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EVALUATION CRITERIA FOR PROCESS SYNCHRONIZATION
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Abstract -- While there are bty now well-
established criteria for evaluating serial algo-
rithms, such as space and time measures, these
criteria cannot be readily applied to asynchron-
ous algoritims, We propose a method for the
evaluation of the performance of an asynchronous
algorithm. This method is based on the study of
delays that are often introduced when one solves
a synchronization problem., We then illustrate
this method by proving results about the efficien-
cy of various solutions to synchronization
problems.

1. Introduction

A central rproblem in computer science is that
of evaluating comreting algcrithms for the same
task. In tie cuse that the slgorithms are to be
executed sequentially, several evaluation criteria
are commenly used, First, it is easy to express
the idea that two algoritims "do the same thing"
by the requirement that they have the same input-
output behavior., Secondly, given that two algo-
rithms have the same input-output behavior, they
may be compared Ly considering the execution time
required, memory space required, numerical (or
other type of) stability and so on. By contrast
asynchronous algorithms cannot be evaluated so
easily, due to several important reasons.

First, asynchronous algorithms -- especially
those used in operating systems -- are not nec-
essarily supposed to halt. Indeed, considerabie
effort is often required to guarantee that they
do not halt, i.e, do not deadlock or crash.
Therefore, it ofter makes no sense to discuss the
input-output behavior of these asynchronous algo-
rithms, Thus it is not at all clear when two such
algorithms "do the same thing".

Another difficulty is that of measuring
efficiency. Simply countirg the number of steps

Part of this work was done while at IBM
Research Center at Yorktown Heights, and
part wac supported by ONR under Crant
_ Nooo1h-7%-C-0752,
() o "
upported, in part, by ONR under Grant
N0001k-75-C-0752.
("‘)Suppcrtcd, in part, by NSF Grant
DCR75-01998.
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required to accomplish a task does not reflect the
utilization of multiple processors. Are algo-
rithms requiring more steps -- which can be done
in parellel -- to be preferred over those requir-
ing fewer steps -- which cennot be done in
parallel? Similarly, algorithms requiring less
memory are not clearly superior if referencing
this memory causes processor interference.

Since we are mainly concerned with synchron-
ization, the questions of efficiency can be
stated as: How much overhead is required (and how
much is acceptable) to accomplish process synchron-
ization? Will the method we chose to solve our
synchronization problem cause delays or interfer-
ence wvhich are unacceptable?

In this paper we present a criterion for ev-
aluating asynchroncus algorithms, Rather than
attempt to assign atsolute measures of resource
utilizetion -- a task that may well be irmressible
to do in a useful way -- we define, relative to a
suitable measure of time, for each non-negative
integer k, a relation, simulatey between asynchron-
ous algorithms. For asynchronous algorithms Q end
P

Q simulatey P

will mean that there is a mapping from computa-
tions (state changes) in Q to computations 4n P,
This consideration of state changes avoids the
difficulty of non-halting algorithms not being
input-output comparable. The efficiency of this
correspondence (i.e. the amount of overhead Q
requires to accomplish the same effect as P} is
measured by the integer k. k measures how close-
ly the "parallelism" of Q and P are related. When
k = 0, Q uses multiprocessors as efficiently as P,
but as k + '.9 uses multiprocessors less and less
efficiently. Thus there will be a sequence of
relations

aimulateo, simulatel,...
which allow increasing freedom with a correspond-
ing decrease in efficiency.

2. The Model

We have used & more "program oriented" model
to study related problems ([5] - [8]). However,
experience has shown that, as far as the analysis
of synchronization is ccncerned, it is possible to
abstract the model further to the language theo-
retic one which we present below.
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The mcdel will ignore such issues as what
kind of language the algorithm is specified in,
how the actual scheduling is determined, and, most
importantly, how the algorithms are actually im-
plemented. These are, of course, important consid-
erations, but it is our contention that a study of
the logical implementation of asynchronous programs
is of prime importance,

Let £ be a finite set, Elements of I will be
thought of as actions (instructions or statements).
Informally, a computation is any sequence of
actions that respects the control flow of an
asynchronous program P (we assume fixed initial
values of all variables so that different sequences
represent true asynchronous behavior and are not
merely a reflection of different inputs to P).
Clearly, if x is a computetion, then so is any
prefix (initial subsequence) of x. We formalize
this notion as follows,

Definition: Let I be a finite non-empty set.
An asynchrorous program is a subset P of I¥, the
set of all sequences of elements of I, which is
closed under the operation of taking prefixes.
Elements cf I are called actions and elements of P
are called cemputations.

Definition: Let P ©I¥ be an asynchronous
program. A cost function i; a function c:£§ + N,
where ¥ is the set of non-negative integers which
is additive with respect to concatenation, i.e.
celxy) = clx) + c(y). Intuitively, c measures
"time",

Let P € EP be an asynchronous program and ¢
be a cost function. Define a delay function.

dcztg x Iy + NVU{=} by

dc(x,f) = min {c(y):yets and xyfeP}, where

dc(x,f) = » if there is no such y. If
e(x) = length (x) we will denote dc by d.

dc(x,t) measures the minimal amount of "time"
as measured vy c that must elapse befcre f can ex-
ecute following x. This quantity is important for
ceveral reasons. In a real time system, the value
of d_(x,f) may be critical to the correctness of
the system. Also, given additional structure in
the model, the delay furstion acts as & quantita-
tive measure of how well multiprocessors can be
utilized.

When comparing two asynchronous programs
P €18 and Q € I%, it is convenient to think of
one of them, say Q, as implementing the effect of
P by using more primitive operations. According
to this view, Q is the "compiled" or "macro
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expanded" version of P, One cen then consider a
mapping M from P to Q representing this compila-
tion process. In the model presented here, it will
be more convenient to consider the "inverse", say
h, of M, from Q to P. Thus a sequence of actions
ofB in Q will be the "expansion" of & single action

g€ in P. The action f will be considered to imple-
ment the action g wvhile a and B8 will be considered
as bookkeeping operations or overhead.

Our model also requires that h be a homo-
morphism which simply means that flow of control
in Q is a copy of the flow of control of P,

Formalizing the discussion above, we obtain
the following

Definition: Let Q and P be asynchronous
programs, i.e. Q & L'a and P € t; Then h is &
decoder from Q to P provided h is & string mor-
phism from ta into I, i.e., h(xy) = h(x)n(y) for
all x,y in ¥ and h(f) e U{r} for all fel) vhere
A is the empty string and h(Q) = P. t;zq is
called observabdle if h(f) # A, otherwise it is
called a bookkeering action.

We can now define simulatek.

Definition: Let Q and P be asynchrenous
programs over alphabets tQ and 2P respectively,

and let ¢ be a cost function on tQ' Then

Q simulate, P

provided that there is a decoder h fram Q to P such
that for all xeta and fcIQ, f observable,
h(x)h(f)eP implies dc(x,f) < k.

Intuitively, if, after a sequence of actionms
h(x), P is not "stopped" i.e. some action g may
proceed, then Q may be stopped at x but only
temporarily, in the sense that there is a bound k
on the amount of time, as measured by ¢, that must
elapse before the action f corresponding to g can
be "released". This is our measure of efficiency.

The smallest k such that Q simulatek P will

be denoted by delay (Q.P).

3. Examples and discussion

In this section we illustrate the preceding
definitions by examples from the literature. To
simplify the discussion, we will use a suggestive
informal notetion, as is commonly employed in
the synchronization literature. It should be
pointed out that the advantage of the abstract
definition of an asynchronous program is its con-
ceptual economy and aid in simplifying proofs.

For describing particular examples, a "program
oriented" notation is clearly preferable. This is
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quite analogous to the description of languages by
grammars.

Consider the following asynchronous programs
which we take as defining the semantics of the
"first reader-writer problem" of [1] (for a dis-
cussion of the semantics of synchronization prob-
lems see [S5], [6]).

reader-i (1 < i ¢ n) vriter
eyt P(s) 3: P(8]|n)
e read k: write
hg: V(s) 1: v(S|n)

vhere S is a global variable (semaphore) whose in-
itial value is n and P,V are Dijkstra's primitives,
vhile P(3|n), V(S|n) ere the generalizations of
these primitives [9]. P(S|n) is an indivisible
action of the form

when € >ndo S+ S -n

the assigmment S «+ S - n is executed only when
S > n, ctherwise, control is interrupted until
such time es S > n is satisfied. V(S|n) is an in-

divisible action of the form
vhen true do S+ S + n.

Each of the processes reader i and writer is

cyclic so that for example, J can proceed after
execution of ixl. Let us denote the set of compu-
tations of this program by P. For example,

€0, ¢ P, while Jc2 £ P.

1

Now let Q1 be the asynchronous program of
figure 1. This program corresponds to the solution

to the first reader-writer problem found in [1].
integer readcount; (initial value 0)
semaphore M,W; (initial value 1)

reader-i 1 <1i<n

A P(M)

Bi : readcount « readcount + 1
C, : if readcount = 1 then P(W)
I)i : V(M)

Ei : read

L P(M)

Gj : readcount « readcount -1
Hy if readcount = 0 then V(W)
Ii : V(M)

writer

J: P(W)

K : write Figure 1. First solution
L V(W) to reader-writer problem.

We will now study the relationship between Ql
and P. First let h be the mapping defined by:

h(Ci) =
h(Ei) =
h(Hi)
n(J)
h(K) =
(L) = 1

h(X) = A for all other actions X.

i

c
e
ot
J
X

It is not difficult to verify that h(Q) = P. For
instance the computation

A,B,C4D,A,B,CD,

maps under h to ¢ Cp-
We wish to measure the efficiency of this
solution, First, we claim that for the given de -
coder h, Q, simulate, P implies k> 3. To see
this, take x = A.B.C, and f = C2, then the short-

1711
est y such that xyfeQ is D.A 32, which exits from

the critical section of retdir-l restores the sem-
aphore M to 1 and then enters the critical section
A,-D, of reader-2. Thus d(x,f) = 3, while
h(x)n(f) = ¢, 6P, Ey & straightforward anelysis
of cases, based on the observation that one need
execute at most three actions between two "succes-
sive" observables, it follows that, for this de-
coder, k < 3. Next, we claim that under no de-
coder hl' can either A1 or Bi be observeble
actions. Assume the contrary and let hI(Ai) = oy
Since A;JeQ and since clearly hl(J) =3,
h(AlJ) = h(Al)h(J) =c,d ¢ P, which {s & contra-
diction since h meps computations into computationms.
Sinilarly, h,(B,) # c,. Thus either n,(Cy) = ey
for all i and ve can argue as before that k » 3,
or, for some i, hl(Di) = ¢y, but, in the latter
case d(A, Di) = IAiaiciI = 3 s0 k > 3 in all cases,
Hence delay (QI,P) . 3,

Thus Ql introduces new delays, but delay
(QPP) is fixed, independently of the number n of
readers,

Let us now compare Ql with an alternative

solution, Q?, represented in figure 2,
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8. =28 =8 = i

5 > = 1 initially

reader i 1<1i<n writer

0 . 3] . S

o P(S)) Iy P(s,)

. hi: read Jn: P(Sn)

Hy v(si) K: vrite
Ll: V(Sl)
L I(Sn)

Figure 2. Second solution to reader-writer

problem.

Clearly any decoder h from Q2 to P will have
to map h(Ci) = ¢y h(Ei) =e, h(Hi) = h, and
h(K) = k. If h(J;) =], i #1, then for x =J,
and f = C,, d(x,f) = n + 1 and h(xf) = c,€P, vhile
if h(Jl) =j,forx=J,and f=C,, d(x,f) =
n + 1. Thus delay (22.?) 2n + 1.

Thus Q2 introduces delays that are unbounded
a3 a function of the number of readers present.
lherefore, delay (Q,P) is a quantitative measure
of efficiency which agrees with the intuition that
;1 is a better solution than QZ'

The atove differences become even more inter-
esting if we allow different cost functions.

For example, we may want to use a weighted
length function c¢. Observing that most of the
time is actually spent in the "read" and "write"
sections of the program, we may assign to the
"read" and "write" actions weight t > 1 while all

other actions in Qi and P get assigned weight 1.

With respect to this cost function, delay
(Ql,P) is still 3. However, delay (Q2,P) >n+t
since for the above values of x and f, the program
has to go through the "write" section in order to
release the reader.

li. Existence Theorems

In this section we give proofs of various

cimulation results concerning Dijkstra's P and V

rrimitives,

in our previous work [5], [6], [8], we have
shown that with respect to a suitable notion of

"simuiate". FV systems are too weak and cannot
simulate even rather simple synchronization prob-
lems. Many readers of our work objected to "sim-
ulate" as being too strong, tased on the intuitive
feeling that PV is "universal". Using the "simu-
latek" relation, we now show that PV is "universal"
in the sense that for any asynchronous program P,

Q such that Q simula".ek 2
However, k grows unboundedly as a

function of the size of P.

there is a PV program

for some k.

In the following, we will use the when...do
notation introduced in [5]:

vwhen B8 do ©

where B is a predicate and O is a statement means
that O is executed only if B is true. Otherwise,
control is interrupted until such time as B is
true.

Definition: A PV asyrchronousprogram is an asyn-
chronous program P such that there is a distin-
guished subset_4 of the program variables (the
elements of,l are called semaphores) which can
only be used bty actions of the form P(S) or

v(3), S eA, ([2]) where

P(s) is when S>0do S+ € -1 and
V(S) is when true do S+ S + 1
Theorem 1. For every asynchronous program P,

there exists a non-recative integer k and apbv

asynchronous program § cuch that Q s‘.mulatel P,
with length as cost function.

Proof. Let P be an asynchronous program and sup-
pose P consists of n actions of the form

do ©

(}) when B1 1

(n) when Bn do Gn

We construct Q as an asynchronous program
containing n + 1 processes, where the first n are
constructed from the n actions of P and the
n + 1 -st is a "monitor". Tre monitor can act-
ually be incorporated into the individual process-
es, but its isclation as a separate processes en-
hances the efficiency and readability of the
program.

For the i-th action of P, construct the
following process in Q:
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process-i

(1) L;: P(s,)

(2) P(S)

(3) vew+l

(L) if v = np then V(E)
(5) v(s)

(6) P(E)

(1) if ok = 1 then

(8) 8,

(9) ok + 0
(10) wew=1

(11) e if w > 0 then V(E)-
(12) else V(M)
(13) goto Ly;

Where S is a mutual exclusion semaphore (in-
itial value 1) used to protect the criticel section
(2)-(5), E is a semaphore (initial value O) used to
release all actions that may execute st 2 given
step (the "ready-set" in the terminology of [S5]).

M is a semaphore (initial value 1) used for commun-
ication with the monitor. O5: is a lccal semaphore
(initial value 0) which is enabled at a given step
if the i-th action may execute at that step. The
variable w is a counter, np is a variable giving
the nunber of actions that may execute at any step
and ok is a flag.

The monitor process is given by
IM: P(M)
ok « 1
np + ¢(8y4..448 )
t - w(Bl,...,Bn)

if q(t,1) then V(Sl)

if q(t,n) then V(Sn)
goto IM;

¢ is 2 function that cormgutes the number of
processes that may execule given the values of the
Bi's and ¢ is a function that figures out which
processes may execute and encodes this information
into t. q(t,i) will decode t and enable S; accord-
ingly.

The monitor starts and enables some process-i
then enters its critical section (2)-(5), Inside
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the critical section it acknowledges thut it is
ready to execute and waits on (€) for release, I
all pending processes have so acknowledzed, one of
them is enabled in line (L). Note that the sched-
uling responsibility has not been usurped by this
simulation in the sense of deciding which process
will execute next.

Assuming process J is the first to execute
beyond line (€), and since ok will be 1, it will
execute eJ. disable all others from executing (9)
(since executing Gi could heve changed which pro-
cesses may now proceed), acknowledges that it has
passed (10) and then releases another process if
not all have been released (11), otherwise it

releases the monitor (12).

Let n((8),) = 1 end n(f) = A for all other
actions in Q. Evidently h(Q) = P. To bound the
efficiency of the simulation, observe that be-
tveen any two consecutive observable actions (8)1
and (8)3' r bookkeeping actions are executed,
vhere

r<S5u+2n+8+ Sy

where u is the number of processes that may exe-
cute after (8)i and v the number that may execute
after (8)3. €ince u,v < n, k is bounded by

12n + 8.

The proof of Theorem 1 suggests another cost
function -- the number of observable actions in a
word, Let us denote this cost function by cl.
Then we have the following:

Corollary. For every asynchronous program P,

there exists a PV asynchronous program Q such that

o n - +
Q simulaggo P with cost function ey

Proof. Immediate from the proof of Theorem 1,

since there are only tookkeering actions between

(8), and (8)3.

In [8], we have shown that FV systers with
only binary ({0,1}-valued) scmaphores are strictly
wveaker than PV systems in the sense that there are
PV systems that cannot b~ simulated by any FV sys-
tem with only binary semaphores. However, we have
the following

Theorem 2. For every FV asynchronous procram P,

there is a PV asyrnchroanous rrogram Q with iy
L3R A8 8 AL 1]

only

binary semaphores such that Q simulate3 P, with
length as cost function.
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Prcof. The construction is essentially sketched
in [2]. For each semaphore S in P, add a new
mutual exclusion semaphore E (initial value 1) and
a new integer variable x (initial value 0)., Q is

obtained from P by replacing each P(S) hy
O RE)
X+x-1
1f x < 0 then begin V(E);
P(S) end
else V(E);
and V(S) by
P(E)
x+x+1

if x < 0 then V(S)

V(E)

Let the third line in each expansion be the
observable action. Then clearly h(x)h(f) € P
implies d(x,f) < 4.
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