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The “Hub” and “Wheel” Scheduling
Problems

I1. The Hub Operation Scheduling Problem (HOSP): Multi-
Period and Infinite Horizon, and the Wheel Operation
Scheduling Problem (WOSP) *

SANJI ARISAWA
Mitsubishi Petrochemical Co., Ltd., Tokyo, Japan
and

SALAH E. ELMAGHRABYt

The Catholic University of Leuven and the European Institute for Advanced Studies
in Management, Brussels

We pursue the analysis of the Hub Operation Scheduling Problem
(HOSP) over the finite and infinite horizons. The demand is assumed
deterministic and stationary. We deduce the minimum fleet size Vr
that satisfies all demands for 1 < T < o, as well as the optimal
schedule that minimizes lost sales for a given fleet size smaller than Vr.
Reintroducing the costs of empties and of delayed sales or, equiv-
alently, the cost of empties and the gains from shipments, we resolve the
issues of optimal allocation and optimal schedule over a horizon
T < «. Finally, we generalize the above results—still under the
assumption of deterministic, stationary demands— first to the case in
which each city communicates with its two “adjacent” cities (this is
the “Wheel” problem) and then to the general network problem in
which each terminal may communicate with any other terminal.

In Part I of this study!! we dealt with the ‘“classical” Hub Operation
Scheduling Problem (HOSP) as originally formulated by Mixas aNp
MrtTEN.!8 Perhaps the most important feature of that treatment is its

* This research was partially supported by NSF grant PIK1470-000; ONR Contract
N 00014-70-A-120-0002; and contract DA-ARO-D-31-124-72-G106.
t On leave of absence from North Carolina State University, Raleigh, N. C.
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myopic character, since it considers only the “current’ and the “next”
scheduling periods.

In Part II we extend the treatment to a horizon of arbitrary length,
finite or infinite. We limit the analysis to deterministic and constant demand
at all terminals, which is in sharp contrast to the probabilistic considera-
tions of Part I. Section 1 treats the case when the objective is to minimize
the total number of delayed demand (which is assumed lost), which is
equivalent to minimizing the average number of delayed demand. In
Section 2 we consider the profit maximization (or cost minimization)
problem. Finally, Section 3 is concerned with the generalization of the
treatment to the Wheel Operation Scheduling Problem (WOSP).

While Part II can be read independently of Part I, it would be of help
if the reader is familiar with Part I, at least for the statement of the HOSP
and for insight into the network flow computing algorithm. Of course, the
statement can also be gleaned from the paper of Minas and Mitten refer-
enced above, or from ELMAGHRABY. 3

There are reasonable justifications for considering demand as deter-
ministic and for paying attention to the lost sales case. First, assuming
constant demands at all terminals is tantamount to dealing with “certainty
equivalents,” which are reasonable surrogates for the random variables
from a practical point of view. It is often very difficult to obtain the data
necessary for determining (with reasonable accuracy) the probability dis-
tribution functions of demand. In such cases, certainty equivalents are
indeed useful substitutes. Second, the objective of minimizing the average
number of demand units delayed per period may be equally realistic and
applicable as the penalty incurred for such delays because of two reasons:
(i) if all customers are equivalent, then the two criteria are, in fact, identical,
and (ii) the problem of collecting the cost data with reasonable accuracy
may prove insurmountable, so that the penalty criterion becomes opera-
tionally infeasible.

In practice, complete equivalence of customers is a rarity and there
exists, in all probability, a hierarchy of priorities among them. The above
argument then applies to any single priority class.

1. THE MINIMIZATION OF LOST SALES

IN CONSIDERING a horizon longer than two periods (the “current’ plus the
‘“next'’ periods) we encounter several interesting questions, among which
we treat only the following two problems:

1. What is the minimum fleet size that satisfies all demand? (Recall
that we assume the demand to be deterministic and constant.)
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2. Given a fleet size smaller than that specified in 1, what is the optimal
scheduling pattern?
Let N 2 {1, 2, ---, n}| denote the set of “outlying cities,”” 0 the nub,
No 2 {0} U N the set of all cities, and V the size of the fleet. We shall
refer to the set W defined by

'i W 2 {4, j;1,j ¢ Nobut 7 and j are not in N simultaneously}. (1.1)

i Furthermore, we define the constants ¢; and r; as follows:

¢ = max (dio, do.') and ry = min (d.o, do.‘). (12)

Infinite Horizon

Let V;, ¢ € No, be the number of vehicles available at terminal ¢. The
following assertion gives the smallest number of vehicles sufficient to satisfly
all the demand without shortage.

AsseRTION 1.1. It 18 necessary and sufficient for a minimal fleet of size
V* = 3 i, Vi* to satisfy all the demand, that the availabiltiy of vehicles at

all terminals be given by
V.’* = q.‘, 7: € N,

Vo* = ZicN qi.
Hence V* =2 Y qi. Any fleet of size V > V* will evidently also satisfy all
demand.
The proof of this assertion is by simple contradiction, and is therefore
omitted.

COROLLARY 1.1. The number of empties shipped each period is given by
eo = Vi* — di, 7eN,
€ = V.'* == dm‘, iE N

Thus, in order to incur no delays in the initial period, the minimum
number of vehicles available at node 7 must be V; = di, ¢ ¢ N, and V, =
V* — Y. V. If the proper amount of empties are shipped (under the
total availability V*) to each outlying terminal, delays can be avoided
thereafter as well.

In the sequel we shall need the following notation: let M denote the
set of outlying cities with more out-shipments than in-shipments per period,

ie.,

M3 (i eN:dyg > doi) and M = N-M. (1.3)

Consider next the question of minimizing the average number of delays
3 (= lost sales) per period for a given number of vehicles V' < V*. A schedule
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yielding such a minimum will be called optimal, and is given by the following
algorithm.

Algorithm 1.1

There are three possible ranges of values of the total fleet size V, with
each value demanding a slightly different procedure to obtain the optimal
schedule.

L.V =2 V(=2 Z\'«N ¢:). There should be no shortages at all except
perhaps in the first two periods due to a mismatch between vehicle
availabilities and demands at one or more cities. In period 1, at each
city ¢ ¢ N, ship V; to the hub; at the hub ship ¢, to as many cities as
possible. In period 2 repeat the same procedure: ship all V, to the hub,
7 ¢ N, and ship ¢, from the hub to all outlying cities. Starting with period
3, ship ¢, vehicles from each ¢ ¢ N to the hub and from the hub to each
outlying city. (In this procedure, we assume that the excess fleet
V — V* will be retained at the hub. Any other desired distribution of
these excess vehicles can obviously be accommodated.)

22w >V>2 > iex 7:. Here we must consider two cases:
(a) gi > Vi 2 1, ieN, and Z:‘.N > Vo> Dinr Let 26,5 ¢ W)

denote the number of vehicles (full and empty) sent from 1 to j
(see definition (1.1)). For 7 ¢ N, put z;,0 = V; (some of which are
empties in case 7 ¢ M ; see definition (1.3)). For the hub, put initially
zo, = r; V¥ j e N, and then increase z,, for j ¢ M up to g, for as
many terminals as possible using the remaining Vo — D v r:

vehicles. Repeat the above allocation each period.

(b) > Vi>r, ieN, and 2 Juv i > V > 2 X ;v ri. This con-
dition encompasses tt.e previous case a as a special case since here
Vo is allowed, at the outset, to be more than ) .. ¢. or less than

iev Ti. Hence there are two subcases to consider:

i) Vo> Z.-.N gi. Put zoi = g for e ; for the outlying terminals
use the same schedule as specified in case 2a.

(i) Vo < E.-.N ri. In period 1, fori ¢ M put 2,0 = max(r, Vi — ry)
and put zo; = max{0; r; — (V; — r;)} for as many terminals
i€ M as possible; for i ¢ M, put z;o = Vi — (ri — z0:), where
Zoi = r, for as many terminals as possible (thus, at most one
terminal will have 0 < xo; < r; and for the remaining terminals
zo; = 0). In subsequent periods use the same schedule as
specified in case 2a.
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3. V < 2 Y i 7. Here again we must distinguish between two cases:

() Vi=rifor ie N and Vo = 2 v 7. (Hence the total fleet size is
V = 2 Y. i) Schedule r, shipments between each city i ¢ N and
the hub, and vice versa. The number of shipments delayed each
period is equal to Z.-.N(q.- — r;) > 0, which is the minimum possible
under this fleet size.

(b) Vi <r;forallieN and V, < Zi.N r.. (Hence the total fleet size
is V < 2 2 i ) Schedule V, shipments between the hub and
outlying terminal i each period. The total delays per period is
fixed and equal to > _: ;w dij — V.

The above algorithm leads to the following:

ASSERTION 1.2. There exists an optimal stationary schedule such that the
vector of available vehicles in each period is cyclical of length at most two
periods.

For examples of the application of this algorithm (which is intuitively
quite transparent), the reader is directed to Reference {1] of Part L.

We now turn to the study of finite horizons.

Finite Horizon

Within the confines of a finite horizon we shall continue to assume that

the demands d;;, ¢, j ¢ W, are constant.
Let 7 be the number of periods in the horizon, and V*T the minimum

fleet size sufficient for no shortages over T.
For T = 1, it is obvious that V*! is given by

VE = 3 in(dio + doi).
For T = 2, a little thought reveals that
V2 = 3w g + max (Xiew dio 5 2ien dos)
where ¢; is as defined in Assertion 1.1. Notice that V*? may be < 2 T
For T > 3, we have
ASSERTION 1.3. V*T = 23> invg, T =3,4,...

We shall not give a formal proof of this assertion; the interested reader may
consult Reference [1] of Part I. However, this assertion should come as no
surprise in view of Assertions 1.1 and 1.2. For, if a cycle repeats in, at most,
two periods, then it stands to reason that the finite-horizon-no-shortage
fleet may differ from the infinite-horizon-no-shortage fleet only if the
horizon is of length one or two periods.
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In many instances there arises the question of the possibility of “holding
empties’’ at a terminal ¢ ¢ N, for one or several periods, in anticipation of
future demand. As a consequence of the above assertion, we have

CoRoLLARY 1.2. Let y,, denote the number of empties ‘‘held over” at terminal
i € No from period t to period t + 1. If Vo < V*7 then an optimal schedule is
st.yu=0Viandt

Consequently, we conclude that in the deterministic constant demand
case, since there is no incentive to have a fleet larger than V*7 there shall
never be any empties carried over from ome period to another at the same
terminal.

Next, we address ourselves to the problem of minimizing the number of
shortages over a finite horizon T, given a total fleet size V < V*7.

It is assumed that a total fleet of size V can be freely distributed over
the terminals initially (i.e., the initial distribution of vehicles is con-
trollable). A total fleet of size V will be categorized into two cases: (1)
0< V<22 inr, (2 22unri <V <V* A schedule is called
optimal if it minimizes the fotal number of delayed loads (= lost sales)
over T. When T = 1 or 2, the optimal schedule is easily obtained, and
thus the length of the planning horizon will be considered to be 3 periods
or more.

Forcase (1),0 < V < 2 X v i, an optimal schedule can be constructed
as follows: set V; = r,, i ¢ N, for as many terminals as possible and assign
the remainder of the vehicles (if any) to the hub. Thus, we have V, =
V — Z.-,N V: < Z r.. For the outlying terminals, put z,, = V, in the
first period and return the same number of vehicles to that terminal in
the second period. From the hub, send r; vehicles to outlying terminal ¢
for as many outlying terminals as possible (when V, = 3" 7, we can send
r; to all outlying terminals from the hub) in the first period and return the
same number of vehicles from the outlying terminals to the hub. Repeat
this procedure until the end of the planning period 7. In this way, all
vehicles are kept loaded all the time; thus the schedule is obviously optimal.

For case (2),2 3. r¢ < V < V*, the rationale for constructing an optimal
schedule is somewhat more complicated, albeit the final decision rules are
extremely simple. In the following we specify these decision rules and omit
their detailed justification in the hope that their logic is sufficiently trans-
parent to excuse the omission.

ArGoriTHM 1.2, Partition the set M of Equation (1.3) into two subsets as
follows:

l‘fle ‘l b d.o > doi}r Mzﬁ'lz . d,'o = do,‘}, M] + Mz = “1, (14)
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which leaves M = N — M = {7 : diy < do) as before. Let

5;’ = |d,'o = do"’,

the absolute difference in the two-way demands. It is apparent that the
pattern of shipments as well as the start and termination cities (we assume
that the initial allocation of the fleet is controllable) will both depend on
the demands as well as on whether T is even or odd. There are three cases to
consider.

(a) M, empty; hence N = M, + M.

(¢)

Initially, assign r; vehicles to each 7 ¢ N and assign the remaining
vehicles (= V — . 1) to the hub. In each period, starting with the
first, exchange 7; loaded vehicles between the hub and terminal i ¢ N.
For a subset of the outlying terminals increase the shipments in the
first period to no more than ¢;, and return the same vehicles (as empties)
to 0 in the following period.

‘(b) M is empty; hence N = M = M, + M,.

Initially, assign r; vehicles to each outlying terminal ¢ ¢ N; and as-
sign Y. 7; vehicles to the hub. The remaining vehicles (= V — 2 -
D v 1:) are distributed among the outlying terminals in any manner,
with each terminal receiving a maximum of ¢; vehicles. Let the initial
allocation yield V. vehicles at terminal ¢ e N; r. < V; < ¢.. In each
period, starting with the first, ship V; loaded trucks from i ¢ N to the
hub 0, and return the same V; to the same terminal in the following
period (some of which may be empty).

M, and M are nonempty.

Initially, assign r; vehicles to each outlying terminal 7z« N and
assign D . ¢ vehicles to the hub. Subsequently, there are four
subcases to consider:

() Zi-u. 6 2> Z-‘.ﬂ d;and V > 2 E“.N ri + ZieM. 5:. Add & to
terminal 7eM (bringing the total at each terminal to ¢:) and add
the remaining vehicles (= V — 2 Y v i — D iem, 8:) to the
hub.

The ¢; vehicles at each terminal 7 ¢ M; travel back and forth
between 7 and 0 (some are empty on the return trip). The vehicles
at the hub are apportioned among the terminals as follows:
for i ¢ M, assign r, vehicles to travel back and forth; for i ¢ M,
assign r; to all terminals and apportion the remaining vehicles
among these terminals in any manner but with no terminal
allocated more than ¢: vehicles. The total vehicles assigned to
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each terminal travel back and forth between these terminals
and the hub (some are empty on the return trip).

Zuu, o 2> Euﬁ d;and V < 2 Z.’.N ri + Euﬂl. 8. Add &, to
as many terminals zeM, as possible (bringing their total vehicles
to ¢:) and assign any remaining vehicles to any terminal 7eM,.
Denote the number of vehicles allocated to terminal ¢ by V..

For each 7eM, ship min (V, ¢:) back and forth to the hub (some

of them are empty on the return trip). For each €M, ship r, back
and forth to the hub. At the hub, ship and return r; to all outlying
cities 7eN.
z:mv. 4 < Zm\‘l and V > 2 va re + Zim 6;. Add E.’..T: o5
vehicles to the hub. Apportion the remaining vehicles (= V — 2 -
DN Ti — Dim 8:) to outlying cities teM, in any manner but
with no terminal gaining more than g, vehicles.

From the hub, ship ¢; loaded vehicles to terminals zeM and return
the same number of vehicles the next period (some as empties),
and ship r; loaded vehicles to terminals 7eM. From terminal
1eM,, ship min (V,, ¢.) loaded vehicles to the hub and return the
same number of vehicles the next period (some as empties).
From terminals ieM, ship r; loaded vehicles and return them
(loaded) the next period.

D ien, 8 < E.‘.'ﬁ s;and V < 2D w7 + 2 it 8:. Add the differ-
ence (2 E..N ri + ZMTI 8; — V) to the hub. Apportion this differ-
ence among the terminals ¢eM in any manner, but with no terminal
allotted more than ¢; vehicles. Let terminal 7 be allotted V;
vehicles, ieM.

From the hub, ship V; loaded vehicles to terminal 7eM and
return the same number of vehicles the next period to the hub
(some as empties), and ship r; loaded vehicles to terminals 7e}.
From terminal 7eN ship r; loaded vehicles to 0 and return the
same number of vehicles the next period.

In all the cases enumerated above, the procedure is followed in all
periods except the last when no empties are shipped except to satisfy an
imposed restriction on the terminal location of the vehicles.

We also remark that the subset M, does not play any role in the opti-
mization procedure since the allocation, as well as the traffic, is fixed at
ri between the hub and terminal ¢ in all periods.

Example 1.1. Fleet size V = 36; T = 4, and the demands are as follows:
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1 1 2 g 4 '5) t Totals
dy, 1 ) 4 2 3 1 19
d;o 2 3 1 6 9 4 21
r, 2 3 1 2 3 1 12
s 4 b 4 6 5 4 28
8, 2 2 3 4 2 3 16

Here M, = {4, 5, 6}, M, =@, and M = {1, 2, 3{. We also have:
max(D_u, 8, 23 8) = max(9, 7) = 9. Note that

2Y iri=20<V=236<5=2D>.q.
The allocation proceeds as follows:

(i) For the first 24 vehicles (= 2 >, r), set V., = r, all i e N; and
Vg = 12(= Z,‘ r,»).

(i1) Assign the next 9 vehicles to terminals 4, 5 and & which compose the
set M, so that V; < ¢, all 1 e M,.

(ili) Assign the remaining three vehicles (= 36 — 24 — 9) to the hub,
node 0.

The shipment ol vehicles is always between the hub and the terminal
to which they were allocated except in the last period. where shiprient is to
satisfy demand. The pattern of shipment is shown in Figure i

The Fully Utilized Fleet Problem

There remains one more interesting problem deserving investigation:
what is the maximum number of vehicles that can be shippel loaded
throughout the planning horizon? This question reflects the attitude of a
“conservative' shipper, and implies the assumption of no deleterious imnpact
of unsatisfied demand on the demand itself. The answer is simply deduced
from the previous results, and is given by

CoroLLary 1.3. The maximal number of trucks that can be fully loaded at all
time 1s 2 Z.._\- r., assuming constant demand independent of supply of

vehicles.

2. COST MINIMIZATION OR PROFIT MAXIMIZATION

WEe recait the main distinetion between the cost considerations in the
myopic case treated in Part I and the cost considerations of interest in
the extended horizon case. Here, the cost of shortage of the kth shipment at




LMAGHRABY

E

S. ARISAWA AND S, E.

01434 KDL

(2 wody yues sondwa = * {2 9% purwap pagsnesun = 'y) ee
= pPUBUWIp pagsnBsun [gj0} 1§ = [ ‘9 = A :[' ddwexqy jo uonnjog | iy

01434 ANOIIS 31zenten Kilm NOLIVICTIV

Q01434 15¥1d

PO G U WIS SRRy N




HUB AND WHEEL SCHEDULING PROBLEMS. I 157

terminal ¢, denoted by ., refers to the cost of {ost sales. However, the
concept of the cost of shipping empties remains the same as i Part
and we shall continue to denote it by £, in either direction between terniinal
» and the hub. These are the ouly two costs to be con=idered.

In our subsequent treatment we shall ignore the addition to or sub-
traction from the fleet of vehicles, previously denoted by A0 This 1= for
the sake of simplicity of exposition, though the knowledge of additionu!
vehicle availabilities or withdrawals, .1, in period ¢ can be easily in-
corporated into the optimal allocation wid schedule.

Cost minimization can be casily replaced by profit maximization if
we repiace the negative view of “losing sales™ by the positive view of
“satisfving demand.”" Let ay denote the profit acerued from satisfving the
kth demand at terminal 7 € No. Sinee traffie is bilateral between 7 ¢ N and
0, a vehicle is either loaded both ways or is empty one way. Let v, denote
the maximal net profit in one cyele (which, by assumption, occurs over
two periods) when a vehicle is assigned to terminal 7 e N': then

‘a.‘n + a} if vehicle is loaded both ways

Yk =
'(1‘:' — K, if vehicle is returned empty.
Here, the subseript k represents the most profitable shipment available at
i, and [ represents the most profitable shipment available at 0, and the
superscript o designates a load avalable at the hub and destined to ter-
minal 7 e N. A similar expression can be written for vy at the hub. Clearly,
Ya 2 Yiz 2

In either view, the allocation of vehicles and their seheduling are per-
formed in a sequential fashion, one vehicle at a time. This immediately
fixes the subscripts & and / in the above definition of v,,.

3

Finite Horizon

In a manner similar to that of Seetion 2 of Part I, it can be shown that
the costs along all ares of the modified network are convex with respect to
the flows; this permits us to formulate the problem as a minmum cost flow
problem and to utilize an iterative procedure.

In the deseription of the procedure we shall opt for & profit maximization
objective, in order to demonstrate the utility of the o and v values in-
troduced above.

It is evident that the total income from a fleet of size 17 < 2 X r; and
ro= minid,. dg,) is fired since (i) all vehicles are fully loaded in both direc-
tions, and (i) the loads will be chosen to be the most lucrative in the direc-
tion in which there is a shortage of vehicles. Therefore, the discussion of

- - - - - — e
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optimization commences at a value V> 2 X r, + 1. In which case we must
distinguish between two durations of the horizon: T-even and T-odd.
Since the optimal schedule for T = 1 or T = 2 is easily constructed, we
shall assume T > 3.

(1) T (even) = 2m; m 2 2.

Consider the first vehicle (in reality, it is the (2 z. r, + 1)st vehicle).
Suppose it is initially available at the hub. There are two possibilities: (i)
One can assign it to a load destined to some terminal j from the list of
unsatisfied demand at the hub. Evidently this will be the (r, 4 1)st load
to that terminal, and it must be true that j e M. The vehicle must then
return to the hub empty if it is to be used for the remainder of the horizon.
Consequently, the maximal net profit obtainable from the operation of this
vehicle over the horizon will be

max;glm(ay — E;)|, k=71, + L

Alternatively, one may send the vehicle empty to terminal jeM, in
anticipation of its return loaded; in which case the maximal profit attainable
is given by

max;y [m(a; — E))].
Since we seek profit maximization, we search for the terminal maximizing
either of these two expressions, i.e., we seek
p1 = max{max,slm(a; — E))|; max;aq[mla; — E)]}. (2.1)

Next. suppose that the vehicle is initially available at outlying terminal
J € My Sucu vehicle will also have two possibilities: (i) it can be sent
loaded to the hub, and returns empty for subsequent period. This cycle
repeats throughout the horizon except in the last period, when the vehicle
can be utilized to satisfy a demand from the hub to some terminal p € M.
The maximal realizable profit from such operatior is given by

pa = nmx,,,j,(a;ﬁ,,) + (m - 1) (e — E,)) + a. (2.2)

Alternatively, the vehicle may be sent empty to the hub in antici-
pation of its return loaded to the terminal. This cycle repeats throughout
the horizon except in the last two periods, when the vehicle can be sent loaded
to the hub and, from the hub, it is sent loaded to some outlying terminal
p e M. It is not difficult to see that the maximal realizable profit is also
given by p» of expression (2.2).

We therefore conclude that the optimal allocation of the first vehicle,
and its schedule of opertation, is determined by the muax (p;. p2), as given
by (2.1) and (2.2).
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A similar analysis is done for the second available vehicle (in reality,
the (2 2. r. + 2)nd vehicle), the 3rd vehicle, and so forth, until V is
exhausted.

(2) Tlodd) = 2m + 1, m 2> 1.
Following similar reasoning we discover that if an additional vehicle is
allocated to the hub its maximal profit is
o = max{max; ;ulm(ak — EJ) + a%l;
max,armlas — E))] + max,ow age}.  (2.3)

On the other hand, if the vehicle is allocated to an outlying terminal, its
maximal profit is

P2I = ma'x‘maxu.‘v'(m(aik = EJ) =t aikl;
max,alm(ad ~ E))] + maxiw auf. (2.4)

The maximal allocation is evidently given by max (py, p2’), which also
determines the schedule.

Infinite Horizon

The treatment in Section 2 paves the way to the immediate determi-
nation of the optimal schedule in the case of infinite horizon. In particular,
if we adopt as an objective the maximization of average profit, then the
“corrections” in the ultimate (and penultimate) periods of the horizon in
expressions (2.3), (2.3) and (2.4) lose their significance. The optimum is
thus seen to reduce to the choice of the terminal j e N which satisfies the
expression:

max{max, oy — E,;); max;or (e — E))t.

The optimality of such a stationary policy is a direct consequence of
1 the finitencss of the state space (as represented by the various possible
allocations of the fleet of size V over the terminals of the system) and the
decision space in each period; see Reference [2].

3. THE WHEEL OPERATION SCHEDULING PROBLEM (WOSP)

Tue WOSP is the first generalization of the HOSP treated in Part I and
in Sections 1 and 2 of Part II. The assumption of limited bilateral operation
between the hub and outlying terminals previously assumed in HOSP is
partially relaxed: an outlying terminal is now allowed to dispatch vehicles
on hand to two other “adjacent” outlying terminals, where “adjacency’ to
g j is defined as terminals j — 1 and j 4+ 1; and the numbers are taken around
a circle in a “round robin” fashion. Thus terminal 1 is adjacent to terminals
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n and 2; terminal £ is adjacent to terminals / and 3, and so forth. Let €; de-
note the set of terminals “communicating”’ with terminal j ¢ No; then

€ = N, since the hub communicates with all i ¢ N,
c;=10;5—1,j+1}, j#=Ln,
€ = {0;n;2); €= {0;n—1,1}.

A slight modification in notation from that utilized thus far is needed. The
set W defined in definition (1.1) is now expanded to include the‘set of

terminals adjacent to terminal :. We denote the expanded set by W, i.e.,
W=1{ij:ieN;jeOU €}
The Minimization of Lost Sales

Here we concern ourselves with the smallest fleet that satisfies all demand.

Consider first a finite horizon of length T. Let a node (ik) represent
terminal ¢ ¢ N in period k, k = 1, 2, - - -, T. Introduce the fictitious source
4 and terminal ¢ Let z,, denote the number of loaded vehicles from node
o < (ik) to node n <« (j, k + 1). Then the determination of the minimum
number of vehicles V7 that satisfy the demands at all times during the
horizon of length T is given by the following LP:

min Vr
s.t. Zi«e.- (Zeay .5 041y — Tei—n.ian) = 0,V ieNo;jeCi, k = 0,1,- -+, T—1

Zkﬂ- Ty = Vr = Zun, Timy 4
Ty ke > Bij; V ieNo, JeCy, k=01,---,T -1

all z,, > 0 and integer.

This is a straightforward flow minimization problem subject to lower
bounds on the flow on each arc. It is well-known (see, e.g., Reference [4])
that the minimum value V*T is equal to the maximum sum of the lower
bounds of all cut-sets between nodes 4 and Z. A labeling procedure yields the
desired optimum V*T directly. It initiates from node ¢ since we will start
with a large flow through the network and find a sequence of flow-decreasing
paths. The labeling procedure is as follows:

Step 0. Generate an initial feasible flow, large enough (see below).

Step 1. Label £ with (¢,).

Step 2. Label node (iT), 1 ¢ Ny, with (4, zun) ).

Step 3. (Backward labeling) For each unlabeled node ¢t ¢ €, h & (3, k — 1),
l & (jk), where zx; > dui, assign the label (I+, e(k)) where (k) =
min [e(7), za — di).
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Step 4. (Forward labeling) For each unlabeled node j e €, ko« (4, k — 1),

| «» (jk), assign the label (h-, (l)) where e(l) = e(h).

If node h « (i1), 7Ny, is labeled with e(h), then label s with

{h, min le(h), x4ull.

Step 6. 1f 4 is not labeled (nonbreakthrough), the current flow is optimal.
If 4 is labeled (breakthrough) decrease the flow along “forward”
ares in the “flow path” ' by (1), and increase the flow along “re-
verse” ares by e(4). Erase all labels and return to Step 2. (Here a
“forward" arc refers to an arc whose direction is the same as the
path from z to ¢; a “reverse’” arc has its arrow in the opposite
direction to the path.)

Step -

Any arbitrary large flow can serve as initial feasible flow since there are
no upper bounds on the arc capacities, only lower bounds (equal to d;;).
However, VT = 2 Zwr"’ ¢¢; is sufficient since it can be easily seen that
the desired minimum, V*7, can never exceed this number. Indeed, the
desired minimum is bound as follows: 2 Z-.mi' Nl VRl D Z.-_,.rp Gij-

Example 3.1

Let No = [0, 1, 2}, i.e., there are only two outlying terminals, and
T = 3. The demand is as shown in Table I. The initial feasible solution
is shown in Figure 2(a), in which we introduced flow equal to 22 qi = 36.
In Figure 2(b) the labeling indicates that there are three independent flow
paths, with reductions equal to 1 each. When these reductions are effected
the result is the flow shown in Figure 2(c). Another labeling step detects

TABLE 1
0 1 2 0 1 2
S 3 i 74
4 6 s 4 6 3
i3 3 3 3
: aij 2 r; =20
22 qij =36
X —"This is the complete path between 4 and £ with all its nodes labeled with at least «(4).
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(8) INITIAL FEASIBLE
SOLUTION ; V=36

(»)  ITERATION 1

Fig. 2. Labeling procedure for Example 3.1.

the flow path, 4, 21, 12, 01, 22, 13, ¢ (note the forward arc (12,01) with
e(s) = 2). The total flow is now reduced to only 31 vehicles, and we obtain
the arc flows shown in Figure 2(d). The labeling step, applied to Figure
2(d), results in nonbreakthrough; hence the optimal is in hand.

The minimal cutset is also shown on Figure 2(d). Note that the optimal
value y*T = 31 indeed lies between the specified bounds of 20 and 36. To
the extent that it is strictly less than 2 Y, gi;, the difference is attributable
to the balance brought into the system due to the capability to ship along
the “rim”’ of the “wheel.”

Although the above labeling algorithm is quite simple and straight-
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forward, we present some results on the nature of the cut which reduce the
computation of V*7.

AsSERTION 3.1. If n < 3, then V*T = Z.«.N, max {Zj.e, dij, Zj.e, d;i}
vT>2

Proof. Denote the cutset by (Y, Y), where Y is the set of labeled nodes
(from ) and Y is the set of nonlabeled nodes. Let {(Y, ¥) denote the sum of
the lower bounds on flow from nodes in ¥ to nodes in Y. Then the cut with
the maximal I(Y, ¥) is the one sought. For the case where n < 3, every
terminal is connected to all others. As is clear from the labeling procedure,
there are only five kinds of cuts, as depicted in Figure 3. Recall that all arcs
from Y to Y have flows at their lower bounds, which are equal to d,; in our
model. Thus, if for any tNo, Q=i di; < 3 jxidji, thennodeh e (i, T — 1)
is included in Y; i.e., it is not labeled. Otherwise, if 2,‘#,’ d.’j > E,‘,ﬁ d,.‘,
then (¢, T — 1) is included in Y ;i.e., it is labeled. Summing over all nodes
of the modified network the conclusion is obtained. Q.E.D.

The logic of the above proof extends to the more general case of a network
in which every terminal is permitted to communicate with all terminals.
We thus have

CoROLLARY 3.1. (A Generalization) If all terminals communicate with each

other, then
VAT = Y v, max { Qi dijy Doiwi dii}, T > 3.

This solves the case of a general network with all terminals communicating
with each other.

O® © OO OO OO

O
O|® O|O(B ® O BO|®
OO O|O O[O © B©|®

e 6le ©le ole(e ®

Fig. 3. The five possible cuts with three outlying terminals.
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The above assertion specifies the optimum fleet over a finite horizon.
In the case of a very long, or unbounded horizon, we have:

AsSeERTION 3.2. For all T > 3, V*T = constant = V*3,

Proof. In searching the cut with the maximal /(Y Y), the network for
T = 3 provides all the possible cuts for the case of T > 3 since the cut can
traverse at most two periods. Thus we search all possible cuts when we
search the network with T = 3. When T > 3, because of the stationarity of
demands, no cut with larger (Y, Y) can be obtained. Q.E.D.

Thus, for any size WOSP, we can find V*7 for any T by simply computing
for T = 3. (Note that V*' and V** are immediate.)

Finally, there remains the issue of minimizing the lost sales given a fixed
fleet V, 2 Z(.’j) ri; < V < V* over the finite or the infinite horizon. It is
easily seen that, for the finite horizon, the problem is solved through a
cost-minimization model similar to that proposed in Section 1. Further-
more, a cycle will be discerned for T > 3 which will repeat forever in the
case of an infinite planning horizon. Such a eycle ean be demonstrated to be
at most of period (n 4+ 1) where n is the number of outlying terminals
(see Assertion 1.2). Consequently, a cost minimization problem over a
finite horizon of T > 2(n + 1) will guarantee the detection of the optimal
allocation and the corresponding optimal schedule.
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