'AD-AUD3 264 BROWN UNIV PROVIDENCE R I DIV OF APPLIED MATHEMATICS F/6 5/10 ~
ABDUCTION MACHINES THAT LEARN SYNTACTIC PATTERNS:(U)
1978 U GRENANDER N00014=75=-C~0461

UNCLASSIFIED . NL
|r oF |
ADs3284

END
DATE
FILMED

G= 78
DOC

‘£ -
7

E | cOntract4Nz)oz1u-75-c-,ou61 / /
3 i X Office of Naval Researeh—and Brown University

NN
3 - s t .,"" % -

Ty
—————

:) 2% /

ADA0D3264

COPY AVAILABLE 0 £OG DOES NOT
PE'HIT FULLY LEGIBLE PRODUCTION

((iy
-~ / " % b
-~ | Abduction machines that learn D D c

R20n nerE
b ! 3 4 Ur"‘LL‘ g .‘H:j!;:
—— e ﬁ APR 27 1978 Ui
|

UL UG

-~ A"

\-...,, -

I e T

006 FiLe copy™

e, S
DISTRIBUTION &1/ EMENE A
Approved for public releasef
- Distribution Ualimited - {

Dlivision of Applied Mathematics .

Brown University

7~

Lo s “ . i
/\)¢r»»s t Mo, a< i K, | atline ,[llm,l(:is& Sanves .

Zes (T

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY
PRACTICABLE. THE COPY FURNISHED
TO DDC CONTAINED A SIGNIFICANT
NUMBER OF PAGES WHICH DO NOT
REPRODUCE LEGIBLY.

T

T To learn syntgctic nattern:

UI

.

The followinr uuuay was started following a discussion
with Leon Coeper; Walter Freilberger, and llenry Kucera. The

topic had been language learning, how children learn a language,

~and to what degree it 1s possible .to construct a medel - an

w

avbduction machine - that can perform such tasks.

We singled ocut one part of language learning, namely to
discover the syntax. This means that we lecave aside the

intricate problems preceding syntax learning, such as speech

&

segmentation, learning and recognizing words, and semantic
association.

Also we would of course try any abcuction machine on
formal languages rather than natural language. It seems
natural to start with some simple classes of

A question that arises immediately is whether our problem

. N

is solvable in the sense of logic. It is well known that some

o -

seemingly simple questions in formal languages are not solvable.

98]
(

-
-

To mention just one example: it is unsolvable il the languages

produced by two context free grammars are identical.

However, this is not what we are really trying to find out.

-

Indeed, if we could construct an abduction machine that per-

formed its task in principle but required an cecnormous computing s @
t i Sactien

o St (]
effort to do it, then we would not consider this a satisfactory Q

e T |
solution, Also we would require that the functioning of the. L 5 %
machine should be natural in the sense that its operation ity coom

On the other hand, if we had an unsolvable problem at
hand, but could produce & machine that produccd a learning cffect
with reasonablec computing effort and with results thas anproxl-
mate the truc grammar, then we may be willing to accept it as
‘a solutlon to our problem.

In other words, what we arc after is not competence bué

performance. Jome importvant consequence of this .decision will

’

turn up in lTater section

(2}

It 1s obvious that the amount of preprogramming of the

neural net that is required for this task wlll depend upon now

general is the class of grammars that we allow. For the present

(4}
1
=

paper we shall assu

Pl P S - - o~ 4 - A e - b
e that the grammars are al ileast context free

and most of the time even finite state

AT Y . A
Laainarsc

The neural machines used will resemble the ones we have

used in earlier work. They can still be consldered as dynamical
sytems in a wide sense, but where the system 1s not represented 5
by ordinary differential equations but have the structure of
automata.

= We shall perform experiments that will help us urderstand
how abduction machines should be constructed. For this purpose
1% wlll be convenient to have available a program that will help
us set up the grammar easily and will generate sentences accord-
ing to it.

The model used will be the one introduced in Grenander (1966)

and studied in some later reports. With a given lexicon of

words a,b,c,... We postulate context free rules of the form

w

1.1} v + string

where v is one of the syntactic variables and string is made

-

up of words and variables. The variables will be labeled by

nombers 1,2%;3,s4 « For a given variable v we assume a

,probabllity distribution over the rules that rewrlte that

'

symbol. We have shown elsewhere what propertics those

probability distributions must have in order that the probabili

ct

¥
measure induced over the set of all finite word-strings be a
real one in the sense that this set have total probability one.

t will be assumed that these properties hold for the grammars

we define. We then speak of a syntax-controlled nrob2bility

Fgrammar.

A convenient vehicle for doing this is the APL program

SETUP given in the Appendix. It interro

G
[
ot
G
(9]

t
f
(0]
=
“
()
LS
[
(o)
(@)
(e
ct

the size of the lexicon, what syntactic rules, what probabilitiles
associated with the rules and so on. Then the function REWRITE
will generate one grammatical sentence according to the model.
Repeated calis of REWRITE will give us a sample from thé
language.

Lowill be instructiveAfor the user to gencrate a sample
and see how a human would try to discover the underlying grammar,
It 1s not so easy, even for simple graﬁmars. We now turn to the

main questlion: construc’ a machine that does 1it.

o et i

2. A na2ive abduction machine.

How does somecone learn a language without explicit instruc-
tion in its grammar? Do children group words into word classes,
employ concepts like parts of speech, scarch for rules?

2 .

- [
v “a

b)

Whether this is 63 or not it is at least Lrue th is is the

©

.

way.grammarians have heen operating from Panini and Thrax on.
et us try ko imitate this. To put 1E imore formally let us
consicder two strings u and v of words. The sctrings need not
themselves be gramnatical sentences. If 1t is true for an
pair x.,y of strings that xuy and xvy are simultaneoucly
rammatical or ungrammatical the original strings are said to
be equivalent, written as ukbEQv. Obviously EC is an eguivalence
relation and it divides the set of all finite strings into
equivalence classes. Th;s ls an established approach in formal
linguistics. l
To simplify the discusslon we shall assume that our language
Y is a linite state language, which is the same thing as to say
that 1t is generated by a finite state grommar G, &= i(G).
Then, after some simple changes all the syntactic rule take the

form, elther

[p]

t2.1] 1 -+ aj

where 1 and J are syntactic variables and a is some word from

the lexicon, or

(2.2) 1+ &

(O3)

In the latter case one speaks of a terminating rule. (2.1)
and (2.2) arc rules of a right linear grammar.

1 o

Let us taikke as an example nw = number of words = 3, S0

(&%)

-
(&}
]

that LEXIECON = la,b,c) and B, * number of varlables =

*that 1=1,2,3. The rules with thelr probabllitics ecould be

~
IS A S D
1 -+ b2 .5
2 + 13 .5

>
n
w
S~
no
¥

in Figure 2.1. The automaton starts in steve L and follows the
transitions in the wrong diagram according to the successive
words in the input string. When it comes to the end of the

strin

3 e . s oy 4 RS ; - S
vae gencence 18 accepuec, as gramaticds i anc odly ii

(7]

[@AN

the machine is in the final state F. The function SETUP

generated a sample beginning with.

{ aaBc

BED
AACBAAABBAABC
BBABBABBB
DBABC

8l
v

e
53]

e GRS

v

0o

B33
ABBAAABC
BC
AAAAAABC

~-

Lror a2 right linear grammar one need only consider uy and

vy to defilne equivalence. If u = ap and v = b 1t is scen that

with these two strings as a beginning the automaton in Figure
2.1 will be 1ln state 2. Whatever follows it is clear that the
result #ill be ~ither grammatical or ungrammatical sc that

atQab. They belong to the same equivalence class. On the other

hand the string bb ends in stabe 3 so that bb veloags To another
2qulvalence class. The string cb cannot be generated by the
machine but it will be convenient to add a new state to take

case of such strings and thelr equivalence class. Then it is

seen that the states of the automaton and the associlated syntactic

variables correspond directly to the equivalence classes.

Conslder now the reactions of the imagined child to its
language environment. When 1t listens Yo presumably grammatical
sentences 1t would look for ecquivalence classes. 7To represent

them 1t 1s cnough %o seclect one string from each and short

strings will be-adequate unless the number of varlables is quite

large. Say that one considers the set of all strings of:length

.

at most equal to d, for depth, as candidates.

The maximum number of equivalence classes that could be

found in this way is

(2.5) n. = n. +n° +n

Note thet n, increases fast withn d.

As sentences are being encountered the listerner tries
the initial substrings up to depth ¢ as candidates for the
distinct equivalence classes. A sentence ux is compared with
earlier encountered sentences of the form vx. If they can be
found in memory it also looks for sentences uy and vy. If an

instance is found in which uy is grammatical but vy not it

-
ul

clear that u and v are not equivalent.

Create a matrix n xn_ and put a large negative number in
c > Q -

¢
the cell corresponding to the LIndices of u and v cach time the

dbove event occurred: this signifles that u and v belonz to

[t
different classes. On the other hand if uy and vy are

-

grammatical for some y increase the value ip the cell one unis.

The latter is done by specaking. The sentence vy is

spoken and 1f it 1s accepted by the environment as correct the
cell value of the matrix is increased as mentloned,

As time rees on the partition will be finer, lack of
equivalence will be cstablished with certainty, while equivalence
only is gradually increased. We now apply a “hrésnold Tomic.

If u and v have a cell value which is positive we treat them
(temporarily) as equivalent. This will not necessarily ve a

true equivalence relation since it need not be transitive. We

therefore have to extend it by forming chains by palrwise

G

equivalent pairs of ‘initial

s -
rings.

G

o1
(
o

Tne macrixk is inibialki By puttin

a moderately laitge ncgative number: ¢ce tabula rase hypothesis.

The flow chart looks as in Figure 2.2.

The block SPEAK AND TEST involve a good deal of computing
with comparisons and matching. Here we need a "teaching"
program called ACCEPT, see Appendix, that wiil also be used in
a nore ambitious abduction machine. , ;

e

Thls machine was coded and run with the f{following experi-

ences. The machinec worked in the sense that for very small |
number of variables, they and the corresponding rules were
eventually discovered. In spife of this it was deemed &

failure for three recasons.

w

(V]
(@]
fo
i
©
w
(43
<k
[}
(7]

d. bBEven Iin these extremely simpl

exasperatingly slow.

| -

|
i

g

&

@
!
l

, GENERATE

SENEENCE

y
?

LISTEN

PUT T=1

TAKE INITIAL
STRING OF
LENGTH L

\J/ NO

INCREASE
ENTRIES
1 UNIT

WO

@)
Lt
X '

PUT LARGE
NEGATIVE
ENTRY

b
&)

2. The space requirement was growing -at an unacceptable
rate as cach (new) sentence heard had to be stored in its
memery. This is very unlikely ln human learning,.perhaps
Impessible beeause the storage volume reaulred.

3. The search in SPEAK AND TEST znd the following blocks

=)

57 %

in Flgure 2.2 is too stemati

4
<
%

=
(e}

B 4= -~ R -
Whatever way humans may use

)

ct

to learn grammar this is not i

@]

r

We therefore decided to scrap this abduction machine and

build a better one.

3. A smarter machine.

The icea to looitc for eguivalence.classes svill seems promising,
but not the way it wes dene. To visuallze tne neural network
needed for the computing in i

Flgure 3.1.

=y
(92
(@]
O

[
[

Here e 3, 4 = 2, B, = l2. We seft up a connectivity matrix
of size 12x12. We do not need more than the entries above the
main diagonal which mecans nc(nc—l) Vialtlies i dint the pietiure = 132,

AL TABULA BASA all these values will be modervately large

negative numbers which will be updated following the results of

o

<

SPEAK AND TEST. Already for slightly larger values for n_, and
"

n,, this would ‘lead to enormous storage requirencnt.

oo
armresation

starting from lots of possible equivalence classes

they are coalesced into fewer until we have arrived at the true
number of classes.

PR et

uning

1
o]
[0)]
ct
D
£
(o)
=
(H]
5
Q
=
}_J
[eN
0
ct
jo5)
233
ct
-
™
9
2
(g%
=y
[¢o]
(@]
(S
C
0
.
()
0
¢
w
(4]

AT A
« oV

(6]
«“
—~
o
o
e
-
=Y
(¥]
(s
b
O
)

that there is only one equivalence cla

0
i
&)
o
o
5}
b
[&]
o
53
T
o
v
@)
o
)

in the Appendix) the machine listens to gr

(from the updated matrix CLASS). This cZass may contain several

other substrincgs. One of them is selected abt randowm (no

o

systematic scarch) and it will be tested for cquivalence with

the first one. Depending upon the outcome of the comp:

0%}
i
o
(%]
O
5

”

elther a new variable (row in CLASS) is crecated, or u substring

(6]

is moved from one row to another, or no actlon is taken. All of
this is done by the program LINGUA which calls the comparison
mrrerm

tunction TLESE, Sece Appendix.

We niow claim that this abcduction machine is consistent in

the following performance sense,

Theorem. Consider the alecoritnm described anc represented by

the flowchart in Fisure 3.2. Assume that DEPTH d the depth of

the true grammar. As the total number of jterations, TOTAL,

I tends Lo Infinity leapninp of the grammar occurs with probability

| one: the number ol classes. and the closses themselves will

) : converce o a limit such that it and the corresponding rules

el Tk e ey
form a prammer enuivelent with the trug ono

ince the search is not systematic but (to some extent)

&

Erocofl:
random any convergence must be of a probabilistic kind.

Say now that for a large number of T a certain set of

classes have been established. As new sentences come along two

action can be taken: establiish a new ¢lass or moye sn arnitial

subsEring from one class to.anevher.

Yy

+the caoprt ~ eyt e e 4
the sentence starts with

The first action will oeccur i

a u still belonging to the firsc class set up .in TABULA, but

representing a real syntactic variable distinct from the initial

symbol. If 41 has not yet been established there is a pesitive

proovability in each iteration that 1% wili be discovered. |
Hence with probabillty zero this will happen after a finite
number of iterations.

The seccond actlion means that 1t 1z discovered that two

©
==
it
‘,L
o

3
C
»

and v, that are put in the same class temporarily,

=
—
fo
o’
Q

o
P

cr

ccted to Le non-equivalent but v is believed (for
the moment) to be equivalent to some w belonglng to 'an already
- -
established class. Then v will bYe moved to the class ol . .

In order that this should happen let us assume that all classes

«
4

RATE

O
vl

GEM

-

s\

TORWINMTAIM m
e 'AL:A' -~

)
Ll

|
r

|

S U

CLASS
|

WHAT
C CONTAI

.
v
I3

T3l

\

C PICH
Yo

> RS WANAN

IN
{ n

ADRAS A1 o)
-

N
bl\
ERT T pe

T

L

\
i

s T

1 Dmys
(VPSP EN

H{ANGE

‘v

C

14
.

have been created (we already know that this will happen after

finite time). Due to the finite depth only a finite number of

arrangements exist for the grouping of the initial ctrings,

-

i

For each orne there is a positive probability that an incorrect

grouping shall be detected in one trial. lenco

A SR
the equivalence classes will be correctly established after a

finite nunmbter of iterations, again with probability one

‘

Yavg 4

This concludes the proof of convergence but 1
noticed that the positive probabilities mentioned may be small

which will result in a very low learning rate.

It is clear that this
memory requirement compared
need not be remembered, nor
matrix that represented the

terms of strength of belief.

abduction machine has only a modest
to the earlier one.
dis dcinecessary o sto¥e the enormous

syntactiec relationships in guantitive

The learning mechanism also appears less arsificilal. It

still has the LISTEN-SPEAK cycle but the spoken sentences are

being corrected in a less systematic manner.

It should also be remarked that no claim is made that the

original grammar is learnt in ex&actly the same form as it has

been cefined. The claim is

weakly equivalent prammars.

that as it converges in the sense of

As 2 matter of fact the search for equivalence classes will

rezult in a limlting grammar with a minimum number of varlabdles

or clLasses.

Occam's razor.

In this sense the abduction machine appeals to

To test for speed of convergencé the machlne was exposed
to varicus finlte state 1anguagesi The speced of learning was
much higher in general than fqr the naive machine. TFor example,
the grammar (2.1), which took very long to learn before was now
iearnt almost lmmediately. Tor T=1 the variables B and BB were

established, for T=2 the variables A, for (=5 the variadble BC:

TASULA

LINGUA 20
NEW VARIARLE B CREATED AT SENTENCE NO.
NEW VARIABLE DB CRIAPuD AT QAH-UVCE NO.
NEW VARIABLE A CREATED AT SENTENCE NO.
NEW VARIAZBLE BC V,EATED AT SENTENCE NO.

RBADGAABBE

5”JAAB’

|
J
,J

O\) 4
I

— Aty e S WA
cile apauccolon nacaine was

‘In other runs the performance of
imilar, in no case requiriqg more than 10 iterations before
convergence was established.
A For other finite state grammars with many variables and

rules the time 1t took was longer correspondingly but no

exorblitant number of iterations was required In thls series of

I would like to report on one test, not because the grammar
was more complica cﬂ but -because the result scemed surprising at
first and led to some reflections on the notion of style that
ought to be explored in more depth.

I had been looking at languages where the sentence is not
Just expressed as a linear string of wofés but takes the form of

a colored picture. I!ore precisely, the question was whether one

)

16

could find syntactic rules that would generate at least typical
fragments of hiphly stylized pilctures, say in the style of
Mondrian.

The grammar tried was the following one. The words were

five A,B,C,D, and E with the rules in the wiring diagram of

2]

B8 oo g e
LAnEte 8CaACe

T

Figure 3.3. Generate two sentences from thi:

h the zolor key

ct

4
4

automaton, code A,3,C,D,E into.0,1,2,3,4

o
"

0 - white

- blue

',J

N

- red

(@8]
|

yellow

L - black

Use one sentencc for horizontal effects, the other one vertically
and add the key values modulo 5. Pilctures are then obtained

ce the one in Figure 3.4. It can be questioned whether

(=

looking 1

this 1s really londrian-like, but this is nct the point here.
When the abduction machine was exposed te¢ sentences con-

vergence seemed to be much slower than for other, seemingly more

difficult languares. It could look like this

)i
START

NARROW

COLORED

|

THE MONDRIAN MACHINS

Flgure 3.3

]
' ! - SENT BN 1
; AP/\EADABAEAOABA’ALACAA G ACACA"‘ DAA"
3
-l,,"' *‘~.r~vvJ _.

I
[
)
I

SO EPRES Geoe

TARYLA
B Sl 2

ADADADS A

NEE PAZEARLE A CREAZED AT GERNCRNCE DA 1 = ARADANLA
MEY VARFAGEE A CREATED AT SEHLENCE HQs 2 = AAIAIAA
NELAA ;

AEADADARADACADNCADLARAA
CACAELEACACACAR

ANLBARAELCADLADA NAHAHACA”ACAEACAEABADAEAE"ﬂ"/"'"')nFnFAuAr/"AC/FuFuA
ACACACAEAR
ABACAELCADLCACAEAEACADATLACADAIAEACADACLCAA
ADLCADLDANSEDACAEACACAEANA

ARLEANCACE DAL
/C/C[SAUAUAEADACADACADADAEACAEADAEAI/1A7£r,/
ACADADACAA

nl/:A)lll)/‘i."l

AFACAD/C#UACADAA

LCADACACATANAAEACACAA
REARADACLCLENEACARACACADAEABACABAEAEACACACATAA
LEAACLCLCLT :
AEAEADAEALADAEN A

LEADACLDLERR

,'./1
Holl WABTABLE AA CREATER AL SENTEHCE UQ. 19 =
CAEAEACAA

with only A,AD,AA as established variables after 20 iterations
Further Ilteraticns yielded no more variables. The sentences tend
to be rather long, in one extreme case over 100 words loﬂg, but
this should only marginally influence the computing time needed
since most of 1t goes into processing short initial substrings.

The solutilon 15 quite simple. The grammar recovered is
indeed weakly equivalent to the gilven cne as can be scen by.
inspection of the wiring diagram in the automaton of Figure 3.5.
The abduction machine has reconstructed a correct grammar although
in a @ifferent, simpler form, equivalent but not equal to the one ‘'

we started out from. It therefore seems thuat we could just as

— n-
; = it}
o i
-~ 3 o
A1 & Aad \ b
BLANK sy
. .’\

| |

| \

B

]

: STOP

Figure 3.5
well have started out with the simpler form orizinally.

: : Not so. If we nad done this it would not have been
possible to differentiate the probabilities associazted with the
transitlions between diflerent colors and bands of different width, {
This would have meant vhat we could not have incorporated such
stylistically sipniflcant clements.

This lesson teaches Us that ths notilon of style that we
have adopted heve, 15 not 50 much a pronertv of the mramaar,
as _tne usare oF erartar. Lt Ls relaced o peorioyntance, not only

ccmpetence,

"efficient" stylistic variables in situations of e

21

If this peint of view is accepted it means, as was the

case for the Mondrian machine, that 1% may be necessary to

inerecase the set of scvntactie variables by ather stvlistic
ariables.

This raises the question of how to find adequate and

L

cater interest

2

than this rather artificial example. I%t is clear tha

ct

he

ct

N 2

abduction machine learns grammar but not stvle. Can one formalize

the search for stylistic variables?

22

Appendix

To define a syntax-controlled probability mode the user

should execute the function SETUP.

LA
s
ra 5))
r‘; : '\‘ ¢ e 1"1 !
< gt
I‘.)_I
g% N -y SRR s
et Gt s e RO
L5 ' LAl e R o S
i "
L6]
r e 4 » e s r
RS G Py e et
‘:;J AT 7 el ,',v 3
Y, Pl ey
i.,;‘! 'vr __(‘ ‘I.')l’-:'
[G =1
e S BRSPS RN T ey LA
. s . <3.38 ¥) ' 2.5 ¥ Sip =AY ' '
L1_3- SRR ! 3 : i) T AR is) 5
. 8 ’ 1} 1
| 56 L S
S 4- 1
- & 3 ' - \) 1 S S F) ’ Lt g Fon | ;. i | 4
Lj.’.'_] ! ot r;: ' . ', s ‘. R) o
| § 40 - {
| & Jawm ' »
| . L0 '
| t3a; £ h el T s
i ™3 'v ey]
Lt 11 L > '
ey en Y 1 FPEY S sy R v y
- 0 & ol e 4 b / .
fas™ . dunf e, '
kol L
3 e | | A
[Gt Pl W . o '
[e Y y ! ’ V3. \ el i e p O o By T | . TV oy 1 2 o o 1t G = r
I Rt .f..,l i H ((1 ’ S e o e ,\7’.-‘ SRR
f [, g1
1" =4

It stores the information in the form of arrays LEXICON, RULES,
LEN, CUM. 1In order to save spacc the user has been restricted
! to at most 15 words, 9 variables, and 5 rewriting rules for each

variable. If this ls not enough the statements [1], [9], (101,

and [12] should be changed accordingly. The initial variable

15 the one labelled 1.

.

i it i

After calling SETUP execution of the function REWRITE

will generate one pgrammatical string named STRING according to

the model STRING is a lexical vector, but if one needs a

numerical vector this is casily obtained by the statement

LEXICON 1 STRIN

resulting in a vector of the same length but with each word

replaced by the number of it in the LEXICON.

VAR N Bl

1 dne Ll At
(2 RLT o Tep ST
[SR B TR GG YANTE ARLES
[u >(0 f‘//,f,"", FRED
5 >0

fi RS o Pl S EEE

YA i A

<~

VARTEDP Xk [(A =VARLTARLEY JA IV
s ST AR

oot~ SO R A T IR TR S S

Lo ¥ e B ¥ W

0 REHIRNL 3 1<4F 6%x21000000
i l SRS ‘Y./ che=n lrl-’-'l"‘[- WVkiAl IID iy o .,’-’j.:."; i\ [11“.‘/’”‘, Ve T Zr.."f'l..,j _,!
¥y 6 "”rl NG NE I B =) B TG 0 R G T RAR e = TR
e ==Lt
\’

The functlon ACCEPT takes an input string SEN as an
alphabetic vector. The result Z-is 1 or 0 according to whether

the string SEN 13 psrammatical or not.

W) eV NV vevina gepve
’ »‘/u R 104
.y o ey
TIE s g
r""."'

_-.__,
X

/l]l1 gy el 1"",IV.-';.'ln,llluvr(‘ﬂnl it ;/f . I.}

e $ S 1 p
el m0) JALD

>(0=p30) /AL

-
. . R Y \ sy
el Ll e L S

i

/

L

£7)

e >0

|, ALY s> (n=plRNYIALS
B 0 o TS

2Ll -0

LITE AT yeied

o
-

It uses an array MATRIX whose rows are the numbers (in LEXICON)

of the words and whose columns are the states 1,2,3,.:. 1
necessary increascd with additional states as described in the
text. The entrles are the next state where 0 stands for the

final state. The automaton in Figure 2.1 for example would have

AR AR
MATRIX =

I =

T (e U R
o o

\./J .

(1o}
‘ 1
(@)
%)
)
=
.Ll.
©
o

(0]
=
o
o
fe)
'J
o
)
u

The function TABULA sets up one sin

1o
(@)
t-{
=
(%)
2
b
F‘
}}
ol
fo
<
6}
s
O
(@]
t{

and some selectcsd variadbles. The matri
number: of celumns = n ...

VOPARULA

[CU<0, ((1DYo 2D)t xIite]
RN COL<=CiI TN+]

il V<1

L] CLASS<=(1,0C0L)p 1

(sl

Shd et

The function LINGUA has one argument MORE = number of
addltional sentences to be generated and presented 5o the listencr.
It uses the subroutines CODE which takes the number of the
substring and produces the substring and DECODZ which is the
inverse function, both for substring in the form of numerical

vectors. -

e SRS SR KT

b At

ra
A2

v Cd«CODE X

R R E ST e X P
! CX=Ae (DR T A l=000 D

WAERECORE X
i s i AR R PRI)

LINGUA prints out each sentence heard ané calls the comparison

function TEST.

Y LINGUA MORE
{13 T+1
[2] LL1:REWRITE
[3] STRING
(u] SENT«LEXICON\STRING
£s] TAKE+1
[6) LL2:BEGIN+«,SENTL\TAKE]
[7] V«DECODFE BEGIN
(8] SEL«CLASSLCLASSL ;VI/\LV;]
(9] SET«SET(1;)/A\HNCOL
{10] TESTV<«SETL ?(pSET)L1]]
18] TESE
[12)] TAKE+TAKE+1
[13] +(TAKESDlpSENT)/LL?2 5
f1u4] 7T<«r+1 |
[15])] TAKE<1 .
[16)] Tor«<r0r+1
[17) (. <SMORE)/LL:

TEST prints out each decision to introduce a new class,'the
substrilng correspondlng to it, the sentence number when it
occurred, and the sentence itself.
Aftverwards typing CLASS will prirt out the CLASS array
which tells us how the classes that have becen established up
ti1ll.now are composed from substrings. This will enabdlc us to

€aslly reconstruct the corresponding rvewritinz rules and the

o

' 2
A : = 6

wiring diagram of the finite state automaton that generates the

lanpuage as it has been learnt up till now.
guag p

v TEST

f11] U+«CODE TESTV

(2] YES«ACCEPT LEXICON[U,TAKEYSENT)
(3] +YES/O0

[u] COMP+,(CLASS(;V])=0)/"\LV

(5] TL1:+(0=pCOMP)/TL?2

(6] ROW«(CLASSLCOMPL1]);]))/\NCOL

7l ROW+«ROW[?2pROW] i
(8] TESTW<CODE FROw[1]

9] +(~ACCEPT LEXICON[LTESIW,TAKEYSENT])/TL3

£10] CLASSL(CLASSL;V]=1)/\LV;V]+0

F11)] CLASSLCOMP[1]:V]+1

f12] =0

131 TL2:CLASSL(CLASSL ;V])=1)/1LV;V]+0

T1u] LV+LV+1 ;

[15]) 'NEW VARIABLE ',LEXICON[BEGIN],' CREATED AT SENTENCE 0lO. ';TOT:;'= ',STRING
i16] CLASS«(LV,NCOL)p(.,CLASS),V=1NCOL

.17] =0
18) TL3:CO0MP+14COMP
£19] -»TL1]

v

27

Reference
et s BMLR

U. Grenander (1966): Can we look inside an unreliable automaton?

Pestschrift for J. Neyman. John Wiley

¥ Sons, New York.

