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1. Introduction

In this paper , we present a body of program synthesis knowledge and suggest that a

computer can be programmed to use this knowledge to write several very good sort programs

such as quicksort and mergesort as well as related programs such as set union, and basic

enumeration operations.

This paper is an extension of two earlier papers [8 , 9), parts one and two of this

series on our theory of programming, or a codification of programming knowledge. The first

paper presented rules as English statements , and the second showed how these rules could

be translated into computer usable form. The earlier papers discussed the rules for iterative

transfer- parad igm sorting programs -- selection and insertion sorts. This paper presents

programming knowledge, again in English, about the divide-and-conquer paradigm , space re-

utilization, and other ordered set operations. This knowledge allows the synthesis of the

previously synthesized sorts but also allows more naturally recursive sorts such as quicksort

and mergesort. Another addition in this paper is the discussion of arrays as data types ,

which combined with space re-utilization knowledqe allows the synthesis of in-place

insertion, selection , s inking , and bubble sorts, as well as quicksort , and merge sort.

The reader may agree that this programming knowledge is relevant for the synthesis of

sorting algorithms but wonder what generality it possesses. We believe that the

programming knowledge presented in this paper , combined with that of our earlier two

papers , extends well beyond sorting. For example , the reader will observe that the sorting

programs discussed herein Include simple sear ching, ordered set union, removal of an element

from a set , additions of an element to a set , etc. Much of what occurs in programs consists

of set enumeration operations in the form of loops or recursions on arrays or lists. Thus our

- - —
~~~

— - .
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low-level programming rules for operations on lists and arrays and for space reutilization

should be widely applicable. The higher-level transfer paradigm , recursive paradigm , and

divide-and-conquer paradigm will be used less frequently than the low level rules , but  are

certainly applicable outside the sorting context. Knuth [11] has stated that “virtually every

important aspect of programming arises somewhere in the context of sorting or searching ,”

so we feel sorting is a good starting point.

There is also now some empirical evidence suggesting that this approach may have

wider utility. We have expressed a subset of these rules in a programming formalism [9].

These were used in a rule-testing system that included about 1 50 rules and produced a

variety of sort programs. Further rules were tested in a larger program synthesis system [2,

1]. The synthesis system used these rules and further refinements to synthesize simple

learning programs , linear prime finding algorithms, reachability algorithms and information

storage and retrieval programs. The basic rules showed considerable carry over to new

applicatons. The issue of generality is very complex , depending upon the class of

application programs synthesized and the larger context in which the synthesis rules are

used , so that it is much too early to reach any conclusions about this approach except that it

shows promise.

We neither claim nor believe that the particular synthesis rules and paradigms

expressed here are foptimalu in any sense. instead , we hope we have provided a starting

point and that other researchers will introduce better rules and further refinements of those

presented here. We especially wish to make no claims for the synthesis paths or particular

derivations given. The particular synthesis paths we gave were chosen to better explicate

the programming rules, but it Is likely that a synthesis system would make choices In

different orders in addition to following totally different synthesis paths.

_ _ _ _ _
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For the reader who has missed our earlier papers , we summarize in appendix 1 a subset

of the earlier rules, the enumerator  rules , and indicate how they may be programmed. These

rules cover enumeration of elements and positions in stored sets , according to given ordering

relations. They cover lists and arrays as data structures and include enumerator constructs

such as initialization, t e rmina t ion  tests, and methods of saving or marking the state of an

enumeration as it progresses. In this paper we will not descend to the detailed level such as

assignments and low-level list and array operations , as these were covered earlier.

Our methc~d of describing programming knowledge can be viewed as detailed stepwise

r e f i n e m e n t  or , alternatively, logical program synthesis by special rules of inference. One

comment we have received i-s that it is a programming theory that could be taught to

students so that they can synthesize programs by learning these rules and paradigms.

Perhaps it is a good theory for humans to use , but it has been designed for computers to use ,

and we ’ve not tested it as a teaching method. We present our rules in English, rather than a

mathematical , logical , or procedural formalism in this paper in order to make the knowledge

easier to follow. The refinement rules and the programming concepts may also be viewed as

a planning spece that structures and reduces the search to a more orderly generation ot

reasonable programs , rather than a generation of all possible (frequently meaningless)

programs. In the heuristic search paradigm , the refinement rules may be thought of as

“plausible move generators ” whose goal is to generate only programs that should be

considered in a given context.

Although we will primarily follow the stepwise refinement paradigm , we also invoke a

hypothesize and test method, and an inferential capability for simplifying tests and producing

speed-ups. The use of these methods allows more sophIsticated syntheses , but makes the

subsequent transformation into rules more complex and less deterministic. The refinement

~
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methods d iscussed include some simple , heuristic rules to motivate our choices. In fact our

rule testing program is designed to interact with an “efficiency analysis program ” that

decides which of the alternatives are more efficient. The efficiency estimation also prunes

the search for reasonable programs. We are not claiming any great precision in these

e f f i c i e n c y  rules , just that they may often be used as a guideline. Any accurate

determination of efficiency will take more detailed calculations. A more rigorous discussion of

how to automate the efficiency analysis is given by Kant [10). A dsicussion of the close

iterreiatj on between refinement and efficiency considerations is given by Barstow and Kant

[2]. Thus two techniques are provided for reducing the search for programs -- a refinement

style planning space and an efficiency estimator. We feel that these will still not be

adequate and that additional heuristics will be required to factor subprograms into

independent or near-independent modules.

Much of the program synthesis knowledge and the general approach presented here

are embodied in a program which is the “coder ” and are also embodied to some extent in the

“efficiency expert” of tile much larger PSI program synthesis system [6, 7]. The PSI system

consists of two phases: an acquisition phase and a synthesis phase. The acquisition phase

constructs a high-level model of the desired program and information structures from a

dialogue with t he  user. The dialogue contains English as well as examples and traces. The

acquisition phase consists of a parser-interpreter written by Jerrold Ginsparg [6], a trace

and examples inference system by Jorge Phillips [17], a dialogue moderator by Lou

Steinberg, a domain expert by Ronny Van den Heuve l , and a model builder by Brian McCune

[15]. In the synthesis phase the coder and efficiency expert interact to refine the high

level program model into executable and efficient code. Tile synthesis phase consists of the

coder by David Barstow and the efficiency expert by Elaine Kant.
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The most closely related work to that presented here is that of John Darhington [4]. He

also presents a formalism for the synthesis of essentially the same class of sorting programs.

His formalism is quite different , and is based upon algebraic characterization of program

transformations. Darlington and Burstall [3] present other techniques for recursive-to-

iterative program transformations. Manna and Waldinger [14] and Laaser [12] investigate

alternative techniques for synthesizing programs for finding the extrema of a set by finding

recursive programs through problem reduction to equivalent subproblems applied to smaller

sets.

I
~

_ _ _ _ _ _ _  
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2. Overview of Programming Knowledge

To help provide an overview , we present below a summar’ of some of the key program

synthesis constructs used in this paper. These will be elaborated through the vehicle of

tracing the synthesis of tile various sort programs.

Divide and conquer paradigm
correctness conditions
uniform recursive
cho tc e of partitionin g method

singleton, equal-size
Transfer paradi gm

recursive to iterative transform ation
hypothesize and test method
sufficient conditions

In-place operations
feasibil i ty
re-use of “no longer referenced” sets, locations
in-place element addition and deletion
shif ts , ordered and unordered

Sets stored in contiguous regions of arrays
fixed and movable boundaries
minimal shifting for insertions and deletions
positions for placement of sets

Simplifications of insertions , delet ions , position and element testing
Enumerate and process

positions , elements
selection of enumeration order s

left—right , right—left , binary chop , largest  f i r s t , alternating
Enumeration simp li f i cation s

early stop, late start
use of transit ivity, re-use of earlier compari sons
enumerat ion merging

compares and s h i f t s
compare and shift by exchanging
finding best by candidate replacement

Ordered set union
insertion union, selection union

PROGRAM SYNTHESIS CONSTRUCTS USED
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3. The Divide-and-Conquer , or Partitioning Paradigm

Tile top-level technique we shall consider is to split the set to be sorted (the input)

into parts , sort tile parts , and then put tile parts back together to form the output. The

three operations split , sort and join must be done cooperatively in such a manner that the

whole set is sorted. We see that this method is naturally recursive , for we may use the

same sorting algorithm to sort each of the parts. This general paradigm has several names

including recursive sorts , partitioning sorts or divide and conquer sorts.

The set to be sorted may be divided into a number of parts. We shall assume in this

paper that the set will be divided into two parts. The method may be diagrammed as shown.

The set s is split into two disjoint sets S 1 and S2. These are sorted Into S 1 ’ and S2 ’, which

are then joined to form the sorted set S’ .

i n i t i a l  set S
/sp l it\
S1 S2 ~~~ 

U S 2 =S )

sor t sor t

‘I,
SI

, S2’
\Join /

sorted set 5’

Two instances of this paradigm would be mergesort and quicksort , as illustrated below: 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



a

( 7 3 1  6 2 864 )  (7 3 1 6 2 8 5 4 )

/sPI i ~ I(7 3 1 6 )  (2864) (2314 ) (6857)

i I I I
sor t sort sort sort

I I I I
( 1 3 6 7 )  ( 2 4 5 8 )  ( 1 2 3 4 )  ( 5 6 7 8 )

- \ io in / \io ;n /
( 1 2 3 4 6 6 7 8 )  (1 2 3 4 5 6 7 8 )

MERGE SORT QUICKSORT
(using 4 as the d i viding element )

Note tha t in me rgesort , the set is split illto a left and right half , according to tile

position of tile elements. The join or merge operation does some sorting-like work to merge

tile two parts. Note that in quicksort tile split does more work , dividing the set into all

elements less than or equal to 4, and all elements greater than 4. The join operation is

simpler , being just an append. In both cases the split is intended to produce sets of

approximately equal size. Mergesort is somewhat analogous to insertion sort and quicksort is

somewhat analogous to selection sort. For insertion and selection sorts , the split produces

one subset with one element and another subset with all the rest. The analogy carries over

to produce the taxonomy summarized in the following diagram:

- -~~~~- -—- - -  - - .
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SINGLETON EQUAL SIZE
SPLIT SPLIT

I.JORK DONE INSERTION MERGESORT
BY JOIN (OR

SINK I NG)

~4[’RK DONE SELECTJON QUICKSORT
BY SPLIT (OR

BUBBLE)

A TAXONOMY OF SOME SORT PRO RAMS

in our paradigm , exchange sorts such as sinking or bubble sort are seen as minor variations

on other forms of sorts.

One may state precise mathematical conditions that are sufficient for this partition ,

sort , and join technique to work. For the purposes of this discussion, we will assume that no

elements are repeated. As in the case above , we let S be the initial set , and S 1 and S2 be

the subsets obtained by t u e  split operations , split 1 (S) and split2(S). Thus the final set S is

the set join (sort(split 1(S)), sort(split 2(S)) ). Let the predicate ORDERED mean that the order

in which the sets are stored corresponds to the ordering which is to be achieved by the

sorting operation. We will use “ s ” to mean that the sets have the same elements. Then one

way to state sufficient conditions is to state that the split , sort , and operations do not gain

or lose elements inappropriately, i.e.

S split 1(S) U spiit2(S) and jo in(S1,S2) s 1 u 
~ 2

-- - - -
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Also, the split must divide the set Into smaller subsets , and the sort operation must

appropriately order the elements, i.e.

ORDERED(sort(S,)

andi the join must preserve that ordering, i.e.

ORDERED(S 1 ) and ORDERED(S2) r~OROERED(join(S 1, S2 )

Note that we Ilave not stated how each subset is to be sorted. Indeed, it is possible

within tile framework given so far , for a different algorithm to be used to sort the subsats ,

and so forth. If one is repeatedly performing an operation , as in the recurrent sort

operations performed on the smaller subsets , and the same mechanism Is used , then a

uniform method results. For more optimal algorithms , a diff erent method may be selected ,

either in advance or dynamically for subsequent occurrences of the same operation. In fact ,

a very good sort is to use a recursive uniform quicksort until tile subsets reach a certain

size, then use an insertion sort for the subsets [18]. In rule form , our first rule is as follows:

1) choose the number of partitions into wh i ch the set shall be split
2) choose a split operation
3) wri te a sor t program for each subset
4) choose a join operation

all subject to the conditions stated above.

If the same sort mechanism is chosen for each level , then we have a recursive

technique , uniform at each level, except possibly for tile end cases when the sets are

reduced to singleton or empty sets. For the rest of this discussion, we will be concerned

only with such uniform recursive sorting techniques. For such algorithms , we may use an

inductive form of tile correctness specification. The inductive form states that if: (1) the

empty set is sorted; and if (2) the split subsets are sorted implies that the join of t ue  sorted

subsets is sorted; then (3) the recursive paradigm works properly, i.e. the recursive sort

~ 

- - -_ - - - --
~~~~~~~
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SORT (x) ~- JOIN (SORT (SPLIT 1 (S)),SORT(SpLIT 2(S)))

(with appropriate termination test) is correct. Note again that these conditions allow

different forms of split and join, as long as togetiler they do tile right tiling. Obviously this

technique may be extended to allow tile set to be partitioned into more than two subsets.

I~-~ _ _ _ _ _  
-- --

~~~~~~
- - - - - --

~~~~~~~~~
-

~~~
--

~~~~~~~~~~
—---________ 
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4. Internal Representation of Sets

Before we begin tile synthesis of insertion and selection sorts, let us briefly discuss

the internal representation of ordered sets. Until now all sets have existed as abstract

entities , and we have not stated how they are represented in the computer. Assume that all

sets are ordered and all elements are explicitly represented rather than computed by some

algorithm.

Both the ordering relationship and tile members of the set must be represented. Often

tile ordering is implicit and may be easily computed from the stored representation. For

example tile elements may be stored in a linked list and the traversal order of tile list

provides an ordering relation. Or the set may be stored in an array, with one member per

arr ay element , where the normal array ordering (first to last , say) provides an ordering on tile

set. Thus the set is put in a correspondence with tile integers , the /th array element being

ith ill the ordering. This correspondence can be separate , as in tile case of a separate

index array the same size as tile set , where the /th element holds the integer position in the

ordering of t he ith element of the original array. There are many other representations such

as bit maps or tree representations. In this paper we will discuss algorithms that place sets

in explicit order , where the “natural” storage order will hold the ordering relation.

Furthermore , we will speak as if tile elements are all numbers and that the final order

desired is that the numbers be in increasing order. We will also assume that no elements are

repeated. These assumptions simplify tile discussion, but do not significantly affect

generality.
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5. Singleton Split

The first case we will consider is that in which the split operation results in one set

with a single member and a second set with the remaining elements of the original set. For

example , one possibility is:

S <4 1 3 2>
sp l i t 1 (S) S

~51)1 t2(S) = S2 <1 3 2>

or shown graphically:

4 1 3 2
/ \

s p l i t 1 s p l i t 2

<4> <1 3 2>

In tills special case , only the second of the two subsets (S2 ), must be sorted before the two

are joined as the final step in the sorting Operation. As mentioned above , we will consider

only the case where tile sorting operation for this subset is the same as the top-level

sorting operation. The general paradigm may be simplified , thus

so r t  DO ~ j o i n ( sor t (sp i it 1 DO) ,sor t (sp l i t 2(X)

becomes

sor t (X) ~- j o i n ’ ( s p l i t 1 ’ (X ) ,s o r t ( s p l i t 2 ( X ) ) )

W ilere jo ill’ and split 1 ’ may be further simp lified to deal with single elements rather than

singleton sets.

I of u~ first look rather closely at the operation of programs within this paradigm , as

illustrated in the following diagram. 

- -- ~~~~~--~~~~~ — .~~~~~-. -- -~~~~~~~~~~-- - ---~~~~ 
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<a a a a>

I s p l i t
<a><a a a> =

~ 
split

<a><a><a a>
I sp l i t

I j o i n
< a> < e > < a  a>

I io in
< a > < a  a a>

I j o i n

<a a a a>

According to the above recursive formulation tile split operations are all performed first ,

followed by ti le join operations. Notice also the center line of the diagram. Here we see

that all of tile elements of tile original set have been separated from each other. In ef fect ,

the stack used by the successive calls to tile sort routine is a kind of intermediate storage

or buffer. Notice also that the order in wllich the elements are added to the buffer by the

split operation is tile opposite of that in which they are removed by the join operation. We

will later see that tile split and join operations can be interleaved , and there is no need for

the stack.

The diagram also illustrates that there is a sequence of input and output sets ,

beginning with the full input set and empty outpt set and concluding with the full output set

and the empty input set. Each split operation produces a new input set with one fewer

member. For exam ple , such a sequence might be

1 < 4 1 3 2 > , <1 3 2> , <3 2> , <2> , < > 1

formed by the act of removing tile first element each time. This sequence may be called the

input sequence of sets , although we will sometimes ref er to it as the “input set” , hopefully

without causing confusion. Note that the output is also formed tllrough a sequence of sets

of increasing size. For example , 

~~- ----~~~~~~~~~
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1 < > , <4> , <1 4> , <1 3 4,’ , < 1 2 3 4 > 1

is the output sequence of sets or just tile “output set” .

5.1 Insertion vs. Selection -

Sort programs in which tIle split always produces a singleton set can be classified into

two types, depending on the nature of the split and join operations. These two types are

generally referred to as insertion and selection sorts , and are illustrated in the following

diagram

<4 1 3 2> <4 1 3 2>
I s plit I s p l i t

<4 ><1 3 2> <1><4 3 2>

I split I spl i t
<4><1><3 2> <1><2><4 3>

~ I 
<1><2><3><4> 

join
<4><1><2 3~ <1><2><3 4>

I join I j oin
<4><1 2 3> .cl><2 3 4>

I jo in  ,j, j o i n
<1 2 3 4> <1 2 3 4>

recursive inserti on sor t recursive selection sor t

Insertion sorts are characterized by spilt operations which take any convenient

element (e.g., the first) f rom the input set and join operations which do an “insertion”: the

new element must be added to the output set in a position which is dependent on the values

of the new element and the other elements of the output sot. Selection sorts are

characterized by simple or efficient join operations and split operations which do a

“selectIon”; I.e. the chosen element is dependent on the values of all of the other elements.

~~~~~
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What split operations are “efficient” for an insertion sort is, of course , dependent Oil

the particular data structures used to represent the sets. It is efficient to minimize shifting

in arrays and searching in lists. This efficiency typically occurs by selecting the first or last

element. The insert (join) operation wil l typically require searching the output for tile

appropriate position for tile new element (e.g., a linear scan or a binary search) followed by

some kind of set mod ification to add the element at that position (e.g., shifting array

elements by one or modifying pointers in a linked list).

For selection sorts , eff icient join operations usually add the new element at the front or

back of tile output set. Tile corresponding selection (split) operations take the largest

element or take tile smallest element. In either case, the selection operation will usually

require an enumeration of the elements of the set.

5.2 Transformation from recursive produce-consume to iterative transfer paradigm

We would like to show , for selection and insertion sorts , how the recursive partitioning

paradigm presented in this paper can be reduced to tile “transfer paradigm” presented in our

earlier papers. Thc t ransfer paradigm consists of a selection operation which takes one

element from the input and puts it into some buffer , and a construction operation which takes

one element from tile buffer and puts it into the output set in an appropriate position. This

algorithm may be implemented as two concurrent processes , a producer (selector) and a

consumer (inserter) w it h a stor age buffer between them. The singleton divide and conquer

paradigm is a type of produce-con sume process in which tile split is a producer and the join

is a consumer. The recursive algorithm can be viewed as a series of “produce” (split)

operations, followed by a series of “consume ” (join) operations, The buffer is the recursion

~ 

-

~~~~~
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stack. If the elements can be produced one at a time and each element in the buffer can he

consumed as soon as it is produced, then the buffer size can be bounded to be of size one.

In this case the produce and consume operations can be interleaved to form a sequence:

produce, consume, produce, consume, etc. A straightforward implementation is a loop or

iteration calling first tile producer then the consumer. The interleaved sequence of

operations for tIle insertion sort may be illustrated as follows. 

-~~~~~~~~-~~--~~~~~~~~~~~~
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<4 1 3 2>

/
split (produce]

/
‘t <4>

\ /
j o i n  (consume ]

/
<4> <1 3 2>

I
sp lit [produce)

/
‘ <1>
\ /
join (consume]

/
<1 4> ‘~3 2>

I
split (produce]

I <3>

join [consume]

I
<1 3 4> <2>

I
split [produce)

/
I <2>
\ /

j o in  [consume)

I
<1 2 3 4> <>

The iterative selection sort Is analagous.
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This transformation is that wIliCh Is necessary to convert tile recursive function:

so r t (x )  ~- if ~ n:p t~~(x )  then <r~ ipty>
else j o i n(sp l I t~ (xi ,sor t (sp i t2(x) i i

into tIle lOOP

sort (x) ~ while -‘empty (x ) do
‘— j o i n ’ (sp l i t~’ (xl ,y)

x - s p l i t 2’ (xi
output (y) =

note that different forms of split 1, split2 and join may be needed in the iterative form (as

indicated by split 1 ,  split 2 1, and join’).

We will use a “hypothesize and test” approach to recursive-to-iterative transformation

rather than a set of program transformation rules. TIle transformation rule approach assumes

that a set of syntactic transformat ions combined with some constraints is adequate to

convert recursive to iterative programs. This is certainly true for simple recursion removal as

is done in compilers , but in general tile transformation process is quite complex , and closely

interrelated with time and space efficiency issues. Furthermore , the iterative code may be

F considerably different from the recursive code.

We suggest that tile system hypothesize the existence of components necessary for

an iterative version (or a bounded buffer size version). Then tile system attempts to

synthesize these components but does not necessarily begin with existing recursive pieces

of code. The synthesis system may answer that tlie components are too inefficient to

pursue or too expensive to synthesize , or it may produce satist ictory code berring little

syntactic relation to the recursive code. This approach of meta- level hypothesize and test

of iterative versions may also prove advantageous in the general case where tile existence

of an iterative version is undecidable , but one is willing to spend a certain amount of

resources in the attempt to find an iterative version.

- -
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Let us exemplify this approach by suggesting a method by which a singleton-split

partitioning paradigm can be reduced to an iterative transfer paradigm. This method may be

formula ted  as constraints on the producer and consumer that are synthesized. Later in tile

paper we will follow tile synthesis paths for these components.

First, we hypothesize the existence of a producer that can produce ihe elements one at

a time. Obviously any singleton split operation produces the elements one at a time , and

satisfies this condition. (A type of sort that does not effectively satisfy this condition is

quicksort , since the eff iciency of quicksort is derived by its splitting tile elements of f

serveral at a time. (See section 8.1) Next , we hypothesize the existence of a consumer

that can consume the elements one at a time. Any join that takes a singleton and a set as its

two arguments satisfies tills condition. (A type of sort that does not effectively satisfy tills

condition is mergesort , which der ’ ues its efficiency by joining ever-larger ordered sets , using

tile ordered property to perform an efficient join. (See section 8.2) The production and

consumption operations so derived must not depend upon the identity or order of any

elements already produced but not consumed. Such a dependence would require a buffer of

size larger tllan one to 1101(1 these elements.

The third condition is that it must be possible to interleave the operations of the

producer and consumer which are synthesized. That is , the elements must be consumed as

soon as they are produced. For the sorting case , if the elements are consumed in the order

they are produced , the induction correctness specifications must be satisfied , i.e. tile output

set must remain sorted after each produce-consume operation. 
-

The insertion sort satisfies these conditions since the inserter works for any order of

producing elements. For the selection sort to satisfy these conditions , it is necessary to 

—~~~--- ---‘-- -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -— —- —- -  -
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match tIle producer and consumer, e.g. a largest-to-smallest selector and a right-to-left

insertor would work. The derivation we will give later for the selection and insertion

algorithms will synthesize producers and consumers that satisfy all these conditions

necessary for the iterative transfer-paradigm.

- -- -~~~~~~~~~~ ~~ - --~~ - - - - -~~~~~~~ -~~~
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6. Refinement tree for sorting programs

At this point, let us introduce a summary of the refinement tree we are following in this

paper. Note that so far we have chosen the divide and conquer branch and tile iterative

branc h. We are about to take the in-place branch, The reader Is urged to refer back

frequently to this refinement tree to avoid getting lost.
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SORT

generate and test  permutat ions

d iv ide  and conquer• /\
sing le ton  split equal—size split

t~~~\recursive i terative in-place not in—place

: / ~~~~~~~~~\not in-place in-p lace selection i nsert ion  
-

/~ /~\l i s t  array insert —u n i on select—u n i on
QU I CKSORT

MER GE SORT

s e l e c t i o n  i n s e r t i o n
(find max) (find position )

t\ /\
shift exchange s h i f t  exchange

STRA I GHT SELECTION BUBBLE SORT STRAIGHT I NSERTION SINK I NG SORT

~

— -- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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7. In-place sorting

7.1 Feasibility of an In-Place sort.

With respect to tile selection of data structures to represent our sets, we have

assumed only that the sets will be stored explicitly and will be sorted into ascending order.

Tile as cending order will be exhibited by the implicit ordering of the data structure (called

the storage order or stored order), e.g. first-to-last for ~* linked list or according to

increasing index for an array. We have made no assumptions about which memory locations

will be used and in particular about whether memory locations can be re-used,

In synthesizing a sort algorithm it is important to find ways to conserve space at least

for very large sets. For example , if in the transfer sort we store one element of each set in

one memory location , and each intermediate set in the input and output sequences consumes

a new set of memory locations , then it would require 0(n2 ) memory locations to sort n

elements (we will use tIle 0(n 2 ) notation to mean approximately or “order ” n2 ). If we do not

require that initial and intermediate sets be “saved” , i.e. if we allow them to be “destroyed”

• by re-using tlleir memory locations for the newly created sets then great space savings are

possible and an n-element sort can be accomplished using only 0(n) memory locations. Such

sorts are referred to as in-place sorts. We shall now investigate in-place sorts and array

representations in particular.

We will consider in this section only the special case of in-place sorts where the split

operation divides the set into a singleton and the rest. We will see that the classes of

sorting programs wilich we have referred to as “selection” and “insertion” can lead to in- 

~~~~~~~~~~~~~ - •. •-- -
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place sorts that are often referred to as “bubble ” and “sinking ” sort programs [11]

(pp.81 ,lO?) .

We will now show that an in-place sort is possible. Tile first step is to 5110w that the

initial and intermediate sets may he destroyed, and the next is to 5110W tllat only

approximately n memory locations will be needed during the sorting process.

First , under what conditions is it possible to destroy the initial and intermediate sets?

Let us assume that neither the init ial set nor any intermediate set in the sorting process is

needed after the sorting algorithm is complete. If for some reason the initial set is needed

after it is sorted , then before sorting it can be saved by copying it over into a new position.

For intermediate sets , after tlley are no longer referenced by any step of the algorithm , they

can be destroyed and their memory locations can be recycled.

• Consider an arbitrary set in tile input sequence. Tile only time it is referenced is during

the split operation tllat splits the set into one element and the rest. One can verify that this

iS tile only reference by examining all subsets in tile split-sort-join paradigm and observing

that each set is named only once. Similarly , each set in the output sequence is referenced

only once (when tile new element is added to it). Thus the initial and all intermediate sets

may be destroyed after they are used.

Now consider the amount of computer memory that will be used to provide storage for a

set having n elements. The memory required is that memory needed to indicate which are

tIle elements of eacil set (a correspondence between each set and its elements) and to

remember the ordering of the set. One unit of storage or one memory location is adequate

• 

- 

per element of each set represented (in one array element or one list cell).

_ _  •— - - -
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Next consider tile total amount of space necessary at any step of the computation. In

tile iterative paradigm, tIle algorithm consists of a sequence of transfer operations ,

transferring one element from a set in the input sequence to a set in the output sequence.

Before each transfer operation space is required only for tile current input set and tIle

current output set , i.e. space for n elements. During the transfer one space is needed to

hold tile element being transferred. Additionally, space will be required to store tile state of

enumerations of eleme nts of the input set or of positions in the output sets , and some space

could be required for bookkeeping in the set insertion or deletion operation. The exact

amount of space for each of these memory requirements is dependent on the representat ion

chosen. Tile new input set requires one less space and the new output set requires one

more. Thus a spaces hold the old input and output set and a spaces hold the new input and

output set. If no storage is reclaimed during the transfe r , then 2n spaces plus some

overhead are adequate. After the transieT the old input and output sets can be overwritten

for the next transfer.

T u e  211 memory requirement can be reduced to n if t h e  element addition and element

deletion can be clone “in-place ”, i.e. using all the old locations plus or minus one. Let us

show that one element can be added to an ordered set stored in rn contiguous locatons to

produce a new ordered set stored in rn +I using the original m locations plus one adjacent

location plus some overhead. The conditions that must be sat isfied by the transfer are that

no elements are lost or gained except for the added element. Also the order must be

unchanged except for tile new element. Suppose that the new element NEW is larger than

• all elements in the subset BEFORE and smaller than all elements In the subset AFTER. If

there is a space to the right of AFTER (or to the left of BEFORE), we may add an element by

shifting AFTER to tIle right (or BEFORE to the left) and placing tile element In the vacant

position as shown here.
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BEFORE AF TER
I 

BEFORE NEI4 AFTER 
I I I 

Note that elements are conserved in BEFORE and AFTER , and the new element is added. Tile

ordering of BEFORE and AFTER and all orderings between the two sets are preserved.

Finally, the stored order of NEW is correct. We assumed that tble shift of AFTER preserved

elements and orderings. Suppose that shift is not a primitive , and we must derive a suitable

shift algoritilm.

The shift may be stated as a divide-and-conquer where the sort does n~ re-ordering.

It may be reformulated more simply as a singleton-split recursive total transfer , but if it is

recursive , then a buffer is used to store tile elements. However , it is feasible for the shift

to be reduced to an iterative transfer by the following reasoning. Elements can be produced

one at a time by a total scan. Elements can be stored one at a time by any total scan of

positions and by writing into array locations. The ordering is preserved if botll scans are the

same (i.e. left-to-right). Can tile elements be consumed as soon as they are produced? Use

the facts that only one element can be stored in one location and it is all right to overwrite a

location after tile contents are no longer referenced. If a left-to-right scan is used, and we

try to consume t h e  first element as soon as it is produced , then the second element is

overwritten. When tile second element is referenced later It will not be available. (For a

Ief t— to— r ici l l t  scan , an “inchworm” style shift would be required , using a buffer to hold the

element to be shifted next.) If a right-to-lef t scan is cilosen then the elements can be

consumed as soon as produced. An inductive argument suffices: the first element can be 

~~~~~~~ -~~~~~-~~~~~~~~ -- -~~~~--
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moved to the right , and after the ~ element is moved, its place is no longer needed and the

(i+1 )st element can be moved into its locaton. The shift is illustrated in the example below.

A B C 0 E <>
A B C 0 <> E
A B C <> [1 E
A B <> C 0 E

where the three elements <C D E> are shifted to the right. There is an input sequence { <C

D E> , <C D> , <C> , <> ) and an output sequence ( <> , <E> , <D E> , <C 0 E> ). The

“natural” divide and conquer recursive formulation would be to split off one element (say “C”

f irst), transfer the rest , and then join the element back. The elements may be produced one

at a time , and by producing elements right-to-left they may be consumed immediatedly and

require no buffer storage.

We will not derive an in-place element deletion , as t is analogous to the element

addition.

7.2 Array structures to represent sets

In tile array representation , an ordered set is represented as a contiguous region of an

array with increasing array indices giving the storage ordering on the set. There is a one to

one, ordered correspondence between elements of the set and the contiguous array

elements. Tllis requires one array element or one memory location per set member.

Additionally, tile boundaries of the set must be marked. One method of boundary marking is

to remember the indices of the initial and final elements. Tile storage of each index is of

order log n bits but we will assume one computer “word” per index. We shall use tile method

of storing the two indices (an example of another boundary marking method is to store

special elements just before and after tile set), but note that if two regions are adjacent

--- -- -- -- — —
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one boundary marker is suff icient where the boundary index marks the end element of the

first set and one before the first element of the second set , so that it may be necessary to

add or substract one to find the first element of the second set. (if it were tile case that

two sets overlapped, i.e. some elements belonged to each set , it would not be possible to

merge boundary markers.)

A set represented as a contiguous region of an array may be divided into three parts:

the left boundary , the right boundary , and the interior. Each boundary may either be

anchored to some array position and tilus be immovable or else may move as tile set in the

sequence of sets grows or shrinks. We silall encounter cases wilere no boundary is

movable, where only one boundary is movable and where both boundaries are movable.

Suppose we wish to acid an element to a set and re-use all storage locations belonging to

the parent set. Then either the right or left boundary must expand outward by one position.

If the element is inserted at a movable boundary, then that boundary marker is moved and no

other elements in tile set need be moved. If tile element is inserted in tile interior of tile set

then all elements to either the right or left of the inserted element must be shifted. If only

~ne boundary marker is movable , then all elements between the inserted element and tile

movable boundary marker must be shifted outward. An insertion at a fixed boundary requires

the shift of all elements of the parent set. Thus, if shifting operations are to be minimized

the element should be inserted as nea r to a movable boundary as possible. We may speak of

a movable boundary as a growth point and the expansion direction as a growth direction.

The case of deletion of an element is analagous to the addition case , i.e. all elements

between the deleted element and a movable boundary must be shifted inward and the

boundary reset.

_ _ _
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7.3 Locat on of Sets

Consider where the input and output set sequences will be located and how they will

shrink and grow respectively. The analysis of the possibilities is very simple for the sinking

and bubble sort (but becomes complicated for quicksort and merge sort). There are only two

possibilities for tile location of the two sets, input on tile left and output on the right or vice-

versa. One set cannot grow inside the other since sets must be represented by contiguous

regions. Since the left-right distinction does not matter , assume input on the left and output

on tile right. Each set must have a fixed boundary on tile outside and each must share a

common movable boundary in the interior, In other words the output sequence will start at

the right hand edge and grow toward tile left , whereas the input sequence will begin by

filling the entire space and shrink toward the left. As each element is transferred the

common boundary marker (array index) will move one position to the left.

The situation may be illustrated as follows:

input output

boundary moves l e f t  w i th each transfer

Without further decisions about tile nature of the algorithm , we cannot say whether

elements will be inserted or deleted at a fixed boundary, interior point , or the movable

boundary. However note that insertions or deletions cause no shifting of elements if done at

the movable boundary, some shifting if done at the interior of a set , and the most shifting if

done at tile outside , fixed boundaries.

Accordillgly we will strive to minimize shifts by eitiler (a) adding elements at tile shared

boundary, or else (b) deleting elements at the shared boundary, when possible. We will see

that case (a) is appropriate to a selection sort and case (b) to an insertion sort.
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We have now laid the ground work for the in-place insertion sort and the in-place

selection sort. In our derivation so far, we have created an in-place transfer sort , where

array elements will be shifted appropriatel y as the elements are transferred from the input

set sequence to the output set sequence. it appears that within this set of constraints ,

there are more than just the selection and insertion possibilities remaining. For example , tile

largest m elements might be selected out and put in their final position and an insertion sort

performed on the next n-rn elements. However we have ruled out stranger possibiliti es such

as selecting the first element , finding the final place (by comparing it against al l others)

inserting it there , finding tile final place of the displaced element , etc. This algoritilm would

allow non-contiguous subset representations.

What constraints lead to a selection or insertion sort? One set of constraints that is

adequate is either to always remove elements from the movable boundary or to always place

elements at tile nioveable boundary. This constraint says to allow shifting operations in only

the producer or consumer but not both. It also is a uniform algorithm in that it is not a

selection for several steps, then an insertion for the rest. Uniformity thus simplifies the

resulting algorithm. Another form of constraint is to specify that either (a) the producer re-

orders the elements (finds the desired permutation) and the consumer merely stores tile

elements in that order or (b) tile producer merely enumerates the elements and tile consumer

re-orders or finds the permutation. (One would then set up producer and consumer to

minimize shifting.) This form of constraint might arise from some simplicity criterion on the

algoritilm, i.e. eitiler the producer or the consumer is very simple. The minimal- silifting

considerations are not applicable to sorting with list st ruc ture s, but the simplicity

consideration is applicable. 
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7.4 In—place Insertion Sort

Assunl e that an insertion sort will be synthesized. Tile producer must generate every

element in tile input set and transfer each to tile output. We may satisfy tile constraint of

minimizing silifting in the input by removing elements from tile boundary position , thus moving

tile boundary right to left across the input. This enumeration is total since each element is

visited. This completes the producer.

The consumer or inserter must , according to tile inductive hypothesis, keep the output

set sorted at each step. Accordingly, the correct position of each new element relative to

the other elements in the output must be found. After finding this position, elements to the

left of this position are shifted left and the element is inserted. Each set in the output

sequence is tiltis sorted and we have an in-place insertion sort. Now consider the details of

findin g the correct position and shifting the elements to make room.

Tile finding of the correct position means that the element must be larger than all to its

left and smaller than all to its right , According to this definition each position is enumerated ,

and for each position the element is tested agaInst all others. But since the output set is

sorted , we know by transitivity that the element must be compared only against its two

candidate neiqhbors. Then to enumerate all positions a linear scan is adequate and the

simplest search.

Next a scai direction for the position finding must oe selected. We know that a shift is

required to make room for tile inserted element and that a left to right enumeration will be

used for tile shift. A heuristic rule for selecting an enumeration direction is to consider the

same direction as other scans of the same set. In this case , choosing the same direction as

the shifting scan will lead to combining the two scans. Assume we choose a left to right

L ~~~~~~~~~~~~~~~~~~~~~~~~ 
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scan for the pos ition f inding. The test aga inst Its two neighbors can be simplified to a test

against only the element to the right since it must be larger then the element to the left or

tile scan would have ended. -

Tile shifting operation entails shifting left by one all elements to the left of the inserted

element. Recall that tile shifting Is Itse lf a t rans fer operation that enumerates each element

left-to-right and moves it left by one. Observe tilat exactly the same set must be

enumerated , Ill exactly tile same order if tile transfer is iterative , for both the position

finding operation and the insertion operation. Tills observation leads to a combining of tile

two operations and having only one enumeration; as each element in the output set is

produced, it is compared against the inserted element and shifted left if it is smaller. When

one is larger tile element is inserted into the vacant position. The resulting algorithm is

called an insertion sort.

S 3 1 6 2 8 7 4
severa l  steps la ter

S 3 1 6 2 4 7 8 hold 6 in temporary storage , compare to 2
6 - output

5 3 1 2 4 7 8 sh i f t  2, com pare 6 to 4
6 output

5 3 1 2 4 7 8 shift 4, comp are 6 to 7, inser t 6
output

5 3 1 2 4 6 7 8
output finally

1 2 3 4 S 6 7 8

SERIES OF SHIFTS AND INSERTS

We observe that a binary chop algorithm for finding tile correct position is possible

since the output set is ordered. A bInary chop would lead to O(n log n) comparisons but still

require the same number of shifts , and the algorIthm would be more complex,

-- ~~~~~~~~~ --
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One final modif icat ion br ings us to the “sinking” sort: inste ad of holding the boundary

element in any special temporary location, use the newly vacated position to hold it. Thus , at

each step, the program performs a comparison to see if the correct position has been found,

and if not interchanges the two elements. (This last modification might not necessarily result

in a speed-up, but it clarif ies the way in which tile insertion class of sorting programs

includes tile “sinking” sort as a special case.)

5 3 1 6 2 8 7 4
several steps later

5 3 1 6 2 4 7 8 6 is to be inserted , compare to 2 , interchange
outpu t

S 3 1 2 C 4 7 8 coepare 6 to 4, interchange
output

5 3 1 2 4 6 7 8 compare 6 to 7, completes insertion of 6
output

5 3 1 2 4 6 7 8
output f i n a l l y

1 2 3 4 5 5 7 8

SINKING--SERIES OF INTERCHANGES

7.5 In—place Selection Sort -

Assume that a selection sort will be syntllesized. To minimize slliftiflg operations ,

elements must be inserted into tile output set at tile movable boundary, so that they fill up

the output set linearly, right to left. Also, tIle inductive hypothesis requires that tile output

set be sotted at each step as it is built up. Together , these force the elements to be

produced, largest element first , tllen the rest in descending order. Thus the selection

process is a series of operatlollS , each having three steps: find the largest element , delete

it from tile input , then insert it into the output at the boundary between the sets.

- - -- —--- ;- —- —-.-~~~ --- — —- - -
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First we will synthesize an algorithm to find the largest element. Our derivation will be

very simple compared to an Implemented version. The simplest “find” algorithm for an

enumerable set is to generate each element and then test to see whether it is the largest

element. Tills requires 0(m2) comparisons per selection , where m is tile number of elements

in the current set of tile input sequence , since each element must be compared against all

others.

It is possible to speed up this algorithm to m comparisons. In the basic form of

generate and test , eacil element is compared against all others and if it is not larger , the

next element is attempted as a candidate. By the simple rue of stopping an eflumer~ tion

once tile answer is found, w e need not comp a re t he element w ith any more once a larger

element is found. This is still an order 0(m2) algorithm , but a little better. The refinement to

0(m) follows.

Assume tllat a fixed , left-to-right linear scan is cilosen as the generation order of

candidates. This is tile obvious choice since it is tile least complex total enumeration. Next,

assume tilat the same fixed left-to-rigllt enumeration order is chosen for enumerati ng tile

elements to wilicil tile can didate is compared. Any other fixed order would do as long as

both are tile same. Perhaps tile strongest a priori reason for attempting to make botil

enumeration orders t he  same is the resulting uniformity , which sometimes results in a simpler

algorithm. The heuristic of choosing the same enumeration order will also lead to combining

— two loops.

Next consider tile step at which the candidate “a” is compared to an element , say “c ”,

and found to be smaller. By the rule of stopping an enumeration as soon as possible , no other

elements are compared to “a ”. A ccording to our algorithm we select as next candidate the

element “b” just to the right of “a ”. 

-~~~~~~~~~--~~~~ - ---~~~~~
--
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Here we invoke the rule of starting an enumeration as late as possible. By transitivity since

“c” is larger than “a ” and “a” is larger than ‘b” , then ‘c ” is larger than “b” . Hence “b” need

not be consider ed. This argument applies to all elements between “a” and “c”, so that none

be considered as candidates. However “c ” is not known to be smaller than any element to

its right , so “C ” becomes the next candidate. This completes the derivation of an algorithm

for finding the largest element in m steps. Note that we have effectively derived a special

case of the more general rule “to find the extremum , perform one total enumeration and

replace tile candidate element each time a better element is found.” The more general rule

could have been used in this case , but we anticipate that the ability to derive it should also

prove useful in other program syiltilesiS situations.

The next operation is that of deleting the largest element from the input set. One

deletion method is to re move t he l ar gest element an d sh ift left all elements to its right. As

before in the insertion sort , t he shifting and tile Corfll)arisOn operations are both linear , left to

rigilt. Tile only difference is tilat the element being rippled along changes when a new

candidate for the largest element is found. This series of exchanges re-orders the input

set , but there is no constraint tilat tIle input order not be changed. Thus , as in the insertion

sort , the shifting can be interleaved with the search for the largest element , to form a series

of interchanges to both find the largest element and delete it by moving it to the right. Tile

final position of the largest element is at the left side of the output set , thus also completing

the insertion into the output set. This algorithm is called bubble sort or exchange selection.

in this case where it is permissable to re-order the input set , another simple deletion and

insertion method can be used. The largest element is lust interchanged with the boundary

element of the input set. This algorithm is called straight selection sort. We note that tile
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bubble sort does more work than just selecting t h e  largest element in each scan s ince more

than one element may be moved toward its destination. Tile selection sort can be made 0(n

log n) comparisons by using a tree-selection of the largest element as in heapsort.

-. .- - —
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8. Equal-size Split

And now we return to the partitioning sorts wilere tile sets are divided into subsets

that may each have more than one element. Suppose tllat we choose to divide tile initial set

into two subsets. Tile methods discussed for two subsets are probably extendable to

several subsets. The next question is, “by what critierion shall we split the set into two

parts ”? We shall consider criteria wllich divide the set into two approximately equal sets.

This often heads to faster algorithms , in particular the equal size split sometimes speeds up

an algorithm from 0(n2) to O(n log n) comparisons. The depth of recursion is reduced from n

to log n and if tile combined split and join operations are held to 0(n) comparisons , then tills

speedi up is acilieved.

One way is to split the set into a left-part and right-part depending upon tile position,

but not the value , of tile elements. Or it can be split into all elements larger than some size

and all smaller than some size , wilicil depends upon tile value of tile elements rather than the

position. Tilis choice is tile major factor in determining what type of sort routine is produced.

If the set is divided into two sets each respectively having all elements larger than and

smaller than a given size, tile result is a class including quicksort. This class may be tilouç,ht

of as a general form of selection sort where the set having all elements larger (say) than a

given size is being selected , i.e. a set rather than an element is being selected. Most of the

burden falls on tile split operation, to se lec t out these sets. The join operation is a simple

append (things may he viewed slightly differently for the conventional in-place quicksorts).

If the set is divided arbitrarily , into two parts (say a left and right part for

convenience) tile split operation is simple, and the work of ordering the elements is done in

-J
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t he  join operation. This method leads to mergesort and may be thought of as a general form

of insertion sort (although, to complicate matters , a subpart of one form of tile merge sort

can be viewed as a selection sort).

8.1 Quicksort

Let us assume that we shall divide the set into all elements larger than some number

and all less than or equal to that number. Let these two subsets be called LARGE and SMALL.

Next, we must decide on the size of the divid ing number. Our preferred choice is a number

that divides tile set so tilat LARGE and SMALL are of approximately equal size. If such a size

is known then we may use it. If not , tllen we must make some estimate of tills median. A

random number might be a first guess. Better , we can select randomly but limited to any

number with in tile range of tile set being sorted (although not necessarily in the set , since it

may fall between two Ilumbers in the set). Tills at least increases tile likelihood of it dividing

tile set equally. An eas y way to find a number within tile range spanned by tile set is to

ciloose an element of tile set. Let us make this clloice , but note that more effort could

produce a better estimation of the mid-point by sampling some elements of the set.

We will call tIle chosen element DIVIDER. Which element in the set silall be the

DIVIDER? If there is no reason to believe the set is ordered in any way tllen pick tile most

convenient element. (If tile set is perhaps somewhat ordered , tllen we might select from the

middle of tile set.) A convenient element to choose, in most data structures is often the fir s t

or last element. Let us clloose tile first element , and let tIle rest of the set be called REST.

How shall this element be used to divide the set? The simplest method is to compare it

• against each of tile other elements in the set. Those that are larger go into LP~RGE and those
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that are less than or equal go into SMALL. The splitt ing process requires a total enumeration

over the finite set REST , or in other words a total generate and process algorithm where tile

process is the addition of the element to one of two subsets. Note tilat , as in tile bubble and

sinking sorts , the sets SMALL, LARGE , and REST are really sequences of sets , each growing

or shrinking one element at a time. At this level of abstraction , we have completed tile split

operation. After completing tile entire sort at this level , we shall continue in more detail.

Most of the detail is concerned with efficiency and particular data structures.

Recall that the three top-level steps were to split , sort the subsets , and then join.

Assume that tile sorting of the subsets will be done recursively by the same algorithm. Now

for the join. Since both subsets are sorted , and all the eleme nts in LARGE are larger than

those in SMALL , we may join the subsets with an append. So the join is quite simple. (In

fact , if an in-place sort is used, then the two sets are already in their correct relative

positions and no explicit join operation is required.) This completes the high-level description ,

as illustrated below:

(7 3 1 6 2 8 5 4)

,,
/s~ iit\

(2314 ) (6857)

— sor t sor t

.1~( 1 2 3 4 )  ( 6 6 7 8 )

~~(1 2 3 4 S 6 7 8) 

-~-~~ -- .~~~~~~~ ~~~~~~~~~~~ - -~~~~~~~~ - - - -~~
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8.1.1 Details of the Split Operation

This is the part of quicksort which is most interesting. We shall show a sequence of

method s of do ing tile divid ing, each of which typically results in greater efficiency. Each

element of REST must be compared to DIVIDER , and put into its proper subset. What order of

enumeration shall be used? Left-to-right or right-to-left linear scans are the easiest for

most data structures.

As before we shall attempt to re-use space to produce an in place sort. When the

algorithm was described abstractly, no mention was made of whether tile two sets LARGE

and SMALL fit into tile original spac e or were placed in new spaces. If every set in the

sequences LARGE and SMALL is put into a new space , then tile average space requirement is

about 211 loq n. But we will be able to achieve an in-place sort requiring rougllly n locations.

Tile arcjum ellt that this is possible is the same as that given f or singleton split andI insertion

sets. Examination of the algorithm shows that eacbl set in the SMALL , LARGE , and REST

sequences riced be remembered only until the next set is produced. Thus after an elenlent

is produced from REST it can be placed in SMALL or LARGE and deleted from REST. The total

number of spaces needed at any time is just n, plus some bookkeeping overhead.

As before we shall assume that the sets will be placed in contiguous reg ions of arrays.

Since each subset will be in a contiguous region of an array, each reg ion can be marked by a

left and right boundary rather than by marking eacll element. Also , two boundaries are

adequate to mar k tile remainder of the original set . Where two regions touch, tile two

boundaries merge into one boundary and less marking space will be required. Some additional

space will be needed to hold tIle element being transferred and to save the state of

enumeration of elements of REST, 
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Now consider tile process of enumerating the set and placing each element into its

subset. There are several things needed; an enumerat ion order , e.g. left to right , or right to

left , or something more complex , and a place for each subset. We will need to choose an

initial position for each set , and growth directions for each boundary of each set. There are

six possible relative positions for the three sets , LARGE , SMALL , and REST. Since an array

can be accessed equally well from either direction, a left-right reversal of position is

effectively the same structure. So, by symmetry, we need only consider 3 possibilities. If

we also take adivantage of the symmetry of SMALL and LARGE , two possibilitie s are left:

Case 1: SMALL LARGE REST
Case 2: SMALL REST LARGE

with all other cases essentialiy similar.

Recall tllat each element will be com pared with tile DIVIDER element and assigned to its

subset. No delay is required to make the decision and place the element since the choice of

a location to insert it is not dependent upon any element not yet transferred. Thus the

element may be consumed as soon as it is produced. As soon as the produced element is

removed, tilen a vacant space exists and there are enough places so that tilere is room , but

the problem is to have that room occur at the right place to yield an efficient algorithm.

There are no constraints on tile order of elements in LARGE and SMALL so the eiement may

be insertedi any place. But in order to minimize shifting operations it should be inserted at a

movable boundary. Also, insertion at a boundary minimizes search for an insertion position.

But ill order to minimize silifts by inserting at tile boundary position there must be space

made available at tile boundary. What does it cost to make space available at the

bound aries for each of the two cases? -

-~~~~~~~~~~ -~~~~~~~~~
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Case 1: SMALL LARGE REST

There is no constraint on tile enumeration order from REST , but if left-to-right is chosen

then elements tilat need to be inserted into LARGE can be added at the LARGE-REST

boundary and no shifting is required.

Now consider , however , insertion of elements into SMALL. Any interior position or the

left boundary position of SMALL necessitates shifts witllin SMALL and requires one new

space on its right , 50 tile best insertion position is at its right boundary. Since no element is

given up from that boundary position, LARGE must be shifted right by one element. The

obvious way is to shift all elements rigllt by one, but tills l5 expensive. By noting that there

~5 (10 ordering constraint on LARGE , it can be shifted right by moving only its leftmost element

• to its rightmost boundary. This algorithm Is illustrated below. This is not a bad algorithm , but

case 2 yields an interesting and possibly more efficient algorithm.

7 3 1 6 2 8 5 4
1’1~7 3 1 6 2 8 6 4

1~ 1~3 7 1 6 2 8 6 4
1~ 1~3 1 7 6 2 8 6 4

3 1 7 6 2 8 5 4
f.

3 1 2 6 7 8 5 4
1~ 1~3 1 2 6 7 8 5 4

3 1 2 6 7 8 S 4

3 1 2 4 7 8 6 6
t

SMALL LARGE REST

This completes tile synthesis for case 1. Now we proceed to case 2. 

- - - - -~~~~~~~~~-— ~~~~~~~~~~
.—
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Case 2: SMALL REST LARGE

Both LARGE and SMALL share a boundary with REST. Any complete enumeration of tile

elements in REST will work. Merely take each element from rest and place it at the growth

boundary of LARGE or SMALL respectively. Place the removed boundary element of REST into

the vacated position. This strategy will in general re-order the set REST , which is allowable.

In the cases where a boundary element in REST is next to its proper place in LARGE or SMALL

no interchange takes place and only tile boundary marker is moved.

Let us 5110w one example

SMALL REST LARGE
7 3 1 6 2 8 5 4

Step 1 1’ 1~ exchange
4 3 1 6 2 8 5 7

Step 2
4 3 1 6 2 8 5 7

Step 3
4 3 1 6 2 8 5 7

Step 4
4 3 1 6 2 8 5 7  —

Step 5 exchange
4 2 1 6 3 8 5 7

Step 6 exchange
4 2 3 6 1 8 6 7

Step 7 1’ f’ exchange
4 2 3 1 6 8 5 7

SMALL LARGE

The moving boundaries are marked by arrows. Our enumeration strategy was to enumerate

from right to left , with SMALL to the left and LARGE to tile right. The element “4” was tile

divider. At each step tile element being compared to 4 is just to the left of the right most

arrow. Note that after an interchange , tile same position in REST had to be re-examined

since it held a new element. When all of REST is enumerated , we ar e done. One way to

check is to note that both SMALL and LARGE boundaries meet. 



45

Next let us consider a change in tIle quicksort algorithm. Note that an ek~ment could

sometimes be moved to a temporary location, then later examined and moved again. To see

this , notice tilat in step 5 of the example , 2 and 3 were interchanged , although the element

3 was really in a suitable position. We could have just changed tile boundary of small to

include it , rather than moving it twice. Can tills unncessary move I)e avoided in general? So

far we see no necessity for it in terms of the amount of space available to consume a

produced element.

A solution is to consider an alternative enumeration order for the set REST that allows

the proper interchange spaces to become available as needed. Tile proper spaces occur at

both boundaries of REST. So a good strategy is to enumerate both left-to-ricjllt and ri ght-to-

left in some reasonable manner. Suppose we move right-to-left. Sometimes just the

boundary will cilange (when the element belongs to LARGE) and sometimes an element will

have to be moved (when the element belongs to SMALL). When an element is to be moved ,

begin an enumeration from left-to-right , but don’t make the exchange yet. Moving from left

to riqiìt , aga in , sometimes an element will stay, as it is placed in SMALL by moving tile

boundary. But sometimes we will encounter an element that needs to be moved into LARGE.

Then when both needi to be moved , make an interchange and l)egin again. Whether we beqin

left-to- rigilt or vice-versa doesn ’t matter as long as we make no interchanges until both

elements need to be i(ltercilaflged. We illustrate by example.

- - — _~~~~
. 

~~~~~~~~~
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REST
7 3 1 6 2 8 5 4  begin

SMALL-. 1~ 
‘
~ .-LARGE

7 3 1 6 2 8 5 4 scan right to l e f t , note 4 should be moved

7 3 1 6 2 8 5 4 scan l e f t  to ri ght , note 7 should be rioved
t

4 3 1 6 2 85 7  interchange 4 and 7
1’

4 3 1 6 2 8 6 7 scan r ight to l e f t

4 3 1 6 2 8 5 7 scan r i ght to l e f t
t

4 3 1 6 2 8 5 7 scan right to left , note 2 should be moved
1’

4 3 1 6 2 8 5 7 scan l e f t  to r i ght
1~ 1’

4 3 1 6 2 8 5 7 scan le f t  to ri ght
1’ 1~4 3 1 6 2 8 5 7 scan l e f t  to r i ght, note  6 sho u l d  be moved

4 3 1 2 6 8 S 7 interchange 2 and 6
1h1~

So only two interchanges and no shifts were necessary with the new scanning strategy.

8.2 Mergesort

Recall that tile work could be done in the split or in the join. In this section we shall

assume that the work is done in the Join and a simple split operation will be used. It does

not matter which elements go into which of the two subsets. So the splitting method should

be the easiest possible. If an array is used as the data structure , then a division Into a right

and left half requires storage space for only one boundary marker , an index. To find the

value of this index only a division is required. if linked-lists are used, the division into two

sets requires one scan and possibly another scan to find the length.

We will assume that an array is divided into right and left halves. Each of these
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subsets, say S~ and S2, is then sorted. Now, how are tile two to be joined? A simple append

will not work since elements in either one may be larger than elements in the other one. Thus

some merging technique will be required as illustrated below:

(7 3 1 6 2 8 5 4)

/sPl I

(7 3 1 6) (2 8 5 4)

sor t sor t

(1 3 6 7 (2 4 5 8)
\ /

merge—jo in
\ /

( 1 2 3 4 5 6 7 8 )

In the quicksort case the union of the two sorted subsets reduced to a simple concatenation

operation. For mergesort, we must find another technique. A form of the divide-and-conquer

paradigm may be employedi. Assume the two sorted subsets are S~ and ~~ 
We wish to join

then-I into S3 by an ordered set ulliOll operation , i.e. S. = S 1 U S2. By the divide-and -conquer

paradigm, we may split 
~ 1 ~2 into two parts, form tIle union of tile remainde; , and tilen join

them. Obviously a split into S~ and S2 leaves us with the same problem and we are no closer

to a solution. So consider a singleton split of one element and the rest , say into (a) and (S i-

(a)) U S~. After forming tile union of S 1 -(a) and S2,(a) is joined.

Note tIlat (a) can be selected as the extremum , in which case tile split is doing the

work or else the element (a) is chosen for tile simplicity of the split and the join does the

work.

One case appears to be a selection-style ordered union and one appears to be an

insertion style ordered union. Also , both may be converted to an iterative transfer version,

_____ 
-- ~~~~~~~~~~~~~~~~~~~~~~~
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rather th an a recursive version. We shall not discuss that conversion but we will trace tile

synthesis for both the insertion and the selection case , assuming an iterative transfer.

8.2.1 Insertion paradigm for merge

Consider tile insertion process. Each element from S 1 LI 
~2 must be inserted into S3.

The order of selection of elements from S 1 and S2 is not constrained. By observing tilat 
~2 

is

sorted, just let S2 S3 effective ly transferring all elements from S2 in S3 at no cost. Then

successive eienlellts of S
~ 

must be inserted into 
~~ 

The process of finding an efficient jo in

or merge operation may be seen as a sequence of speed-ups of the various enumerations

d uring tile production of an element from S 1 and the generation of its correct position in S2.

As in our insertion sorts dliscussed earlier , use can be made of the knowledge that the

element-consuming set S2 remains sorted during the insertion process. in addition we can

use tile illfOrnlatioll that tile element-producing set is sorted to find still further speed-ups.

First consider the insertion of an element into S2. Snlce S2 is sorted , in general not

every position need be examined. In fact, for a linear sean of positions , as soon as the fi rst

position is encountered in wilicil tile element to be inserted is larger than the element to its

left and smaller than tile element to its right, then no further searching is necessary, since

that position is correct and tile elemen t may be inserted there. The correctness of this

position follows from tile transitivity of tile sorted set. The test for correctness may also be

slightly optimized, as discussed earlier.

Next consider tile enumeration order of elements from S 1. If they are generated

linearly, from , say left-to-right , then each successive element is larger than the last. This

_ _  _ _ _ _ _ _  
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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means that in scanning S2, the scan need not begin to tile left of tile recently inserted

element , since by transitivity it must be larger than all of tllOSe. So the scan need only begin

at the position to tile right of the inserted element. This method requires a state-saving

sclleme for tile consuming set S2 to remember the ~revious insertion position. Tilis process

turns out to be linear in the number of comparisons of elements. By observing that tile depth

of recursion is log n, the total number of comparisons is of order n log n.

The merge sort can be done in place. The determ nation of the feasibility of an in place

sort is the same as shown for the other sorts discussed earlier. However , shifting will be

required in 
~ 2 since the elements are inserted into the interior of S2. Suppose the sets are F

placed so tilat S~ is on tile left and S2 is on the right. Then all elements in 
~2 to the left of

tile inserted element must be shifted since 
~2 cannot be re-ordered. The rule that says to

minimize siliftincj by taking elements from th e common boundary may be invoked to suggest a

right-to-left descending order of elements in S1. Since elements are taken from tile

boundary, 110 shifts in S 1 are required. However , there may be as many as n12 shifts of n/2

elements required for S2. Tile insertion paradigm fits well with list representation of sets.

8.2.2 Selection paradigm for merge

We now present an alter nate derivation path, a selection paradigm. In the selection

paradigm the enumeration order is forced to select elements from both S 1 and S2 according

to the final ordering. Thus first tile largest is selected , then the next largest , and so on.

Those are then inserted in a linear order one after the other.

The two sorted subsets , S 1 and S2, are tile input to the selection process and the

~--~ - --- - - V--~ —



50

output , say S3, will be the sorted set. If no a priori knowledge about the ordering relation on

S 1 and S2 is used, then au elements are enumerated to see which is the largest. As

discussed earlier an inefficient way is to compare each against all others. A reasonably

simple speeclup is to carry a best-so-far candidate along, and replace it with any larger

element. By transitivity, tilis finds tile largest element in a number of comparisons equal to

the size of the iIlpUt , say n. Thus, a scan of tile entire set produces one element. To

produce all elements of S3~ requires about 112/2 comparisons.

Tile fact that we know both S 1 and S2 are sorted leads to one more speedup. The

largest element in S 1 is its last element. The largest element in S2 is its last element. The

largest element in S 1 U S2 must be either the largest in S 1 or the largest in S2. If this is not

clear , suppose tilat “e”, tile last element of S 1 is larger than the last element of S2. We

know that “e” is larger than all of S~. Now, by transitivity, since it is larger than the last

element of 
~2’ it is larger than all elements of 

~~ 
So to find tile largest element , only tile

two last elements need be compared. Now produce that element , remove it from its parent

set , say S 1, and put it in tile output set S3. Again the same situation holds; the largest

element is now eitller tile new last element of S 1 Ot tile last element of 
~~ 

Compa re these

two elements to produce the second element and remove it to the Output set. We see that

this results in one comparison per outp ut element , so that the number of comparisons is

reduced to 0(n), from 0(n2). The speedup resulted from tile use of tile knowledge that tile

input sets were already sorted.

L 

Note tilat two enumerations are being carried out simultaneously on S 1 and S2, and the

sequencing between tile two enumerations depends on tile data. We used removal of each

element as tIle state-saving scheme , but other schemes such as marking elements or moving

list pointers would also be adequate. The selection paradigm makes clear that if a second
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• set of Il locations is available , say 83, then a sort with no shifting is possible since 83 is

created in order.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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9. Conclusions

In tills paper we have attempted to explicate tile programming knowiedge for space re-

utilization, ordered set enumeration, and the divide-and-conquer paradigm. With this

knowledge converted into rule form one could synthesize efficient sort programs , ordered set

unions and Otiler programs.

TIle principal derivation path--divide-and-conquer , then singleton or equal size split ,

then recursive to iterative transfer , then in-place , then shifting or exchange--proved to be

satisfactory. in particular we found tilis approach simpler than considering exchange sorts

as a separate class. Tile paradigm could probably be reasonably extended to include

iieapsort , radix sort and others , witii tile introdlucti on of trees and other primitive s. However,

while we felt tile paradigm was adequate , we explored few other canadidates except for

transfer and exchange paradigms.

Much of the knowledge expressed here and in our previous papers has been

implemented as ruies and has been tested in programs thlat successfully synthesized many

sorting and other programs. However , we have not yet implemented many of the higher-level

rules and assume that further enlbehlisllments wili be required.

An interesting and more global research question is that of the utility of this particular

approach to program synthesis. At one extreme of the synthesis spectrum is tIle macro

expansion ol templates , or the instantiation of parameters into existing pieces of code.

Those techniques are ri gid but computationally cheap and are adequate for many purposes

SUCh as compiler code generators for medium-level languages. M the other extreme are

more computationally expensive theorem proving techniques that search larger spaces of

_ _ _ _ _ _  
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possible programs. Such techniques are more likely to create “new” algorithms or at least

unanticipated ones, but at tile possibly prohibitive cost of considering many unusable

programs. Our approach is more of a middle ground but as suits a particular application it may

be combined with other techniques.
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12. Appendix

In this appendix we illustrate how a few of tile rules may be stated in more detail. A
typical and wid ely-used rule is one which enumerates a l l the elements i n an explicitly-stored
set , and performs some operation upon each element. An English level description of the rule
is:

In order to write an enumerator for an explicitly stored set ,
(a) determine tile order for generating the elements ,
(b) select an appropriate scheme for saving the state of tile enumeration

between tile production of the elements ,
(c) based upon the enumeration order and the state-saving scheme, write the

body, initializer , incrementer and termination test.
This rule migllt be invoked by a higher level rule with certain constraints such as (a) “tile
enumerat ion is to be total” , i.e. all elements must be processed or (b) a data structure may
already have been selected or (c) an enumeration order may already have been imposed.
Supp ~se that no en,imeration order has been specif ied , but tile enumeration is constrained to
be tot~ i aildi the set is stored in an array. Then one of tn~ rules for enumeration orders must
be chosen. We will assume that tile following rule is se lectt ~

.

(PROP.- ENUMERATION -ORDER
(ENLIMERATE-POS I TIONS )
(QUOTE STOREO))

which may be paraphrased as “An enumeration order for an enumeration of positions in a
sequential collection is the st ored order. ”

After tile enumeration order has been chosen, a state-saving scheme must be
selected. This involves tile invocation of three rules. The first is:

(REF4- (ENUMERATION-STATE
(1W ENUMERATION

(1/P ENUMERATION -ORDER (?#= STORED)))
(lI P COLLECTION (.- .- X ) ) )

(1/NEW POSI TION-IN-COLLEC TION
(.—PP COLLECTION X)))

which may be paraphrasedi as “The enumeration state of an enumeration whose enunleration
order is tile stored order may be represented as a position in the collection.” (REF.- denotes
the refinement of one concept into another. P refers to various attributes of such
concepts.) The second is:

(REF4- (POS I T ION- IN-COLLECT ION
(1/P COLLECTION (.- .- X )

(1/REF ARRAY )) )
(1/NEW I TEM-INDEX

(.-#P ARRAY X ) ) )
which says “If a collection is represented as an array, a position in that collection may be
represented as an index in that array. ” The final rule based on the assumption that the
output code Is to be in the LISP language:

(REF.- ( ITEM-INDEX )
(1/NEW L ISP-INTEGER ))

which states “An index in an array may be represented as a LISP integer.” 
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Other state saving schemes can be pointers , bit strings, property list marks , bosh table
entr ie s, l ist  r emova l , element overwriting, etc. Some are sultab(e for non-destructive
enumerations, others only for destructive enumerations. Some are adequate for non-linear
enumeration orders , others are not.

Next it is necessary to write tile body, the initializer , and the termination test. Assume
that tile collection under consideration is represented as an array. Then the termination test
synthesis process invokes a series of rules as follows:

(REF.- (TEST-ENUMERATION-TERMINATION
(1/P STATE ( f- 4-. 5 ) )
(1/P COLLECT ION (.— .- C ) ) )

(I/NEW TEST-FINAL-ENUMERATION-STATE
(.4/P STATE S)
(.4/P COLLECTION C)))

which may be read as “A test of enumeration termination may be refined into a test on
whether the state-saving scheme is in its final state. ”

(REF.- (TEST-F INAL-ENUMERATION-STATE
(1/P STAT E (.- .- S)

(1/P ENUMERATION
(1/P RANGE (?#= TOTAL))))

(1/P COLLECTION (.- .- C ) ) )
(1/NEW TEST-ALL-ELEMENTS-ENUM ERATED

( .4/P STATE S)
(.4/P COLLECTION C)))

Or , “II an enumeration is total , a test of whether a state-saving sclleme is in its final state
may be refined into a test of whether the state indicates that all elements have been
enumerated.” (Notice how the above rule checks to see whether the range of the
enumeration is constrained , as we assunled earlier. Were there no such constraint , then
other rules to determine an appropriate range would have to be considered.)

(REF.- (TEST-ALL-ELEMENTS-ENUMERATED
(1/P STATE (.-~

-- S )

(// P ENUMERATION
(1/P ENUMERATION-ORDER (?#= STORED)))

(1/ROS (1/REF POSITION-IN-COLLECTION )))
(1/P COLLECTION (.-.- C ) ) )

(1/NEW TEST-POS I TION-AFTE R-LAST- I TEM
(.-flp POSITION F)
( .4/P COLLECTION C)))

“If the enumeration order is the stored order and tile state is saved as a position in the
collection , a test of whether the state indlicates that all elements have been enumerated
may be refined into a test of whether the position indicates the position after the last item in
the collection.”

Notice that up to this point, all of the rules have been general enough to deal with
linked lists as well as arrays. The next rule is specific to arrays:
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- (REF.- (TEST-POS I T ION-AFTER-LAST - I TEM
(// P COLLECTION (.- .- C)

(1/ROS (1/REF ARRAY )) )
(f/P POSITION (.-.- P)

(# R DS (1/REF ITEM-INDEX ))))
(I/NEW TEST- INDEX-AFTER-LAST-I TEM

(.-NP ARRAY C)
(.4/F’ INDEX P ) ) )

which may be paraphrased , “If the collection is represented as an array and the position is
represent ed as an index into the array, then a test of whether the position indicates the
position after the last Item may be refined into a test of whether the ndex IS the index after
the last item. ”

(REF.- (T EST- INDEX-AFTER -LAST-I TEll
(//P ARRAY (.- .- A ) )
( 1/P I NDEX (s- .- L))) -(1/NEW GREATER-THA N
(s-f/P ARG1 Li —

(s - I/ P ARG2
(1/NEW GET-UPPER-BOUND

- (s-//P ARRAY A)))))
which may be read , “A test of whether an index is the index after the last item may be
refined into a test of whether the index is greater than the upper bound of the array. ”

The final rule in tile sequence produces a call to a LISP function:

(REF.- (GREATER-THAN
(I/P ARGI (.- .- Al )

(1/ROS (1/REF LISP-INTEGER)))
( I/P ARG2 (.- .- A2)

(//RDS (1/REF LISP-INT EGER))))
(1/NEW LISP-FUNCTION-CAL L

(.4/P FUNCTION-NAME (QUOTE I GREATERP))
(s-//P ARGUMENTS (LIST Al A 2 ) ) ) )

“A test of whether a LISP integer is greater than another LISP integer may be refined into a
call to the LISP function IGREATERP.”

Notice that it is still necessary to write the code W i~iCh w~iI retrieve tile upper bound of
t ue  array. In most cases tIlls would result in the retrieval of the value of a bound variable ,
so the final LISP expression would be: “(IGREATERP STATE UPPERBOUND)”, where STATE is
the variable which holds tile state and UPPERBOUND is the variable which holds the upper
bound of the array . Despite the detail , the above derivation is itself a slight over-
simplification, ill that an array is simply a correspondlence between integers and values, a
fact which would be included in a complete derivation.

Notice also, that for an list enumeration with arbitrary ordering, and using deletion as a
state saving scheme , a very different piece of code would be produced. The synthesis of
the other parts of tile enumerator follow similar lines. The body becomes a refinement of
what ever operation is being applied to each element. The incrementer can be complex , as in
the enumerator for the selector of a selection sort of very simple as in the enumerator of the
the selector for an insertion sort.

-
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After the pieces of code for the various parts of the enumerator have been produced it
is relatively sra ightforwarci to assemble them into a program and clean up the resulting code.
Most of our programs have boon produced in LISP but we now have i small number of rules
for producing SAIL code added by Juan Ludlow-Saldivar E13].
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