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1. Introduction

The recovery of mean gravity anomalies, or alternate representations
such as surface densities, point masses, etc., from the range rate sum observa-
tions in a 'high-low' satellite experiment has been the subject of several investiga-
tions, among others in (Schwarz, 1970; Kaula, 1972; Martin, 1972; Hajela, 1974;
Kaula et al., 1975; Sjogren et al., 1976; Vonbun et al., 1977), The recovery of
gravity parameters in these investigations was based on the'deterministic’' approach
of least squares approximation, where we do not fully utilize the statistical
information relating to the parameters, particularly the covariance functions
between the parameters and the observations (or more usually a related quantity
to the observations).

The 'least squares collocation' approach (for a conceptual discussion,
see Moritz, 1976, Sec. 4) for the recovery of gravity anomalies from range rate
sum observations in high-low satellite to satellite tracking (SST) was suggested
by Rummel (1975, Sec. 5) utilizing the cross-covariance function of gravity
anomalies with the radial derivative (3T/3r) of the anomalous potential (T), and
the autocovariance function of 3T/3r. The numerical computation of these
functions was made possible by the covariance expressions developed by
Tscherning (1976) using an assumed model for the anomaly degree variances
(Tscherning and Rapp, 1974).

Rummel, Hajela and Rapp (1976) carried out simulation studies for
developing the procedure for the recovery of mean gravity anomalies from SST
range-rate data using least squares collocation. The present report applies the
results of the previous study (ibid., 1976) to the systematic investigation of
problems in utilizing real ATS-6/GEOS-3 observations. These problems will be
discussed in outline in Section 1.2 and in greater detail in Sections 2 and 3. The
recovery of eight 5° mean gravity anomalies in a local area will be presented in
Section 4.

1.1 Recovery of Anomalies from Simulated Data

We briefly recapitulate the discussion in Rummel et al. (1976). We
consider the range rate data to be the residual value referred to the earth's
normal gravitational field expressed by potential coefficients (P.C.) up to degree
and order 12, That is, we subtract from the observed range rate sum (Martin,
1972; Hajela, 1974) at any given time, usually at 10 seconds data interval, the
computed value of the range rate sum corresponding to the cartesian position
(X, Y, Z) and velocity (X, ¥, Z) coordinates of ATS-6 and GEOS-3 satellites.
These coordinates, or state vector (X, Y, Z, X, Y, Z), are obtained from an
initial state vector at an initial epoch (usually a few hours earlier) by integrating
the equations of motions of the satellites in an inertial coordinate system
(usually referenced to 0" of the day) in a force field expressed by the earth's




low-degree normal gravitation (12, 12 P.C.), and also taking into account the
lunar and solar gravitation and the solar radiation pressure. (The atmospheric
drag is negligible as the altitude of satellites is higher than 800 km.) We will
consider the determination of initial state vectors later, but it is obvious that
the residual values (observed-computed) of the range rate would be biased if
the initial state vectors are not known accurately.

The residual range rate then expresses the range rate of GEOS-3,
sensed at ATS-6, due to anomalous potential T

(1.1) T=W-1U

where W expresses the actual gravitational potential of the earth, and U the
low-degree (12, 12 P.C.) normal potential, both at the location of GEOS-3
satellite. The line of sight (ATS-6/GEOS-3) residual range rate yields the line
of sight residual acceleration by numerical differentiation. The effect of any
errors in the raw residual range rate data will be discussed later. However,
as the residual accelerations represent the slope of the residual range rate
(function), they would be much in error if raw 'noisy' data is used directly.

The projection of this residual acceleration on the radial direction
at the GEOS-3 location (denoted by the subscript c) gives the radial derivative
(3T/3r). of the anomalous potential, which is used for the recovery of residual
gravity anomalies (Ag) referred to the low-degree (12, 12 P.C.) normal
potential. We will henceforward generally assume the word residual to be
implied, unless required for clarity. We will thus refer to the residual line of

sight range rate simply as range rate or R data. Analogously, we will generally

use the word 'accelerations' or R for the residual line of sight accelerations;
and assume J3T/3r without the subscript ¢ to refer to the GEOS-3 location.
We may refer to residual mean gravity anomalies simply as anomalies. If we
denote the angle at GEOS-3 at any given time between the radial direction and
the line of sight ATS-6/GEOS-3 by B, then

(1.2) dT/3r = R/cos B

and the predicted or recovered anomaly A“g is obtained using least squares
collocation from a set of n 3T/ r values by:

(1.3) Ay (Q = QT Qe're (Cre e + l__))-l (3T/3r)




where Cr.r iS the n x n matrix of autocovariances of nx 1 5T/5r vector with

the noise matrix D, usually taken to be a diagonal matrix with the same value for
each element on the diagonal; C ] (Q)xe’ - is the transposed vector of cross-covar-
iances of predicted anomaly with the 3T /5r values; and Q emphasizes the fact

that the location of the anomaly is on the surfac  of the earth, while the 3 T/3r
values refer to the GEOS-3 satellite locations. The point auto and cross-covariance
elements are computed from global covariance expressions, and the mean anomaly
covariance elements are computed by numerical integration of the appropriate

point covariances.

The standard deviation 6&' of the predicted anomaly is computed by:

Az

(1.4) O = Co- Claww (Crere + D)7 Cperre

e
=

where C, is the variance of residual mean 5° anomalies and other notations are as in
equation (1.3).

In view of the local nature of the covariance functions in equations
(1.3) and (1.4), when referred to a degree 12 reference field (Rummel et al., 1976,
p. 15, Table 2.2), it was found (ibid., Sec. 6) that we need to consider 3T/dr
values only with sub-satellite points within 7’5 of the center of the 5° anomaly
blocks. It was also found that it is adequate to consider 3 T/dr values at 30
seconds data interval. These two considerations will be retained in all tests with
real data. The recovery of anomalies with real data will be judged by statistics
comparing the magnitudes of the predicted (A%' ) against the expected value, E (Ag'),
and by anomaly discrepancy € (Ag), (see ibid., pp. 20 and 31):

(1.5) €(Ag) = &Y - E(Ag)
(1.6) E(Ag) = Agr - Agec

where Ag: is the terrestrial 5° anomaly (Rapp, 1977) and Agec is the anomaly
implied by the degree 12 reference field.

The elements of the diagonal matrix D in equations (1.3) and (1. 4)
could conceivably be considered as the square of the standard deviation of 3T/3r
data, which may be obtained by propagation of the variance of R, which in turn
could be obtained in some manner from the assumed standard deviation of raw
R data. However, with both simulated and real data, tests on the stability of the
solution were performed with different assumed standard deviation of d T/dr
data like 0.5, 1.0, 1.5, 2.0 mgals. Equation (1.4) is not very sensitive to this
variation, but in equation (1.3), a standard deviation of 2 mgals or larger would




show a dampened recovery with low R, M. S, (root mean square) value of
predicted A¥. On the other hand, a small value less than 0.5 mgals would
show an unstable recovery with large RMS Az (usually larger than RMS
value of expected anomalies E (Ag’ )), and also large RMS anomaly di~crep-
ancy €(Ag). For details, see Rummel et al. (1976, pp. 34 and 43).

Other details of the formulations and procedures may also bc
seen in the above report, and are not being repeated here. We will now
describe the variations which were required to implement the use of rea
R data.

1.2 Recovery of Anomalies from Real Data

In simulation studies, we considered the initial state vectors of
the satellites to have been determined a-priori to an accuracy so that any
resulting error (modeling error) in the residual R data (due to treating the
initial state vectors to be without error) was much less than the observational
errors or 'noise'. This a-priori knowledge was necessary, as it was found
that the initial state vectors could not be converged (GEODYN, Vol. III, pp. 1.2 -
5; also see below) from the limited time span of 30 to 60 minutes of range
rate sum observations.

We presume here that at the satellite altitudes exceeding 800 km,
the equations of motion of the satellites can be expressed with negligible error
if the earth's gravitational field is described by the full set of potential coeff-
icients of GEM-7 (Wagner et al., 1976). If we also take into consideration the
lunar and solar gravitation, and account for the ionospheric and tropospheric
refraction and the transponder delays at the satellites, then barring any system
bias in the range rate sum observations, the computed values should fit the
observed values in the least squares sense, and we may iteratively solve for
the initial state vectors of the ATS-6 and GEOS-3 satellites. We will consider
the solution to have converged when the corrections to the initial state vectors
in two consecutive iterations do not change by more than 27.

The converged initial state vectors are thns based on the observation
type and the time span. They may be strongly biased if the observations were
biased in some way, and this possibility would increase if only one type of
observation was used for converging the arc, and also if the time span of
observations was 'short'. The adequacy of time span depends on the type of
observations (and their variance). Conceptually, range computations will be
more sensitive to the initial state vector of a satellite as compared to the range
rate values, and the range rate sum values of a high-low satellite pair will be
still less sensitive to the initial state vectors of the satellites. We should there-
fore expect the changes in the solution of initial state vectors in successive
iterations to vary sharply with the last observation type, and several iterations
may be needed for the converged solution even if the time span was comparatively
long, like 1 to 3 hours.




The optimum solution would then be to use several types of
observations obtaining a weighted least squares solution of the initial state
vectors of ATS-6 and GEOS-3. As we did not have access to other types of
observations besides the ATS-6/GEOS-3 SSE tracking data (NASA, 1976),
the initial state vectors were not solved for by us. These were kindly supplied
by Marsh (1976, 1977) and will be discussed in Section 2. The effect of
uncertainty in the initial state vectors on the residual R, K and anomalies
will be discussed in Section 4.

In simulation studies, the residual R data was numerically
differentiated by approximating it by a smooth continuous function, viz. the
interpolating natural cubic spline, and then analytically differentiating the
spline to obtain R. The spline being a set of piecewise continuous cubic
polynomials does not exhibit spurious oscillations between the data points,
which is a characteristic of higher order polynomials. Also, as the spline
has the minimum norm among all interpolating functions (details in Section 2),
it is the smoothest function and its first derivative (R in our case) is also a
smooth (and continuous) function. The interpolating spline, however, passes
through the R data points and does not admit any errors in them. The slopes
of the interpolating spline would thus be in much error with real R data, which
have observational errors, as the spline would have spurious 'rise and fall' in
trying to fit each data point exactly. We bhave to thus consider a cubic spline
which may fit the data in the least squares sense (Lawson and Hanson, 1974,
Chap. 27) so that the fitted spline filters the raw R data of the 'noise'. A
similar data fitting approach was reported by Muller and Sjogren (1968) in
filtering lunar doppler data by fitting piecewise continuous cubic Hermite
polynomials, but which did not have a continuous first derivative. Cubic
splines were used in their later analyses.

Besides filtering the raw R data, we also wish to smooth it in the
sense that its slope, R, changes smoothly in a physically meaningful way. We
know from simulation studies (Rummel et al., 1976, p. 54) that the values of
3T/3r (and R) change only gradually within a mgal or so over 30 seconds
interval at the GEOS-3 altitude. The spline fitted in the least squares sense
should then be further required to be smooth enough so that its first derivative
(and 3T /3r) should change in the gradual manner indicated. The smoothing is
dependent on the spacing of spline nodes, where different cubic polynomials in :
neighboring intervals meet. If the spline nodes are too far, we will get a b
dampened representation of B from over-smoothing of the spline; while if the |
nodes are too near, the slopes of the fitted spline change sharply at the data :
points (at 10 seconds interval) giving noisy R values. This will be discussed
in detail in Section 3.




1.3 Scope of Investigations

The ATS-6/GEOS-3 SSE tracking data was supplied by NASA (1976)
in the ATSR format (Bryan et al., 1975). A portion of this data from April 16,
1975 to May 22, 1975 was reformatted in the GEODYN binary format (GEODYN,
Vol. III, Appx. C 7) using a preprocessor program kindly supplied by Martin
(1975). Agajelu (1977) selected five descending GEOS-3 revolutions 154, 268,
439, 453 and 467, in which the GEOS-3 satellite moved from north-east to
south-west, for examining the recovery of 5° anomalies in the Carribean
portion of the North Atlantic Ocean between the latitudes 15° to 35° North and
longitudes 275° to 295° East. The initial state vectors for both ATS-6 and
GEOS-3 satellites were supplied by Marsh (1976) for these five GEOS-3
revolutions during the period April 20 to May 12, 1975.

It was intended to use five ascending GEOS-3 revolutions, in which
the GEOS-3 satellite moved over the area of investigation from south-east to
north-west. These revolutions were 104, 118, 175, 232 and 246 during the
period April 17 to April 27, 1975. The initial state vectors were received
(Marsh, 1977) only for the GEOS-3 satellite for three revoluticns. It was
hoped that the corresponding initial state vectors for ATS-6 could be obtained
by integration from the values available for 0® on April 19 and April 25, 1975.

The present study investigates the above limited real range-rate
sum observations for establishing the procedures for the recovery of 5°
anomalies using least squares collocation. If the range rate sum observations
in all 10 GEOS-3 revolutions could be used, we would have observations from
one ascending and one descending revolution for the recovery of each 5° anomaly.
As we will later see in Sections 2 and 4, this density of observations was, how-
ever, not available.

We will examine the reliability and compatibility of the initial state
vectors in Section 2, and their effect on the recovery of anomalies will be
investigated in Section 4. We will consider the filtering and smoothing of the
residual R data in Section 3.

2. Initial State Vectors for ATS-6 and GEOS-3 Satellites

The initial state vectors were provided by Marsh (1976) for both
satellites corresponding to five descending revolutions of GEOS-3. We first
describe in Section 2,1 the particulars of the observations and time span used
for determining these initial state vectors, and the uncertainties ascribed to
them. Initial state vectors for three ascending revolutions of GEOS-3 were
later provided by Marsh (1977), together with data from which it was hoped that
the initial state vectors for two other ascending revolutions of GEOS-3, and the




corresponding elements for ATS-6 (for all five ascending revolutions of GEOS-3), |
may be obtained by forward or backward integration. We discuss in Section 2, 3 |
attempts to recover these values. We also describe in Section 2.2 the result |
of trying to filter out some observational and modeling errors in a short time }
span of range-rate observations by letting the initial state vectors be constrained "
with suitable weights to change only slightly to see if some errors may be absorbed

by them. The results showed that this approach is not workable.

2.1 Initial State Vectors Available for Both Satellites

The five descending revolutions of GEOS-3 were 154, 268, 439, 453
and 467. The epoch of the initial state vectors, the time span of observations
and other particulars are given in Table 2.1. The earth's gravitational field
was modeled by the full set of potential coefficients of GEM-7 (Wagner et al.,
1976). The lunar and solar gravitational effects, including earth tides, and the
solar radiation pressure were taken into account. The atmospheric drag was
considered zero at the satellite altitude exceeding 800 km. The observations
considered were range, including aser ranges, range-rate and average range-
rate (GEODYN, Vol. III, 1975, Appx. C.7). The initial state vectors of both
ATS-6 and GEOS-3 were adjusted together, keeping observations for a single
pass of GEOS-3, as seen from ATS-6, centrally in the time span of observa-
tions. The adjustment was done iteratively (GEODYN, Vol. I, 1976, Sec. 2.2)
minimizing the sum of squares of residuals of observed minus computed (O - C)
values in the force model, till the RMS (root mean square) value in the last
iteratior converged within 2% of the RMS value in the previous iteration. The
RMS position (RMS P;) standard deviation (S D) and RMS velocity (RMS Vy)
standard deviation for each satellite (i = 1,2) was computed from the standard
deviations cf the position (Sxi, Svi, S;1) and velocity (Sz;, Siy, Si() elements
at the initial epoch as:

i
(Sxi® + Syi°+ S:,°)%, i=1for ATS-6, i =2 for GEOS-3

]

(2.1 RMSP;

" e
St + S+ 8152, i=1for ATS-6, i =2 for GEOS-3

(2.2) RMS V,

The data interval for range-rate observations in all cases was 10
seconds, except for revolution 467 where it was 1 second during a period of
about 7 minutes and 10 seconds otherwise. There was also a break of about
30 seconds at each end of 1 second interval observations in revolution 467.
The residuals in this revolution after the convergence of initial state vector
were much larger by a factor of 4 to 6 compared to other revolutions. This
revolution was thus not used, and only four revolutions 154, 268, 439 and 453
were used in subsequent work.
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2.2 Filtering of Residual R Data by Slight Variations to Initial State Vectors

The statistics RMSP; and RMSV,; , expressing the uncertainty in
the determination of the initial state vectors, were large (see Table 2.1) for
all revolutions, only revolution 453 having a comparatively lower value. This
was a cause for concern, for if the initial state vectors were incorrectly
determined, it will cause large residuals of range rate (Agajelu, 1976, Sec. 4).
A larger value of RMSP and RMSV, however, does not necessarily imply a
large discrepancy from the 'true' value of the initial state vector, which is
ensured by taking different types of observation for an adequate time span and
by the convergence criterion of the determination of the initial state vector.

We will be using the range-rate R, residual to a (12, 12) potential
coefficients field, as the raw data to recover residual gravity anomalies. This
data is needed for a limited time span for the recovery of anomalies in a local
area. We cannot use this limited data to improve the available initial state
vectors in the sense of bringing them closer to the 'true' values. But it may
be argued that we could pocsibly filter the raw R values of some observational
and modeling errors by letting the initial state vectors take the 'slack' by
letting them vary slightly within the standard deviation implied by the statistic
RMSP and RMSV. This may still be too large for a case like revolution 154
in Table 2.1. There is also a risk in this approach that the initial state vectors
may absorb a part of the signal, while filtering the observational and modeling
errors.

Nevertheless, we tested this approach by considering the case of
revolution 453, where the a-priori values of the initial state vectors as avail-
able in Table 2.1 were assigned standard deviations implied by items 6 to 9
(in Table 2.1), and then allowed to change to fit a span of 30 minutes residual
R values. Three iterations were tried, and the results are shown in Table 2.2.

It is obvious that the range-rate observations by themselves are
not very helpful in tying down the initial state vector. And that, in any case,
a 30 minute time span of R data is not long enough to do so. A shorter time
span would be only worse. We have to thus fix the initial state vectors,
obtained from a longer time span and with different data types in Section 2.1,
by assigning them very low standard deviations (Hajela, 1974, Section 6. 1).
The filtering and smoothing of observational and modeling errors would have
to be handled subsequently. This will be discussed in Sections 3.1 and 3. 2.




Table 2.2. Variation of Initial State Vectors to Filter Residual Range-Rate
Data for 30 Minutes in Revolution 453

1st 2nd 3rd
Iteration | Iteration |Iteration

1. Observations accepted for adjustment

(a) No. of obsns. 180 17 61

(b) Mean value (cm/sec) 0.72 | -50.85 | 23.07

(¢) RMS value (cm/sec) 0.82 67.78 | 29.28
2. Change to Initial State Vectors

(a) ATS-6 in position (meters) 0.53 0.40 0.38

(b) ATS-6 in velocity (cm/sec) 0.06 0.05 0.07

(¢) GEOS-3 in position (meters) 1.19 12.15 4.88

(d) GEOS-3 in velocity (cm/sec) 0.02 1.85 0.08
3. Uncertainties in Initial State Vectors

(a) RMSP for ATS-6 (meters) 17.15 17.21 | 17.19

(b) RMSV for ATS-6 (cm/sec) 0.44 0.48 0.46

(c) RMSP for GEOS-3 (meters) 9.90 12.18 | 11.65

(d) RMSV for GEOS-3 (cm/sec) 1.05 1.82 1.14

2.3 Initial State Vector Available for only GEOS-3 Satellite

The five ascending revolutions of GEOS-3 (which we wished to
consider) with epoch times during April 75 were: 104 (April 17, 07"), 118
(April 18, 07%), 175 (April 22, 08"), 232 (April 26, 08") and 246 (April 27,
08™. Initial state vectors for GEOS-3 for revolutions 175, 232 and 246 were
received from Marsh (1977). The particulars for the observations used for |
determining the initial state vectors for GEOS-3 are given in Table 2.3, on {
the same lines as in Table 2.1. As the tracking data before April 19, 1975 !
were not readily available, the initial state vectors for GEOS-3 were not
determined for revolutions 104 and 118. Instead, the initial state vectors
for both ATS-6 and GEOS-3 satellites solved together were supplied for
April 19 (0" 0" 0¢), and later also for April 25 (0* 0® 0°). The particulars
of observations used for determining these are also given in Table 2. 3.

-10-~
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We note that the ATS-6 elements corresponding to the epoch of
GEOS-3 revolutions were not available, It was hoped that these could be
obtained by integration from the ATS-6 elements available for 19 April 75,
or preferably from the nearer epoch 25 April 75. And similarly, the ATS-6
and GEOS-3 elements for revolutions 104 and 118 could be obtained by backward
integration from the epoch on 19 April 75 using the GEODYN (1975) program.
Before this was done, it was necessary to examine the compatibility of the
elements supplied in the last two columns of Table 2.3, which had been
rigorously determined from observations of different types over 5 day periods.
This was first done for the ATS-6 satellite. The true of date ephemeris for
ATS-6 was generated by integrating forwards and backwards in the force
field as described in Section 2,1 for the period 19 April 75 to 29 April 75
sepurately from the elements available in the last two columns of Table 2. 3.
The position (X, Y, Z) and velocity (5(, S.(, Z) coordinates were compared from
these two ephemeris, and also with the ATS-6 elements available in Table 2.1.
The comparisons could be made for the epochs on 19 April 0", 20 April for
epoch of revolution 154, 22 April for epoch of revolution 175, 25 April 0",
26 April for epoch of revolution 232, 27 April for epoch of revolution 246, and
28 April for epoch of revolution 268. Comparisons were also made with ATS-6
elements supplied with SSE tracking data (NASA, 1976) for the epoch on
20 April 0", The differences are shown in three rows for each epoch in
Table 2.4: (a) first row — integrated elements from April 19, 0" epoch minus
elements available in Tables 2.1 or 2.3; (b) second row — integrated elements
from April 25, o" epoch minus elements available in Tables 2.1 or 2. 3; third
row — integrated elements from April 19, 0" epoch minus integrated elements
from April 25, 0" epoch. When there was no data to complete a row, it was
left blank.

It is clear from the entries against row (c) in Table 2. 4 that we may
be able to integrate the elements reasonably correctly only within the time span ?
of observations used for determining the initial state vector. We may note the
large values of the discrepancies (A-B) in rows 1lc and 5c. But what is more
surprising is that they differ from each other though the time period for back-
ward integration (from 25 April to 19 April 75) of ATS-6 elements on 25 April 75
is the same as the time period for forward integration (from 19 April to 25 April 75)
of ATS-6 elements on 19 April 75. We may also note the very large changes in
rows 7c and 8¢, and also the changes in rows 4c and 5c.

The ATS-6 elements on 19 April 75 and 25 April 75 were converged
independently, based on 5-day observations with low RMSP and RMSV values
(Table 2.3). But they are not at all compatible with each other outside the time
span of observations on which they are based. This is also seen in the large
discrepancy in row 2a of Table 2,4. The elements differ widely as they are
based on different time spans of observations. The differences are grossly
large in row 8h. We recall that the converged elements (C) for ATS-6 in row
8b were obtained for time span of about 2 1/2 hours (see Table 2.1 for
revolution 268).
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It is therefore not possible to integrate backwards from the initial
state vectors of ATS-6 and GEOS-3 on 19 April 75 to obtain elements corresponding
to GEOS-3 revolutions 104 and 118 on 17 April and 18 April 75 respectively. We
may also integrate the ATS-6 elements forward only within the time span of
observations used for converging then, i. e. for epoch of revolution 175 from
elements on 19 April 75 and for epochs of revolutions 232 and 246 from elements
on 25 April 75. It was found that there was a break in range-rate observations
in GEOS-3 revolution 175 over the area of investigation, so we could only process
the observations in GEOS-3 revolutions 232 and 246.

We then examined the residuals of range-rate sum in the full force
field of Section 2.1, using the initial state vectors of ATS-6 as obtained by
integration from 25 April 75, along with the converged initial state vectors of
GEOS-3 as available from Table 2. 3, for epochs of revolution 232 and 246; 56
and 61 minutes of range-rate sum observations were used respectively for the
two revolutions. We would expect the residuals to be random and close to zero,
if the initial state vectors were satisfactory. However, this was not so, partic-
ularly for revolution 232, and is shown in Table 2.5. As the GEOS-3 elements
were already converged as in Table 2.3, only ATS-6 integrated elements could
be responsible for unsatisfactory residuals. We then fixed the initial state
vector of GEOS-3 by assigning very low standard deviations, and allowed the
56 and 61 minutes of range-rate observations to iteratively improve the ATS-6
elements to fit these observations. The a-priori standard deviation of each
ATS-6 element was taken approximately equal to the magnitude of the differences
(A-B) in rows 6c and 7c of Table 2.4. A total of up to 9 iterations were tried
separately for revolutions 232 and 246, and the results are given in Table 2.5,

We first note that range-rate sum observations, even the time-span
of 60 minutes, are not very helpful in tying down the initial state vector. (Also
see Eddy and Sutermeister, 1975, Sec. 3.) The elements did not converge even
after 9 iterations in revolution 246, and even in the case of revolution 232 there
are very sharp fluctuations in the second and fourth iterations. Secondly, the
large initial values, shown under iteration 1, of mean and RMS residuals in
revolution 232, as compared to revolution 246, points to some systematic errors
in range-rate sum observations in revolution 232. Hence, even if the elements
converge after seven iterations, and reduce the magnitude of residuals, the
systematic error may still remain. This will be discussed again in Section 4. 2.
For future reference we will refer to the initial state vectors of GEOS-3 in
revolution 232 as in Table 2.3 and the corresponding initial state vector of ATS-6
as referring to revolution 2321 with integrated elements of ATS-6, and as
revolution 232 A with adjusted elements of ATS-6 after 7 iterations in Table 2.5. . 3
The initial state vectors of ATS-6 for revolutions 2321 and 232 A are shown in
Table 2.6. The difference between them is as grossly large as for the case in
row 8b in Table 2. 4.

.-
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Table 2.6. Initial State Vectors for ATS-6 for Revolution 232
on 26 April 75 07"

X Y z X Y Z
Revolution (m) (m) (m) (cm/sec) | (cm/sec) |(cm/sec)
232 1 -30,047,830 | -29,592,060 | -433,970 | 2,156,92 | -2,189,72| 45.05
232 A -30,076,114 | -29,573,587 | -424,089 | 2,158.12 | -2,190.88| 41.83
Difference
l (A-1) 28,284 -18,473 -9, 881 -1.20 i 1. 16 3.22

The convergence of the initial state vector by itself is therefore not
enough. We have to consider the observation type as well as the time span of
observations used for the convergence. The integrated elements of ATS-6 are
totally discordant from the converged elements in revolution 232 A, as well as
in revolution 268 (Table 2.4). We will later find in Section 4. 3 that the converged
elements of GEOS-3 in revolution 268 were also grossly different from thke
integrated elements from the epoch 0" on 25 April 75. Firstly, this may point
to some systematic errors in the data during the time span of about 2 1/2 hours
used in Table 2.1 for convergence of revolution 268. Secondly, there is a
possibility while converging the elements in a satellite pair, that two widely
differing sets of initial state vectors may fit the same range-rate sum and range
sum observations. This may be avoided by including sufficient independent range
observations to each satellite.

We will also find later in Section 4 that the residual R data in revolution
232 and revolution 268 were not usable whether we use the integrated elements or
the converged elements in the initial state vectors of the two satellites.

3. Computation of the Radial Derivative of the Anomalous Potential

We consider in this report the residual range-rate (R) as the raw data,
which is range-rate sum observations in satellite to satellite tracking reduced by
the computed value corresponding to the gravitational field defined by (12, 12)
potential coefficients (Hajela, 1974) with the initial state vectors obtained in
‘ Section 2, In Rummel et al. (1976), a natural cubic interpolating spline was used
| to fit simulated R data, which was free of observational and modeling errors.
As the R data in this report has observational noise, this has to be first filtered
! out before further processing. We will discuss the use of cubic splines in fitting

-16-




noisy data in the least squares sense in Section 3.1. The results of this fitting
(filtering and smoothing), and its analytical differentiation to obtain residual
acceleration (R) will be presented in Section 3.2, The computation of the
radial derivative of the anomalous potential (3T/dr) will be described in
Section 3. 3.

3.1 Use of Cubic Splines for Fitting Data

Let a set of n distinct and monotonically increasing points be defined
on the real line on a closed interval I =[a,b], such that:

(3.1) aSt1<t2< S <tk+1< cee tnsb
and let a real valued continuous function R = f (t) assume the values:
(3.2) Ry = f(tx) atthe points tyx, k=1, ..., n

We approximate this function f over I by a smooth 'spline' function
S = S(t) consisting of a set of piecewise polynomials of degree 2r + 1 defined
respectively in the intervals Iy, = t, <t < ty.,, suchthat S is 2r times
continuously differentiable at each of the 'nodes' (or 'breakpoints', or 'joints')
ty . This spline function is of degree 2r + 1. We will consider in this report
only a cubic spline (function) with r = 1, which is twice continuously differen-
tiable at each node and is a set of piecewise cubic polynomials in each interval
I . If we specify the value of the spline S at the nodes t, to be the same as
the function f, which is being approximated over I, i.e.

(3.3) 8= Sty) = Eihsy= Ry s k=1, cuuy Bl

then S is the interpolating cubic spline; and is uniquely defined if we also
specify two additional boundary conditions (Ahlberg, Nilson and Walsh, 1967,
page 11). The dimension of S, is therefore n + 2, where S, is the linear
space of all cubic splines on I, with nodes at t, , k=1, ..., n; i.e.

(3.4) 8 = {q() € C* (T | g (t) is a cubic polynomial on
each subinterval I, = t, <t s t.,,, defined

on the interval I }
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and C° () denotes all twice continuously differentiable functions on I. S,
obviously includes the natural interpolating cubic spline used in Rummel
et al. (1976), but we are now interested in other splines also with the
common condition that they all have nodes at t, .

A unique representation for the cubic spline, and we may refer to
it henceforward simply as spline, in terms of n+ 2 linearly independent
members of S, is thus:

n+2
(3.5) Si) = T cy 9y(tt), j=1, ..., n+2, c, is a real number.

=)

If the sample values of the function f at the nodes t, are not known
accurately in equation (3.2), say due to observational errors in Ry, the
approximation of f by a spline using the interpolating condition (3. 3) will be
unsatisfactory. The errors will be further magnified in subsequent operations
on the spline, for example, if the differential operator is of interest, then
S"(t) may not recover the signal or the trend (f'(t)) from noisy data R, .

We may then fit a spline S*(t) to the function f in the least squares
sense, such that the euclidean or the Lz norm ||f - S* ||z is minimized,
(Schultz, 1973, Chap. 6; Rice, 1969, Vol. II, Sec. 10.4), i.e.:

] tker
3.6) | f-s*|2 = )} I (F(t) - S*(t))° dt
k=1
n-1 teh i
= ? J‘tk ; (Ry - S"‘(i:i))2 dt = minimum
= k
k=1

and the integral may be replaced by a summation for the available observations
R, in the interval I, . We now assume an available vector R of noisy
observations:

(3.7 Re = f(ts), i=1, oo, m m>n+2
Following (3.5) we may represent S*(t) as:

N4 2
(3.8) SK () = ) Cf Qy(t) s =1y .00, n+2
i=1

=] 8=
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where q; are (n + 2) cubic polynomials being the bases of S, in equation (3. 4),
and c* is the vector of (n + 2) unknown coefficients c,*.

We then have to solve for c* under the constraint (3. 6) from a set
of m linear (observation) equations:
(3.9) Ac*~R , where
(3.10) A=fagls 3y = Q) ; 1=1, cosy M3 =1, eouy D +2

There exist bases for S, with the property that if the data are
ordered, i. e. t; <tz < ... < t,, then the (m x (n + 2)) matrix A is
band limited with a bandwidth of 4 (Lawson and Hanson, 1974, page 223).

We first note that the nodes of the spline, i. e. t, in equation (3.1)
are embedded in the ordered data t; with:
(3.11) ty =ty for k=1, i=1 and for k=n, i = m;

m > n+2

We then define:

(3.12) Atk=tk+1—tk,k=1,..., n-1

and scale the independent variable t; to u in each interval I, , such that

G-t o Eimt % by =ty _ by -t 1

3.13 u; =
(929) : Aty fi0s =L Eoar~ Bk At

Then for each interval Iy only 4 cubic polynomials out of q(t) have
non-zero values, i. e. for ?

(3.1 j=k-14+£; k=1,...,n-1; £=1,..., 4;
qs;(t) = p;(1-v)
ds+1(t)= pz(1-u)
ds+2(t)= pz(u)
Qy+a(t)= py(w)

-19-




where (ibid., 1974) suggests the choice:

(3.15) py (u) = 0.25 u®, and
pa(u) = 1-0.75(1 +u)'(1 -u?

The spline at any point t, is then evaluated using equation (3. 8) as:

4
(3.16)  S*(t:) =) Cfereg Gu-nrag(ti); K=1, .0, m-1
=1

It is easy to see from equations (3. 13) to (3.15) that S* is a cubic
polynomial in each interval I,. It can be shown that it is continuous at the
nodes also, for in the interval I, , when:

(3.17) ti = tk, ugy=0, 1 -ux=1, q¢(ty) = P (1) = 0.25
Ak+1(tx) = p2(1) = 1
gx+2(tx) = pa(0) = 0.25
Ax+a(te) = P1(0) = 0

and when

(3.18) ti= Cer1s Uke1=1, 1-Ugs1 =0, Qi (txed) = P1(0) =0

qg+1(tk+1)= P2(0) =0.25
qy+2(tk+1) = P2(l) =1
qr+a(tks1)= p1(1) =0.25

Then if we use the notation S* (t..,) for the value of spline in the
interval I, at the node t,,,, and similarly use the notation S:ﬂ (tx+,) for
the value of spline in the interval I,,, at the same node t.,, then the
continuity of S* is ensured by the condition:

(3.19) Sk (tkr) = S Ky (tien)

which is true, as from equations (3.16) to (3.18):
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TETTCREEITYP

*
(3.20) Sy (tex1) = Cx * P1(0) +Ciay * P3(0) + cFez * P2(1) + Cxes® P1()

0.25cts; + Cpea + 0.25ck s

Cre1°P1(1) + Cyrz* Pa(l) +CFeze P2 (0) +Ceg* P1(0)

S:“'l(tk+1)

0.25ck, + cfiz + 0.25C 43

’Similarly', we may show that the first and second derivatives of the
spline, S* and S* ', are also continuous at the nodes. From equation (3.15):

(3.21) p, (u = 0.75u; p, (0) =0, p, (1) = 0.75

pz (u) = 0.75 (1 +2u - 3u®); pz (0) =0.75, pz (1) =0, and

(3.22)  py (W = L.5u; p, (0)=0, p, (1) = 1.5

ps (w = 1.5 (1 - 3u); ps (0) =1.5, pz (1) = -3

Using notations similar to that in equation (3.19) and (3. 20), and
using equations (3.21) and (3.22), it follows that: '

(3.23) Sy (tys1) = Cx *P1(0) + Coay * P2 (0) +Cxvz * Pz (1) +Cxes * Py (1)

0.75Cpsq + 0.75 Cpasa

S¥ i (terr) =Crer Pr (D) +ciia s pa(l) +Cieas Pa (0) + Cxag* Py (0)

=0.75¢r+1 + 0.75Cp+a o and

Xss s’ s’ ,o ’r
(3.24) Sy (tx+1) = Cx * Py (0) +Cxr1e Pa (0) +Cxaz < Pz (1) +Cfras py (1)

=1c5 C:+1-30:+3 +105C:+5
,e * ’0 ’e ’e
Srii(tie1) =Crrr Py (1) + Cifeg e Pa(l) +Ciea * Pa(0) + Ciss * Py (0)

* *
=1.85Cry = 30 ea + 1.50as

e




which leads to:

X, ’
(3.25) Sk (tkry) = Syey (txey) , and

X,0 koo
Sk (tke1) = Sx+y (tx+1)

Finally, it can be shown that the polynomials q, in equations (3.17)
and (3.18) do satisfy the condition (Spath, 1974, page 58):

(3.26) det 9k (tk) Qr+1 (tk) dx+2 (tk) Qi+a(ty) 0
A (tirr) Qi+ (tk+1) Qi+z (tk+y) gy+3(te+n)
Qx (tx) Qice (te) Qicrz (t) dic+a(ty)
i (te+1) Qic+1 (te+1) Qi+z (te+y) Qic+3(ty+)
k=1,
o
n-1

because using equations (3.17), (3.18) and (3.21), equation (3.26) takes the
following form:

det | p,(1) Pz (1) Pz (0) P1 (0)1
P1(0) pz (0) Pz (1) P1 (1)
p1 (1) Pz (1) p3 (0) p1 (0)
P (0) pz (0) Pz (1) Py (1)
L -
= det 0.25 1 0.25 0 .1 0
0 0.25 1 0.25
0.75 0 0.75 0
0 0.75 .0 0.75 )

Equation (3. 16) using equations (3.12) to (3. 15) is therefore a valid
representation of the cubic spline (3.8). We now return to the solution of
(n +2) vector c* from m linear equations (3.9) under the constraint (3. 6).
This was done by an algorithm given in Lawson and Hanson (1974, Chap. 27).
It is known that there exists a (mx m) orthogonal (Householder's) matrix
Q such that if it multiplies from the left the augmented (m x (n + 3)) matrix
TA : B_] of equation (3.9), the augmented matrix is decomposed into a
((71 +2) X (n + 2)) upper triangular matrix R in the following form:
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(3-27) HSI [uén+8:uB_1] = n+3£n+2 : n+ 2 gl
19n+3 : 1 21
a-n-30n42 ! np-3 0y ]
i |

and the upper triangular matrix R retains the same bandwidth 4 as the matrix A.
Further, the solution of (n + 2) linear equations:

(3.28) a+a Em-a nem €1 = n+2dy

is the same as that of equation (3.9) under the constraint (3. 6), and the euclidean
or Lz norm of the residual vector r is given by £ of equation (3.27), i.e.,

(3. 29) Irllz=l[R-Aac*l2=¢

The solution of c* in equation (3.28) is straightforward by back
substitution as R is upper triangular. We therefore transform the observation
equations (3.9) directly by the QR decomposition into equations (3.28), and the
formation of normal equations and the inversion of normals matrix is avoided.
Further, as there are only five non-zero elements in the augmented matrices
[A: R] and [ R d] in equation (3.27), we only need an array (m x 5) in the storage.
The Lawson-Hanson algorithm (ibid, 1974) processes the observations sequentially
in this array according to equation (3.27), with all observations in the interval
I« being processed at a time.

Specifically, the matrix Q is a product of (n + 3) orthogonal (m x m)
Householder's transformation matrices Q;:

(2. 30) 9'—‘ 9n+3 9;,4.3... 334.1 95...92 91

Whlch reduce the column vectors vy ; j=1, ..., n+ 3 of the augmented matrix
(A: R] to 0 below the diagonal. The matrix Q are computed by:

(3.31) Qs = Ia-2 v v/ (v vy

T

where I, is the (m x m) unit matrix and vector y,’ is the transpose of vector v;.
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3.2 Filtering and Smoothing of Raw R Data

The spline in equation (3.16) filters the given raw data 5 in the least
squares sense. It also smooths the raw data depending on the spacing of nodes in
equation (3.12), or analogously depending on the number of nodes in equation (3. 1).
For a given number of data points m, if the number of nodes n = m - 2, we get
the interpolating spline. But as n is reduced, i.e. the spacing of nodes is
increased, we get a smoother representation of the data. It is important to
choose a suitable spacing of the nodes, particularly if S*'(t) is of interest, as
the slope of the fitted spline is sensitive to the smoothing of the data. Inadequate
smoothing will give large and 'noisy' slope values, while over-smoothing will
dampen them out. We now describe these experiments with different spacing of
nodes in respect to residual range-rate (f{) data. The spacing of nodes was kept
uniformly as 30, 40, 60, 80 or 100 seconds.

We first consider the range-rate sum observations in revolutions 154
and 453 described in Section 2.1. We deduct from these the computed value of
range-rate sum in the gravitational field of (12, 12) potential coefficients out of
GEM-7 (Wagner et al., 1976), with the initjal state vectors kept fixed at the values
given in Table 2.1, We consider these residual range-rate R values as the raw
data. We fit splines in the least squares sense to this raw data at 10 seconds
interval using equation (3.16) over a 20 minute period, i. e. 121 raw data points. i
The 20 minute period was chosen to straddle the observations over the area of ]
investigations centrally. With 121 raw data points, and with the condition in
equation (3. 11), the spacing of nodes at any of the values 30, 40, 60, 80 or 100
seconds ensured that the spline nodes were always coincident with the location of
some data points.

We give in Table 3.1 for each nodal spacing the RMS values in ecm/sec
of raw data, smoothed data, residuals after spline fit (= smoothed - raw data) and
also the total number of residuals out of 121 points, which had an absolute value
larger than an arbitrary value of 0.1 cm/sec.

A plot of raw and smooth data corresponding to nodal spacing of 40,
60 and 80 seconds is shown in Figures 3.1 to 3.3 for revolution 154, and in
Figures 3.4 to 3.6 for revolution 453. From Table 3.1, as well as Figures 3.1 v
to 3.6, we note greater smoothing of data with increased spacing of nodes. We
note that the outlying data points have a lesser effect on the shape of the spline
as the spacing of spline nodes is increased. This may be seen particularly for
a large positive data point in the center of Figures 3.1 to 3.3, and for a negative
data point to the left in Figures 3.4 to 3.6, The least squares nature of fit is seen
clearly in Figures 3.7 and 3.8, showing the plot of residuals after spline fit at
nodal spacing of 60 seconds for revolutions 154 and 453 respectively. The RMS
value of residuals (filtering) does not show large changes in Table 3.1, but the
slopes (smoothing) of the fitted splines get smoother (Figures 3.1 to 3. 6).
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This is seen more clearly, when we differentiate the spline (function)
analytically, and plot S**, which are the residual acceleration R. The plots of
R for revolution 154, for spline nodes at 30, 40, 60, 80 and 100 seconds, are
shown in Figures 3.9 to 3.13. We note the 'noisy' oscillatory pattern in Figure 3.9
when the spline nodes are not far enough at 30 seconds spacing to achieve adequate
smoothing of data. On the other hand, when the nodes are too far at 100 seconds
spacing, the accelerations are dampened off in Figure 3.13. The spacing of nodes
at 60 seconds appears to be optimum to filter and smoothen the raw R data, when
we are interested in R. We cannot notice a clear differe.nce between 40, 60 and
80 seconds spacing of nodes, when we look at smoothed R data in Figures 3.1 to
3.6 or in Table 3.1. But the R values do show an optimum recovery of signal
at 60 seconds.

This is seen again in Figures 3.14 to 3.18, which shown the R values
for spline node spacing at 30, 40, 60, 80 and 100 seconds for the least squares
fitting of raw R data in revolution 453. The spacing of nodes at 30 seconds and
100 seconds are clearly unsuitable, and spacing of 60 seconds appears to be
optimum in the sense of R values changing gradually as we would expect them to
at about 850 km height (see 3 T/3r values in simulation studies (Rummel, et al.,
1976, page 54)).

We also notice the spurious values of accelerations clearly in Figures
3.11 and 3. 16, and also in other figures showing plot of accelerations, near the
ends of the data span. We do not expect the fitting of the spline to be very satis-
factory at either end of the data span, and this is seen more clearly in the slopes
of the spline, than in the spline itself in Figures 3.1 to 3.6. With the data interval
as 10 seconds, the data span of 20 minutes, straddling the area of investigation
centrally, was purposely chosen to be much larger than required. 2 to 4 minutes
of accelerations appear to be spurious at either end of the data span, leaving at
least 12 minutes of useful data. 6 to 8 minutes of this data taken centrally was
actually used in the recovery of anomalies in Section 4.

Information about the RMS and mean values in cm/sec of the raw R
data, smoothed R data after f itting a spline with spacing of nodes at 60 seconds,
and the residuals (smoothed - raw data) is given in Table 3.2 for all revolutions
available in Section 2.1.

The large RMS value of the residuals in revolution 467, almost as
large as the raw data itself, shows that these observations are unusable for further
processing. The location of GEOS-3 in latitude, longitude and height in revolutions
467 and 268 were matched quite closely, and we would expect similar R values.
The RMS value of raw R data in revolution 268, however, appears to be much
larger. The plots of R and R in revolution 268 with a spline node spacing of 60
seconds are shown in Figures 3.19 and 3.20. Figure 3.19 is on a reduced scale
of 1/3 as compared to Figures 3.1 to 3.6 to accommodate much larger R values.
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Table 3.2. Least Squares Spline Fit with Spline Nodes 60 Seconds
Apart to Raw R Data at 10 Seconds Interval to GEOS-3
Revolutions 154, 268, 439, 453 and 467.

Residuals After
GEOS-3 Raw R Data Smoothed R Data Spline Fit
Rev.# | R.M.S, Mean R.M.S. Mean R.M.S. Mean
154 0.2321 -0.0943 0.2167 -0.0943 0.0833 0.0000
268 1.2643 1.1730 1.2626 1.1730 0.0648 0.0000
] 439 0.1286 -0.0049 0.0933 -0.0049 0.0885 0.0000
453 0.4389 0.4096 0.4333 0.4096 0.0695 0.0000
467 0.6512 0.4345 0.4772 0.4345 0.4431 0.0000

Units are cm/sec.

: Figure 3.20 is on the same scale as Figures 3.9 to 3.18. When we compare the
accelerations in revolution 268 (Figure 3.20) with accelerations in revolutions 154
and 453 (Figures 3.11 and 3. 16), the accelerations R in revolution 268 appear
reasonable. But there does appear to be some systematic error in R in revolution
268 from Figure 4.19, when we compare it with Figures 3.2 and 3.4. We will
comment on this again in Section 4. 1.

3.3 Radial Derivative of the Anomalous Potential at GEOS-3 Locations

The radial derivative (3T/dr). of the anomalous potential at a particular
location (¢, X, h) of the GEOS-3 satellite is obtained from the residual acceleration
(), ,n by equation (1.2) reproduced here specifically:

(3.32) @AT/3r)y A, h = (R')(p’)t’h/cOSB

where B is the angle (Rummel et al., 1976, page 19) between the radial direction
to GEOS-3 and the direction GEOS-3 to ATS-6. Whenever GEOS-3 happens to be
directly below the ATS-6, (¢~ 0° A~ 266°) dT/dr would equal R, but at other
locations of GEOS-3 the 3T/3 r values will be magnified sec B times the R values.
We show this for revolutions 154 and 453 in Table 3.3 at one minute intervals out
of the GEOS-3 locations actually used for the recovery of anomalies in Section 4.
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Table 3.3. d3T/dr and R Values for GEOS-3 Revolutions 154 and 453

Revolution 154 Revolution 453

R dT/dr R 3T/dr

o | X° mgals sec B | mgals | ©° A° | mgals sec B mgals
34 300 -0.30 -1.71 0.51 39 293 -1.03 -1.71 1.75
31 297 -0.26 -1.57 0.41 36 290 1.42 -1.56 -2.21
28 295 0.21 -1.45 -0.30 33 287 2.05 -1.44 -2.95
25 293 2.57 -1.36 -3.49 30 285 -1.19 -1.34 1.59
21 291 -5.45 -1.28 6.97 26 283 0.45 -1.26 -0.57
18 289 -1.02 -1.22 1.24 23 281 1.49 -1.20 -1.79
15 287 -2,15 -1.17 2,51 20 279 0.22 -1.14 -0.25
12 285 -0.80 -1.12 0.90 17 277 1.27 -1.10 -1.40
14 275 0.15 -1.07 -0.16

We find that the magnification by sec B in practice is not of great
concern for the area of investigation in this report. However, when B exceeds,
say, 60° (|sec B|>2), we may lessen the effect of this magnification by smoothing
the R data with spline nodes at 80 seconds apart in that area, instead of 60 seconds.
For this report, we used spline nodes at uniform spacing, but the algorithm in
Section 3.1 can accommodate uneven spacing of the nodes in view of the scaling of
the data in each interval according to equation (3.13). The spline nodes may thus
be fixed at 60 seconds apart for data up to 60° around the subsatellite point of ATS-6,
and 80 seconds apart after that. The 80 seconds spacing may serve an adequate
balance between dampening of R because of larger spacing, and the magnification
of 3T/3r because of larger B.

Rice (1969, Vol. 1I, Chap. 10) discusses algorithms for the non-linear
problem of solving both for the spline coefficients, as well as for the spacing of
nodes by treating them as variable nodes. De Boor (1977) has a package of programs
which may be modified for this purpose. This approach was, however, not tried in
this report, as the treatment of noisy R data by fixed spline nodes appeared to be
adequate for the current investigations.

4. Recovery of 5° Gravity Anomalies

With the 3T /3dr values from Section 3, the recovery of residual gravity
anomalies (Aé) was attempted by least squares collocation according to the pro-
cedures described in Rummel et al.(1976). Eight 5° anomalies were chosen which
were covered by GEOS-3 revolutions described in Section 2. We first present in
Section 4.1 the results of tests with GEOS-3 revolutions in Section 2.1, where
reliable values of initial state vectors were available for both satellites. Next,
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we describe in Section 4.2 the tests with revolutions discussed in Section 2. 3
where the ATS-6 elements were not known reliably, but were obtained by inte-
gration from another epoch. We continue this inquiry in Section 4.3 where the
initial state vectors are obtained by integration for both ATS-6 and GEOS-3
satellites instead of using converged elements. The combined results using all
reliable cbservations are presented in Section 4.4.

4.1 Initial State Vectors Available for Both Satellites

The GEOS-3 revolutions available from Section 2.1 were 154, 268, 439,
» and 453. The location of GEOS-3 at 30 seconds interval in these revolutions is
shown in Figure 4.1. The location of the eight 5° anomalies chosen for recovery
are also shown. The terrestrial value of these anomalies Ag, and their standard
deviations, were taken from Rapp (1977, pages 55, 56) and the same numbering
system was retained. The expected value of the residual anomalies E(Ag_) were
obtained by subtracting from Ag the anomalies Ags: implied by (12, 12) potential
coefficients in the GEM 7 set. (For details, see Rummel et al. (1976, pages 20,
21).) The values of the eight 5° anomalies are given in Table 4.1.

Table 4.1. Particulars of Eight 5° Residual Anomalies

Anom. [ o | ©¢ b ¥ Ad Ag s.d. Agec Ag’
# mgals | mgals mgals mgals
402 35 30 289 283 -34.1 2.4 -22.3 -11.8
403 35 30 295 289 -26.8 2.5 -25.1 - 1.7
465 30 25 287 281 -15.4 2.8 -23.6 8.2
466 30 25 293 287 -29.8 2.8 -30.2 0.4
531 25 20 285 279 7.3 2.6 - 9.9 17.2
532 25 20 290 285 -44.9 2.9 -14.7 -30.2
599 20 15 282 277 5.8 1.4 5.0 0.8
600 20 15 287 282 - 5.5 1.3 - 2.6 - 2.9

The recovered values of anomalies, é"g.', was compared with the expected
value of the anomalies by examining the anomaly discrepancies ﬂégl and the
correlation coefficient o, which were computed as:
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(4.1) €(Ag:) = A% - E(Agy)

&, E(Ag’,)/n) / ((i Aﬁz/nf (% E(Ag'a)g/ﬂ)%>

i & i=1 =3

(4.2) p = (

Ty~)=

where n is the number of anomalies.

The 3T/dr values used in the recovery of anomalies were 30 seconds
apart, and all available data up to 7°5 from the center of the anomaly block was
considered. Different solutions were tried, considering the 3T /3r values to
have a standard deviation of 0.5, 1.0, 1.5, 2.0, 2.0 or 5.0 mgals. (For details,
see Rummel et al. (1976, Sec. 6).) We first report the results with all 3T/dr

values having a standard deviation of 1.5 mgals.

will be explained later.

The reasons for this choice

The statistics for the recovered anomalies is shown in Table 4.2
using 3T/3r values in GEOS-3 revolutions 154, 268, 439 and 453. Three

different solutions were tried with 3T /3r values being computed for the cases

when the spline nodes for fitting the R data were 40, 60 or 80 seconds apart.

Table 4.2. Statistics for Recovered Anomalies Using GEOS-3
Revolutions 154, 268, 439, 453

Spline Node | RMS Expec. RMS Predic. RMS Anom. Correln.
Spacing Anom, E (Ag) Anom. AY Discr. €(Ag) coeff. p
(sec.) (mgals) (mgals) (mgals) (eqn. 4.2)
40 13.3 10.5 13.5 0.38
60 13.3 10.6 13.6 0.38
80 13.3 10.0 14.0 0.31

The results showed a poor recovery of anomalies.

discussion in the end of Section 3.2 that there was reason to suspect the R data

We recall from

in revolution 268, The recovery of anomalies was therefore attempted from
only three revolutions, 154, 439 and 453, though we notice from Figure 4.1
that the data then becomes sparse over the four eastern anomalies, when we

omit revolution 268.
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three solutions for 3T/3r values being computed for spline node spacing for
fitting the R data as 40, 60 or 80 seconds. The standard deviation of 3T/dr
values was assumed to be 1.5 mgals.

Table 4. 3. Statistics for Recovered Anomalies Using GEOS-3

Revolutions 154, 439, 453

| 1
| Spline Node RMS Expec. | RMS Predic. | RMS Anom. Correln.
Spacing Anom. E (Ag) Anom, A} Discr. € (Ag) coeff, p
(sec.) (mgals) (mgals) (mgals) (eqn. 4.2)
40 13.3 T 10.4 0.63
60 13.3 Ta8 10.7 0.60
80 13.3 7.7 11.3 0.53

We first note that in spite of sparse data over four eastern anomalies,
the anomaly recovery is in fact improved in Table 4.2 as compared to Table 4.2,
which shows that revolution 268 should be taken out of the solution. We also
found that though the solutions do get worse with data obtained through spline
nodes at 80 seconds, and the same was found in separate tests for spline nodes
at 30 seconds, but there is no noticeable difference in the solutions using spline
nodes at 40 or 60 seconds, the 40 seconds solution appearing slightly better.
However, in view of the discussion in Section 3.2, we would henceforward use
the data obtained by fitting splines at 60 seconds spacing.

We now examine what optimum standard deviation should be assumed
for the 3T/3r data used in the recovery of anomalies. During simulation studies
(Rummel et al., Sec 6.1), it was found that a standard deviation lower than 0.5
mgals would cause instability in the solution while a standard deviation of 2 mgals
or larger would dampen the solution. The results of using different standard
deviations is shown in Table 4.4 for the case covered in Table 4. 3, i.e. using
data in three revolutions 154, 439 and 453 at 60 seconds spacing of spline nodes.

The solutions are unstable when the standard deviation of 3T/3r data
is equal to or less than 1 mgal, as evidenced by large RMS value of anomaly
discrepancy, € (Ag), as well as by the large RMS value of recovered anomalies,
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Table 4.4. Statistics for Recovered Anomalies for Different
Assumed Standard Deviation of 3T/3r. GEOS-3
Revolutions 154, 439, 453. Spacing of Spline
Nodes 60 seconds

r

Assumed s.d. of RMS (AY) RMS € (Ag) P

- 3T/3r data(mgals) mgals mgals

L

( 0.5 17.6 15.1 0.56
1.0 10.5 10.9 0. 60
1.5 7.8 10.7 0. 60
2.0 6.2 , 10.9 0.59
3.0 4.1 1 11.5 0.57
5.0 2.1 |l 12.3 0.54

(AE). The RMS value 17.6 mgals of recovered anomalies in Table 4. 4 for the
standard deviation of 0.5 mgals, for example, is much larger than the RMS value
of 13.3 mgals for the expected anomalies. We also note from Table 4.4 that the
solutions are dampened off when the standard deviation is 2 mgals or larger, as
evidenced by smaller RMS values of the recovered anomalies. The solution
appears to be optimum, when the standard deviation of 3T/3r data is assumed

to be 1.5 mgals. Hence, the statistics of recovered anomalies will be reported
for the standard deviation of 1.5 mgals, as was already done in Tables 4,2 to 4. 4.

To ensure our conclusion (after Table 4. 3) that the data in revolution
268 had some systematic error and was thus responsible for the poor recovery
seen in Table 4.2, we tried two other solutions shown in Table 4.5. In the first
case (first row in Table 4.5), we note from Figure 4.1 that as revolution 439 was
not directly located over the 8 anomalies, it could only marginally improve their
recovery (second row in Table 4.3), as compared to using revolutions 154 and
453 only. Secondly, if the effect of revolution 439 is indeed marginal, and if the
data in revolution 268 is erroneous, the results of using revolutions 268 and 439
should be much poorer. This was actually found to be so, as may be seen in the
second row of Table 4.5. Both solutions in Table 4.5 assumed the standard
deviation of 3T/dr as 1.5 mgals, and the spacing of spline nodes was 60 seconds.
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Table 4.5. Statistics for Recovered Anomalies Using Only
2 GEOS-3 Revolutions out of Revolutions 154,
268, 439, 453

Revolutions Used RMS E (Ag) RMS AY RMS ¢ (Ag) P
(see Fig. 4.1) mgals mgals mgals
154 and 453 13.3 8.3 11.4 0.53
268 and 439 13.3 9.5 15.6 0.10

| We have to, therefore, take the data in revolution 268 out of the

I solution, (This will be discussed again in Section 4.3.) We would, of course,

i prefer the solution using three revolutions 154, 439 and 453, as shown in the
second row of Table 4.3 over the solution using two revolutions 154 and 453, as
shown in the first row of Table 4.5. But, as revolution 439 lies outside the eight
anomalies to one side, it contributes to the recovery only marginally. It is there-
fore remarkable that we do get a recovery with only two revolutions 154 and 453.
The location of data points at 30 seconds interval used in these two revolutions
with respect to eight anomalies is shown in Figure 4.2. In spite of the data being
so sparse, the solution in the first row of Table 4.5 shows that the procedures

: are satisfactory. The improvement in the solution shown in the second row of ;
: Table 4.3 with the additicn of revolution 439 is a pointer that the recovery of |
: anomalies would show improvement, as we add to the data set from more revo-
lutions located over the anomalies.

4.2 Initial State Vector Obtained by Integration for ATS-6 Satellite

As we have already considered the data in all revolutions available in
Section 2,1, we can only consider additional data from the revolutions in Section |
2.3, where the initial state vector was available only for GEOS-3, while that for :
ATS-6 had to be obtained by integration from an earlier epoch. We recall from the
| discussion at the end of Section 2,3 that we had data available for consideration
k| for three revolutions, which we called 232 A, 2321 and 2461. The initial ATS-6
elements were obtained from integration from the epoch 0" on 25 April 75 for
revolutions 2461 and 2321, and were the adjusted values in revolution 232 A for
| 56 minutes of range-rate data. The initial state vector for GEOS-3 was kept fixed
as the a priori value in Table 2.3. The RMS and the mean value of the raw residual
range-rate R data, the smoothed R data after fitting a spline with nodes 60 seconds
apart, and the residuals remaining after the spline fit, are shown in Table 4.6 for
the three revolutions.
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Table 4.6. Least Squares Spline Fit to Raw R
Data in GEOS-3 Revolutions 232 A,
2321 and 2461

Revolution Raw R Data Smoothed R Data Res. after Spline Fit
# RMS Mean RMS Mean RMS Mean

232 A 13.3072 | -13.1831 13.3071 -13.1831 0.0643 0.0000

232 1 8.5816 - 8.5790 8.5813 - 8.5790 0.0643 0.0000

246 1 2.3917 ' - 2.2856 | 2.3909 | - 2.2856 A 0.0640 | 0.0000

i

v o

Units are cm/sec.

When we compare the RMS and mean value of the raw data in Table 4.6
with those in the revolutions from Section 2,1 shown in Table 3.2, we find the
values for revolution 246 I to be large. This may, however, be explained because
of the uncertainty in the initial state vector of ATS-6 obtained by integration from
an epoch 2 days earlier. But the much larger valuss in revolution 232 I point to
some systematic error in the raw R data in this revolution. This was also pointed
out in the discussion after Table 2.5. We therefore do not expect a good recovery
from data in revolution 232 1.

The values in Table 4.6 for the raw R data in revolution 232 A are
surprising when compared to the values for revolution 232 I, as the purpose of
letting the initial state vector of ATS-6 be adjusted was to make the residuals for
the full GEM-7 set of potential coefficients to be small in the least squares sense
(see items 2 and 3 under iteration 1 and 7 for revolution 232 in Table 2. 5). However,
in dispersing the large residuals (in iteration 1), the ATS-6 initial state vector was
seriously distorted from the a priori integrated values (see Table 2. 6) causing a
worsening of raw R data (residual to degree 12 reference field) instead of improving
it in Table 4.6. This is shown in a very interesting manner by the plot of acceler-
ations in Figures 4.3 and 4.4 for revolutions 232 I and 232 A respectively. The
pattern of accelerations in revolution 232 A is the same as in revolution 232 [, but
has been severely biased, even running out of the limits in Figure 4. 4.

We may recall here the discussion after Tables 2.5 and 2.6. We incur
a serious risk in obtaining convergence for the initial state vector from a single
observation type or for a limited time span. If the observations are biased, the
converged initial state vector obtained on the basis of fitting these observations in
the least squares sense would be much in error. We therefore do not expect any
recovery at all from data in revolution 232 A,




*098 (1 [BAIU] BJed ‘jaede
*09s (9 SOpPON aul[ds yim
1 2gg uonnjoasy g¢-sSOAD
o J0J SUOI}BIS[O00Y payjoowrs ¢ % aanS1g
*
*
Y ae"
* * *
X * ¥y
¥ % * *
* *
3 ¥ . o X
x “_.%x X
¥ % * T * x*
* yXN = % *
w0z % * ” *
WAL X TR DR
X X
X * I K
* x %X i »
* X
: x * . X
*
* K
# *
*
*
* " K
*
* X x
K

speSw § +




*09s (T Teatju] ejed “‘Jaede
*09s (9 sopoN aur[ds Yim
V 2€g uo1in[oAdy ¢-S0AH
J0J SUOI}eId[920Y payjoowrs ¥ *p aanSig




The statistics for the recovery of 6 anomalies using data for only one
revolution 232 A, 232 ] and 246 I at a time is shown in Table 4.7.
nodes were 60 seconds apart and the standard deviation of 3T/3r was assumed

as 1.5 mgals.

The spline

The north-east and the south-west anomalies were not considered,

as there would be no data within 705 from the center of these anomaly blocks.
This is seen in Figure 4.5 from the location with respect to eight anomalies of
the 3T/3r data points at 30 seconds interval used in revolutions 232 and 246.

Table 4.7. Statistics for 6 Recovered Anomalies Using Cne GEOS-3
Revolution at a Time Out of Revolutions 232 A, 232 I,
246 1
Revolutions Used | RMS E (Ag) RMS (AY) RMS ¢ (Ag) o |
(see Figure 4, 5) mgals mgals mgals
232 A 15.4 26.8 319 -0.08
232 1 15.4 6.0 18.0 -0.29
246 1 15.4 15.2 14.3 0.56

The data in revolution 232 is unusable, whether the initial state vector
of ATS-6 was obtained by integration (232 I) or was then adjusted (232 A) to fit the

56 minutes of range-rate sum observations.

However, it appears that the data in

revolution 246 I is usable and may help improve the solution obtained earlier with
3 revolutions 154, 439, and 453 in Table 4.3. The statistics for the recovery of

eight 5° anomalies are shown in Table 4.8 with 2, 3 and 4 revolutions.

The spline

nodes in all cases were 60 seconds apart and the standard deviation of 3T/dr data
was taken as 1.5 mgals.

Table 4.8.

Statistics for Recovered Anomalies Using GEOS-3

Revolutions 154, 439, 453 and 246 1

Revolutions Used RMS E (Ag) | RMS (A%) | RMS € (Ag) P
mgals mgals mgals |
154, 453 13.3 8.3 11.4 0.53
154, 453, 439 13.3 7.8 10.7 0.60
154, 453, 439, 246 | 13.3 13.2 10.2 0.70
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We find continuing improvement in the solutions, as data from more
revolutions is added, by a reduction in the anomaly discrepancy € (Ag’) and increase
in the correlation coefficient p (equations 4.1 and 4.2). But what is more remark-
able is that the data in revolution 246 1 is usable inspite of the ATS-6 elements
having been integrated from an epoch two days earlier (Table 2. 3) and thus causing
large residual range-rate (Table 4,6). The modeling error in R due to uncer-
tainty in ATS-6 initial state vector was apparently 'differenced out' during numerical
differentiation and did not significantly bias the R (and 3T/3r) values. However,
if this contention is true, we should be able to integrate from well determined (by
multiple observation types and long time span) initial state vectors at 0" on
April 25, 1975 (Table 2. 3) not only for the ATS-6 satellite but also for the GEOS-3
satellite, We would then be able to examine the difference in integrated and
previously converged elements of GEOS-3 (on the lines of Table 2.4 for ATS-6) and
check out the values of 1'2, R and recovered anomalies not only for revolutions 232
and 268 where the data is suspected of having systematic errors, but also for
revolution 246 where the range rate sum observations have already yielded satis-
factory results.

4.3 Initial State Vectors Obtained by Integration for Both ATS-6 and GEOS-3
Satellites

The differences in the initial state vector for GEOS-3 satellite as
obtained from integration from the epoch 0" on April 25, 1975 minus the converged
initial state vector values in Tables 2.1 and 2.3 is shown in Table 4.9. The
integration was, of course, carried out only for the period (April 25 to April 29,
1975) during which the observations were used for determining the initial state
vector at 0" on April 25, 1975 (last column in Table 2,3). This was discussed
after Table 2.4 where we concluded that the integrated elements could only be
compatible during the period on which they were converged.

Table 4.9. Differences in Position and Velocity Coordinates for
GEOS-3 as Integrated From Epoch 0" on April 25,
1975 Minus Converged Elements for Other Epochs

Epoch 2 Y Z X Y 7
(Date, Hr.,min.,sec.) (m) (m) (m) | (em/sec) | (em/sec)|(cm/sec)
1. 26 April 75 07h 00m 00s -17.2 50.3 -22.4 2,28] -6.39 -2.00

(GEOS-3 revoln. 232)
2, 27 April 75 07h 00m 00s | - 7.4 -1.7 18.0 | - 0.15| 2.56 | -0.71
(GEOS-3 revoln. 246)
3. 28 April 75 20h 50m 00s 30.3 |573.8 | 201.4 | -23.25| 16.44 | 40.36
(GEOS-3 revoln. 268)




The differences are small for revolution 246, though substantially what
may be expected in converged elements, being 10 to 20 m in position elements and
1 to 2 cm/sec in velocity elements. The differences are much larger for revolu-
tion 232, 20 to 50 m in position elements and 2 to 6 cm/sec in velocity elements.
There are, however, grossly large differences in the integrated and converged
elements of GEOS-3 for revolution 268, We had also noticed very large differences
for this revolution for the integrated and converged ATS-6 elements (row 8b in
Table 2.4), Some observations in the 2 1/2 hour time span used for converging
revolution 268 in Table 2.1 are likely to have systematic bias. Also, it is con-
ceivable that when the time span is comparatively shorter (2 1/2 hours vs. 5 days),
a very different set of initial state vectors for a pair of satellites may fit the data.
The initial state vectors based on the longer time span would be more reliable.

We will refer to the data in these revolutions as 232 II, 246 II and
268 1I to indicate that the initial state vectors of both sateliites have been obtained
by integration from the epoch 0" on April 25, 1975. The particulars of R data in
these revolutions are given in Table 4. 10.

Table 4.10. Least Square Spline Fit to Raw R Data in GEOS-3
Revolutions 232 I, 246 II, 268 II

Revolutio; i .Raw Al'% Data ; Sn:c;;:—}:ed —I;Data Res. after Spline Fit
# RMS Mean RMS Mean RMS Mean
B 232 11 5.1172 -5.1050 5.1168 -5.1050 0.0643 0.0000
246 11 4,3777 -4,3495 4,3772 -4, 3495 0.0640 0.0000
268 1I 1.2855 -1.1834 1.2839 -1,1834 0.0648 0.0000

Units are cm/sec.

The magnitude of R is reduced as compared to revolution 232 [ while
slightly enlarged as compared to revolution 246 1. The latter should be expected
as the integrated elements of GEOS-3 from a 2 day earlier epoch in revolution
246 1I have greater uncertainty and thus large residual R. (Compare with Table 4. 6).

The RMS values of R in revolution 268 II are about the same as for
revolution 268 (Table 3.2), but the mean values have an opposite sign. The plot
of R in revolution 268 II is shown in Figure 4.6. It is on the same scale and uses
the same data as in Figure 3.19 and is remarkably similar, except for its slope
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reflecting a negative bias while the R data in revolution 268 in Figure 3.19 had a
positive slope. The R values in revolution 268 II are shown in Figure 4.7 and
these are also remarkably similar to those in Figure 3.20 for revolution 268,
except for a slight difference in slope. The differences in Figures 3.19 and 4.6
for R and in Figures 3.20 and 4.7 for R are only due to different initial state
vectors.

The initial state vectors thus cause a systematic long wavelength effect
with large variations in R, but a much smaller effect on B. The plot of R for
revolution 232 II is shown in Figure 4.8, which is almost the same as R in Figure
4,3 for revolution 232 1. The difference is remarkably small considering that the
GEOS-3 elements are different by 20 to 50 m in position and 2 to 6 cm/sec in
velocity coordinates. (We recall that the ATS-6 elements were the same in
revolutions 232 II and 232 I.)

The pattern of R appears to be indicative of the anomalous potential
sensed at GEOS-3 location, and is qualitatively dependent on the spline fit discussed
in Section 3. However, it is quantitatively affected by the bias caused by incorrect
initial state vectors. As the difference in revolutions 246 I and 246 II in the
initial state vectors of GEOS-3 (there was no difference in ATS-6 elements) is
more representative of the type of uncertainty (10 to 20 m in position coordinates,

1 to 2 em/sec in velocity coordinates), we list in Table 4.11 the actual differences
in 3T/Jr values for some of the points actually used in anomaly recovery. The
points are one minute apart in time.

Table 4,11, Variation in 3T/3r due to Change in Initial State Vector
for GEOS-3 in Revolutions 246 I and 246 II (row 2 in

Table 4.9)
©° x° dT/dr in mgals Difference
Rev. 246 II Rev. 246 in mgals
(1) (2) (3) (4 B=3-®
17 293 5.6 6.4 -0.8
20 291 3.9 4.8 -0.9
23 289 4.8 5.8 -1.0
27 287 1.2 2.3 -1.1
30 284 -0.3 1.0 -1.3
33 282 -1.4 0.0 -1.4
36 280 -0.4 1.1 -1.5
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We note a linear bias in 3T /3r values due to changes in initial state
vector. The differences in 3T/3r are magnified by about 6 times in the differences
in the recovered anomalies using revolutions 246 T and 246 II. This maximum
difference is in the anomalies directly below the GEOS-3 locations and gets reduced
in neighboring anomalies. Accordingly, the largest difference which may be
expected in recovered anomalies due to uncertainties in initial state vectors is
about one-half of the standard deviation of the anomalies, which was about 12 mgals.

The statistics for the six 5° anomalies recovered by data in revolutions
232 II and 246 II, one revolution at a time, is given in Table 4,12, These values
are comparable to entries in Table 4.7. The statistics for eight 5° anomalies
recovered by revolutions 268 and 268 II are also given in Table 4.12.

Table 4.12. Statistics for Recovered Anomalies Using One GEOS-3
Revolution at a Time out of Revolutions 232 II, 246 II,

268 II
Revolutions RMS E (Ag) RMS (4A%) RMS € (Ag) o)
Used mgals mgals mgals
232 11 15.4 T 18.2 -0.14
246 11 15.4 11.6 12.8 0.58
268 11 13.3 12,0 14.9 0.31
268 13.3 9.5 16.1 0.03

We note that the recovery is equally poor in revolutions 232 I and
232 TI. The recovery in revolution 268 II is slightly better than in revolution 268.
Apparently, there are some systematic errors in the range-rate sum observations
in revolutions 232 and 268, and this data has to be excluded from the solutions.

The recovery in revolution 246 II happens to be slightly better than for

revolution 246 I.

But it is preferable anyway, to use the initial state vectors for

both satellites analogously, i.e. integrated from the values at epoch 0" on
April 25, 1975, which was done for revolution 246 II,




Now that we have established that the initial state vectors may be
obtained from integration, we would like to see if we may obtain R data for any
other revolution covering the eight 5° anomalies, starting from the epochs at
0" on April 19 and 0" on April 25, 1975 (last two columns of Table 2. 3) until
April 29, 1975. The only range-rate sum observations over the anomalies
during this period, besides revolutions already considered (154, 175, 232, 246,
268), were in GEOS-3 descending revolution 254 (April 27, 1975 22") and
ascending revolution 260 (April 28, 1975 08"). However, the location of
revolution 254 closely followed the location of revolution 453, and would thus
not provide any additional information. The R data was, however, obtained
from revolution 260, and we may call it revolution 260 II, as the initial state
vectors for both ATS-6 and GEOS-3 satellites were obtained by integration from
epoch 0" on April 25, 1975. The solution with the additional data in revolution
260 II will be reported in Section 4. 4.

4.4 Recovery of 5° Anomalies — Combined Solution

We have finally the R data available for revolutions 154, 439, 453,
246 Il and 260 II. The location of GEOS-3 satellite at 30 seconds time interval
in these revolutions used for the recovery of eight 5° anomalies is shown in
Figure 4.9. The 3T/3r values in the locations where the ascending and de-
scending GEOS-3 revolutions cross each other are given in Table 4. 13.

Though the locations (¢, A, h) of the crossover points were not
corresponding exactly, but the data could perhaps be adjusted in a linear
manner in all ascending and descending revolutions so that the discordance at
the crossover points is a minimum in the least squares sense. The justification
for the linear adjustment of data in each arc lies in the fact that the errors in the
initial state vectors cause a linear bias in the d3T/3r values (see Table 4. 11).
The adjustment was not done in the present study, as we should first perhaps use
R data from at least 2 more revolutions — one ascending revolution in a location
corresponding to revolution 232 (Figure 4. 5) and one descending revolution in a
location corresponding to revolution 268 (Figure 4. 1). Preferably, we should
consider data from another two ascending revolutions, one each in the north-east
and south-west corners, so that each anomaly is covered by at least one ascending
and one descending revolution,

We now give in Table 4.14 the values of the anomaly discrepancies,
€ (Ag), for each of the eight 5° anomalies as they change from a solution using
data for only 2 revolutions (154 and 453), and as data from revolutions 439, 246 11
and 260 II is added for one revolution at a time. The RMS value of the predicted
anomalies (RMS A'E) and the anomaly discrepancies (RMS (€ Ag)), and the corre-
lation coefficient (0) is also given for ease of reference. We recall that the RMS
value of the expected anomalies was 13.3 mgals.
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Table 4.14. Improvement in Anomaly Recovery with R Data
in Additional GEOS-3 Revolutions

{ Anom, # | Latitud., | Longitud. |  €(Ag) in mgals with R Data in Revolns.
(see T.4.1)| Extent Extent 154 + 453 + 439 + 246 11 + 260 II

402 30-35 283-289 21,2 18.2 18.6 14.7

403 30-35 289-295 10.8 10.5 10.4 4.3

465 25-30 281-287 -9.6 -7.5 9.7 -9.3

466 25-30 287-293 5.2 5.2 0.3 -2.3

531 20-25 279-285 -10.2 -11.6 -14.3 -14.3

532 20-25 285-290 14,7 14.7 0.8 0.6

599 15-20 277-282 4.1 4,7 4,7 4.7

L 600 15-20 282-287 -3.4 -3.4 -3.7 -3.7

]

RMS Anom,. Discr. (E(Aé)) mgals 11.4 10.7 9.9 8.4

RMS Pred. Anom. (A%) mgals 8.3 7.8 11.6 11.0
Correln. Coeff. (p) 0.53 0.60 0.69 0.78

Mean of std. dev. of pred.anom. 12,8 12. 7 12.4 12,1

mgals

We note from Table 4.14 and Figure 4.9 that the data in any revolution
primarily affects the anomaly directly below it. Hence, as already mentioned, we
should have R data from at least two (preferably four) additional revolutions to
further improve the anomaly recovery in the last column of Table 4.14. We should
also attempt to adjust the 3T/dr data linearly in all revolutions for a minimum
variance of non-agreement over the cross-over points before the final solution to
cater for systematic biases in 3T /dr data due to inaccurate initial state vectors.

Finally, the predicted anomalies with the five revolutions in Figure 4.9
used in the present study (without any cross-over constraints), along with standard
deviations, are shown in Table 4.15. The number of d3T/dr points within 35
(¥ = 375) of the center of each anomaly block are also given, as these primarily
affect the anomaly recovery. All 3T/dr values lying within 705 (¥=7°5) of the
center of each anomaly block were, however, used; their number is also given.
The time interval of 3T /3r values was 30 seconds and they were assumed to have
a standard deviation of 1.5 mgals to ensure stability of the solution (see Table 4.4
and relevant discussion), The splines to filter and smooth the raw R data had
their nodes 60 seconds apart, and used R data at 10 seconds interval.
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Table 4.15. Anomaly Recovery of Eight 5° Anomalies Using R Data
From Five GEOS-3 Revolutions 154, 439, 453, 246 II,
26011 (see Fig. 4.9)

Anomaly | Latitud, | Longitud. Expec. I # of Data Predic. | Stnd. Anon,
# Extent Extent Anom, Points Anom, Dev. Discr.
mgals | $=395 ¥=7°5 | mgals | mgals mgals

402 30-35 283-289 -11.8 9 30 2.9 11.3 14,7
403 30-35 289-295 - 1.7 3 25 2.6 12.4 4.3
465 25-30 281-287 8.2 7 27 -1.1 11.3 - 9.3
466 25-30 287-293 0.4 5 28 -1.9 11.6 - 2.3
531 20-25 279-285 17.2 4 18 2.9 11.9 -14.3
532 20-25 285-290 -30.2 4 25 -29.6 12.4 0.6
599 15-20 277-282 0.8 3 11 5.5 12,7 4,7
600 15-20 282-287 - 2.9 1 16 -6.6 13.5 - 3.7
RMS Value (mgals) 13.3 11.0 8.4

Correlation coefficient between predicted and expected anomalies = 0,78

A solution was also tried with the above data but with standard deviation
of 3T/dr data as 1.0 mgal, but the solution was worse. The RMS value of pre-
dicted anomalies was 15.7 mgals, and the RMS value of anomaly discrepancies was
10.7 mgals, with correlation coefficient as 0.74 mgals. Additional data from
revolution 268 II (row 3 of Table 4.12) also made the solution worse. The solution
in Table 4.15 is therefore the optimum one with the data from five revolutions
shown in Figure 4.9.

5. Summary and Conclusions

There are two main considerations in the use of real range-rate sum
observations, from which we subtract the computed value of the range-rate sum
based on a certain model to obtain line of sight residual range-rate between the
'high-low' satellite pair. First are the modeling errors most significantly
contributed by the assumed initial state vectors of the satellites, and second are
the random observational errors of the raw data, after it has been corrected for
physical and instrumental effects like ionospheric and tropospheric refraction,
transponder delays, etc. The observations may sometimes also exhibit system
biases, which may be accounted for if 'small' and linear, but which otherwise
may make the observations unusable.
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The initial state vectors are 'determined' on the basis that if the earth's
gravitational field at the satellite altitude may be described with neglibible erroxr by
a full set (e.g. GEM-T) of potential coefficients (and if we consider other force
fields like solar radiation pressure, etc.), then the computed values should fit the
observations in the least squares sense with the only parameters being the initial
state vectors. However, in practice, this depends on the observation type and
its reliability and the time span of observations. Range-rate sum observations are
not sensitive enough to the determination of the initial state vectors, and if they
are used on a ‘single pass' basis — the time duration of the 'visibility' from ATS-6
in one revolution of GEOS-3 —, the initial state vectors even if 'converged' may
be seriously biased.

e S o i St

As we are interested in the range-rate sum observation type for the 1
recovery of gravity anomalies, we require a two stage process, the first stage ‘
being the determination of unbiased initial state vectors in which we employ other
observation types particularly range observations, including laser ranges, in
addition to range-rate sum observations. It is usually possible with this multiple
observation type to get converged initial state vectors on a single pass basis.

However, if the observations include sufficient 'paired' observations like range-
rate sum or range sum, one may obtain a 'wrong' pair of initial state vectors
which may or may not introduce a bias in range rate residuals. It appears to be a
much better procedure to use converged initial state vectors for a much longer
time span like 4 to 6 days (Table 2.3). Firstly, any biased observations in one
or two revolutions would not significantly bias the initial state vectors. Thris will
result in greater reliability in terms of the standard deviations of the initial state
vectors, which otherwise on a single pass basis even with multiple observations
may reach very large values of a kilometer in position and several meters/sec

in velocity (Table 2.1), making it impossible to judge their reliability. Secondly,
on a long time span of 4 to 6 days, it would become possible to use even range-
rate sum observations from multiple passes to obtain convergence, which even if
it requires several iterations, has the practical advantage of not requiring access
to other observation types.

We find that there is no cause for concern for obtaining initial state
vectors for other epochs by integration, but these epochs must be within the time
span used for obtaining the converged elements (Table 2.4). Any modeling error
due to incorrect initial state vector appears to show up as a linear bias in the
residual range-rate R and the residual accelerations &. This may have a large
effect on R, but gets differenced out while computing R, with very small linear
bias on accelerations (Table 4.11) for the usual uncertainty of 10 to 20 meters in
position and 1 to 2 cm/sec in velocity of GEOS-3 initial state vector.

It is not possible to filter any residual modeling errors and the obser-
vational errors by letting the initial state vectors take the 'slack' by letting them

vary within the standard deviations (computed for them in the first stage), while
computing residual range-rate R. The R function can, however, be filtered of
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observational 'noise' by approximating it in the least squares sense by a piecewise
continuous cubic spline, with continuous first and second derivatives., It is
remarkable that hases exist for this spline in terms of two simple cubic poly-
nomials, such that a linear combination with only four non-zero coefficients is
required to represent the spline between consecutive nodes, where the adjacent
piecewise continuous cubics meet, This results in a simple computationally
stable algorithm described in Section 3.1.

A unique approximating spline gets defined once the spline nodes are
selected. As the spacing between nodes is increased, the slopes of the spline, R
in our case, get smoother, The optimum representation of K, in the sense that
the variation ‘n neighboring points at 10 to 30 seconds interval is what may be
expected at the satellite altitude, occurs with spline nodes 60 seconds apart when
the raw R data is 10 seconds apart. A smaller spacing of spline nodes causes R
to vary too sharply, while a larger spacing causes R to be dampened. The obser-
vational noise in the revolutions used in this study was found to vary from 0.06 to
0.09 cm/sec, while in one revolution, which was not used, it was as large as
0.44 cm/sec (Table 3.2),

The spline should be fitted to include raw R data 2 to 4 minutes at each
end beyond the data span needed for recovery of anomalies, so that the spurious
accelerations at the ends of data span may be discarded. The dT/dr values are
magnified from R values by secant times the angle at GEOS-3 between the radial
directions and line of sight ATS-6/GE0OS-3. When this angle exceeds 60°, it may
be advisable to make the spline nodes 80 seconds apart to reduce sharp variations
in 3T/3r. Au alternative approach would be to use an algorithm which chooses an
optimum spacing for the nodes — variable nodes instead of fixed nodes. Tests
need to be carried out to investigate if in our case of uniform interval data points
representing a smooth continuous R function, the non-linear algorithm of variable
nodes will give us an advantage, particularly for the case when the 3T/dr values
are magnified more than 2 times theR values.

The choice of low degree reference field represented by (12, 12)
potential coefficients out of GEM-7 appears to be very suitable for computing R.
As these coefficients are well determined, the residual range-rate R does not have
any significant bias due to errors in potential coefficients. Secondly, a degree 12
field is adequate at GEOS-3 altitude to make the covariance function of 3T /3r
neglibibly small beyond 775 thereby allowing a relatively few number of points at
30 seconds data interval (Table 4.15) to recover the anomalies.

The improvement in the recovery of anomalies as data from additional
revolutions is added (Table 4.14) indicates that we should have data from at least
one ascending and one descending revolution over each anomaly. As we have
found that initial state vectors may be obtained by integration from converged
elements at epochs 4 to 6 days apart, it is comparatively easy to reduce data from
more revolutions to achieve the required density.
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The 3T/3r data should, however, be first examined for each revolution
separately by predicting a few anomalies in common to determine if there is a
system bias in the range-rate sum observations in any revolution. We found two
such revolutions (232 and 268) in the present investigations.

The selected revolutions would still have a small linear bias in
3T/dr values due to modeling errors caused by residual errors in the initial state
vectors. We need to determine two unknowns for a zero offset and a slope coeff-
icient in each revolution to adjust the 3T/dr values to have a minimum variance
discrepancy at crossover points between ascending and descending revolutions,
The problem becomes 'over-determined' for more than four ascending and four
descending revolutions. As we did not have a sufficient number of revolutions
reduced for the present study, the adjustment for the cross-over constraints was
not attempted.

With the unadjusted values of 3T /3dr values, we found that the solutions
for the predicted anomalies were unstable for assumed standard deviations of
dT/dr less than 1.5 mgals. It is likely that this may be reduced with adjusted
dT/dr values, This would then result in better agreement of predicted anomalies
with the expected values in terms of RMS values, and also reduced standard
deviations of the predicted anomalies.

The final solution for eight 5° anomalies, using range rate sum
observations in five revolutions shown in Figure 4.9, is given at Table 4.15.
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