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The “Hub” and “Whee l” Scheduling
Problems

II. The Hub Operation Scheduling Problem (HOSP) : Mult i-
Period and Infinite Horizon , and the Wheel Operat ion

Scheduling Problem (WOSP) *

SANJI AIIISAWA

Mitsubishi Petrochemieal Co., Ltd., Tokyo, Japan

and

SALAH E. ELMAGHRABYt

The Catholic University of Leuven and She Europea n Institute for Advonce4 Studies
in Management , Brussels

We pur sue the anal ysis of the Hub Operation Scheduling Problem
(HOSP) over the f inite and infinite horizons. The demand is assumed
deterlnzni8tzc and stationary. We deduce the minimum f leet size Vr
that satzsf ies all demands for I � T � co , as well as the optimal
schedule that minimizes lost sales fo r a given f leet size smaller than VT.
Reintroducing the co8t8 of empties and of delayed sales or , equiv-
alently, the cost of empties and the gains from shipments, u’e resolve the
issues of optimal allocation and optimal schedule over a horizon
T � m . Finally, we generalize the above results—-still under the
assumption of deterministic, stationary demands—first to the case in
which each city communicates with its two “adjacent ” cities (this is
the “Wheel” problem) and then to the general network problem in
which each terminal may communicate with any other terminal.

n Part I of this stu dy I~ we dealt with the “cla.ssical ’ Hub Operation
Scheduling Problem (HOSP) as original ly formulated by M INAS AND

M vrrEN . 151 Perhaps the most important feature of that treatment is its
— 
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myopic character , since it eo!Isi(kr. s only the ‘‘curr , r i t  and th e n ext
scheduling periods.

In Part II  we extend the treatment to a horizon of arbi t rary h ng th ,
f ini te  or infinite. We limit th e analysis to deterministic 071(1 ron.stant (1df li ( l f l (l
at all terminals , which is in sharp contrast to the proba b ilistic cn ,niside r a—
tions of Part I. Se(’t ion I treats the case when the objective is to nh i nn i nu ize
the total number of delayed demand (which is assumed lost), which i~equivalent to minimizing the average number of delayed dennuid . I n .
Section 2 we consider the profit maximization (or cost ni in in l i za l iou)
problem. Finially , Section 3 is concerned with the generalizat ion of the
treatment to the Wheel Operation Scheduling Problem (WOSP).

While Part II can be read independentl y of Part 1, it would he of help
if the reader is familiar with Part 1, at least for the statement of the HOSI’
and for insi ght into the network flow computing algorithm. Of course , the
statement can also be gleaned from the paper of Minas and M i t t e n  refer-
enced above, or fro m ELMA G HRAB Y .  ~~

There are reasonable justificati ons for considering demand as (leter-
ministic and for paying attention to the lost sales case. First , assuming
constant demands at all terminals is tantamount to dealing with “certaint y
equivalents , ” which are reasonable surrogates for the random variables
from a practical point of view. It is often very difficult to obtain the data
necessary for determining (with reasonable accuracy) the probability dis-
tribution functions of demand. In such cases, certainty equivalents are
indeed useful substitutes. Second , the objective of minimizing the average
number of demand units delayed per period may be equall y realistic and
applicable as the penalty incurred for such delays because of two reasons:
(i) if all customers are equivalent, then the two criteria are, in fact , id entica l ,
and (ii) the problem of collecting the cost data with reasonable accuracy
may prove insurmountable , so that the penalty criterion becomes opera-
tionally infeasible.

In practice, complete equivalence of customers is a rarity and there
exists , in all probability, a hierarchy of priorities among them. The above
argument then applies to any single priority cla.ss.

1. THE MINIMIZAT I ON OF LO ST SALES

IN CONSIDERINn a horizon longer than two periods (the “current” plus t h e
“next” periods) we encounter several interesting question~, among which
we treat onl y the following two prob lems:

1. What is the minimum fleet size that satisfies all demand? (Recall
that we a.s.snme the demand to he deterministic and constant.)
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2. Given a fleet size smaller than that specified in 1, what is the optimal
scheduling pattern?

Let N ~ 11 , 2, . . .
, n~ denote the set of “outlying cities , ” 0 the nub ,

N0 ~ ~~ U N the set of all cities , and V the size of the fleet. We shal l
refer to the set W defined by

W ~ ~i,j ;  i,j  a N 0 but i and j  are not in N simultaneou sly) . ( 1. 1)

Furthermore, we define the constants qi and r , as follows :

max (d~0, d0~) and r~ = miii (d ,0, d0~) . (1.2)

Infinite Horizon

Let V~, i a N0, be the number of vehicles available at terminal i. The
following assertion gives the smallest number of vehicles sufficient to satisfy
all the demand without shortage.

ASSERTION 1.1. It i8 necessary and sufficient for a minimal f leet of size
V~ = ~~~ i.N , V,~ to satisfy all the demand , that She availabiltiy of vehicles at
all tenninals be given by

V,” = q,, i a N ,

Vo~ = EON qj.

H ence V5 = 2 ~~ qi. Any f leet of size V > V* will evidently also satisfy all
demand.

The proof of this assertion is by simple contradiction , and j s therefore
omitted.

COROLLARY 1.1. The number of empties shipped each period is given by

= d uo, i e N ,

e01 = V,” — d0~, i a N.

Thus, in order to incur no delays in the initial period , the minimum
number of vehicles, available at node i must be V~ = d~0, I N , and V0

— ~~.,.v V,. If the proper amount of empties are shipped (under the
total availability V5) to each outlying terminal , delays can be avoided
thereafter as well.

In the sequel we shall need the following notation : let M denote the
set of outly ing cities with more out-shipments than in-shipments per period ,
i.e.,

.11 ~ ~i a N :  d~0 � d0~ and M = N-M, (1.3)

Consider next the question of minimizing the average number of delays
(=  lost sales) per period for a given number of vehicles V < V~ . A schedule

I

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~
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yielding such a minimum will he called optimal , and is given by the following
algorithm.

Algorithm 1.1

There are three possible ranges of values of the total fleet. size V, with
each value demanding a slightly different procedure to obtain the optimal
schedule.

I . V � V5 ( = 2 E;~N q~). There should be no shortages at all except
perhaps in the first two periods due to a mismatch between vehicle
availabilities and demands at one or more cities. In period 1, at each
city i a N, ship V1 to the hub ; at the huh shi p q1 to as many cities as
possible. In period 2 repeat the same procedure : ship all V~ to the hub ,
i a N, and ship qi from the hub to all outlying cities . Starting with period
3, ship q, vehicles from each i a N to the hub and from the huh to each
outlying city. (In this procedure, we assume that the excess fleet
V — V5 will be retained at the hub. Any other desired distribution of
these excess vehicles can obviously be accommodated.)

2. 2 E~.N q, > V > 2 EON r 1. Here we must consider two cases :

(a) q. > V~ � r 1, iaN , and E~.N q, � V0 > EoN r 1. Let x11(i, j  a W)
denote the number of vehicles (full and empty) sent from i t oj
(see definition (1. 1)). For i a N , put x~0 = V1 (some of which are
empties in case is  M;see definition (1.3)). For the hub, put initially

= r, Y j  a N , and then increase x~, for j a M  up to q- for as
many terminals as possible using the remaining Vo — E0.~ r~vehicles. Repeat the above allocation each period.

(b) q1 > V~ ~ r~, i o N , and 2~~~ $.N q. > V > 2  E0N r~. This con-
dition encompasses the previous case a as a special case since here
V0 is allowed , at the outset , to be more than Eo.v q, or less thani
E ~ N r ,. Hence there are two subca,ses to consider :

(i) Vo > ~~ s.w q,. Put x~. = q~ for iaN ; for the outlying terminals
use the same schedule as specified in case 2a.

(i i) V0 < EI.N r 1. In period 1, for i a M put ij o  = max(r~, l~ — r~)
and put x0~ max~0; r . — (V . — r ,)~ for as many terminals
i a  M as possible; for i a ?~I , put x,0 = V1 — ( r ,  — x0~), where

= r. for as many terminals as possible (thus , at most one
terminal will have 0 < .r11, < r , and for the remaining terminals

= 0). In subsequent periods use the same schedule as
specified in case 2a.
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3. V < 2 EHN r~. Here again we must distinguish between two cases:

(a) V. = r 1 for i a N and V0 = EON r ,. (Hence the total fleet size is
V = 2 Ei.N ri.) Schedule r 1 shipments between each city i a N and
the hub , and vice versa . The number of shipments delayed each
period is equal to E..N(q. — r .) � 0, which is the minimum possible
under this fleet size.

(b) V1 < r , for all i a N and V0 < EON r ,. (Hence the total fleet size
is V < 2 E ON r1.) Schedule V. shipments between the hub and
outlying terminal i each period . The total delays per period is
fixed and equal to E~.11w d~, — V.

The above algorithm leads to the following :

ASSERTION 1.2. There exists an optimal stationary schedule such that the
vector of available vehicles in each period is cyclical of length at most two
periods.

For examples of the application of this algorithm (which is intuitivel y
quite transparent), the reader is directed to Reference [1J of Part I.

We now turn to the study of finite horizons.

Finite Horizon
Within the confines of a finite horizon we shall continue to assume that

the demands d11, i, j  a W, are constant.
Let 7’ be the number of periods in the horizon , and V*T the minimum

fleet size sufficient for no shortages over T.
For T = 1, it is obvious that V°’ is given by

V51 = Es.N(d,o + d01) .

For T = 2, a little thought reveals that

V52 = EON qi + max (E oN d~0 ; EON d0~)

where q, is as defined in Assertion 1.1. Notice that V5 ’ may be < 2 E.1N q..
For T � 3, we have

ASSERTION 1.3. V51 ’ = 2 EoN q~ T = 3, 4,

We shall not give a form al proof of this assertion; the interested reader may
consult Reference [1] of Part I. However , this assert ion should come as no
surprise in view of Assertions 1.1 and 1.2. For , if a cycle repeats in , at most ,
two periods, then it stands to reason that the finite-horizon-no-shortage
fleet may differ from the infinite-horizon-no-shortage fleet only if the
horizon is of length one or two periods.

—~ 

_ _ _ _  _ _  _ _
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In many instances there arises the question of the possibility of “holding
empties ” at a term inal i a N0, for one or several periods, in anticipation of
future demand. As a consequence of the above assertion , we have

C0K0LLARY 1.2. Let y , ,  denote the number of empties “held over ” at termina l
is  N 0 from period I t o  period t + 1. If Vr � V*T then an optimal schedule is
s.t. ~~it = 0 V i and t.

Consequently, we conclude that in the deterministic constant demand
case, since there is no incentive to have a fleet larger than V*T there shall
never be any empties carried over f rom one period to another at the same
terminal.

Next , we address ourselves to the problem of minimizing the number of
shortages over a finite horizon T, given a total fleet size V < V~’.

It. is assumed that a total fleet of size V can be freely distributed over
the terminals initially (i.e., the initial distribution of vehicles is con-
trollable). A total fleet of size V will be categorized into two cases : (1)
0 < V � 2 EON r~, (2) 2 EON r~ < V < V5 . A schedule is called
optimal if it minimizes the total number of delayed loads ( =  lost sales)
over T. When T = 1 or 2, the optimal schedule is easil y obt ained , amid
thus the length of the planning horizon will be considered to he 3 periods
or more.

For case (1), 0 < V � 2 ~~ r~, an optimal schedule can be constructed
as follows: set V, = r1, i a N , for as many terminals as possible and a.ssign
the remainder of the vehicles (if any) to the hub. Thus, we have V0 =

V — E0~’ V~ � ~~ r ,. For the outly ing terminals , put x10 = 1’, in the
first period and return the same number of vehicles to that terminal in
the second period. From the hub , send r. vehicles to outlying termin al i
for as many outlying terminals as possible (when V0 = E r ,, we can send
r , to all outlying terminals fro m the hub) in the first perio(l and return the
same number of vehicles from the outlying terminal s to the huh. Repeat
this procedure until the end of the planning period 7’. In this way , all
vehicles are kept loaded all the time; thus the schedule is obviously optimal.

For case (2),  2 E r~ < V < V° , the rationale for constructing an optimal
schedule is somewhat more complicated , albei t the final decision rules are
ex tremely simple. In the following we specify these decision rules and omit
their detailed justification in the hope that their logic is sufficientl y trans-
parent to excuse the omission.

ALGORITHM 1.2. Partition the set M of Equation (1.3) into two subsets as
foll ows:

M ,~~ l i  : d~0 > ~~~ M 2 ~ t i : d~0 = d 01) ,  M 1  + 2~f 2  = ~‘.‘I , (1.4)

—
I
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which leaves M = N — M = {i : d 10 < d0~ as before . Let
6. = id,o — d04,

the absolute difference in the two-way demands. It is apparent that the
pattern of shipments as well as the start and termination cities (we assume
that the initial allocation of the fleet is controllable) will both depend on
the demands as well as on whether T is even or odd. There are three cases to
consider.

(a) M1 empty; hence N = M2 + M.
Initi ally, assign r , vehicles to each i N and assign the remaining

vehicles ( =  V — EON r~) to the hub. In each period , starting with the
first , exchange r~ loaded vehicles between the hub and terminal ~ a N.
For a subset of the outlying terminals increase the shipments in the
first period to no more than Qi, and return the same vehicles (as empties)
to 0 in the following period.

(b) M is empty ; hence N = M = M1 + M2.
Initially, assign r~ vehicles to each outlying terminal i a N; and as-

sign E ON r , vehicles to the hub. The remaining vehicles (= V — 2

EON r .) are distributed among the outlying terminals in any manner ,
with each terminal receiving a maximum of Qi vehicles. Let the initial
allocation yield V. vehicles at terminal i a N ;  r~ ~ V1 � q. In each
period, starting with the firs t , ship V. loaded trucks from i a N to the
hub 0, and return the same V, to the same terminal in the following
period (some of which may be empty).

(c) M 1 and M are nonempty.
Initially, assign r , vehic les to each outlying terminal i N and

assign EoN r 1 vehicles to the hub. Subsequently, there are four
subeases to consider :

(i) EOMI 6. � Eo~ S~ and V � 2 E ON r , + EOM I &~. Add öi to
terminal iaM1 (bringing the total at each terminal to q.) and add
the remaining vehicles (=  V — 2 EON r~ — EOM I 6,) to the
hub.

The q vehicles at each terminal i a M,  travel back and forth
between i and 0 (some are empty on the return trip). The vehicles
at the hub are apportioned among the terminal s as follows :
for i a M , assign r , vehicles to travel back and forth ; for i a
assign r~ to all terminal s and apportion the remaining vehicles
among these terminals in any manner but with no terminal
allocated more than qi vehicles. The total vehicles assigned to 
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each terminal travel back and forth between these terminals
and the hub (some are empty on the return trip).

(ii) Eou a ô~ � E~ 6~ and V < 2 EON r~ + L.M~ 6,. Add 6, to
as many terminals iaM 1 as possible (bring ing their tot.al vehicles
to q.) and assign any remaining vehicles to any terminal j a M1 .
Denote the number of vehicles allocated to terminal i by I’,.

For each isM , ship mm (Vi,  qi) back and forth to the huh (some
of them are empty on the return trip). For each is~ f , shi p r , back
and forth to the hub. At the hub , ship and return r , to all outl ying
cities iaN.

(i ii) EOM~ 6. < ~~ and V � 2 EoN r~ + E~.If  6.. Add Eo~i 6,
vehicles to the hub. Apportion the remaining vehicles ( =  V — 2
EON r~ — E0M 6~) to outl ying cities i~Mi ill any manner but
with no terminal gaining more than q, vehicles.

From the hub , ship Qi loaded vehicles to terminals j aM and return
the same number of vehicles the next period (some as empties),
and ship r~ loaded vehicles to terminals j aM. From terminal
la Mj ,  ship mm ( Vi,  q,) loaded vehicles to the hub and return the
same number of vehicles the next. period (some as empties).
From terminals j aM 2 ship r , loaded vehicles and return them
(loaded) the next period.

(iv) EOM I 6, < ~~ 6, and V < 2  E0.~ r , + EOM 6~. Add the differ-
ence (2 EON r , + Eo~ ôi — V) to the hub. Apportion this differ-
ence among the terminals j aM in any manner , hut with no terminal
allotted more than q~ vehicles. Let terminal i he allotted V~
vehicles, j aM.

From the hub , ship V~ loaded vehicles to terminal j aM and
return the same number of vehicles the next period to the hut )
(some as empties), and ship r~ loaded vehicles to terminals i€if.
From terminal iaN ship r 1 loaded vehicles to 0 and return t.he
same number of vehicles the next period.

In all the cases enumerated above, the procedure is followed in all
periods except the last when no empties are shipped except to satisfy an
imposed restriction on the terminal location of the vehicles.

We also remark that the subset M2 does not play any role in the opti-
mi zation procedure since the allocation , as well as the traffic , is fixed at
r , between t he hu b and terminal i in all periods.

Ezample 7.1. Fleet size V = 36; T = 4, and the demands are as follows: 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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i I 3 4 .~ 
‘ I , t : t k

4 3 4 2 3 1 19
2 3 1 6 3 4 21

2 3 I 2 3 I 12
‘A, 4 5 4 6 5 4

2 2 3 4 2 3 16

Here M 1  = 4 , 5, 6L .1!~ = It , and M = 1 , 2. 3~ . We also h av e :
niax(E .~ ~ ,, ~~~~~ i ,~ = niax~9, 7 = 9. Not e t h a t

2 E , r , = 2 4 <  l~~= 3 6 < 5 6 = 2 E q , .

The allocation proceeds as follows :

~i) For the first 24 vehicles = 2 E~ r~ ~t t  1’ = r ,, all i •V an d
V0 = 12(= E~ r .

( i i )  Assign the next 9 vehicles to t er II i iua l s  4. . and ii whi ch ion ipo~e tb
set M1 so that V, < q ,  all 1

(iii ’~ Assign the remaining three v eh ic Ie ~ = 36 — 24 — 9 t t h h u h ,
node 0.

The shipment of vehicle s i — :ilway ~ ts~tweet i  t h e  huh  a unt  r h  ruu :ri:d
to which they were allocated except iii t h e  a~~I ~. t i l .  w h i  ~l u i t ~ i i i  i.~ I ,

~at~sf y demand. The p a t t e r mi  of shipment ~h a t  itt  I •~r

The Fully t t i l ized Fleet Problem
There rem ains eu! u ni nr e in te r e s t ing  p r oHeu ~~ r v i u t ~ Iut v t l g :Lt i uu

s~’hat i ’  th ~ I n a x i n i u n i  mi u mbe r  u t  vehi cl e— ih a ~ at u ~1 1t l ) t  . I
throug hou t the p l amiu t i r i g  horizon? T ht i ~. Ii retleeN t he  it t i t u i c l u  of a
“conse rvat ye shipper , an d tii p lie~. t he ;is~u i n i p m u i u  of urn ul u l u t e r i t i u t —  i tu i pa c t
of unsatisfied demo and at the den inr id it sel l . TI j e a v; r — ii p~ v b u d  uie e I
from the previou s r e s u l t s . r ind is g :ven by

r CouoLr ~~nv 1.3. The maximal number of tr ueks that can be f u l l r j  loaded ru t ill
time 1x ! E,,.~ r , , ass uming cons t an t demand unde j, endent of s up p ly ‘~f

5 .

2 . CO~~I’ MINI~ IIZ.%TION OR PROFIT MAXIMIZATION

Wa in. ~u th e n la ui d i s t u i t i t j our between the co—I couis id i r r t t iotis ii i  the
i nvup i t  a — t r ea tml in Part 1 and th e  cost (on siderat  iour ~ of interest iii
the  ext euided horizo n :t~~~. Ilere , t lie ( 051 of shortage of the A t  Ii shipment at

—

—

_______________________ -~~~~~~~~~
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e r i t i t i r t i l  , tien ot 1 l v  it . i i  r~ t o  i lie c — i  It  / . ~/ ~tl s . I I  o v h
co nc e pt etC t u e  (Ost (II sh i p p i t i g  ( t i t p t  I —  t r i a t i r —  I ii a n t e  :ts ui P:u u I
and we -hal l  u ) u i t i i i l i  t e e  rjeu ~~ i c  i t  i iY J~, l i t  u i t l ici  c l i i i m i t  h u t  v u r t

and t i n  hub. l }ie~e a t e  t i n  a u r l v  tWo  ~~ i t  to t in— i h r
l i i  our 5 U I ) 5 e ( ( u i e u i t  t rca t litelt t we sh all i gr s re  i t  a l d u i i , u t  or

t ract tou t  t ro u t  t he  f l e e t  i f  v u l t u e l e — , p r ev iou~ t v ( 1 ( 1 1  i d  t v .1 ,. The— t —  n i

t he — ak e of sm n i p l e  t v  of expo—i t  t e n t . boug h t h e ’  ku w i dg i t  :i l u l i t i o i t : e t
vehi cle ava i lab i l it i e s  or withdrawals. 1 ,. in pci e e l  t t i m e  lu a — i l v  iii—

i orporated in to  the  op t ima l  : t l loe at oir  t u b  ~eite  t r i t e .
Cost n m m u i j u m i j z r t t i e e m i  can In e : e s i t v  u) p l a e ( i I  by pmo tit uui ax uuii j zat io iu it

we’ re place the  negative view e e l  losing ~: i tu ~ tr y i i  ~t — i i i  cc vie c’ cr1
sati s fy ing den iret id.  Let ce , de n u d e t h e  profit a c e m u m e d  f ron e  .—:t r t~ I v u u i g  lb

/ t  h den tumi d at ? ( r u m e  t it : el 1 X ii~e t z:ith c u~— hi Ia t crab bet we u \ am I
i i  a vehicle is c it her loaded teo t Ii Way ~ ni I~ ( ‘ I t i p t V  ou i e way . I t  -

~ s l i n t-
th e  m na xi n i a l  net profi t j u t  010’ c ycle wh I le , by assumpti on ot e t iN l Vci

t we . pe rio d s ) when ri ve h i c l e  s ass igu ted tea e’ruu i i i  t ab i : t h u  ui

a ,~ 
—
~

— ~ ii vehi R I  I’ IS b orube d hot h cvttv ~
= I a,, — E if vehicle is r eturn ei l  e n t p t v .

II crc, the su i n e r t  pt k represeui t s the  in nt pa fit n i ch e  ~hi i m ete t available re t

and I r ep r e — e n t s  t h e  utat ~ t pr ofit able shi p m e n t  :t v : t i l a h le  at H , t i ed tb

~uper script cc i sig it: et — a h ate d av aila b le at the h u b  and destined t o
iowa1 I a S. A — t i t u l ar  ‘tp ie—st ( I i  e : u u i  h u e  W r i t t ~~li  for t’~, c t the  hub . ( e a r ly ,

Ii i  c i t  her view , the alioe ’n t n i t  of vu hie - Ie ~~ :i ut I t he i r  ~(-le( dri iiItr ~ err  pci-—
t or nied iii ,e s e q i t e - u r t i a l  t : e ~ b e i i t i t , o mi t ’  ve l n u le t i  ii t i i u i c .  T }ij ~ imi i i , i ed i ; il lv
fixe s the  ~ti I  ~e r e I i t s  k ar id ‘ i t t  t h e  aluc ve u l e t u t i i t  u r n  of -~

F in i te  H0r17 ’,n
In :e uie:tuttu r —iitiilar to t l i ri t e l  ~ e i - I  iou 2 of Part 1, ii t aut he shown t h a t

t h e  i u — t s  a lon g al l :ere~ of the  modified network tire i outve— x wi th  r e p  I to
te e - f l u  cu I I i i —  p e rn i i l s  i i~ t u  h) r n m t e m l : i t u -  the ’ proh l e iu e as a m i u i u n t u i i n  u—t flow

probl enu c u r d  eu u t i l i z e  t in  i t er a t i v e  procedure.
Ir e  th e Ie~e ’ ui p t  j on i ul tb. pr oc edure  we shall opt for a profi t  n iax i n u iz a t  ion

oh j u u i i v .  ii orde r to u l e u m e o u i s t r : i t ’  t he  u i t i l  I v  of the a t r i t e !  ‘y v a ] I i u — in—
t r oe l u c e i l  1 ny u- .

I t  e— evi l i t t  t l in t  t h e’ to t  at come f ro n t  a fleet of ~~~~~~ 

~ < 2 ~ r and
u i euit I , , . ri , i~ / 1, 1 i tu’ p  t i  ill ve h i c l e s are fully loaded in both th ee’ —

t ion i ~, a mid  i i i  t b .  l , :iel ~ w i l l  he c h ine - t i  t o  be the  most . l u c ra t ive  in the  dir ec—
t i e r i i i  wh ic h I her . t~ a ~hort : tc e l  vu h i r e lu ~~. J h u r t e e u  i (hr ulrxe ussmr t of

_ r
~

‘1
_ _  - . --—.~~~--‘- .- . _ _ _ _
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op timization eomnuenee .t at a cr1 /e l .  I’ � 2 ~ r , 1. lii whic h -a—e We lu t i st

distinguish between two ( lu ra t ion s  of the horizo n : T— ev enm ani ( i  T—~.d.l.
Sinc e the optimal schedule for T = I or 7’ = 2 u— c- :n u l v  calm —I r eme’ te ’ l , we ’
shall assume T � 3.

(1) T ice-en C = 2 m; in � 2.

Consider the first vehicle t in reality , it is the (2 ~~~ , r , ± 1 st y e - l i t t l e -
Suppose it is in i t ia l ly  available at the hub. There are’ two po ssibilitie s : ( i t
One can assign it to a load destined to sonic terminal j  front the bn ~t i u f

unsatisfied demand at the huh. Evidently this will he the l ist load
to that terminal , and it must he t rue that j  a 31. The vehicle must th en
return to the hub empty if it is to be used for the remainder of the horizon.
Consequently, the maximal net profit obtainable froni the operatio n of f l i t -
vehicle over the horizo n will be

max~,~~[ ; n(a ~ — E ) J ,  k = r~ + 1

Al te rna t i vely, one may send the vehicle empty to t erntinal j a.U in
anticipation of it s return loaded; ir e which case the maximal profit a t t a inab le
is given by

max ,,M e E m(a jk — E ,)].

Since we seek profit maximization , we search for the terminal n iaxiniizi n g
either of these two expressiofls , i.e., we seek

= max niax~,~j f m ( a~. — E ,) ] ;  mnax ,,e ( [m (a ,k — E , ]  . 2 .1 )

Next suppose that  the vehicle is init ial ly available at ou t ly ing  t e rmina l
j Mu . Sue ii vehicle’ will also have two possibilitie s: i i )  it can be sP i t !

loaded t o the hu h , ar id returns enipty for subsequent pc n e ieI . This cycle
repeats throug hout the horizon except in the last period , whe n the vehicl e
cart be utilized tn sat sly a demand fro m the hub to some’ te inm i u ea l  p a 31.
The’ maximal realizable profit from such op er ati ou- is given lc ~

p~ = nua x 0,~1 ( a~ ) + (in — 1 (a ~ — E ,)  + a t ,  t2.2

Al I ernat i ye-by, the ’ vehicl e j u i c y  be ’ ser i f empty to the ’ hu t I i i i i  a re t  ic i —

p ation of ii return houded C c c  the ’ terminal .  This cycle repeat s throug hout
the horizon except in tier Ins t Iee e p erwd.c , when th e ve hic l e ca n  he sent loaded
to the huh  ari d , front th e  l i t t l e , i t  is s - u r t  loaded to s a t i r e ’  e i n m t l y i n m g  t c r r mu in a l
p a 31- It is ic ot diffi cu lt t e e  — c - -  t ha t  the  n iax in ea l  i-e ’a lu zahle profit is t el — t i
given h~ P 2 of .‘xpr e’s— a eu ~? 2 i .

%\ e’ therefor e e e , nu-le ie l e ’  t ha t  t h e  o p t u n i e a b  a l locat io n et the fi r — t  ~ . - h i t e )u .
ar id its  sched ule of e c p e ’ r t a t i e u n i , is dete ’rnii ined by thue nn : ix ( P r .  p~. . :15 given
by 2 . I t  aicul 2 .2 1 .

‘4
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A similar analysis is done for the second availab le vehicle ( in r eality,

the (2 L. r , + 2)nd vehicle), the 3rd vehicle , and so forth , unti l  V is

exhausted .

i 2 i Ttodd ~~~~2f l t + l .  m �l -

Following similar reasoning we discover that  if an additi on al vehicle is

allocated to the hub its maximal profit is

p1’ = max { max~,,.~ 1m(a ~ — E 1) + at e] ;

max,,u E m ( a ,a — E.) 1 + mnax ,,~ a~~- (2.3)

On the other hand , if the vehicle is allocated tee  an outlying terminal , i t s

max i mal profit is

P2’ = max~max ,,,v(m(a ,k — E ,) + a,k~;

max1.~ 1m(a~ — E 5)] + max ,.~ a l k l .  (2.4)

The maximal allocation is evidently given by max (p a ’, p2 ), which also

determines the schedule.

Infinite Horizon

The treat ment in Section 2 paves the way to the immediate determi-

nation of the optimal schedule in the case of infinite horizon. In particular ,

if we adopt as an objective the maximization of average profit , then the

“corrections ” itt the ultimate (and penultimate) periods of the horizon in

expressions (2 ,3) ,  (2.3) and (2.4) lose their significance- Th e’ optimum is

thus seen to reduce to the choice of the terminal j  a N which satisfies the ’

expression :
max 1max ,,~i(a~e — E ,);  max~~M 1(a ,k —

The optimality of such a stationary policy is a direct consequence ,j f

the finiteness of the state space (as represented by the various possible

allocations of the fleet of size V over the termina ls of the system) and the

decision space in each period; see Reference 121.

3. THE WHE EL OPE RATION SCH EDULING PROBLE M ~WOSP)

THE WOSP is the first generalization of the HOSP treated in Part. I and

in Sect ion~ 1 and 2 of Part II. The a.s.sumption of limited bilateral operation

between the hub and outlying terminals previously assumed in HOSP is

partially rela.xed: arm outly ing terminal is now allowed to dispatch vehicles

on hand to two other “adjacent ” outlying terminals , where “adjacency ” to

j  is defined as terminals j  — 1 and j  + 1; and the numbers are taken around
a circlet in a “round robin ’ fa.shior m, Thus terminal I is adjacent to terminals

— 
‘
I

_ _  - _ _  _ _ _ _  
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a and 2; terminal S is adjacent to terminals I and 3, and so forth. Let e, de-
note the set of terminals “communicating” with terminal j  a N, ; then

= N, since the hub communicates with all i a N ,

= ~O; j  — 1,~ + 1 ) , j  ~ 1, a,

= = ~0;n — 1 , 1~.

A slight modification in notat ion from that utilized thus far is needed. The
set W defined in definition (1.1) is now expanded to include the set of
terminals adjacent to terminal i. We denote the expanded set by W, i.e. ,

I P=  {i ,j : i a N ; j a o t J  eel
The Minimization of Lost Sales

Here we concern ourselves with the .smaUes~ f iee~ thaI satisfies all demand.
Consider first a finite horizon of length T. Let a node (1k) represent

terminal I a N, in period k, k = 1, 2, ‘ ‘ S , T. Introduce the fictitious source
& and terminal I. Let x,, denote the number of loaded vehicles from node
~~ ~~~~ (1k) to node r~ ~-s (j,  k + 1). Then the determination of the minimum
number of vehicles yr that satisfy the demands at all times during the
horizon of length T is given by the following LP:

mm VT

s.t. E,e~ (X ((~~) .aJ . fr+1)) ‘~~ X(( J , k—1 ) .( ek) ) ) = 0, V i€1Vo;j a e~, k = 0, 1, . . .
, T— i

X(S .551)) V~. = ~~~~~~~ ~u’~ h

X((O).(j.k-4-l)) � d~1; V idJ,, j ~e~, k = 0, 1, ..~ , T — 1

all Xe.,, � 0 and integer.

This is a straightforward flow minimization problem subject to lower
bounds on the flow on each arc. It is well-known (see, e.g. , Reference 141)
that the minimum valu e V*r is equal to the maximum sum of the lower
bounds of all cut-sets between nodes~ and I. A labeling procedure yields the
desired optimum V*T directly. It initiate s from node I since we will start
with a large flow throug h the network and find a sequence of flow-decreasing
paths. The labeling procedure is as follows :

Step 0. Generate an initial feasible flow , large enough (see below).
Step 1. Label I with (i,co).

Step S. Label node (IT), i a N,, with (I, X ((er) ‘I).
Step 3. (Backward labeling) For each unlabeled node 1 a e,, h .-‘ (1, k — 1),

£ ~-* (jk ) , where x 1~ > d&t, assign the label (1+, a(h)) where a(h) =

mm (a(j), xaj — da ,J .

—~~i
— 
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F’orward lab el int g For e ’a cl m emni l aleele d node j t  i , I~ . . ~, I: —

I ~~- ‘ ,iI, , assign the ’ labe l (h ~ , a( l )) where a~ I j = ~ t I ~

~hp  . . It imode ’ h ‘—f ( i  1) , ie.\ ’~ , is labeled wi th  a (I ,  , t he ’ n i  ala ’! i wi t h
fh , win a(h) ,  X~~h II.

.~ tc J) t~ . If ~ 15 not labeled ( imoim br ea kt hroug h) , the curr t ’nm t f i t  W I —. upt in mal
If is lahs’lt ’d (breakthrough) decrease the flow along ‘‘forward’’
arcs in th e ‘‘flow path’ ’ by a~~ , amid nma’r e:esc the flow along ‘‘re-
verse ares by a(s) .  Erase all lab e ls an(1 r e t u r n  to step 2. (Here a
‘‘forward’’ are refers to an arc whose’ direc t ion is th e same as the
path from ~ to /; a ‘‘ reverse ’’ arc li:m ~’ i t s  arrow iii t he ’ opposite
direction to the path.)

Any arbi t rary  large flow cal m se rve ’ as in i t i a l  feasible flow sin ce ’  ther e are
no upper hounds on the arc capacit k’s, only lower bound s (equal tee il , , .
however , I” = 2 E~ ~~~~ q~ is sufficient since it  ear m be easily secni that
the desired minimum , ‘~ ~‘, can never e’xce’ed th is  number. Indeed , the
desired minimum is bound as follows : 2 ~~~ , , , ,~ r~1 < l’~~

’ � 2 Ei..’.i qij .

Example 3.1

Let N,  = ~O, 1, 2~, i. e., there are only two outlying terminals , and
T = 3. The demand is as shown in Table I . The ini t ia l  feasible solution
is shown in Figure 2(a), in which we introduced flow equal to 2~~ q,j = 36,
In Figure 2(b) the labeling indicates that there are three independent flow
pa ths , with reductions equal to 1 each. When these reductions are effected
the result is the flow shown in Fi gure 2(e) . Another lab e l iimg step detect s

TABLE I

0 1 2 0 1 ~

0 5 3 5 7

2 

6

‘ This ~s the complete path between S and twith all its nodes labeled wi th  at leas t a(s),

L _ _  
_________
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~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

____ 
c~

Ib) £TIUUW 1

Fig. 2. Labeling procedure for Example 3,1.

the flow path , s, 21, 12, 01, 22, 13, 1 (note the forward arc (12, 01) with
a (8)  = 2). The total flow is now reduced to only 31 vehicles , and we obtain
the arc flows shown in Figure 2(d) . The labeling step, applied to Figure
2(d), results in nonbreakthroug h; hence the optimal is in hand.

The minimal cutset. is also shown on Figure 2(d). Note that the optimal
value y*T = 31 indeed lies between the specified bounds of 20 and 36. To
the extent that it is strictly less than 2 E 9e ,, the difference is attributable
to the balance brought into the system due to the capability to shi p along
the “rim ” of the “wheel. ”

Although the above labeling algorithm is quite simple and straight-

—

_ _ _  
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forward , we present some results on the nature of the cut which reduce the
computation of V*D.

ASSERTION 3.1. if n ~ 3, then VaT = E, *N. max ~~~~~~~~~ d ,,, ~~~ d , 11
V T � 2.

Proof. Denote the cutset by (Y , 1’) ,  where ~ is the set of labeled nodes
(from 1~ and Y is the set of nonlabeled nodes. Let I(Y , ?) denote the sum of
the lower bounds on flow fro m nodes in Y to nodes in Y, Then the cut with
the maximal l(Y , Y) is the one sought. For the case where n � 3, every
terminal is connected to all others . As is clear from the labeling procedure ,
there are only five kinds of cuts , as depicted in Figure 3. Recall that all arcs
from Y to Y have flows at their lower bounds, which are equal to d ,1 in our
model. Thus, if for any 1aN0, E �4 d~1 � ~~~~~ d 1 ,  then node h #-

~ 
(1, T — 1)

is inc luded in Y; i.e., it is not labeled. Otherwise, if ~~, .  d~, > E �. d ,4 ,
then h(i, T — 1) is includ ed in 1’; i.e, , it is labeled. Summing over all nodes
of the modified network the conclusion is obtained . Q.E.D.

The logic of the above proof extends to the more general case of a network
in which every terminal is permitted to communicate with alt terminals.
We thus have

COROLLARY 3.1. (A Generalization) if all terminals communicate with each
other , then

var = max 1 E3�m d41, ~~~ j ~t s d ,~l,  T � 3.

This solves t.he case of a general network with all terminals communicoling
with each other.

o 0 Ojo 0~0 0~0

o 0 0  0€0 ®J® 
~~~~

0 0 0 0 00 0 00 0

0 0 0 0 0 00 00 0
Fig. 3. The five poasihle cuts with three outl ying terminals .
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The above assertion specifies the optimum fleet over a f l i m i t e  ho r i z een m .
In the case of a very long, or unbounded horizon , we have :

ASSERTION 3.2. For all T � 3, V~7~ = constant = j * 3

Proof. In searching the cut wi th  the maximal l (} ’ , Y) ,  the n e t w o r k  for
T = 3 provides all the possible cuts for the case of T � 3 sin ce the cut can
traverse at most two periods . Thus we se arch all possible cuts where we
search the network with T = 3. Wher e T � 3, because of the stati onaritv of
demands , no cut with larger l ( Y, 1)  can be obtained. Q.E. I).

Thus, for any size WOSP, we can find V*T for any T Ic y simpl y comput i n g
for T = 3. (Note that V~’ and I~ *2 are immediate.)

Finally, there remains the isSue of minimizing the lost sales given a fixed
fleet V, 2 ~~~ r 1~ < V < V~, over the f ini te  or the infinite horizon. It is
easily seen that , for the finite horizo n , the problem is solved through a
cost-minimization model similar to that proposed in Section 1. Further-
more, a cycle will he discerned for T � 3 which will repeat forever in the
case of an infinite planning horizon. Such a cycle can be demonstrated to he’
at most of period (a + 1) where n is the number of outlying tern m in al s
(see As.sertion 1.2). Consequently, a cost minimization problem over a
f inite horizon of T � 2(n + 1) will guarantee the detection of the optimal
allocation and the corresponding optimal schedul(’.
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