" STANFORD UNIV CALIF DEPT OF COMPUTER SCIENCE

TAD=A053 176 F/6 972

STRUCTURED PROGRAMMING WITH RECURSION. (U)
JAN 78 Z MANNA: R WALDINGER NO0014=75=-C-0816
UNCLASSIFIED STAN-CS=77-640 NL
| oF | END
. s e

1.0 i 22
[l A PO
s
R s s

-

MICROCOPY RESOLUTION TEST CHART
N'ATIONAL BUREAU OF STANDARDS 19634

-~
e
’

Stanford Artificial Intelligence Laboratory / January 1978
Memo AIM-307

Computer Science Department
Report No. STAN-CS-77-640

STRUCTURED PROGRAMMING WITH RECURSION

by

Zohar Manna Richard Waldinger
Artifioial Intelligence Lab Artificial Intelligence Center

Stanford University SRI International
Stanford, CA. g Menlo Park, CA. 335

ADA0S3176

Research sponsored by

National Science Foundation
Office of Naval Research
Advanced Research Projects Agency

-
..“’A

‘DDC FiLE copy

AD No.

£
&

COMPUTER SCIENCE DEPARTNENT
Stanford University

' “hies beg mroved | '
This document "o been GPT | |

for public relccse «nd sale; 118 J
distribution is unlimited.
E

CLASSIFIED _ : | ,
. i

- JSECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)
READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
2. GOVT ACCESSION NOJ 3. RECIPIENT'S CATALOG NUMBER

»

STAN-CS-77-61t¢/ AMM-387
. TITLE (end Subtitle,
FStructy o Programming -With Recursion:/

e T e —

6. PERFORMING ORG. R

AIM-307

7. AUT 3
14 Zohar/Manna «il# Richard IWaldinger [

9. AP!;!?;MI;GIORGANIllkinN UMEIA.N%ADDR!SS 10. ::giRkooEg.KEs:rT‘l'”ﬁ:;‘o.J!Egsf TASK
rtificial Inte ligence La oratory + NR 049-380 ARPA Order
Stanford University] + NR O 8 ol
Stanford, CA 94305 Pl 9-37 %

11. CONTROLLING OFFICE NAME AND ADDRESS
Mr. Marvin Denicoff, Program Director
Information Systems, Code 437, ONR
800 No. Quincy, Arlington, VA 22217
74, MONITORING AGENCY NAME & ADDRESS(/! different from Controliing Office)
Philip Surra, ONR Representative 15

Durand Aeronautics Building, Room 165

Stanford University, Stanford, CA 94305 150, DECL ASSIFICATION/ DOWNGRADING

16. DISTRIBUTION STATEMENT (of this Report)

Releasable without limitations on dissemination

!;‘7; Tl £

|
1ol Ane 4

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, If different from nmfc)
1

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side If necessary and Identify by block number)

20. ABSTRAZT (Continue on reverse slde If necesessry end idsntity by block number)

PBrst 1ag Lo |

DD , 55", 1473 €0iTiON OF 1 NOV 65 IS OBSOLETE
SSIFIED

aomin el

JAN 73
S/N 0102.LF.014.6601
SEGURITY CLASSIFICATION OF THIS PAGE (When Date Entersd)

Stanford Artificial Intelligence Laboratory January 1978
Memo AIM-307

Computer Science Department
Report No. STAN-CS-77-640

STRUCTURED PROGRAMMING WITH RECURSION

by
Zohar Manna Richard Waldinger
Artificial Intelligence Lab Artificial Intelligence Center
Stanford University SRI International
Stanford, CA. Menlo Park, CA.

TAis research was supported in part by the National Science Foundation under Grants DCR72-

Q3232 401 and MCS76-83655, by the Office of Naval Research under Contracts NOOOI4-76L-

0687 and NO0O14-75-C-08T6, B the Advanced Resesreh Projects Agency of the Department of

Defense under Contract MDA903-76-C-0206, and by & grant from the United States-lsrael
Binational Science Fou BSF).

T he views and conclusions contained in this document are those of the authors and should not be

interpreted as necessarily vepresenting.the official policies, sither expressed or implied, of Stanford
University, SRI International, or any agency of the U. S. Government.

AGCESSION for Erpel
NTIS Yo ite 2ection '
oo Buff Section [3
UNANNCUY 0 ®)
JUSTIFICAIZ Y

BY
DISTRIBUTION/AVAILABILITY CO0ES

Dist Avall B]

it b a8 eyl

There is a tendency In presentations of structured programming to avoid the use of
recursion as a repetitive construct, and to favor instead the while statement, the
guarded command, or other iterative loop constructs. For instance, in his recent book, "A
Discipline of Programming" [2], Dijkstra bars recursion from his exemplary programming
language; although he does not absolutely forbid recursion to the qualified practitioner,
he warns that "l regard general recursion as an order of magnitude more complicated
than just repetition,” and declares that "| don't llkke to crack an egg with a
sledgehammer, no matter how effective the sledgehammer is for doing so."

The method by which an iterative loop is to be constructed is clearly dictated: We
are first to find an invariant assertion, a relation between the variables of the program,
and a termination function, an expression Involving the program's variables whose value is
a nonnegative integer. The loop body is then constructed so as to reduce the value of
the termination function while maintaining the truth of the invariant assertion upon each
execution of the loop body. In this way, the correctness and termination of the resuiting
program are guaranteed by the nature of the construction process. The decision when
to introduce a loop, and the choice of an appropriate invariant assertion and termination
function, are not determined by the method; generally they are left to the intuition of the
programmer.

For example, in constructing a program to compute the exponential function z = xJ of
two integers x and y (where x is positive and y is nonnegative), Dijkstra recommends
that we introduce new variables xx and yy, and take the invariant assertion to be

2. =)

and the termination function to be yy itself. The Invariant assertion is established
initially by taking xx, ¥, and z to be x, y, and |, respectively; the task of the loop body
is to maintain this invariant assertion while reducing the termination function y9 to 0.

Employing familiar properties of the exponential function, he derives the program .

(xxyy2)e(xy1)
while yy = 0

do (yy z) « (yy-1 z-xx) .

This program is transformed subsequently to a more efficient version.

*Actually, Dijkstra obtains the invariant in two stages: he first introduces a new variable * and

attempts to maintain the invariant A-z = xJ ; he then replaces A by the term xx). His final
program:-is expressed in terms of the guarded command construct.

 S——

In discussing how such invariant assertions and termination functions are to be
discovered, Dijkstra appeals to his "inventive powers" and uses phrases such as "my
experience suggests ..." and "the trick is that" Of course, the exponential is a
familiar program, and these choices may appear natural or even inevitable. But if we had

never seen the program before, how would we know to select z-xx¥Y = x) as the
invariant assertion while reducing the termination function y» to 0?7 Why not maintain

2+xx)) = x) while reducing xx to 0, or maintain 2Y9 = x) while reducing yy to 1, or even

maintain) . 23 while reducing xx to 1 or yy to 0?

In general, at each stage in the derivation there are innumerable conditions and
functions that could be adopted as the invariant assertion and termination function of a
loop; only a few of these choices lead to the successful completion of a derivation.
With so many plausible candidates to choose from, a correct selection requires an act of
precognitive insight.

The answer, of course, is that we must defer the Introduction of a loop until it is
forced upon us by the structure of the program's derivation. For this purpose, we have
found recursion to be far more useful than any of the iterative constructs; a recursive
call can be introduced when a recurrence Is observed in the derivation. Applying this
approach, we avoid the premature selection of an invariant assertion and termination
function.

For example, let us again consider the construction of an exponential program

exp(x y). intended to achieve the goal of computing the expression xJ. Employing the
same properties of the exponential function that Dijkstra applied in his derivation, we
reduce our goal to the subgoal of computing the constant 1 in the case that y Is 0, and

to the subgoal of computing the expression %291 in the case that 9 Is positive. We

observe that the subexpression xJ~ | is an instance of the top-level goal expression xJ;
at this point, we decide to introduce a recursive call exp(x y-1) to compute this
subexpression. This call cannot lead to a nonterminating computation, because the
second argument y-1 of the recursive call is a nonnegative integer less than the second
input . The final program obtained is thus

exp(x y) <= ify=0
then |
else x.exp(x y-1) .

This program, like its iterative counterpart, is guaranteed to be correct by virtue of the
way it was constructed, and can be transformed into ¢ more efficient version in a
subsequent optimization phase. This optimized version can be recu(.ive or iterative.

RN Tl

In general, a recursive call is formed when a subgoal in the program's derivation is
found to be an instance of a higher-level goal; the decision to introduce the recursive
call, its form, and the choice of the termination function are all dictated by the structure
of the derivation; the choice of the invariant assertion is avoided altogether.

Another example: In constructing a program to find the index of the maximum element
of an array, we want to assign a value to a global variable i such that

ali) 2 all(al0 : n)) and
O<sisn,

where n is a nonnegative integer and a0 : n] is an array segment of n+1 numbers a[0],
all1], ..., aln). In other words, we need to achieve that ali] is greater than or equal to
every element in the array segment and that { is between 0 and n.

In approaching this problem, Dijkstra [2] produces the invariant assertion™

ali) 2 all(al0 : §)) and
0O0<is<jand
jsn,

explaining: "A standard way of generalizing a relation is the replacement of a constant
by a variable -- possibly with a restricted range," and adding that “the condition j s n
has been added In order to do justice to the finite domain" of the array segment a[0 : n).
As to the termination function, he continues: "Again, my experience suggests to choose
a monotonically decreasing function . . . n-f In order to ensure this monotonic
decrease . . ., | propose to subject § to an Increase by |" By appliication of the
properties of the natural numbers and the concept of the "weakest precondition,"
Dijkstra develops the program

(i) «(00)

whilej = n

do if ali] 2 alj)
then j « j+1
else (i j) « (j j+1) .

In our approach, we want to construct a program maxi(a n), whose goal is again to
assign a value to i such that

"Auin we take certain liberties with Dijkstra’s notation.

AN e e - i i i

ali) 2 all(al0 : n)) and
Osisn.

In the case that n is 0, this condition Is satisfied by taking i to be 0; in the other case,
the condition ali] 2 all(al0 : n])) decomposes into the conjunction of two subgoal
conditions,

ali) 2 all(al0 : n-1)) and ali) 2 aln] .

(Other decompositions are possible; the final program derived depends on which
decomposition Is chosen). The first of these subgoals is an instance of the condition ali)
2 all(al0 : n)), which Is part of the top-level goal; we therefore attempt tc achieve It with
a recursive call maxi(a n-1). Termination Is ensured because the second argument n-1
of the recursive call Is less than the second input n. The second subgoal ali] 2 aln] is
achieved without introducing any recursive calls. The final program obtained is

maxi(a n) <= if n =0
then i « 0
else maxi(a n-1)
if ali) < aln) theni e n .

Note that our use of recursion as a repetitive construct in this program has not
precluded the use of assignment statements or even global variables.

The recursion-formation technique illustrated by these simple examples is a basic
principle of our approach to systematic program derivation. This approach, presented in
detalil in [6], was designed for automatic program-construction systems; therefore, even
when applied by the human programmer, it cannot rely on any leaps of intuition. The
recursion-formation approach does not always make the act of programming easy, but it
does avoid the extraordinary feats of ingenuity characteristic of the Invariant-assertion
approach.

Not everyone concerned with programming methodology has been completely
enamored of the invariant assertion as a means for program construction. For example,
in [6], Knuth compares two iterative programs for a moderately complex task: one was
developed by Inventing an Iinvariant assertion while the sec.nd was derived by first
constructing a simple recursive program for the same task, and then transforming it. He
observes that "the recursive program Is trivially correct, and the transformations require
only routine verification; by contrast, a mental leap is needed to invent [the invariant
assertion]."

Some of tha proponents of the "Structured Progra: ning School" admit the use of
recursion when it is especially called for; e.g., Wirth [7] advises that recursion is

"primarily appropriate when the problem to be solved, or the function to be computed, or
the data structure to be processed, are aiready defined in recursive terms."” Some
researchers, such as Gries [3] and Hehner [4], have praised the simplicity and clarity of
recursive programs, while others, such as Burstall and Darlington [1], have found
recursive programs to be easier to transform and manipulate.

Our point here Is different: recursive programs are not only simpler to understand and
manipulate, but also are easier to construct, in that their formation does not require the
premature invention of an invariant assertion. For all these reasons, recursion seems to
be an ideal vehicle for systematic program construction. It is surprising that some of the
advocates of structured programming have not adopted it with more enthusiasm: in their
fidelity to iteration, they have been driven to resort to more dubious means.

REFERENCES

1. Burstall, R. M. and J. Darlington, A transformation system for developing recursive
programs, JACM, Vol. 24, No. 1 (Jan. 1977), pp. 44-67.

2. Dijkstra, E. W., A4 discipline of programming, Prentice-Hall, Englewood Cliffs, NJ,
1976.

3. Gries, D., Recursion as a programming tool, Technical Report, Department of Computer
Science, Cornell University, Ithaca, NY, 1976.

4. Hehner, E. C. R., do considered od: A contribution to the programming calculus,
Technical Report, Computer Systems Research Group, University of Toronto, Toronto,
Canada, March 1977.

8. Knuth, D. E., Structured programming with go to statements, Computing Surveys, Vol. 6,
No. 4 (Dec. 1974), pp. 261-301.

6. Manna, Z. and R. Waldinger, Synthesis: dreams => programs. Technical Report,
Artificial Intelligence Lab., Stanford University, Stanford, CA and Artificial
Intelligence Center, SRI International, Menlo Park, CA, Nov. 1877.

7. Wirth, N., Algorithms + data structures = programs, Prentice-Hall, Englewood Cliffs, NJ,
1976.

