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NOTATION AND NUMBERING

We define some notation which may not be completely standard.

All points and sets are in R™ unless indicated otherwise.

1)

2)

3)

L)

5)

6)

8)

]R_r:'=' {x € ]Rn|x20]

n
For x, y € R", denote their inmer product by (x,y) = ¥ x

y.
101 11

Let ”x" = (x,x)l/2 be the norm of x.

Denote by d(-,+) the distance function defined as
d(A,B) = inf |x-y||
*x€A

¥EB

Let the ball about A of radius ¢ , where A may be a point or
a set, be

B(A,e) = (x € ]Rnld(x,A) < €}

For any positive integer m, let m= {1,2,...,m}. If m=0,

then m= ¢

conv[A,,A An] is the convex hull of the sets (or points)

2,...,

A

Al, A2, cee s A

]Rnxxn is the space of all real-valued matrices with n rows

and m columns,

If ocn and uCm are index sets, then, for A€ R™®,

iii




Ao . consists of the rows of A indexed by o, and
2

A 5 consists of the columns of A indexed by
o3

Ao B is the submatrix of elements whose indices are in o X p.
2 o

For two sets A and B,
A\ B = (x|x € A, x ¢ B)
and

A -B-={z|z=x-y for some x € A, and y € B,

The boundary of a set C 1is called OC, and the interior of set

¢ is called ¢°.

Numbering

The chapters are numbered by Roman numerals and the sections
are numbered consecutively within each chapter, i.e., II.1l, II.2, etc.
All theorems, lemmas, and examples are numbered consecutively within
each section. Equations are numbered separately and are identified
by being enclosed in parentheses. Equation (v.1.2) is the second
equation in Section V.1, for instance. The chapter numeral is omitted

for results or equations referred to within the same chapter.
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ON THE SOLUTION OF NONLINEAR EQUATIONS BY PATH METHODS

ABSTRACT

The problem considered is that of finding a solution to a system
of nonlinear equations subject to some auxiliary constraints. The
methods studied here are called path methods, also referred to as
"continuation" or "global Newton" methbds,for solving equations. A
general theory is developed which unifies the results from several
papers and allows new methods to be analyzed easily. The new methods
are shown to converge under more general boundary and monotonicity
conditions than those assumed for the existing methods. A rigorous

proof of convergence is given for an algorithm which implements a

general path method.
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ON THE SOLUTION OF NCNLINEAR EQUATIONS BY PATH METHODS

CHAPTER I

GENERAL

I.1. Introduction and Summary

The problem we consider is that of finding a solution to a system
of nonlinear equetions subject to some auxiliary constraints. The
objective is to find methods for the solution of such systems which are
; convergent under rather general conditions and are efficient computa-
tionally.

The predominate efforts in studying this problem in recent years
have made use of "piecewise linear" or "simplicial methods" for solving
E systems of equations (cf. Scarf [1967a], Kuhn [1968], Eaves and Saigal
[1972], and Merrill [1972]). But a different approach to the equation-
solving problem has been revived recently. Kellogg, Li and Yorke [1976]
and S. Smale [1976] have proposed "continuation" or "global Newton"
methods for solving systems of equations. The history of "continuation"
methods goes back to Lahaye [1934], [1938] in the univariate case and
Davidenko [1953a,b] in the multivariate case. We hope to elucidate

the common features of these methods and to propose some new methods

which converge under more general assumptions.
This report contains approximately the first half of the

author's dissertation, The Computation of Equilibria by Path Methods.

i
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|
i
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Many of the theorems and procedures presented here are applied to the
development of algorithms for the economic equilibrium problem. When
we refer to results or chapters in the report which contains the rest
of the dissertation (Elken [1977]), we will refer to them as being

in Part 2.

In the remainder of this chapter, we will discuss the equation
solving problem further and motivate the development of path methods
for solving systems of equations.

In Chapter II we review some basic results from differential
topology and introduce a unified theoretical framework for dealing with
path methods. The reader familiar with the differential topology may
want to skip the first section of this chapter. The theory of sub-
divided complexes which follows helps to provide new (and easier)
proofs for some theorems which demonstrate the existence of paths from
a known starting point to a solution point for a system of equations.

In Chapter III results are derived which can be applied to any
path method. The primary concern is to develop results which show that
we can determine a consistent orientation for a path and that a discrete
algorithm can be devised which is guaranteed to follow a path from
one boundary of a bounded set to another boundary. This convergence
proof is a new result.

Chapter IV presents the existing path methods of Kellogg, Li,
and Yorke [1976] and Smale [1976] in a homotopy framework and new proofs
that the paths have the desired characteristics. Also new path methods
are developed which are motivated by existing path methods or fixed
point algorithms, These are shown to be convergent under more general
conditions than the existing path methods.

2




I.2. The Motivation for Path Methods

We are concerned with proving theorems which demonstrate the

n

existence of a path from a known starting point x0 €EDbc R to a
i solution x* of the problem
£f(x) =0, Xx€D (2.1)

where f . R® 5R® and D satisfy certain conditions. The existence

of a differentiable path from x0 to x*¥ can motivate any number of

algorithms suitable for computation of x*. We will present several.

First, however, we discuss other approaches to studying the problem (2. 1).
The history of the study of the existence question and algorithms

for finding a solution of (2.1) is long and cannot be reported in full

here. The most celebrated existence theorem is the Brouwer fixed point

theorem (Milnor [1965]): Let g : D D be continuous and D a

compact convex subset of R, Then there is a point x € D with

g(x) = x. With a preliminary definition we can state an equivalent

i | theorem in termms of (2.1). We say that f£(x) points into D for

I x € OD if there is an a > 0 such that for B € (0,a), x + Bf(x) € D.

The equivalent theorem is: Let £, D > R? be continuous and D be

compact and convex. If f(x) points into D for each x € 3D , then

there is an x such that f(x) = 0. The equivalence is easily seen

| when one notes that solving g(x) = x is equivalent to solving

f(x) =0 when f(x) = g(x) - x and that solving f(x) = 0 is equivalent

to finding a fixed point of g when g(x) = x + Bf(x) for some B > 0.
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These theorems indicate that in some sense fixed point problems

and equation solving problems are equivalent. In this thesis the

S O T PPN OSTCE?

discussion will be concerned with problems of the form (2.1) because
the formulas involved in the theorems and algorithms are, in general,
easier to state in this framework.

The algorithms for solving (2.1) fall into three general classes:
1) TIterative methods such as Newton's method and its variants.
2) Piecewise linear methods. Those methods generally utilize a tri-

angulation of D or some set containing D.

3) Path methods, also described as "continuation methods," or "global

Newton methods." | 8

Iterative methods are primarily of the following form:

given xo, 0 A i B ka(xk) yr el (2.2)

where Bk is either f'(xk)-l, an approximation thereof, or a matrix
which behaves like f'(x)'1 on some subspace. The advantages of these
methods are that they generally provide rapid convergence to a solution
when x¥ is in some neighborhood of a solution x* to (2.1). On the
other hand the only convergence theorems with reasonable conditions on f

are local results: if S 1is a small enough neighborhood of x* then xO €8

implies that (2.2) is a convergent sequence.
The piecewise linear methods are also referred to as "com-
plementary pivot methods," "fixed point methods," or "simplicial methods."

The pioneering work in this field was due to Lemke [1965], Scarf [1967a],

and Kuhn [1968]. The theory has had a host of contributors including Eaves,

L F




Saigal, Merrill, and Todd. An excellent unification of the theory is
contained in Eave's "A Short Course in Solving Equations with P. L.
Homotopies" [1976]. This method solves problems of the form (2.1)

by considering a piecewise linear approximation g:D > RY of f, then
adding a parameter 6 [0,T], 0 < T < + o and a fixed vector d - Rr®

so that the problem

F(x,0) = g(x) + 64 =0 (2.3)

has a trivial and unique solution for 6 =T (or 6 sufficiently large).
If the collection of pieces ’)72 on which g is linear and g(x) satisfy

certain properties, then one can follow a piecewise linear path from

L

(x°,7) to (x*0) defined by (x,0) € F

0). Then g(x*) =0 and
x*¥ is an approximation to the solution of f(x) =0 in the sense
that |[f(x*)]| is small.

The advantage of these methods is that they do not require
that f be differentiable. In fact f can be a point to set mapping
which has a closed graph. Thus, Kakutani fixed point problems (Kakutani,
(1947]) can be solved. This is important because often it is convenient,
if not necessary, to formulate some equilibrium and some optimization
problems as Kekutani fixed point problems (see Scarf [1973] and Eaves
[1971a]). The disadvantages are that often the triangulation schemes
are difficult to arrive at, and for accurate approximation, the grid
size may need to be so small that the convergence of the algorithm
becomes too slow.

The path methods, which we shall concentrate on in this work,
have quite a recent history also. They are very similar, in principle,
to the piecewise linear methods in that one considers a system of

equations such as




F(x,8) = £(x) + 6d =0 , x €8 x [0,T] ,

for example, F 1is defined so that the solution is trivial when

@ = T, and under certain conditions F-l(o) = ((x,6)|F(x,6) =0}

defines a path, a set homeomorphic to an interval in Rl, from

(xO,T) to (x*,0). The primary difference in the requirements of
path methods and piecewise linear methods is that in the path methods
we require that f be twice continuously differentiable (C2) rather

than merely a closed point-to-set map.

The contributors to this theory fall into two groups. The
work before 1975 (Lahaye [1943], [1948], Davidenko [1953a,bl],
Freudenstein and Roth [1963], Meyer [1968], to name a few) was confined
to studying continuation methods which were usually based upon a homo-
topy H:D x [0,1] -» R", where H(x,1) has a triviel solution and
H(x,0) 1is a solution to f(x) =0, x € D. A typical formulation would
let

H(x,t) = f(x) + tf(xo) = 0, for some xO € 8S.

The conditions on f which these authors imposed were generally quite
strong. A typical assumption would be that f is norm coercive
(kaﬂ - o implies that Hf(xk)H —» o) and that f'(x) is nonsingular
everywhere. These conditions would imply that H-l(o) is connected and
monotone in t., This assumption is quite difficult to check and is un-
likely to be satisfied in many problems,

In 1975 papers were published by Kellogg, Li, and Yorke, S. Smale,

and R. Wilson all proposing methods for defining paths which could be

followed from & known starting point to a solution. The first two
6




methods are for general equation solving problems, while Wilson's is
for solving a piecewise linear approximation of a Walrasian general
equilibrium model. The advantages of the more recent approaches are

that no connectedness or monotonicity are required in H'l(O), and

the structure of the set S 1is used to give conditions for success

which are easier to verify than those for most continuation methods.,

The favorable attributes of the path methods are that global
convergence can be guaranteed for a large class of problems, no
értificial triangulations need be defined, and efficient iterative
equation solving routines can easily be implemented when the solution
is nearby. Drawbacks include the requirement that f ©be at least

02 and that it is a difficult problem to design a computer algorithm

which follows a nonlinear curve in R™ This last difficulty is not
as overwhelming as one might think. An algorithm which is guaranteed
to stay near a particular curve will probably be slow, in general, but
algorithms have been developed which approximately follow a path and
converge to the solution quite quickly. Kellogg, Li, and Yorke [1976]
give such an algorithm with numerical results and Chapter VIII shows
that path methods provide efficient means to calculating equilibrium
points as well.

Another similarity in the papers of Kellogg, Li, and Yorke,
Smale, and Wilson'was the use of Sard's Theorem, and other results from
the theory of differential topology to prove their theorems. Since

the reader may not be familiar with these results, we present them in

the next chapter.




CHAPTER II

DIFFERENTIAL TOPOLOGY AND SUBDIVIDED COMPLEXES

II.1. Background in Differential Topology

In order to prove global convergence theorems for path methods,
it is very useful to use some of the results from the theory of differ-
ential topology. In contrast to analysis, differential topology deals
with the properties of sets and functions "in the whole" as well as
locally. This branch of mathematics explores the relationship of
functions f:M — N and the sets £ “(y) for values y € N. The
definitions and results in this section are from Milnor [1965] and
Hirsch [1976]. The theorems stated here can be found in either work.

Amap f:M N, wvhere MC R" and Nc R", is of class C~
if all rth order partial derivatives exist and are continuous. A
map f 1is smooth if it is of class ct for every r > 1. A map
f:M - N is called a diffeomorphism (resp.,Cr-diffeomorphism) < S
carries M homeomorphically onto N and both f and f-l are smooth

(of class ch).

Definition 1.1, A subset Mc Iik is called a smooth manifold (Cr-

manifold) of dimension m iff each x € M has a neighborhood W N M,
where W 1is an open subset of Klk, which is diffeomorphic (C¥-diffeo-

morphic) to an open subset U c r",

We shall refer to a manifold of dimension m as an m-manifold.
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Definition 1.2. A circle is the set {x € R°|[x| = 1}. An interval

is any convex set in I!l containing more than one point.

Theorem 1.5. Any ¢’ l-manifold is a disjoint union of connected sets
each of which is Cr—diffeomorphic to either a circle or an interval of

real numbers, r > 1.

The usefulness of this result is that if we know that a set
f-l(u) is a C¥ l-manifold, and xo is a boundary point of that manifold,
then, if one could follow that connected component of f’l(u) with © as a
boundary point, one would never return to a point which has already been
visited. Thus, the component of f-l(u) must either have one other
boundary point x¥ or it must be diffeomorphic to a ray. The importance
of this property for the convergence proofs presented below is analogous

to the importance of the celebrated "Lemke argument" (Lemke [1965],

Scarf [1973], Eaves [1976]) in the theory of solving piecewise linear

equations.
To define the notion f'(x) fora C° map f: MoN of C°
manifolds, r > 1, we first associate with each x € M c nzk a linear

subspace TMx (= I!k of dimension m called the tangent space of M

at x. Then f'(x) will be a linear mapping from ™, to TMy;
where y = f(x).
For an open set Uc]Rk, TUx =]Rk. For any ct map f: U 5V

the Jacobian

£'(x) = RE i
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is defined as the matrix of partial derivatives, i.e.,
Bfi(x)
' =
s T

for 1 €4, € k.

Now let us define the tangent space TMx for an arbitrary, smooth,

m-dimensional manifold M cRY. Choose a paremetrizstion

g:UsMc RE

of a neighborhood g(U) of x € M, with g(u) = x. Here U is an
open subset of ]Rm. Thinking of g as a mapping from U to ]Rk,

the derivative

g'(u):R™® » RE

is defined. Set TMx equal to the image of g'(u).

We must prove that this construction does not depend upon the

particular choice of parametrization g. Let h: VosMc ]Rk,

x€EhX)cM v = b1 (x) ;

-1
. > 8
I SR g.Ul 3u-—>Vl v

The commutative diagram of maps




gives rise to the commutative diagram of linear maps.

g' (u) Dh(v)

m m

R

> 1R
(™ e g) (v

It follows immediately that
Image(g' (u)) = Image (h'(v)) .
Thus TMx is well defined.
Consider a ¢t map f:M >N from an m-manifold to an n-manifold.
Let C be the set of all y € M such that the jacobian matrix
£ (y):R™ 5 R"
has rank less than n. Then C will be called the set of critical

points, M\\C the set of regular points, f(C) the set of critical

values, and N\ f(C) the set of regular values of f.

The following regular value theorem is often used to define

manifolds (or in particular, paths).

Theorem 1.4, Let £=M >N be a CT map, r > 1. If y€N isa

regular value, then the set f'l(y) cM is a C¢* manifold of

dimension m=n.




The following result makes precise the statement, if y is
in the range of f, then "in general" f-l(y) is a C* manifold.

This theorem is critical in proving the validity of path methods.

Theorem 1.5. (Sard's Theorem) Let U cR™ be open, £:U —» R"
a C° map and C = {x € Ulrank f£'(x) < n). If r > max{O,m-n)
then f(C) has Lebesgue measure zero.

Since we are concerned primarily with l-manifolds defined by
f-l(y) for some y € N, the weakest differentiability condition that
can be specified for f, and still be able to apply Sard's Theorem,
is that f be C°,

Definition 1.6, Consider the half-space = ((x .,xm) € ]leanO].

1,0-
m k
X0c IR . A subset Xc IR is called

The boundary OH" is ]Rm-l

a ¢¥ manifold with boundary if each x £ X has & neighborhood

U NX c'-diffeomorphic to an open subset of H". The boundary oX
is the set of all points in X which correspond to points of BH‘m
under such a diffeomorphism.

Now consider a C' map f: X - N, r > 1, from an m-manifold

with boundary to an n-manifold where m > n.

Theorem 1.7. If y €N is a regular value for both f and for the

restriction f£|3X, then £ 1(y) c X is a C* (m-n)-menifold with boundary.

Furthermore, B(fﬁl(y)) is precisely equal to f-l(y) n ax.

12
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This is the form of the regular value theorem which will be
most useful in proving the global characteristics of certain paths

defined in the chapters below.

II.2. Orientation

In this section we present some standard notions of orientation
which will be useful to use when we prove results concerning the
orientation of paths in Section III.2, The following definitions are

again an amalgamation of those in Milncr [1965] and Hirsch [1976].

Definitions. An orientation for a finite dimensional real vector space
V 1is an equivalence class of ordered bases as follows: The ordered

basis (bl,..., bn) = B determines the same orientation as the basis

(b'l,..., b!'l) =B' if B' = BA where A is an n X n matrix with

det A > 0. It determines the opposite orientation if det A <O,

The vector space R" has a standard orientation corresponding to the

basis (el,..., en) where e, is the ith unit vector denoted by Oy

In the case of a zero dimensional vector space it is convenient
to define an "orientation" as the symbol +1 or -1.

We shall denote an orientation w of V by w = [bl""’ bn]
as the equivalence class of bases with the same orientation as V.
(V,w) is an oriented vector space. =w denotes the opposite orienta-

tion to w.




IfL V-5W is an isomorphism of vector spaces and
W = [el,..., en] is an orientation of V then L(w) = [Lel,..., Len]
is the induced orientation of W. Given (V,w) and (W,w'), an

isomorphism L:V - W is called orientation preserving if L(w) = ';

otherwise L is orientation reversing.

An oriented manifold consists of a V smooth manifold M
together with a choice of orientation o for each tangent space g
TMx' If m >1 these are required to fit together as follows: For
each x € M there should exist a neighborhood U c M and a diffeo=-

morphism h mapping U onto an open subset of R™ such that

h'(x)(wx) (wm) for each x € U, If M 1is connected and orientable
then it has precisely two orientations.

If M has a boundary then we can distinguish three kinds of

vectors in the tangent space TM.x at a boundary point: {

1) There are the vectors tangent to the boundary, forming an (m-1)- |
dimensional subspace T(aM)X = TMx'

2) There are the "outward' vectors, forming an open half space bounded

by T(BM)X; and ia

3) There are the "inward"' vectors forming a complementary half-space.

Each orientation @ for M determines an orientation for

OM as follows. For x € OM choose a.basis B such that [b

;s

PUBEELR bm-l are contained in

b ] ,

= w(M) and in such a way that b., b

19
T(BM)x and so that b is an outward vector. Then [bl,...,bm_ll

= wk(BM), the induced orientation of OM at x.

1k




L _ If dim M = 1, then each boundary point x is assigned the

orientation -1 or +1 according as a positively oriented vector at x

points inward or outward (Figure 2.1).

T

. FIGURE 2.1

T
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IT.3. Subdivided Complexes

In this section we will essentially be extending the piecewise
linear topology aweloped by Eaves [1976] to the case when the functions
are 02 on each "cell" and the cells are defined by an intersection of
a finite number of manifolds with boundary.

A set ocC R? is a cell if o is non-empty and satisfies

o= {x€ ]Rnlbi(x) <0, 1€g;b,(x) =051€p\ g,

]Rn—le are C? functions.

for some p and g, 0<q<p where bi
The interior relative to the manifold {x € ]Rnlbi(x) =03 1€ p_\ g}

denoted by

0 n
o =(x€ R%b,(x) <0, 1€ g3 b,(x) =0, 1 € p\g
is also assumed to be non-empty. Let
A(x) = {ilbi(x) =0, 1€ g for x€ o

be the set of binding constraints of x rela.t"..ive to g.

We sha..ll always assume that, for x € o, that (Vb (x)|i€A(x))
is a linearly.indé‘pendent set of vectors (if A(x) # ¢). This is a
commonly used constrain% qualification in nonlinear programming.

Acell oc X is called a cell of dimension m, or an m=-cell,

if each X € oQ has a neighborhood W N ¢ which is diffeomorphic to
an open subset U of ~]Rm.
Suppose the index set B c p is equal to A(x) .for some

x €¢o. Then

16




B= (x|b,(x) <0, 1€ a\B, by(x) =0, 1€ B)

is a face of ¢. Notice that B> p\ g. B is called the index set
associated with B. Also note that B could be all of o or a

single point.

Lemma 3,1. If a face B c o has an associated index set B, then let

r=|B|]. Then if ccR", r<n and B 1is a cell of dimension n-r.

Proof. Let S o o be a smooth manifold., Define the 02 map
h:S->TR as h(x) = bi(x)

. i€B.

Then, by definition of o, for any x € B, {Vbi(x)li € B} is a linearly
independent set, or equivalently, h' (x) is of rank r for any x € B.
Thus, O is a regular value of h, and by Theorem 2.k, h'l(o) is a

C2 manifold of dimension of dimension n-r. Hence, B = h-l(o) Nao

is an (n-r)-cell. .
An (m-1)-face of an m-cell is called a facet of the cell.

Let ’m # 'cp be a finite or countable collection of m-cells in
some Euclidean space, Let mi for i =0,..., m be the set of i-faces
i 0
of the elements of 7; we call members of Us o, ...,mn and 7)[

cells and vertices of ,)? , respectively.

17




Definition 3.2, Let M= U ¢g. We call (M,'Iq) a subdivided m~-complex

<N

1f

a) any two m-cells of %? are disjoint or meet in a common face,
b) each (m-1)-cell of 7)) 1lies in at most two m-cells, and

c) each point of M has a neighborhood meeting only finitely meny

m-cells of '))7 p

Example 3.3. Let o be an m-cell, then (M,?;,) = (0,{c}) 1is a sub-

divided m-complex.

The next result will be useful in the definition of a path

o 3

method in Section IV.3.

Proposition 3.4. If '}')l = (Tili € g } is the collection of facets,

of an mecell ¢, then ( U ri,');]) is a subdivided (m-1)=-complex.
i€g

Proof. For simplicity consider a cell ¢ which is defined only by

inequality constraints: o = {x € ]lebi(x) <0, i€ 3}. The cells

Ty are defined as

7 = (x€ R"p,(x) =0, by(x) <0, V3 #1).

a) To prove that the first part of Definition 3.2 holds, it is sufficient

to show that t° N Tg # ¢. Suppose y € 2 n 2

3 3 K for some j, k € q.

Then bj(x) and bk(x) are identical in some {m-1)-dimensional
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neighborhood B(y,e) N rg. This implies that Vb,(y) = 0%b,(y) for
some & > 0, which contradicts the constraint qualification in the
definition of an m-cell.

b) Next we show that each (m-2)-cell lies in at most two (m-1)-cells of ')7‘
Suppose that an (m-2)-cell y 1lies in T Ty Ty € 77[ « Then
ycs={x€ R"|b(x) =0, 1€3, b,(x) <0, 1€g\ 3. At
some point y € ro there is an € > 0 such that y N B(y,¢)
is an (m-2)-manifold. But by Lemme 5.1, © is a cell of dimension
n-3, and we have a contradiction.

c¢) This last requirement follows from the fact that the number of
cells in M is finite. |

3

Example 3.5. Consider three 2-cells in R which meet in a common

facet. Then (Ui=1,2,3°1’{01’ LA 03] is not a subdivided 2-complex.

S




P (M,?”) is a subdivided m-complex for some subdivision

ﬂh), we call M an m-complex; M may have many possible subdivisions.

The following lemma is trivial to prove, but it is very important

for the convergence theorems that follow.

Lemma 3.6. A connected l-complex is homeomorphic to either a circle
or an interval.
For the two cases of 3.6 we call the connected l-complex a loop

or a path. We shall use path and curve synonymously.

Example 3.7. Examples of loops

%y

Examples of paths




exactly one m-cell of 9”.

Proof. Let (x) c 3 be such thet lim ==
K

of the Xy

of a subdivided complex. [}

properties we shall say that it is "neat."
and W a l-complex contained in M. If W
OW =W NAOM we say that W 1is neat in M,

by Hirsch [1976] with reference to manifolds

first case, not neat in M for the others.

Let M be an m-complex subdivided by 9n. By the boundary

of M, OM, we mean the union of all (m-1)-cells of sz which lie in

Lemma 3.9. The boundary of a complex is closed in the complex.

= x. If infinitely many

lie in one m-cell of /), then x is in ¢ and hence

in M. Otherwise, x is not in M due to condition (c¢) in the definition

We are interested in the behavior of l-complexes which are con-

tained in m-complexes for m > 1. When a path has certain desirable

Let M be an m-complex
is closed in M and
This terminology is used

with boundary. Some

examples illustrating the definition are below.

Example 3.10. The l-complex W (dashed line) is neat in M in the




Next we extend the definition of "neat" l-complexes to deal

with subdivisions of M.

Definition 3,11. Suppose that W 1is a l-complex contained in M and ’)II

is a subdivision of M., Let W be composed of loops and paths
yco NW for each ¢ c'm. We say that W is neat in (M,7)) if
a) WnNo is neat in ¢ for any o € M,

b) (W, U is alsubdivided l-complex, and

¢e) oaWneo) c U t(i) where (rili € 2) 1is the set of (m-1)-cells of
i=1

7,1 (7)2m-1) 1

Condition c) means that when W hits Jc, for any cell o,

it hits only one facet of .




Lemma %.12. If W is neat in (M,??) then W is neat in M.

Proof. Part a) of the definition implies the result. Since W N g

is closed in ¢ for any o € ’)}z, W 1is closed in M. If x € W N oM,
then x € W N 3o for one cell ¢. Thus, x € (W N o) for one cell,
and we have x € OW. If x € OW and x is in only one cell g, it
is clear that x €E WNOAM. If x € OW and x € o, No,, then for one
of the cells, say P wn o, contains a connected component con-
sisting of the point x. This contradicts the requirement that W N o,
is a l-complex. So, OW = W N M. B

is not in o

Example 3.13. W is not neat in (M,7): WNo

i 1’

i=1,2,
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Example 3.14. W is neat in (M, ')r()

Next we prove the theorem which says that for almost all

values @, f'l(cp) is neat in ¢.

Theorem 3.15. Consider f:o — A™L Gere o 1y » bounded m-cell

and f is Cz. There is a closed set of measure zero Z c ]R'n'1

such that for any ¢ € f(o)\ 2, f-l(cp) is neat in (o,{0)}).

Proof. Let (Tili € g} be the set of facets of o, and

{t,|1i = g+l,..., £} be all r-faces of ¢ for r<m-l. 71, is a
X

J
compact set of dimension less than m-1 for j € £\ g. Let

vy Ef(rj)C]Rm-l be the image of 7, under f for JEL\ g

is a closed set of dimension less than m-~l. -Hence =y
- i W

m-l and if ¢ ¢ v, then

is a closed set of measure zero in 1R

q
f-l(cp) Ndocc U Tg.
i=1

2y
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Since 71, 1€ g 1is contained in ({x ¢ ]Rnlbi(x) =0,
by(x) =0, € p\ gl, = c°-(m-1)-manifold, there is a compact C°-

manifold with boundary X, U éxi such that 1, axi and occX,.

i i i

By Theorem 2.5 (Sard's) and Theorem 2.7,the set C, c 2™ o

i

critical values for fixi and for f‘|3}(i has measure zero for each
i€ g, Also, for < R™ 7\ ¢, £75(p) is a l-manifold neat in
X, U bxi.

To show that Ci is closed, let J be a convergent sequence
(#") cC; together with its limit point . £ () must contain
a sequence {xk} such that f(xk) = <pk for every k. Since
X; U 3)(1 is compact, [xk] has a limit point X. We know that
f'(x) is continuous and that every minor of size m-1 is zero for
X €f-l(J). Hence, x 1is a critical point, and, by continuity, f(x) =%
and ¢ 1is in c,.

Since i € g was arbitrary, Uieg C;, =C 1is a closed set of
measure zero. We now have that Z =C Uy 1is a closed set of measure
zero, All that is left to show is that for ¢ € f(cr)\ Z,
3t @) = £7Ho) N 2o,

For x€ dc N f-l(q)), there is some i such that x € 12

Thus, there is some neighborhood & of x such that & n o= &

1

=@n (X; U3X,). Since 9 ¢ C, x € f|;i(cp) nox, = bflili'(@). £ is

identical to flx on @ so x¢ Bf-l(cp), and we have shown
i
=1 e
(3c N £ “(9)) < of (9).
Suppose x € 32"1(9). If x € do, an argument similar to the

one above would show that x € d¢ N £ X(9). If x g 3¢, then for any

25
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X;, Xx€X, but x ¢ OX,. Thus, x 7 of|, (p). But, on o, f| is
i ) & 2 xi xi

identical to f, and we have x ¢ f-l(cp) , & contradiction. Therefore,

the case x € do0 1is the only one, and we are done. l

We will call values ¢ which are in f(o) \ Z, as defined
in the last theorem, good values of f with respect to o.

In the theorems that follow, the assumption is commonly made
that O 1is a good value of f with respect to ¢. Theorem 3.11
implies that if this assumption is true, then there is a neighborhood
of O consisting of good values. This is important from a computational
point of view because in this case if the algorithm stays in B(f-l(o),e),
for some ¢ > 0, no singularities or branch points of a path will be
encountered.

Another useful fact is that if O is a critical value, then
any neighborhood & of 0 contains a regular value ¢. However, it
is possible that there are no good values in &. For our applications
of this theory, however, it will always be true that for some facet T,
f|_r(x) = 0 will have a unique solution xo, and fI'T(xo) will be of
full rank. By the inverse function theorem, any sufficiently small
neighborhood (& of O will be in the range of f, and, hence, we
can conclude that (& contains a good value a) of f with respect
to o. Thus, when we make the assumption that O is a good value
for f in the sequel, we make it with the understanding that if this

is not true we can deal with a perturbation a of 0.
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A more satisfactory resolution of this regularity problem would
be to use some deeper transversality results of differential topology
(Hirsch, Section 3.2, [1976]). With these results we could perturb
f to ¥ if O was not a good value of f w.r.t. o. We have
avoided this course because of the excessive amount of preliminaries
which it would require.

It is important to note that if O 1is a good value of £, then

b N2 f-l(o) n 801 means that x is in only one facet of o

1° Hence,

there is at most one adjacent cell in which one could continue to

g
follow £ 2(0).

We say that ¢ is a good value of f with respect to (w.r.t.)
(M,7)) if @ 4is a good value of f w.r.t. o for every o € 7”.
Notice that if the subdivision of 77 is finite, then Theorem 3.15

immediately yields the following

Corollary 3.16. Let (M,77) be a bounded subdivided m-complex and

M| be finite. If £:M »R™ is °, then there is a closed

set of measure zero Z c Iim-l such that the set of good values @

of £ w.r.t. (M,')p,) can be written
o = f(M)\ 2Z.

The next theorem is our main result concerning good values.




Theorem 3.17. Let f : M5 R™ be a continuous map such that ro
is C° on each oc ’)I], where (M,W) is a subdivided (m+1)-
complex, and each ¢ C 7}] is bounded. If ¢ 1is a good value of f

w.r.t. (M,?V) then f'l(tp) is a l-complex neat in (M,?q).

Proof. Since ¢ is a good value for fIU for any o € 7)'[ ’

f_l(q)) N o, is neat in (o,{c)) for each ¢ € Z], by Theorem 3,1k,

Thus, parts 1) and 3) of Definition 3.10.5 are demonstrated. Let
W= f-l(cp) and W ve composed of the connected components

y < (o N W) foreach o€ 7). ALl that is left to prove is that

(W,W) 1is a subdivided l-complex. We now show that the three conditions

of Definition 3.3. are satisfied.

a) Suppose that A, N A # ¢ for ISP S ‘ZU', then A\, c o, N f'l(cp)

T R T A T T T PR

1

and A, o, N f-l(cp), by the definition of segments. It is clear
0 0 0 0 i

that %lcal and M\, < o, because 8?\1 = bo-i, i =1,2. From

% ag n og =¢ we have that A, and )\2 must meet in a boundary
point.
b) If y 1is a boundary point of distinct Hy €W for i = 1,2,3

then y € P oy for 1€ 3, where 1 is a facet of 0y D uy

i € 3. This contradicts the fact that 'm is a subdivision of M,

¢c) Forany y€ M\ < f'l(cp), if y € o for only one o, € 77{ then

3 there is a neighborhood & or y for which & n f-l((p) meets only

5 also, then b) implies that y is a boundary point

?\1. iIf yE€ ¢

E of exactly two segments ?\1 and )\2. Since ¢ 1is a regular value

for t]_, f|
o' o,
containing only A, and A,. ¥

D ————

s 2 , one can find a neighborhood of ¥y
o1
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The following proposition is of critical importance in applications

of the theory of subdivided manifolds.

Proposition 3.18. If the subdivision of 77) is finite and M is

bounded, then f-l(cp) contains an even number of boundary points.

Proof. Let |C| denote the number of connected components in the set
C. To show that the subdivision W of f-l(cp) ig finite, all we

need show is that ;f-l(cp) N o] is finite for any ¢ € »7 Since
o 1is closed and M 1is bounded, ¢ must be compact. Suppos:theré ‘are
an infinite number of distinct connected components of f-l(cp) no,
[?\i}, i=12,... . Then pick a point xi € 7\1, 1 = L, 0,00 « Since
o is compact, we can, by choosing a subsequence if necessary,

atoume Stk Mm 2 = i€ o, and f(X) = ® by continuity.

io ®
By making a C2 extension of f to an open set C c ¢ we can use the

fact that ¢ is a regular value of f to apply the implicit function
theorem [Ortega and Rheinboldt (1970), p. 128] and conclude that there is
& neighborhood & of X and a ¢t curve x(t):(tl,te) e

t, <0 < t,, x(0) = X, such that £ (p) N &= (x(t)|t € (t},1,))

g !
which contradicts the fact that X was a cluster point of {xi].
Thus the subdivision of W is finite.

Consider any connected component 7y c f-l(q.')). if v 1is & loop
it has no boundary points. If y has one boundary point x0 = )\0 < Ty
then it must contain another: The subdivision of y must be finite

= [7\0, ?\l, AR 5 A%, x%e }\q-l nA isa boundary point of A,
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1f Aco, then o N£ 7 (p) 1s neat in o and the fact that A2

is closed in the compact set o imply that there is another point
xcr"1 of A% and xq*'l (= TO where 1T is a facet of o. xq+l is in
no other cell o', otherwise 2% would not be the last segment in
the connected set y. Thus xq"':L is the other boundary point of .
Since this argument could be repeated for each of the finite number
of components 7y C f-l(cp), the number of boundary points of f-l(fp)

is even. .

Corollary 3.19. If x° is & boundary point of f r(p) where o is

a good value and M is compact, xO € OM and the other boundary point

x¥ of the path y containing x0 is in the boundary of M.




|
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CHAPTER III

INTRODUCTION TO PATH FOLLOWING ALGORITHMS

III.1. Objectives

In this chapter we present some of the possible algorithms for
following F_l(O) for some deformation F : M - N which is defined
in terms of f where Mc R™Y, Nc R®. We will not discuss the
exact manner in which F is defined--that is the subject of the next
chapter. We will merely be assuming that an initial point (xo,eo)
is available which is in OM N F-l(o) , and if we can follow the component
Y C F-l(O) containing (xo, 60) until we reach the other point

(x*,6%) € ¥y N OM, we will have found a solution x* to
f(x) =0, x€S8. (l.l)

We will assume that y 1is a Cl-diffeomorphism of a closed
interval in R<T (which will be true if O is a good value for F
w.r.t. M). Hence, there is some differentiable parametrization
® = [0,T] M such that y = ((x,6)|(x,6) = ¢(t) for some t € [0,T])

and o(0) = (xo,Go). Clearly then, we have

F((P(t)) =0, t € [O)T] . (1.2)

Differentiating (1.2) with respect to t we get

 (p(t)) - 2& L

dt '

Define &(t) = dp/dt. We can completely specify ¢(t) as the solution

to the initial value problem
31




F'(o(t)) o(t) =0, (1.3a)
o(0) = (x°,¢°) , (1.3b)
p{tl EM for t>0, (1.3c)

o)l =1 . (1.3q)

(ef. Kellogg, Li, and Yorke [1976]).

The condition (1,3c) fixes the sign of the initial tangent vector
®(0), and requires it to point into M. The condition (1.3d) implies
that the parameter t 1is the arc length along the curve. Under some
rather strong conditions, numerical integration techniques such as
Euler's method or the Runge-Kutta technique can be used to find the end-
point (x*,6%) = o(T) (Ortega and Rheinboldt, pp. 339-3L0 [1970]).

Kellogg, Li, and Yorke [1976] describe a similar algorithm under more

general condiﬁions, but do not give any convergence proof.
We will briefly describe an algorithm similar to the one described
in Kellogg, Li, and Yorke, so that we can contrast it with the one
for which we will prove a convergence theorem. This algorithm takes
short steps in the direction of ¢(t) as described in (1.3) and
shortens the steplength if [[F(x,6)|| changes too much. An assumption

of this algorithm is that 00 =0 and ¢ 1is monotonically increasing

along y. The algorithm is as follows:

i vkt
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Algorithm 1,1.

0. Pick (x°,o) € M such that F(xO,O) = 0, and pick numbers h > 0,

€ >0. Bet i

0‘
1. Compute F'(xl,Gl).

2. Compute (x,8) such that

F'(xi’ei)(x)= 0 and 6>0.

3. Replace (x,9) by (x,0)/l(x,0)]

My = (b el + n,0)

L. Set (xl+l,6
) ' Eh
R ¢ HF(xl+l, 0" l) - F(x,5)|| > ¢, replace h by h/2 and go

to Step L. Otherwise, go to next step.

6. B Gy 0 WP, et vt (MM as the spproximate
solution to the problem of finding F'l(o) N OM. Otherwise, replace

i by i+l and return to Step 1.

Clearly the approximate solution derived from this algorithm
could be used as a starting point for some iterative technique such as
Newton's method to find a more accurate solution. A possible course
of Algorithm 1.1 is given in Figure 1.2.

Notice that after the third iteration the stepsize was cut in
half due to Step 5. In this case the algorithm performed well and

resulted in a good .approximation to (x¥*,6%).
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FIGURE 1.2

Next we illustrate two possible shortcomings of Algorithm 1.1.

(x*, 6%)

FIGURE 1.3
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After the jump from (x%,6%) to (x,6°), F(x°,67) is still
near zero but (x2,62) is near a new component of F-l(o), a loop.
The algorithm will fail to reach (x*,6%). Even with a very small step

size h and tolerance ¢ it appears difficult to prove that this type

of behavior will never occur.

The next difficulty appears even more disadvantageous. It is

caused by the naive method for choosing the sign of (%,%) in Step 2.

(x*, 6%)
=
6=0
At the point (x5,63), the algorithm would choose &® as the
direction for (x,0) while d- would be the direction in which to

continue to produce a consistent movement along F-l(o). Any time
46/dt = 0 along F (0), Algorithm 1.1 is going to have difficulties.
What is needed is a way to determine orientation which is not dependent

upon a notion of monotonicity in any variable.
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the stepsize and tolerance is small enough.

In the next section we will prove the necessary result concern-
ing orientation. It says that the sign of ii, for some i € n (or
b) is determined by the sign of the determinant of the matrix formed
by removing the column corresponding to X; (or 6) from F'(x,6).

In the following section we shall describe an algorithm which
uses the orientation result of Section 2 and returns to the curve F-l(o)

periodically to prevent the situation of Figure 1.2 from occurring if

III.2. The Orientation of Subdivided Complexes and Curve Index

Before discussing the orientation of paths we must extend the

notion of oriented manifolds with boundary (cf. Section II.2) to a
definition of an oriented subdivided m-complex.

Consider a cell ¢ with an orientation ®w defined for each
point in the smooth manifold ao. For any point in To where T is a
facet of o, define the induced orientation of 1t exactly as if
was contained in OL where £ D UO is a C2-manifold with the same
orientation as o.

Let (M,7)) be a subdivided m-manifold with m > 1, and each

m=-cell of 7? is oriented, Let 71 be a facet contained in two m-cells
oy and Oy If 1 receives an opposite orientation from oy and
o,, we say that (M,7) is oriented. When we say that (M,?)) is

positively oriented we shall refer to the orientation of each m-cell as

being positive.
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Example 2.1. Oriented subdivided complexes.

Notice that if (M,?ﬂ) is a subdivided 2-complex that a
"clockwise" or "counterclockwise" property of the ordered bases determine
the orientation of a cell. If, in rotating from b1 to b2 in the

shortest direction, one rotates in a clockwise direction for all ¢ € ‘77 5

then (M,77) is oriented.

If M is an m-complex in ]Rm we shall by convention give

it the standard orientation W That is, each m-cell is oriented

by « . It is easy to verify that (M,’)?) is oriented in this case.

Next we discuss the important concept of curve index. The
development in this section is, again, a generalization of the results
on curve index in Eaves [1976]. It is the last result in this section,
Proposition 2.3, which allows us to decide which direction to move
in a discrete path following algorithm.

Let F : M >N by amap from the oriented (n+l)-complex (M, )
to the oriented n-complex (N,‘)I). Let y be a good value, (W, W)

be the l-complex F-l(y), and (W, W) have an orientation. Let o
27




be an (nt+l)=-cell of 7n containing x, [v] be an orientation of
(TW)x in o, and [B,v] orient o with the same orientation as M.
Let 7 be the n-cell of ) containing F(c), C orient (Tr)y and
¢* be any matrix witt C'C = I. The curve index of x is defined
to be

sgn(det C+F'(x)B) :

The curve index is the sign of the determinant of the following
set of maps

F'(x)

]Rn

xXPp

n
if Mc R? and Nc RP? then c' e R, F'(x) € RPX9, ana

Bec RI*R,
Lemma 2.2. The curve index is well-defined, nonzero and constant
on any oriented path.

Proof. Part 1) shows that the curve index is independent of the

choice of B and C. Part 2) shows that it is independent of x € W.

First we note that for points a in Try, a =CA for some A € ltp,

and




ccta
If we let G also satisfy GC = I, we have
+ +
det C £'(x)B = det GCC Df(x)B = det G f£'(x)B , (2.2)

the last equality following from (2.1). Next, let (Bi’vi) and Ci
represent orientations of Tcx and Tcy, respectively, for i =1,2,
where ®?5)=@PHM,%=CFMaA,®tB>m and [(v,] =

[vg] = (TWx). Clearly,

+ 1 — + 1
sgn det C, F (x)B2 = sgn det C.F (x)B2 &

- L -
using ECiC, = I, det E™- >0, and (2.2).

Note that since F is constant along W, F'(x)v1
Hence,

(F' (x)BD;,0) = F'(x)(B,v,)D = F' (x)(B,,v,)

lDl’

- 1 o - ]
and D, is nxn. But F (x)B1d2 =0 implies d, =0 (F (x)B1

1

has full column rank), [vl] = [v2] implies vy = ov, for a>0

so we have d) > 0. Hence, det D, >0 and sgn det C;F'(x)B2

1
= ggn det CIF'(x)B1 so the curve index is well defined at x.

39




Next we show that the curve index is constant for any x € W N co.

We can choose the basis B as a continuous function of x, B(x), along
W Dbecause B(x) is a choice of a linearly independent basis in Tcr?t
and ¢° is a smooth manifold. C' can be constant, hence d(x) =

det c'F! (x)B(x) is a continuous function of x. Since we have shown
that the curve index is nonzero at some point X ~ W N ao. Suppose some

point X € W has opposite curve index to x. Then
-+ - - +*, o o
det C F'(X) B(x) - det C F'(%)B(%X) < 0.

: Using a parametrization @(t) of W, there must be some 0 ¢ (f,%),

where x = () and % = cp(%), such that
det ¢'F' (p(t%)) B(®(t%)) =0 .

¢ has row rank n and B(cp(to)) has column rank n by definition,

so F' (q)(to)) has rank less than n. This contradicts the fact that

y is a regular value of F and F(cp(to)) =y.

If o >x 1is unique we have shown that the curve index is
constant on w N cro. If x 1lies in more than one cell, then it lies
in exactly two (nt+l)=-cells of ?)], o, and o,
value for F w.r.t. (M, 7)7). Let =0, n o, and choose an orientation

, because y 1is a good

[B] of T‘rx. Let v, ET(WNg and v, ¢ T(W N Ge)x be chosen

l)x
consistently with the orientation of (W,w). Then, since 0 is a

regular value for FIT, (B,v,) span To, ,» &nd B can be chosen so

that [B,v is the orientation of o,. Due to the definition of

1] 1
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an oriented subdivided manifold, B has the opposite orientation to that
induced on T by 0,- But, since v, is an "inward" vector for T,
it follows that the curve index is constant and well defined on

oriented l-complexes. l

The notion of curve index relates the behavior of the curve W
to the Jacobian of map F which defines W. The next Theorem will be
used repeatedly for the definition of algorithms and for proving
theoretical results.

Suppose that M c ]Rn+l, y 1is a good value for F w.r.t.

(M%) and y < F '(y) is a path oriented so that its index is

i=+1. Let (x,8) = o(t) be the direction of y at (x,8), and let

F'(x) = (E,e) where E € R®*T,

Theorem 2.3. sgn © = i.sgn det E.

Proof. F'(x) (x ) =0, so if 9= 0, Ex =0, and x # 0 implies that
J

det E = 0.
Ir 8> O, then, by our convention, M has the standard

orientation. To represent this orientation, we use

(B)b) =

.2 [

and C = C+ =1 1is the orientation for N = R". Hence,

i = sgn det I(E,e)B = sgn det E ,




and we have i-sgn det E = 1 > 0.

If 6 < 0, then let |

S '
(B;b) = ’
o 8
= ¥ n-1 n
where I = (e’,...,e , =e ) so that (B,Db) represents the standard

+
orientation in Ein l. We have

i = sgn det I(E,e)B = - sgn det(E,e)B = ~ sgn det E ,
and

i- detE<O. ¥

Thus, we have the important property that the sign of © changes
as the sign of the determinant of E. Clearly, a similar statement holds
for any coordinate of (x,6) and not just the last one.

The curve index is essentially arbitrary, so we must choose
it in such a way that our algorithms will move in the desired direction
along the path y. We are always given an initial point (x ,O € do
for some cell o ={x|b,(x) <0, i€ m} and we want to follow F10)
into the cell ¢. Thus if we are (x,6) in the mull space of F'(x 0 )
we know which sign to give (i,b) so that it points into o¢. Knowledge
of & and sgn det(alF(xo,Oo)) along with Theorem 2.3 let us define i,

the curve index in the appropriate way,

i =sgn 5 - sgn det(d F( O, O 1) . »
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After i 1is determined at (xo,eo) € OM, Theorem 2.3 can be used to
determine the appropriate sign for (i,b).

Next we give explicit directions for implementing Theorem 2.3
in a path following algorithm. The numerically sophisticated reader

may find the exposition above to be a sufficient description and may

want to skip to the next section.

In this section to avoid singling out any component we consider
a problem of following F-l(

+
where oc]Rnl and F maps o into IRn. Assume that

¥ ¢ F'l(o) NJo satisfies

0) across a cell ¢ = [x]bi(x) <0, i € m)

bl(xo) o bi(xp) 20, 1

Let Fs(x) be the matrix F'(x).,Eil\\{j].

First we will discuss the problem of finding a nonzero element
of the null space of F'(x). We are assuming that O is a regular value
for F, so that in some neighborhood of F-l(O), F'(x) has rank n.
Thus, some n X n submatrix of F'(x) has full rank. To find a

v # 0 such that F'(x)v = 0, first try to solve

Fs(i)y = - F'(i).,j (3.1)

for j = ntl, If F;+l(i) is singular, let j = j-1 and again try

to solve (3.1). Eventually, a j will be found such that F&(i)

is nonsingular. Then v defined by




Yy s for 1< j
¥y = T for 1 =3
¥i-y for 13>39

satisfies F'(X)v = 0. In the algorithm below the phrase, "find v

such that F'(x)v

0," means that a procedure such as the above is
to be followed.

The easiest way to calculate sgn det Fé(i) is to keep track
of certain things as the system (3.1) is being solved. A common (and
efficient) method for solving a system of equations is to develop a
LU decomposition of F&(i) using Gaussian elimination with partial
pivoting. In such an algorithm one can determine sgn det F&(i)

= sgn det LU by the following procedure

0. let k=1
1. each time two rows of U are interchanged let k = -k
2. each time a negative diagonal element Uii is calculated

let k = -k,

The result k will be the sgn(det F&(i)) because L is lower tri-
angular with ones along the diagonal and U is upper triangular.
Thus, in the sequel when we say "compute sgn det E," we mean
that a procedure similar to that above should be followed and no real
work need be done.
We summarize this process in algorithmic form. We first show

how the initisl unit tangent to F Y(0) pointing into ¢ is found.

LL




0.

L,

Given xo such that 2 ¢ g = {xlbi(x) <0, i €ml and

bi(xo) 20,

Find v such that F'(xo)v =0 Dby solving a system such as (3.1)
and let 1i' = sgn(det FS(xO)).

Set B

i

-sgn(vb, (x°),v).

Let v

> T

Save & = 1%Y-8,

Now we have the curve index i and the initial tangent to F-l(O)

for a curve following algorithm to move along. At some other point

k
X

1.
2

3.

III.53. Proving Convergence for a Path Following Algorithm

across a compact cell ¢ cC Iim+ . Let C Dbe the connected component
of F }(0) which contains a boundary point x
F:oc-oR" is 02. The algorithm will stay near the curve C and
converge to the opposite boundary point of C, x* © Jd¢. A 2-dimensional ]

example is given below. 4

near the path F-l(o) the procedure is as follows.

Find v such that F'(xk)v =0 and let i' = sgn(det FS(xO)).

Let & = isi',

Let v=258. H;W g

In this section we define an algorithm which will follow a path
1

0 of F'l(o), where




Example 3.1.
Let the cell be defined as o

(xe R™ b, (x) <0, 1€ g.
We assume that O is a good value for F (see Theorem II.3.15).

The algorithm is essentially a procedure for moving a fixed
distance along a tangent to a curve near C. Then a hyperplane normal
to the tangent is used to get a fully determined system of equations.
Newton's method is used to solve this system approximately until we
again have a point sufficiently close to C. This subroutine is
repeated until the opposite boundary has been reached. At this point
the constraint which is violated is augmented to F so that Newton's
method can be used to determine the boundary point x* to the desired
tolerance.

A more explicit description of the algorithm is given below.
The theoretical and computational question of interest is the determina-
tion of 1 > 0, the steplength along the tangential approximation, and

¢ >0 the termination criterion for the Newton subroutines.

Lé
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Path-Following Algorithm 3.2.
0. The initial information consists of positive scalars 7, ¢

and the initial point o€ F_l(O) Nde. k :=0.

xo’

-1
1. Determine u(xk’o), the tangent toc F ~(0) at X o SO that
L
(

the direction of movement along F —(0).

| Let x5 =X o+ wlx o).

5. Define Gk:mm+l->m"’+1

oo o

defining the hyperplane normal to u(x, .) at x_ ..
k,0 K, 1

F(x)

Gy (
k() <u(xk,o), Xy " x)

g =1
3. Use Newton's method to solve Gk(x) = 0:; Calculate

-1
= _ ! o
B gl = % v R ) G(E s 82225, ...

: until ||Gk(xk, z+1)" < e,

Step 1. Otherwise,

5. Let i be the index such that bg(x 1 >0; =

k, £+1
k := k+1, and £ := 1. Define

F(x)

G (x) =
K b5 (x)

L7

”u(xk’o)" =1 and the direction of u(xk’o) is consistent with

to be F augmented with the function

L xk,£+1 € o, let xk+1,0 S Xy g4 k := k+l, and return to

k+1,0 °° ¥k, £+1




6. Use Newton's method to solve Gk(x) = 0: TIterate

$

=%
= - 1 s
X, 041 T Xk, 2 Gk(xk,z) Gelxe,) »  £=12,...,

until ”G(xk,£+l)” < €. Stop, Xie g+l is the approximate endpoint x*,

We shall show that for some choice of positive scalars T and e,
the Jacobians Gi(-) are of full rank and after a finite number of
Newton iterations, an approximate solution will be found.

Notice that it is assumed in Step 5 that there is only one
constraint 1 which is violated by the first xk,o which is not in
0. We shall show that it is possible to choose T and € small enough
so that this will be the case. However, in any practical implementation,
strategies are available which should be used to designate a particular
constraint if more than one constraint is violated by xk,O' Such
strategies were not included in the algorithm in order to make the

convergence proof simpler.

Example 3.3. The subproblem in Steps 1-L: (the subscript k is dropped)

X, =X, + %u(xo)

— — — —

H= [x|(u(xo), x,=x) = 0]

L8




Since the algorithm uses Newton's method to calculate a point

in the intersection of F-l(o) NH and Xy € H, it can be shown that

x, £=2,3, ... will all be in the hyperplane H.

E’
We shall first prove that for any %o € B{(C,¢), X, = xo-FTu(xo)

is in a neighborhood of y = F_l(O) N H small enough so that the

Newton sequence x converges to y. First, we require

P Xor Xz ...
some definitions and preliminary results.

To help us determine when certain matrices are invertible we
need the following lemmas whose proofs are in Ortega and Rheinboldt
(1970, p. L5-L6E].

nXn

Lemma 3.k4. (Perturbation Lemma). Let A, C < R and assume that

A is invertibdle, with [A"M| <o ([a] = sup [axl). 1£ [Aa<c] < B

xj{|=1
and Bax < 1l, then C is invertible, and

lle™) < o/(1-08) .

Lemma 3.5. Suppose that the mapping A:D c L, is continuous
at a point xo € D for which A(xo) is invertible. Then there is a

8>0 and a y >0 so that A(x) is invertible, and

HA(x)H-l <ty for any x € D N B(xo,B) !

We also use the following mean value theorem:




Theorem 3.6. Let F:Dc R L5 R™ ve continuously differentiable on
a convex set DO c D and suppose that for constants @ >0 and p >0,

F' satisfies

[F* (u) - F*(v)] < aflu-v||® X Vuy vE D, -

Then for any x, y € DO

IF(y) - F(x) -F' (x) (y=x) ]| < [a/(p+1)] [ly-x|P*L .

Proof. (Ortega-Rheinboldt [1970], p. 73).
The next result is contained in the proof of Kellogg, Li

and Yorke's Theorem 2.1 [1976].

Lemma 3.7. There is an open set V containing F'I(O) and a continuous

vector function u(x) # 0, x € V, such that F'(x) u(x) =0, x € V.

For our purposes, since ¢ and C are compact, we can find
a £ >0 such that we can let V 5 B(C,{) o C, and for x € B(C,t),

u(x) # 0 1is defined and F'(x) u(x) = 0, x € B(C,¢)

n

n
Definiton 3.8, Let IRn be the product space R 1 X e+ X R p, where

n, + «c0 + np = n, and denote the elements of R" by x = (xl,...,xp)

1
i By n m
with x € R ", i€p, Let F=Dc R >R and, for given

X = (xl,...,xp) € D, set
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n, 1 3
Di=[y€1R b i w ® ,...,xp)€D],
and define Fi =Di—>]Rm by
1 p
Fi(Y) =F(X, eee 3 ¥y e, X), yeD

Then F has a partial F-derivative

= t i
BiF(x) = F; (x™)
By
at x with respect to R

i
at x.

if x € int D, and F, has an F-derivative

The implicit function theorem is given for the case of a con-

tinuous partial derivative since we usually assume that F is 02.

Implicit Function Theorem 3.9. Suppose that F:D c R™ x RP? 5 r™

is continuous on an open neighborhood DO c D of a point (xo,yo)
for which F(xo,yo) = 0. Assume that BlF is continuous and non-

singular at (xo,yo) and that it exists on Dy. Then there exist
open neighborhoods 5, € R" and S5, < RP of xo and yo,

respectively, such that, for any y¢ §2, the equation F(x,y) =0

has a unique solution x = H(y) € §, and the mapping H = S, - RD
is continuous. Moreover, if 821" exists at (xo,yo)

F-differentisble at y° and

, then H is

1 (y°) = -[alF(xo, o BQF(xo,yo).

Proof. (Ortega and Rheinboldt [1970], pp. 128-129,)




The following lemma is concerned with the existence of & solution

for each of the subproblems in Steps 1-L4.

Lemma 3,10. Consider the function h:o X [0,T] - R" such that if

F(v)
G(v,x,t) =

(u(x), (x +tu(x)) - v)

then h(x,t) satisfies G(h(x,t),x,t) =0, for t € [0,7], x € B(c,¢).
There exists scalars t' >0 and €' >0 such that h exists
and is continuous and BlG(h(x,t),x,t) is invertible for x € B(C,e')

and t € [0,1'].
o 0 0
Proof. Consider the point (x, x, 0), x € C.

F'(xo)
blG(xo,xo, 0) =
0
u(x”)

Since u(x) is continuous, and F is Cz, 61G is continuous at
(xo, xo, 0) and it is nonsingular because F' (xo)y =0 implies
y = Otu(xo) for some @ € R. The implicit function theorem 5.8, then

gives us that the equation G(v,x,t) has a unique solution v = h(x,t)

for (x,t) in a neighborhood st x ™ of (xo, 0) and h:S x I > R®

is continuous. We also know that since h(xo,O) = xo, blG is continuous,
and alG(xo, xo, 0)

8° x 12 of (x°, 0) such that 3,6(h(x,t),x,t) 1is nonsingular for

is nonsingular that there is a neighborhood
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(x,8) € xI°. Let 8xI=(8"x1" n(s® x1) .

Since xo € C was arbitrary, we can index S X I by x € C

and conclude that

U (8 xI), > Cx{0)
xcC

is an open cover for C x {0). Since C x {0} is compact in R"” x R.

there is a finite subcover K = {(S x I)ili Yeesxapl of € % f0).

Let d = inf{d((x,0),(y,s))|x € C, (y,s) € K} then a is positive

because otherwise by the continuity of d, there is some (X,0) € C x {0)

which is a cluster point for a sequence of points which are not in K,

but (x,0) is in (8 x I)i for some i € p and we have a contradiction.
Since d 1is positive, we can choose an ¢' >0 and 7' >0

such that h(x,t) is continuous on B(C,e') x [=7',7'] and

alG(h(x,t),x,t) is nonsingular for (x,t) € B(C,e') x [~7 ,7 ).

u(x) \
Xr—>—~——4 x + tu(x)

_1(

e N{x,t) F o)

FIGURE 3.11. A Depiction of h(x,t)




Next we prove the main result of this section, which allows

us to move along the curve any finite distance.
Theorem 3.12: (-:2 and 12 > 0 can be chosen so that in Algorithm 1,

after a finite number of repetitions of Step 3, there is a k such

that xkoﬁ'c.
>

Proof. By Lemma 3.10, alG(h(x,t),x,t) is continuous and nonsingular
for all (x,t) € B(e,e') x [0,7'] (2Bx I). By Lemma 3.5
BlG(h(x,t),x,t) is continuous for (x,t) € B x I, and, since B x I

is compact, there is a P < + » such that

“alG(h(xyt))x:t)” <B v (x,£) € BXxI.

Let D be an open set containing ¢ such that the extension of F to

. and O is a regular value for F. Let DO c D be

any compact set such that C c int(DO); then BlG is uniformly continuous

DF i €

on Dy x I, and, hence, for e € (0, 1/2B) there isa & >0 for

which B(h(x,t),%) c D, for all (x,t) € Bx I and

3,60y, x,t) - 3,G(z,x,t)[ < e
(3.2)
¥ ¥ s€ Dy» ly-zll < &, (x,e) € Bx1I.
Therefore the perturbation lemme (3.L4) ensures the existence of
aIG(y,x,t) for each (x,t) € Bx I and y € B(h(x,t),5). Moreover,

we have




l'alG(Y)x)E)'l = E’/[ 1-Be]

V y € B(h(x,t),5), (x,t) € Bx1I

For any fixed (x,t) € B x I, consider, now, the Newton process

ktl _ k k ~1 . k
¥ ey < 0000,xt8) 00 ,x,t), k=0,1... (3.4)

with y° € B(h(x,t),5).

Then we will show that

IS - n(x, )] < o,

where o = Be/(1 - Pe) < 1.
(3.5) is true by assumption for k = O, and if it holds for
some k > 0, then yk € B(h(x,t),8), and, hence, by (3.4), (3.2), (3.3)

and Theorem 3.6

k+1 k k -1 k
ly™ " = n(x, )l = ly” - n(x,t) - 360y ,x%,4)7" 6y ,x,t)]

< 13,65, x, ) [ le(a(x, 8), %, ) - (", x,t)

- alc(yk,x,t)(h(x,t) - yk)||

< [B/(1-Be) e In(x,t) - y¥|

O:k+l 5 .

(Note that Theorem 3.6 was applied with a =e and p = 0.)
Therefore the bound (3.5) is demonstrated and the Newton

sequence (3.4) remains in B(h(x,t),5) and converges to h(x,t).
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It remains to specify an e2 and a 12 positive so that for

T

any x € B(c,e), x + tu(x) = x € B(h(x,7),8). Choose ¢ € (O,el) 50
that for any x € B(C,ee), d(x,h(x,0)) < 8. This is clearly possible
because for x € C, d(x,h(x,0)) =0 and C is a compact set and both

d and h are continuous functions.

Next we must specify 1. Consider the following family of

sets parametrized by ¢t : f;

Ay ={x€BO(C,el)|D(x,s) <8 0<s<t}, t € (0,%")

where D(x,t) = d(x + tu(x), h(x,t)) is well-defined and continuous
(Lemma 3.10 shows that h(x,t) is well-defined and continuous) for
x € BO(C,e]‘), $.€ f0,1'). At is an open set by the continuity of
D(-,t). For any x' € B(C,c°), D(x,0) < & by the definition of «.
So by the continuity of D(x,-) there is an interval (0,t') such

that for s € (0,t'), D(x,s) < & . Thus A, o B(C,?).

Yee (0, 1)

By compactness there is a finite subcover Ul;_ of B(C,ee).

=1 Ati
Let © = min{tili € kJ, then A O B(C,ee) because A DA for
-

any ti > 1 by the definition of At .
i
Now all that is left to do is show that we can choose a termina-

tion tolerance e3 >0 so that HF(x)” < 63 and x € B(C,«l) implies
that d(x,C) < €© or x € B(C,e2).

Define the function r:]Rl - ]Ri as

y(a) = max(d(x,C)|x € B(C,e’) and [F(x)| < a) (3.7)
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Y 1is well defined because d(+,C) is continuous and the constraint

set is compact. Clearly ¢(0) = O because [F(x)|| =0 and
x € B(C,el) means that x € C because c' was chosen so that
B(C,el) n F-l(o) = C. If we can show that y 1is right continuous,

then we can choose an ¢ >0 so that y(c”) < ¢© and we will be done.

Let {ak } be a sequence such that lim &K =g and o > &

Let

= argmax{d(x,C)|x € B(C,eY), IFx)l <o , k=12, ... . (2.8

Then since xk € B(C,el), a compact set, there is some subsequence
k

{x 2} which converges to x . Let x solve (3.7) for &, then
since 0}1 >Q for all £,
k
a(x %) > ax,c) , el e,
and

a(x',¢) > da(x,0C)

by the continmuity of d(-,C). But

[F(x')| < & and x'e€ B(C,ct)
SO
&(x*,€) € a(x,0)
and ’:
a(x',C) = da(x,C) . (3.9)
k

Since ({r(o z)} is a subsequence of [r(o#)] and r(ak)zqﬂok*l)
by (3.7), we have
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K
lim o(a ©)
y) X,
lim d(x “,C)
)

1

lim ()
k

"

i

da(x',cC)

d(x,C)

]

(@) .

Yy 1is right continuous at zero, in particular, so we can choose
€ >0 so that Y(ej) < €2.

Now we must show that we really are making progress along the
curve. Since C is compact we can parametrize it by path length.

If C = {x|x =9(t), t€ [0,T], |lo(t)]| = 1). Then we say that C
has length T.

We can measure our movement along C during the kth subproblem
by d(h(xk_l’o,r), h(xk’o,r)). For simplicity let Va1 = h(xk’o,T)
and X = xk,O'

Since ”u(xk)” =1, d(xk,ik) = 1, where ik = x + Tu(xk_l).
Since N € [xl(u(xk), ik-x) = 0} = H(x) and ik is the solution
of mianH(ik) d(xk,x), we have d(xk, yk+1) > 1. Also,by the

termination criterion,

d(xk’yk) L€y

80
A(YyrVieay) 2 Ao ¥y ,y) = a(x,y,)

ZT-GO

58




So choose ¢ = min(e3,1/2) and d(yk’ykﬂ.) > tle. It

e xo, then for an integer K > T.2/t, d(xo ) > T, implying that

Vi1
Yie ¢ C. By definition % € F—l(o). In order to conclude that there
is some k such that x, € ¢ and X4 ¢ ¢ we must guarantee that
there is some Fieaa Gl

Suppose that A(x') = j, then since 0 is a good value

F'(x')

bJ.(X')

has rank nt+l. We are concerned with avoiding the following situation.

Thus if o(T) = x% then by(p(t)) isa ¢! function from R into

i 1 a :
E R~ and 3¢ b,j(q)(t))lt:’r > 0 by the nonsingularity of

29




P* (x)

bj(X)

at x' and the fact that bj(@(T')) < 0. Thus there is an interval
(T, T +y) over which bj(¢(t)) >0 and hence ¢(t) ¢ o for
t€ (T, T +vy).
To insure that there is some y, € {yly =o(t), t€ (T, T+ v))
we first need to get an upper bound on d(yk, yk+l)' Remember Y1
= h(xk,r) and © is the radius of the ball around ¥, which
ik =X L Tu(xk) must be in. We have shown that no matter how small
>0 is, ¢ and T can be chosen so that ik € B(yk+l,5). So if

we choose 8, ¢, and T so that & + ¢ + 71 < vy then

Ay ¥ieey) £ dlyex) + dlx,x) + dx,y,, ) Sc+ T+ 8 <.

Then there is some k such that y, € o, ¥y, ¢ 5. Clearly we can

choose ¢ small enough so that ka+l | < ¢ implies that

= Vg4

Xy € o, X+ g o. 'I

Next we show that termination will occur after a finite number

of repetitions of Step 6.

Theorem 3.13. ¢, T, and & > 0 can be chosen so that the path

following algorithm will compute an approximate solution to x* after

a finite number of steps.




Proof. Let B~ be the facet of ¢ containing x*. Let y >0
be the radius of the domain of attraction for x¥ wusing Newton's

method on
F(x)

G (x) =
K b, (x)

Let y <y be the radius of a ball around x' such that C NB(x*,y) is connected,

and if X = C N 3B(x%,7) then a(c\ B(xr,7), BY) = a(x,Bl), that is,
the minimum distance from the curve outside of the y-neighborhood of
x* 1is the facet B' is attained at the intersection of the curve C
and the boundary of the ball, Such a Yy exists by the continuity
compactness of C and Bi. Let 6 = d(x,Bi).

We want to show that the first point in the sequence {xk]
which is not in o, call it x°'T, is such that x°' % € B(x*,y),
and hence Newton's method in Step 6 will converge to x*.

£+1 ¢ £

So xz € o0, and x € B(yz,a) and

4+1

g+ » Now X

£+1

X € B(y” 7,8) but there are three cases to consider depending on

+
whether yc and yz & are within or outside of . We will choose

€ %7, 8>0 sothat y +e+1+8<y and ¢<7.

£+1

+
Case 1. ¥y € 0. Then d(y ki

£+1’x2+1) < ¢ means that d(y

}X*) s ;o
So, we conclude

a(x" x*) e+ <T.




+
Case 2. yl 3 g o, yz € o.

By part of the proof of Theorem 3.12 (pg. 12) for any t € [0,1],

d(x” + tu(xz), h(x”,t)) < B4

+
Now since h(xg,o) = y‘z € o and h(xz,f) = yz -

¢ 0, an intermediate
value argument along the curve C would show that there is some

s € [0,7] such that h(xz,s) = x*. (See Figure 3.1.4.)

FIGURE 3,14
Let x® = x4+ su(xl). Then  d(x°,x*) <% and d(x“l,xs) <7

By the triangle inequality

£+1

a(x™ “,x*) <8+ T <y .




Case 3. y’ ¢ 0. This implies that

x’ € B(x*,7)
SO

d(xlﬂ',x*)

<y+T+8<y.

1 2l B

+
Hence, in all cases d(xz ,X¥) < y and hence x* is in the domain

of attraction of x* for the iterative process in Step 6. l

From the large number of times we used worlds like "if e
is chosen small enough" one may get the impression that the tolerances
must be chosen so small that the algorithm would be grossly inefficient.
In fact, from our computational experience, quite large stepsizes can

be chosen and the algorithm still converges.
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CHAPTER IV

PATH-FOLLOWING METHODS

In the first two sections of this chapter we prove some theorems
concerning the existence of paths which are closely related to the paths
of Kellogg, Li, and Yorke [1976] and S. Smale [19/6]. In the remainder
of the chapter, two new path methods are discussed which are closely

related to the paths defined by certain fixed point algorithms,

II.1. Kellogg, Li, and Yorke's Continuation Method.

Let o Dbe a bounded, convex cell in R" and f s 0 —)]Rl:1

a 02 function which satisfies

Assumption 1.1. f(x) points into o for all points x in the boundary
of o.
Define the solution set E = {x € o|f(x) = 0). Let

h: o\ E 530 be denoted as

h(x) = x =u (x) f(x) ,
where

u(x) = {u >0[|x = uf(x) € d0) . (1.1)

v

Note that (x) is well defined because f(x) #0 for x ¢ E,
o 1is convex, and the boundary condition (Assumptioa 1.1) implies
that for x € do, u(x) = 0. Hence, h is the identity on the boundary

of o. The function h is often called a retraction of the set o\ E

6l




to the boundary of o. This method is concerned with the path h-l(xo)
where xo is some point on the boundary of o. This path method was
motivated by Hirsh's [1963] proof that there is no continuous retraction
of a set to its boundary.

Intuitively, h-l(xo) is the set of points x for which =f(x)

points at xo. .Figure 1.2 depicts this behavior.

FIGURE 1.2

The main result of Kellogg, Li, and Yorke [1976] can be

stated as

Theorem 1.3. For almost every x° € 3o the set h-l(xo) consists of

a number of components, each one of which is a diffeomorphic image of

a circle or interval. Furthermore, for any ¢ > O, the connected
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component y c h-l(xo) leading from 2 i A% wuch thet

¥ nB(Eye) 7{(9 .

In other words, y gets arbitrarily close to some zero of f.

The proof of Kellogg, Li, and Yorke used only results from advanced
calculus, and, hence. it was quite long. We shall prove a very similar
result using the theory of Chapter II. The new result will be just as
useful for computational purposes,

Let I be the closed interval [-1,1] and let

F:M=¢ xIo>R? be defined
F(x,6) = 6£(x) = (1-6) (x-x°) (1.2)

for some xo € TO and 1 1is some facet of o. We shall refer to the

use of this deformation to define paths as the homotopy retraction

method.
-1 -1, 0
If (x,0) € F (0) for some 6<1, then x€ h™ (x")
because
of(x) - (1-9)(x-x0) =0
implies
6 0
X - == fix) =% ,
S0
) 0
u(x) = -5 and h(x) = x°

A nice feature of our deformation is that F(x,6) is defined for

x = E while h(x) is not. Clearly (x,1) € F-l(o) implies that
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f(x) =0 or x € E. Next, we have the result which is essentially

equivalent to Theorem 1.3.

Theorem 1.4. If Assumption 1.1 holds and O is a good value of

F:M - R™, then there is a unique point (xo,eo) € oM N F-l(o) and © = 0.

The component y C F-l(o) containing (xO,O) has an opposite

boundary point (x*,1). Also, x* € E and |E| is odd.

Proof. Sipnce f is Cg, and O is a good value, Theorem I.3.15
gives us that F -(0) is a l-manifold with boundary, neat in M.

The reason that I = [-1,1] was chosen for the domain of &
rether than TI' = [0,1] is that [x’,0] would be in two facets of
c X I' which would make it impossible for O to be a good value.

Consider solutions to

F(x,6) = 6f(x) - (1-6)(x-xo) =0

6< 1
(x,8) € oM

It is clear that F-l(o) N (o x{0}) = (xo,o). Parametrize
by © = [0,T] - M, such that ¢(0) = (x°,0), o(T) € 3M, and o(t) € MP,
t € (0,T). If we can write o(t) = (x(t),6(t)), then #(0) >0 would
imply 6(t) >0, £ € (0,T] because if not, then 6(0) =0, 6(f) =0
implies that y 1is not neat in M, a contradiction.

The orientation of ¢(t) is determined by guaranteeing that

%(0) point into . But (%(0),6(0)) = @ +(v,1) where «a is chosen

so that av points into o, and
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or

[o-2"(x) = (1-)T[£(x) + x| o () =0,

(x7,0)

=Iv -f (xo ) ’

£(x%) .

<
I

Since f(x'o) points into o, @ > 0, and, hence, 6&(0) >0,
and 6>0 for (x,6) € y.

Suppose (x',6') satisfies (1.2) for ¢ € (0,1). Then
x' € 0, and f(x') # 0, and

x' - % f(x") = »° (1.4)

f(x') # 0 implies x' # . Now x'E€ do, f(x') points into o,
and x° € 30 medns that (1.4) is a contradiction of the convexity
of o. Hence, there is a unique solution to (1.3) when 6 > 0.

We have shown that Oy \ {(xo,O)] c {(x,0)|(x,6) € M, 6 >0,
x ¢ 30} which means that dy \| {(xO,O)] = (x*,1) and f(x*) =0.

Suppose there is another point x' € E, then (x',1) € F-l(o) N oM.
Suppose that ' c F-l(O) is the connected component containing (x',1).
If we can show that for any (x,6) € y', 6 >0, then, by the arguments
above. Or'\| [(x-',l)) = {(xe,l)} and f(xe) = 0. Suppose there is

some (x,6) € y' with 6 < 0, then, by continuity, there is some
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(%,3) € y' with 3 =0, which implies X = x°. But r' #r and !

F1(0) 1is a neat submanifold, a contradiction.

Thus we have shown that each solution x' # x* is connected
by some component (Fig. 1.k4) of F-l(o) to one other solution. Since
O 1is a good value and M is compact, there are a finite Mer of

elements in E and the theorem is proved. []

(x,1) (x°,1)
] |
' AR
/
\ =i
\\ .-v"/ //
. p— /
B
g X {O} /l pis
; (x0,0)
f
i
b l #/"'*—..__~- i
| P g ~

FIGURE 1.4

Kellogg, Li, and Yorke [1976, p. 478] explore some conditions

which imply that x° will be guaranteed to be a good value for k.

One of these conditions was the following
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Assumption 1.5. (Eigenvalue condition) Suppose that the matrix

f'(x) has no eigenvalues which lie on (0,») for any x C a\\ E.
The result which follows immediately is

Theorem 1.6. Let f:o —aﬂ!n and suppose assumptions 1.1 and 1.5 are
true. Then each xo on a C1 part of Jdo is a regular value of

h, and the curve starting at xo is well defined and goes to the

set E.

Kellogg, Li and Yorke make the conjecture that assumption 1.5
implies that E has only one connected component which can be joined
to Odo by a path in h'l(xo). If we assume & little more, i.e., that
f'(x) has no eigenvalues which lie in [0,») for any x in o, then
using Hopf's theorem on the index of vector fields [Milnor, 1965],
one can show that f has a unique root in o. We shall prove this

result and a result concerning the monotonicity of paths with this

stronger assumption using the orientation result of Section III.2.

Theorem 1.7. Let f:o > R? ve Ce, assumption 1.1 hold, and for
every x € o, f'(x) has no eigenvalue which lies on [0,»). Then
f(x) =0, x € 0 has a unique solution, and for any 22 € 3o
defining F, there is one component in F-l(O). Furthermore, if
FL0) = ((x,0)|(x,0) = (x(t),6(t)), t € [0,T]), where

(x(0),6(0)) = (x°,0) and (x(T),6(T)) = (x*,1), then P(t) >0

forany t€ [0,T].
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Proof. We will prove the last statement first. From the proof of
Theorem 1.4 we have that 0(0) >0 and that 6(t) >0 for any t > 0.
Thus, we only need to show that 6&(t) >0 for t € [0,T].

Recall that

F'(x,0) = [6f' (x) - (1-6)I|£(x) + (x-x°)]

(E(x) |e(x)].

Any eigenvalue of E(x) has the form 6N - (1-6) < O where A <O
is an eigenvalue of f'(x). Hence, E(x) is never singular for any
x € 0. This means that 8(t) # 0 for any t € (0,T] by Theorem III.2.3.
Hence, by the continuity of 6(t), 8(t) >0 for any t € [0,T].

Suppose there was another component 7 C F-l(o), then by
studying the proof of Theorem 1.4, we see that y would have boundary
points at (xl,l), (x2,l) where x' and x° are in E. Setting up
& parametrization of vy, (x(t),8(t)) = [0,T] =M it is clear that for
some t € (0,T), d6(t)/dt = O which implies that det E(x(t)) =0,
a contradiction. Hence, F-l(o) has a unique connected component.

Similar considerations would show that x¥* 1is the only solution of

£(x) =0, X € 0. '

Thus we have shown that Assumption 1.5 is so strong that the
homotopy parameter 6 1is guaranteed to increase monotonically from
zero to one, The literature of continuation methods for solving
equations commonly makes assumptions necessary to insure that the

homotopy parameter increases monotonically along the path (Avila [1974]) .
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However, it is well known that monotonic behavior by any variable can

rarely be depended upon in equation solving problems (Eaves and Scarf,
[1976]). The path following algorithm of Section III.3 does not assume
monotonicity in any variable. The orientation results of Section III.2

are what allow us to follow paths which are not monotone in any variable.

IV.2. The Global Newton Method

In this section, we discuss a path method that satisfies the

differential equation version of the Newton recursion xk+l- xk =

k)"l f(xk), k =0,1,... , except for a factor of + 1 which is

£ {(x
determined by the determinant of f'(x). To be precise, if x(t) was
a parametrization of the path, then x(t) is specified by the differ-

ential equation

£ (x) g—:- = A(x) f£(x) , x€D (2.0

where A is an arbitrary scalar function of x such that sign A(x) =
+ sign det Df(x).

This method was first described in a paper by Smale [1976]. The
global Newton method is a differentiable analogue of Scarf's fixed point
algorithm [1965] and Eaves' "vector-labelling" algorithm [1969].

Varian [1977] described a method which allows the path to move in and
out of D. 1In the next section we will present a generalization of

Varian's method and prove that the path produced by this algorithm is




YT
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identical to the path produced by Eaves' algorithm in the limit as the
mesh of the triangulation goes to zero.

Once again,we are to find x € Dc R™ such that f£(x) =0,
where D is a bounded cell with one facet OD. Suppose that f 1is 02

and the following boundary condition holds:

Assumption 2.1. For x € dD, det f'(x) # O and there is a choice,

(a) sign A(x) = sign det f'(x), all x € 3D, or (b) sign A(x) =
- sign det £'(x), all x € OD, which makes -A(x) f'(x)'l f(x) point
into D at each x € JD.

Again, let E = {x € D|f(x) = 0). Then we can define the c®

map g =D\E—>Sn"1 as

glx) = £(x)/lecx)}ll. . (2.1)

So g maps every point in D which is not a zero of f to a point on
the unit sphere in R". Smale's main result was

Theorem 2.2. Let f£:D - Rr" be C2 and satisfy Assumption 2.1. Then
for almost every xo € OD, there exists a C' curve ¢ = [to,tl) -D

<w . Also if d = g(x0),

with [|9(t)]] = 1, and t, maximal, t

e

g-l(d) = {x|x = ¢(t), t € [to,tl)} and @ converges to E as t -t
He also proves a companion theorem with the added assumption

that O 1is a regular value of f with the stronger result that o

converges to x* as t - tl and x* € E, We shall reformulate the

problem and prove & result similar to the companion theorem.
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Example 2.3.

e G b

g-l(d) is the set of points x for which f(x) points in the direction 4.
Note that g-l(d) does not include its "boundary points" which are
elements of E.

1 Let F:D x Ry »R™ be defined
F(x,6) = £(x) - 64 , (2.2)

0

where d = f(x°)/||f(x°)|| for some point x € dD. Then (x,6) € F'l(o)

for 6 >0 implies f(x)/6 =d and since d has norm 1, 6 = [|£(x)|.
Thus x € g 1(d). Clearly x € g 1(d) implies (x,6) € F-2(0) for
6 = [[£(x)[|. In this case, we have solved the problem when we find
(x,0) € F1(0). |

Since D is compact, we can define K = max [f(x)||, and K < w.
x€D
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Pick an L € (K,»). Then M =D x [0,L] is the domain of interest

for F.

Theorem 2.3. If O € R is a good value for F and Assumption 2.1

holds, then the path y c F 1(6) beginning at (x°,6°) has another

endpoint (x*,0) such that f(x*) =0.

Proof. Consider solutions of the system

0
P(x,0) = £(x) - 64 = 0 (a = Hx)
Gl

(x,6) € M

6 >0

Clearly (xo,do) solve (2.3) because X €M and Assumption 2.1
implies that f£(x°) #0 and so €° = [|£(x°)] > 0. No point (x,8) € F~1(0)
can have 6 = L because otherwise ||f(x)|| =L > K contradicting the
definition of K,

Suppose there is an (X,8) € y such that x € 3D, 6 € (0,L).

Let (x(t),6(t)) be a parametrization of y by arclength with
(x(0),6(0)) = (x°,6°). Then (k(t),8(t)) is the tangent of y at
(x(t), 6(t)) 1in the direction away from (xo,eo). To compute
(x(0),6(0)) we choose v € R™ such that

(a) v points into D

(b) £ (x)v = (x(0))a

(e) A(x) = sgn det Df(xo), WLOG

Then




0
(%(0),8(0)) = 4 hle )
[ (v, AGx))

(WLOG means that if (v,A(x(0))) does not point into M for this
definition, we can define A(x) = -sgn det f'(x).) Assumption 2.1
implies that the solution v of (b) is unique. As we move along
(x(t),6(t)) let T such that (x(%),6(%)) = (x,6) be the first t >0

such that (x(t),6(t)) € D x (0,L). Then x(f) does not point into D

and there is a v € Hin such that

& MR | (5(x), 5(8))
Il (v, NG I

and

£1(x)v = Mx)d = Nx) —fﬁ§L-
£

because X € g-l(d). But

Foo(@m AEL g5
ll£ )

does not point into D and

)
v = £ (0) T AL (0

l£%) |

does point into D, a contradiction of Assumption 2.1. Thus there is
no point in y other than (x°,e°) which satisfies (2.3) so by
Corollary II.3.19 the other boundary point (x*,6%) of y must

@* = 0, and, therefore, f(x*) =0, x€ D, |
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The proof indicates the connection between the curve g-l(d)
and the differential equation (2.0). Clearly the path following algorithm
could be used if D was defined as {x|b,(x) <0, 1€ m} for some

smooth functions b, i€m and F was defined as in (2.2).

IV.3. The Strong Path Method

In this section we define a deformation F for which one can
£ollow F 1(0) to find a solution of £(x) = 0, x € D, with quite
weak boundary conditions on D. We shall then show that Varian's
method [1977] is in some sense a special case of our method, and we
shall use a result of Friedenfelds [1976] to show that the path we
define is the same as the limiting path of Eaves' [19/1] wvector

labelling algorithm as the mesh size goes to zero.

Let Dc R® be a cell defined as in Chapter I,
D = {xlbi(x) <0, i € m}. Clearly D has a nonempty interior because
of the constraint qualifiication on the bi's. In this section we make

the following

Assumption 3.1. There is some interior point c¢ € D such that for any

x C 0D, there is no o >0 such that of(x) = x-c.
If D= Bn and c¢ = 0, then the assumption states that there
is no x € 8%1 such thet f(x) points radially outwards. If the

condition fails for f we could test it for -~f and solve for

-f(x) = 0 so that a weaker form of 3.1 could be given.
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Assumption 3.2. There is some c¢ € D0 such that there are no

X, ¥y € OD for which there are scalars B < 0 < & such that

pf(x) = x-c, af(y) = y-c.

Next we define the deformation FiM —» R® where (M,’?) is a

subdivided (n+l)-complex.
F(x,6,0) = 6f(x) + p(c-x) - (1-6)d , (3.1)

where x €D, 0< 6<1, o >0. For the moment we define

%75[%’%3'“’°hb

in which
0y ={(x,6,0)[x €D, 6€TI, p=0) ,
oy ={(x,0,0)|x€ 1y, 6€T, p>0), i€m,
7y ={x|p; (x) =0, by <0, J £ 1], i€m,
and
I=fo,1].

When x is in Do, then (x,6, p) € M implies that p =0

and F 1is essentially the deformation defined for the Global Newton
method (2.2); F ;l

(0]
f(x) = 6/(1-0)d or f(x) points in the same direction as d.

(0) 3 (x,9,0) for 6< 1 implies that

When x € 3D, then (x,6,p) € M is still in an n+l cell because
o 1s allowed to increase from zero. Note that any facet of both o3
and % for some i€ m 1is defined by the fact that  is identically

zero on that facet.
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Assumption 3.3. c¢ and d¢€ R™ are chosen so that the ray

r ={yly =c ~ad, >0} intersects dD in only one point {xp],

and xo is in only one facet Ty of D.

Example 3.4, a) fails to satisfy Assumption 5.5,

b) satisfies Assumptions 3.3 and 3.1.

D= F(O)Q) \ B(O,l)

The vectors on the boundary
of D represent the value

of f(x) at those points.




Example 3.5. The path F -(0) projected onto the set D might look

like this.

Define Px(S) for some set S cM to be {x|(x,6,0) € S).

Points in Px(F'l(O)) N 0D have the property that d is in the cone

spanned by f(x) and (c-x), i.e., if 6< 1,

l—fé f(x) + p(e=x) =4

In order to apply the theory of Chapter II we must put an upper
bound on p to make each of the cells and, hence, the subdivided

complex M compact sets.

Lemma 3.6. There is a Q such that (x,0,p) € F-l(O) implies that

o < Q.




Proof. Since p = 0 for points (x,60,p) € F'l(o) vhere x € IC.
6%, 0%} c F1(0) such that x' € dp

for all k and for any Q > 0, there is a k such that pk > Q.

Assume there is a sequence {xk,

Now

k
QE f(xk) + (c—xk) -
(0]

Sirce (xk,ek) € oD x I, a compact set, and f 1is continuous,
k., k k
1 SEED ooy B2T)

koo o] koo o)

This implies that lim ¢ - x* = O, which is impossible because c is
k— ®
an interior point for D. I

Thus we can let J = [0,Q] and redefine o; =

i € m and let (M,7) Dbe redefined accordingly.

Theorem 3.7. Given Assumptions 3.1 and 3.5 and that O is a good

value for F with respect to (M,%), the path y c F-l(O) with

(xO,O,oO) (x € 3D, 8 = lall /lle- Oll) as one boundary point has an
opposite boundary point (x*,1,0) and x* € E = {x € D|f(x) = 0}.

Furthermore |E| is odd.

Proof. Clearly, (x°,0,00) < 3M NF~L(0) by the definition of x°
in Assumption 3.3. 00 is positive, so (xo,o,oo) is in only one facet

of the cell o

(remember, x0 € Tk). Since O 1is a good value, there

k
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is a unique connected component y C F-l(o) which contains (xo,O, oo).

Next we show that there is only one solution of

F(x,6,p0) =0

6 <1 (3.2)

(x,0,p) € M fﬁ

By studying the defintion of (M,Q]), one notes that
(x,0,0) € OM means either © =0 or 1, or o = Q. By the definition
of Q, the latter type of boundary point is impossible.

If © =0, then F(x,3,5) =0 implies

o(e-X) =d=>p5>0=>%x€ 3D,

or
X=c - % Q.
0
By Assumption 3.3, x = xo, and the solution to (3.2) is unique.
Thus, the other endpoint of v, (x*,6%,0%), must have 6% =1,

Suppose op* > 0, then x* € 0D and
£(x*) = p*(x*-c) , E

a contradiction of Assumption 3.1, Hence, p* = 0 and f(x*) = O,
The fact that |E| is odd is a simple consequence of the
following facts: lF'l(o) N OM| 1is even (Prop. I.3.18), (3.2) has

a unique solution, and (x,1,0) € F"2(0) implies p =0 and x€ E. |
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The assumption that O is a good value for F with respect to
(M,?9) removes the possibility of boundary solutions, i.e., X € D
such that £(X) = 0. In this case (X,1,0) € F"X(0) n aM, (X,1,0) € %
and (x,1,0) € o; for some i€ m, a contradiction that F'l(o) meets
only the interior of facets of cells in 7)7 One could easily relax
the regularity conditions on Theorem 3.7 so that x* could be a

boundary point of D, but the oddness of |E| could not be guaranteed.

IV.4. Varian's Modification of the Global Newton Method.

Varian [1977] proposed a modification of Smale's method which
allowed the boundary conditions to be weakened considerably. We shall
show how Varian's modification is related to the strong path method.

Suppose f£:D® 5 R® is a g function, where D" = B(0,1)
the closed unit disc in R®. The problem is, as usual to find x

which solves f(x) =0, x € i Suppose f satisfies the following

Assumption 4.1. At all x € aD“, there is no « > 0 such that

fix) = ox,
It is clear that this boundary condition implies Assumption 3.1
when D = D" and c=0€ RY
n n
Let D, be adisc in R of radius 2. Let s(x) = flxll-1

and define the following function on Dg:

h(x) = -s(x)"“':—"' + (1-s(x)) f(ﬂ’;—n) ;s Leli<e

f(x) , o < JIxl| < 1.




This function coincides with f on D" and is & continuous
extension on D; \Dn. In fact h is ¢ on Dg \ D" and on the
interior of D", but not on OD".

We must define a subdivided complex (M, ’/)’), where
77 = [Dn X ]Rl,Dg_\-D-ﬁx]Ri'], so that h is continuous on M and 02 on
pieces of ’}q . The deformation is identical to that of Smale [1976].

F:M > R™ is denoted by F(x,0) = h(x) - 6d, and d = h(xo)/llh(xo)”
for some x° € aDg.

For x € ang, n(x) = -x/2 and h'(x) = -I/2; hence it is easy
to see that h satisfies Assumption 2.1. Since B s compact, we

2

can define K =max In(x)|l, and pick L > K. Then

x(-ZD2

% = {D® « [0,L], D;I\Dn x [0,L]} 1is a compact subdivided complex,

and we can prove, almost immediately, the

Proposition 4.2. If O is a good value for F with respect to (M, ‘})7)

and Assumption 4.1 holds, then y c F-l(O) beginning at (xo, 90) EBDﬁx (o,L)

has another boundary point (x*,0) such that f(x*) = 0.

Prooi'. Since Assumption 2.1 is satisfied for h, it is immediate that
(x*,0%) has 6% =0 by the proof of Theorem 2.3. All we need to show
is that x* € D", because then F(x*,0) = h(x*) = £(x*) = 0.
Suppose x* is in Dg\ D%, 1f |lx*| <2, then 1 - s(x*) >0,
and
h(x¥*) = - s(x*) ﬂ%ﬂ + (1-s(x*)) f(ﬂ%") =0

or
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s(x* x*

Sl
Tl ™~ T=s Ty Tk

but this contradicts Assumption 4.1,
If ||x*¥|| = 2, then h(x*) = -x*¥/2 £ 0, a contradiction. Hence

x*ed’. |

The formulation above is essentiall&‘the same as Varian's,
with the following differences. Varian considers g:DglE e
denoted by g(x) = h(x)/|[a(x)|| and the path defined by g-l(d),
where d 1is defined as above. The regularity assumption Varian makes .
is that d is a regular value for g restricted to Dg'\ Dn, g re-
stricted to D" and g restricted to the boundary of Dn. This assump-
tion implies that d 1is a good value if one assumes there are no
zeros of f on OD". It is easy to see that (x|(x,6) € F-l(o)
for some 6 > O]\\ E = g-l(d). That is, the two formulations provide
essentially identical paths.

Figure 4.3 provides some geometrical insight into the method.

FIGURE L.3. The vectors along the path g -(d) are all parallel to each
other.
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The relationship of Varian's method to the strong path method
is that if the portion of the path g 1(d) contained in Dg \ o
were projected onto the boundary of Dn, then the resulting path would
be identical to the path followed by the strong path method for p”
in the x-variables. The following proposition makes this statement
more precise.

Remember the deformation for the path method (3.1)
F(x}e)O) = ef(x) 5 p(C-X) = (1'9)d s
defined on the subdivided (n+l)-complex (M,ﬂh) where
M= (D" x [0,1] x 0, D" x [0,1] x [0,Q]}, where Q@ > O is chosen

so that o < Q for any (x,0,p) € F-l(O). The interior point ¢ is

chosen as the origin and d = -xo/é for some initial point xo & BDn.

Proposition 4.4, The following sets are identical:

(67H(a) N D% U (x|x = y/lyll, v € (€7@ n ol \ %)

and

s wl
8, = Px(F o)\ E.

Proof. (Sl c 82).
It x€ (g-l(d) n Dn), then f(x) # 0 so we can rule out o =1

in S,. So let 6/(1-6) = 1/||f(x)|l, then of(x) = (1-6)d or

b
(x,6,0) € F1(0) implying x € 8.




If y€ (g-l(d) n Dg\ D"), then h(y) #0 so we have

BT O PP + st 2@ = a,

and if x = y/lyll, ¢/(1-0) = (1-s(y))/In(y)[l, and o = (s(y)/ln(y)l)- (1-6) >0,
we have

of(x) + p(-x) - (1-6)d =0

or F(x,0,0) = 0. Of course, x € dD" implies that (x,6,p0) € M, and

we have that Sl (= Se.

(S2 (o Sl)

We shall prove only the case when x € BDn. We must show that
there is some «@ < [0,1] such that s (1L +a)x € g'l(d). Clearly,
for such y, s(y) = @ and h(ya) = a(-x) + (1-a) f(x).

Yy € g'l(d) if and only if h(ya) points in the same direction
as d. We have 6f(x) + p(-x) = (1-6)d for some 6, p > 0. We have

9+Q>O, SO

_e'f(X)'FF-?_—p—(-X):l-O

Ol Es CRE

Let a=0/(6 +p), then 1 -a = 6/(6 +p) and

b

af-x) + (l-a) £(x) = T

a,

so if y = (1+a)x, y € g7-(a).




IV.5. The Strong Path Method in Relation to & Fixed Point Algorithm.

The path prescribed by the strong path method, is very nearly,
the path which would be followed by some fixed point algorithms for
solving the same problem. This is not surprising because the strong
path method is related to Smale's [1976] "Global Newton Method" which
was a differential version of Scarf's [1973] fixed point algorithm
stated in terms of solving systems of equations.

The algorithm we shall discuss is a vector labelling algorithm
for solving Kakutani fixed points developed by Eaves [1971], and dis-
cussed by Friedenfelds [1976].

For a complete description of this algorithm one should see one
of the above.

Suppose f 1is a map from C to C¥*, the set of all convex
subsets of C, which has a closed graph. Then Kakutani's theorem [1941]
states that there is an x £ C such that x € f(x). Such an x is
called a fixed point of f. Assume that C is contained in the hyper-

n
plane H = {x € I?n[ 2 X, = 1}, and that a point c € P s available.
i=1l

Let N be an arbitrary positive integer, and let T be the set of

points in H defined as

i

M= {x € Iinlx =F

i=l

Assume that H 1is triangulated by Fuhn's [1968] method with I

n
y, where y; =N, and y. is an integer, i€n)

oot e ctemc M




We will define a piecewise linear approximation to f below,

First, extend f to H> C by defining for each x € H,

f(x) if x € int €
f(x) = { convle, £(x)] if x € dC
c Sl o e = ol

The extended f is a closed map taking points of H into convex subsets

of C. Furthermore, the fixed points of the extended f' are precisely

those of the original f on the domain of C (Friedenfelds [1976], p. 16).
For each point x € N, define the function g(x) = y-x, where

y € £'(x); and let d be an arbitrary vector in R such that
n n

d. = 0. e é: - {xX|x s X, = = e e continuous
Y 4, =0. Let &Ho(x|x€ R", Lx, =0) =H be the conti
i=1 i=1

function which is linear on each ¢ € 7'2 and agrees with g at the

vertices of o.

The fixed point algorithm consists of following the path G-l(O)

0

where G:H - H is defined as

GN(x, 0) = g(x) + 6d , and

= A 7 1
(M, 7p)y 1is defined by 7 = (o X R |oc € 7)y). Define,the direction

nt+l

yay, r, a8 *={(xy) € R [ =c+ 8, TE ]Ri]. Assume the points

of r are such that no point of r 1is a convex combination of less than
(n-1) points of II. For any o € 'Tr( , we say that o touches r if

A 0 ap ho choum t+he (x,6)€o-cH\C and
(x,0) € G-l(O) then ¢ touches r. Friedenfelds ([1976], p. 17)

shows that if one begins in a cell that touches r \ C, and moves

%
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along G-l(o) towards C, after passing through a finite number of
cells, one arrives at a point (x,0) € G-l(o) imply that g(x) = O.

X is called an approximate fixed point of f. Eaves [1971] shows that,
1f EN is the approximate fixed point for the algorithm when N is

the denominator in the Kuhn triangulation of H, then each cluster

point of {iN] is a fixed point of f.

Define the collection of cells

M = (o€ (4 Mylo N630) £ 9) .

The set of almost-complete points A; is defined as

Aq

L]

{x € H|O € conv[F(x)-x, d])

{x € H|x € conv[f(x), x+d]}

i

In terms of the original function, f, the set, Ad’ within C 1is given by

conv| f£(x),x+d] if x-€ 4nt'C
A;NC = x Clx€ (5.1)
conv[ f(x),x+d,c] if x € oC
It is easy to check that every sequence of cells {oN] with
chc CN converges to Ad as N 5o, It is easy to check that the

points of Ad outside of C are precisely those on the direction ray r.
For any N =L the fixed point algorithm can be started at some
0o = convl e e BN G et 'r, be an arbitrary point in

% N r. Then for each N > L, the algorithm can be started so that
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.

rb is in the convex hull of the original set. We call ro the initial

almost-complete point. Application of the fixed point algorithm for any

N > L then gives us a succession of points of H, PyseeesPps pn+l,...,pz,

r = e N -—
where T, € convtpl,...,pn], conv[pi+l,...,pi+n] e¢ for 1 =0,

1,...,£-n; and conv| cor‘ ins an approximate fixed point.

Pgent1’ - +2Ry]
Let pN(rO) = {pl,...,pz] and let EN(rb) be the continuous path

formed by joining p; to Piyyr 1 =L.e., £-1. We call BN(ro) the
approximate almost-complete path corresponding to N. One of Friedenfelds
[1976] main results concerned the limiting properties of EN(rb).

1
Let Ad

ray r further from C than Ty

connected component (i.e., the largest connected subset) of Aé which

P e TR E .
(Ad n conv[c,ro]) U (Ad NnC)--i.e., Ad is A, with the points of

excluded. Let Po(ro) denote the
contains e

Theorem 5.1. (Friedenfelds [1976])
1) Po(ro) is a closed set,
(ii) pN(rb) ->Pb(ro) as N oo
(L.e., given ¢ > 0, pN(ro) n B(Po(ro),e) for all N

sufficiently large).

The conclusion that Po(ro) is a path cannot be drawn with
the assumption that f 1is a closed point to set map. However, if
£ 1is 02 then we can apply the results of Section II.3 to show that
po(ro) is a path, ' In fact if Po(xo) = Po(ro) N C where Xg=1 N ac,
then Po(xo) is the same path as that produced by the strong path
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method, projected onto H. To make this statement precise requires
some preliminaries.

First, since the strong path method is for solving systems of
equations, rather than finding fixed points, we will be solving for a
zero of

gx) = f(x) - x, - 3

Second, for simplicity, we will define the subdivided complex on which

F(x,0,p) = 6g(x) + o(c-x) - (1-6)(-d) (5.2)

is defined as (M,’”) where

W

{oy,0,) = {e x [0,1] X0, dC x [0,1] x [0,Q])

M oy U 0, »

where Q >0 is chosen as in Lemma 3.6 so that p < Q for any
(x,6,p) € F-l(O). This subdivision ignores the fact that C must be
defined by a set of inequalities for any practical applications. We
use =-d in the definition of F (5.2) hecause the almost complete
path is the set of points for which g(x) points in the direction
opposite to d (i.e., O € conv(g(x),d]) for points in the interior
of C.

From Theorem 3.8 we have that if O is a good value for F,
and y € F-l(o) is the path containing (xo,o,oo), then the other

boundary point of y, (x*,1,0), is such that g(x*) = 0.
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) ' Proposition 5.2. Given Assumptions 3.1 and 3.2, we have A, N C = P (F-l(o)).

Proof. Suppose that x € Px(F'l(O)) , then if x € OC, there is some

pair 6, p >0 such that

]

og(x) + p(e=x) = =(1-6)d .

0 =1 implies that p =0 and g(x) =0, otherwise x violates
Assumption 3.1. But g(x) =0=>x € Ay If 6<1, then let

a=f/(1-6) >0, B =p/(1-6) >0 and we have
a(f(x) - x) + B(e=x) = - d,

af(x) + Be = (=d=x) + (@ + B+ 1)x .

If py=a+ B+ 1, then

Qe(x) +2c+ X (ax) = x,
" M n

which means that x € conv[f(x),x+d,c]. Thus x € Ag N oC by the
definition (5.1). Clearly, the argument can be reversed to show that
x € Ay NJC implies that x € Px(F-l(o)) because any choice of i
M» Ay Ay such that LN =1, A 20, 1 €3 can be written,

&/uy B/us 1/u.
I x€ Px(F-l(O)) N int C, then p must be zero, and there is

some 6 € [0,1] such that

fg(x) + (1-6)d = 0
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If 6=1, g(x) =0 and x €A, NC. If 6<1, then let a = ¢/(1-6)

and we have

a(f(x)=x) + d + x

]
»

<== of(x) +d + x

(1 + a)x

<==> there exist A\, A\, 20, A, *+ A, =1 such that X f(x)+) (d+x)=x

<==> x € conv[f(x),ad+x].

Thus, by (5.1), x € Ay N C. This proves the proposition. .

The following relates the theorem to the paths which the

algorithms follow.

Corollary 5.3. Po(xo) = Px(r) :

We have shown that path methods essentially follow the same course
that a fixed point algorithm follows. One might ask what the point is
in considering path methods when the fixed point methods are more robust
and do not require differentiability or continuity assumptions. It is
the author's contention that many equation solving problems deal with
differentiable functions which are sufficiently well behaved so that

path methods can process them faster than fixed point methods. Our

computational results in Chapter V, Part 2 help to support this contention.

Of course, fixed point methods are necessary when the functions are

non-differentiable or map points into sets.
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IV.6. A Class of Path Methods

A number of fixed point algorithms can be written in a rather
general form. One need merely specify a triangulation of R® x (o,D],
an artificial map r:R" o R® for labeling R x {D}, and a method
for labeling the vertices in R™ x (0,D) using r and £(x) = £(x)-x.
In particular, the algorithm of Eaves and Saigal [1972] chooses r as
a one-to-one linear map with a unique point X, such that r(xo) =0,
and a decreasing map o = (0,1] - (0,») such that (1) =0, a(t) » +
as t —»0. Then the labeling L of a vertex (x,t) € R® x (0,D] is

defined by

L(x,t)

n
fx) ax 1t ofe) > L Ixil
i=1

r(x) if not .

A geometric interpretation of the algorithm is to let F(x,t)
be the continuous extension of L(x,t) which is linear on each piece
of the subdivision of R x (0,D]. Then, beginning at (xo,D),
follow F-l(O) until one reaches & point (x*,t*) where t* is close
to zero or until ”x*” > K for some large constant K. The former
termination means that x* is an approximate fixed point, the latter
means that the algorithm appears to have failed.

One condition for success is contained in

Theorem ©.1. Let C be an open bounded set containing X, such that

£(x) +pr(x) #0 forall p >0 and x € 3C. Then there isa D >0

such that the algorithm will compute a fixed point of f.
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Proof. See Saigal [1976a], for example,

Now it is clear that an analogous class of path methods can

be defined with only minor changes. Let

r(x) = Ax - a

for some nonsingular matrix A, and £:R® 5 R® is the function we

are trying to find a zero of. Define the deformation
F(x,0) = or(x) + (1-9)f(x) , xX€q, 0€(0,1), (6.1)

where o 1is a bounded n-cell in R". Let 7= (o x [0,1]). Then if

0O is a good value for F one could follow the path y C F-l(o)
containing (xo,l), where xo = A-la € 0'0. The algorithm would terminate
at (x*,0%) if either 6 =0 or x* € do. Since r(x) has a unique

zero, it is impossible for y to hit the facet o x {1]}.
It is trivial to prove the following

Theorem 6.2. Suppose that there is no x € d¢ such that f£(x) + pr(x) =0
for some o > 0. Then if O € Rr" is a good value for F w.r.t.
o X [0,1], the path y c F-l(o) containing (xo,l) has an opposite

boundary point (x*,0).

Proof. By the discussion preceding the theorem, we need only show that

there is no (X,7) € y such that x C d. If there was, then

(1-8) £(x) + 8r(x) =0
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for some & < 1. Hence, if o = §/(1-8) > 0, then
£(x) + pr(x) =0, x €0,
a contradiction. l
As a special case of Theorem 6.2 we can achieve a path method
which is convergent with assumptions just as weak as those necessary

for the strong path method of Section 3.

Corollary 6.3. Let r(x) = -x + ¢ for some c € oo. Suppose that

Assumption 3.1 holds and that O is a good value for F as defined
in (6.1), then y c 7"1(0) which contains (0,1) 1leads to a zero of f.
The advantage of this class of path methods is that the starting
point xp is not a boundary point of o. So if a good guess to a zero
of f 1is known, that guess can be the starting point.
A useful area of research would be to apply the results of
Saigal [1976b] to the path methods presented in this section. The
results contained therein suggest that if x0 is close to x¥*, a
root of f, then the path y c F1(0) will be shortest if A = £'(x¥).
Other results suggest that if A-lf'(x) has positive real eigenvalues

for points x near x*, then the path will be well defined.
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