [19] solved the same problem 
with a finite-element viscoelastic computer program. 

We solved this problem analytically, and also developed an effective 
method of numerical integration. However, the theoretical curves did 
not satisfactorily fit the field-test curves. It is now evident that a 
large scale laboratory test eliminating the variation due to natural 
conditions must be carried out and the applicability of the theoretical 
assumptions must be tested. 
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USE OF ALGEBRAIC METHODS IN THE DESIGN OF CONTROLLERS 

AND OBSERVERS FOR SYSTEMS WITH TIME DELAYS 

Edward W. Kamen 

School of Electrical Engineering 

Georgia Institute of Technology 

Atlanta, Georgia 30332 

ABSTRACT. Many systems contain time delays that have a significant 

effect on the overall operation of the system. For example, time delays 

can result from telemetry between ground-based guidance systems and 

drones, and from reaction or decision times of human operators in radar

tracking systems. Nyquist-type results and functional analytical tech

niques are available for designing controllers for such systems, but it 

is difficult to implement these methods due to the infinite dimension

ality of the underlying vector spaces. In contrast to these approaches, 

the presentation given here deals with an approach based on the algebra

ic structure of the system model. In this algebraic setting, designs 

can be constructed using computations based on matrices and vectors de

fined over rings of operators. 

1. INTRODUCTION. In the last decade there has been a good deal of 

effort (see the survey [1]) devoted to the study of dynamical systems 

described by functional differential equations in n-dimensional space. 

Much of this mathematical theory centers on the class of linear systems 

with time delays given by a set of delay differential equations. Sys

tems with time delays have appeared in many engineering problems for the 

last several decades [2,3]. In many of these applications the delays 

resulted from the flow of fluids or gases in various types of industrial 

processes (e.g. see [4]). In many new applications, time delays result 

from telemetry or communication links between components of a system 
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located large distances from each other. For instance, sizable time de

lays occur in the ground-based guidance of drones at White Sands Missile 

Range [5]. Time delays can also result from data processing in the exe

cution of on-line control and estimation algorithms. 

Systems with time delays arise in many military applications. For 

example, in addition to the drone control problem at White Sands, delays 

can result from reaction or decision times of human operators in radar

tracking systems and manned-vehicle systems [6]. In ground warfare, de

lays can result from the relocation of men or weapons. 

Despite recent efforts to develop an extensive mathematical theory 

for time-delay systems, it appears that few viable new techniques have 

been made available for the applications mentioned above. This is due 

in part to the "gap" between new mathematical theories and current engi

neering practices. However, the primary difficulty is due to the fact 

that time-delay systems are infinite-dimensional systems. Thus the im

plementation of mathematical results in general requires the use of fi

nite-dimensional approximations. Further, if equations are to be im

plemented on a digital computer, it is necessary to consider "discrete

time" approximations with quantized magnitudes. 

Although it is clear that approximations must be used in the study 

of time-delay systems, it is not at all clear as to when approximations 

should be brought into the theory. For example, given a system model 

with time delays, one could immediately approximate all delays by finite

dimensional elements, and then proceed by applying the theory of finite

dimensional systems. On the other hand, one could attempt to work with 

the time-delay model as much as possible, say by using symbolic computa

tions, and then implement the resulting equations on a digital computer. 

In general, we would expect the latter procedure to yield a higher degree 

of accuracy since the time delays are not approximated until the last 

step. In fact, as illustrated in the next section, the first procedure 

can result in unstable designs. 

The main purpose of this paper is to show that various problems in

volving time-delay systems can be studied via the second procedure men-
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tioned above. The theory is based on a module framework for linear func

tional differential equations [7,8,9]. Although this has not yet been 

attempted, it should be possible to apply the results of the module ap

proach to the engineering applications mentioned above. 

2. TRANSFER-FUNCTION TECHNIQUES. Classical techniques for the 

study of time-delay systems are based for the most part on transfer

function representations. Although few general results are available, 

in some cases it is possible to apply standard methods such as the Nyquist 

stability test. To illustrate this, consider the following control sys-

tm: 

r(t) u(t) 1 y(t) ~ output 
8 + 1 

Low-Pass Filter 

Ky(t) 

Delay Amplifier 

In this example, 1/(s+l) is the transfer function of the open-loop sys

tem (a low-pass filter in this case). The input u(t) of the open-loop 

system is given by 

u(t) = -Ky(t-a) + r(t) 

where K is the gain of the amplifier and r(t) is an external signal. The 

a-second time delay in the feedback loop could be a result of the control

ler (in this case the amplifier) being located a large distance from the 

open-loop system. The transfer function T{s) of the closed-loop system 
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is given by 

(1) T{s) = --;;:..1-~
s + 1 + Ke-as 

-as where e is the transfer function of the time delay. 

It is well known that the closed-loop system is exponentially stable 
· . .. -as 

if and only if the zeros of the characteristic function s + 1 + Ke are 

in the left-half of the complex plane. Unfortunately. in general it is 

difficult to compute zeros of characteristic functions containing exponen-
-as tials e • Uowever, in some cases, including the above example, stability 

can be determined by using the Nyquist encirclement criterion: Given a 

fixed value of a, the range of positive values of K for which the closed-
-as loop system is stable can be computed by plotting e /(s + 1) for s • jw, 

As an example, let's set a= .1. Since in this case the time delay is 

1/10 th of the time constant of the open-loop system, it may appear that the 

delay can be neglected. If we neglect the .1 second delay, we find that the 

closed-loop system is stable for any positive value of K. If we consider 

the delay and apply the Nyquist test, we find that the closed-loop system 

is stable when 0 < K < 16.3 and unstable When K > 16.3. Hence the delay has 

a very significant effect on stability. This phenomenon is well known in 

engineering, for example see [10, pages 346-350]. 

Now let's consider a rational approximation to the delay so that the 

above system can be studied using results for rational transfer functions. 

Writing 

(2) -as e .. 1 

we get a rational approximation by truncating the series in (2). Again let 

a ... 1, and consider the following first-order approximation 

(3) -.ls e ~ 
1 • 10 

1 + .ls s + 10 

628 



The approximation (3) may seem reasonable in this case since the band

width of 10/(s + 10) is ten times the bandwidth of the open-loop system 

(given by 1/(s + 1)). Using (3), we have that the transfer function 
A 
T(s) of the resulting system approximation is given by 

(4) 
A 
T(s) = s + 10 

s 2 + lls + lO(K+l) 

From (4), we see that the system approximation is stable for any K > 0. 

Thus with the first-order approximation of the delay, we completely miss 

the fact that the given system is unstable for K > 16.3. 

Now consider the second-order approximation 

-.ls e 
1 

2 
1 + .ls + .005s 

The transfer function of the resulting system approximation is given by 

A 
T(s) 

2 s + 20s + 200 

s 3 + 2ls2 + 220s + 200(K+l) 

Using the Routh-Hurwitz test, we find that the system approximation is 

stable when 0 < K < 22.1 and unstable when K > 22.1. Thus with this 

approximation, we do see that the system is unstable for large values 

of K, although the critical value of K (22.1) is off a good deal from 

the actual critical value (16.3). 

These results show that neglecting or approximating time delays 

can lead to serious problems such as instability. Moreover, in many 

cases the order of the rational approximations must be rather large, re

sulting in system models that are difficult to work with because of the 

high dimensionality. Given these problems, there is much interest in 

developing techniques (e. g. design procedures) that do not require the 

approximation of time delays. As will be discussed later, such tech

niques are already available. They are based primarily on state-space 
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models which are defined in the next section. 

3. STATE-SPACE MODELS. Again consider the time-delay system with 

transfer function given by (1). It follows from (1) that the system has 

an internal (or state) representation given by the following delay dif

ferential equation 

(5) dy(t) • -y(t) - Ky(t-a) + r(t) 
dt 

As a generalization of (5), we can consider the class of m-input 

p-output time-delay systems given by the following state model 

(6a) 
dx(t) 
dt & A0x(t) + A1x(t-a) + Bu(t) 

(6b) y(t) = Cx(t). 

In (6a,b), A0,A1 (resp. B,C) are n x n (resp. n x m, p x n) matrices over 
m 

the field R of real numbers, u(t) E R is the input or control function, 

y(t) E Rp is the output function, and x(t) E Rn is the state. 

As is well known, to solve (6a) for t > 0 we need initial data con

sisting of the values of x(t) for -a ~ t ~ 0. Although x(t) is usually 

referred to as the state at time t, as a result of the delay term in (6a) 

the actual state at timet is the function segment x(a), t- aS o St. 

Thus the space of (actual) states for the system (6a,b) is some infinite

dimensional vector space of function segments. There are several candi

dates for this function space. Examples include the space C([-a,OJ;Rn) 

of Rn-valued continuous functions defined on the interval [-a,O] and the 

space Rn x LP([-a,O];Rn) where LP([-a,O];Rn) is the space of Rn-valued 

p-integrable functions defined a.e. on [-a,O]. 

Much of the mathematical theory of (6a), or generalizations of (6a), 

is based on a characterization of (6a) in terms of an ordinary differen

tial equation in a Banach or Hilbert space such as C([-a,O];Rn). For de

tails, see the book [11] by Hale and the papers (e.g. [12]) of Delfour 
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and l1itter. However, this approach does not fully exploit the finiteness 

of (6a) resulting from the assumption here that x(t) belongs to n-dimen

sional space. This finiteness can be retained in an operator setting by 

expressing (6a) as a vector differential equation with operator coeffi

cients. The constructions are as follows. 
loc Let L+ denote the space. of real-valued Lebesgue-measurable locally-

integrable functions defined a.e. on R with supports bounded on the left. 

Let d denote the delay operator given by 

lac loc 
d:L+ + L+ :f(t) ~ f(t-a) 

where a is some fixed positive number. 
. loc n 
~ith (L+ ) = space of n-element column vectors 

h d 1 d (L+loc)n by d fi i 

over Lloc we can extend + t 

t e e ay operator to e n ng 

where T denotes the transpose operation. 

h i ( ) 1 f (L+loc)n, (6 ) i h T en view ng x t as an e ement o we can write a n t e 

form 

(7) 
dx(t) 
dt = (A0 + A

1
d)x(t) + Bu(t) 

loc)n where A
0 

+ A
1
d is a n x n matrix operator acting on elements in (L+ • 

As a generalization of (7), we can consider vector differential 

equations with coefficient matrices defined over a ring of delay operators: 

Let R[d] denote the set of all finite sums of the form Iaidi where aitR 

and di:f(t) ~ f(t-ia). With the usual addition and mul!iplication opera

tions, R[d] is a ring of delay operators and with the scalar multiplication 

loc n ( loc n ~ i t R[d]x(L+ ) + L+ ) :(Laid ,x(t)) ~ Laix(t-ia) , 
i i 

loc n (L+ ) is a module over the ring R[d]. 
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Now given matrices F(d), G(d), and R(d) defined over R[d], consider 

the following system equations 

(Sa) 

(Bb) 

dx(t) = F(d)x(t) + G(d)u(t) 
dt 

y(t) = H(d)x(t). 

By definition of F(d), G(d), H(d), we can write 

where the Fi,G1,H1 are matrices over R. Thus (Sa,b) can be written in the 

form 

(9a) 

(9b) 

dx(t) 
dt 

y(t) 

- rFix(t-ia) + IGiu(t-ia) 
i i 

Therefore, the class of delay differential equations given by (9a,b) can be 

studied in terms of vector differential equations (8a,b) defined over a 

ring of operators. This observation, along with results based on the oper

ator ring structure, was first made in [7]. It is now known [8,9] that the 

operator ring framework applies to a very large class of time-delay systems, 

including systems with noncommensurate delays and distributed delays. 

4. APPLICATIONS OF THE OPERATOR STRUCTURE. In this section we briefly 

consider several topics that can be studied via the operator ring framework. 

We restrict our attention to systems over R[dJ given by (8a,b), although 

many of the results discussed below apply to more general rings of operators. 

a. Computation of Solutions. As shown in [8], initial data for solving 

(Sa) can be incorporated into the operator structure, so that complete solu-
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tions can be expressed in terms of algebraic operations. In fact the 

complete solution can be written directly in terms of the initial data 

and the coefficient matrices F(d), G{d) of the system equation (Sa), In 

other words, solutions can be computed by employing matrix operations de

fined over rings of operators. It should be possible to implement por

tions of this operational calculus by using symbolic computations. 

b. Realization. Given a system specified by its transfer function 

matrix T(s), the problem of realization is concerned with the construction 

of a state model from T{s). For systems with time delays, T(s) is often 
-as a matrix of rational functions in s and e , in which case we want to con-

struct a state model of the form {Ba,b). 

The computation of a realization from T(s) is not difficult; however, 

the computation of a realization with the number of coordinates of x(t) 

minimal among all possible realizations is a nontrivial problem in the 

multiterminal case. Such realizations are said to be minimal, In [7] a 

constructive procedure is given for computing minimal realizations defined 

mrer R[d], The construction is based on a method for computing a basis of 
n module R [d] from a set of generators, These results can also be used to 

reduce overdetermined systems of delay differential equations. 

c. System Properties. As before, consider a time-delay system given 

by the state equation 

(10) dx(t) 
dt = F(d)x{t) + G(d)u(t) 

where F(d) (resp. G(d)) is a n x n (n x m) matrix over R[d]. Let N(d) 

denote the n x mn matrix over R[d] given by 

n-1 N(d) • [G(d),F(d)G(d),,,,,F (d)G(d)] , 

In the special case when F(d) and G(d) are over R, so that the system (10) 

is finite dimensional, the matrix N(d) is called the controllability matrix 

633 



of the system. This term arises from the well-known result [13] that a 

finite-dimensional system is reachable (or controllable) if and only if 

the rank of N(d) is equal to n (in this special case N(d) is over the 

field R). Motivated by this result, we give the following 

Definition. The system (10) is reachable in the strong sense (resp. 
n 

weak sense) if the columns of N(d) generate the module R [d] (resp. N(d) 

has rank n viewed as a matrix over the quotient field of R[d]). 

This definition was first given by Morse [14]. Although strong and 

weak reachability are not equivalent to the dynamical properties of 

Euclidean and functional controllability, they (or variants of these con

cepts) are related to certain dynamical properties such as stabilizability 

(see [15]). The concepts of strong and we,ak reachability are particularly 

interesting because it is possible to determine, in an algorithmic fashion, 

whether or not a given system has these properties. 

d. State-Feedback Control. For the system (10) we can consider state 

feedback by setting 

u(t) = -K(d)x(t) + r(t) 

where K(d) is a m x n matrix over R[d] and r(t) is an external input. Note 

that since K(d) is over the ring R[d], we are allowing time delays in the 

feedback loop. This is reasonable since the given system (10) is defined 

over R[d]. However, the constraint that K(d) be over R[d] is too severe. 

In addition to "pure" delays given by elements of R[d], we need to consider 

distributed delays. That is, let 

(11) u(t) = -K(d)x(t) - Jt L(t-cr)x(cr)da + r(t) 
t-h 

where L(t) is a m x n matrix of integrable functions with bounded supports 

contained in [O,h], h > 0. The last term on the right side of (11) is re

ferred to as a distributed delay operation. As an example, suppose that 

L(t) is a scalar function equal to 1 for 0 ~ t S h and equal to 0 otherwise. 
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Then 

t t 
Jt-hL(t- a)x(a)do • Jt-hx{o)do 

In this case the distributed delay operation is the finite-interval inte

grator. It is interesting that this particular operation often appears in 

the control theory of time-delay systems. 

For feedback controls of the form (11), or variants of this form, al

gebraic procedures have been developed for eigenvalue (or pole) assignment 

and stabilizability (see [14,15,9]). These results rely heavily on the al

gebraic properties of the operator ring framework. 

A very interesting and important problem is the computation of feed

back controls of the form (11) that minimize the following cost functional 

~ 

J = f [xT(t)Qx(t) + uT(t)Pu(t)]dt 
0 

where P and Q are symmetric positive definite matrices over R. It is known 

(1] that optimal controls can be computed by solving a set of coupled ordi

nary and partial differential equations, referred to as the Riccati equations. 

But there is some evidence that optimal controls can be expressed in terms 

of the operator ring structure, which could result in simplified procedures 

for computing controls. This problem is currently under investigation. 

e. Duality and Observer Theory. Another nice consequence of the oper

ator framework is that there is a natural concept of dual system arising from 

notion of the dual of a homomorphism on finite free modules. The dual system 

is defined as follows. 

Definition. Given the system 

dx(t) 
dt 

y(t) 

~ F(d)x(t) + G(d)u(t) 

& H(d)x(t) 
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where u(t) E Rm, x(t) ERn, y(t) E Rp and F(d), G(d), H(d) are n x n, 

n x m, p x n matrices over R[d], the dual system is given by 

p n m where v(t) E R , ((t) e R , y(t) £ R and T denotes matrix transposition. 

As in the Kalman duality theory for finite-dimensional systems, the 

state-feedback control problem for the dual system corresponds to the 

state-observation problem for the given system. Hence results on state

feedback control in the dual system yield results on state observers for 

the given system. 
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ihe Structure of Groups with Index-3 Subgroups 

L.V. Meisel, D.M. Gray, and E. Brown 

Physical Science Division, Watervliet Arsenal, 

Watervliet, New York 12189 

For any group G
0 

which contains an index-3 

subgroup G, it is shown that either: (a) G is an 

invariant subgroup or (b) G contains an index-2 subgroup 

GA where GA is an invariant subgroup of G
0

• For case 

(a), G and its cosets give rise to three operators Khich 

span a stable 3-dimensional subspace of the group algebra 

which further reduces to three !-dimensional stable 

subspaces. For case (b), GA and its cosets give rise to 

six operators which span a 6-dimensional stable subspace 

of the group algebra which reduces to two !-dimensional 

and two 2-dimensional irreducible stable subspaces of 

the group algebra. The irreducible representations and 

the corresponding basis elements of the group algebra 

are given for both cases. 

This paper was presented at the 22nd Conference of Army 
Mathematicians, 
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I. INrRODUCTION 

In this paper we discuss some features of groups containing 

a subgroup consisting of one third of the group clc1nents. We 

derive the structure of such groups and give explicit irreducible 

representations which are characteristic of them. 

Interest in such groups springs from their relevance to the 

theory of second order phase transitions. In their classic text 

on Statistical Physics, Landau and Lifshitz! make the statement: 

''It appears that the following theorem is also true: No second

order phase transition can exist for transitions involving the 

decrease by a factor three of the number of symmetry elements 

(owing to the existence of third-order terms in the expansion of 

the thermodynamic potential)." In a recent review article 

Cracknell2 conjectured that this theorem probably could not be 

proven in the general case. 

Thus, we were motivated to a general study of s11ch groups 

and to a proof of Landau's Theorem. The general study is presented 

here; the proof of Landau's Theorem will appear scparately. 3 

II. STRUCTURE AND REPRESENTATIONS 

We shall denote sets of group elements by capital letters and 
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members of sets by corresponding lower case letters, e.g. hEH or 

hA,;:HA. The order of any such set will be denoted as an absolute 

value, e.g. the order of set H is denoted llil. We shall be 
) 

discussing a group G0 such that jG
0

j=3N containing a subgroup G 

with jGj=N and the distinct left cosets H=h1G and K~klG. In an 

obvious notation G =G+H+K. 
) 0 

We present theorems in Appendix I indicating that either G is 

an invariant subgroup of G
0 

or that it contains a subgroup GA' an 

invariant subgroup of G0 , where IGAI=IGI/2. In the latter case the 

coscts H and K divide into the cosets (HA and H8) and (KA and K8) 

with respect to GA and the remaining elcrpents of G are members of 

the coset G8 • Table I gives a multiplication table for the various 

sets of elements; its derivation is described in Appendix I. The 

sets GA• G8, HA, H8 , KA and K8 form the factor group G0 /GA. In the 

cvc,nt that G is an invariant subgroup G, H, and K form the factor 

group G
0
/G; the multiplication table for these sets is the same as 

that tn Table I for GA, HA, and KA. 
'\, -1 

l'.'c ;nay furthermore define the set operators GAo: jGAI ' I: gA, 
gAE::GA 

'\r - -1 '\, - -1 
Gc:-=IGAj I: g8 , HA-=IGAI 1: hA etc. These operators will have 

gBE:GB hAd1A 

tYe multiplication table given in Table I hhcre ,,.e no'' rc;:~d each 

entry in the table as the corresponding set operator. The operators 
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span a 6,-dimcnsional rcdlJci.blc st:1blc ~;ubspacc of the [;roup 

:~lgcbra4 and also form a six cll'Jncnt gronp. The six clc1ne:nt 

group contains three classes: 

Thus, one can find two !-dimensional nnd one 2-dlmcnsional 

i rrcducible representation of the six c1 cmcnt group. This 

corresponds to a rctluction of the 6-dimcnsional subspace of the 

group algebra into tl-;o !-dimensional stable subspaccs and t1~0 

2-dimcnsional irreducible st<tble subspaccs. (Each 2-dimcnsional 

subspace gives rise to the same irreducible representation.) 

"' I -1 \·,11cn G is an im>Jri;mt subgroup, the operators GA:: Gj l: g, 
gcG 

H ·"!GI-l E h, and ~A:JGI-l l: k form a tlnce clui•c·nt gr011p e;H:h 
A hEH kcK 

elL· C"nt of ,,-hi.ch i.s in a class by itself yjeJdi.ng t]n·<:;e l--d.ii:kns1or;al 

ional 

The characters of the representations are given 1n T<1ble II. 

It j s ::;traight fon.;n·d to show that ,,·hen G is not ln\'ari<1nt the 

i ·· .i.': J u c i b 1 c stab l c :: ces wj 11 be sp:mncd. by the :folloh.i.ng ; '· .·l1t:rs 

"' "' 'V "' r 1+ A+-=G++ll++K+ 

"' '\t '\; "' r
1

_ A ~G +H +K_ 
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'V 'V 'V 'V 

El =: 11!6 (7.C+ ·-II+- K+) 

'V 

1112 
'V 'V 

E =: (H+ -K+) 2 

'VI II;z 'V 'V 

El =: (II_ -K_) 

'V I C"7": 'V 'V 'V 
E

2 
=-Yl/6 (2G_ -II ... K ) 

I 

The normalization factors in the basis clcncnts of r 2 and r
2 

have been chosen to produce the follOI·dng U!dt<H-y r·.::prcscn<:,tion: 

"' e ~) 'V ca -b) ~ ca b) 
D (G A);; 0 0 (H ) = 

b -a 
D(K )::: 

A A -b -a 

'V c 0) 'V (-: :) rv (-a -b) 
O(GB)::: 0 -1 0 (H ) ::: 0 (K ) ::: 

B B -b a 

\\here a=: 1/2 ;Jnd b'"' 13'/2. 

It is interesting to note how the 2· diLI<e'nsional rqn·e:scntation 

reduces ~hen G is an invariant subgroup. 
'V 'V 'V 

lierc GA-=G+=G_. etc. and 

the cc;;iplcx conjugate pair of ~J2sis e1c:.cnts: 

'V 'V 

<tnd E
1
-iE

2 

wh::ore w = exp (2ui/3) are !->8Cl1 to span 1-di;kr:si;mal st<,hle subspaccs 

* of the gr0:1p algebra with d>a.rctc'tt::rs given by f and I' of 'L:ob1e JTa. 
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(The third stable sulhpace corre'>ponding to the rqlrc~;cntation r 
'\, '\, 

In this case E1 ;u1d E2 are 

l)asis clcmclltS for the approprbte real pscudo--2--dirncnsional 

.trrcclucible representation obtained upon invoking time reversal 

i nV3l'.i a nee. 

A si1nplc application of these ideas to the theory of continuous 

phase transitions is presented in Appendix II. 
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ral>lc I. ~litltiplicnt. ion t;1ble for the $Ct operators. The: table r_:ivcs 

the prollu~:t operation uf an <.:!lC'J:1cnt (set) on the left and nn clt~JJlCnt (::>ct) 

GA G H ~iB K K 
B A A B 

"'" ····----------. ··--¥--··· MON" ---- ~-· ·-----··· ... ----~-- -· ----- ~ --·. --~l 
GA GA G HA H KA KB B B , I 

GB GB GA KB KA H H \ 
B A I 

I 
....... ~ --· ~- ··-··· . __ ....... - ........ -··-· t 

H HA HB KA KB GA GB I A i I HB l HB HA GB G KB KA 
i A I 

I 
.; .....,, -1- ~- ... - ---·-·--- ...... ---------.-- .. I ·-----·--·------------4 

I 

K K K G G H H I A A B A B A B I 
K K K : H H G GA 

I 

B B A I B A B I i . ~ . . . -.... . ---··-·-· ~. ·--~~ . ----·····-··------t--
Table Ila. CharActer table for the irrcdtlcible representations of the set 

operator group for the case that jG 8 !:~0 •. 

r 

r * 

1 

. --·~-· ~· .... 
; 1 
I 

' ' 

HA KA 
.. -~- -· ..... T .. -l--·-----. 

w* w 
., ..... ·- J. .. ---· -.-........ 

w l w"' 

.. --..---··· ... -·-

(w=exp (2ni/3)) 
I 

T<:ble I Jb. Character table for the irreducible representations of the set 

operator group for the case that jG 8 1=!GAI· Read c11A as the class of HA ,etc. 

1 1 

1 1 -1 

r l 
\)1' 2 2 -1 0 
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APPENDIX I. TIIUJ!{H1S 

All of the theorems presented here pertain to the group G 
0 

which contains the subgroup G and the distinct left coscts H and 

K as defined in the main text. We give proofs only for a select 

few of the theorems; the omitted proofs are similar to those 

given, (N. B. In these theorems the subscripts i, j denote 

specific group clements.) 

Theorem 1. If gihj £ H then gill :II and giK"'K. (N.B. ·Not 

cvL~ry JiL;.i:bcr of G will satisfy the hypothesis of theorem 1 unless 

G is an invariant subgroup.) 

follov; flulll the definition of lcit cos..:ts, The s,:,::ond equality 

follm·.s from the hypothcsis of the tlJ;::,urcm, giG-=G since G is a 

g:coup, QED 

Theorem 2. If gihj £ K then giH"'K and giK==H. 

Define GA and G
8 

as the sets of elements gi satisfying th0orems 

1 and 2 respectively. 

'J';lC.:CJl'Clll 3, G=GA+GB. 

T}·l c·or l:iTI 4. If h.h. 
]. J 

£ K then hil!=K ;,;-!d hi K.=G. 

TL c~l~ cern 5. If h.h. E 
]. J 

G then hiE=G <ond hiK~K. 

Define HA and HB as the sets of e1 ti7icnts hi satisfying the 

hypotheses of thcort:ms 4 ;:,nd S rc ivcly. 
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Theorem 6. 11 ·II tH 
A B 

Theorem 7. If k.k. £ II then k.K-'11 and k.JI=G. 
1 J l l 

"l1Jeorcm 8. If kikj £ G then k. K,,G :md k .ll=H. 
1 1 

Define K and K as the sets of clements k satisfying 
A B i 

th1~ hypotheses of theorems 7 and 8/cspcctively. 

Theorem 9. K=KA+K
8

• 

Theorem 10, The multiplh::ation table for the sets defined 

by tlworeu)s 1 to 9 is gi von by 'fable I. 

Theorem 10 can be proven as follows: 

The sets GA, G , H , etc. J1<1Ve b"'en <lefim~d in tc,nas of the 
B A 

l'l~mlt of operating fr'Orn the left on ;:nbitrary clCTJcnts of the sets 

G, !1, and K. If hA
1
. is an de:nent of H then h. r~l f~] etc. 

A Al LK LG 
l1sing these l'ropertics ~~·c can find the set membership of z,ny prcduct. 

For cxaiiiple, 

h k -l~] = h . r~~l l~1 g l~1 Ai BJ K A1~ H Bs K 

i.•3., the product of an ar\.Jitr:,ry cic:r,c:nt of H and an arbitrary 
A 

cl :~;ce-nt of KB (in the order given) yields an clement of G
8

. By 

n: :.::~tdl <->.pplication of thtose tc:c]JJlictucs the entire l!JUlt:i.plication 

tac1l e is g~·nerated. 

Theorem 11. Either 
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If jG
8

j ,Q then G=GA and jGAI=JGj. 

If jG8 jfo then g 85 gBj "' gA E GA for all j. (Table I). 

lienee, IGAI~IG 8 1. ('D1e rearrangement theorem implies that 

no element of GA will be repeated as gBj n1ns over G
8

.) Also 

g35 gAj =gEm E G
8 

for all j. (Table I), lienee IG
8

1:::JGAj. 

Therefore !G81=1GAI and, since G=GA+G 8 (from theorem 3), 

QED 

Theorem 12. 

TI1corem 13. G is an invaxi::mt su1lz;;roup. 
A 

Left and right cosets with respect to G can be seen to be 
A 

identical by ex;,,nilL•ti.on of Table I. 
'\,. '\,. '\,. '\,. '\,. '\,. 

'llworcm 14. TLc operators GA,GB,HA,HB,KA, and K
8 

have the 

l'mltiplication tabJc of Table I. 

·nw proof of tl1 ~s th·:corcm goes as fol1o~-.·s: Consider, [or 

'\, '\, 

t;x2;r,ple, the operators HA and K
8

. 
'\, '\, 2 
HK=IG ,- l:h. k 

A B A J,s Aj Bs 

The la.st equality follmvs from Table I as 

:·tppl i cd to sets of gn,up otleNl.tors G A' G
8

, HA etc. (theorem l 0), 

the rcarnmg~'ifl<.::nt t}Jc:o·r:::m"and theoru1s 11 ,-,nd 12. Thus, 
'\, '\,. 

H K 
A B 

1bc entire table for v~~r8tors now can be 
L 

'\, '\,. '\,. 

Thco:;:-cm IS. If !GBI '0, then GA, HA, C;.:1d KA form a three elc;r.cnt 

s,roup v.·ith each c·l .. r1t in a class by itself. 

'\,. ~ '\,. '\,. '\,. '\,. 

then GA,G ,H ,H ,K , and K
8 B A B A 

'\,. '\,. ~ '\,. ~ '\,. 

form a six 

clcn1ent group v.ith cl~:sses: G , (H , K ) , ;:;nd (G , H , K ) • 
A A A B B B 
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APPEWHX II. A SH·IPLE APPLICATION 

An example of the application of these ideas is found in 

the theory of continuous phase transitions. Mten a solid 

transforms from a structure of 3N symmetry operations to one 

of N operations one is interested in a function invariant with 

respect to the smaller group of sy1runctry operators which may 

also serve as a basis function for an irreducible representation 

(other than the identical representation) of the larger group. 

One sees that 

11J =o E1 <? = !i76' c2 G' _fi -K. )<? 
+ + + 

"'' (o:~ 1J! =E
1 

¢) v;ill be an acceptable function by ex:llnination of the 
I 

matrix representation of r 2 (or r z). In the particular case of 

a l:ra.nsi. tion fl·om a crystal having the symn.etry of the full cubic 

grcup to one having the S)'IIuiletry of the tetragonal group h"hich 

singles out the z-axis one finds by taking 

<? " z2, 

v;hich has the partner function 

1.e., the representation r 2 corresponds to the rcpresc:ntation of 

the full cubic group denoted r j n BSW6 notation. 
12 

An extensive 

di~cussion of the transfornation from Clibic to tetragonal synmetry 

may be found in Perel, Batterman ;:,_nd Blount7 . 
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D. H. Gray: There is a definite conn~ction between this and one aspect 

.)f our work on superconductivity. Tho A-l,S's (Cr3sl. structure) are an 

important class of high~Tc superconductors; many of tho A-IS's undergo 

a cubic to tetragonal phase transition at temperatures somewhat above 

Tc• If ono considers only the point group of the lattice this is a 

factor of three reduction. Thus, when such transition is:sccond-order, 

there IDUSt be a further lowering of the symmetry (by relative movement 

of tho basis· atoms) to be consistent with Landau's theory. Symmetry 

considerations can be used to limit the types of internal movement. 

See Perel, Batterman, and Blount, Phys. Rev. ~. 616 (1968). 
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