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SUMMARY

The two year stud y of viscoplastic beam bend ing consisted of two

closely related phases:

Phase I: to develop procedures for analysis of viscoplastic beams

of rectangular cross—section under combined tension and bending .

Phase II: to develop procedures for analysis of viscoplastic

beams of more complex, tubular cross—section, but considering only

bending deformations.

The analytical method for Phase I was developed and demonstrated

in a detailed technical report , reference [26]. Predictions were

included of elastic—plastic response of a symmetrical beam in combined

bending and ten8ion, under loading typical of the local shock machine.

The method consisted of analytically dividing the beam cross—section

into strips, a procedure presented in reference [24] . Subsequently

_ _  
_ _ _ _ _ _ _ _
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shock machine tests have bean conducted. Agreement between predicted

and measured responses was good only after the elastic flexibility of

the supports was included in the analysis. The computer program now

performs the analysis of a symmetrical viscoplastic beam on elastic

supports. For the analytical method, along with the rate—dependent

constitutive equations used, the reader is referred to reference [26].

The primary effort the second year was on Phase It which was

different from Phase I as follows:

1) the input used was that of the floating shock barge.

2) the cross—sections considered were standard piping.

3) bend ing deformations only were included .

First, computer program ~TPBA was developed to predict the bending response

of a viscoplastic cantilever beam carrying a tip mass. The program was

checked by comparing with the solutions of Vogel [15,17) and Weiss [18].

Then beams and tip masses were sized—using experience of others and

some approximate analysis, as outlined herein in Chapter IV — for use

on the floating shock barge. The following parameters were considered :

beam cross—sectional elastic stiffness, fundamental natural frequency,

practical dimensions, and amount of desired penetration into the plastic

range. These beams were then analyzed more precisely using VPBA and

the shock barge input. A next logical step would be to carry out barge

tests of these beams for comparison with predictions.

L~~. - . — -- ~~~~~.~~~~~~~~~~~~~~~~~~~~~
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CHAPTER 1

INTRODUCT ION

1.1 Discussion

The need for dynamic analysis of structures which undergo

plastic deformation has long been acknowledged . Achieving a general

analysis to predict the dynamic response of any structure , however,

has yet to be accomplished . Only computer—based methods have pro—

duced solutions to the most simple of structures such as straight

beams, single shells, rings and plates . Until such analyses are

available, the design of structures which experience impact must rely

on experimentation.

Much of the work in viscoplastic structures has occurred since

World War II and most of the computer analyses were developed in the

last decade. An early investigation by Duwea, Clark , and Eohnenblust

(6) involved the plastic deformation of long beams which are subjected

to a transverse constant velocity impact. The results showed that

strain does not propagate at a constant velocity along the beam , but

depended on the distance along the beam at which the deflection curve

was zero. The analysis used bilinear ~tress strain relation and

neglected strain rate effects.

An analysis of the transverse impact of long beams was also made

by Conroy (5). Elastic straIns were neglected to simplify the boundary

value problem. However , in the case of a work—hardening material , th-

analysis tailed to achieve a satisfactory solution .

Malvern (10) proposed a constitutive equation to account for the

strain rate effects In riaterials in which stress is a function of

~

-

~
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instantaneous strain and strain rate.

C = + K 
~~~~~~~ 

(1.1)

where K is a material constant. This strain rate dependency tended

to account for an increase in the yield stress at impact and the

plastic stress after yield.

Mentel (11) extended the rigid—plastic assumption used by Conroy

(5) to investigate the plastic deformation of a uniform cantilever

beam with an attached tip mass. A simplified analysis based on a one

dimensional model was found to give good results when corrections for

strain raLe and strain hardening effects were included .

Strain rate dependence of the yield stress was included in the

rigid plastic theory of Bodner and Sytnonds (1). Experiments were

conducted on steel and aluminum alloy cantilever beams subjected to a

base velocity impulse. The results were compared and showed a signi-

ficant improvement in correlation by including strain rate effects.

Wittier, et al. (24) constructed a beam model of straight mass—

less links that included axial deformation as well as bending. The

rectangular cross—section of the beam was divided into equal , evenly

spaced layers on which the stress was considered constant. Two stress

strain relations were examined : (a) an elastic perfectly strain harden-

ing material with effects of strain rate ignored , and (b) an approxi-

mation employed by Ting (21) in which the change in yield strcss was

a function of strain rate. When compared with experimental results of

a fixed—fixed beam experioncing an exp losive lnpiilse at midspan . thi s

model agreed well with the measured midspan deflec tion.

-- - -~~~~~——  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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The effects of strain rate sensitivity and strain hardening

were investigated by Jones (8). Using a constitutive equation sug-

gested by Perrone (15),

= f(c)g(c) (1.2)

he showed that it is important to include strain rate effects when

estimating permanent deformations of impulsively loaded beams in most

cases. However, the overall beam size affected the need for inclu-

sion of these effects. For example, beams with small length to

depth ratios (L/H) that included only strain hardening or physically

small beams with only strain rate sensitivity compared favorably

with beams that included both . In addition , neither effect was

important in physically large beams with large L/H ratios.

Stanovsky (18) investigated a cantilever beam on which a sudden

force was applied to the tip mass. Experimental results were com-

pared with theory that uses different yield points and various amounts

of strain hardening .

Fully clamped beams under impact were investigated by Symonds

and Jones (20). Solutior.s derived from rigid—p lastic analysis ~hi~h

include strain rate dependence and transverse displacement compared

favorably with experimental results. Strain rate sensitivity was in-

cluded by use of an emperical equation

• l/p
a(c) .~~j+ (!) (1.3)

where p and D are material constaats.

L~ ~~~ - - - - --~~~~~~~~~~~~~~ - - --~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Vogel (22) compared experimental data of beams made with annealed

mild steel and high strength tempered steel. Correlation with a

f ini te  difference type analysis showed good results. Also, the consti—

tutive equation of Malvern (10) was rewritten for bending and verified.

The time delay observed in experiments between the maximum moment and

maximum curvature was adequately predicted by this equation.

Neubert and Yang (13) developed a stiffness matrix for a visco—

plastic beam element based on a bilinear moment curvature relation and

the constitutive equation of }lalvern (10). Some examples showed that

the rate of loading determined which slope dominated in the moment

curvature relation.

Brown (2) presented experimental data on the dynamic effects of

cold—rolling on steel specimens. The cantilever beams tested were

designed with a natural frequency equal to that of the half sine wave

impulse for maximum response. Using a simplified analysis and the

constitutive equation of Malvern (10), comparisons with experimental

results were good . He did suggest, however, that the constitutive

equation may be limited to moderate strain rates of less than 10

ln./in./sec.

Further analysis of cantilever beams with strain rate sensitivity

was made by Ting (21). Equations of motion were developed in the form

of two simul taneous non-linear integral equations. Approximat’~ sol u—

tions were given and compared with experimental results.

Recently, R. C. Shieh (17) investigated the impact of a hexagonal

• mild steel frame which was dropped on t oa pole obstacle at its center.

In his analysis , Shieh used a fourth order Runge Kutta integration

_ _ _  - • - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~---- ~~~~~~ -~~~~~~~~ --.- ~~~~~~~ . _
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technique to solve the non—linear system, and employed a power law

variation to ?1alvern’s constitutive equation. MaterIal s train rate

sensitivity effects were shown to be of primary importance , even at

very low impact speeds. Correlation was shown to be good up to 2

percent of strain. However, correlation became increasingly poor for

larger pole penetrations .
/

1.2 - Sco2~~of Report

This report ~s devoted to a theoretical study of viscoplastic

beams with hollow circular cross sections that experience an impact

load at the support. An analytical method is developed to determine

the response of such beams. Results are then compared with other

theoretical and analytical data to show the validity of the analysis.

Finally, a set of beams having hollow circular cross sections is

designed to undergo a prescribed amount of plastic deformation after

an experimentally measured base velocity is app lied . The beams are

then analyzed and the results presented to see if the beam s achieve

the expected ariount of deformation.

•1
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CHAPTER 2

MATHF.MAT1C MODEL OF AN ELASTIC-
• VISCOPLASTIC BEAN

2.1 Introduction

Over the past two decades several methods have been proposed to

analyze plastic deformation of structures under dynamic loading.

One of the most powerful methods in solving these highly non—linear

problems has been the finite difference technique. It is also one of

the most flexible methods ir. the analysis of beams because a var ie ty

of boundary conditions, input loadings, and special requirements can

be easily included by the user. It is a computer—based method in

which a series of equations, written in finite difference form , is

solved in a sequential manner for a specified number of time incre-

ments. Unfortunately , an unstable response can result If the time

increment is too large. Therefore , large comouter run times are often

necessary to complete the beam response.

The beams. used In this study are long cantilever beams with large

tip masses that undergo an impulse at the base as shown in FIgure 1.

The equations resulting frora this ty~e of beam are solved using  a

single grid finite difference scheme in space and time.

2.2 Derivation of Finite Difference E~ u~~ ions

The finite difference technique is based on knowing the displace-

ment of each mass point at any Instant of time. The initial displace-

ment of all mass points is zero . The internal loads of the beam are

determined from the displacements and from these th~ mass accelerations

- - ~~~~~~~~~~~~~~~~~ . - •~~~~~~ ~~~~~~• ~~~~~~~~~~~~~~~~~~~ - •~~~~~~~~~ •~~~~~~~ •~~~~~~~~~
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a (t)
t

1__ 
• ? 

]

L~S0 ~~

FIgure 1. Mathematical Beam Model

—~~~~~~~ -~~~~~~~ -—- _ _ _
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are calculated . Using d isplacements at the previous time point and

the mass accelerations, the displacements at the next time point are

found .

• In Figure 1 the mathematical model of the beam is composed of

n—l beam segments and n mass points beginning with point 1 at the

support. A rigid arm is formed by clamping the tip mass on the end

of the beam. The overall length of the beam is considered from the

fixed end to the center of gravity of the tip mass.

In order to simplify the problem, the following assumptions are

used to derive the necessary difference equations:

(1) Rotary inertias of the beam segments are negligible .

(2) No shear or extensional strains are considered .

(3) The tip mass is represented by a single mass and rotary

inertia located at the center of gravity .

(4) The beam curvature is considered constant between mid—

lengths of adjoining elements .

(5) All beam segments are equal in length except the rigid arm

at the tip of the beam.

The equations developed hereafter are in the order used in the computer

program .

2.3 Slopes and Mid—Slqp~~~~~~the Ream

*The slope, 0, and the mid—slope , 0 ; of each beam segment are

determined geometrically from the known displacements at some time t .

* —1 
_ _ _ _ _ _ _= sin 

~ As1 
) ,  10 to n—2 (2.1)

A ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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where 0~ is the slope of the beam mid—way along the ~~~ segment.

Since the curvature is assumed constant between mid—lengths , the

slope of the ith mass point is found by averaging the mid—slopes .

* *• e — o
2 

i_ l
) ,  i~ l to n—2 (2.2)

From the boundary conditions of the beam it follows that

y1, 
0~ = 0 (2.3)

Furthermore, the slopes at a and n—l are equal because of the rigid

element at the tip.

* —l 
_ _ _ _ _ _

~~ 0
n—l’ °n—l 

sin ~ ) (2.4)
n—l

2.4 Curvatures and Curvature Rates

The exact curvature of the beam is given by

0’K(x) = 2 3’2 (2.5)
(1+0 ) ’

where 0’ = dO/dx. The slope is assumed to remain numerically small

even though the analysis allows large displacements. Therefore , the

denominator approaches uni ty  and

K(x) dO/dx (2 .6)

This approximation was shown to be valid by Vogel (22) and others.

Remembering assumption (4), the curvature is written in finite

dif ference  form as:

0
~~

_ 0 ”
l

X
i 

= ~~~~~~~~~~~ . 1=1 to n—2 ( 2 . 7 )
~ (AS

1 
+

— 
~~~~~~~~~~~~~~ 

-
~~~ ~~

— - - •
~~

—.— —
~ —— ~~

——•-
~~~~ ~~~~~~~~~~

—— 
~~~~~~

—— - —
~~ 

——
~~~~~~
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The curvature at the fixed end is found by using an image of

the beam behind the support. Deflections of the imaginary paint 0

are the same as point 2 on the actual beam. The base curvature is

then given by Equation 2.7 where

(2.8)

In order to calculate the curvature at n—i, an extrapolation

of known curvatures near the end of the beam must be used . The curva—

ture at n—2 is:

* *0 — 0
- 

n-2 n-3

~~
- (AS~~~ +

and the curvature at a point n— 5/4 is

*0 — 0n—i n—2K ~~~,, = 1 (2.10)n .,-,
2 n—l

From Figure 2, the curvature at n—i can be wr i t ten  as

1 K  - K  ~
K K + AS I ~~~~ n—2 (2.11)n-l n-2 n-2 

\3  (AS 1) I
or , rearranging

K 1 ~ 
K~~ 5,,4 — 

~~
- K~_ 2 (2.12)

~~~~~~~ Of course , the curvature of the rigid arm is zero .



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
_ _
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Kn-i

Kn—2

I _ _ _ _ _ _  1
H n-3 

~
2L ~ AS~~2_J 

n-i

Figure 2. Determining K~_ 1

Curvature rate is often important and is simply the backward

timewise finite difference derivative of the curvature.

Ki (t)  — K~(t—At)
K1(t) = 

At , i=1 to n—i (2.13)

2.5  Static Internal Moment

By neg lecting extensional and shear strains the beam is con-

sidered to be in a state of pure bending. Therefore, the curvature

alone determines the value of internal~static moment of the beam.

Appendix A explains in detail the method used to obtain the static

moment for points on the flexible portion of the beam. One of the

end conditions of the beam, however, is

J 8  (2.14)
n ii

This moment can be written in terms of the known moments, H and
• n-i

Mn_2
~ 

as presented in Appendix B.
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2.6 The Constitutive Equation

Of the many constitutive equations that have been proposed ,

essentially two have emerged as useful approximations to the visco—

plastic phenomenon: the so—called power law, Equation 1.3, and

l4aivern ’s (10) equation. The latter is the one used in this study

and has given good results when compared with experimental data

(7,18,22)

For a brief explanation of this equation in terms of pure bend—

ing, consider a beam element that undergoes a constant curvature rate.

The corresponding internal moment appears like that of Figure 3,

somewhat higher than that obtained quasi—statically. Assume over

some small time interval, At , that a chan~e in curvature, Ak, occurs

with a corresponding change in moment, A4. The total change in curva-

ture is composed of an elastic part , Ak’, and a plastic part , Ak”,

shown in Figure 4. The elastic part is expressed in terms of the

change in moment.

Ak ’ = —
~~ (“ 15)El

and the plastic portion is proportional to the difference in the actual

moment and the static moment.

Ak” = At R (H _M
~~
) (2.16)

Consequently, the total change in curvature is

Ak = Ak’ + Ak” (2.17)

• - - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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1 17flJ._4

See
Enlargement

Actual (Figure 4)
z

Static I

Elastic 
K

— ____________________ K

AK
Curvature , K

Figure 3. Effect of Curvature Rate on Viscoplastic Materia l

Elastic

Actual

AK 
j~~~~~~~~AK h 1

~~~~~~~

Figure 4. Change in Curvature
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substituting,

= + R (N - N
~~

) (2.18)

or in the limit -

El k = N + C (M _M
5~

) (2 .19)

where C = REI .

The equation , though derived for loading in the plastic range ,

is equally valid for loading in the elastic range or unloading from

any point. Under these conditions the static and dynamic moments

are equal, causing the term C (N ._M
~~
) to vanish and leaving ,

k =j !1~ (2.20)

The constant C in Equation 2.19 has been investigated by several

researchers. Its ef fec t  on the resulting moment curvature relation

was clearly presented by Neubert (14). A very small value cf C

will cause the constitutive equation to approach the elastic solution

given by Equation 2.20 above. A large value of C , howe’,er , makes

the equation approach that of thE~ stat ic  moment curvature relation :

N = N (2.21)
St

Some neutral value affects the time delay between the maximum moment

and maximum curvature.

Determining an actual value to use for C was further complicated

by the work of Frick (7) who presented evidence that the value of C 

—-—--— 
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may not be a constant but may vary considerably with curvature and

curvature rate. Vogel (22) ,  however , showed that even large varia-

tions in C made little difference in the curvatures of the beam but

some difference was obtained in the bending moments. Finally, Jones

(8) suggested that viscoplastic effects became negligible in beams

with large overall size. This is typical of a viscous phenomenon

and means that the value of C should be increased when used in the

analysis of such beans. The actual value of C used in this study is

discussed in the next chapter , and Is based on the values used by

Vogel (22) .

In order to include the consti tutive equation in the analysis ,

it must be writ ten in f in i te  difference form ,

M1(t)  —H1(t —At)
El K1(t) 

= 
At 

— + C (M~(t) _M5~~
(t)) (2.22)

solving for M~(t)

M (t —At ) + At (El k ( t)  ± C H .( t ) )
i I St i (2~~3)I (l + At C)

• for 1=1 to n—i.

Equation 2 .23 allows the dynamic mozien~ to be determIned from the

known quantities K Ct), H ( t )  and the dynamic moment from the pro-
I st i

vious time point , M~ (t — A t ) .

2.7 Mass Accelerations, y1(t)

The mass accelerations are required before the last stop can be

• completed , namely , finding the displacements at the next time 

—--•-- 
~~

- - - • • •_ ~~~~~~~~~~~_  -
~~~~~~~~~~~~

• 
~~~~~~~~~

—--
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increment . Equations of motion for ~th mass point and the adjoining

beam element can be written from the force diagram shown in Figure 5.

Only two equations are signiticant: (1) sum of vertical forces on

y

14

M 

H
1 

14 

1+1

~i~~~~~~
) 4V

.

y
i 

I

V .

r ( t )

?7Tfl7

FIgure 5. Force Diagram of Beam Element

the mass ooint , and (2) sum of moments on the beam elements . Remember-

ing that the rotary inertia is neglected , the f i r s t  equation gives,

111+1 — ~~i . - ,V1 
= — AS , 1l  to n—l (2.~~e)

I

This is merely the equation from mechanics of materials in

difference form that states V = —dIt/dx. Note that

-

• 
V = 0 (2.25)

because no element exists beyond the (i — 1)th 
element .



The second equation is

(V1 —V 11) cos0~ = in Y~ , i] .  to n (2 .26)

where Y is the total acceleration of the ith mass point and in is

the mass. The total acceleration includes both the base motion of

the beam coordinate system and the beam motion.

= + (2.27)

Combining Equations 2.26 and 2.27 and solving for

= _.i ~~~ cos0~ - a(t ) , i=l to n (2.28)

and a(t) = r.

Equation 2.28 includes the inertia effect of the tip mass from

the calculation of N .  Consequently,  V~_1 is the correct force

applied to the tip mass.

2.8 Deflections at t + At

The acceleration of the ith beam mass can be written in the form

of the central difference equation,

y1
(t + At) —2y 1(t )  + y

1(t 
— At)

yi
(t) 

2 (2.29)
(At)

for i 1  to n.

Solving for y
1
(t + At)

y1
(t + At) 2y~(t) -y.(t - At) + At

2 
y.(t) (2.30)

for 1 l  to n. 

- • •~~~~~~~~~~ -—~~~~~•. --
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The new displacements are in terms of the presen t and past dispiace—

ments , y1(t) and y1(t — At) ; and the beam acceleration g1(t ) .

The series of equations developed in this chapter are used for :1
each time in the solution until some f inal time, tf~ Is reached. The

time increment used in the calculations is 20 microseconds, which is

based on the experience of Vogel (22) .  

• •—•_---_ •_ —— -- • -~~~ ,~r -----  ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ 
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CHAPTER 3 -

- CORRELATION WITH OTHER DATA

3.1 Introduction

Much experimental data on viscoplastic beams has become avail-

able over the past 15 years and varied approaches have been used to

predict these data. This chapter is included to present -a sampling

of comparisons with experimental and other theoretical methods. In

• addition, such comparisons add to the validity of the results pre-

sented later in Chapter 4.

• Two references were chosen for correlation to supply an adequate

test of the methods used in this study. Vogel (22) offers experi-

mental data; while Weiss (23) presents a di f fe ren t theoretical point

of view. Both are concerned with cantilevered beams with large tip

masses which undergo some sort of base impact.

3.2 Correlation with Vogel

This reference was chosen because the theoretical method presented

in Chapter 2 is similar to Vogel ’s. Furthermore , experimental data

is available for comparison.

The beam tested was made of high carbon steel with the trade name

• ‘Warp lis’. The beam had a rectangular cross section with dimensions

1/8” x 1” . Other physical parameters are l isted below .

5 in.
2

in — .00762 lb sec In.
2

J — .00894 lb sec in .

El 4720 lb in.
2

—4 2 2
.916xl0 lb sec fin.

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  _ _ _ _
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Vogel also used the constitutive equation of Malvern (10), where the

value of the constant is

C — 2000/sec.

These parameters were used In the computer program VPBA

(Viscoplastic Beam Analysis) and they are compared with Vogel ’s

in Figures 7 and 8.

The beam experiences an acceleration impulse shown in Figure 6

from a shock machine. During the test , the beam was fully instru—

mented with accelerometers at the support and on the tip mass. Strain

measurements were also made along the beam.

In Figure 7 the curvature shows good correlation with experi—

mental data. It should be pointed out that the difference between

the two theoretical curves is that the curvature from Vogel (22) is

calculated at a point 3/16” from the fixed end of the beam at the

strain gage location , whereas , the curve from VPBA represents the

curvature directly at the support.

The dynamic moment curvature curve in Figure 8 does not agree

as well with experImental results. As observed by Vogel , the experi-

mental dynamic moment is less than the static moment , a condition that

cannot occur using this constitutive equation. The results however do

show similar trends. In fact , one can observe that theoretical and

experimental internal moments often differ significantly while such

physical parameters as disp lacemen ts , slopes and curvatures compare

favorably. This suggests that the beam displacements are not especi-

ally sensitive to fluctuations in internal loads. 

. -~~~~~- - -~~~~~ -- ~~~~~~~~~~~~~~ -- - - -•~~~~~~~~~-~~ - - _
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3.3 Correlation with Weiss

The theoretical study of Weiss (23) presents the exact solution

of a simpif led viscoplastic beam that has a base acceleration shown

in Figure 9. It assumes the beam is divided into an elastic and one

or more plastic regions during bending. In each of these regions

the differential equations of motion are for each time “era” of

the input pulse. The moment curvature relation is represented as a

bilinear curve with slope 5e and S
i,
. Malvern’s (10) equation is also

used to account for the viscoplastic nature of the material. The beam

Is assumed to have a concentrated tip mass, but without a moment

of inertia.

_______________ 

(i;
~ (t)  

~~~~~~
Figure 9. Triangular Base Acceleration Pulse

The results of Weiss (23) are compared w ith  those from the pre—

sent VPBA computer program in Figures 10, 11, and 12. The input para-

meters used in these calculations are as follows : 
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£ = 5 i n .

in = .012 lb sec
2
/in.

- n -

J = 0

(
~~) = lOO go max

S = 5000 lb in.
2

= 500 lb in.
2

C = 2000 in. sec 1 .

The value of tr and td are .004 and .006 seconds, respectively. The

yield point on the bilinear moment curvature relation occurs at:

M = 250 in. lb
y

K = .05 in. ’
y

Note, the results presented from Weiss (23) correspond to a

“double segment elastic—viscoplastic beam with a spreading and con-

tracting hinge.” The results are generally in good agreement . The

only possible exception being the second peak in the moment time

curve of Figure 11.

In contrast to these comparisons, it is interesting to note that

a plastic region or “hinge” does not spread from the fixed—end of the

beam as assumed by Weiss (23).  Based on data from VPBA , isolated

plastic regions occur at various other places on the beam during

deformatIon caused by ref lected waves. These other plastic regions

are insignificant , however , when compared to the deformation near the

• base as ve r i f i ed  by the results presented here.
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CHAPTER 4

DESIGN AND ANALYSIS  OF BEANS OF
- 

CIRCULAR CROSS SECTION

4.1 Introduction

Many experiments have been done with impulsively loaded canti-

lever beams of various cross—section , size and material. In this

chapter the results from some of these tests are unified , and used

to design and investigate a set of cantilever beams with hollow circu-

lar cross—sactions.

The basis of the beam design is a comparison of tests using

data coilacred irom references 1, 2, 3, and 22, and presented in

Figure 13. All of these data are for steel beams each having a large

tip nass. Furthermore , all, of the beams are of rectangular cross

section with ti- c exception of those from reference 3 which are I—b eams .

Figure 13 is an attempt to provide some means of determining

the extent of plastic deformation a beam will experien ce dur ing load-

ing . For each of the references ment ione .J the non-dimensional para—

meter X is plotted versus a “penetration factcr ,” n. The para~nete:

x includes two quantities that effect the maximum deformation of a
beam : the peak acceleration of the base, a , and the natural fre—

quency, ~i. It should be mentioned that other factors such as the

relative size of the ti p mass , the shape of the app lied impulse and

the material properties also effect the amount of plastic deforma—

tion. These wore not included because of the limited available informa-

tion from each of the references.

~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~ -~~~~ -- 4
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The penetration factor, r~,, is an indication of how much plastic

• deformation occurs and is defined as,

6
~ 

ax 
(4.1)

y

where 6 is the maximum deformation and iS is the deformationmax y

required to yield the material at any point on the beam. For each

reference the value of ii was determined differently because of the

variety of data available. For instance, in reference 1 the deforma-

tion is the tip mass rotation, in reference 3 it is the displacement

of the tip mass, while in reference 2 the base curvature is used .

The results, however, do show a definite trend represented by the

dashed line. This curve is only intended to give an approximate mea-

sure of beam deformation. Other test results may produce more

scatter in the data.

4.2 Beam Selection

The beams selected for use in this study are similar in size to

those used by Butt, Short , and Thornton (3) Furthermore , the base

input shown in Figure 14 is used for all beams in this chapter. This

base velocity measurement was made by attaching a velocity meter to

the base of one of the I—beams used in the test. The beams were fi>:ed

to the floor of the Floating Shock Platform and shock tested using an

underwater explosion. The result shown itt Figure 14 produced rapid

-
• 

oscillations in veloci ty which did not ali~ w the beam time to respoud ,

therefore, the approximate velocity input was found to be adequate.

- 

I 
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U Schematic of Measured -

Base Velocity

~~~~~~~~~~~~~~~~

Time (in see)

Figure 14. Velocity Input of Reference 3

Two sets of four beams constructed of standard steel pipe are

studied with the dimensions given in Table 1. One set of beams

uses pipe with a 2—1/2—inch inner diameter which compares closely

with the 3—inch I—beam of reference 3. The other set is designed

with 1—1/2—pipe and used for comparison of size effects.

Standard pipes made of mild steel are formed by several differ-

ent processes which effect their stress properties. The type used

in this study is seamless with an ASTN specification of A53 , Grade B.

The properties of this steel are listed below :

.2 percent offset yield: G = 35,000 psi

Ultimate stress: a = 60,000 psi

Modulus of Elasticity : E = 29 x i06 ~~~j

Yield Strain : C .001207 in./in.y

Weight density: p = .283 lb/in.
3 

~~ •~~~~-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
_ _ _
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Table 1. Cross—Sectional Dimensions

Inner Outer Wall Metal Weight Moment of
Diameter Diameter Thickness Area per Inch Inertia
(in.) (in.) (in.) (in.2) (lb/ in ~) (i~n.

4)

2—1/2 2.875 .276 2.254 .638 1.925

1—1/2 1.900 .200 1.068 .303 0.391

Hollow circular cross sections under the action of bending are

capable of buckling. The analysis of such a problem in the plastic

regions would present a formidable problem . The experimental results

of Frick (7), however , presents some evidence on how to present

collapse of the cross section . These tests were made with simply

supported , pinned—pinned beams: one made of steel tubing and the

other made with a copper—nickel tubing. The copper—nickel tubing

had a thickness to radius ratio of 0.2l,while the steel had a thick-

ness to radius ratio of on!y 0.10. Maximum curvatures occurred at the

edge of the large center mass.

The steel tubing exhibited rippling on the compression side

because of the thin wall. However, the cross section did not col—

lapse, probably because it was stabilized by the weight block clamped

around the center . A cantilever pipe is supported in a similar

manner near the base.

The copper—nickel tubing showed no ~~fect of buck1ii~ because the

wall thickness was larger.  As a result , both steel p ipes used in the

study were selected to have a wall thickness of approxinately 20 per-

cent of their outer radii.

_ _ _ _  
~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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The stat ic moment curvature relations for these pipes are shown

in Figure 15. These curves are determined from the computer program

MCURV E based on the procedure outlined in Appendix C. An elastic—

perfectly plastic material is assumed and the cross section remains

undistorted during loading . The yield point for the 2-1/2 inch pipe

is

K .000839y

M = 46,860 in. lby

and for the 1—1/2 inch pipe

K = .001270 in.~~y

M = 14,400 in. lby

4.3 Na tu ra l  Frequency

It is necessary to know the natural frequency of the beam in

terms of its physical parameters before an effective set of bear~s

can be designed. The important beam parameters are shown in Figure 16.

The first natural mode can be approximated by superposing two solu-

tions:

(1) A two degree—of—freedom massless beam with a tip

mass and moment of inertia.

(2) A continuous beam without a ti p mass .

In the first case, the frequency equation is written from the

equations of motion of tip mass displacement and rotation : 
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0 . 2 .4~~~~~~~~~~~~~~~~~~~~~~~~. 8 l ~ O

K x l0~ (in. )
Figure 15. Static ~oment Curvature Curve

for Selected Steel Pipes
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11 , rt ~~~~ F

~~~~~~~~ r

‘-i (end view)

Figure 16. Beam and Tip Mass Parameters

12E1 2 —6E1
3 ~l 2

= 0 (4.2)

—6E1 4E1 2
2 4  2 3
S &m

~ 
8 L m

where

= l~~ natural frequency of the 2 d.o.f. system,

m
~ 

= t i p mass ,

rg = rad ius of gyration of the tip mass , and

rg/R~ (4 .3)

Expanding the determinant and recognizing that the natural frequenc~’

of the single degree of freedom system is

3E1
(8.5 = ———-

~~
- (4.4)

sn
~~L
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the frequency equation becomes :

w~ -~~(3+ 1) 
~~~~~~~~~~~~ ~~ w~~- O (4 .5)

This quadratic in is solved for the lowest natural frequency.

~ 
C~ (4.6)

where _________________________

C
8 =~~~~(3÷ -4 )  - g4 ( 

~~~ 2 4 
(4.7)

For the case of a continuous beam without a tip mass , the fre-

quency of the first mode is

3.52 4 f —.~ (4.8)

Assuming the beam mass is a certain fraction of the tip mass , then

A = inb/~~ 
(4.9)

or
mb JJ

~~
= A m

~

Substituting this into Equation 4.7 the na tu ra l  frequency is

= C~ w~ (4.10)

where
CA 

= 4.13/A (4.11)

L --- • - - - - — — -—-~~~~~~~~~~~ -— _ - -~~-~~~~~~-—-~~~~~~~~-—
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The effects  of these solutions are combined in the following manner

to approximate the first mode frequency :

1 1 1
—

~~

- — —j + —~~ (4.12)
(0
1

Substituting Equations 4.6 and 4.10 and solving

C~ (8, A) w~ (4.13)

where
Cô C

~C~~ = 
~~~~~ 

(4.14)C~ ‘..

~~~

This solution will be slightly different than the exact solu-

tion because the mode shape of the beam is rot the same as the mode

shape assumed for solution 2. For beams with relatively large tip

masses, however , the difference is small.

4.4 Effect of Tip Mass

The shape of the tip mass must be incorporated in the design

analysis. This is done by considering the tip mass attached to the

end of the beam at some distance ~i. Furthermore , assume the t ip mass

is rectangular with dimensions a x b x b as shown In Figure 16. The

portion of the beam which is attached to the mass is therefore ,

a = 2~L (4.15)

~ 
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Recalling

- m.~, pA~~
— (4.16)U1~ pab

and assuming the tip weight Is also made of steel , the dimension b

is then

IA
(4.17)

where A is the cross sectional area of the beam.
S

An additional relation can be written from the definition of

~ in Equation 4.3. The radius of gyration by defini t ion is

where J is the tip mass moment of inertia.  Therefore ,

2 m (a
2 

+ b
2
)

= 

2 
= (4.18)

9.. m Z~t

Substituting for a and b and rearranging

r2 a
n =  ‘u i_ +V 3 24~A (4.19)

and ar is the area ratio , A /9..2 . Equation 4.19 relates the non—

dimensional radius of gyration ~ in terms of the non—dimensional

parameters ~, A and ar .

It is interesting to see a plot of B vers us a
r 

for various values

of A. In Figure 17 , E is 0.1 for  all curves. B varies considerably

if the rat io  of beam mass to t ip mass , A remains constant .
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In Figure 18 some experimental values of A and B are presented

for comparison . These data show a practical design range for B is

between 0.09 and 0.14 , and that a reasonable value of A is 0.13 if a

large tip mass is to be considered . On three of the four beams used

by reference 3, the value of A is 0.13.

Retaining a constan t beam to tip mass ratio for all beams is

advantagenous In that the range In length of the beams tends to be

small for a wide variation in penetration factor. For example, a

small beam with a constant A would have a small tip mass and thereby

a small penetration factor .  To increase the penetration , the beam

must be made longer resulting in a large tip mass. Similarly, a

large beam with a large tip mass must be made smaller to avoid exces-

sive nenetration under impact. As a result, the beams used for both

sets of pipe are designed with a constant. A of 0.13.

4.~ seam Design

!~~- elastic beams described in reference 3 were designed to have

a range of natural frequencies from 20 to 200 hz. in order to deter-

mine a shock spectrum and achieve a wide response to the applied

impulse. From the results shown In Figure 13, three of the foer  bear~

exhibited small plastic deformations during the dynamic tests. Only

the low frequency beam at 20 hz. had a penetration above two. In

order to avoid this problem , the beams in this study are designed to

have appreciable plastic deformation by investigating a lower fre—

quency range .

The actual design of the beans begins with Figure 13. The basic

criterion is that each set of beams is required to achieve approximate
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penetrations of . 8, 6 , 4 , and 2. These correspond to- values of X at

0.85 , 0.70 , 0.50 , and 0.30 . To determine the corresponding length

of each beam consider

2 a / 9 ~x — (4 .20)

substituting Equations 4.4 and 4.13 -

a m~~
2 (C

A + C Q)
X = 

3E1 c c (4.21)
A B

The value of a~ is 1.6 x l0~ in./ sec 2 as determined from Figure 14.

The parameter C~ , however , is a function of length as is the tip mass.

= jjR./A 
- 

(4.22)

Therefore , the length cannot be determined directly from Equation

4.21. Instead , values of length are substituted until the necessary

values of x result. This procedure is used for both the 1—1/2 aad

2—1/2 inch pipe and the final design data presented in Table 2. The

tip mass moment of inertia is found from the va1~ie of B obtained from

Equation 4.19.

2 2 2 (4.23)

From Table 2 , notice the range of natural frequencies Is much

smaller than that of reference 3 which ranged from 20 hz. to 200 hz.

The values of C
f 

are near one , indicat ing the moment o F iner tia  and

beam mass have l i t t l e  e f f e c t  on na tura l  frequency compared to th’i

—- ~~~~~~~~~~~~~ ~~~~-- - - .—~~~ ‘ — _ — ~~ .. -- — -~~~~~~~~~~~ -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -
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of the tip weight None of the beams is extremely short, thus validat

ing the assumptIon of pure bending. The longest beam is 39 inches,

which Is not too long for a test beam of this size.

4.6 Results

The beam parameters developed In the preceding section were

entered in the response program VPBA (Viscoplastic Beam Analysis)

listed In Appendix D. In Table 3, these parameters are listed in

the form needed by the computer program and given designation for

identIfication in the results that follow. The segment lengths of

the beam are t~S~ except for the rigid element which has a length

~S 1
. Beam mass at each point is m1 

and the tip mass and moment of

inertia are m and 3, respectively . The total number of points on

the beam is n,beginnlng with the support at point 1.

Choosing an exact value of C analytically is difficult. Instead .

the value used to obtain the results in this chapter is based on the

value used by Vogel (22) and corrected for the larger overall, cross

section. Vogel (22) used a value of 2,000/sec whereas a value of

10,000/sec is used in this study . The effect of the difference is

slicswn in Figures 26 and 29. The responSe is considerably d i f ferent

for the results using the larger value of C. Eowever,the major

effect is to reduce the moment in areas of high curvature rate making

the curve more closely approach that of the static moment curvature

relation . This is mentioned by Joi~’s (8) and discussed in Chapter 2.

In addition , the maximum curvature Is larger using the larger value

of C——an effect also observed by Vogel (22).
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Results of the beams made with the 2—1/2 inch pipe are presented

in Figures 19 through 32, followed by data of beams made with the

1—1/2 inch pipe in Figures 33 through 37.

In Figure 19, the tip displacements of beams Al, A2 , A3 , and A4

are shown. The design method does give an even distribution of maxi-

mum displacement. Furthermore, secondary peaks occur in decreasing

magnitude with increasing frequency among the beams. The maximum

displacement is shown to be a strong function of natural frequency

because the first peak occurs between 1.15 and 1.6 quarter periods

from initial impulse.

Figure 20 shows the ti_p mass rotation for each beam of set A.

The maximum tip mass rotation is also well spread like the displace-

ments. However , small oscillations resulting from the initial wave

front being reflectad back and forth along the beam are eventually

dissipated -

The tip mass acceleration , 
~~

, is presented in Figure 21 for the

longest and shortest beams Al and A4 respect~ve1y . The peak accelera-

tion of Al is much smaller because of its largc inertia. The transient

responses of both masses are quickly damped through plastic defortv~-

tion and they begin to oscillate at their natural frequencies.

Figure 22 presents the curvature at the support versus time. Two

things are interesting about these data:-

(1) the maximum curvature  is nearly the same for  all beams

except A4 , and

(2) an initial plastic deformation occurs at approximately two

milliseconds.

a ~~~~- - - - - -
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The init~ permanent set at the base Is probably due to the sharp

rise time of the base velocity since this was not observed by

Vogel (22) .

The moment—time relations at the fixed end are presented In

Figure 23. CorrespondIng to the curvature, an initial large moment

H Is observed . The moment then oscillates about the yield point, then

changes sign when the tip mass nears the second peak displacement.

The moment is higher for the smallest beam, A4.

Figures 24 and 25 are presented in order to show all the loads

that act on the support . Only data for beams Al and A2 are gIven,

however , a complete tabulation of maximum loads and displacements

are given in Table 4. Sharp initial shear forces are observed and

are quickly damped.

Next , moment curvature curves at station 1 are presented for

beams Al , A2 , A3, and A4. Figures 26, 27 , 28, and 29 show an ini-

tial unloading followed by several periodic unloadings. The curva-

ture finally reverses sign when the tip mass changes direction .

Notice the small time delay between the maximum moment and maximum

curvature caused by the large value of C.

All of the above curves are timewise views of the oUtpUt.

Figures 30 and 31 show a spanwise view of beam A2 . In Figure 30,

the curvature at the support is seen to dominate the total beam

deformation. Even though some permanent deformation does occur at

other points on the beam, it is small compared to the deformation

near the support. Figure 31 shows the curvature rate at the fixed end

- - - -~~~~~~~ --—— -- -~~~~~~ - - -~~~~~~~~~~~
,- _~~~ -~__ _._,~ - - - _.__rn ,~m—. ~~~ ~~~~~~~~ ~~~~~ -- ~~~~~~~--
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and at a point near the mid—span. A phase shift In the two curves

Is evidence of reflected waves In the beam.

A comparison of the beam design with the actual results is made

in Figure 32. A shock spectrum is presented for the relatively small

frequency range for which the beams were designed. The solid line

represents the values of penetration, r~, expected from the design of

the beams. If the value of n is based on the statIc yield displace—

ment, the results are considerably different as given by the dashed

line. As shown in Figure 22 , however , the bea .i does not deform under

the action of an impulse as it would if a static load were applied .

In fact, an initial plastic deformation occurs at nearly the same

tip displacement for all the beams. Therefore, basing the value of

r~ on a dynamic yield displacement (i.e., the tip deflection at which

initial plastic deformation occurs anywhere on the beam) cause-s the

results to compare favorably with the Initial design value as indi-

cated by the broken line.

In FIgures 33 through 37, data from the beams made with 1—1/2 inch

pipe is presented for comparison. The tip mass displacements of

Figure 33 are similar to those in Figure 19 for the 2—1/2 inch pipe .

The magnitude of the maximum displacements, in fact , are quite close

for beams with the same design value of r~.

The maxImum curvatures in Figure 34 are approximately L5 times

those for the 2—1/2 inch pipe. A direct comparison is made in

Figure 35. The quicker return of the curve for beam B2 is due to

L 

its slight ly  higher frequency .
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The base moments for beams A2 and B2 are shown in Figure 36.

Although the waveforms are similar, the moment in beam 82 is always

smaller because of the smaller cross section.

Finally in Figure 37 , the tip mass rotations for beam A2 and

B2 are shown to be similar. The small reverse rotation exhibited

by both beams is caused by the initial wave reaching the tip mass.

Beam B2 shows slightly larger maximum rotation bccause of the smaller

rotational flexibility of the tip and a smaller moment of inertia.

The beams of sets A and B are quite different in length, crt~ss

sectional size, and tip mass; yet the results show a close similarity .

Only small frequency and stiffness effects affect the comparison of

the results. These results seem to verify the intention of the

design: to predict a significant plastic deformation of these

beams before a detailed analysis is made.
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CHAPTER 5

-~ - SIH-IMARY AND CONCLUSION S

5.1 Summary

A finite difference computer method for analyzing the dynamic

response of cantilever beams having any applied velocity or accel-

eration function at the base is developed and checked with experi—

mental data. Viscoplastic effects are included through the use

of a constitutive equation suggested by Malvern (10). The program

-
• 

is then used to investigate a set of beams with hollow circular

cross sections, designed by an empirical method based on a variety

of tests on cantilever beams. The beams are designed to achieve

a specified amount of deformation. The results are then compared .

5.2 Conclusions

The method of analysis developed is shown to be adequate in

predicting the response of beams under the impact of any input load-

ing function. Agreement with experir~ental and analytical data pre—

sented in Chapter 3 verifies the equations and methods used in this

analysis and lend credibility to the d~ata presented in Chapter 4.

The constitutive equation is shown to be adequate in determining

the beam deformation but needs improvement in order to accurately

predict the internal loads• It does produce similar trends and

approximate magnitudes but more work is needed in order to calculate

the internal loads properly .

The design method presented In Chaptc-r 4 was adequate in pre—
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designed by this method achieved plastic deformation well beyond

the yield point- as expected. The effect of reflected waves was

pronounced on the base curvature of the beam causing an initial

set early in the beam response. This was due primarily to the

small rise time from the base velocity input used on all of the

beams -

Finally,the responses of beam sets designed with 1—1/2 inch pipe

and 2—1/2 inch pipe were remarkably similar for the same design

value of penetration. only small frequer’-v effects were evident in

the comparison of beam deformations.

5.3 Suggestions for Further Research

Certainly more work is needed in the development of a constitu—

tive equation that accurately determines internal loads. This must

come from basic research in the phenomenon of viscoplasticity . Until

that time the constitutive equation used in this study is accurate in

predicting displacements, slopes and curvatures , and gives quantita—

tive values for internal loads.

The test outlined theoretically in Chapter 4 should be carried

out in order to determine shock damage of piping networks. Two sets

of pipe are analyzed in order to allow flexibility in determining an

acceptable test arrangement.

Finally , work should begin toward a finite element type visco—

plastic program to analyze any structure——similar to those used in

el-isti c ana3ysis today . Nost programs to date have simply analyzed

cin~ 1e element structures (I.e., straight beams, single shells, rings,

or plates). None have combined these elements to form models of a

—— — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-
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realistic structure. The task indeed is formidable, however , the

direction of viscoplastic analysis must be toward this goal. -

I
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APPENDIX A

STATIC MOMENT

A.l Introduction -

One of the problems that makes analysis of viscoplastic struc—

tures so formidable is that deformation depends not only on the

instantaneous conditions of the beam, but also on the previous load-

ing or “loading history” of the beam. In this study such information

is included through determination of the internal static moment .

A.2 Problem Formulation

The problem of determining the internal static moment at any

station, i,along the beam and for any time, t , during the loading cycle

may be divided into four parts:

1. A test for loading and unloading,

2. Findiug the static moment from the original curve with

origins at zero ,

3. A means of retaining the essential information of the

loading history of the beam , and

4. Using the above data to find the static moment at any time.

A.3 Ef fec t  of Loading on Static Moment Curvature Curve

The moment—curvature curve can be thought  of ini t ia l ly as an

upper curve and a lower curve symmetrical about the origin as shown

in Figure 38. The location of the origins of these curves is and

~~~ 
both initially zero. If loading continues beyond the propor-

tional limit, P, to some point C’, then a permanent curvature , K0,

exists in the beam and a new value for yield curvature K~ is sety

- -— —-—
~~~~ 
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for the upper curve . As the beam is unloaded from point C’, the

moment curvature relation is a straight line with slope El and

bounded by the lower and upper yield curvatures : and K~. The

origin of the lower curve is shifted to the right by K~~ which is

also in this instance.

If the loading continues past the yield point on the lower

curves (point D) to some point 1) ’ , the permanent curvature is ‘

reduced to a new value of K~. In addition, a new lower yield point

of K~ is set and the value of KU is reduced to correspond with point

C. The just i f icat ion for this is as long as a permanent curvature

exists, the material will show some strain hardening effects.

A similar shift in the upper curve occurs if th9 permanent

curvature becomes negative and new yield curvatures K1~ and

are set as shown in Figure 39. Notice the lower curve does not

N

K

K0, Kuo -

K
LO

F4 gure 39. Shift in Upper Curve
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change its position when the upper curve is shifted. The origins

of the upper and lower curves tend to remain at the extreme values

of achieved during a loading cycle.

Kuo(t) = mm (K
0
) (A.l)

KLO(t) = max (I(
s
) (A.2)

Curves presented by Witmer, Wu, and Merlis (25) seem to alter

this assumption somewhat. In Figure 40, a schematic of an experi-

mental stress strain relation obtained from repeated loading of a

plate shows that the upper and lower curves shift to the current

value of K
0
. No data were present, however , that show repeated

loading around the coordinate origin.

0

/ i~~~~~~~~~~~~ 

C

Figure 40. Schematic of Experimental Stress—
Strain Loading Cycle
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It should be mentioned that this scheme of shifting origins

for determining the internal static moment is only an approximate

one. Obviously, the Bauschlnger effect is neglected along with

any low cycle fatigue properties. The results presented by Vogel ,

however, show good correlation using a similar method for one cycle

or less in the elastic—plastic region.

A.4 A Test for Loading

A condition of loading occurs at a point when the magnitude

of the internal moment is increased . Since the internal moment is

what we seek to find, the curvatures must be used to determine a

condition of loading or unloading. Such dctertnir.ation is made thro~gh

the use of a loading function p(t), defined as

K ( t ) — K 0p (t )  K(t)  K(t ~~~~~~~ 

(A.3)  —

The sign of the loading function determines the state of a point —

on the beam.

Loading: p(t) > 0 (A.4)

Unloading: p(t) < 0 (A.5)

The numerator indicates which curve—— (-1-) upper or (—) lower——

on which loading occurs and the denominator indicates increasing or

decreasing curvature.

For example , consider a condition of loading on the lower curve

as shown in Figure 41. The value of curvature is numerically

decreas~ ng, i .e. ,  

~~~~~~ - ----
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K(t) —K (t —st) < 0 (A.6)

and loading occurs on the lower curve where

K(t)  —K0 < 0 (A.7)

The test function is therefore positive, indicating the beam is load—

ing.

A.5 Initial Moment Curvature Relation

Because the moment curvature relation only shifts origins dur-

ing loading, it is useful to define a function g(K) which represents

the initial curve. A typical moment curvature curve, shown in

Figure 42, can be divided into three parts : a linear (elastic) range,

a non—linear (elastic—plastic) range and a linear (elastic—plastic)

range .

In order to use this information in a computer program VPBA , a

curve f i t  of m points on the actual curve is necessary . Note , the

f i rs t  point is at the end of region 1 while the last two points are

at the beginning and end of region 3.

Regions 1 and 3 are simply linear relations as follows:

Region 1: g(K) = A
1 
K (A.8)

where
— 

A
1 

= El (A.9)
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Region 3: g(K) = C0 
+ C

1 
K (A.lO)

where 
- 

-

C1 = (M _M
m i )/(Krn —K 1

) (A,ii)

and

C = 1’! —C K (A,12)
0 rn-l 1 rn—i

Reg ion 2 , however , is approximated with an nth order polynomial curve

fit

Region 3: g(K) = B
0 ÷ B1 

K + B
2 
1(2 + ... + B KtL 

(A.13)

The coefficients B0, B1, ~~ 
Bn 

are determined by the method of

least squares.

The complete function g(K) is then given by Equations A.8,

A.l0, and A.l3. For negative values, g(K) is considered an odd

function

g(—K) = —g(K) (A.14)

A.6 The Stat ic  Moment

By using the function g(K), the value of g(K) can be obtained

at any time during the loading cycle by knowing the shifts in orig ins

and change in yield points of the upper and lower curves. In Figure

43 a moment curvature curve is shown after some series of loadings

and unloadings has occurred around the coordinate origin. The upper

curve is shifted by an amount K
u 

and the lower curve is shifted by
0

KL . The elastic line, or 1-1 ne of unloading, is located at K
0 

from the
0

coordinate origin .

- - 5—  —
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Figure 43. Calculating the Static Moment

First , consider loading in each of the following cases:

(1) The elastic region (C to D, or C’ to D’)

El (K —K
s
) (A.15)

(2) The upper plastic region (D to E)

M
~~ 

= g(K - (A.l6)

(3) The lower plastic region (D’ to E’)

= g(K — K.~~~) (A.l7)
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If unloading occurs (D to C, D’ to C’) then

Mst 
= El (K —i (~) (A.18)

Unloading always follows the elastic line shifted by I(o.

In the special case where an unloading point occurs just after

a loading point, the values of K0, Kuc~ ~ o’ K
U
, and K1~ must be reset

before Equations A.l5 through A.18 are used. Of course, initially

these values are

1(0, K1~()~ 
Kb 0 (A.19)

and

= I (A.20)

= K (A.21)

where K
~ 
is the initial yield curvature shown in Figure 42.

If unloading begins from the upper plastic region (D to C), the

upper yield point is set equal to the last value of curvature. The

same is true for unloading from the negative plastic region (D’ to C’).

From Figure 44, K~ can be found geometrically from the slope of the

elastic line.

U
g(K —1)

~~~El— — (A.22)
(K~ K)

Li ~~~~~ . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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Figure 44. Unloading from the Upper Plastic Region

Solving for

= 
El (A.23)

%‘~ben the upper yield point shifts, the lower yield point also

changes. K~ is found by determining the intersection of the elastic

line with the lower curve, as shown in Figure 45. At the intersecticu

the value of fl
5~ 

can be found two ways: from the elastic line

- ~. 
-

~ —-~~~--~ 
-
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— (Ic
o 

_1(L) El (A.24)

and from the function g(K)

= ~ (K~o 
— K~) (A.25)

Equating these and solving for

- 

El 

1(L) 
(A.26)

-~ .—. --. .-“. ---(. ..—— .—— . -— .. 
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This transcendental equation must be solved iteratively by guessing

an initial value for The best initial value is —K which is
Y S

the exact solution during the first cycle. Experience has shown

that convergence within one percent of the solution occurs in less

than ten iterations.

Equations A.23 and A.26 are concerned with unloading from the

upper plastic region. However, if unloading first occurs from the

negative plastic region a shift in the upper curve is required. A

similar procedure is followed as outlined above, namely, the lower

yield point is set equal to the last value of curvature and

L g(1(
L 

Kbo~- 

El (A.27)

In Figure 46, the intersection of the elastic line with the upper

plastic region is somewhat different. The value of the static

moment at KU can be written as
Y

— (1(U 
—K0) El (A.28)

and

M
t ~~~~ —Krn) (A.29)

Equating and solving for

u g(1(U 
~~~~~~~~~~~~

— 
El 

+ K
0 

(A.30) 

-
~~~~~~~~
—--—

~~~~~~~~~~~~
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Figure 46, Upper Yield Point

The procedure described above is used in the subroutine MFIND

of VPBA. It returns a value of M ( t )  given a K~(t) by directingS i
the program to use one of the four equations (A.15 , A.16, A.l7, or

A.18) based on the knowledge of the loading function and the region

(elastic, upper plastic, or lower plastic) in which the value of

K~(t) fal ls. If K
i
(t) is an unloading point followed by a loading

point, the internal subroutine SHIFT is called to determine new values

of K~~, Kbo ’ ~0’ 
KU, and K~ before the solution continues. The curve

fit described in section A.5 is done before the solution is started

in subroutine LEAST. The function g(K) is stored as the subroutine

MSTO.
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APPENDIX B

MOMENT OF TIP MAS S

The rigid element at the tip of the beam necessitates finding

the internal moment differently than those in the flexible portion

of the beam. The end moment M can be written in terms of the inter—n

nal moments H and H which are known from Equation 2.23 inn—i n—2

chapter 2. A force diagram of the last two elements of the beam are

shown in Figure 47. Five equations of motion are written as follows

in terms of the s—u coordinate system:

v —v = m  ii (B.l) —

n-i n-2 n—l n-i

N —M —v t~s 0 (B.2)n—2 n—i n—2 n—2

H —M + V  t~S ~~O (B.3)n n—i n-i n-i

V — —in ii (B.4)n—i n n

H = —JO (B.5)n n

The assumptions used for these equations are those outlined in

section 2.2 with the addition that the. rotational acceleration of

the s—u coordinate system is small.

Further kinematical relations can be written as a result of the

rigid element.

0 — e  (8.6)n-i n

and

U — i i  +~~s e (8. 7)n n-i n~1 n~1
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combining these,

= ii + t~S 0 (B.8)n n-i n-i ii

Equations B.l, B.3, 8.4, 8.5, and B.8 form a set of linear inde-

pendent equations in terms of the unknowns, V i~ 
ii~_1~ N , U , and

8 , which can be solved for Nn n
First, combine Equations B.5 and B.8 -and substitute the result

into Equation B.4. Solving this for ii~~~ gives ,

M V
U =~~S ~~~ n—i (B.9)n-i n-i J m

- n

Substituting Equation B.9 into Equation B.i and recalling from

Equation 8.2 that

Vn_2 = (B.lO)

the following expression for V
1 
is obtained .

— (~ + 
m~_i)~~ ( mn i ~~

Sn_i M + 
Mn_2 •4lfl i) (B.ll)

Finally, Equations B.ll and B.3 are combined to yield an expression

in the unknown moment N
n

+ ___  + 
~~::~ )Mfl_l - ( :~

) M ...2

M~ — (B.12)

I J
n—i e
m J
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where 
-

- 

. •~e 
— ~ + ~ fl 

AS~_1 . (8—13)

Thus M~ is shown to be a linear combination of the moments at two

stations inward from the tip..

Li 

- ..- -- -- .~~~~~- --,.-~~ - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~ --
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APPENDIX C

MOMENT CURVATURE FUNCTION FOR HOLLOW
- CIRCULAR CROSS SECTIONS

The hollow circular cross section is among an entire class of

cross sections having a single discontinuity in geometry and at least

one plane of symmetry . Such sections as 1—beanis , U—channels , box

beam, and T—sections are all similar in these respects.

The internal bending moment is determined by assuming plane see—

tions remain plane during plastic deformation and by using the

familiar equation ,

N = f  y a(y) dA (C.i)
A

Some difficulty occurs in trying to evaluate this integral if the

plastic deformation is present because the stress function adds

another discontinuity——the proportional limit or yield point.

Furthermore , the location of this discontinuity is not stationary

on the cross section, but changes with  the beam curvature. For

this reason , the use of numerical integration is desirable. The com-

puter program MCURVE does this , given the stress—strain function and

the dimensions of the cross section.

The stress—strain relation is represented by three separate

curves as shown in Figure 4~ . Regions 1 and 3 are straight lines

with slopes E and E ’, respectively, while region 2 is represented by

an ~th order polynomial curve fit.

c~(c) = + a
2
c + a

3 
+ ... , a E? (C.2)

for c < e < c
1 n—i
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- . (3)

(2)
I I

b I
S p I

I Proportiona l I
(1) Limit

I II I

E~~ 
I

I I I
C ,C E £p 1 ni-i m

Strain, C

Figure 48. Curve Fit of Stress—Strain Relation

For stress—strain relations that are elastictperfectly plastic ,

region 2 is omitted and E ’ = 0.

The moment on the cross section for a given curvature is found

by including in Equation C.l the geometry of the cross sectior’ and the

stress—strain function above. Assume the on—set of plastic deforma-

tion occurs at some location C above the midplane of the cross sec-

tion as shown in Figure 49. Becaus e these sections have thick walls

to prevent an instability, it is also assumed that no deformation of

the cross section occurs , i.e., the ring remains circular. This is

verified by Frick’s (7) specimens that had less than 1/10 percent

eccentr ici ty at the maxiniuin curvature of the beam .

__________________________ __________ ~~~~~~~~~~~~~~~~~~ -~~-- ---- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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___________  

Plastic

1 •

Elastic
c

Figure 49. Hollow Circular Cross Section

Substituting for dA , Equation C. 1 becomes

N = r .1 c~(e) y AZ dy (C.3)
A/4

However ________ ________

AZ = A/ r
2 

—y2 — 4\f r~ —y 2
, o < y < r .  (C.4)

and

= A,f~~~ _y 2 
, r j  < y ~ r0 (C.5)

These relations are made non—dimensional in terms of s t rain by recall-

ing

C(y) = K (C.6)

- ---,-- —---— -~~~~~~~- . - ~~~~ - - ---- --
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Therefore

= K~Z = ~~ 2() - £2(y) - 4
~/C

2(r
i
) - c

2(y) (C.7)

for
o < 

~~
y) < C(ri)

and

Az = — 4c
2(r) — c2(y) (c.8)

for

< c(y) < C(r
~
)

Substituing these into Equation C.3,and expressing the remaining

factors in terms of

4a c(r )
M = 

_
~2. f  ° ca~ (c) Az de (C.9)

K

where

* a(c)a = a 
(C.lO)

p

The integral can be thought of as a shape fac tor ,J\., mul tiply ing

the constant 4 a /K3p

N = 4 a A c )  (C.il)
K 

—--~~~-~~~~~-~~~ --- -.. -
~~~~~

-
~~
--- -
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where -

A c(r ) 
*

- J ~~(c)  / ° ca (c) Az de (C.i2)

The functions Az and a* have discontinuities at C(r1) and

c(c) , respectively.

The location of the yield point on the cross section is deter-

mined from the curvature.

C = c(c)/K = c/K (C.13)

The cross section f irst exper iences plastic def ormation when

c = r
0. The corresponding curvature is

K = e /t  (C.14)
0 p 0

and -

H E 1 K  (C.1 5)
0 0

The computer program HCURVE sweeps the value of curvature begin-

ning with K0, finds the shape factorJ~., and determines the value of

M from Equation C.9. The integral is only -separated for the discon—

tinuity at c(r1) because other cross sections such as I-beams offer

a “jump—type” discontinuity in the Az function as shown in Figure 50,

causing numerical problems in the integration. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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for 0 < c(y) < c(r~)
AZ “~~~ (C.16)

lKdf for C(ri) < c(y) <

The discontinuity in the stress function is merely integrated through

using Simpson ’s Rule.

_ _ _ _ _ _ _  

t

y

________d
f

1 I I
:° 

~~~~~~‘dy

Figure 50. I—Beam Cross Section 
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Appendix D, Computer Listings are

given in reference [28], but are not

included in this report.
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