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DISCOVERING HIDDEN TOTALLY LEONTIEF SUBSTITUTION SYSTEMS

by

George B. Dantzig and Arthur F. Veinott, Jr.

Abstract

A constructive procedure is given for determining the existence

of and evaluating (when it does exist) a nonsingular matrix that trans-

forms a system of linear equations in nonnegative variables into a

totally Leontief substitution system. The computational effort in-

volved is about that required to optimize the given rn—row linear system

with m+l different linear objective functions.
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DISCOVERING HIDDEN TOTALLY LEONTIEF SUBSTITUTION SYSTEMS

by

George B. Danczig and Arthur F. Veinott, Jr.

The system of in linear equations in n nonnegative variables

(1) A x = b  , x > O

is called a Leontief substitution system [2] if (1) each column

of A has at mos t one positive element, (ii) b >> 0 and (iii) the

set of solutions to (1) is nonenipty. If also that set is bounded ,

(1) is called a totally Leontief substitution system [6]. In either

case, it is known that A has rank m. Such systems are discussed

in [1] — [8].

Saigal [8], (7] calls (1) a hidden totally Leontief substitution

system if there exists a nonsingular matrix 11 such that

(2) ( ILA)x = Jib , x > O

is a totally Leontief substitution system . The purpose of this paper

is to give a constructive method for determining whether or not (1)

has this property, and if so, to find II

Substitution Classes. Associated with any feasible m X m basis

B — (B
1) for (1) is, for i = 1, . . .  ,tn , the set S

1 of column indices

j such that A~ , if substituted for B
1 , forms a feasible basis.

Each substitution class S~ is nonempty since it includes a j 
with1
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A~ B
1 
. In general the S

1 
depend on B and b and can be overlap-

ping when there are degenerate basic feasible solutions. For the totally

Leonttef substitution ease, however , the S
1 are independent of the

choice of B and b >> 0 ; indeed , S1 consists of all j such that

A~ has a positive element in the same row as B
1 

. Also the S~ par-

tition the column indices 1,... ,n . Thus every submatrix B consist-

ing of in columns of A with a positive element in each row torms a

(nondegenerate) feasible basis, and conversely.

The Algorithm.

Step 1. Find a feasible in x m basis B and determine substitution

classes S
1
,... ,S with respect to B , b . Terminate If there is no

feasible basis or if the substitution classes do not partition the col-

umn indices of A . Otherwise go to Step 2.

Step 2. Solve the linear program of maximizing z = E subject to (1).

Terminate if z is unbounded above. Otherwise go to Step 3.

Step 3. For each i = 1,... ,ni , determine the ~
th 

row of 11 as any

vector such that

7r~ b > 0

(3)

rr1A~ < 0 for all j ~ S~

Terminate if for any I 1, . . .  ,m the system (3) is infeasible. Other-

wise terminate with 11

2
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Theorem. If the algorithm terminates with 11 , then 11 is nonsingular

and (2) is a totally Leontief substitution system . Otherwise (1) is

not a hidden totally Leontief substitution system.

Proof. If (1) is a hidden totally Leontief substitution system, then

there is a feasible basis, the associated substitution classes partition

the column indices of A and z in Step 2 is bounded above, because

these properties are invariant under nonsingular transformations 11

Also there i~ a nonsingular matrix It whose ~
th 

row satisfies (3)

f or each I . Thus If the algorithm terminates without obtaining II ,

th~n (1) Is not a hidden totally Leontief substitution system.

If the algorithm does terminate with II, then hA has at most

one positive element in each column (from Steps 1 and 3), JIb >> 0

(from Step 3) and (2) has a solution (from Step 1), so (2) is a Leontief

substitution system. Hence hA has rank in, Im plying IT is non—

singular and so (1) and (2) have the same solution set. Thus the

boundedness of the solution set of (1) Implies that is so of (2), so

(2) is a totally Leontief substitution system.

Computational Remarks. The computational effort required to execute the

algorithm is about that required to solve the linear program of mthimiz—

ing cx subject to (1) with m+l different objective—function vectors

c = (c
j
) . To determine the substitution classes in Step 1 requires

computing b’ — (bk) = B ‘b and A~ = (A
~k

) = B ‘A~ for each j . Then

the substitution classes partition the column indices of A if and

only if for each j there is a unique k — k(j) that minimizes

sub.lect to A
~k 

> 0 . In that event i E ~~~~ for each i . Step 2

3 
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involves solving the linear program with c~ —l for all j . Finally,

Step 3 necessitates solving m linear programs. The 1
th 

1 < i < in

of these has c
1 

1 for all j E S
1 

and C
j 

= 0 otherwise. If optimal

simplex multipliers it . exist therefor , they satisfy (3). If no such

multipliers exist, (3) is infeasible. Incidentally , Step 3 can be stream-

lined somewhat by modifying the ~~~ linear program so that all but an

(arbitrary) one of the variables X
j 

with 
~ 
E S

1 
is omitted .
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