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1. Introduction

The last five years have brought considerable advances in
the theory of the boundary-value problem of physical geodesy in the
formulation of Molodensky, which is the determination of the
physical earth's surface from gravity. These advances have been
accomplished mainly through the work of T. Krarup, L. HOormander
and F. Sansd.

The present report is devoted to a review of this work. Its
aim is to introduce the reader to the basic ideas and geodetically
important results, which are sometimes hidden between formidable
mathematical technicalities. We shall thus attempt what mathema-
ticians call a "heuristic exposition", for mathematical details
the reader will be referred to the original papers. The treat-
ment of the linear problem in gravity space in sec.8 is new.

The problem of Molodensky may be formulated briefly as
follows: given, at all points of the physical earth's surface S ,
the gravity potential W and the gravity vector g , to deter-
mine the surface S . The potential W can be determined by
leveling combined with gravity measurements; this gives the
potential up to an unknown constant which, however, can be found
indirectly by other methods, especially distance measurements.

The magnitude of the gravity vector g , which is gravity g , is
measured by gravimetry, and the diiection of g , which is the
plumb line, is obtained by astronomical measurements of latitude

¢ and longitude A . It is assumed that these measurements have
been corrected for luni-solar tidal effects and other temporal
variations, so that our problem is independent of time. We further
suppose that the effect of the atmosphere has been taken into
account by appropriate reduction. Hence, the space outside the
surface S <can be considered as empty.
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We thus assume that the earth is a rigid body which rotates
with constant and known angular velocity « around a fixed axis,
which passes through the earth's enter of mass. This center of
mass will be taken as the origin 0 of a cartesian coordinate
system, the X4 axis coinciding with the axis of rotation.
The gravitational potential V is a harmonic function

outside S . For large values of the radius vector

r=|xj = V&f # xg + x§ (1-1)
it has an expansion in spherical harmonics of the form
Y. (0,1} Y (8,1)
V(5)=E—M+ L2, (1-2)

r r

where G is the gravitational constant, M denotes the total
mass of the earth, and Yn(e,x) are Laplace surface harmonics,

8 (polar distance) and A (longitude) forming together with the
radius vector r a system of spherical coordinates related to
the cartesian coordinates x = (xl, Xy x3) by ,

Xy ®op sing cosx
X, = r sine sinx (1-3)
Xy = r cose

The condition that the coordinate origin 0 coincides
with the center of mass implies that the spherical harmonics of
first degree vanish identically:




Y, (6,0) = 0 , (1-4)

so that V must have the form

V(x) = E_M & el for r > = . (1-5)

The gravity potential W is then given by

W(x) = V(x) + 5’ (x? + %0 (1-6)

It will also be assumed that the surface S 1is a one-to-
one image of the sphere and that it is a smooth surface, being
differentiable as often as required.

It may be questioned whether Molodensky's problem thus
formulated is to-day geodetically relevant at all. On the one
hand, the prerequisites for Molodensky's problem, especially
continuous coverage of the whole earth's surface by gravity
measurements, are still far from being realized; on the other
hand, there are many more date of different kind, such as satellite
data, that transcend the frame of Molodensky's problem and must be
handled by data combination techniques such as least-squares
collocation.

To these questions we may answer as follows. From a
practical point of view, the integral formulas arising in the
solution of boundary-value problems are often computationally
more convenient than collocation and retain their importance if
gravity data are available to a sufficient extent, at least locally
(cf. Moritz,1975). From a theoretical point of view, the geodetic
boundary-value problem represents an especially interesting and
significant special case, whose importance for the conceptual

———————l



structure of geodesy, from the time of Clairaut to the present day

can hardly be overestimated (curiously enough, the theory was

always far ahead of the data available at the time). In fact, the
consecutive stages in the development of the boundary-value problem --
Clairaut, Stokes, Molodensky -- always served as measures of
perfection for geodetic theory and set new standards.

Even today Molodensky's problem is not yet completely
clarified from a mathematical point of view, with respect to
existence and uniqueness of the solution, in spite of the decisive
progress made in the last few years; it remains a challenge to
theoreticians.

Let us now try to get a first grasp of the mathematical
nature of Molodensky's problem.

The gravity vector g «can be expressed in terms of measured
gravity g and of astronomical latitude ¢ and Tongitude A as

{g coso cosA]

g o g CcoS® sinA i E (1-7)
' g sine®

In space the vector g and the potential W may be considered
functions of the rectangular coordinates:

g = g(xl, Xy x3) s W = W(xl, X5 x3) (1-8)
On the earth's surface S , they are functions of two surface
coordinates, for which we may take the astronomical coordinates

& and A

g =g(e,n) W= W(e,n) (1-9)
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the overbar denotes restriction of spatial functions to the surface

S , whereas underlining characterizes vectors (and later, matrices).
Now g may be expressed, in a certain sense, as a function

of S and W , symbolically

g = F(S,W) . (1-10)

This means that, given the surface S and the gravity potential
W on it, the gravity vector g on S 1is then uniquely determined
and can be computed.

In fact, this may be done as follows. Let S and W be
given. Compute the centrifugal potential on S (which can be done
since the surface S is supposed to be given and consequently the

coordinates x X of the surface points are known) and

X
12 2% 3
subtract it from W ; this gives the gravitational potential V
on S . From V on S we get the potential V outside S by
solving Dirichlet's boundary value problem, which has a unique ]

solution. Now

o

g = grad V + centrifugal force

(grad denoting the gradient) can be computed outside S and, by
the continuity of first derivatives, also on S , giving g
Thus g s, in fact, uniquely determined by S and W , so 3
that (1-10) holds. :
Suppose now that it were possible to solve (1-10) for S ‘

S = o(W,3) . (1-11)

This would express the earth's surface S in tarms of W and g ,
solving Molodensky's problem.




This is probably the conceptually simplest formulation of
Molodensky's problem. However, the transition from (1-10) to (1-11)
is mathematically extremely difficult. If S , W and g were
simple real numbers and F were an ordinary function (supposed
sufficiently smooth), then the solution of (1-10) for S would
be straightforward. The existence of such a solution is guaranteed
by the elementary implicit function theorem. ]

In fact, however, the "function" F in (1-10) is a rather
coniplicated nonlinear operator, and the existence of a solution
(1-11) is by no means obvious. There are implicit function theorems
for nonlinear operators (e.g. Dieudonné,1960;Loomis and Sternberg,
1968;Schwartz,1969;Sternberg,1969), but the conditions for their
application are not satisfied in the geodetic case. It was the
merit of HOrmander (1975) to have found, by a mathematical tour de

force, an implicit function theorem that is applicable to the

geodetic boundary-value problem.

To get some first insight into the matter, let us forget
all mathematical difficulties and proceed formally as if S , W ,
and g were simply real numbers and F were a simple functions.
Since W 1is given, it can be considered fixed once and for all,
so that (1-10) becomes a function of S only:

g = f(s) . (1-12)

To further simplify the notation, we write g instead of E E
obtaining

g = £(5) . (1-13)
Thus S is simply given by the inverse function

§ =1 e » (1-14)
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so that the implicit function problem reduces to an inverse function
problem.

To practically find this inverse function, that is, to ‘
solve (1-13) for S , we may apply the usual procedure for solving ]
nonlinear equations, namely linearization.

Let us introduce an approximation So to the earth's sur-
face S and let 9, be the corresponding gravity vector, related
to So by (1-13):

g, = fls3 . (1-15)

o

Write, formally,

2 (1-16)

and apply Taylor's theorem to (1-13):

g, * A8 = F(5. + 45) =

FIS Fw 105 188

omitting quadratic and higher terms. In view of (1-15) this becomes
89 = T'(5 )as . {(1-17)

The formal solution of this equation is

8S = [f'(so)] -lAg : (1-18)

Let us link these ideas with the conventional approach to




Molodensky's problem. Here So is the telluroid and 9, is normal
gravity on it; Ag 1is the usual gravity anomaly referred to the
earth's surface (it is here possible to disregard the original
vector character of aAg and regard it as a scalar quantity) and
AS is represented by the height anomaly ¢ <characterizing the
separation between earth's surface S and telluroid S, - Thus
(1-18) becomes

gl = Mg (1-19)

where M = [f'(so)j 1 denotes the linear Molodensky operator
computing ¢z from aAg ; practically one uses Stokes' formula
with suitable correctiaons.

Higher approximations may be obtained by Newton's method.
Combining (1-15), (1-16) and (1-18) we get

- =L
s, =8, ¢ fes] 096 (1-20)

where we have written S1 instead of S to indicate that by this
equation we get better approximation S1 rather than the true
value S itself. By repeated application of this formula we get
successive better approximations S S

29 3’

w
"

o % By [f'(Sl)]-l [g - f(Sl)]
A

ks | B
=8, 4 1Sy Lg - £(5,) | (1-21)

w
n

L -




T v

Graphically Newton's procedure is illustrated by Fig. 1.
S The unknown abscissa S for the given ordinate g is approached

Figure 1

Newton's Method

by following the broken line with arrows.

The convergence of Newton's procedure is known to be very
good, namely quadratic: there is a constant K independent of n
such that

[ e S R IEL - Rl (1-22)
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The following sections 2 to 4 will deal with a detailed
study of the linearized problem. The remaining sections will be
devoted to two approaches to the nonlinear problem. Hormander's
appraoch is logically straightforward , using an iterative inverse
functicn technique basically similar to Newton's method but mathe-
matically extremely involved. The second approach, due to Sansd,
first transforms the original free boundacry value problem (the
boundary S is "free", that is, unknown) into a fixed boundary-
value problem by means of a Legendre transformation, thereby
essentially reducing the mathematical complexity.

2. Krarup's Linearization

In the usual linearization of Molodensky's problem, the
telluroid is introduced as the surface formed by the set of points
Q such that Q 1lies on the same ellipsoidal normal as the
corresponding point P at the earth's surface and that the normal
potential U at Q is equal to the actual potential W at P
cf. (Heiskanen and Moritz,1967,p.292).

In his third Tetter on Molodensky's problem that was
circulated among the members of the IAG Study Group on Mathematical
Methods in Physical Geodesy but unfortunately never published,
Krarup (1973) gave a more general formulation of the linearization
which is also suitable for studying the nonlinear prob]em.”

In this mcre general formulation, the telluroid 7§ s
now an arbitrary given surface close to the earth's surface S
the points Q of which are in some one-to-one correspondence
with the points P of S  cf.Fig. 2. We also introduce a normal
potential U which constitutes an analytic approximation to the
actual potential W ;3 U s usually taken as the gravity
potential of an equipotential ellipsoid.

1)
It should be mentioned that the first rigorous formulation and
lTinearization of Molodensky's problem has been given by Meiss]
(1971).
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Figure 2

The telluroid ) as an approximation
to the earth's surface S
Let
y = grad U (2-1)
denote the normal gravity vector, in the same way as
g = grad W (2-2)

expresses the actual gravity vector.

Since )} and U are given, we can compute U and y at
Q ., that is, UQ and Xg 1 As potential W and gravity g are
supposed to be given on S (in the notation of Section 1, they are
W and g ), we know it at every point P on S , that is, we

know W, and g, . We, therefore, can compute the differences
AW = Ny - UQ " (2-3)
A8 = gp - Xy (2-4)
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] called potential anomaly and (vectorial) gravity anomaly, respectively.
By appropriate definitions of the telluroid it is possible

to make one of the two quantities (2-3) and (2-4) equal to zero. In

the usual definition of the tellurcid mentioned at the beginning

of this section, we have UQ = wp and therefore

AW = 0 . (2-5)

In this definition, points P and Q are supposed to lie on the
same ellipsoidal normal. Since the ellipsoidal normal through P
is, strictly speaking, not known, it would be theoretically more
correct to define Q by the three conditions

Uu. = W s b, = @ s A, ®= A . (2-6)

Here ¢ and X are defined by

Y CO0S¢ cosxj
i gt cos¢ sina (2-7)
Iy sing¢
L J
in complete analogy to (1-7); thus the normal latitude ¢ and
longitude ) determine the direction of the normal gravity vector
Y » in the same way as ¢ and A define the direction of g
The surface formed by the points Q in this manner has been called
“normal surface" in (Moritz,1964). Krarup (1973) calls it "Marussi
telluroid" because the three "Marussi coordinates" potential,
latitude and longitude are identified.
In this way, the potential anomaly AW can be made zero.
Somewhat surprising at first sight is that also the gravity
anomaly aAg can be made to vanish. This requires defining the
points Q of the telluroid by




(2-8)

AP

Expressing this vector condition in terms of magnitude and direction
of the vectors involved, we get three conditions

YQ=gP s
¢Q = Ry » (2-9)
AQ=AP ’

which again completely determine Q . Since g, ¢, A may be called

"gravimetric coordinates", the corresponding locus of points Q
has been called by Krarup the "gravimetric telluroid"; for it, in
fact,

A= 0 . (2-10)

After these possible specializations, let us return to the
general case in which both AW and Ag are nonzero. As usual,
we define the disturbing potential T by

T an -, (2-11)

W and U referring to the same point (this distinguishes T from
the potential anomaly AW , in which W and U refer to different

points!).
On substituting

N, =U_+T (2-12)

we get from (2-3) and (2-4)




T

Let us now preceed with
¢ = vector QP

(see Fig. 2) and systematically
and higher order in ¢ . It is
quantities such as T and ag
as ¢ .« So also Tz, g, ete.
be neglected.

14

(2-13)

(2-14)
the linearization. We put

(2-15)
neglect all quantities of second
well known and easy to see that

have the same order of magnitude
are quantities of second order to

By a Taylor expansion restricted to linear terms we get

U, = UQ + grad U © ¢ =

where the dot denotes the inner

UQ L R R (2-16)

product of two vectors. Let us

proceed in the same way with the normal gravity vector:

Ip = 2y T WPO ¥ “ £

(2-17)

What is grad y ? To see this, let us write this equation in index

notation, using the summation convention (summation over an index

occurring twice):

where

(2-18)




T i i
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2
o ol . % "
715 R o R T (ax.) T T (2-19)
3 3 i S

=
i

Hence grad y is nothing else than the matrix

i j 3%y
M= ny] - {a_x*'a'x_JJ (o=l

formed by the second derivatives of the normal potential U ; in
other words, it is the second-order normal gradient tensor. There-

fore, we may write (2-17) as

XQ i W Mz . (2-21)
It is clear that y in (2-16) and M in (2-21) refer to point
0 .

Let us similarly expand TP

Te @ TQ + grad 1T - 3

Now, however, grad T is already small of first order, so that
grad T - ¢ is of second order anc, therefore, negligible. Thus,
consistent with our linear approximation, we simply have

: AN o S (2-22)

The insertion of (2-16), (2-21), and (2-22) into (2-13)
and (2-14) now gives




e
]

&
+

lz
"

Furthermore,

9p - Xp = (grad W), - (grad U)

for the same r

T+ y'g =AW , (2-25)
grad T + Mg = ag , (2-26)
in which T and grad T refer to Q , as well as y and M . We
have used the matrix notation gTE for the inner product a-b ,

the transpose
These
ments. Let us

i=n

and substitute

16

AW, (2-23)

[Ea
1l

by . (2-24)

n

grad (W - U)p

(grad T)P

dT :
(gra )Q

eason as (2-22). We thus finally get

of a being denoted by g?

two equations will be basic for our further develop-
solve (2-26) for t , assuming M invertible,

Y(ag - grad T) , (2-27)

into (2<25):

T + lTﬂ'l(Ag - grad T) = AW
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or

T - y"™M 'grad T = aW - y"™M 1ag . (2-28)
On putting

_ -1

o= =%y (2-29)

we get
T T
T+ mgrad T = AW + m Ag (2-30)

This equation, which holds on the telluroid ) , consti-
tutes the fundamental boundary condition for the linearized

Molodensky problem. It is a generalization of the "fundamental

equation of physical geodesy" (Heiskanen and Moritz,1967,p.86),

just as (2-25) is a generalization of Bruns' formula (ibid.,p.85).
Various Forms of the Boundary Condition. - Let us intro-

duce new coordinates 9, by

9, = q,(x;s x,5 x3)

q2 = q2(x1' x2’ X3) (2-31)
A3 = 93(x;s X5, X3)
or briefly

and let us assume that the inverse transformation

X, = xj(qk) ‘ (2-33)

(S




bl

also exists. More specifically, we shall select q; to be the
cartesian components of the normal gravity vector:

q, = ¥y, = : (2-34)

It is clear that one-to-one relations (2-32) and (2-33) exist, at
lTeast in the spatial vicinity of the earth's surface, so that the
quantities (2-34) may indeed be used as spatial curvilinear coor-
dinates.

The matrix M introduced by (2-19) and (2-20) may be
written as

e
" =[axj : (2-35)

it is, therefore, nothing else than the Jacobian matrix of the

transformation (2-32). It is well known that the inverse matrix
ﬂ’l is then simply the Jacobian matrix of the inverse trans-
formation (2-33):

-1 g
Bl (2-36)

This may also be shown directly: we have

ayi axj ayi

(2-37)

axj Byk Byk
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by the chain rule of differential calculus; furthermore

Ay, i
= = = -
i (2-38)
OF SR TS R

Therefore, (2-37) becomes

ayi X,

L ST ; (2-39)
ij ayk ik

which, by (2-35) and (2-36), is nothing but the equation

m~t oo 1 (2-40)
in index notation, I denoting the unit matrix.

Now the vector m , defined by (2-29), becomes in index
notation:

N L T (2-41)

and we further have

ngrad T = m55

i
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R | e (2-42)

Foaiy Sl (2-43)

where we have used the abbreviation

f= AW+ mag . (2-44)

An even greater simplification is achieved by introducing

"quasi-spherical coordinates" o, ¢, X Dby

o 1
Yy = e =y COSH CUSK 4
o)
flagmy ,
Y, = - —3 cos¢ simx (2-45)
o]
. 1 .
‘Y3-‘—2-S'In¢
P

Here ¢ and X are normal latitude and longitude as before,
because the vector Yy is nothing else than normal gravity. The
coordinate o is taken as positive. If the reference ellipsoid
becomes a sphere, then p becomes proportional to the radius
vector, as we shall see below, so that o, ¢, » become spherical
coordinates; hence the name, quasi-spherical coordinates.

1
|
|
'
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Now
3y,
3T T il
LS R b -4

again by the chain rule;

. ¥
3_9_ = 03 cC0S¢ COSA = B‘ Yl

and, generally,

Byi

9p

“ =
5 ¥

i

by (2-45). Thus (2-46) becomes

dib e oT x

and (2-43) reduces to
o2l & 27 = 2f (2-48)

It should be pointed that (2-48), in spite of its simplicity,
is rigorously equivalent to (2-30); there is no further approximation
involved.

What is the geometrical meaning of the derivative 3T/3p ?
According to the definition of a partial derivative, 23/3p means
differentiation with respect to one coordinate o , the two other
coordinates ¢, A being held constant. This means differentiation
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along a line
¢ = const., A = const. (2-49)
Such Tines are called isozenithals (with respect to the normal

gravity field). The reason for this name is that (¢,A) may be
considered as the coordinates of the (ellipsoidal) zenith on the

celestial sphere. The isozenithals may also be looked upon as the
lines along which the normal gravity vector are all parallel,
having the same direction (2-49). If the plumb Tines were straight

plumb lines

“isozenithal

ellipsoid

Figure 3

Plumb T1ines and an isozenithal




lines, then the isozenithals would coincide with the plumb lines;
as the normal plumb Tine curvature is quite small, isozenithals
and plumb lines are not very different.

In view of the fundamental importance of our boundary
condition, let us approach it from still another angle. Let <t de-
note the arc length of the isozenithal line, measured, e.g., from
the ellipsoid positive upwards (so that it represents the height
above the ellipsoid , measured along the isozenithal). Then 3/3t
represents a derivative along the isozenithal, in the same way as
3/3p . Therefore, these two derivatives, having the same direction,
can only differ in scale, that is, they must be proportional:

Iw

a = -
==t (2-50)

Q

p

To find the proportionality factor C we apply this equation to

& <. gk (2-51)

The right-hand side can be easily evaluated, since by (2-45)

2 |

Y = YiYi 2 —Z ’
o]
= 15 s (2-52)
o)
so that

o WO SRR . o .
.- 3 - 5 (2-53)
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and
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and the boundary condition (2-48) takes the form

gt . 3
=

1

£

L 9T

Qo

i1 E

< | =

The right-hand side may be transformed as follows.

we have

f = aW + mTag

Let us have a closer look at the vector m
To this effect, let

x = x(r)
be the equation of the isozenithal. Then the vector

_ dx
£° %

(2-54)

(2-55)

(2-56)

By (2-44)

(2-57)

(2-58)

(2-59)

will be the unit tangent vector of this curve (it will be a unit

vector since 1t 1is the arc length). Then
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efgrad T = = (2-60)

by the chain rule. Hence there follows from (2-42), (2-47), (2-55)
and (2-60):

P oo L
mgrad T = v,

2 <

'Zpap
S il)‘lil

9T JT

ol g Anyea e -
= (Y aT) e grad T . (2-61)

Since the vector grad T can have any direction, there must be
T o . (1 ayy-1,T .

Hence the vector m s tangent to the isozenithal; since =+t s
positive upwards, the negative sign implies that m is directed
downwards.

Thus

Tyq = (1 3xy-1,T "

moaAg = (Y =) eag - (2-63)
Now

ETAS. = - Ag' (2-64)
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is nothing else than the component of the gravity vector 4Ag in the
downward direction of the isozenithal. Since this direction is very
nearly vertical, ag' 1is almost equal to the usual gravity anomaly
A9 1in the sense of Molodensky.

In view of (2-63) and (2-64), eq. (2-57) becomes

ool v ($ ) g, (2-65)

and (2-56) may be written as

al _ 1
T ¥

(2-66)

K
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< | =
oy
>
=

T

This form of the basic boundary condition is rigorously
equivalent to the preceding forms (2-30), (2-43) and (2-48). Though
it looks less simple, it is very important because it allows a
comparison with the form in which the boundary condition for
Molodensky's problem was usually presented earlier. Take, for
instance, eq. (8-24b) of (Heiskanen and Moritz, 1967,p.300):

N L et ¢
d-laxr..yg . (2-67)

Here the derivative 3/3h is taken along the normal plumb Tline.
This equation involves certain approximations (cf. ibid.,p.85),
which are practically permissible but theoretically not rigorous.

It was the merit of T.Krarup to have shown that (2-67) becomes
theoretically exact if the direction of the normal plumb line is
replaced by the direction of the normal isozenithal (the second term
on the right-hand side of (2-66) vanishes if the telluroid is
defined by UQ B HP as usual).




The boundary condition (2-66) is valid on the telluroid | ,
which is a known surface. The problem is to solve Laplace's equation,
AT = 0 , outside ) with the boundary condition (2-66). Since the
isozenithal is, in general, not normal to the surface ) , we have
an oblique derivative problem. Such problems are considerably more

difficult than boundary-value problems involving normal derivatives,
such as Stokes' problem.
Spherical Approximation. - If the reference ellipsoid is a

nonrotating sphere, then

Y T =5 ' (2-68)

where G is the gravitational constant, ™M the total mass, and r
the radius vector from the center of the sphere to the point under
consideration. The normal gravity vector is then given by

Bl 1 (2-69)
where
COs$ COSA |
e =] cos¢ sina (2-70)
sing

denotes the unit vector in the direction of the radius vector, ¢
and X being geocentric latitude and longitude. The quantities r,
¢s A are the usual spherical coordinates.

The cartesian components of y may thus be written




L She b b .

aat i L gt S AL i i

I TR Ny T e sy

Ut e S e L Lt il

¥ ahi L lun o uf

AR el il e e S s L Ahe o oo aladn dhn & Ly

28

s GM
Y, = - =5 €0s¢ cosr ,
r
Y, = = Eﬁ cos¢ sinx (2-71)
2 2
GM .
Y, = = — sin¢
3 Y‘2

The comparison with (2-45) shows that now
o = r//GM (2-72)

so that p is r apart from a scale factor.

For the non-rotating sphere, the plumb lines, as well as the

isozenithals, coincide with the spherical radii. Thus, now

SR 5
e Caglbe

and

1 2
%% - 2% = -z (2-74)

<=

by (2-53). Hence (2-66) reduces to

2L 3

. Z .
- T==ag+< oW , (2-75)

s

equivalent to (2-48) but with the right-hand side given explicitly.
The boundary-value problem expressed by Laplace's equation

AT = 0 (2-76)




and the boundary condition (2-75) 1in spherical coordinates has been

called by Krarup the simple Molodensky problem; it is the one
considered in virtually all practical solutions of the geodetic

boundary value problem.

The reason is that, although the reference ellipsoid is not
exactly a sphere, its flattening is very small, about 0.3 %, so that
on tolerating an error of this order of magnitude in equations
relating quantities of the anomalous gravity field, for instance,
in the boundary condition, we can formally use spherical boundary
condition even in the geodetic case of a reference ellipsoid. This
is the so-called spherical approximation; for a more detailed

explanation cf. (Heiskanen and Moritz, 1967,pp.87-88).

As Krarup has pointed out, the spherical approximation may
be interpreted geometrically as the mapping of the actual point P
into an auxiliary point P' by relating the quasi-spherical co-
ordinates p, ¢, A of P to the spherical coordinates r', ¢', 2'
of P' by

ptom oG, ot e . AT w R (2-77)

This mapping would even be rigorous if also the Laplace equation were
transformed appropriately; the approximation amounts to the use of
the untransformed Laplace equation. The reader may find it interesting
to compare this with the ideas to be presented in sec. 8.

As we have already said, the simple boundary condition (2-75)
has been used in almost all practical solutions of the geodetic
boundary value problem. This is already true for Stokes problem, the

gravimetric determination of the geoid. In fact, for the reference
ellipsoid itself, which is, by the spherical approximation, mapped
onto the sphere r = R , we have with aW =0

3T % ="
P Ao
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which is the boundary condition for Stokes' problem (Heiskanen and
Moritz,1967,p.88). The solution is given by the well-known Stokes
integral.

But also almost all practical solutions of Molodensky's
problem presented and applied so far are based on the spherical
approximation, beginning with (Molodenskii et al.,1962,pp.118-124):
solutions by Arnold, Brovar, Marych, Moritz, Pellinen and others.
For a review of them see (Moritz,1966 and 1969). The ellipticity
has been taken into account in work by Zagrebin, Molodensky,
Bjerhammar and Koch; Lelgemann has shown that the effect of
ellipticity on geoidal heights and deflections of the vertical is,
in fact, very small.
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