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R. J. LIPIOXN, L. SNYGER, and Y. ZALCSTEIN

1. INTRODUCT 10N

In this paper we begin a study of the complexity of the word and ismorphism problems for
finfre proups. There are several specific reasons for studying these questions:

(i) Both word and ismorphism problems have practical interest. Such diverse areas as chemistry
and the theory ot simple groups require the solution of these problems.

(1) Since word problems are closely related Lo questions of language recognition, insight into
them should ald in understanding recognition problems.

(3) Isoworphism probleies for groups are interesting in that they are related to the well known
question of graph isomorphism [5].

Thus, there is sufficicnt motivation tor studying the complexity of finite groups. The rest of this
Paper eomtains an vatline of our main resules.

Our model of computation is the well known model of multitape deterministic Turing machines
[1). e will be intercsted dn both the time and the space requirements of our algorithms.

A conment about our choice of modi:l is in order. Indeed a reasonable question appears to be:
s why not ese a random aceess conpater rather than luring machines? The main reason is that all che
vord probleis consnddercd here coudd then be done in linear time (on o random access computer).
Pogever thin is a pislonding resalt.  lor very large groups -=- the kind currently being handled in a
pmber of applications == it is misleading to allow random access to the very larpe group multipli-
cation tables.  On the other hand, Turing machines charge a proper amount for cach random access.
Conscyuent Iy, our result provide g more accurate accounting of costs.

2. WORD PEOBLEMS

Let ws comsdder the more general problem of evaluation of words in some groupoid [4]. More
exactly woe assume that we are given an input tape in the form

Nl...R" wl...wk

vhere u'...u" taplrwvn(n‘ the nsn multiplicatjon table for the groupoids binary operation © and
w,..,wk are b oelencats from the groupoid to be multiplied from left to right. Note each elemeat

of the gprogpoid uses Jop n space; the entlire input tape takes

T = n2 log n 4+ k log n
space. We wish to study the time required to compute ulo...owk. Our mafn result {s:

dreorer s The evaluation of NIO.. .nwk can be done in

(83 9‘17) in an arbitary groupoid;
’
(2) 001 Yoy~ 1) An an arbitrary semigroup;
€V 0¥ 3o 1) dnoan arbitrary abelian group.

Eesentbally ihis theorem demonstrates how algebrale structure can be used to decrease the complexity

of the woed problen.  ln order to evaluate w’o...wk the multiplication table must be repeatedly

acvesoed, Bhos the above theoren demonstrates that we can organize our accesses to this table in a

more elficient wmner as nore structure Is placed on the table. In this regard note that 0(?2) for
an ashitraty gronpold corresponds to k scans across the table, {.e. no accesses are avoided.

We v Wil sketeh the proofs of (2) and (3) in some detail.
Ker will o show how to pet O(T qu?T) in an arbitrary semigroup. The presence of the

-
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associatiw law allows us to perform many products in "parallel", i.e. we can avoid costly repeated
scans of the nxn multiplication table. The algorithm procedes as follows: (we assume.that k is a
power of 2 with at most a cost of 2)

(a) Form the pairs (wl.uz)...(wk_l.wk).
(b) Sort the pairs into (xl.xz)...(xk_l.xk) such that (xil'xiz) precedes (le.sz) if€ 11<11 or
(1,=j, and 1,-j,).
p 3 2 72 .
(c) In one scan through the nxn table perform all these k/2 products to form Z)eeaZy gt

(d) Now "unsort" z so that we obtain Hlowz...wk_lowk. We can do this just by keeping a

1°°"%k/2

tag along with the pairs (Hl,wz)...( wk) and using a stable sort [3].

W
k-1,
(e) 1f k/2>1, then recursively call (a); otherwise halt. [
The time for this algorithm is:
" (a) and (b) can be done in O(k log k log n)

(c) is O(n2 log n)
(d) is 0(k log k log n)
(e) we recursively call log k times.

Thus the algorithm runs in at most k logzk log n time; it is therefore bounded by'O(T long).

We next will show how ‘to get O(T log T) for an arbitrary abelian group. The algorithm
depends on some nontrivial but elementary group theory, and is considerably more involved than the
semigroup case so only a sketch of the construction is presented. Part (a) forms the generators
using Lagrange's theorem to bound the iterations. In (b) the group elements are represented using
the generators and (c) computes the product.

a. First we construct the group generators x o, from the Rl"'Rn table. We use Lagrange's

gy e
theorem to guarentee that m € log n. The procedure will be iterated and at stage j, Mj will be a

table containing those elements not yet included in generated, (initially, Hl contains all group
elements in group order.)

Stage j:
(i) Select Xy the first non-identity element of ”j‘
(11) Find the xj row in the Rl"'Rj table and call it Rj'

(111) Construct the jth coset table. The structure of this table is as follows.
r-1 "
B
Each of these is marked in Mj' The next unmarked element, y of Mj
sequence of entries y,yx,yxz.....yx"_1 which can be computed wholly in Rj‘ These elements are also

which may be easily computed using only the row Rj' .

is the coset leader in the next

The first cntries are l.xj,xi....,x

marked. This continues until all elements of M, are marked. The table M is formed from the

J i+l

coset leaders of this stage and the procedure continues to stage j+1 with M in group order. The

result of all stages is shown in figure 1. Ehe

55 2 r 2 r
1% % N ylxl Y%y oo ylxl
2 2

Yy Yo%y YoXgy see YoXg stage 1
x2 x:
Yu Yo*¥1 Yu*1 0t Y%y
1 2 S w, w w v2 w.ys
v ¥y ¥y o= 3y VRSP U
2 s

Vo Wa¥y Wp¥yp cer Wo¥y stage 2
wow w w.ys
v "1 YW1 ot M)

v t
1z, z] eeeo2g } stagem

Figure 1. Data structure produced by stage a(iii).
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b. In this step we construct the generator representation for the group elements. The data
structure of Figure | is somewhat over simplified in that we need to save more information than

simply the yx[ entries. We suppose that the actual entry is a triple <yxt.y.t> called a descriptor
with the first field called the element ficld and the second field called the leader field. We keep
an auxiliuary tape to contain the generator rcpresentation. Clearly n records of log n fields each
of at most log n bits arc required to hold the exponents for each generator of each group element.

Iteration 1: The stage 2 portion of figure 1 is sorted into group order by the element field of
their descriptior. This results in the representation of the coset leaders of stage 1 being ordered
in the order that the coset leaders are given in stage 1. 7The elements of stage 1 are now
transferred to the auxiliary tape with the coset leaders of each entry replaced by their stage 2
representation. This can be done in one scan of stage 1 by sequencing through the stage 1 and
sorted stuage 2 tables in unison. The result is that all group elements are given in terms of 2
generators. To complete this stage the auxiliary tape is resozted into group order on the leader
field of the description.

Iteration €: The €+1 entries of Figure 1 are sorted into group order by the element field of the
descriptor. The represcatation of the coset leaders of each entry on the auxiliary tape are
changed in a single scan to reflect their representation given by stage €+1. The auxiliary tape is
resorted on the leader ficld of the descriptor.

c. The result of part b yields the generator representation of the group elements. In this part we
produce the product. First we reduce wl...wk to a product of group elements raised to powers, i.e.
& XCZ “n

| 2 e X e

X

Now we use th: generator representation of the xy's to produce the product. An m field workspace is
used with the jth field containing the present power of the jth generator. In a sequential scan of
the auxiliary tape the representation of xy is found, its generator exponents multiplied by €y and

the results added to the workspace. The size of each workspace position is bounded by the order of
the element. Finally, one last scan through the auxiliary tape will locate the desired result.

For timing we recall that the number of gencrators is m < log n. The dominant term in the
computation is a sort required in (c) to collect the wl...uk into powers which counts k log k log n.

3. ISOMORPI'HISM PROBLEMS

Sccond, we will consider the isomorphism of finite groups. Our first result is

Theorim:  The isomorphism problem for groups can be solved in polylogspate, i.e. it can be solved in

c lo,-,2 T (c is a constant) space where T is the length of the input tape that encodes the multipli-~
catfon tables of the two groups.

This result (also observed independently by GCary Miller and M. 0. Rabin) shows that if this
{somarphism problem was NP-complete (2], then all of NP would be in polyspace. This is therefore
one plece of evidence that it may not be NP-complete,

Our second result is

Theorem:  The isomorphism tor finite abelian groups can be solved in polynomial time. :
Ihis result relies heavily, of course, on the fundamental theorem of abelian groups [4]. |
Before stating our final result we need vne definition. Let Gk be the class of all groups

that can be generated by sets with cardinality at most k. For an interesting class of groups in 02
we note that o deep conjecture of group theory states that all simple groups are in GZ'

Theorer: The isomovphism problem for groups in Gk (k fixed) 1s in nondeterministic and honce

polynomial time. Moreover, it is in deterministic logspace provided deterministic logspace equals:
nondeterministic logspace.
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