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SUMMARY

The two year study of viscoplastic beam bending consisted of two
closely related phases:

Phase I: to develop procedures for analysis of viscoplastic beams

of rectangular cross-section under combined tension and bending.

Phase II: to develop procedures for analysis of viscoplastic

beams of more complex, tubular cross-section, but considering only

bending deformations.

The analytical method for Phase I was developed and demonstrated
in a detailed technical report, reference [26]. Predictions were
included of elastic-plastic response of a symmetrical beam in combined
bending and tension, under loading typical of the local shock machine.
The method consisted of analytically dividing the beam cross-section

into strips, a procedure presented in reference [24]. Subsequently
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shock machine tests have been conducted. Agreement between predicted
and measured responses was good only after the elastic flexibility of
the supports was included in the analysis. The computer program now
performs the analysis of a symmetrical viscoplastic beam on elastic

supports. For the analytical method, along with the rate-dependent

constitutive equations used, the reader is referred to reference [26].

The primary effort the second year was on Phase II which was

i

different from Phase I as follows:

1) the input used was that of the floating shock barge.

2) the cross-sections considered were standard piping.

3) bending deformations only were included.
First, computer program VPBA was developed to predict the bending response
of a viscoplastic cantilever beam carrying a tip mass. The program was
checked by comparing with the solutions of Vogel [15,17] and Weiss [18].
Then beams and tip masses were sized-using experience of others and
some approximate analysis, as outlined herein in Chapter IV - for use

on the floating shock barge. The following parameters were considered:

beam cross-sectional elastic stiffness, fundamental natural frequency,
practical dimensions, and amount of desired penetration into the plastic
range. These beams were then analyzed more precisely using VPBA and

the shock barge input. A next logical step would be to carry out barge

tests of these beams for comparison with predictions.
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CHAPTER 1

INTRODUCTION

1.1 Discussion

The need for dynamic analysis of structures which undergo
plastic deformation has long been acknowledged. Achieving a general
analysis to predict the dynamic response of any structure, however,
has yet to be accomplished. Only computer-based methods have pro-
duced solutions to the most simple of structures such as straight
beams, singie shells, rings and plates. Until such analyses are
available, the design of structures which experience impact must rely
on experimentation.

Much of the work in viscoplastic structures has occurred since
World War 1II and most of the computer analyses were developed in the
last decade. An early investigation by Duwez, Clark, and Bohnenblust
(6) involived the plastic deformation of long beams which are subjected
to a transverse constant velocity impact. The results showed that
strain does not propagate at a constant velocity along the beam, but
depended on the distance along the beam at which the deflection curve
was zero. The analysis used bilinear stress strain relation and
neglected strain rate effects.

An analysis of the transverse impact of long beams was also made
by Conroy (5). Elastic strains were neglected to simplify the boundary
value problem. However, in the case of a work-hardening material, th~
analysis tailed to achieve a satisfactory solution.

Malvern (10) proposed a constitutive equation to account feor the

strain rate effects in materials in which stress is a functicn of
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instantaneous strain and strain rate.

+K (0-0_,) (1.1)
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where K is a material constant. This strain rate dependency tended
to account for an increase in the yield stress at impact and the
plastic stress after yield.

Mentel (11) extended the rigid-plastic assumption used by Conroy

(5) to investigate the plastic deformation of a uniform cantilever

beam with an attached tip mass. A simplified analysis based on a one

dimensional model was found to give good results when corrections for
strain rate and strain hardening effects were included.

Strain rate dependence of the yield stress was included in the
rigid plastic theory of Bodner and Symonds (1). Experiments were
conducted on steel and aluminum alloy cantilever beams subjected to a
base velocity impulse. The results were compared and showed a signi-
ficant improvement in correlation by including strain rate effects.

Vitmer, et al. (24) constructed a beam model of straight mass-
less links that inclgéed axial deformation as well as bending. The
rectangular cross-section of the beam was divided into equal, evenly
spaced layers on which the stress was considered constant. Two stress
strain relations were examined: (a) an elastic perfectly strain harden-
ing material with effects of strain rate ignored, and (b) an approxi-
mation employed by Ting (21) in which tbhe change in yield stress was

a function of strain rate. When compared with experimental results of

a fixed-fixed beam experiencing an explosive impulse at midspan, this

model agreed well with the measured mnidspan deflection.
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The effects of strain rate sensitivity and strain hardening
were investigated by Jones (8). Using a constitutive equation sug-
gested by Perrone (15),

O .
= = f{c)g(e) (1.2)

o
°.

he showed that it is important to include strain rate effects when
estimating permanent deformations of impulsively loaded beams in most
cases. However, the overall beam size affected the need for inclu-
sion of these effects. For example, beams with small length to

depth ratics (L/H) that included only strain hardening or physically
small beans with only strain rate sensitivity compared favorably
with beams that included both. 1In addition, neither effect was
important in physically large beams with large L/H ratios.

Stanovsky (18) investigated a cantilever beam on which a sudden
force was applied to the tip mass. Experimental results were com-
pared with theory that uses different yield points and various anounts
of strain hardening.

Fully clamped beams under impact were investigated by Symonds

and Jones (20). Solutions derived from rigid-plastic analysis which

include strain rate dependence and transverse displacement compared
favorably with experimental results. Strain rate sensitivity was in- ;

cluded by use of an emperical equation

& wulip
8 -1+ ¢ % ) (1.3)

where p and D are material constants.
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Vogel (22) compared experimental data of beams made with annealed(
mild steel and high strength tempered steel. Correlation with a
finite difference type analysis showed good results. Also, the consti-
tutive equation of Malvern (10) was rewritten for bending and verified.
The time delay observed in experiments between the maximum moment and
maximum curvature was adequately predicted by this equation.

Neubert and Yang (13) developed a stiffness matrix for a visco-
plastic beam element based oﬁ a bilinear moment curvature relation and
the constitutive equation of Malvern (10). Some examples showed that
the rate of loading determined which slope dominated in the moment
curvature relation.

Brown (2) presented experimental data on the dynamic effects of
cold-rnlling on scteel specimens. The cantilever beams tested were
designed with a natural frequency equal to that of the half sine wave
impulse for maximum response. Using a simpliiied analysis and the
constitutive equation of Malvern (10), comparisons with experimental
results were good. He did suggest, however, that the constitutive
equation may be limited to moderate strain rates of less than 10
in./in./sec.

Further analysis of cantilever beams with strain rate sensitivity
was made by Ting (21). Equations of motion were developed in the form
of two simultaneous non-linear integral equations. Approximate solu-
tions were given and compared with experimental results.

Recently, R. C. Shieh (17) investigated the impact of a hexagonal

mild steel frame which was dropped on to'a pole obstacle at its center.

In his analysis, Shieh used a fourth order Runge Kutta integration

RSP
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technique to solve the non-linear system, and employed a power law
variation to Malvern's constitutive equation. Material strain rate
sensitivity effects were shown to be of primary importance, even at
very low impact speeds. Correlation was shown to be good up to 2

percent of strain. However, correlation became increasingly poor for

larger pole penetrations.

1.2 - Scope of Report

This report is devoted to a theoretical study of viscoplastic
beams with hollow circular cross sections that experience an impact
load at the support. An analytical method is developed to determine

the response of such beams. Resulis are then compared with other

theoretical and analytical data to show the validity of the analysis.

Finally, a set of beams having hollow circular croses sections is
designed to undergo a prescribed amount of nlastic deformation after
an experimentally measured base velocity is applied. The beams are
then analyzed and the results presented to see if the beams achieve

the expected arount of deformation.

JORSNFES it
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CHAPTER 2
MATHEMATIC MODEL OF AN ELASTIC-
VISCOPLASTIC BEAM

2.1 Introduction

Over the past two decades several methods have been proposed tc
analyze plastic deformation of structures under dynamic loading.
One of the most powerful methods in solving these highly.non—linear
problems has been the finite difference technique. It is also one of
the mbst flexible methods ir. the analysis of beams because a variety
of boundary conditions, input loadings, and special requirements can
be easily included by the user. It is a computer-based method in
which a series of equations, written in finite difference form, is
solved in a sequential manner for a specified number of time incre-
ments. Unfortunately, an unstable response can result if the time
increment is too large. Therefore, large computer run times are cften
necessary to complete the beam response.

The beams used in this study are long cantilever beams with large
tip masses that undergo an impulse at the base as shown in Figure 1.
The equations resulting from this type of beam are solved using a

single grid finite difference scheme in space and time.

2.2 Derivation of Finite Difference Equations

The finite difference technique is based on knowing the displace-
ment of each mass point at any instant of time. The initial displace-

ment of all mass points is zero. The internal loads of the beam are

determined from the displacements and from these the mass accelerations
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are calculated. Using displacements at the previous time point and
the mass accelerations, the displacements at the next time point are
found.

In Figure 1 the mathematical model of the beam is composed of
n-1 beam segments and n mass points beginning with point 1 at the
support. A rigid arm is formed by clamping the tip mass on the end
of the beam. The overall length of the beam is considered from the
fixed end to the center of gravity of the tip mass.
in order to simplify the problem, the following assumptions are
used to derive the necessary difference equations:
(1) Rotary inertias of the beam segments are negligible.
(2) No shear or extensional strains are considered.
(3) The tip mass is represented by a single mass and rotary
inertia located at the center of gravity.
(4) The beam curvature is considered constant between mid-
lengths of adjoining elements.
(5) All beam segments are equal in length except the rigid arm
at the tip of the beam.
The equations developed hereafter are in the order used in the computer

program.

2.3 Slopes and Mid-Slopes of the Beam

*
The slope, 0, and the mid-slope, 6 , of each beam segment are
determined geometrically from the known displacements at some time t.

-t Y1 T Yy

%
61 = gin ( Asi ), 1i=0 to n-2 LZsd)

PIR PR




* .
where 61 is the slope of the beam mid-way along the 1th segment.
Since the curvature is assumed constant between mid-lengths, the

slopé of the ith mass point is found by averaging the mid-slopes.

01 = (——7{————0, i=1 to n-2 | (2.2)
From the boundary conditions of the beam it follows that
¥y 91 =0 (2.3)

Furthermore, the slopes at n and n-1 are equal because of the rigid

element at the tip.

I (y“—my“-‘l) (2.4)
n-1
2.4 Curvatures and Curvature Rates %j
The exact curvature of the béam is given by é
9!
K(x) = W (2.5)
where 6' = d6/dx. The slope is assumed to remain numerically small
even though the analysis allows large displacements. Therefore, the
denominator approaches unity and

K(x) = d8/dx (2.6)

This approximation was shown to be valid by Vogel (22) and others.
Remembering assumption (4), the curvature is written in finite

difference form as:

K, = , i=1 to n-2 (2.7)




10

The curvature at the fixed end is found by using an image of
the beam behind the support. Deflections of the imaginary point O
are the same as point 2 on the actual beam. The base curvature is

then given by Equation 2.7 where

0" or 2.8
o -1 (’)

In order to calculate the curvature at n-1l, an extrapolation

ture at n-2 is:

% *

-0
B e i (2.9)

n-2
(ASn_l + ASn_Z)

D

N

and the curvature at a point n-5/4 is

%
0 -0
n-1 n-2
Kn-5/4 l-As (2.10)
2 "n-1
From Figure 2, the curvature at n-1 can be written as
K - K
- ~-5/4 n-2
Kn-l Kn—2 + ASn_2 i e ) (2.11)
4 n-1
or, rearranging
4 1
Fa-1® 3 %aesr4 ~ 3 Fo (2.12)

Of course, the curvature of the rigid arm is zero.

of known curvatures near the end of the beam must be used. The curva-




n-2 n-1
- - Asn-z‘l

Figure 2. Determining Kn—l

Curvature rate is often important and is simply the backward
timewise finite difference derivative of the curvature.

” Ki(t) - Ki(c-At)
Ki(t) = it , i=1 to n-1

2.5 Static Internal Moment

By neglecting extensional and shear strains the beam is con-
sidered to be in a state of pure bending. Therefore, the curvature
alone determines the value of internal’ static moment of the beam.
Appendix A explains in detail the method used to obtain the static
moment for'points on the flexible portion of the beam. One of the

end conditions of the beam, however, is

Mn = = J en (2.14)

This moment can be written in terms of the known moments, Hn-l and

M _,» as presented in Appendix B.
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2.6 The Constitutive Equation

'Of the many constitutive equations that have been proposed,
essentially two have emerged as useful approximations to the visco-
plastic phenomenon: the so-called power law, Equation 1.3, and
Malvern's (10) equation. The latter is the one used in this study
and has given good results when compared with experimental data
(7,18,22)

For a brief explanation of this equation in terms of pure bend-
ing, ;onsider a beam element that undergoes a constant curvature rate.
The corresponding internal moment appears like that of Figure 3,
somewhat higher than that obtained quasi-statically. Assume over
some small time interval, At, that a chauge in curvature, Ak, occurs
with a corresponding change in moment, AM. The total change in curva-
ture is composed of an elastic part, Ak', and a plastic part, Ak",
shown in Figure 4. The elastic part is expressed in terms of the

change in moment.
AR = = (2.15)

and the plastic portion is proportional to the difference in the actual

moment and the static moment.
Ak" = At R (M —Mst) (2.16)
Consequently, the total change in curvature is

Ak = Ak' + Ak" (2.17)




See
Enlargement
(Figure 4)

Static

Moment, M

i
I

|

I

!

l

I

I

‘k\\“Elastic

K

AK
Curvature, K
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substituting,
Ak AM 1
T + R M- Mst) (2.18)
or in the limit
ELk=M+C (M ) (2.19)

where C = REI.

The equation, though derived for loading in the plastic range,
is eq;ally valid for loading in the elastic range or unloading from
any point. Under these conditions the static and dynamic moments

are equal, causing the term C (M —Mst) to vanish and leaving,

e 2 (2.20)

The constant C in Equation 2.19 has been investigated by several
researchers. Its effect on the resulting moment curvature relation
was clearly presented by Neubert (14). A very small value cf C
will cause the constitutive equation to approach the elastic sclution
given by Equation 2.20 above. A large value of C, however, makes

the equation approach that of the static moment curvature relation:

M= Hst (2.21)

Some neutral value affects the time delay between the maximum moment
and maximum curvature.

Determining an actual value to use for C was further complicated

by the work of Frick (7) who presented evidence that the value of C
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may not be a constant but may vary considerably with curvature and
curvature rate, Vogel (22), however, showed that even large varia-
tions in C made little difference in the curvatures of the beam but
some difference was obtained in the bending moments. Finally, Jones
(8) suggested that viscoplastic effects became negligible in beams
with large overall size. This is typical of a viscous phenomenon
and means that the value of C should be increased when used in the
analysis of such beams. The actual value of C used in this study is
discu;sed in the next chapter, and is based on the values used by
Vogel (22).

In order to include the constitutive equation in the analysis,

it must be written in finite difference form,

. Mi(t) ~Mi(t -At)
EL ki(t) = At + C (Ai(t) —Msti(t)) (2.22)

solving for Mi(t)

M, (t =At) + At (ET k() + CHMge (6))
(1 + At C)

Mi(t) = (2.23)

for i=1 to n-1.

Equation 2.23 allows the dynamic moment to be determined from the
known quantities Ki(t)‘ Mst (t) and the dynamic moment from the pre-
i :

vious time point, Mi(t ~At).

2.7 Mass Accelerations, ;i(t)

The mass accelerations are required before the last stop can be

completed, namely, finding the displacements at the next time
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Only two equations are significant: (1) sum of vertical forces on

-l<

\\3 Hin |

14
¥
APTN
¢ R %
Wl Lo
# r(t)
TrTTY

Figure 5. Force Diagram of Beam Element

ing that the rotary inertia is neglected, the first equation gives,

M — b
i+l i .
Vi Asi , i=1 to n-1 (2.24)

This is merely the equation from mechanics of materials in

difference form that states V = -dli/dx. Note that

Vn =0 (2.25)

because no element exists beyond the (i - 1)th element.

increment. Equations of motion for ith mass point and the adjoining

bean element can be written from the force diagram shown in Figure 5.

the mass point, and (2) sum of moments on the beam elements. Remember-
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The second equation is

w ) cosB = m Y, i=l ton (2.26)

g g 1

h mass point and m, is

the mass. The total acceleration includes both the base motion of

where §i is the total acceleration of the 1t

the beam coordinate system and the beam motion.

L st e D R LRSI ke Vot i Y L

¥ o=y, 47 (2.27)

Combining Equations 2.26 and 2.27 and solving for §i,
§i = cosei - a(t), i=1 ton (2.28)

and a(t) = r.
Equation 2.28 includes the inertiaz effect of the tip mass from
the calculation of Mn. Consequently, Vn_1 is the correct force

applied to the tip mass.

2.8 Deflections at t + At

The acceleration of the ith beam mass can be written in the form

of the central difference equation,

vyt + At) -2y, (t) + y (¢ - A¢)

y.(t) = (2.29)
i (At)2
for i=1 to n.
Solving for yi(t + At)
2
yi(t + At) = 2yi(t) -yi(t - At) + At yi(t) (2.30)

k| for i=1 to n.
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The new displacements are in terms of the presént and past displace-
ments, yi(t) and yi(t ~ At); and the beam acceleration ii(t).

The series of equations developed in this chapter are used for

each time in the solution until some final time, tf, is reached. The
time increment used in the calculations is 20 microseconds, which is

based on the experience of Vogel (22).

paee
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CHAPTER 3 ' : i

CORRELATION WITH OTHER DATA

3.1 Introduction
Much experimental data on viscoplastic beams has become avail-
able over the past 15 years and varied approaches have been used to
predict these data. This chapter is included to present .a sampling %
of comparisons with experimental and other theoretical methods. In
addition, such comparisons add to the validity of the results pre-
sented later in Chapter 4.
Two references were chosen for correlation to supply an adequate 1
test of the methods used in this study. Vogel (22) offers experi-
mental data; while Weiss (23) presents a different theoretical point
of view. Both are concerned with cantilevered beams with large tip

masses which undergo some sort of base impact.

3.2 Correlation with Vogel

This reference was chosen because the theoretical method presented
in Chapter 2 is similar to Vogel's. Furthermore, experimental data
is available for comparison.

The beam tested was made of high carbon steel with the trade name
'Warplis'. The beam had a rectangular cross section with dimensions

1/8" x 1". Other physical parameters are listed below.

L =5 in.
mn = ,00762 1b sec2 in.
3 = 00894 1b sec® in.
EI = 4720 1b in.>
> g I g
M= .916x10 1b sec”/in.
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Vogel also used the constitutive equation of Malvern (10), where the

value of the constant is
C = 2000/sec.

These parameters were used in the computer program VPBA
(Viscoplastic Beam Analysis) and they are compared with Vogel's
in Figures 7 and 8.

The beam experiences an acceleration impulse shown in Figure 6
from a shock machine. During the test, the beam was fully instru-
mented with accelerometers at the support and on the tip mass. Strain
measurements were also made along the beam.

In Figure 7 the curvature shows good correlation with experi-
mental data. It should be pointed out that the difference between
the two theoretical curves is that the curvature from Vogel (22) is
calculated at a point 3/16" from the fixed end of the beam at the
strain gage location, whereas, the curve from VPBA represents the
curvature directly at the support.

The dynamic moment curvature curve in Figure 8 does not agree
as well with experimental results. As observed by Vogel, the experi-
mental dynamic moment is less than the static moment, a condition that
cannot occur using this constitutive equation. The results however do
show similar trends. In fact, one can observe that theoretical and
experimental internal moments often differ significantly while such
physical parameters as displacements, slopes and curvatures compare
favorably. This suggests that the beam displacements are not especi-

ally sensitive to fluctuations in internal loads.
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3.3 Correlation with Weiss

The theoretical study of Weiss (23) presents the exact solution
of a simplfied viscoplastic beam.that has a base acceleration shown
in Figure 9. It assumes the beam is divided into an elastic and one
or more plastic regions during bending. In each of these regions
the differential equations of motion are for each time "era'" of
the input pulse. The moment curvature relation is represented as a
bilinear curve with slope Se and Sp. Malvern's (10) equation is also
used to account for the viscoplastic nature of the material. The beam
is assumed to have a concentrated tip mass, but without a moment

of inertia.

-); (t ) (.yO )max

L 8

Figure 9. Triangular Base Acceleration Pulse

The results of Weiss (23) are compared with those from the pre-

sent VPBA computer program in Figures 10, 11, and 12. The input para-

meters used in these calculations are as follows:

v, o e e
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£ =5 in.
m = .012 1b seczlin.
J=0
(yo)max = 100 g
s, = 5000 1b o
5, = 500 1b fn.
C = 2000 in. sec -

The value of tr and td are .004 and .006 seconds, respectively. The

yield point on the bilinear moment curvature relation occurs at:

M = 250 in. 1b
y

% = .05 457t
y

Note, the results presented from Weiss (23) correspond to a
"double segment elastic-viscoplastic beam with a spreading and con-
tracting hinge." The results are generally in good agreement. The
only possible exception being the second peak in the moment time
curve of Figure 11.

In contrast to these comparisons, it is interesting to note that
a plastic region or "hinge' does not spread from the fixed-end of the
beam as assumed bty Weiss (23). Based on data from VPBA, isolated
plastic regions occur at various other places on the beam during
deformation caused by reflected waves. These other plastic regions

are insignificant, however, when compared to the deformation near the

base as verified by the results presented here.
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CHAPTER 4
DESIGN AND ANALYSIS OF BEAMS OF
CIRCULAR CROSS SECTION
4.1 Introduction

Many experiments have been done with impulsively loaded canti-
lever beams of various cross-section, size and material. 1In this
chapter the results from some of these tests are unified; and used
to design and investigate a set of cantilever beams with hollow circu-
lar cross-sections.

The basis of the beam design is a comparison of tests using
data collected irom references 1, 2, 3, and 22, and presented in
Figure i3. All of these data are for steel beams each having a large
tip mass. TFurthermore, all of the beams are of rectangular cross
section with the exception of those from reference 3 which are I-beams.

Figure 13 is an attempt to provide some means of determining
the extent of plastic deformation a beam will experience during load-
ing. For each of the references mentioned the non-dimensional para-
meter X is plotted versus a ''penetration factor," 1. The parameter
X includes two quantities that effect the maximum deformation of a
beam: the peak acceleration of the base, ap, and the natural fre-
quency, w. It should be mentioned that other factors such as the
relative size of the tip mass, the shape of the applied impulse and
the material properties also effect the amount of plastic deforma-

tion. These wcre not included because of the limited available informa-

tion from each of the references.

|
|
;
|
1
|
?
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The penetration factor, n, is an indication of how much plastic

deformation occurs and is defined as,

)
n == (4.1)
Y
where 5max is the maximum deformation and Sy is the deformation

required to yield the material at any point on the beam. For each
reference the value of N was determined differently becaﬁse of the
vériety of data available. For instance, in reference 1 the deforma-
tion is the tip mass rotation, in reference 2 it is the displacement
of the tip mass, while in reference 2 the base curvature is used.

The results, however, do show a definite trend represented by the
dashed line. This curve is only intended to give an approximate mea-

sure of beam deformation. Other test results may produce more

scatter in the data.

4.2 Beam Selection

The beams selected for use in this study are similar in size to
those used by Butt, Short, and Thornton (3). Furthermore, the base
input shown in Figure 14 is used for all beams in this chapter. This
base velocity measurement was made by attaching a velocity meter to
the base of one of the I-beams used in the test. The beams were fixed
to the floor of the Floating Shock Platform and shock tested using an
underwvater explosion. The result shown in Figure 14 produced rapid
oscillations in velocity which did not alicw the beam time vo respond,

therefore, the approximate velocity input was found to be adequate.
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Schematic of Measured
Base Velocity

10} Approximate Base

Velocity

Velocity, ft/sec

51

Time (m sec)

Figure 14. Velocity Input of Reference 3

Two sets of four beams constructed of standard steel pipe are
studied with the dimensions given in Table 1. ©One set of beams
uses pipe with a 2-1/2-inch inner diameter which compares closely
with the 3-inch I-beam of reference 3. The other set is designed
with 1-1/2-pipe and used for comparison of size effects.

Standard pipes made of mild steel are formed by several differ-
ent processes which effect their stress properties. The type used
in this study is seamless with an ASTM specification of A53, Grade B.

The properties of this steel are listed below:

.2 percent offset yield: Oy = 35,000 psi
Ultimate stress: Gu = 60,000 psi
Modulus of Elasticity: E = 29 x 106 psi
Yield Strain: Ey = ,001207 in./in.

Weight density: p 3

.283 1b/in.
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Table 1. CrossQSectional Dimensions |
|
Inner Quter Wall Metal Weight Moment of |
Diameter Diameter Thickness Area per Inch Inertia {
(in.) (in.) (in.) (in.?)  (b/in.) _ ({u.%) |
2-1/2 2.875 .276 2.254 .638 1.925

1-1/2 1.900 .200 1.068 .303 0.391

Hollow circular cross sections under the action of Bending are
capable of buckling. The analysis of such a problem in the plastic
regio;s would present a formidable problem. The experimental results
of Frick (7), however, presents some evidence on how to present
collapse of the cross section. These tests were made with simply
supported, pinned-pinned beams: one made of steel tubing and the
other made with a copper-nickel tubing. The copper-nickel tubing
had a thickness to radius ratio of 0.21,while the steel had a thick-
ness to radius ratio of only 0.10. Maximum curvatures occurred at the
edge of the large center mass.

The steel tubing exhibited rippling on the compression side
because of the thin wall. However, the cross section did not col-
lapse, probably because it was stabilized by the weight block clamped
around the center. A cantilever pipe is supported in a similar
manner near the base.

The copper-nickel tubing showed no effect of buckling because the
wall thickness was larger. As a result, both steel pipes used in the

study were selected to have a wall thickness of approximately 20 per-

cent of their outer radii.
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The static moment curvature relations for these pipes are shown
in Figure 15. These curves are determined from the computer program
MCURVE based on the procedure outlined in Appendix C. An elastic-
perfectly plastic material is assumed and the cross section remains
undistorted during loading. The yield point for the 2-1/2 inch pipe
is

-1
l(.y = ,000839 in.

My = 46,860 in. 1b

and for the 1-1/2 inch pipe

K, = 001270 in, X

My = 14,400 in. 1b

4.3 Natural Frequency

It is necessary to know the natural frequency of the beam in

terms of its physical parameters before an effective set of beams

can be designed. The important beam parameters are shown in Figure 16.

The first natural mode can be approximated by superposing two solu-
tions:
(1) A two degree-of~freedom massless beam with a tip
mass and moment of inertia.
(2) A continuous beam without a tip mass.
In the first case, the frequency equation is written from the

equations of motion of tip mass displacement and rotation:
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Figure 15. Static loment Curvature Curve
for Selected Steel Pipes
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1St natural frequency of the 2 d.o.f. system,
= tip mass,
= radius of gyration of the tip mass, and

= rg/l (4.3)

Expanding the determinant and recognizing that the natural frequency

of the single degree of freedom system is

3EI

3
mtl
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the frequency equation becomes:

4 4 1 R S 4
0)1 -3 (3 + -B-) wo wl + 3 Bz wo 0 (4.5)

This quadratic in w is solved for the lowest natural frequency.

wl = CB w (4.6)
where
e edasdy -Vi(3+i)2-ﬁi (4.7)
B 3 B2 9 82 3 B2

For the case of a continuous beam without a tip mass, the fre-

quency of the first mode is

w, = 3.52 E—IZ (4.8)
HL

Assuming the beam mass is a certain fraction of the tip mass, then

A= mb/mt (4.9)

oY

m = ug = A m,
Substituting this into Equation 4.7 the natural frequency is

2
w, = CA W, (4.10)

where

C, = 4.13/X (4.11)
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The effects of these solutions are combined in the fellowing manner

to approximate the first mode frequency:

-:7 - fz- + -;12- (4.12)
1 2
Substituting Equations 4.6 and 4.10 and solving
o = c (8,0 o (4.13)
where S

This solution will be slightly different than the exact solu-
tion because the mode shape of the beam is not the same as the mode
shape assumed for solution 2. For beams with relatively large tip

masses, however, the difference is small.

4.4 Effect of Tip Mass

The shape of the tip mass must be incorporated in the design
analysis. This is done by considering the tip mass attached to the
end of the beam at some distance £2. Furthermore, assume the tip mass
is rectangular with dimensions a x b x b as shown in Figure 16. The

portion of the beam which is attached to the mass is therefore,

a= 288 (4.15)
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Recalling

A= — = pAsl

mt pab2

(4.16)

and assuming the tip weight is also made of steel, the dimension b

. .
b = -2-% (4.17)

where As is the cross sectional area of the beam.

is then

An additional relation can be written from the definition of

B in Equation 4.3. The radius of gyration by definition is

J/m_ where J is the tip mass moment of inertia. Therefore,
L

g Sim % m &+ v
e . (4.18)
mtl

Substituting for a and b and rearranging

2 a
o M o 08
8 V 3 e (4.19)

and a is the area ratio, AS/QZ. Equation 4.19 relates the non-
dimensional radius of gyration £ in terms of the non-dimensional
parameters &, A and a.

It is interesting to see a plot of P versus a, for various values
of A. 1In Figure 17, £ is 0.1 for all curves. R varies considerably

if the ratio of beam mass to tip mass, A remains constant.
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In Figure 18 some experimental values of A and B are presented
for ;omparison. These data show a practical design range for 8 is
between 0.09 and 0.14, and that a reasonable value of A is 0.13 if a
large tip mass is to be considered. On three of the four beams used
by reference 3,the value of A is 0.13.

Retaining a constant beam to tip mass ratio for all beams is
advantagenous in that the range.in lenéth of the beams tends to be
small for a wide variation in penetration factor. For example, a
smalf beam with a constant A would have a small tip mass and thereby
a small penetration factor. To increase the penetration, the beam
must be made longer resulting in a large tip mass. Similarly, a
large beam with a large tip mass must be made smaller to avoid exces-
sive penetration under impact. As a result, the beams used for both

sets of pipe are designed with a constant A of 0.13.

4.% Beam Design

T™e elastic beams described in reference 3 were designed to have
a range of natural frequencies from 20 to 200 hz. in order tc deter-
mine a shock spectrum and achieve a wide response to the applied
impulse. From the results shown in Figure 13, three of the four beams
exhibited small plastic deformations during the dynamic tests. Only
the low frequency beam at 20 hz. had a penetration above two. In
order to avoid this problem, the beams in this study are designed to
have appreciable plastic deformation by investigating a lower fre-
quency range.

The actual design of the beams begins with Figure 13. The basic

criterion is that each set of beams is required to achieve approximate




0 w—— - . i A A 4 1 1 i J

0 ST TR T T I T IS,
& x 10°
r
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penetrations of 8, 6, 4, and 2. These correspond to values of X at
0.85, 0.70, 0.50, and 0.30. To determine the corresponding length

of each beam consider

: a /2
e P (4.20)

w2

substituting Equations 4.4 and 4.13

2
ép mtl (CA + C

)
h B
X" 3EI C

(4.21)
x 8
The value of ap is 1.6 x 105 in./sec2 as determined from Figure 14.

The parameter CB’ however, is a function of length as is the tip mass.

m, = MR/ ' (4.22)

Therefore, the length cannot be determined directly from Equation
4.21. 1Instead, values of length are substituted until the necessary
values of x result. This procedure is used for both the 1-1/2 and
2-1/2 inch pipe and the final design data presented in Table 2. The
tip mass moment of inertia is found from the value of B obtained from

Equation 4.19.

R 5.
J=m 1, =B m (4.23)

From Table 2, notice the range of natural frequencies is much
smaller than that of reference 3 which ranged from 20 hz. to 200 hz.

The values of Cf are near one, indicating the moment of inertia and

beam mass have little effect on natural frequency compared to that

s

e A i Bt
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of the tip weight. None of the beams is extremely short, thus validat-
ing the assumption of pure bending. The longest beam is 39 inches,

which is not too long for a test beam of this size.

4.6 Results

The beam parameters developed in the preceding section were
entered in the response program VPBA (Viscoplastic Beam Analysis)
listed in Appendix D. In Table 3, these parameters are listed in
the form needed by the computer program and given designation for
identification in the results that follow. The segment lengths of
the beam are ASi except for the rigid element which has a length

AS Beam mass at each point is m, and the tip mass and mcment of

n-1°
inertia are m and J, respectively. The total number of points on
the beam is n, beginning with the support at point L

Choosing an exact value of C analytically is difficult. Instead,
the value used to obtain the results in this chapter is based on the
value used by Vogel (22) and corrected for the larger overall cross
section. Vogel (22) used a value of 2,000/sec whereas a value of
10,000/sec is used in this study. The effect of the difference is
shiown in Figures 26 and 29. The response is considerably different
for the results using the larger value of C. However,the major
effect is to reduce the moment in arecas of high curvature rate making
the curve more closely approach that of the static moment curvature
relation. This is mentioned by Jor=s (8) and discussed in Chapter 2.
In addition, the maximum curvature is larger using the larger value

of C--an effect also observed by Vogel (22).
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Results of the beams made with the 2-1/2 inch pipe are presented
in Figures 19 through 32, followed by data of beams made with the
1-1/2 inch pipe in Figures 33 through 37.

In Figure 19, the tip displacements of beams Al, A2, A3, and A4
are shown. The design method does give an even distribution of maxi-
mum displacement. Furthermore, secondary peaks occur in decreasing
magnitude with increasing frequency among the beaums. Thé maximum
displacement is shown to be a strong function of natural frequency
because the first peak occurs between 1.15 and 1.6 quarter periods
from initial impulse.

Figure 20 shows the tip mass rotation for each beam of set A.
The maximum tip mass rotation is also well spread like the displace-
ments. However, small oscillations resulting frem the initial wave
front being reflected back and fo?th along the beam are eventually
dissipated.

The tip mass acceleration, in, is presented in Figure 21 for the

longest and shortest beams Al and A4 respectively. The peak accelera-

tion of Al is much smaller because of its large inertia. The transient

responses of both masses are quickly damped through plastic deforma-
tion and they begin to oscillate at their natural frequencies.
Figure 22 presents the curvature at the support versus time. Two
things are interesting about these data:.
(1) the maximum curvature is nearly the same for all beams
except A4, and
(2) an initial plastic deformaticn occurs at approximately two

milliseconds.
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The init!  permanent set at the base is probably due to the sharp
rise time of the base velocity since this was not observed by
Vogel (22).

The moment-time relations at the fixed end are presented in
Figure 23. Corresponding to the curvature, an initial large moment
is observed. The moment then oscillates about the yield point, then
changes sign when the tip mass nears the second peak disflacement.
The moment is higher for the smallest beam, A4.

Figures 24 and 25 are presented in order to show all the loads
that act on the support. Only data for beams Al and A2 are given,
howevzr, a complete tabulation of maximum loads and displacements
are given in Table 4. Sharp initial shear forces are observed and
are quickly damped.

Next, moment curvature curves at station 1 are presented for
beams Al, A2, A3, and A4. Figures 26, 27, 26, and 29 show an ini-
tial unloading followed by several periodic unloadings. The curva-
ture finally reverses sign when the tip mass changes direction.
Notice the small time delay between the maximum moment and maximum
curvature caused by the large value of.C.

All of the above curves are timewise views of the output.
Figures 30 and 31 show a spanwise view of beam A2. In Figure 30,
the curvature at the support is seen to dominate the total beam
deformation. Even though some permanent deformation does occur at

other points on the beam, it is small compared to the deformation

near the support. Figure 31 shows the curvature rate at the fixed end
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and at a point near the mid-span. A phase shift in the two curves |

is evidence of reflected waves in the beam.
A comparison of the beam design with the actual results is made ]
in Figure 32. A shock spectrum is presented for the relatively small

frequency range for which the beams were designed. The solid line

represents the values of penetration, n, expected from the design of
the beams. If the value of n is based on the static yieid displace-
ment, the results are considerably different as given by the dashed
line.' As‘éhown in Figure 22, however, the bea. does not deform under
the action of an impulse as it would if a static load were applied.
In fact, an initial plastic deformation cccurs at nearly the same

tip displacement for all the beams. Therefore, basing the value of

n on a dynamic yield displacement (i.e., the tip deflection at which
% initial plastic deformation occurs anywhere on the beam) causes the
results to compare favorably with the initial design value as indi-
cated by the broken line.

In Figures 33 through 37, data from the beams made with 1-1/2 inch
pipe is presented for comparison. The tip mass displacements of
Figure 33 are similar to those in Figure 19 for the 2-1/2 inch pipe.
The magnitude of the maximum displacements, in fact, are quite close

for beams with the same design value of n.

The maximum curvatures in Figure 34 are approximately 1.5 times
those for the 2-1/2 inch pipe. A direct comparison is made in
Figure 35. The quicker return of the curve for beam B2 is due to

its slightly higher frequency.
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The base moments for beams A2 and B2 are shown in Figure 36.
Although the waveforms are similar, the moment in beam B2 is always
smaller because of the smaller cross section.

Finally in Figure 37, the tip mass rotations for beam A2 and
B2 are shown to be similar. The small reverse rotation exhibited
by both beams is caused by the initial wave reaching the tip mass.
Beam B2 shows slightly larger maximum rotation because of the smaller
rotational flexibility of the tip and a smaller moment of inertia.

The beams of sets A and B are quite different in length, cross
sectional size, and tip mass; yet the results show a close similarity.
Only small frequency and stiffness effccts affect the comparison of
the results. These results seeﬁ to verify the intention of the
design: to predict a significant plastic deformation of these

beams before a detailed analysis is made.
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CHAPTER 5

SUMMARY AND CONCLUSIONS

5.1 Summary

A finite difference computer method for analyzing the dynamic
response of cantilever beams having any applied velocity or accel-
eration function at the base is developed and checked with experi-
mental data. Viscoplastic effects are included through the use
of a constitutive equation suggested by Malvern (10). The program
is then used to investigate a set of beams with hollow circular
cross sections, designed by an empirical method based on a variety
of tests on cantilever beams. The beams are designed to achieve

a specified amount of deformation. The results are then compared.

5.2 Conclusions

The method of analysis developed is shown to be adequate in
predicting the response of beams under the impact of any input load-
ing function. Agreement with experimental and analytical data pre-
sented in Chapter 3 verifies the equations and methods used in this
analysis and lend credibility to the data presented in Chapter 4.

The constitutive equation is shown to be adequate in determining
the beam deformation but needs improvement in order to accurately
predict the internal loads. It does produce similar trends and
approximate magnitudes but more work is needed in order to calculate
the internal loads properly.

The design method presented in Chapter 4 was adequate in pre-

dicting a shock spectrum based on dynamic yieliding. The beams
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designed by this method achieved plastic deformation well beyond
the yield point. as expected. The effect of reflected waves was
pronounced on the base curvature of the beam causing an initial
set early in the beam response. This was due primarily to the
small rise time from the base velocity input used on all of the
beams.

Finally,theresponsesofbeamsetsdesignedwiﬂn1r1/2.inch pipe
aﬁd 2-1/2 inch pipe were remarkably similar for the same design
value of penetration. 9Jnly small frequerncy effects were evident in

the comparison of beam deformations.

5.3 Suggestions for Further Research

Certainly more work is needed in the development of a constitu-
tive equation that accurately determines internal loads. This must
come from basic research in the phenomenon of viscoplésticity. Until
that time the constitutive equation used in this study is accurate in
predicting displacements, slopes and curvatures, and gives quantita-
tive values for internal loads.

The test outlined theoretically in Chapter 4 should be carried
out in order to determine shock damage of piping networks. Two sets
of pipe are analyzed in order to allow flexibility in determining an
acceptable test arrangement.

Finally, work should begin toward a finite element type visco-
plastic program to analyze any structure--similar to those used in
elastic analysis today. Most programs to date have simply analyzed

single element structures (i.e., straight beams, single shells, rings,

or plates). None have combined these elements to form models of a
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realistic structure. The task indeed is formidable, however, the

direction of viscoplastic analysis must be toward this goal.
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APPENDIX A

STATIC MOMENT

A.1 Introduction

One of the problems that makes analysis of viscoplastic struc-
tures so formidable is that deformation depenas not only on the
instantaneous conditions of the beam, but also on the prgvious load-
ing or "loading history" of the beam. In this study such information

is included through determination of the internal static moment.

A.2 Problem Formulation

The problem of determining the internal static moment at any
station, i, along the beam and for any time, t, during the loading cycle
may be divided into four parts:

1. A test for loading and unloading,

2. Finding the static moment from the original curve with

origins at zero,

3. A means of retaining the essential information of the

loading history of the beam, and

4. Using the above data to find the static moment at any time.

A.3 Effect of Loading on Static Moment Curvature Curve

The moment-curvature curve can be thought of initially as an
upper curve and a lower curve symmetrical about the origin as shown
in Figure 38. The location of the origins of these curves is KUO‘and
KLO; both initially zero. If loading continues beyond the propor-
tional limit, P, to some point C', then a permanent curvature, K_,

exists in the beam and a new value for yield curvature Kg is set
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Figure 38. A Loading Cycle Near the Origin
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for the upper curve. As the beam is unloaded from point C', the
moment curvature relation is a straight line with slope EI and
bounded by the lower and upper yield curvatures: K; and Kg. The
origin of the lower curve is shifted to the right by KLO which is
also Ko in this instance.

If the loading continues past the yield point on the lower
curves (point D) to some point D', the permanent curvature is
reduced to a new value of Ké. In addition, a new lower yield point
of KE' is set and the value of Kg is reduced to correspond with point
C. The justification for this is as long as a permanent curvature
exists, the material will show some strain hardening effects.

A similar shift in the upper curve occurs if the permanent

; : L .
curvature Ko becomes negative and new yield curvatures K and Kg
3 3

are set as shown in Figure 39. Notice the lower curve does not

Ko>Xuo

Ko

Figure 39. Shift in Upper Curve
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change its position when the upper curve is shifted. The origins
of the upper and lower curves tend to remain at the extreme values

of Ko achieved during a loading cycle.
KUO(t) min (KO) . (A.1)
KLo(t) = max (Ko) (A.2)

Curves presented by Witmer, Wu, and Merlis (25) seem to alter
this gssumption somewhat. In Figure 40, a schematic of an experi-
mental stress strain relation obtained from repeated loading of a
plate shows that the upper and lower curves shift to the current
value of K.. No data were present, however, that show repeated

0

loading around the coordinate origin.

A

Figure 40. Schematic of LExperimental Stress-
Strain Loading Cycle
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It should be mentioned that this scheme of shiftiné origins
for determining the internal static moment is only an approximate
one. Obviously, the Bauschinger effect is neglected along with
any low cycle fatigue properties. The results presented by Vogel,
however, show good correlation using a similar method for ome cycle

or less in the elastic-plastic region.

A.4 A Test for Loading

A condition of loading occurs at a point when the magnitude
of the internal moment is increased. Since the internal moment is
what we seek to find, the curvatures must be used to determine a
condition of loading or unloading. Such determination is made through
the use of a loading function p(t), defined as

K(t) - K,
K(t) -K(t -At) (A.3)

p(t) =

The sign of the loading function determines the state of a point

on the beam.

Loading: p(t) >0 (A.4)

Unloading: p(t) <0 (A.5)

The numerator indicates which curve--(+) upper or (-) lower--
on which loading occurs and the denominator indicates increasing or
decreasing curvature.

For example, consider a condition of loading on the lower curve
as shown in Figure 41. The value of curvature is numerically

decreasing, i.e.,
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K(t) -K (t -At) < 0 (A.6)

and loading occurs on the lower curve where
K(t) =K. < 0 : (A.7)

0

The test function is therefore positive, indicating the beam is load-

ing.

A.5 'Initial Moment Curvature Relation

Because the moment curvature relation only shifts origins dur-
ing loading, it is useful to define a function g(K) which represents
the initial curve. A typical moment curvature curve, shown in
Figure 42, can be divided into three parts: a linear (elastic) range,
a non-linear (elastic-plastic) range and a linear (elastic-plastic)
range.

In order to use this information in a computer program VPBA, a
curve fit of m points on the actual curve is necessary. Note, the
first point is at the end of region 1 while the last two poigts are
at the beginning and end of region 3.

Regions 1 and 3 are simply linear relations as follows:
Region 1: g(K) = A; X (A.8)

where
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Figure 41.

Ms &

e

o i e ot o | i —

K(t -At)

K(t)

Determination of Loading Function

=~
~
=

pe b | m-1 m

Figure 42. Initial lioment Curvature Curve
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Region 3: g(K) = C0 + C1 K (A.10)
where
C, =M M /K K _,) (A.11)
and
% = Bay S b W:12)

Region 2, however, is approximated with an nth order polynomial curve

fit

Region 3: g(K) =B + B, K+ B K2+...+BnKn

0 1 2 (A.13)

The coefficients BO’ Bl’ o Bn are determined by the method of
least squares.

The complete function g(K) is then given by Equations A.§,
A.10, and A.13. For negative values, g(K) is considered an odd

function
g(-K) = -g(K) (A.14)

A.6 The Static Moment

By using the function g(K), the vglue of g(K) can be obtained
at any time during the loading cycle by knowing the shifts in origins
and change in yield points of the upper and lower curves. In Figure
43 a moment curvature curve is shown after some series of loadings
and unloadings has occurred around the coordinate origin. The upper

curve is shifted by an amount KU and the lower curve is shifted by
0

KL . The elastic line,or line of unloading, is located at Ko from the
0
coordinate origin.
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o

K

R

Dl
Figure 43. Calculating the Static Moment

First, consider loading in each of the following cases:
(1) The elastic region (C to D, or C' to D')
Mst = EI (K —KO) (A.15)

(2) The upper plastic region (D to E)

Mst = g(K - KUO) (A.16)

(3) The lower plastic region (D' to E')

M =8k -K.) (A.17)
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If unloading occurs (D to C, D' to C') then
Mst = EI (K -Ko) (A.18)

Unloading always follows the elastic line shifted by Ko.
In the special case where an unloading point occurs just after
i} L
a loading point, the values of K_, KUO’ KLO’ Ky’ and ky must be reset
before Equations A.15 through A.18 are used. Of course, initially

these values are

T S (A.19)
and

x;’ - K (A.20)

x; = K (A.21)

where Ks is the initial yield curvature shown in Figure 42.

If unloading begins from the upper plastic region (D to C), the
upper yield point is set equal to the last value of curvature. The
same is true for unloading from the negative plastic region (D' tc C').

From Figure 44, X can be found geometrically from the slope of the

0
elastic line.
U
g(K_ -K. ) '
EI = ——X-—LUO (A.22)
(XD K '
y O
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Figure 44. Unloading from the Upper Plastic Region

Solving for Ko
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R, = xg e S (A.23)

When the upper yield point shifts, the lower yield point also

changes. K; is found by determining the intersection of the elastic

line with the lower curve, as shown in Figure 45. At the intersecticn

the value of Hst can be found two ways: from the elastic line




B —

st

Elastic
Line

st f— kLO =K —

Figure 45. Lower Yield Point

= —L n
Mst (Ko Ky) EI

and from the function g(K)

L
Mst 8(KI.O i Ky)
Equating these and solving for

L

S 8K - K
y 0 EI

ekl
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(A.24)

(A.25)

(A.26)

s i B sl
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This transcendental equation must be solved iterativgly‘by guessing
an ipitial valug for K;. The best initial value is -Ks which is
the exact solution during the first cycle. Experience has shown
that convergence within one percent of the solution occurs in less
than ten iterationms.

Equations A.23 and A.26 are concerned with unloading from the
upper plastic region. However, if unloading first occurs from the
negative plastic region a shift in the upper curve is required. A
similar procedure is followed as outlined above, namely, the lower

yield point is set equal to the last value of curvature and

L
P
Ko Ky g EI (A.27)

In Figure 46,the intersection of the elastic line with the upper
plastic region is somewhat different. The value of the static

moment at Kg can be written as

U
Mst = (Ky -Ko) E1 (A.28)
and
U
Mat = g(l(y -KUO) (A.29)
wr U

Equating and solving for Ky

(A.30)

U
g(K_ -K..)
KU = ___JL_liﬂl. + K
y E1

0




Figure 46, Upper Yield Point

The procedure described above is used in the subroutine MFIND
of VPBA. It returns a value of Msti(t) given a Ki(t) by directing
the program to use one of the four equations (A.15, A.16, A.17, or
A.18) based on the knowledge of the loading function and the region
(elastic, upper plastic, or lower plastic) in which the value of
Ki(t) falls. 1If Ki(t) is an unloading point followed by a loading
point, the internal subroutine SHIFT is called to determine new values

U L L
of KUO’ KLO’ Ko, ky’ and Ky before the solution continues. The curve i

fit described in section A.5 is done before the solution is started
in subroutine LEAST. The function g(K) is stored as the subroutine

MSTO.
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APPENDIX B

MOMENT OF TIP MASS

The rigid element at the tip of the beam necessitates finding
the internal moment differently than those in the flexible portion
of the beam. The end moment Mn can be written in terms of the inter-

nal moments Hn— and Hn-Z which are known from Equation 2.23 in

1
Chapter 2. A force diagram of the last two elements of the beam are
shown in Figure 47. Five equations of motion are written as follows

in terms of the s-u coordinate system:

vn—l -vn~2 . (8.1)
Mo, M AV 8 &0 (8.2)
LN R L AR T (8.3)
Vh_l .- ﬁn (B.4)
M= =36 (8.5)

The assumptions used for these equations are those outlined in
section 2.2 with the addition that the. rotational acceleration of
the s-u coordinate system is small.

Further kinematical relations can be written as a result of the

rigid element.
6. =6 (B.6)

and
=6 .+88 .0 (B.7)
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combining these,

Yn - un—l ¥ Asn-l en (8.8)

Equations B.1l, B.3, B.4, B.5, and B.8 form a set of linear inde-
pendent equations in terms of the unknowns, vn-l’ uo_1» Mn, u s and
6n, which can be solved for Mn.

First, combine Equations B.5 and B.8 and substitute the result

into Equation B.4. Solving this for ﬁn—l gives,

M v

n
Yn-1 Asn-l 3

n~-1
m
n

(B.9)

Substituting Equation B.9 into Equation B.l and recalling from

Equation B.2 that

M -M
n-2 n-1
Vn_2 RN (B.10)
n-2

the following expression for vn-l is obtained.

-1
m m AS M -M
v _=[1+ 01 -l n=l o, m=2 nml) gy
n-1 m J n AS
n n-2

Finally, Equations B.1l1l and B.3 are combined to yield an expression

in the unknown moment Mn.

m AS AS
n-1 n-1 n-1
(1 " m ¥ As )Mn~1 % (AS ) Mn—2

n n-2 n-2
M =
n
m J
n-1 e
1+ -~ 3
n

Lk ke bk e s " " alanieo ke acn i v




wheie

2
.Je J + Qn ASn__

1 (B-13)

Thus Hn is shown to be a linear combination of the moments at two

stations inward from the tip..

T
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APPENDIX C
MOMENT CURVATURE FUNCTION FOR HOLLOW
CIRCULAR CROSS SECTIONS

The hollow circular cross section is among an entire class of
cross sections having a single discontinuity in geometry and at least
one plane of symmetry. Such sections as I-beams, U-channels, box
beam, and T-sections are all similar in these respects.

The internal bending moment is determined by assuming plane sec-
tions remain plane during plastic deformation and by using the
familiar equation,

M=/ yo(y) dA (c.1)

A

Some difficulty occurs in trying ko evaluate this integral if the
plastic deformation is present because the stress function adds
another discontinuity--the proportional limit or yield point.
Furthermore, the location of this discontinuity is not stationary
on the cross section, but changes with the beam curvature. For
this reason, the use of numerical integration is desirable. The com-
puter program MCURVE does this, given the stress-strain function and

the dimensions of the cross section.

The stress-strain relation is represented by three separate
curves as shown in Figure 48. Regions 1 and 3 are straight lines
with slopes E and E', respectively, while region 2 is represented by

t
an n " order polynomial curve fit.

0(e) = a,. + a.€ + a +...,ane“ (C.2)

0 2 3

for €, “E<CE
n—

1 1




|
I\ Proportional

Limit

™

€

B

m-1

Strain, €

Figure 48. Curve Fit of Stress-Strain Relation

For stress-strain relations that are elastic/perfectly plastic,
region 2 is omitted and E' = 0.

The moment on the cross section for a given curvature is found
by including in Equation C.l1 the geometry of the cross sectior and the
stress-strain function above. Assume the on-set of plastic deforma-
tion occurs at some location C above the midplane cf the cross sec-
tion as shown in Figure 49. Because these sections have thick walls
to prevent an instability, it is also assumed that no deformation of
the cross section occurs, i.e., the ring remains circular. This is
verified by Frick's (7) specimens that had less than 1/10 percent

eccentricity at the maximum curvature of the beam.
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Figure 49. Hollow Circular Cross Section

Substituting for dA, Equation C.l becomes

M=r /[ o(e) y AZ dy
A/4
However
2 2 2 2
= = - -, <

Az Pl ‘V P @ E R
and

Az = r2 —y2 . r, <y f_ro

These relations are made non-dimensional in terms o

ing

€ = K
(y) y

(C.3)

r (C.4)

(C.5)

f strain by recall-

(C.6)
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Therefore
bz = ez = gl - ) - Nelap - 2o .7
for
o < e(y) < e(ry)
and -
Az = RAZ = ;\/ez(ro) - 2 (C.8)
for

e(ry) < ely) < e(ry)

Substituing these into Equation C.3,and expressing the remaining

factors in terms of

4o e(ro) &
M= ——32— / €o (g) Az de (c.9)
K
where
oF - 2o (C.10)
P

The integral can be thought of as a shape factor,JﬁL, multiplying

the constant 4 GP/K3

.A.(e)

M= 40
Pyl

(C.11)
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where

e(ro) * ‘
_’\,(e) = é €0 (g) Az de : (C.12)

*
The functions Az and ¢ have discontinuities at e(ri) and
€(c), respectively.

The location of the yield point on the cross section is deter

mined from the curvature.
C=¢€(c)/K = ep/K (C.13)

The cross section first experiences plastic deformation when

Rl P The corresponding curvature is

Ko = Ep/r° (C.14)
and
MB = EI Ko (C.15)
The computer program MCURVE sweeps the value of curvature begin-
ning with K , finds the shape factor.ﬁ\, and determines the value of

o’
M from Equation C.9. The integral is only‘separated for the discon-
tinuity at E(ri) because other cross sections such as I-beams offer

a "jump-type'" discontinuity in the Az function as shown in Figure 50,

causing numerical problems in the integrationm.

i ot

s

Ao
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Kdw for 0 < €(y) < e(ri) ;
Az = (C.16) 1

Kdf for e(ri) < e(y) £ e(ro)

The discontinuity in the stress function is merely integrated through

using Simpson's Rule.

4 AZ
o r; 777 :{L dy |
l — 7, |
dw 1

Figure 50. I-Beam Cross Section
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Appendix D, Computer Listings are

given in reference [28], but are not

included in this report.
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