
*o—A053 srnwo~~ &IIIV CALIF DEPT OF COMPUTER SCIENCE F/G 9/2
STRUC RmEO PROGRAMMING WITH RECURSION. (U)
JAN 78 Z MAI*IA. R WALDIN6ER N0001’4 75 C-Q816

UNCLASSIFIED STAN—CS 77—640 NI. 
I



i.° ;~: ~
I.’• II~l~

• 1 • 25 BU1~
4 

~tI~

MICROCOPY RESOLUTION TEST CHART
NATIONAL RUR~A U OF SIANDA RDS 1963 -I



r ~~~~~~~~~~~~~~~ ~I 1 L ’~~~~

Stanford Artificial Intell~~enoe Laborato ry / January 1978
Memo AIM-307

~~~ Computer Science Department
Report No. STAN-CS-77-640

STRUCTURED PROGRAM MING WITH RECURSION

by

Zohar Manna Richard Waldinger
Artificial Intelligenos Lab Artificial Intelligence Center ~
Stanford Unlveralty SRI Interna tional
Stanford , CA. Menlo Park, CA.

Research sponsored by

National Science Foundation
• ...~J Office of Naval Besearch C,Advanced Research Projects Agency ç~ 

C)

~~~~~~~~~~~~~1B

COMPUTER SCIENCE DEPARTt~Y.NT
Stanford Universit y

for pithlic rd arid salo. i .~~

d~strthUt0’~ 
is unlirxut0d.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ ~~~~~~~



~~~~‘ !  ~_~~- ~~~~~~~~~~ 
-
~~

--
~
-

~~
• .‘., •

~
-

~
•— ‘-

~~~ 
—--•

~
-----,—

__________________________________

•SECURITY CI. ASS, FSCATION OF ‘THIS PAGE (Ith,., 0... En?.r e~~ ___________________________________

- 

D~~DA0T nfl U~~~ITATIflb.t DArr 
• 

READ !t4STRUCTXONS 
—

~ 
k”! 

~~~~~~~~~~~~~~ ‘~~
‘I’’ ~~~ BEFORE COMPLETING FORM

IThEPORT I4UNSER “ 2. GOV Y ACCESSION NO 3. RECIPIENrS CATALOG NUMBER

~~~ ~i~ AN -CS-77-6~~~ ATM-~Ø1] • I _____________

~~~~~ c 
_ _  

~Wi~h Recursion . 

~~~ 
_ _ _ _ _ _ _ _ _ _ _ _ _ _

6. PERFORMING ORG. Rç,Pu~~r BEN

• . ADi-3~~ Z
7. AUTNOR(aJ f’ ’ p rvV a vl)

~ Zohartlanna ~~~ Richard lWaldinserj ’ LL~
1~~A903~~ 6-C-O~LJb

9. PERFORMING ORGANIZAT ION I~AME AND ADDRESS I0. ’ PROGRAM ELEMENT. PROJECT , TASK

Artificial Intelligence Laboratory AREA 6 WOR M UNIT NUMBERS

Stantord University + NR 011 9-389 ARPA Order
Stanford , C& 911305 / 14 NR 011 9-378 2)i.911

II. CONTROLUNG OFFICE NAME AND AQORESS fZ. REPORT DAT ...~~

Mr S. Marvin Denicoff , Program Director • 

~ 
( flian jj( 8

Information Systems , Code 11.37, ONR
800 No. Quincy, Arlington, VA 22217 r /~ ~~~~~~~~~14. MONITORING AGENCY NAME & ADDflESS(SSdSlt....~I h. Co&mlsffiá O Uf c .)  IS. SECURITY CLAS .1 SkI. 1 

~~

Philip Surra , ONR Representative 15
• Duxand Aeronautics Building, Room 165 ____________________________

Stanford University , Sta nford , C& 911305 ISa. ~~~~~~~~~~ ICATION/OOWMGRAOI NG

IS. DISTRIBUTION STATEMENT (aS ~~~ R.p0. ’t)

Releasable without limitations on dissemination

17. DISTRIBUTION STATEMENT (el m. ab.trac l .nI.r.d In Bt.cA 20, l dSf l.,...S he., R.po~pf )

L i~ 
‘

~~~
- .-

18, SJ PPL EMENTA RY NOTES

19. KSY ~.3R~~5 (Contlnu. on paw,,,, old. SI n.c...avy wd Id.nII fr b~ block nu.lb.r)

20. ABSTRAC T (Conllnu• on ,.w.,.. .Id. It ,,.c .....v and IdanUly b~ block numb. ,)

• Ø~~DD j AN 73 1473 EDITION OF I NOV SS IS OBSOLETE
S/N 0102LF-014 .66O 1 UNCTAS~ TFTRfl

• SECURITY CLASSIFICATION OF THIS PAGE (k~~.a 0.?. 1nl. ~.d)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



I
Stanford Artificial Intelllgenos Laboratory January 1978
Memo AIM-307

Computer Science Department
Report No. STAN-~S-77-84O

STRUCTURED PROGRAMMING WITH RECURSION

by

Zohar Manna Richard Waldlltger
Artificial Intelligence Lab Artificial Intelligence Center
Stanford Univeraity SRI International
Stanford, CA. Menlo Park, CA.

This research was supp orted In part b, Ms National Scisiics Foundation under Grants DCR72.

~ Q)2J7.4Ol and MCS7643655, 6, Me Office of Naval Research soider Contracts NO0O]~Yit.
0687 and N00014.75.C .0816, b~ the Advanced Research Pr *cts Agents of the Dqsrnnssst of
I)ef.ni. under Contract MDA9 -76-C.0206, and 6, a erant from the United Stàtss-Isracl
Binatlonal Science Foundat BSF

TA. views and conclusions contained In this document are thos. o’f  the authors and should nat b
inleT pitted as n.c.ss~TU~ upv.unUng.the off ~d~1 policies, eUher .xpvess.d or Implied of Stamfo rd
Urdv.rslt,, SRI International, or an, agenc, of the U. S. Gowrnsw~st.

—- I
,

• NTIS
DDC B t ! ,’e~it~.i 0
UNANN( . ‘ • o

• JuSTl~Ic~ ::.~

BY
OISTR:BUIIONIAVADB1VIY cavEs

_ _~~~~~~~~~~~~~~~i



I

There is a tendency in presentations of structured programming to avoid the use of
recursion as a repetitive construct, and to favOr instead the while statement, the

• guarded command, or other iterative loop constructs. For instance, in his recent book, “A
• Discipline of ProgrammIng” (2], DiJkstra bars recursion from his exemplary programming

language; although he does not absolutely forbid recursion to the qualified practitioner,
• he warns that “I regard general recursion as an order of magnitude more complicated

than just repetItIon,” and declares that 9 don’t like to crack an egg wIth a
sledgehammer, no matter how effective the sledgehammer Is for doing so.”

• The method by which an iterative loop is to be constructed is clearly dictated: We
are f irst  to f ind an Invariant assertion , a relation between the variables of the program,
and a termination function , an expression Involving the program’s variables whose value is
a nonnegative integer. The loop body is then constructed so as to reduce the value of
the termination function while maintaining the truth of the Invariant assertion upon each
execution of the loop body. In thi. way, the correctness and termination of the resulting
program are guaranteed by the nature of the construction process. The decision when
to introduce a loop, and the choIce of an appropriate invariant assert ion and termination
function, are not determined by the method; generally they are left to the Intuition of the
programmer.

For example, in constructing a program to compute the exponential function z • xY of
two integers x and , (where x is positive and , Is nonnegative), DiJkstra recommends
that we introduce new variables xx and ,y, and take the invariant assertion to be

z.rx,, =x,

and the termination function to be ,y lts if. The invariant assertion is established
Initially by taking xx , yy, and z to be x, y, and I, respectively; the task of the loop body
is to maintain this invariant assertion while reducing the termination function yy to 0.
Employing familiar properties of the exponentIal function, he derives the program ”

(xx ,, z) 4- (x y I)
while ,, • 0
do (yy x) i- (,y-.l x .xx ) .

This program is transfo rmed subse quently to a more efficient version.

“ Actua lly, Dij kstrs obtains the invariant in two stages: he f irs t introduces a new variable k and
attempts to maintain the invariant 1’ z — xY ; he then replaces h by the term xxYY. His final
program is .xp r.ss.d in terms of th. guarded command constr uct.



• •

• 2

in discussing how such invariant assertions and termination functions are to be
discovered, Dijkstra appeals to his “inventive powers” and uses phrases such as “my
experience suggests ...“ and “the trick Is that ... ..“ Of course, the exponential is a

• familiar program, and these choices may appear natural or even Inevitable. But if we had
never seen the program before, how would we know to select r. xxYY - xY as the
invariant assertion while reducing the termination function~~ to 0? Why not maintain
z+xxYY - xY while reducing xx to 0, or maintain x~ • xY while reducing~~ to I, or even

maintain t(xx~ ) - ac.Y while rsduoing xx to 1 or,, to 0?

In general, at each stage in the derivation there are innumerable conditions and
functions that could be adopted as the invariant assertion and terminatIon function of a
loop; only a few of these choices lead to the successful completion of a derivation.
With so many plausible candidates to choose from, a correct selection requires an act of
precognitive insight.

The answer , of course, is that we must defer the introduction of a loop until it is
forced upon us by the structure of the program’s derivation. For this purpose, we have
found recursion to be far more useful than any of the iterative constructs; a recursive
call can be introduced when a recurrence is observed in the derivation. Applying this
approach, we avoid the premature selection of an invariant assertion and termination
function.

For example, let us again consider the construction of an exponential program
exp (x y) ,  intended to achieve the goal of computing the expression x~. Employing the
same properties of the exponential function that Dij kstra applied in his derivation, we
reduce our goal to the subgoal of computing the constant I in the case that y is 0, and

to the subgoal of computing the expression x.x.~~1 in the case that , Is positive. We
observe that the subexpression xH is an instance of the top-level goal expression xY;
at this point, we decide to Introduce a recursive call exp (x ,—l) to compute this
subexpression. This call cannot lead to a nonterminatlng computation, because the
second argument y— I of the recursive call is a nonnegative integer less than the second
input,. The final program obtained Is thus

exp (x y) c- if y .0
then I
else x.exp(x y— 1)

This program, like its ithrative counterpart, Is guaranteed to be correct by virtue of the
way It was constructed, and can be transformed into e more efficient version in a
subsequent optimization phase. This optimized version can be recu ..we or Iterative.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



in general, a recursive call Is formed when a subgoal In the program’s derIvation is
found to be an instance of a higher-level goal; the decision to introduce the recursive
call, its form, and the choice of the termination function are all dictated by the structure
of the derivation; the choice of the invariant assertion is avoided altogether.

Another example: in constructing a program to find the index of the maximum element
of an array, we want to assign a value to a global variable I such that

a(l] � all(a(0 : n]) and
0 �i �n ,

where n is a nonnegative integer and a(0 : nJ Is an array segment of n+ I numbers a(O3,
a( 1], ..., a(n) . In other words, we need to achieve that a(l] is greater than or equal to
every element in the array segment and that I is between 0 and n.

in approaching this problem, Dljkstra (2] produces the invarIant assertion””
a[i] � all(a[0 : j )) and
0 � I � j  and
j � n ,

explaining: “A standard way of generalizing a relation is the replacement of a constant
by a variable -- possibly with a restricted range,” and adding that “the condition j  � n
has been added in order to do justice to the finite domain” of the array segment a(O n].
As to the termination function, he continues: “Again, my experience suggests to choose
a monotonically decreasing function . . . n—j . . . . In order to ensure this monotonlc
decrease . . ., I propose to subject j  to an Increase by I . . . .“ By application of the
properties of the natural numbers and the concept of the “weakest precondition,”
Dijkstra develops the program

(I f) ~
- (0 0)

whilej - n
do if a(i] � a(j]

thenj .-j+ I
else (l J) ~

- (j j+ I) .

in our approach, we want to construct a program maxl(a n), whose goal is again to
assign a value to I such that

““Again we take certain liberties with Dijk itra’s notation.

IlL - —
~~~~

--
~~~~~~~~~~~~~~~~~~~~~

--
~~~~~~ ~~.-. • - •  J~~~~~ • - - —. ..-—-— .• •~



4

• a[ i) � aIl(a(0 n)) and
0 � l � n .

In the case that n Is 0, this condition Is satisfied by taking I to be 0; In the other case,
the condition a(I ] � all(a[0 : n]) decomposes Into the conjunction of two subgoal
conditions,

all) � all(a(0 : n—ID and 6(1] � a(n] .

(Other decomposItions are possible; the final program derived depends on which
decomposition Is chosen). The first of these sub goals Is an instance of the condition alt]
� all(a(O : n]), which Is part of the to p-level goal; we therefore attempt to achieve It with
a recursive call ,naxl(a n—I) . Termination is ensured because the second argument n—i
of the recursive call is less than the second input n. The second subgoal a(1) � a(n) is
achieved without introducing any recursive calls. The final program obtained Is

maxi(a n) <. if n — 0
then i ~ 0
else maxl(a n— I)

if all) < a m ]  then I ~- n .

Note that our use of recursion as a repetitive construct in this program has not
precluded the use of assignment statements or even global variables.

The recursion—fo rmatton technique illustrated by these simple examples is a basic
principle of our approach to systematic program derivation. This approach, presented in
detail in [6], was designed for automatic program-construction systems; therefore, even
when applied by the human programmer , It cannot rely on any leaps of Intuition. The
recursion-formation approach does not always make the act of programming easy, but it
does avoid the extraordinary feats of ingenuity characteristic of the Invariant-assertion
approach.

Not everyone concerned with programming methodology has been completely
enamored of the invariant assertion as a means for program construction. For example,
in (5], Knuth compares two Iterative programs for a moderately complex task: one was
developed by Inventing an Invariant assertion while the sec. nd was derived by first
constructIng a simple recursive program for the same task , and then transforming It. He
observes that “the recursive program is trivially correct , and the transformations require
only routine verification; by contrast, a mental leap Is needed to invent (the Invariant
assertion].”

Some of the proponents of the “Structured Progra . ning School” admit the use of
recursion when It Is especially called for; e.g., Wirth [7] advises that recursion is



6

• “primarily appropriate when the problem to be solved , or the function to be computed, or
the data structure to be processed, are already defined in recursive terms.” Some
researchers , such as Gries [3] and Hehner (4], have praised the simplicity and clarity of
recursive programs, while others, such as Burstall and Darlington (1], have found
recursIve programs to be easIer to transform and manipulate.

• Our point here Is different: recursive programs are not only simpler to understand and
manipulate, but also are easier to construct, in that their formation does not require the
premature Invention of an invariant assertion. For all these reasons, recursion seems to
be an ideal vehicle for systematic program eonstruction. It is surprising that some of the
advocates of structured programming have not adopted it with more enthusiasm: in their
fidelity to iteration, they have been driven to resort to more dubious means.

REFERENCES

1. Burstall, R. M, and J. Darilngton, A transformation system for developing recursive
pro grams , JACM , Vol. 24, No. 1 (Jan. 1977), pp. 44-67.

2. Dijkstra, E. W., A discipline of programming, Prentice-Hall, Engiewood Cliffs, NJ,
1976.

3. Gries , D., RecursIon as a prog ramming tool, Technical Report, Department of Computer
Science, Cornell University, Ithaca, NY, 1975.

4. Hehner, E. C. R., do considered ad: A contribution to the programming calculus ,
Technical Report, Computer Systems Research Group, University of Toronto, Toronto,
Canada, March 1977.

6. Knuth, 0, L, Structured programming with go to statements, Computing Surveys, Vol. 0,
No. 4 (Dec. 1974), pp. 28t-301.

6. Manna, Z. and R. Waldinger, Synthesis: dreams -> programs. Technical Report,
Artificial Intelligence Lab., Stanford University, Stanford, CA and Artificial
Intelligence Center, SRI International, Menlo Park, CA, Nov. 1977.

7. Wlrth, N., Algorithms + data structures - programs, Prentice-Hail, Englewood Cliffs, NJ,
1976.


