
Ao—Ao53 246 TALE *111W PEW HAVEN CONN DEPT OF COMPUTER SCIENCt 
—- 

F’b liFt
TIE CO*I.EXITT OF WORD AND ISOMORPHISM PROBLEMS FOR FINITE GROU—-ETC(U)
MAR 77 R J LIPTON . I SNYDER. V ZALCSTEIN N000i ’4—75—C—0752

UNCLASSIFIED RR—91 Pt

• U



1.0 :~‘~ ~
________ ~Ii22.I._. 

136 IIII~~~~

I. ’ 
1 2~O

• IIIl)~• I1~l ‘ .25 IIIII~•~ iiiii~
MICROCOPY RESOLUTION TES I CHAR T

N I ( ~NAI A UR~AU o c ~~ $



____ 
-

~~~~~~~~ 
-. 

- - - -

t~1~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

p. -rjj py ~Y M . ~LE T~ ~~ 5’
~~~~~~~~~~~~~~~~~~ i~ai L... -

~~~~ 
- 

~~~~~~~~~~~~~~~~~~~~~~~~~

‘ j~\ ~~~~~ _._

YALE UNIVERSITY \~~~—
- 

. .

~~

DEPARTMENT OF COMPUTER SCIEN CE



/

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY
PRACTICABLE. THE COPY FURNISHED
TO DDC CONTAINED A SIGNIFI CANT
NUMBER OF PAGES WHICH DO NOT

REPRODUCE LEGIBLY. 



~r~--~~ ~~~~~~~~~~~~~~~~~~~~~_ _•  ~~~~ - -~~~~~~~~~~~~~~~~~~~~~ --

- ‘. - ~~~~~~~~~ ~)
a

• .•~~~ k e_ - • 
‘• - - - -•

\ t” ~~~\ :•. - .•
~~~~~\~ \~ • • 1~ 

-

~~~~~

\~
The Complexity of Word and Isomorphism Problems

for Finite Groups

(Preliminary Report)

R. J. Lipton,t L. Snyder,
t and Y. Zalcstein~~

Research Report #91

Department of Computer Science, Yale University, New Haven, Connecticut
06520. Supported in part by ONR Grant N00014—75—C—0752.

Computer Science Department, State University of New York, Stony Brook ,
New York 11794. Supported in part by NSF Grant DCR—75—01998. 



l!s~. r”m~’[e~ ity  of Word ond 1’.oTorp tIi~.m Problems for rinite Croups
(I’rt.l t~- iit ~ ary Report)

t 4 ‘PR. J. l .lV t O ’ , I.. S~lY1)l R . and Y . ZALCSTEIN

1. 1 %TIfth1~ Tl  i

In t h i s  pape r we be~~lii ~* -.tu.ly of t he  c o m p l e x i t y  of the word and tsmorphtsm problems [or
f inite groups. iIt~r~ arc ~.eve•’ral s p e ci f ic  r~~i.~i~ns fur ~.tudying these questions:

(1) Both wor~l and I~ ms ’r lii~;m pr ’ht~’ms h~~c i’r.Ictica] interest. Such diverse areas as che~ tstry
.Ini ! I lIe tlie.’r; I ) !  ~ fop I t  ro%Ip~ requl re the so I or Ion of these problems .

(2) SInce w o rd prolilir:; ace  eio ;e.Iy re l4 te d  LU qu es tions of language recognition , insig ht into
t hen sh. ’uld aid in und ersta ndin g recognit ion proble ms.

~,
3) lsen.it,rpliis: i pr~~i I4 i i ~ b r  gr..u1’s arc Interesting in that they are related to the well known

qu est le’ii of E rap!, I s,i rIOrI~II f ~~IIl

Thus • t i te r , ’ I.. iuI I I.. I ~ iit m~’i. I vat i ~in tot  stud y ing t he comp lexity of finite groups. The rest of t ilts
p;sper •‘IlL.I i g’ :; an i’ll I I:~ ’ i,I nor i::.I in r es u l t s .

th ,r nuth ’ I ot e,mII’lIt.lLIoiI is the we,ll known model of multitape deterministic Turing ~athtnesIi) . i:.~ w i l l  he Ititerestecl in both the Inc and the space requirements of our algorithms .

A 4er ~~)ef)I olti .iit Our t~l~o t c e  oI in~ de I is in order. Indeed a rcason;ihlt’ quest ion appears to be:
- why l,,’I ir’,e’ .1 r;j, iij. ’ia .o~~~~~ s cni:i;~e,t e r  rat  h e r  t han [o r fn ~ machines? ThL~ r:a in reason is that 411 the

word pr. .t~ I ~ .~0n, 1 4 1 4 * 4  I t~ ic • ..l I4I hen be lit ne ii If near I ire (on .1 random acce ss computer)
r i t  I .  I ~. .i v . i . i ~ ~ t i~~, r~~.u it  . I or Ye rv I a r~~c groups —— the kind currently beIng hand led in a

a.~~hs’r ml a~’ph Ie.it ions —— It Is mA ~ leading to a 1 low random access to the very lar~ c group mutt [p it —
rat h.n i .,I.I. -’ . • 11s I lie 0th. r hand , r io  in~~ iu.tci, t nt-  cha rg e  a proper amount for each random access.
~nr.s, q,u-n t I v • our r, .s I I t prt’v I eh a more a c e t i  rat . e at. ( olin ring of costs .

2. I’Ifl~9 IK~)Iit.EflS

;, .
~ ~on’~f .I, r i lit: mo re ge neral prtthlen of e’v~ lujt Ion of words in some grnupoid 14 1.

•5~’c Jy Sc ~~i iIiIti’ Iii ii v~’ .Ire ’ ~~t~~t i *  .iii lI)~~Ut tape in the form

hi~ • .  .H W 1 .. • W k

~~~ i, K
1
. . .1; r. pi ~~Min he ii ~ n niti I t  1 p1 I ra t ion tab Ic for the grotipo ids binary operat ion 0 ~tt~

V1.. .W~ Ire I. e1eu. -~its Ir.,n th e greupo id to be mult ip l ied from left , to right. Note each element
.( tlw 1,f.”~pei*J us,,e log ii space; t he  entire input tape takes

1’ 11
2 lo~j  n + k log n

lie vi ’-Ji 1* ~et i i J y  (l ie’ (line required to cnmput.~ W
1
0. . .OWk .  Our main resul t  is:

.l~~ 1. • - :  T h e  eV.i Iti.it ion of W 10
, . .OW~ L I f l  1)4, done in

( I)  4t(I ~~) in iii . i r h i h t . i r y  gri~iipi’id;
(7) UI I l i ty ~~1) In  in a n ’  it  v a r y  s e m i  gro up
(1) s’( I 1.’ .~ 1) II) .ifl irhi l LI II) ihici I iii gi 01.11) .

fs.m,-ni t i f  lv hi.  $lH’dv e’rI ,I4’monst rates Iui’w a1 ;~cbr.i S c  i;t i-u~-t u r c  can be tised t o  decr ease the co~~ Ie*ii ~vt I h,e word preit len. hi order ( i i  vv a lu o t e  W 10.. .OWk the multiplication table must be repeatedly

~~~~~~~~ t 5 o t - ~ I t t, .ib. . ’j e • I hi. . ’ i t ’i~i (letit ’ IIst r . t t c s  LliaL ~‘e can org anize our accesses to th is table in a

~~~~ ef I 1.-b i t  I,.lnH.’r .is V1’rt’  ‘it ru.’t ilrc I ~ P1ar~cl on th e table . In th is teg.ird notc that O(1~ ) for
an sti.1s f . t~ ~ t .s ,si,$ i orre’ p ’njs to k sca ns iie~r~’~is Lht, t ab le , i .e.  no aece’eses are avoided 5

ø~~ vIli ~kei Ii (l ie pro of s o F (2) au* et (3) In some detai l .

- — • 
I~•’ v ~ I I n- ‘v P •~~ lu’, it’  g. -t 0(1 1 ,:2 l)  Iii an a i-b It rary se’i~I prc ~up . The prese nce of th

$ 
~~p.us~~nt of Ci,oput..r %iicnce’, Yn le I~n1vcrsity , New Haven , Connecticut 06S20. Supported to part
I? •~ ~~~~~~~~~~ ~~~~~~~~~
4~~~p’r,t -t ~~~i ’flre I’d ’ itI~~ o h  • ~~t I t v  I’ii lve r~~lLy  of New York , Stony fl rtiok , New ~‘ork )I?9~.
*u~r~,et 1, 5 in rirt l~j  ~~ F gi- • i i* L 1,t’ K— 7 ‘~—Ui9’i8.
~ ‘.~~ She 11P. t,’ i uS I! .$s tab le.
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assnclatj ’,e j .aw allows us to perform many products in “paral lel”, i.e. we can avoid costly repeated
scans of the n~n multiplication table . The algorithm procedes as follows : (we assume that k is a
power of 2 with at most a cost of 2)

(a) Form the pairs (W 1,W 2 )..
(b) Sort the pairs into (x1,x2).. .(x .~~l,

xk) such that (x 1, x1 ) precedes (X j . x
j

) iff i1<~ 1 or

iji 2~~2
Cc) In one scan through the nxn table petform all these k/2 products to form z1..
(d) Now “unsort ” z1. . . zk/2 so that we obtain W10W2 . . .W k_ lOWk. We can do this just by keeping a

tag along with the pairs (%11,W2). . . (Wk l
Wk) and using a stable sort [3J.

Ce) It k/2>l , then recursively call (a); otherwise halt.

The time for this algorithm is:
- (a) and (b) can be done in O(k log k log n)

(c) is 0(n2 log n)
Cd) is 0(k lag k log i-i)
(e) we recursively call log it times .

Thus the algorithm runs in at most g log2k log n time ; it is therefore bounded by 0(1 log2T).

We next will show how •to get 0(1 log T) for an arbitrary abelian group . The algorithm
depends on some nontrivial but elementary group theory , and is considerably more involved than the
semigroup case so only a sketch of the construction Is presented . Part (a) forms the generators
using Lagrange ’s theorem to bound the iterations. In (b) the group elements are represented using
the generators and Cc) computes the product.

a. First we construct the group generators x ,...,x from the R .. .R table. We use Lagrange ’s1 ~
theorem to guarentee that m ~ log n. The procedure will be iterated and at stage j, will be a

table containing those elements not yet included in generated , (initially, K1 contains all groupelements in group order.)

Stage j:
Ci )  Select X

j 
the first non—identity element of M~.

(ii) Find the x . row in the R1. . .R~ table and call it R~.

(iii) Construct the j t h  coset table. The structure of this table is as follows.

The first entries are ~~~~~~~~~ ~~~~ which may be easily computed using only the row R~ .
Each of these is marked in H~. The next unmarked element , y of is the coset leader in the next

sequence of entries y,yx ,yx2,... ~~
r—l which can be computed wholly In R

3
. These elements are also

marked . This continues until all elements of are marked . The table is formed from the

cosct leaders of this stage and the proc’edure continues to stage ~j+l with in group order. The
result of all stages is shown in figure 1.

2 r 2 r1 x 1 x1 . . .  x1 y1 y1x1 y1x 1 ... y~x~

~2 ~2~ 1 
... y2x~ stage I

2 ryu Y~
x1 Yux1 ... yux I

2 s 2 $1 y 1 y1 ... y1 w1 w1y1 w1y1 . . .  w
1y1

w2 w2y1 w2y~ . . .  w2y7 stage 2

2 a
W
V 

W~~~1 
w~y1 ...

1 z1 ... } stage m -

Figure 1. Data structure produced by stage a(iii).
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b. In this ste -p we construct, the generator representation for the group elements. The data
structure of Figure 1 is somewhat over simplified in that we need to save more information than

simply the’ yx~ entries. We suppose that the actual entry is a triple yx t ,y,t> called a descriptor
with the fii ~~,t field c~ l le d th~ element tie-I d and the second field called the leader field. We keep
an auxil iar y ta pe t,u contal t i  the generator representation . Clearly n records of log n fields each
of at most lug n bits are required to hold the exponents for each generator of each group element.

Ltera ti~~~A: The stage 2 portIon of fIgure 1 is sorted into group order by the element field of
their des.~ripti5ir . This results in the representation of the coset leaders of stage 1 being ordered
in the artier that the coset leaders are given in stage 1. The elements of stage 1 are now
transferred to the a u x i l ia r y  tape with the coset leaders of each entry replaced by their stage 2
repr esent -it Ion . This c iii h~ done lie one scan of stage I by sequencing through the stage 1 and
sorted stage 2 tabLes in unison. The result is that all group elements are given in terms of 2
generators. To complete this stage the auxiliary tape is resorted into group order on the leader
field of the de-sc rip t iou .

I terat ion e: The t+i entries of Figure 1 are  sorted Into group order by the elemen t field of the
desc r ipt o r .  i hi: re-pie-se ut it leill cit th~ COset  leaders of each entry on the auxiliary tape are
changed iii a s i n~~ ie ~ c.ln to ri- fLeet their representation given by stage ~+l. The auxiliary tape is
resorted on I lie leader f i e l d  of t h e descriptor.

c. The resul t  of part b yields the generator representation of the group elements. In this part we
• pr tduce thi- pre)dtlct. First we reduce W

1.. .
W.,~ to a product of group elements raised to powers, i.e.

e 1 ~~X
1 

X
2 

. . . X .
Now we use- Lii generator representation of the x1’s to produce the product. An m field workspace is
use d with th e- jth field containing the I resent power of the jth generator. In a sequential scan of
the auxil iary tape- th~ repie senta titin of x j  is fo und , its generator exponents multipUed by C j  and
the res u lts added t~ the workspace. The size of each workspace position is bounded by the order of
the- element. Finally, one last scan through the auxiliary tape will locate the desired result. -

For ti m ing we’ re- call that the number of generators is m � log n. The dominant term in the
computation is sort required in (c) to collect the W

1
. . .W

k into powers which counts it log it log n.

3. ISOMOR l’iii I }‘ROItI.EMS

S e e ouch , we- wi ll eoustd~ r the Isoniorphism of finite groups. Our first result is

Thoar ~- ’:  l iii- lsomarp hi is m probl em for groups can he solved in polylogspace, i.e. it can be solved in

log2 I (c Es a constant) space wh ere T Is the length of the input tape that encodes the multiplt—
cat Ion tables eel the two groups.

il i ls re-~ uit t (a lso  et si rved independ ently by Cary Miller and M. 0. Rabin) shows tha t if this
isolnorphisI iiruhte ~ni was NI’—ccunplt’te (2], th en all of NP would be in polyspace. This Is therefore
on i~ plt ’ce eti cv j de i i~ e t h a t  it may not he NI’— conipl etc .

Our Se’ Ofl,I restil t is

Thcor.-”t: The’ is”mc ’rphi ism b r  finite abell’in groups can be solved in polynomial time.

t h i s  res u lt re -L i e ’ s  h ie- av i ly ,  of course , on t hee fundamental theorem of abelian groups ( 4 1.
Ke’l ’ro s L it  t ug our final result we need one definition. Let G

k be the class of all groups

tha t can ho gcne-rate’d by sets with cardinality at most k. For an interesting class of gr ups in C2
w e n f l te ’  I Ii. t d c c i ’  Cliii h e r  t t ire of Lroup theory states that all sinple groups are in G2 .
Thi uz~~’t: ‘fh~ lsc’morp lilsui problem (or groups in C

it (it fixed ) is in nondeterministic and hance

polynomial tin ,’. Moreover , it is in detei-ministlc logspace provided deterministic logspae e equals-
nouijeterunjll l !;t ic logepace.

RE I i-:I:i:NcKS , 
-

(3) J. Hop er c~tt and .1. tlll,nan. rrn~ l La’z ut:~,ea and Theft’ Relation to Automata. Addison—Wesley , 1969.
121 R. Karp. K~’dii~- Ihi t h t t y  among c~~ b inatoriat problems iii R. Miller and .1. Thatcher editors ,

(~~P’~~i . J ?~~ 
:‘ (‘

~~ -- ~: ~~
‘. g ’ ‘ ‘ -,-~j ’ :~ t . : t  ‘~~~~~~~ . Pl~ num Prcss , 1912.

13) (1. Kn it I,. .;: ,lt’t .~f 
- 

~ ‘ e ~~~’ ’  P1a~/12,’:,:fnJ, (‘il. i i  r. Addison—Wesley, 1973.
(4) J. Rei titian. -

. e. ’ t ’ -~c ’ : ’y of G:.oupa: 1l~i isti ’u j u.~f i o n . A l ly n  and Bacon , second editIon , 3973.
(SJ C. MtlI e ’t, i’rlvi te’ comiii ii ,le -a tion .

35 

~~~i _ I____ __
~

_: _ _
~~~~~~~ 



~~~~—~~~— -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ :: _
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- ‘ - - - ‘ - ,
~~~~~~~~

SECURITY C LA SSiF i CA 1 ’ C D M  Or T~~lS ~~~~~ fWh.n ~~ae a EnIared)

~~~~~~~~~ ~~ I~~~~A~~~~I I ~~ ~~ READ ~NS1RUCT!ONSr~crvrc i uu~.t,McN I 1~ I IVI~ ~‘ BEFORE COMPLETING FOR~.I
I. R IEfl — 2. GOVT ACCE~~~ION ~ o, 3 R NT ’S  C A T A L O G  NUMBER

~~~~~
rRR~~9lJ 1 _~ 

-

~~~~~~~~~~~ 

~. rrve i—uis-e~~m::_; 5 OF RFPnBT S PERiOD COVERED

The ~~omplexity of word and isomorphism ,problems I
for finite groups ; — . . - j Technical #

_________ - J s ‘- tra. ~~~~~~~~~~~~~

p. 
~~‘M~ J —

~~~~~~~~ 
A c- r ’eu r a L r T nR r . a . & M Tj~ M~~ER(a)

C Richard J. /4~ipton ~~]

- 

- “1 LawI~ence/Snyder ..- ‘,i - 
‘—_

~~
‘ 

~$~14-75-c-Ø752,,

L 
Y./Zalcs~~in J ~~ ~4 . ~~~4~~7ff

S~~ PE~~FORMING O R GA N t Z A T I O N  NAME AND ADDRESS 
— lvT— ,-pcp , AM CLEMtN T~ ~ !. ~~~~b WORK UNIT NUMBERS

- Yale University /
Department of Computer Science
10 HilThouse Ave New Haven. m’ 06520 / 

-

U. CONTROLL iNG OFFICE NAME AND ADDRESS 12. RFPORT Oft. 1411ROffice of Naval Research -.e~n
Information Systems Program 13. NUMBER 0 AO~~~

Arlington, Virginia 22217 _____________________________
14. MO N IT O R I N G A G E N CY  NAME & AODRESS(If differ.n I from ControIitná Office) IS. SECURITY CLASS.  (of this repo rt )

/ Unclassified
• *5.. DECLASSI FICATION D0W~4GRA3iNG

I I - SCHEDULE

IS. DISTRIBUTION STATEMENT (of this Report)

Distribution of this report is unlimited

I?. DISTRIBUTION STATEMENT (at lb. abstract entered In Block 20. if differen t from Repo r t)

IS, SUPPLEMENTARY NOTES 

- 

-

IS. KEY WO RDS (Continue en r.v.ra• side II n.c...ary end identify by block number)

finite groups ‘ 

- -

isomorphism .- 
- 

.

word problem ‘ -

complexity
- algebraic structure

_ Z0.., ,A. BS~~~&~~~CT (Couia nu. on revere. aide if n.caaaary end identify by block number) -

.—‘~rhe uniform word problem for f inite groups p~~ sented by their multipl-i-
cation t,~~ 1es is considered . Upper bounds of O t]ç,2) far arbitrary group and

• 0( n ~~~ 2 n’~ for arbitrary semigroup and O(n log n) for - abelian groups are
shown ~ T~ere n is the length of the presentation . .

DD I J A N 73 1473 EDITION OF I NOV 6S IS OBSO L ETE

S E C U R I T Y  CLAS SIFICATION OF THIS PAGE (N3,•n ).ta n rer~)

~~~~ IJ±1


