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\ Abstract

The multi—product production cycling problem is concerned with the

determination of a production/inventory policy for a single capacitated

production facility which is dedicated to producing a family of products.

This paper studies this problem assuming stochastic demand. The one—

product problem is formulated as a Markov decision problem which may

be reasonably solved. For the multi—product problem, heuristic decision

rules are proposed. In the context of an identical—product problem,

we develop a heuristic decision policy which is based on the analysis of
the one—product problem, and on two new notions: the composite product

and the lead—time adjustment. This heuristic is then extended to the

identical—cost problem, and the correlated demand problem. Arguments

are presented for the generality of the identical—cost problem, and
hence the generality of the proposed heuristic policy.

_ _ _  ..
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1. Introduction

The mult i—product production cycling problem (MP CP) is concerned with

determining production and inventory control policies for a group of p roducts.

Each of the p roducts is produced or processed on a single facility. This

production facility or machine has finite capacity and processes only one

product at a time. The production for each of the products goes irto

inventory with demand for the product being serviced from this inventory.

The MPCP is to devise a scheduling policy for the single production facility.

The criteria for the scheduling policy is minimum cost per unit time, where

cost consists of setup costs, inventory holding costs, and backorder costs.

Most of the literature on the MPCP has been confined to medels which

assume deterministic demand. Delporte and Thomas [1] and Silver [11) give

comprehensive bibliographies for the MPCP with deterministic and constant

demand rates. The work on stochastic demand problems has been either very

preliminary in nature [ 3] or hampered due to extremely restrictive assump-

tions [ 5]. The deterministic results do not seem to be particularly helpful

in solving the stochastic problem; unlike the classic deterministic inventory

theory which provides the first step in the development of stochastic

inventory theory , there has yet to be demonstrated a strong link between

the deterministic and stochastic MPCP . The reason for this lack of congruence

seems to lie in the complexity inherent in the problem: Any solution procedure

for the MPCP must tradeoff lot—sizing decisions against capacity allocation

decisions. For deterministic demand , the existing procedures focus primarily

on lot—sizing; the capacity allocat ion decisions come into play only when

capacity constraints are violated which force an adjustment in the lot—sizing

decisions (e.g. see [ 2]). For stochastic demand, it is not possible to

consider lot—sizing and capacity sequentially: A solution procedure which

focuses on lot—sizing loses the flexibility needed to cope with the capacity

-. - ~~~-— —- - - .-— £ — ‘- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - ,.
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allocation decisions under unknown demand Similarly, considering capacity

allocation at the expense of lot—sizing will be too rigid to handle fluc—

tuating demand and inventory levels. An effective solution procedure must

be responsive to the limitations on scheduling due to finite capacity, and

still be able to reflect the lot—sizing tradeoffs among inventory holding

costs, backorder costs and setup costs. A solution procedure must simul-

taneously account for lot—sizing and capacity allocation.

The intent of this paper is to develop heuristic control policies for

the stochastic demand MPCP. A subsequent paper [ 7] demonstrates the

effectiveness of these heuristic policies. The specific problem to be

considered is defined by the following assumptions:

1. Demand for each product is stochastic and is specified by a known sta-

tionary distribution function.

2. The form of the decision policy is perLodic review.

3. At most one product may be produced in a period. Furthermore, the

product must be produced for the entire duration of the period at the

product’s finite production rate.

4. Production in a period is available for filling demand orders at the

end of the period; there is no production lead time.

5. A setup cost is incurred whenever a product is produced unless that

product was produced (setup) in the immediately preceding period.

That is, setups are carried over from prior periods. Whenever the

facility is shutdown, any prior setup is lost and is not carried over.

6. Setup times are assumed to be zero.

7.. Demand exceeding on—hand inventory is backordered.

8. The objective is minimization of the expected cost per unit time over

the infinite horizon over all products. The components of the total

cost are setup costs, inventory holding costs, and backorder costs.

L .~~~~~~~~~~~~~~~~~~ _ _  _ _ _ _  
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These assumptions may seem overly restrictive, especially assumption 4

(zero lead time) and 6 (zero setup time). However, these two assumptions

are made for ease of exposition and may be relazed, as will be seen.

The remainder of the paper is divided into 4 sections. In the next

section the one—product production cycling problem is examined. Based on

the analyses of the one—product problem, Section 3 develops heuristics for

a special form of the MPcP: the identical-product problem. In Section 4

these heuristics are extended to a more general class of MPCP. Section 5

gives a brief sumuary and discussion of the results of the paper.

L ___
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2. The One—Product Problem

This section considers a special case of the MECP : the one—p roduct

problem. This problem is not a very realistic problem. Our interest in

this problem, however, stems from the fact that some theoretical analysis

of the problem may be performed for this version of the MPCP. Insight

gained from this analysis will form the basis for the study of the more

complex and more realistic multi—product problem.

The one—product problem is first formulated as a Markov decision

problem. A discussion is given for the solution of this problem, and for

the form of the optimal policy . It is conjectured that the optimal policy

is a two—critical—number policy . In addition , we define for the optimal

policy a function which may be interpretted as a £hadow price for the

machine ’s capacity.

Formulation of One—Product Problem

Consider the one—product problem. The cost expression for this problem

for a finite time horizon can be defined by backward recursion as follows:

(1) C(I ,k,t) = mm {G(I) + Ex
[C(I_A , fl, t—l)];

G(I+P) + [w(k)]K + Ex
[C(I+P_A , 1, t1)1}

where

C(I ,k,t) — expected cost for remaining t periods assuming an optimal
decision policy, given inventory level I and machine status k.

C(I ,k,t 0) 0 for all I,k

k status of facility

çO if facility is not setup for production
k - I

(i. if facility is setup for production

G(I) — expected backorde r and inventory holding cost for current period ,
given net inventory level I available for servicing demand.

-~~~ ~~~~~~~~~~
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Ex [C(I_A ,k ,t )]  = expectation of the cost function taken over A ,
the demand random variable.

= Z p(i) C(I—i,k,t) for p(i) = probability that

demand (A) equals 1.

P — production rate measured in units per period.

K — setup cost

w(k) ~‘ indicator function

— 1—k

Thus, the expected cost from following the optimal decision policy for the

remaining t periods is the min imum of: (1) the expected cost if we do not

produce in the current period; (2) the expected cost if we do produce in

the current period. In each case , the expected cost is the expected back-

order and inventory holding cost for the current period, plus a setup

charge, if applicable, plus the expected cost for the remaining t—l periods.

Note that the machine status (k) in period t—l depends only on the current

decision. Also, if the current decision is to produce, inventory is

increased by P,and a setup charge is incurred only if the machine was

previously not setup.

This formulation may be modified to model other versions of the one—

product problem. It is trivial to extend the model if setups cannot be

carried over or if the machine is always setup. The assumption of zero

lead time may be relaxed to allow for a lead time equal to an integral

number of periods; this extension is analogous to that given in [ 9] for

a pure inventory model. The assumption of zero setup time can also be

relaxed for a special case where not only is there a setup time but also

a shutdown time. The length of the shutdown time must be the same as

that for the setup time. The details of this modification are given in [6 ].

To determine optimal policies for the one—product problem, one can use

(1) to recursively compute the optimal production decisions for all values 

—-. - - —---— — - -———-~———a ~~~~~~~~~~~~~~ — ---- .- ~4 . .S_~~~~ _~ —’- ~~
—.--.— -—,--- —-—— ~

.—.—————- - — .—-—————- -.—-~~——- — —-— -
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of inventory I and remaining time t Alternatively, if the time horizon

for the production process is long, one is interested in finding the

stationary steady—state optimal policy. To do this, the policy iteration

method for sequential decision problems as developed by Howard [8] can be

used. This method, however, requires a finite state space. The one—

product problem has an infinite state space since the inventory level can

range conceivably f rom —~~ to 4 o ~ To apply this method, it is necessary

to t runcate this infinite state space to a finite state space by restricting

the inventory level to range between some lower and upper inventory levels.

By choosing these boundaries intelligently, the truncated problem will be

an accurate representation of the original problem.

Form of Optimal Policy

It is conjectured that the form of the stationary steady—state optimal

policy is a two—critical—number policy. That is, a policy may be charac—

* ** *terized by (I ,t ) such that once inventory drops below I , the faciLity

is turned on and is kept on until the inventory level reaches

** *(I ) I ) at which point the facility is shut down. This conjec:ure is

very reasonable in the context of inventory theory; indeed it Is difficult

to fathcm any other policy form being optimal. Nevertheless, thIs ‘ ,thor

has not been able to prove or disprove this conjecture.

It is diffic’ilt to pinpoint exactly why this conjecture has been so

difficult to prove or disprove. The problem as formulated is more complex

than many standard problems in the production/inventory literature in that

it allows stochastic demand, non—zero setup cost, and, in particular,

finite production capacity. The work of Scarf [10] in establishing the

optimalit~ of (S ,s) policies for the pure inventory problem, and the work

of Veinott [13] in showing the optimality of a single—critical—number policy
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for a batch—ordering problem without fixed ordering costs, are directly

related to the one—product problem, but have not been useful in proving

the conjecture.

Despite the absence of a conclusive proof for the conjecture, there

is strong supporting evidence for its validity. When the setup cost is

zero (K—O) or when setups cannot be carried over, the optimal policy is

characterized by a single critical number t~. That is, if inventory is

*less than I , a decision to produce in the current period is made; other-

wise there is no production. A proof is given in [6 ]. Another special

case that can be analyzed is the one—product problem with positive setup

cost but where the production quantity P is set to one unit and the product

demand is always an integer number of units. It is proved in [ 6] that

the optimal policy for this problem is a two—critical—number policy.

An additional indication of support for the conjecture is given by

some results on the optimal control of a single—server queue. Sobel 112]

considers the continuous control of a single queue for which there are

start—up and shut—down costs for turning on and off the server, and there

are general costs associated with the queue length. This problem is identical

to a continuous review version of the one—product problem where the server

corresponds to the production facility, and the queue length is the order

backlog. Sobel shows that any reasonable policy will revert to a two—

critical—number policy; hence, the optimal policy for the continuous review

one—product problem is a two—critical—number policy. This is strong evidence

for the conjecture’s validity since continuous review policies are the limit

of periodic review policies as the period lengths go to zero.

The Value Function

To gain insight into the behavior of the optimal policy for the one—

product problem, it is useful to def ine the value f unction V(I ,t) as 

rn - . ~~~~~~~~~~~~~~~~~~~
. - - - .. . 
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(2) V(I ,t) = G(I) — G(I+P) + E
x
[C(I A ,O ,t l) ] — EA EC(I+P_ A ,l,t_ l)]

The optimal production policy is determined by this function. If the

machine is setup (k l), a decision to produce should be made if and only

if V(I ,t) is positive; alternatively, if the machine is not setup (k’O),

a decision to produce should be made if and only if V(I,t) is greater than

K, the setup cost. Note that if V(t,t) is non—increasing in I, the optimal

policy is a two—critical—number policy where [I*(t) , I**(t)] are defined by

(3) V[I*(t)+l, t) < K < V[I *(t) , t]

(4) V[I **(t)_l,t ] > 0 > V[I ** (t) , t]

V(I ,t) may be interpreted as the value of a producing versus non—

producing production facility given an inventory level of I and t periods

remaining; that is , a rational product manager would be willing to pay

as much as V(I ,t) to turn on the machine in the current period , given that

in subsequent periods it will cost K to setup the machine. Hence, if

this value is greater than the actual cost of turning on the machine in the

current period (K or 0, depending on the machine’s status), then a decision

to produce is made.

For the steady—state problem we define V(I) to be the limit of V(I,t)

as t goes to infInity. V(I) may be readily computed from the results of

the policy iteration method. If V(I) is non—increasing, the optimal steady—

* **state policy is given by (I I ) defined similar to (3), (4). 

~~~~- - - -~~~~ --~~~~- -~~~ ~~~~~~.,- - - - --~~~.- - -  -~~~~~~~~~-~~~~~~~~~~ --.- - ---~~—
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3. The Identical—Product Problem

The multi—product problem can be formulated similar to (1) as a set

of backward recursion equations. In theory, the multi—product problem can

also be solved by means of the policy iteration method. However, the

computation required by this method increases exponentially with the

number of products, and becomes computationally infeasible for reasonably—

sized problems. Consequently, we have concentrated on finding good

heuristic policies which are easy to compute and implement. We use the

identical—product problem to illustrate the development of these heuristics.

The identical—product problem is a special case of the MPCP in which

all of the products have identical demand distributions, identical produc—

t’bn rates, and identical cost structures, but with their demand realiza-

tions being independent across products.

A heuristic solution for this problem can be developed on the basis

of the one—product analysis: Assume that each product is the only product

produced by the machine; then the one—product analysis may be done to find

a decision policy for each product. If we as~.ume the conjecture on the

form of the optimal policy is true, then eacF, o~ he identical products

is governed by a two—critical—number policy (I*,I
*
~). Each product’s

policy may be executed as long as this does not conflict with the execu-

tion of another ~~~~~~~~ policy. A conflict will occur whenever more than

one product wants to be produced in a given period. For example, consider

the case where the machine is setup for product 1, product 1 has inventory

(I
l

) less than I**, and product 2 has inventory (12) less than 1
*; here

both products want the machine ’s capacity in the immediate period. The

heuristic must resolve the conflict in a reasonable manner. One procedure

might be to compare inventory levels relative to the respective critical

- - - .~~~~~~~~ - -- .- - _rn ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ ‘—.---— ... - -
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numbers (e.g. Il
_I** or I2

_I*) ,  and produce the product with the lower

relative inventory. Another procedure would be to use the value function,

and produce that product which values the machine the highest. Here

v(11) is compared against V(I 2 )—K ; note that if the product is not setup,

the setup charge must be subtracted from the value function to give the

effective value of the machine.

The Composite Product

The procedure based on the one—product analysis is reasonable;

clearly if the one—product analysis indicates production for a product , then

in the multi—product problem with competition for the available capacity,

production is still desirable. However, a weakness in this heuristic is

that it does not try to anticipate or plan for potential production conflicts.

As an example , consider a two—product problem in which the machine is shut-

down, and the inventory levels for both products are slightly above 1*.

One—product analysis would indicate no production in the current period;

however , it is likely in the subsequent period that both inventory levels

will fall below 1*, and both products will want to use the production

facility. Since only one product can be produced per period , the inventory

fo r one of the products will continue to fall , incurring increasing costs ,

until it is able to wrest the production facility away from the other

product.

This problem could be avoided with some foresight in the production

scheduling procedure. By anticipating the potential competition for the

production resource before it occurs, a decision to produce one of the

products in the current period could be made.

To help anticipate possible conflict situations, the notion of a

composite product is introduced. In the context of the two—product example,

define the composite product to have the same cost parameters and the same
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production rate as either of the products. Let the demand for the composite

product be the total demand for the two separate products; that is, the

demand distribution is the convolution of the demand distributions for the

individual products. This composite product can now be used to recognize

potential production conflicts. The composite product can be analyzed as
* **if it were one product to find a production policy (

~c
1
c 

) . Now , with

the composite inventory, I~ — 1
1
+12, a decision whether or not to “produce”

the composite product can be made by comparing the composite inventory

with either 1* or I~~
’. A decj sioi~ to “produce” the composite product would

indicate that the coraposite inventory was not

adequate for the composite demand , realizing that the production rate for

the composite product is the same as that for either of the individual

products. The composite product nhould be helpful in anticipating poten-

tial conflicts; when both individual product inventories are Jj~~ adequate

when considered separately , in composite the composite inventory should

indicate the need for current production .

The notion of the composite product is extendable to the n identical—

product prob lem. Here , n—i composite products are defined; composite

product j  for j— 2 ,3,...,n is the product fo rmed from the composition of

j  identical products. The definition of each composite product is

completely analogous to that given in the two—product example ; the cost

structure and production rate for the ~th composite p roduct are the same

as the individual products , while its demand is the convolution of the

demands for j  products. For each composite product , the one—product

analysis can be performe d to find the production policy (I~ ,I~1*),  where

the subscript j  refers to the ~th composite product j .2,3,... ,n. The

composite products can now be incorporated into the heuristic pro cedure

to give better detection and reaction to po tential conflicts over the usage

of the production facility. 

- - - . - - -- -. .~~~~~~~~~~ 
-- -~~~
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The Lead—Time Adjustment

Another modification that can be made is a lead—time adjustment. The

one—p roduct analysis for the individual products assumes , by definition ,

that the machine is dedicated to the one product. Hence, implicit in the

analysis is the assumption that whenever a production order triggers, the

machine is idle and is able to start production immediately. For the multi—

product problem, this is clearly not the case. When a product triggers,

there is no guarantee that the machine is not committed to another product.

Hence, due to the interaction of the other products, there is usually a

delay between the triggering and the servicing of a production request.

One approach to account for this delay is to estimate the expected size

of the delay and to treat it as a deterministic lead time. Then the

individual products may be modeled as one—product problems but with a lead

time equal to the actual lead time plus the expected delay .

To determine this lead—time adjustment, consider an n identical—product

system for which the expected machine utilization is U. 0 < U < 1. This

system is modeled as a birth—death process on the state space {i:i’O ,l,...,n},

where state i—0 corresponds to the machine being idle while state i (i>O)

is the machine busy with i—i products having triggered and waiting for

production time. It is assumed that products trigger randomly at an unknown

• rate a. Thus , the t ransition rate from state i to state i+i is 
~~

since at state i there are (n—i) products that have not triggered. The

• t ransition rate from state i to i—i is — i, except for — 0, where

ji is the service rate for completing a production run for any product.

Assuming that the expected length of a product ’s production run corresponds

to production of an economic order quantity (EOQ) , then

(5) -
~~ —

- ~~~. - .-- -—-- -- ~- 
— . -- -
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where P is the production rate. Note that this birth—death process is an

approximate model of the n—product system. For the birth—death process it

is necessary to assume constant rates of transition; for the actual n—product

system, the transitions are governed by rates that are not constant but

depend on other system variables such as current service time and time

since last production run. The intent of the birth—death model is to have

a tractable model from which an approximate understanding of the actual

system behavior may be obtained.

The standard analysis (see Feller [4]) of the equations of motion for

the birth—death process y~.
-.lds the following equations for the steady—

state probabilities {ei
}:

a i ci
(6) ei ~1) (n—i)! 

a
0

To find e1, It is necessary to know a, e0, and p. Since the machine utili-

zation is U, the probability of the machine being idle must be 1—U; hence,

e0 
— 1—U. The trigger rate a is found numerically from the fact that the

n
probabilities sum to one ( E ei 

— 1); p is given in (5).
i—0

The expected delay can now be expressed as

* 
n e

(7) L — E (1~L~)(~~i)
i—l —e0 ;i

where (.~i) is the expected delay for a triggered product given that there

are i—i products ahead of it.

*The lead—time adjustment L is appropriate for the one—product analysis

of the individual products for the n identical—product problem. An analogous

• lead—time adjustment for the i—product composite product, j 2 ,3,...,n, would

also be desirable. However, any realistic stochastic model to approximate

this adjustment is much more complex than the birth—death model used for

the individual products , and is not easily tractable.

- -------“-- -- ---- -
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Statement of the Heuristic

We can now state a heuristic for the identical—product problem, incor-

porating the one—product analysis, the use of composite products and the

lead—time adjustment. For convenience in stating the heuristic, suppose

the products are arranged so that Il < 12 < ... < I~ , where I~ is the

inventory level of product j .  Let k denote the status of the machine and

assume that the optimal policy for the j—product composite product is a

two—critical—number policy (I~,I~
*), for j 2 ,3,...,n. Let (4,4*) denote

the optimal policy for the individual products where the lead time has been

adjusted by the expected delay given in (7). The heuristic is as follows:

• 1. Let j—l; if k—O , go to step 6. If k1, go to step 3. If k>l, go to

step 2.

I A j—l *
2. (case wher: j<k) Set I~ — E I~ , 12 ‘k ~~~~ I~. If I~ <

and 
~2 < , go to step 5. If I~ > I~ and 12 < I~ , produce product

k. If 11 < I~ and 12 > 4*, produce product 1. Otherwise go to step 4.

3. (case where j>k) Set I~ I I , . If I~ < I., , produce product k;
— i—l L J

otherwise go to step 4.

4. If j—n, go to step 7; otherwise, set j:—j+l. If j<k, go to step 2;

if j >k, go to step 3.

5. Decide to produce either product 1 or product k.
A I *

6. Set I~ — I I~. If I, < I~ , produce product 1. If j—n go to step 7.
i—l J

Otherwise set j:—j+l and repeat this step.

7. Shutdown the facility.

The heuristic concentrates on possible production of at most two products:

product 1, the product with least inventory, and product k, the product

currently setup . For each value of j  the procedure examines at most two

i—p roduct composite products: the composite product consisting of the I
products with least inventories (composite product [j ) ) ,  and the composite

~

• ._ _ _  ~~~~~-~~~~~~~
- -~

-- •
~~~ ~~

-••
~~-

-• • ~~~~~~
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~~~~~~
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~
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product of the j—l products with least inventories plus product k (composite

product [j—l;k]). The heuristic uses the one—product analysis for the

I—p roduct composite product to determine whether componite product [11 or

[j—l;k] should be produced. Note that if product k is not one of the j

least inventory products or if k—O, then composite product [jJ is not setup;

composite product [j—l;k] is always setup. A decision to produce the

composite product [j] and incur a setup charge, implies production of

product 1; a decision to produce the composite product [j—l;k] implies the

continuation of production of product k. When the facility is currently

shutdown (k—O), only the composite product [j] is considered. When product k

(k#0) is among the j lowest inventory products, the two composite products

are the same. If for all j (j—l ,2,... ,n), no composite product is chosen

to be produced , then the facility is shutdown. If for some j, the one—product

analysis indicates that both [j] and [j— l ;k) should be produced, then

there is a conflict over whether product 1 or product k should be produced

(step 5). Two suggested procedures for resolving the conflict are to

compa re relative inventories 
~‘~

—‘
~ 

vs. or to compare effective

values from the j—product composite product value function [V~ (11)—K
vs. v~(I2)] . 

~~_ • - _ - - ~~~ ~~~~~~~- - - • -~~~~ —_~~~~-_ _
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4. Extension to Non—Identical Products

The previous section has considered the identical—product problem,

for which a heuristic procedure was developed. The current section considers

the general multi—product problem where the products are not identical.

A discussion is given for the applicability of the heuristics proposed for

the identical—product problem to the general MP CP. It is seen here that

the heuristics are not easily extended to the non—identical—product problem.

However, for a particular class of non—identical—product problems where

the products have identical cost structures but varying demand rates, the

composite product heuristic can be applied. Furthermore, it is argued

that these identical—cost problems are a very realistic class of problems

to consider.

The General MP~P

For the general NPCP, cost structures, production rates, and demand

distributions may vary across products. One heuristic, similar to thht

proposed for the identical—product problem, would be to treat each product

as if it had a dedicated machine. The one—product analysis could be done

for the individual products , and the heuristic would produce a product that

had triggered at the start of a period. If more than one product triggers,

then the heuristic would have to decide which triggered product to

produce, either by comparing relative inventory levels or by using the

products ’ value functions. As was discussed for the identical—product

problem, this heuristic ignores the scheduling dependency across products

• and , is unable to anticipate potential conflicts for the machine’s capacity.

The composite product heuristic was developed for the identical—product

F problem to help anticipate production conflicts. When the products are

not identical , the use of composite products is limited due to problems of

I.. ——  —-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ • - -~-- - — -‘ - _ ~~ •~-_ .- - -
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defining and comparing the composite products. First , it is not clear how

to define a composite product; when the products have differing costs and

production rates , it is difficult to determine the most appropriate para-

meters for a composite product. One possible approach is to use a weighted

average of the parameters for the individual products , but again , it is

not clear how to specify the weights for the individual products. Second ,

even with a means for defining the composite products , a heuristic would

be difficult to implement due to the large number of possible composite

products. For n products, the number of possible j—product composite

products is (~~
). Not on ly must the results from the one—product analysis

be stored for each of these composite products , but in each decision period

a method is needed fo r searching over and comparing the composite products.

When the products are identical, these problems are easier to handle

since all j—p roduct composite products are identical and hence , only n—l

composite products need to be defined (i.e., j2 ,3,...,n). Furthermore,

for the identical—product problem, the decision procedure needs to consider

at most two i—product composite products: the composite product with least

inventory and the composite that is currently setup with least inventory.

The composite product heuristic may be useful for the general MPCP

by limiting the number of composite products that are considered. For

instance, the decision procedure, in addition to the individual one—product

analysis , would only consider a composite product consisting of all

products or only composite products from the most popular products (e.g.

“A” items in an “ABC” breakdown of inventory).

It would be desirable for the general MP~P to include a lead—time

adj ustment to the one—product analysis of the individual products. Unfor—

tunately, though, to find this adjustment requires the analysis of a multi—

dimensional process which is not tractable . Hence , any lead-time adjustment

-

~

-
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-

~ 
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would have to be made empirically or by rule—of—thumb.

The Identical—Cost Problem

A special case of the general MPCP for which the composite—product

heuristic is directly applicable is what is called the identical—cost

problem. Here, for all products, inventory holding and backorder costs

are line ar, and proportional to production rates; the setup costs for

all products are the same. That is, for i—l ,2 ,.. . ,n

(8) hi — h/P1

(9) bi — b/P1

(10) K1 — K

where

h~ — inventory holding cost per unit per period for product 1,

— backorder cost per unit per period for product i,

— production rate in units per period for product 1,

Ki — setup cost for product i ,

h ,b ,K — positive constants.

The demand distributions may vary across products. Now , if a unit of each

product is redefined so that all products have the same production rates

(e.g., rescale P~ — 1 for all products) , then the products will have

identical cost parameters.

This problem and its assumptions are very realistic. Consider the

inventory holding and backorder costs; these coats , in general , an assumed to be

linear with respect to the cost of a product. In a single machine environment

the cost of a product consists of the cast of the raw material as input

to the processing facility plus the value added to this input during the

processing function. Assuming that all products require the same or
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similar raw materials, then it is reasonable to suppose that the machine

processes the raw materials at a relatively steady dollar rate, independent

of product. Furthermore , the rate of value added by the machine should

be approximately constant across products. If this were not true , then

it ~ou1d be argued that the machine capacity is not being used efficiently.

Thus, the value of product processed by the machine is nearly constant over

time regardless of the particular product. Hence, after rescaling the

products to a common produ ction rate, the products should have similar

inventory holding and backorder costs. Setup costs generally reflect the

labor cost for altering the setup of the machine. If all products require

a similar amount of work for their setups, then it is reasonable to assume

they have the same setup costs.

Given identical—cost products, composite products are easily defined;

all composite products have inventory holding cost h, backorder cost b,

setup cost K, and the common production rate, while the demand distribucion

for the composite product is just the convolution of the demand distribution

for the individual products. However, since demand rates vary over the

individual products, there are still (~
) i—product composite products to

consider. When all products were identical, for each j—l,2,...,n at most

two j —j. roduct composite products were considered. Similarly, for identical—

cost products , attention can be restricted to two j —product composite

products , for j l ,2 ,...,n. For (Il,12,. . . ,I
fl

) the inventory status of the

n products , suppose that the products are numbered so that

(h id1) < (Ij+i/di+i) where d1 is the demand rate for product i. That is ,

the products are arranged in increasing order of inventory measured in

per iods of demand (or “days of supply”). Now, completely analogous to the

identical—product analysis, the two j—product composite products for consi-.

derat ion are the composite product formed from products 1 to j ,  and 

-~ -‘- - -- ~~~~-~~~- • -~~ ~~~—-~~~~~~~~ - -
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possibly, the composite product formed from products 1 to j—l with product

k where the machine is currently setup for product k. These two composite

products are then compared by means of their one—product analysis.

Thus, the notion of composite products, which was developed for the

identical—product problem, can be extended to the more realistic Identical—

coat problem. Again , though , there is no tractable model to quantify a

lead-time adjustment . Nevertheless , in practice , it would be desirable

to recognize the need for a lead—time adjustment to reflect the scheduling

dependency across products. This might be done by arbitrary increases in

the trigger levels for the products.

Correlated Demand

When the demand across products is not independent but is correlated,

the proposed heuristics can still be applied. Consider the identical—

product problem; for the identical—cost problem, the treatment is analogous

to that given for the identical—product problem. When demand is correlated,

• the one—product analysis for the individual products is not altered; in

this analysis , there is no way to reflect the demand dependency. However,

the composite product heuristic is ideally suited to account for any

demand dependency; the demand distribution for a composite product naturally

includes any correlation between the individual products. For instance,

if a two—product composite product consists of two identical products,

each with normally—distributed demand with mean p and variance a2, and

if the covariance of demand between the products Is p0 2 , then the composite

product has normally—distributed demand with mean — 2p and variance

a
~ 

— 2a2 (l+p) .
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5. Discussion and Summary

In this paper the MPCP has been defined and analyzed. First , the

one—p roduct problem was formulated as a Markov decision problem , and

could be solved in this form. It was argued that the multi—product problem,

in general , is too complex to solve optimally. Hence, heuristic decision

procedures were proposed. In particular , heuristics were developed for

the identical—product problem ; these heuristics were then extended to the

non—identical—product problem , in particular the identical—cost problem,

and to the correlated—demand problem. In the next paper [ 7] these

heuristics are tested over a range of sample problems by means of simula-

tion in order to demonstrate their effectiveness.
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