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NOTATION AND NUMBERING

We define some notation which may not be completely standard.

All points and sets are in R™ unless indicated otherwise,

1)

2)

3)

k)

5)

€)

7)

9)

Ro= {x€ R"|x >0)

n
For x, y € R"”, denote their inner product by (x,y) = 2 x

yo
a1 Ud

Let x| = (x,x)l/2 be the norm of x.

Denote by d(-,-) the distance function defined as
d(A,B) = inf |x-yl

x€A
¥EB

Let the ball about A of radius ¢ , where A may be a point or
a set, be

B(A,¢) = {x € R"|a(x,4) < ¢}

For any positive integer m, let m= {1,2,...,m}. If m=0,

¢.

i

then m

conv[Al,A?,...,An] is the convex hull of the sets (or points)

A

Al; A2, vee n-

R™X™ s the space of all real-valued matrices with n rows

and m columns.

If ocn and p<m are index sets, then, for A€ R J,

ik




A consists of the rows of A indexed by ¢, and

b

A ; consists of the columns of A indexed by
. 3

Ao i is the submatrix of elements whose indices are in o X p.
2 o e

10) For two sets A and B,

AN\ B = (x|x € A, x ¢ B)
and
A -B={z|]z=x-y for some x € A, and y € B).

11) The boundary of a set C 1is called 3C, and the interior of set

C 1is called Co.

Numbering

The chapters are numbered by Roman numerals and the sections
are numbered consecutively within each chapter, i.e., II.1l, II.2, etc.
All theorems, lemmas, and examples are numbered consecutively within
each section. Equations are numbered separately and are identified
by being enclosed in parentheses. Equation (v.1.2) is the second

equation in Section V.1, for instance. The chapter numeral is omitted

for results or equations referred to within the same chapter.

iv




THE COMPUTATION OF ECONOMIC EQUILIBRTA BY PATH METHODS

Thomas R. Elken

ABSTRACT

An introduction to the economic equilibrium model is given
and it is demonstrated that a path method can be used to compute
equilibria for pure exchange economies in a nonlinear setting.

Next, a model is described for an economy in which the utility
functions are piecewise linear and the consumption and production sets
are polyhedral. It is shown that an equilibrium for this economy is
the solution to a system of bilinear equations subject to certain
linear inequality and complementarity constraints.

Two approaches are discussed for computing equilibria for such
economies. The first is the bilinear complementarity algorithm (BCA)
and the second is the homotopy retraction algorithm (HRA), Convergence
proofs are given for both methods using the general theory for path
methods described above.

The BCA and HRA have been implemented as computer progrars.
Detailed descriptions of the algorithms are given, and the results of
some numerical experiments are reported. Seven small problems were
solved by both algorithms. No conclusion could be drawn as to which
algorithm was superior, but both performed well enough that it appears
that much larger equilibrium problems also can be solved efficiently

by these methods.




THE COMPUTATION OF ECONOMIC EQUILIBRIA BY PATH METHODS

CHAPTER I

I. Introduction and Summary

This reportyis concerned with two algorithms for computing
equilibria for a general piecewise linear economy. Proofs will be pre-
sented which show that these algorithms converge under certain conditions
and the computational results from the first implementation of these
algorithms will be reported. The first algorithm is the bilinear com-
plementarity algorithm of Wilson [1976]. A new proof of convergence
is given here using the results on subdivided complexes in Elken [1977],
and a detailed description of an algorithm which is suitable for numerical
implementation is presented. The second algorithm is new but it is
heavily influenced by the ideas of Wilson [1976] and Kellogg, Li, and
Yorke [1976]. We call it the homotopy retraction algorithm. Both
algorithms show great promise in computing equilibria for larger models
than has been possible up to now.

This report constitutes the second half of the author's dissertation.
The first half is contained in Elken [1977]; we will call this work
Part 1. The reader who is interested in the proofs for the two convergence
theorems in this report will have to be familiar with the definitions
and results in Chapter II of Elken [1977]. Those readers interested in
the algorithms, their iﬁplementation, and the numerical experiments will

find that this report contains all the relevant material.




In Chapter II of this report we introduce the economic equilibrium
problem in its traditional form and show how it can be solved by a path
method. (A path method is a procedure for solving a system of nonlinear
equations by following a (piecewise) differentiable path from a known
starting point to a solution for the system of equations; see Elken [1977]
for more details.) We also introduce the piecewise linear formulation
of an economy as it was developed by R. Mantel [1967] and R. Wilson [1976].
It is this formulation which we use to develop algorithms to exploit the
linear structure to compute equilibria for this model of an economy.

In Chapter III we present a generalization of the piecewise linear
equilibrium problem, the bilinear complementarity problem (BCP) of Wilson
[1976]. Wilson defined a path and proved that it led from an easily
obtained starting point to a solution of the equilibrium problem. We
present a new proof of this and an algorithm which exploits the linearity
of this model to reduce the nonlinear path-following problem to the
lowest possible dimension (< the number of consumers). The last part of
this chapter is a description of the algorithm as it is implemented

in a computer program.

In Chapter IV we present a new path method for computing economic
equilibria and prove that it is convergent. We also describe, in detail, 3
an algorithm based upon this path method which has been numerically
tested.
Chapter V contains the results of some computational experiments
with the algorithms presented in the previous two chapters. The

conclusions are primarily a comparigon of these two methods, but it is




hoped that comparisons with existing codes will be made in the
future.

Chapter VI suggests some promising directions for future research.
An Appendix is included which describes one method for generating piece-

wise linear approximations to nonlinear utility functions of several

variables.




CHAPTER II

COMPUTING ECONOMIC EQUILIBRIA

IT.1. Introduction

The concept "equilibrium" suggests that opposing forces are
in balance. Economic equilibrium theory is concerned with the balance
of the demand from consumers with the supply provided by producers.
Each agent in the economy is concerned only with the maximization of
his satisfaction or profit depending upon whether he is a consumer or
producer, respectively. To be more explicit, a special class of economies
is considered, namely, private ownership economies in which consumers own
the resources and control the producers. Given a price system, each
producer maximizes his profit, which is distributed to consumer-share-
holders. The wealths of the latter are thereby determined, and they
meximize their satisfaction from the consumption of goods subject to
their wealth constraints. As a result of this process, each agent chooses
an action. The state of an economy in which these optimal actions of
consumers and producers are compatible with the resources is called
an equilibrium.

The traditional questions which have been studied by economists
are: Does a price system exist which puts the economy in equilibrium?
Is an economy at equilibrium stable? That is, if there is a violation
of one of the conditions of equilibrium, do rational actions of the
agents tend to restore an equilibrium. An excellent work which deals

with these questions is Arrow and Hahn's General Competitive Analysis

[1971]. This work also provides an excellent introduction to the
literature of economic equilibria theory.
N




This work is concerned with the existence question as it

arises in the problem of computing =quilibrium prices and activities.
The question of stability will not be discussed. The ability to compute
equilibria for large-scale models is important because it may allow a
great improvement in economic modeling.

The difficulties inherent in economic model are well known.

"The problem of collecting relisble data on the technological

processes that ars currently available is enormous, to say

nothing of the difficulty of inventing appropriate iaput-

output coefficients for prcductive techniques that remain
to be discovered." (Scarf [1973], pp. 7-8).

Because of the large size of most economic models, the linear programming
formulation is invariably used. The advantage of the equilibrium model
over linear programming is that consumer demands and their dependence
upon price are recognized and modeled with some rationality. Unless
the system is prepared to tolerate strict rationing, consumers will
respond not only to the availability of items but also to their price.
Thus, we see the importance of computing equilibrie as an aid in
economic planning.

The first algorithms for the computation of economic equilibria
were developed by Scarf [1967]. He developed an algorithm for solving
fixed points of a function which maps the unit simplex into itself.
Then the equilibrium problem was transformed into such a fixed point
problem. To illustrate how this transformation can be accomplished
we will deal with a pure exchange economy, i.e., we ignore production

for the moment.

(O




Suppose there are n goods in the economy of m consumers
or traders, and that each of the consumer's preferences are represented
by a utility function. To be precise, let y € R® be a vector of the
n goods and T € Hin be the vector of prices for the n goods. A
bundle of goods x 1is preferred to a bundle y by consumer i,
i=1,...,m if and only if u,(x) > u;(y) where u:R® SR isa
strictly concave and continuous utility function. The demands of the

ith consumer are determined by the solution to the following problem:

maximize ui(y)

subject to Ty < v , (1.0)

where w~ is the initial endowment of the ith consumer, i =1,..,,m,
We shall assume that the solution to this problem can be written as a
continuous function of the prices T, di(w). The individual trader's
excess demand function is di(w) - wl, i=1, ..., m. The excess demand
will be positive for those commodities whose stock he wishes to increase
by exchange and negative for the remaining items. The market excess
demand function g 1is the sum of the individual excess demand functions
s i
g(r) = ¥ (di(v) -w)
i=1
An equilibrium price vector 7 is one for which all of the

market excess demands are less than or equal to zero

g('”') <0, (1.1)
T>0, m#0, (1.2)
mglr) =0 . (1.3)




Equation (1.3) implies that there is a zero price for any commodity
whose demand is strictly less than zero.

An important property of the excess demand function is that (1.3)
will be satisfied for any price system 7 Dbecause the value of each
consumer's excess demand is identically zero. This property is known
as Walras' law. Another property which is easy to derive is that the
excess demand function is homogeneous of degree zero, that is, if the
prices are scaled up by a constant factor, the demands remain the same.
This implies that it is sufficient to search for an equilibrium price

n

vector on the unit simplex, S°. The following function from s into

s™ has the property that a fixed point is an equilibrium:

(
x, + max(0,g, (1))

[
(M

f=4
.

fi(w) 3 n

s 0 max (0, g, (7))
1=1

To see that a fixed point of f is an equilibrium point,

the equation 7 = f(7) can be written

R =
oF, =7, max[0, g, ()]

with o =1+ Zi max[0,g. (7)]. If o is in fact greater than one,

then the condition %i(a-l) = max[o,gi(%)] implies that gi(%) >0
whenever %i > 0., Since some %i are strictly positive this violates
FTg(%) = 0. Therefore « =1 and, hence, gi(ﬁ) <0 forall i,

and 7 1is an equilibrium vector.




One procedure for moving towards equilibrium is a price adjust-
ment in which the price of a good is increased if the excess demand
for that good is positive, decreased if the excess demand is negative.
This is the classical t&tonnement or "groping" for an equilibrium
(Walras [1874]). Scarf [1960] has shown that for virtually arbitrary
excess demand functions, this process can be unstable. This price
adjustment is globally steble, however, if a certain gross substitu-
tability between all commodities is satisfied (Arrow and Hurwicz [1958]).

The differential equation which expresses this process is

I - glm (1.4)

We will ncow show that a convergent price adjustment process can
be defined which behaves like (1.4) initially. Suppose that the excess
demand function g is differentiable. Since the excess demand function
is homogeneous of cdegree zero, g'(w) has rank n-1, in general; hence,
we must reduce the dimension of the problem by one. This can be done
by solving the problem on the unit simplex or the nonnegative portion
of the unit sphere, {x € R"|x >0, ||| = 1). We shall follow a certain
amount of tradition in mathematical economics by considering a distinguished
commodity or 'numeraire' (Quirk and Saposnik [1968]) so that the price
of other goods are measured in terms of this numeraire good.

Suppose there are n+l commodities with prices wb,nl,...,w

n

where no

ing assumption on the excess demand function gi(v), TR TS o NG

is the unit price of the numeraire good. We make the follow=-




e AR i s bt 5

Assumption 1.1. If m; =0, then gi(v) S Mol L = ol S Ly

Thus, no equilibrium price vector will be on the boundary of

+
Iif l. So we will work in the domain of price systems (T ,...,vn)

which satisfy To > 0. 1In this domain, by the homogeneity property

of price systems, one can normalize a price vector by dividing by To*

Thus a price system (ﬂb""’wl) can be represented by a unique point

n

(Pyseeespy) = (m/mg, oooy m /M) in R}

n

With this interpretation, the space of price systems is R,.

Suppose that the excess demand functions go(v), Catal s gn(w) are 02

and satisfy Walras' law., Then

n '7Ti
By(m) = - iél o g (m) . (1.5)

This along with the boundary condition 1.1 implies that the equations

g, (m) =0, i = Iyiney o

are necessary and sufficient conditions for economic equilibrium.
Let fi('p) = gi(l, 7T1/7r R 'rrn/vro) 3 L= Typcayll s

Then consider the application of the following version of Kellogg,
Li, and Yorke's deformation. Pick some po such that po & Iif and

for exactly one 1i € n, pg =0, say i =1, Then the boundary condition




(III.1.1) can be shown to hold on D = {p|0 < p; <P, 1 €n} for some

P > 0 because of Assumption 1.1 and equation (1.5) (cf. Smale [1976],

p. 116). M= D x [-1,1] and F:M > R" is denoted by
. g 0
F(p,0) = ef(p) - (1-6)(p-p") .

Then by the theory of Section II.1l, if O 1is a good value for F,

there is a C1 curve with boundary points at (po,o) and (p*,1)

end, of course, £(p¥) = 0. But if (p(t),6(t)) = [0,T] >F >(0) such
that  (p(0),0(0)) = (z°,0) and (p(1),6(T)) = (p%,1), then B(t)
satisfies |

b(t)
O (P: 9) =0
o(t)

or

p(t)
(e (p) - (1-6)T]2(p) - (p-p")) [‘,’ ] 0.
6(t)

At t =0 we have 6 =0, p = po, 6(t) = A> 0, and

p(t) = »(p) (1.6)

Thus, initially at least, the adjustment of prices by a retraction
method, is the same as the classical tatonnement method of price
adjustments. It can be said, with reference to the equilibrium problem,

that the parameter O of the retraction method allows a smooth transition

10




from t&tonnement to a global Newton method. To see this consider again

the relation

[o£' (p) - (1-6)IIp(t) = -8(t)(£(p) - p + 1°) ,

or

£(p) B(t) - 22 5(8) = - L8 (2(p) - p + °) (1.7)

As p(t) >p* and 6(t) »1 along F 1(0) it is clear that the

second term on the left side of (5.7) vanishes. Also for (p,8) € F-l(o),

p - po = 6/(1-0) f(p), hence, (5.7) is approximately

: - e i3 1
£ (p) b(t) = - 8(t) (F+ 355 £(p) .
So for some A >0, p(t) almost satisfies f£'(p) P(t) = -Af(p), the

global Newton equation of Smale [1976].

II.2. The Piecewise-Linear Model of Exchange

The usual assumptions made in the literature of economic equi-
librium theory include assumptions that the utility functions are
concave, the consumption sets are convex as are the production possi=-
bility sets. It is well-known that concave functions can be approximated
to an arbitrarily small tolerance by piecewise linear functions and

that convex sets can be approximated very closely by polyhedral convex

11




sets. In this section the discussion will center around a model of an
economy in which the utility functions are assumed to be concave and
piecewise linear, and the consumption and production sets are polyhedral.

This model was introduced by Rolf Mantel [1968]. He gave an
ingenious proof of the existence of economic equilibria without using
the methods of combinatorial or differential topology. Mantel's
approach did not seem to be computationally efficient, for it involved
a complex limiting operation at one point. G. Dantzig, B. C. Eaves,
and D, Gale [1976] did use this model as the basis for a new approach
to computing equilibria. They solve the problem by computing a fixed
point of a point-to-set map whose values are determined by the solution
to a linear program. We will not discuss this algorithm further,
even though it promises to be one of the main competitors to the
algorithms we present here.

Both Dantzig, Eaves and Gale [1976] and this work are concerned
with solving equilibrium problems with a relatively small number of
households or traders (about 3-10) and a large number of goods (up to
300). One obvious example of a problem of such a scale would be if 3
to 10 countries were considered to be consumers who were involved in
the production and trade of up to 300 goods.

For simplicity, we will first present a model which allows only
linear utility functions and ignores production. Later it will be
shown how the general piecewise-linear economy can be formulated and

solved in essentially the same manner.




Consider a simple exchange economy with m households and

£ goods. Each household i € m has available a finite set Si of
S,
activities such that, if it chooses a vector zi SR * of nonnegative

activity levels, then it obtains the utility rlzl and it consumes
i S.
the vector Blz1 of quantities of the commodities, where ri ER T

AXBY . g8 ot em? ux Bovpehiond, 1vs inthiel endowmant

of goods, then its excess demand function is gi(zl) =R - wi.

and B € R

Notice that in the terminology of the pure exchange problem in Section 1,
Ui(zl) = y'2". Also, in that pure exchange problem, if all of the
activities in Si are merely the consumption of a particular commodity

then all of the technology matrices are identities (B1 = L& Ilﬁ)(z).

Definition 2.1. A price vector 7 # 0, and a consumption allocation,

25 i€m constitute a competitive equilibrium iff

a) the net trades are feasible with free disposal:

MEB

fud S =1
Bz < L w., 2z 20, ic€m,
i=1

i=1

and
b) Given the nonnegative price vector ﬁ, z

maximizes U(z")

subject to 7Bzt

]

IN
EI =,
S
I/
(@]

for each i € m,

This notion of equilibrium is clearly equivalent to that in

i

Section 1., If z  is considered to be a function of 7, then pizl

is equivalent to di(ﬁ), the demand function of Section 1.

13




A similar notion is that of a quasi-equilibrium, which is

defined as

Definition 2.2. A specification (7,z, i € m) is a guasi-equilibrium

iff
m s m . .
a) L Bz < L w,2 >0,1€m and
i=1 i=1
= %
b) Given 1 >0,

minimizes 'r-r(Blzl - wi)

subject to vzt >yiz, 2t >0

for each i € m, and this minimum is zero.

Condition b) can be interpreted as choosing 7" to minimize
the net expense of maintaining the utility level Ui(El) and requiring
that the budget be balanced exsctly w(B 3> - w) = O.

The following conditions will be assumed throughout:

Assumption 2.3.

a) For each consumer i € m, the consumption set

X, = {x € ]R£|(3 . > 0) plzl < x)

is bounded below.

1.1

b) The induced utility function Ui(x) =ma.x[rizi|zizo, Bz <x} on

is insatiable, i.e., for all xl € Xi d x2 € X, such that

X o

i
Ui(xl) < Ul(x2), i€ m,

¢) The initial endowment w' is strictly positive for each i€ m.

1k




Debreu [1959] has shown that these assumptions imply that a
competitive equilibrium exists, and that a quasi-equilibrium is equivalent
to an equilibrium.

Let us consider, for a moment the complexity of the problem of
computing equilibria for this class of economies. B, C. Eaves [1975]
has shown that if Bi =1I, i € m, this problem can be formulated as a
linear complementarity problem, and with these assumptions. Lemke's
algorithm [1965] will yield a solution after a finite number of
additions, multiplications and comparisons. However, when Bi is
allowed to be more general, & problem with rational data may have an
irrational solution. The following example, due to Andreu Mas-Colell,

is such a problem:

; SRR B g B s

B = ( l) 2 B " ( .5)’ B = (.20) 2
1 il i .

W = (l) 3 Y = (l) > 1= 1,2,5.

Mas-Colell has shown that every equilibrium price vector 7 is a
positive scale of (1 + /3, 1). Thus, no finite algorithm can hope 1
to solve this class of equilibrium problems exactly.
Next, we introduce the auxiliary linear program which has the
property that, if the correct constants are used in the right-hand side,
the solution to the linear program is a quasi-equilibrium and, hence,

an equilibrium.

15




The objective of the linear program is to maximize ©p, a measure

of exports from the system, subject to maintaining utility levels v

i
and feasibility of trades, i.e.,
meximize p
5 ii
subject to y7z" > vi, i€m
ii 2
2, Bz + pe ol Wy (2.1)
i€m i=l
2 >0, i€m,

where e € Eiz is a strictly positive vector. This formulation is
due to Wilson [1976]. It also was influenced by Debreu's [1951] notion
of a coefficient of resource utilization. If e = Z?=l wi, then
® = 1-p 1is the coefficient of resource utilization. In Debreu's
theory, if ¢ = 1, then the economy is on the Pareto optimal frontier
(any increase in one consumer's utility would require another consumer's
utility to decrease for the trades to remain feasible).

The dual for the auxiliary linear program is
m

m
minimize (7. wi) > A Vs
i=1 i=1

(2.2)

n
=

subject to e

1 - artzo, ic

1B

™ >0,




Here, m 1is the price vector and 7\21 can be interpreted as 1i's

marginal utility of income. Let u, = m(wt - B 2Y), 1i¢ m, be 1i's
budget surplus. If compliementary slackness holds for the dual problems

o i4 %y 1
(2.1), (2.2) then W 7z = NYE = 7\ivi and we have U =W - )\ivi

for i € m. Also,
(X Bzt + pe) = 7T wh)
5! i

and
e = 1

| imply
p =2 u - (2.3)
3
Thus, at a solution to the primal and dual programs, these

relationships will hold.

Lemma 2,4. If the utility levels v,, are chosen so that u, = 0, L€m,

at an optimal solution (13 7\1, ie 3 El, i€ m, p) to the problems

(2.1), (2.2), then (7; z', i € m) is a quasi-equilibrium.

Proof. Clearly, the trades are feasible because (2.3) implies p = O.

All that remains to show is that 7z  minimizes 7(B'z" - w')

subject to vz >z o= vy z" > 0. Call this problem (P). The dual

problem (D) is to maximize Av; subject to ?\irl < 78", A 2 0. zt

and Xi satisfy the constraints of (P) and (D) because they satisfy

the constraints for (2.1) and (2.2). Also, the complementary slackness

Yzi
n Bl €

optimality of the variables for (2.1), (2.2). Thus, z  is an optimal

conditions, T\iriil = Xvi and A = 78'71 are satisfied by the

solution of (P). .

17




This lemma provides motivation to parametrically vary the
initial utility assignments v, and adjust the solutions of (2.1)
and (2.2) until u, =0 forall i € m. Consider slack variables
ti > 0 such that rizi -y L ti. Then, instead of varying vy
we can vary ti, ignoring the complementary slackness with the dual
variable 7\3._.

Thus, we can state the equilibrium problem as:

Find (m,At° (1€ nl: 07 8: & 2t (i€ m),p) which satisfy

i i .
Yz -ti = Wy i€m,
mE s m
ZBlzl+pe +8 =0 Wi,
i= i:
3l i il
T =Ny -8 =0, 1€ mi, (2.3)
Te - p=1,
ms =0,
ttet =0, i€m,
S i
and (Wy s € (1 = E); P; s, t, 2 (i = m, p) 2‘0
and
i g
™ -xi(vi +ti) _O ) 1€ EJ (2014)

Solution procedures for this formulation of the problem will be
discussed below, but first, it is important to discuss the choice of

the initial utility levels v,, i € m,

i
An obvious candidate for the initial utility level assignment

is consumer i's induced utility v{ for the initial endowment wl,

"y

1.8, ;




vf = Ui(wi) = max{rlzllzi >0, Bz 2w, (2.5)
or dually
v¥ = min{r'w |n* >0, 7B >v) (2.6)

Lemma 2.5. With the choice ¥y = v?, uy >0, for i€ m at a solution

to (2.3).

Proof. uw, = mw - A,v# by definition. Suppose AVE > . Sines

> 0, we cannot have Ki =0, If ki > 0, we have

However, A;'m > 0, and by the dual feasibility (2.2) of A

v > k?lwwi A
i i

i and T,

7\;1.7TBJ, > Yl

which contradicts the optimality of v? in (2.6). Hence,

i
u, = 7w = A vE >0,

Since we are trying to find a solution of (2.5) for which u

i

it would seem to be advantageous to choose v, as large as possible,

For arbitrary choices of vy larger than v¥* the constraints (2.5)

may not be feasible.

%
For theoretical purposes it turns out to be

preferable to choose vy € (O,V?). In this case, the following

equivalent properties are easy to verify
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|

e g
(1) Aty =0 implies u, = - 7\i(vi + ti) >0
(2.7)

i : .
(2) u, =MW = 7\i(vi +t,) <0 implies Nt >0

This property will be exploited from two points of view:
(a) If the condition u;, >0 is enforced, (2.7) is a complementary
type of relationship between uy and %i-ti, iem,

(2) If one considers f(N\;m,t) = Two - ?\i-(v.1 + ti) and one is solving
m
+}
m
+’

f(N\;7,t) = 0 subject to A E R, then (2.7) is the boundary con-

dition that states, for X € dR,, f(X;7,t) points into ]RT.

II.3. The General Piecewise Linear Economy

Now we allow further constraints to be added to each consumer's
consumption set and a finite number q of firms which are owned by

the consumers. Suppose that each consumer i owns the fraction 03

of firm Jj, where 03 205 e 4, and Zi€m 03 =1, for each j € g.

Before we can define the consumption sets we must define production

sets for each of the q firms. Let

Yy ={ye R (30 > 0) Dlud < o, y <8I + o))

J

be the jth firms' production set where w* 1is a vector of initial

endowments for each j € g. FEach household's consumption set is defined

as




X, = (xe R?| (32" 20) 2%z < & wxpE T

g

I D
; € -
O'Jy » ¥ YJ]

With these definitions, we can define an equilibrium for economies

with production

Definition 3.1. A price vector 7, a consumption allocation Ei, i€m,

and a production allocation ¥°

» J € g constitute a competitive equi-

librium if and only if

a) 7>0 and T #0,

e gt g A
b) ¥ B'Z <Ny o+ I ow
i=1 i:l i:

¢) y' maximizes Ty

subject to y € Yj’ J €49, and

d) =z maximizes v z

subject to 7BTZT < 7w o+ T o.y)) , Atz < a', for every i € m.
JEa

A quasi-equilibrium (or the compensated equilibrium of Arrow and Hahn
[1971]) replaces condition (d) with

da') z'  minimizes 7Bz
subject to vrz© > rlil, and 7(BZ' -w'-% o) =¢C, 1€ m.
J=gq
If we combine Assumption 2.3 (using the new definition of consumption set)

with the assumption below, then equilibria exist and coincide with quasi-

equilibria (Debreu [1959]).




|

Assumption 3.2.

a) free disposal

b) production is irreversible

c) (Yj - (@) n R, = {0}, i.e., there is no free production and the

firm may produce nothing at all.

The auxiliary linear program is now defined as

maximize p

subject to rlzi >V

whose dual is

minimize

+
2
'—lo
®
’-ll
1
o
<
I
| ST
+
| ™Mhe
o
Ca.
a
.

subject to e =1

89pY - 7EY >0
viat + ot ot >0

i

m 8% (€, v, N, (1€m) all>o0.

Next we prove the
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(3.2)




Lemma 3.3. At a solution to (3.1) and (3.2) and for y‘j a solution

to max{my|y € Y}, the following equations holds

(> SRR

= 7wt + 3 oy’ - Blzh

=1 7

-igij Y RE S i

m(w + cw’) + va + 2 8 (c.d’) - N, (v, +%,), for all i€ m.
3=1 J 41 J aln i -

=
Il

Proof. y° satisfies 7y’ = max 7y

subject to pJud < a4 (P)

Yy 'EJuJSwJJ 'llJ. 20 2

Hence, ﬁy‘] = min 8% + Mo’

8.8.6D¢ ~ 7B 50 (D)

But, using the complementary slackness properties of the optimal solution

(z4, 39, ;5 7, 89, 39) to (3.1) and (3.2), it is true that

890%%Y - 7B = 0
and

gJDJﬁJ = §949

1% 4 y'J is chosen so that ;,rj =) + E'Jﬁ'j, then it is clear that

(y9, w; 7, &%) is a solution for (P), (D). Hence,

Fyd = 89ad + 7d

Repeating this argument for each j € g, we get
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q . q s q 2
F(E o) =7 oiad) + (T SRl (3.3)
j=1 Y j=1 Y j=1 9

Again, using complementary slackness yields

-FBI g = GlAl e %ir zi
(3.4)
“i i =
=9y a -?\i(vi+ti).

Summing (3.3) and (3.k4) yields the result. [

The proof to Lemma 3.3 shows that an optimal solution to (3.1)
and (3.2) yields profit maximizing production vectors by letting
y9 = o + B0, Thus a proof similer to that for Lemma 2.k would

demonstrate the following

Lemma 3.4. If vi, 1 €m are chosen so that u; =0, i€ m at an

optimal solution for (3.1), (3.2), (m, - (i € m), v (e q)) is a
competitive equilibrium, where yj = wj + EﬁJ.

Also, a proof similar to Lemma 2.5 would prove the key property

£ q s : qQq s 0§ 4
g = rlwt + % owd) + vial + T 8(etad) - A vy +85) >0
R -C R -

when Ai'ti =00 TE vi < v? where

v; max[r z Iz 20, Aizi < ai, Bizi < w4 Z (ojn EJuJ),
(3.5)

pdyd < ogdj, for all j € g).

2L
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Next we show how the freedom to add constraints to the households'
sets allows the consideration of piecewise linear utility functions.

Suppose ui( zi) is a concave, piecewise linear utility function defined
S
it i

on R,". Then the epograph of u,, E, = [(zo,z)lzo < ui(z)’ ZE R Y,

is a convex set which has a piecewise linear boundary. Hence, the

epograph of uy can be written as a polyhedral convex set

= 1 -+ =
Ey = ((zp2)[2) < g2+ ey 2€ R,

S.
where qij €ER ' ana zi is the number of pieces of linearity for

u Thus, the following problems are equivalent

i

maximum uy (24

(3.6)

subject to  7(B'z") < W‘Wi, 2 >0

maximum zi
0
subject to zi-g zi<d 1 € 2
6 T8y =%y Y55

W(Blzi) £ wi, z >0.
i s §
In this case y = (1,0,...,0) and the matrix [A"|a”] in the auxiliary
linear program (3.1) can be adjoined to the matrix
[e, -gil} = gie’ LAl (AR, | -gillci] .

In the next two chapters we describe algorithms which utilize

the structure of the models which were described here.




CHAPTER ITI
THE BILINEAR COMPLEMENTARITY PROBLEM

AND AN ALGORITHM FOR COMPUTING ECONOMIC EQUILIBRIA

This chapter presents a generalization of the problem described in
(I1.2.3) and (II.2.4) which is called the bilinear complementarity
problem. This approach to computing equilibria was introduced by
Wilson [1976]. 1In the first section we essentially reproduce the results
of that paper except that we use a new proof based on the concept of a
subdivided complex introduced in Chapter II. The rest of the chapter
describes a bilinear complementarity algorithm in enough detail to be
implemented on a computer. The results of computational experiments
using this first implementation of a bilinear complementarity algorithm

are reported in Chapter V.

IIT.1, The Bilinear Complementarity Problem

The bilinear complementarity problem (BCP) is to find x, y >0

such that
nxn

<X,C.,i) - xiyi = O, i€ E
X.y; = il t€a\ m

Notice that if m = O, the problem is the same as & linear

complementarity problem (LCP) (cf. C., Lemke [1965] or B. C. Eaves [1971b]),
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It is easy to verify that the equilibrium problem, as we have
formulated it in (2.5), (2.4) can be stated in this form. It is an area
of interest to determine what other problems can be formulated as a
BCP other than the eguilibrium problem or those which can be formulated
as linear complementary problems. We present the general problem mainly
to ease the notational burden.

The constraints (L.l) are weakened for algorithmic purposes by
adding slack variables ug >0, i ©m to the bilinear constraints:
nxm

(x,C 9 - xiyi = ui, i€m where CE€ R
il

Now we define the set

W= {(X}Y)u/\ 2 O'AX ty= b,(X,C -;’+ xiyi = ui, 1€ m, xi’yizo’ i>m]1

) 4

(1.2)
and for k =0,1,...,m let wk be the subset of W for which u, = 0
for i<k, and xX¥; = 0 for i >k, A solution to the LCP defined
by (A,b) yields a point in w0 if xTC > 0. The solution to the

BCP is a point in Wﬁ. The bilinear complementarity algorithm (BCA),
to be defined in the next section provides a procedure for tracing a
path from Wb to Wm provided that certain assumptions are satisfied.
We shall define the "algorithm" by defining a mapping F from
an n+tmtl-dimensional subdivided complex into E{n+m and proving that
F-l(O) is a path with the desired properties when O is a good value.
First we define a collecticn of sets and show that it is a subdivided

complex.




A basis B 1is a subset of the variables {xi’Yi’ ien U, Lten

i’
(capital Xi can be considered as an index or a name for Xy, etc.)
consisting of (Xi,Yi) for i<k for some O < k <m, (Xi’Ui) or

(Yi’Ui) for k < i <m, and exactly one member of (Xi,Y for i > m.

1)
This definition is slightly more restrictive than that in Wilson [1976].
A path-basis p(i) for i = k+l 1is obtained by adding the (k+1)St
element to a basis B. A sub-basis B(i,j) for i # j is obtained by
deleting a jth member of R(i).

Now if P is a basis, path basis or subbasis, then &(B) is

T indexed by the set of variables B.

the non-negative orthant of 112
Note that if £ 1is a basis or sub-basis, then C?(é) is an ntm-dimensional
set, and if é is a path basis, then ((B) is an n+m+l-dimensional set.

Also, a facet of B 1ig an orthant corresponding to a basis or path

basis. Define the collec*tion of cells
M° = (@(F)|F is a path basis) . (1.3)

The following assumptions are of vital importance.

Assumption 1.1: In W, (x,C i> >0 for each i€ m.

s —

In the equilibrium problem, this property is satisfied by Lemma
2.5, which depended upon the positivity of wi and the choice of vl,

SR
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m
Assumption 1.2: The subset W* = {(x,y,u) €w| 2 u

>0} 1is bounded.

i=1l 1

The conditions on the economic problem sufficient for assumption
1.2 to hold will be studied in the next chapter. This assumption implies

that we can confine our attention to the compact set

2n+m

K={({xyu €R |0 < (x,y,u) < ke)

where k>0 1is a sufficiently large constant.

7}7= {O(B) NK|B is a path basis) . (1.4)
and assume that there are no redundancies in the problem so that each
cell C of ‘77 is mtn+l dimensional. Define M = UC€7rIC‘ Now we can

prove the

Lemma 1.3. (M,?”) is a finite, compact subdivided (m+n+l)-complex.

2n+m

e which is finite.

Proof. The number of path bases is less than (
@& (B) is closed and K is compact so, by (1.4) each cell C € m
is a compact (mtn+l)-cell. All that remains to show is that (M,??)
satisfies the definition for a subdivided complex (II.3.2, Part 1).
Since there are only a finite number of (m+n+l)-cells in 7”1,
property (c) is satisfied.
By the definition of W, the facets of a cell C of 27

correspond to some variable Xg (or y; or u being held at zero,

i)

where Xi €Bf and C = C’té) N W*. Thus, since we can associate
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each cell C c:?” with a basis of sub-basis, we can associate

each cell C' = C c‘?n with a set of variables £ not con-

strained to be zero. Define @(C) = £ to be the set of variables

associated with C and let m'l(é) = C be the cell associated with £&.
a) (any two (mtn+l)-cells of ﬂ»? are disjoint or meet in a

common face). Let C,, C, € ﬂhy, and w(Ci) =8, 1 =2,2 If

B, N B,y = g, then C, N Oy = ¢, a common face. Otherwise, it is clear

1
from the definition of face, that if B, NB, = B, then € = @'l(é)

is a face for both Cl and Ce.
b) (Each (m+n)-cell of 5b7 lies in at most two (m+n+l)-cells.)
By definition, any (m+n)-cell, say 02 of 5?7 is the face of
some (min+l)-cell of f%? , say C;. Suppose B, = w(Ce) and B(k) =
@(Cl) then there are four cases to consider concerning the type of

variable which is in B(k) but not By

1) Xi or Yi for i < k. In this case there is no path-basis

which can be formed by adding a variable to 83. Hence, there is no

(mtn+l)=-cell, other than C,, which contains C,. (Note that c3 c oM

in this case.)
2) Xis Yk’ or U,.

28) If X, or Y  is in B(k) but not B, then £, 1isa

k k
basis. By definition the only path basis which can be formed is by

adding U to fy5 let p; =B, U{U,_,}. Then Cy = m(ej) is the

k-1 5 "3
only other cell containing C2.

2p) If (U) = B(k)\ 83, then the only adjacent cell containing

k
CQ, other than Cl’ corresponds to the path-basis formed by adding the
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(+1)5* varisble (X

k+1 k+1

s OF Ui for k<i<m,

or Y _.) which is not in ﬁg,

3) Xy, Yy

Za) I X, or Yi is in B(k) but not in P,, then since

1
Ui € B,, the adjacent cell is identified with the path-basis formed

by adding the ith variable which was not in B(k).
3b) If U, is in (k) but not in PB,, then there is no

i.e., 03 c OM,

adjacent cell to Cl which contains CB’
L) X, or Y, for m<ig<n.

If {X;) = r(k)\ B, then C, = cp(Bg), where B8

I
hey)
W
c
Py
[
’-h
N
-

2
is the oniy (m+n+l)-cell, other than Cl’ which contains C

situation is analogous when f£(k) \ B, = (¥,}. i

Notice that the adjacency of cells and indeed the definition of
(M,?n) is dependent upon the ordering of the households i = 1,2,... ,m.
Thus, the efficiency of the algorithm is influenced by the ordering of
the households.

m

Let the function F =M —)Ein+ be denoted by

Ax +y -Db
F(x:y’u) =

(C i’X) - Xy o-u, i €m

s
.y 1

F is smooth on each (m+n+l)-cell C c 97. For the next theorem, we

require the

Assumption 1.4. The cardinality of LA is finite and odd.




Conditions sufficient to ensure that Assumption 1.4 hold have
been supplied by various suthors (e.g., B. C., Eaves [1971b]). Now we

prove the main result.

Theorem 1.5. If O en™o is a good value for F with respect to
(M,?ﬁ) and Assumptions 1.1, 1.2, and 1.L4 are satisfied, then
i) F‘l(o) is a subdivided l-complex neat in (M,?@).
ii) The cardinality of the set of éolutions to the BCP is
finite and odd.
ki

iii) There is at least one connected component of F —(0)

with one boundary point in Wb and the other in Wh.

Proof. i) follows immediately from Theorem II.3.17 (Part 1).
Due to Proposition I1I.3.18 (Part 1), and Assumption 1.k4, ii) will be
demonstrated if it can be shown that all boundary points of F-l(O)
are in W, and W.
0 m
The details of the proof of Lemma 1.3 will be used here.
Remember that P£(1) refers to a path basis with tl'xl >0 and
t,;)A; =0 for i>1. If the face C, of C, = »(B(0)) has

ti'k = 0, then by case 2a), C is the only cell containing C2'

p ¥

Hence, C,. c oM, The union of all such facets will be called fp.

£
[

Similarly, if C, is a face of C; = @(B(m)) such that u, =0, i € m,
then Cl i¢ the only cell containing 02 (see Case 2b). These facets
in the boundary of M will be called £°, It is clear from the

0

definitions that W, = FL0) n° and W= FY0) n . since
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F-l(O) is neat in M, if we can show that F-l(o) NoM = Wb u Wh,
then since IWbI is odd and IBF-l(O)I is even, we will have shown

that |W | is odd.

From the proof of Lemma 1.5 it is evident that the only facets
in OM are either in fo, fm, or of the type described in 1)_or 3b).
Suppose (x,y,u) € F'l(o) is in a cell of the type described in 1).
Then ii . &i =0 and 0 =u, = <i,ci).) which contradicts Assumption
1.1. Suppose (X,y,u) € F-l(Oﬁ is in a cell of the type described in
3b). Again, this is impossible because ii'ii =0 and "u, =0 is a
contradiction.

Thus F-l(O) NnaM = Wy UW and ii) is proved.

Since each connected component of F-l(O) with a bgundary point

in fo has another boundary point in either fo or fm, a simple

counting argument will demonstrate (iii), .

We now show how the linear pure exchange equilibrium problem can
be formulated as -a BCP; the corresponding formulation for the model
which includes production is analogous.

The linear constraints in (2.3) define a system of n linear
equations in 2n variables Ax + y =b where n=m+ £ + Z?:l si + 1

and A 1is a square skew-symmetric matrix of the form

0 D

145
DT 0 :

o
il
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o 3
£ DR e T 0
_TE 0
D= : ¢
_Ym 0
b B e T s
F' -v 9
1
-V
m
m
a4 5w
b = gt 51
0
e -

The variables x, y € H{n have the form

x=[\ Le€m, m 2t (1w, pl

[ty (1 € m), s Qi (i € m), o]

<
1}

In this formulation p is constrained to be non-negative, so

in the dual problem
me = p =1,

3l




But since Zui =p >0 except for points in Wh, p=0 is

satisfied until a solution to the BCP has been attained.

The bilinear constraints (2.L) are expressed by

(c i,x) - xiyi =0, i€m
()

where

3l h element

Corollary 1,6. If the primel and dual linear programs (V.2.1) and
0

(V.2.2) have unique solutions, then, that solution (xo,y 3 uo) € Wy
is a boundary point of some path y c F-l(O). The other boundary
point (x*, y*, u¥) of y is a solution to the equilibrium problem

(Fo2as, 2.l

Proof. After observing that eny point in Wb is a solution to the
linear programs (2.1) and (2.2), iii) of Theorem 1.5 shows that
(x*,y*¥,u¥) € W . Hence u* =0 and the constraints (2.3) and (2.k4)

are satisfied. .

IIT.2. The Bilinear Complementarity Algorithm

In the remainder of this chapter we explain in detail an algorithm

for following the path, described in Section 1, which leads to an

equilibrium.




The algorithm described here solves an equilibrium problem as
formulated in Sections 2 and 3 of Chapter V, not the bilinear comple-
mentarity problem in its most general form., The reasons for this

restriction are twofold: 1) we have not found any other classes of

ity = i e s S oo i

problems which can be formulated as BCP's, 2) The dimension of the

linear systems of equations can be reduced significantly by dealing

with D rather that A 1in equation (1.5). We still refer to this
algorithm as the Bilinear Complementarity Algorithm (BCA) because the

complementary property (IT.2.7) involving xiti and uy is what

motivates the definition of the algorithm.

In the remainder of this section we give a more general descrip-
tion of & bilinear complementarity algorithm. In the following sections
we describe in detail the linear operations we use to reduce the dimen-
sion of the path following subproblem and a specific method for solving
that subproblem. The algorithm we describe here is implemented in a
computer program (BCA). The details of the implementation and a report
on the numerical results using this code will be in given in Chapter V.

Next we describe in more detail the overall structure of the
algorithm. This structure can be inferred from the proof that (M,ﬂ?)
is a subdivided m-complex and the proof that F-l(O) leads through
the cells of ?7 to an equilibrium point in Section 1. However, to meke
the strategy for determining which cell (or path-basis) is adjacent a
little clearer we will now give a verbal description with some visual
aids.

A basic point in W is in Wd for some d =0,l,...,m. It
is characterized by the fact that ui =0 for i<d and u, >0

L
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for i > d and that XV >0 for i<d ‘and Xy = 0 for
i =4+, ..., n. It is useful to depict the variables which are

positive and zero in a chart:

b4 P+l +1 0 ]| Oof O] 0f -+
y +l+] O +]O|Q] +[+|+]O
u 08 il B &

FIGURE 2.1

The difficult transitions to understand are those for which the
current facet which F-l(o) intersects is a basis. Suppose that the
last cell which the algorithm passed through had u, >0 and Figure 2.1
represents the fact that u, just hit zero. The next step is to intro-

duce either X3 or Y, into the path-basis,whichever is not in the

current basis. In this case, y5 is now allowed to be positive.

3 T T S A o TR (o G o

X + ,+ +{0ot+l+101 0} 0Ot +
v +l+l+i+1010)+1 +1 +] 0
U OO0 +{| +

FIGURE 2.2
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Now we follow F (0) through the cell defined by the current
path basis until some other variable goes to zero. We hope that u3

hits zero so that we move towards an equilibrium where u, =0, i € m,

i

Suppose that X; or y; hits zero for some i > 4, Then the adjacent

E path basis is formed by adding the variable complementary to the one

that hit zero, i.e., if g hits zero, introduce Xg. It is impossible

for x; or vy, to hit zero for i < 3 Dbecause u, = O implies

XYy > 0. Similarly, u), cannot hit zero because X)y), = O implies

w, >0 (recall IT(°.7)). There is one more possibility. If x

b

hits zero, then we are again at a basic point, and, according to

or
¥3
the definition of a path-basis, the only adjacent path-basis is formed

by introducing u,. Since u

5 ~ 1s no longer constrained to zero, one
=

could say that we have "back-tracked" in our goal of forcing all the
budget surpluses to zero. However, the theory of Section 1 says that
this goal will be reached, eventually. In fact, by the proof of
Proposition II.3.18 (Part 1), only a finite number of cells need be
traversed before an equilibrium point is reached.

Below is a more complete specification of the decisions involved

in choosing the adjacent cell.

Bilinear Complementarity Algorithm

0. Initialize: @y = (xo,yo,uo) is determined from the solution of

the linear program (II.”.1l), with the associated basis BO' m is

the number of consumers. Let j :=0, d := 1,
1, If 4 = m+tl, STOP =- @ is an equilibrium point. Otherwise let
B, t=8. U ([Xd] or {Yd}), whichever is not in Bj’ Go to Step L.

J J
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B. o= B, U Ud’ go to L.

Ef {Yi] =P

-"j-l aj, then B, = 8. U {X.}

i - y - =
If (%) =B, ;\ By then B, =8, U{¥)
Follow the path (F| _ )™Y(0) from ©; into the interior of

C?(Ej) until the curve intersects a facet, call it C’(Bj+1),

Let w.

541 be the point in that intersection. J := j+l.

a2 s € Wy, d:=d+l, go to 1; else,
b) If @ € wa_l, d :=d-1, go to 2; else,

c) @y is a sub-basic point, go to 3.

III.3. Exploiting the LP Structure

We shall now change from the notation of the bilinear comple-

mentarity problem to a linear programming type of notation. It will

be important to distinguish between the primal and dual structural

variables contained in x and the primal and dual slack variables in y.

The piecewise linear equilibrium problem can be formulated as

follows:

find (x,t,A\,6) >0

such that
D + It = b (b,1)
N - tI =c¢
u; = <c_,i,x) - Nty =0, 1€m
%iti =0, 1Ek\ B
(x,¢) =0,
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where

x, temr:, ¢ reRr% ama pem®*4,

It is clear that either the constraints of II(2.3) and (2.4)
or the equilibrium conditions in II.3.! may be expressed as above.
The size of k 1is determined by the number of consumers, the number of
goods and the number of exogenous constraints on the consumers and
producers.

The first m components of the primal right-hand side are the
initial utility levels v,, 1€ m To determine these values, one
can either solve m smaller linear programs as described in (2.6) or
(3.5) of Chapter V or let v, =0, i€ m It is strongly suggested
that the former course be taken because good starting values will
significantly reduce the run time of the BCA, and the choice of . - o)
will usually result in a highly degenerate solution to the linear
program, which may cause problems with the BCA. Once these parameters

(20 0 40 ;0 0
L B

have been established, the initial point mo = X3 pb is

determined by solving the auxiliary linear program

meximize (654
subject to Dx +t =D (4.2)
x, t >0,

to find (xo,to). If the revised simplex method (Dantzig [196€3]) is

used, the optimal shadow prices AO and relative costs §O can be

extracted. Finally, the initial budget surpluses




Q.0
uq = (C XO> - AT,

) T 3 1 em
i R | ii -

can be determined. By the complementary slackness condition of the
O O

optimal primal and dual varisables, %i-ti =0, 1 € m, and, hence,

u? >0 for each i€ m. Let O be the index set of the k basic
primal variables and 70 :-53\\\() be the £ Dbasic dual variables.

Then the initial (BCA) basis HO consists of (x,t) the primal basic

0’

~

veriables, (A,t) ., the dual basic variables, and ui, i€ m,

The non-basic variable tl will be added to &O to form the

first path basis Fp. The path which the BCA follows is determined by
- tn+l mt
(Fld 5. ) 1(0) where F| s = RITT S R™™ is defined in Section 1.
(") (")

It would be possible to follow this path through the (mtn+l) dimensional
cell C?(EO), but we can use the largely linear structure of (4.1) and

the positivity of (C g A 3

(B

to reduce the dimension of the path

following portion of the algorithm. In a 4ypical path-basis £ there

are n variables which are basic for either the primal or dual problem
and mtl other variables, There are d wvariables,where d has the same
value as in the description of the BCA,among (%i, i€ m), (ti, i€ m)

, . o : " . ;
which are in £~ but not in the linear programming basis, call them A
€8

o

J

and t . Also in B are the m~d+1 budget surpluses Uy which are
v

positive. Using the primsl and dual basis inverses, we can represent J
the n basic variasbles in terms of the 4 variables A“ and tv, 50

we have reduced the dimension by n. The variables Ugppreses um must

e

stay positive because Ai-ti = 0, = d+l, ..., m, sO we can ignore them.

=




L MmNy

The variable u, and the constraint u, = (e

can be ignored if we treat (C AN = At, >0 as

csi d’d
a constraint helping to define the cell we are in. Thus, we have
reduced the path following problem to one in the d variables )

M

and t and the d-1 equations, (c i,A) - Nty =0, 1 €4,

corresponding to u, =0, 1 C d-1. Next we describe the details of how
this reduction of dimension is carried out in practice.

In linesr programming codes it is common to maintain two integer
vectors which can pick out the basic variables and tell which row of
the matrix they pivot on. The row a basic column "pivots on" is the
index corresponding to the winner of the min-ratio test performed when
that column entered the basis. We shall also maintain analogous index

vectors for the dual variables. To summarize, the following information

is maintained and revised during the course of the BCA.

o(i)

"

the primal basic variable which pivots on row i, 1 € k
(i) = the dual basic variasble which pivots on row i, i € £.
‘ 0 it jd o

r(3) = I J € 8
i if j€ o and pivots on row i,

Qi

‘ 0 if j¢
F(J‘)=( - jeg,
i if j€ o and column j pivots on row i,

. index set of those A-variables not in &, but allowed to be positive

=
i}

v = index set of those t-variables not in ¢, but allowed to be positive

o
n

the number of pairs (Ai,ti) which are both allowed to be positive.

L2




Remark. a) , Uv=4d

b) The current path basis £ can be written

B 5 {(x,t)o_) (7\,C)6_’ xu,tv) ud, ud+l, o e ’ U.m}.

The variables %“ and tv will be referred to as superbasic
variables (to follow the terminology of Murtagh and Saunders [1977]

in reference to the nonbasic but positive variables in their GRG
algorithm). They are independent variables which determine the values
of the dependent or LP-basic variables. Next we show how the dependence

can be numerically calculated.

Let the primal k X k basis matrix P be partitioned as

with the columns of P permuted so the basic slack columns are on the

right and the rows they pivot on are at the bottom. One can write

D= Bl
alF and 2 (4.2)

> | o
H o
T —
c"l »
a la
N —
+
e &=
o H
d'l »
1 Qi
o




onez merely updates ej, & column of I, in the usual manner. That is

golve

Pa =e, , B =5, (4.3)

so that

"

0' -
(t_) =-[S]tj+b.

Q

Clearly, the permutation of the rows and columns of P was not
necessary in this case, because we are assuming that the primal basis
is factored so that it is easy to solve systems such as (4.3). It is
useful, however, to use the permuted from of D to describe the calcu-
lations in the dual system. One must keep in mind that, in practice,
D is not actually permuted: the index sets ¢ and y allow one to
pick out the elements needed to perform the calculations below, We write
the dual system in terms of its basic variables in ¢ and its non-basic

variables in o.

Multiplying by the dual basis inverse,

g | Tt 3t |37
= ]
S 0 I

yields the updated tableau

Ly




a7t | AB™YE-F

ALt )+ (A e R e P bk
Out) + Oty |5 o |- 6 ?) (b 1)

Suppose we want to determine the effect of Kj, J € u, upon the
basic variables; i.e., we want to calculate the appropriate row of

(38", BB™E - 7)., Now, -AB " 1a part of the primal basis. Let e

be the jth unit vector and solve sTP = eg. Then pick out the components
of & which correspond to the x, columns of P (o(i) < £) and

call the result ET To get the appropriate row of AB-lE-F, Just

1°
calculate
-Egz-EEE-FJ..
Then we have
(L) - A(EDE) * (B, BT - o) (4.5)

If we want to update the row corresponding to gj for some
Jj € 0 , the procedure is very similar, We want to calculate the
appropriate row of (B'l,B-lE). The desired row of B L is that row

corresponding to the column of B associated with xj, row r(j).

Suppose this is the qth row of P. Then (B-l)q is found by solving

and extracting the components sg such that o(i) < £ to form

8. Let §g = §{E and we have

g s

Ls




) (4.6)

-7 T L3} =
— ( -
(AS,CE) Cj(sl,sg) + (B, cB lE c

The set of updated columns corresponding to t, will be

GlL € H{klx|v| and the transpose of the updated rows corresponding

- g4 X 'ul'

to Au will be & € R The following equations give us the

basic variables in terms of the superbasics

X -
( "):Glt +b5>0

t i 5

g

(%.7)

)—

 )=cN +¢>0

t W A

We have described how Gl and G2 can be computed from

scratch; below we will describe how G, and G2 are updated as the

1

basis changes and superbasic variables are added and dropped.

First, however, we describe how the first d-1 bilinear
equations (L4.1) are expressed as f(%u,tv), a function of the super-
; basic variables. Only the bilinear equations which are binding
! (ui =0, i € d-1) are included in f. Hence, f maps Re into
R, The inequality, (C.’d,%> - Mgty 2 0, referred to on page Lo

is called the bilinear inequality. It also will be reduced to a

function
a(A,t,) 20 (4.8)

of the superbasics. This inequality, along with the inequalities in

(1.7) determine the cell which the algorithm is currently concerned with.

L6




By substituting the correct expression in (4.7) for the basic

primal and dual variables involved in the first d bilinear functionals,

we can write

=]
1}

+ - di +
hl Dlxu dlag(Ru)(Fltv el)

I - (4.9)
u =h,+ ngu dlag(tv)(Fg?\Ll + e2) ,

n, is the diagonal nXxn matrix with y as the diagonal.

where diag(y), y € R
Basically, f(%“,tv) could be written as f(xu,tv) = (uu,uv), but we
eliminate the functional corresponding to uy and let q(%u,tv) = u4
as it is expressed in (4.9).

Now we are in a position to describe a method for executing

Step L4 of the BCA.

ITI.4. The Path-Following Subroutine

It has been shown that the path defined by

-1
da (0) &= {(?\u’tv)lf(}\u,tv) = O}

in the cell S as defined in (L4.7) and (4.8) is identical to the path

(Flcy(é ))-1(0) described in Step 4 of the BCA. Thus, we consider an
J

algorithm for following f -(0) from an initial point (ki,tg) € 38
into the cell S wuntil the opposite boundary point of f-l(o) ns
is reached.

The algorithm to be described here is an adaptation of the path

following algorithm in Section III.3. The adaptations are intended to

L7




speed the progress across a cell on the assumption that a) f'l(O) is nearly
linear and b) the cells S are in general so small that the non-
linearities of f-l(O) are not significant. The linear approximation
to f-l(o) at (Ai,t%) is uced to make a guess at which facet T of
S f_l(o) will intersect. Newton's method will be used to calculate
the intersection of 7 with f-l(O).

For simplicity let the variables (kp,tv) be represented by
z € IRd. Since the superbasic variables are changing with every
change of cell, the association of (xu,tv) with 2z 1is only temporary. In
Chapter III (Part 1) we discuss in detail how the tangent to £~1(0) can be
calculated. Suppose that z, € dS is our initial point. There

0]

calculate 20 which satisfies

1 o =
f (zo)zo 0,
and ZO points into S.
We only require that 20 have norm one so that we can easily
measure distance along
T(oc)=zo+oczo, a>0 ,

the linear approximation to f-l(o) at  zy.
The next step is to determine how far one can move along
T(a) until some facet T of § is hit. For the linearly defined

facets this corresponds to a ratio test in linear programming. We

want the smallest positive « such that

L8




(c;l-T(_a))i + b,

"
o
-
[y
"
1=

1
o
-
e
M
| =

. \ -
(G2 T((j,)i + Cj

Let a* be the smallest positive root of the n equations above.
There is one facet defined by the bilinear equation q(z) = O.
To find the point where T(a) first intersects this facet we solve

for the smallest positive root of the guadratic equation
a(T(a)) =0 .

Let & be that root, and replace ©* with the minimum of % and Q.
If o* is larger than some maximum step size Qﬁax’ we let o*/é be
the step length and return to the curve f-l(O) along a normal hyper-

plane to T(a) as in Algorithm III,3.1 (Part 1). If o* is less than «

max
we include the equation defining the facet containing T(a¥) = zO
with the d-1 functionals in f: Eid —>Eid-l and use Newton's method

to solve that system of equations. If the resulting solution is in
S (or nearly so), the desired endpoint of f-l(o) and the desired
facet of S have been found. If z* € S, then a point z' on

the segment conv[z.,z*] is found which is on one of the violated

15

constraints. Newton's method is again initiated at 25 to find the
intersection of f-l(O) with this facet of S. In practice, it is
rare for T(x) to pick out the wrong facet, and, if that happens,

the procedure described above usually has to be performed only once.




c ; .
Es x{ > Ohax’ stepsize is reduced

2.. I G D
Je 2 E conv[zg,z*j is determined.

FIGURE k.1

Above is an example of the corrective mechanisms of the
algorithm for following f'l(o). To find the correct endpoint.
It required 2 tangent calculations and 8 Newton iterations. Our
computational experience suggests that for most applications of this

algorithm only one tangent calculation and one Newton step are required.
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Algorithm 4,2,
0. We are given o, p, v, d, Gl’ Gg, f and q as defined in Section 2.

Next we give a precise description of the algorithm.

Let z) = (A ,tv) determine the initial point in a facet of S.
u

The particular facet of S is determined by the pair (pd,s) where

L. AP ((Gl)s’_,zl)ﬂas 0,

pd = o, if q(zl) =0, (k.1)

1}
(@
.

a, i LG zg) + ey

Call the binding constraint bs(z) = 0. >0 are fixed

€1, 62, 65
parameters. Let 1 := 1.

Calculate f'(zi) = [H|n] € I)d-l><d g

Solve Hy = -h. (Since f'(zi) is of full rank, if det H = O,
choose another (d-1) x (d-1) submatrix of f’(zi), H', and let
h' be the vector left over. Set H :=H', h :=h' and repeat

this step.)
Let o := sgn(det H), if i > 1 go to 5.

® := sgn <Vbs(zl)’ (y;l)>-

w 3= 5w, go to 6.

wd.

§ 1 - .
2y 3= o} “%%fi%” , define Ti(a) = z4 + 250

o




—

~

9.

9.5 Otherwise, let ¥ := a*/2,

Solve the n 1linear equations in «a defined by

n

0, i€k

(6 » T(@) + By

((Ge)i’., T(x)) + Ei o, 1€,

and the quadratic defined by

a(Q(a)) =0 .

Let o* Dbe the minimum positive real root of these equations and
let (pd,r) define the facet which Q(a*) is contained in in the
same manner as (4.1). Let br(z) =0 be the equation defining
this facet.

Let A=1 and 20 = T(z*)

Find the minimum positive scalar Q such that

Ti(a) =0, 1€ 4d,

If a> a* go to 9. Otherwise, let r be the index such that
Tr(&) =0, and let pd =1 or -1 depending on whether =z
corresponds to t, on . Let A =2, and O := a, 2’ = T(o%),

and br(Z) .

If of < « go to Step 10.
max

2 = T(or%),
b(2) = (3, %-2) ,
and A =3,
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10.

14952

12,

.

Define

and iterate

L
g(z) =

b (z)
2+1

z . g'(zﬂ)-l g(zz), =00 A K

£+1

until Hg(z )” < €oe If the termination criterion is never

realized go to Step 9.5.

If A=1or 2 go to 12, else A =3, Let i := i+l, z; 1= 2

and go to 1.

Let (2% = o™ | Check thet

((Gl)i.,’z*) + Bi > -(5 b i C 5)
* c. > -c
(@) »2%) + ¢y 5 SEE

and q(z*) > -c3. If 2z*¥ satisfies these inequalities, go to 13.
Otherwise, define pd and r to correspond to the most infeasible

constraint and represent that constraint by br(z) > 0. Now solve
Cz¥ - - =5
br( g% + (1 €)zy) =0

for 6 € [0,1]. Let 70 = 0z% + (l-a)zi, A =2, and go to Step 10.

If pd =0 and d =m go to Step 1k.

Otherwise STOP.




1k,

To get a more accurate final solution calculate
-1
z% 1= 2% - g'(2%) " g(z%)

and repeat until
le(z9)1l < ey

and then STOP,

We shall call this algorithm the endpoint finding subroutine.

Several remarks can be made about this subroutine.

a)

The theory underlying steps 1 through 6 is contained in Section III.2
on the orientation of paths.

The principal computational effort involved with this subroutine

can be divided into two parts: the calculation of Jacobian matrices
and the solution of linear systems, and those operations involving
the constraints defining S--the calculation of o* and checking
that 2¥ ¢ S.

The former operations are of order Cy(d3) while the latter are
@(d-n). If n is very large in comparison with d (as is

usually the cacse), then the latter type of operation tekes more

time than the former. Since d increases as the BCA runs its
course, the work done in this endpoint subroutine increases.

One could apply Theorem III.3.16 (Part 1) to state that if - is chosen
small enough, this subroutine will follow the right path and

converge to the right endpoint. In general we choose Qhax = 10 or 100
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s i

depending on the problem. The Newton iterations cannot be guaranteed
to converge with such large step lengths, but they always have.

3) Since we are using exact partial derivatives in Newton's method we
can state that these subroutines converge quadratically to the
endpoint z* of f‘l(o) (cf. Ortega and Rheinboldt, 10.2.2,

[1970]). This means that

T i ]
”Z =g < +

£ 50 |2 - a2

3

or intuitively, the number of decimal places of accuracy eventually

doubles from iteration to iteration.

ITT.5. Moving from Cell to Cell

An important factor in the efficiency of the BCA is the matter
of how quickly all of the revisions can be made to the basis, updated
columns, and function definitions. If a good linear programming routine
is used to solve the auxiliary linear program, the subroutines from that
code involved in updating the basis and solving systems will perform
the cell changing operations very efficiently.

A flowchart of the decisions and operations involved in deciding

which cell is adjacent is given on the following pages.

I"Q




d :=1
4
> Is td basic?
d€ o d¢ o
pd :=1 pd := -1
td in super- Ay in super-
basics basics
A
s :=d
WI
d := d+l Y
Endpoint Subroutine,
A Output: pd, r
no
(
d =m? JC5 & pd = 07
N
t (next page)
‘(yes
pd = =17 yes
no
STOP
r = a D d€ o? ——lei)—\
no
no
pd ¢= =1 remove td Remove )y from super-
g g from super- basics; Choose s, the
Cho?se S5 . A P incoming basic variable;
basic variable; Pivot on basics, Pivob oo G a8d G
3 Update basis d := d-1 2°
G1 and G?, p S J & i Update current basis
factorization and index set pd D) (s in, r out);
(s in, r out); : Superbasic change:
Superbasic change: i’ (Ag in, t, out)
(rn, iIn, $._ out): £
S S L’ go tOl *‘ d = d"l
Revise definition of f} 8§ :=7°
s :=r pd :=0

5€




no

pd :=1

Choose s, the incoming
dual basic variable:

Pivot on Gl and G2;
| Update current basis
(r in, s out);
Superbasis change

(ts in, A out)

Revise definition of f

S =T

yes
Y
pd :=0
yes remove td from
de g ? >—— superbasics;
Choose s, the incoming
¥ dual basic variable,
no Pivot on G1 and Gg;
Update current basis
remove Ad from @ in, s out);
superbasics: Superbasis change:
d := d-l (ts in, xs out);
s :=d Revise definition of £
pd :=0 s :=1r
go to 1
FIGURE 5.1
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in the large boxes of the flowchart.

the endpoint subroutine was that changes in xu caused the constraint

to become binding, where ?(3) = £. This means that some coefficient,

£

the Eth element must enter the primal basis. To determine s, the

variable which enters the dual basis, let

We choose the largest element in absolute value to aid somewhat in
keeping the basis matrix well conditioned, because ngs will be the
pivot element in a straight forward update of the primal basis matrix.

If p=1 and £ =y(J) we similarly find

and bring the column corresponding to ts into the basis matrix and

remove the column corresponding to the jth primal variable.

Next we expand upon some of the operations described briefly

s, the incoming primal (dual) basic variable."

We will consider the case when pd = -1. What transpired during

G2, 40, 1 € 4. Since the 7 variable must leave the dual basis,

'"Pivot on Gl and G2"

s = arg max|G2,, |
€0 £i

S = arg max |Glz

|
£E y o

58




s

Since the basis is to change, Gl and G2 must be updated.
Obviously, one could update the basis and recalculate Gl and G2 as
described in Section 1, but if there are several columns in Gl and G2,
this would be rather expensive. Also the current right-hand sides
b and ¢ must be updated. We will describe the operations performed

if p=1 and £ =v(r) and s =arg max [Gl,,| has been chosen.
e

First we pivot to update Gl:

Calculate the eta vector defined by Gl e

£l
E, ¢ 1/(;1)2S
£y &= -GliS/Glzs . i # 2.

Update the columns, Gl ; and b,

¥ = Glzj (6.1)
Gle :=0
Gl_j g Gl.j + vt j# s.
p
¥ = Sz
Bz := 0 (6.2)
b =%+ vt .

In the zth row we now have

X, & + 1- +b =0
j&v Glﬂ’ tj 1 ts bz
j#s
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But since t > O is now basic we want

h = .§ Gl,sts + B, >0
JSv

i#s
. th :
so we must change the signs of the £ row's coefficients:

Gl . := -Glzj p JE€E v, 3 #s (6.2)

Now the rth dual variable is entering the dual basis, but since
r > d, this is not a superbasic variable. So we must calculate the

updated column corresponding to the rth dual variable as described in

(4.5) or (Lk.6) depending on whether the variables is a A- or a
f-variable, Call this updated column Y.
n = y(s) is the row we are pivoting on because the A, is !

leaving the dual basis. Define the eta vector

gn l/Yn -

—
T
e
]

-Yi/Yn 2 i#n,

: as usual and repeat the operations in (6.1), (6.2) and (6.3) with
G2 replacing Gl, ¢ replacing b, r replacing s, and n replacing 4.

"Update current basis (r in, s out)"

€0




Use the subroutines of the linear programming code to update

the current basis factorization when column J enters the basis and
column s leaves. Also revise the index sets o, o, v, r to account
for the change as follows:

Let k be a dummy varisble and

E = 4(a) k := y(r)
o(k) :=r o(k) :=s
r(s) :=0 r(r) :=0
y(r) :=k v(s) :=k .

"Superbasis change (As in, t out)"
Update the index sets:

LJ.:=',J.US,

v\ s.

e
1l

Add the column

(2)

corresponding to . as calculated in (4.5) to the matrix G2, using

p)

the new basis factorization to calculate s Remove the column of Gl

1*
corresponding to t_.

"Revise the definition of f(A ,tJ)"
ki b’

Actually we also revise the definition of q(\ ,t ), the
iwov
bilinear inequality, here too., This is just & recalculation of the

bilinear equations of (1.9) using the updated matrices Gl and G2,
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and the revised right-hand sides b and ¢ to again express the basic
variables in terms of the new superbasics.

The major work done in the change from cell to cell is the pivot
on Gl and G2, the calculation of two new superbasic columns, and the
update of the basis matrix. Clearly, the efficiency of this portion
of the algorithm depends upon the efficiency of the particular sub-
routines of the LP code which is used.

It appears to be that an interesting area for algorithmic
research and experimentation lies in studying the endpoint algorithm
itself. Many variants of Newton's method could be used to solve the
nonlinear equations involved. Perhaps sophisticated differential
equation methods could be used to follow the path.

In Chapter V we shall report on the numerical resulis from
the testing of a code which implements the algorithm described in this

chapter.




CHAPTER IV

A HOMOTOPY METHOD FOR COMPUTING EQUILIBRIA

TV 1 A Convergence Theorem

The bilinear complementarity algorithm described in the last
chapter is essentially a systematic procedure for balancing the budgets
of the m consumers sequentially. One might guess that a rather large
number of cells would be traversed before equilibrium is reached., For
example, at least m cells must be traversed in which the curve
F—l(O) hits a budgzet constraint. In this chapter, we investigate a
path method which immediately relaxes Ai-ti =0, i € m, and adjusts
the variables so as to solve for all of the budget surpluses at once.
We use the homotopy retraction method from Section IV.1l (Part 1) to motivate the
construction of the deformation which defines the path of interest.

We will again utilize the pure exchange model of Section II.Z as
the generic example to ease an already cumbersome notational load,
The more general economy of Section II.5 can be dealt with in an analogous
manner. The assumptions which guarantee that equilibria exist and
coincide with quasi-equilibiria, IT.2.% will be in effect here. The
utility values vy will be chosen in accordance with (2,7). The same
primal and dual auxiliary linear programs (II.2.1) and (2.2) will again serve
as a vehicle for treating the equilibrium problem as an equation solving
problem.

By Lemma II.2.l solving the equilibrium problem is equivalent

to solving for
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o= (1,2, gi(ie r_n_),p;s,t,zl(i €m )sP)

which satisfies
£lw) =0, w€D, (1.3}
where

mw)wl = A (@) (5 (@) + v))

flo) = (1.2)
mw)w' = N (@) (6 (@) + v,)

m(w) refers to the first m components of w, etec., and

D= {o] vzt -t =v, , i€

2 m
m N = & =
ZBlzl+pe+s=Zwl
F=1 icm
TrBl—7\iY1-§i=0, i€m
me = p =1
ms =0
lel=0, i€m
w>0, B (1.3)
3m

Since f maps (m,A,t) € R into ]Rm, it does not appear
that the path methods such as the homotopy retraction or strong path
methods can be used to solve this problem. But, under some quite reason=-

able assumptions, it can be shown that D 1is a collection of m-dimensional

polyhedral sets which form a subdivided m-complex. By a careful choice
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of an initial point, an analogue of the homotopy retraction method will
be used to define a path leading to an equilibrium point.

In the definition of D (1.3) the complementary relation
Ai-ti =0, i € m, is not enforced. For this reason, none of these
variables will be constrained to zero during the course of the algorithm.
By V.2.7 we have that if A, or t, =0 then fi(m) >0, £ € g, Thus,
the retraction function which maps points in H%T into Bﬂkf can be
defined in terms of A(w) € Hlm or t(w) € E%m. In either case, the
boundary condition that f(w) points into E?T for ANow) € BIZT (or
t(w) € 8&2?) will be satisfied. Since D is not a bounded convex set,
we must make some assumptions to allow us to conclude that the path
defined by the deformation is bounded. The assumptions required are
more natural when the A-variables are kept nonnegative by the intrinsic
properties of the path, rather than the t-variables, The sign of the
t-variables will be unrestricted, but if a solution of (1.1) can be
found, then fi(m) = 0 implies that Ai(m) and tiG») are positive
by 2.7 of Chapter II.

The preceding discussion motivates consideration of the set

K > D, defined below. If we define

(z* (@), 1 €m plw), m(w)),
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A characteristic set of variables is a set I'=3 U Uy for some feasible

basis ZX. Note that a basis determines a characteristic set (c-set),

but not vice versa. Since a c-set I' always contains all of the )\~

Y P W S W P T W r—_.

and t-variables, it can always be determined by 7y = ﬁ\\ {Ai,ti, i eiml.
Let y Dbe those variables complementary to .

Corresponding to each c-set of variables TI', we define the set

1
@Dy R T 0
e, = .w]{AII].Y_ 4 + [A )\II =l e | = by, EWIEN >0, o, ® =0,
o2 SRS
.
(1.6)
where
B f '
Q Yn
A.A z | —— and L = : |
O e
L 4 . .
O 1

are the columns corresponding to the )\~ and t-variables. These
sets will satisfy the definition of a cell (II.3 Part 1) if we assume that

each cell corresponding to a characteristic set of variables satisfies

the constraint qualification. This will imply that there is a point

Sec, suchthat I >>0 and 3 >>0. Let X = {C|r is & c-set).

(We will occasionally refer to elements of ;r’ as characteristic cells

or c-cells to emphasize their correspondence with some c-set of variables.)




Define K= U Cl‘"
C
r€x

An important step in applying the theory of Chapter IT {Part 1)

is to show that (K,X) 1is a subdivided m-complex,
Lemma 1.1. (K, X) 1is a subdivided m-complex.

Proof. We make use of the one-to-one correspondence between c-cells
and c-sets. Property (c) if I.3.2 follows because there are only a
finite number of characteristic sets.
The proof follows the lines of Lemma III.4.3 (Part 1) because, again,

any cell C € 2/ can be associated with a set of variables (L,é,a)g)

not constrained to be zero. Define ¢(c) B to be the set of vari-

ables associated with C and let cp-l(B) C be the cell associated

with PB. Property (a) now follows from Part a) of the proof of
Lemma III.4.3. Property (b) follows from Case L4) of part b) of the

proof of the same lemma. l

Below we will expand the subdivided m-complex (K,%’) by
adding the parameter 6 needed to define the deformation. Clearly

it & = (o]o = ¢, x [0,1], e € )) eand L= o, then (L, )

U
u=¥ 4
is a subdivided (m+l)-complex, Define F:L — R® as

Flw,8) = 62() = (1-6)(A(w) = ) (1.8)
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T

Tt wil) be assumed that X = )\(wo) Por stme @ E X

which is easy to compute. For theoretical purposes it will be useful

0 m

to choose (SO such that Alan”) =0 € R This appears to be necessary

in order to show that F"l(o) is bounded. The process of following
F-l(o) to an equilibrium point will be called the homotopy retraction
method.

Next we describe the assumptions necessary to prove that we can

consider a compact subset of L.

Assumption 1.2. (Bounded utility). Even household's utility is bounded

for a fixed level of exports. That is, for fixed p and any i€ m,

the linear program

o A
maximize Yz
5 Al st i
subject to Y Bz +pe< 2 w! z >0,
icm icm

has a finite objective value. We also make the assumption that the
utility is bounded below for fixed p.

The first part of the assumption is fairly standard in the
literature (cf. Dantzig, Eaves, Gale [1976]). The second part seems
as innocuous as the first. Even though there might be an unattractive
activity j ¢ 5, for some i (r§ < 0) it seems reasonable to assume
that household i can perform only a finite amount of that activity,

even if the resources of the other households are made available to him.

9




Assumption 1.%. (Bounded production)

a) The amount of exports the system is capable of producing is bounded:
the optimal value of
maximize P
subject to 5 Blz' + pe < ¥ wi, 2t >0,
i€m i€m
is finite (call this optimal value p+).

b) The solution to this linear program and its dual is unique.

Part b) will not necessarily be satisfied for an arbitrary
problem, but by perturbing the objective vector and the sum of endowments

this property can be satisfied.

Assumption 1.h. (r(w),w’ ) >0, Vi€m for € K.

This assumption is a weakening of Assumption IV.2.3 (Part 1), but it
also implies the existence of equilibria and that equilibria and quasi=-
equilibria coincide (cf. Arrow and Hahn [1970]). In models with

production, this assumption can be weakened to ]

(m(w), W T ooy so Y w€E K i
3=1 ¢

Thic assumption implies that the value of each consumer's assets is

positive for any realization of w € K. This condition is very difficult

to verify for any particular problem, in contrast to the assumption

i

that w~ >> 0, for any i € m. However, computational experience
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indicates that Assumption 1.4 is often satisfied in practice.

Now we are in a position to prove that major result of this
section, that the component of F-l(O) leading from (wP,O) terminates
at a point (w*,1) which is an equilibrium point. First, we must show
how to choose an initial point o0 such that K(wp) 0 and
(wp,O) € 1.

Let (zé, 1€ u Py’ so) solve the problem

maximize D
subject to ) BiZi + pe+s = 2 wi (1.9)

i€Em i€m

p, s>0, z" >0, i€m

and let (Qé, i€m, %o Wb) solve the dual problem

minimize (L wh)
iEn
subject to e = pr= 1L
™ -ttt =0, iem
I
b T20, £ >0, iem

~ m

o e p S i
Then let ti =Yz =V, 1 € m and AO =0€ R, It is easy to

0
0 e A e

see that (w0 ,0) = (7., Ay Cé (1 €m), %3 S tor %o (1 € m), 0030)

is the only point in L with A(w) = 0 due to assumption 1.3(b).

Our deformation F:L — R™ has the simple form

Tk




F(w,0) = 6f(w) - (1-8) Aw) , (w,6) € L .

We will be assuming that O is a good value for F w.r.t. (L, a{).

Lemma 1.6. If P is the component of F'l(o) containing a)o, and

Assumptions 1.2 and 1.3 are satisfied, then P 1is a bounded set.

Proof. Suppose that P(a):[0,T] - L is a continuous parametrization
of P where T <+« , First we show that A(P(a)) >> 0 for any
a > 0. Since we begin at the facet of L for which 6 =0, it is

i clear that

s | s de(a)
6(0) = - 80
S P

Since A(0) = 0, Assumption 1.4 gives us that f(wo) >> 0.

P Also, we can express f solely as a function of A(w), initially,

because the t variables are basic at the start. Thus, .

Fr(a®) = [of'(A) - (1=0)I|£(A) + A] .

At o =0, given that 6(x) > 0, it must be true that A(0) satisfies

-IA(0) = -£(A(0))

or

_(_Ld;\aa = £(A(0)) >0 . |
a=0

Hence, there is some ¢ > 0 such that for any a € (0,¢], A(a) >> 0.

Suppose there is an @ € (¢,T] such that )\i(&) < 0 for some i€ m.
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Then by the continuity of )\i(a), there must be some & € (¢, @] such

that A (@) = 0. Then, since P(&) € F~(0),
-v(a)-fi(w(&)) =0

This is impossible because (a) 6(§) =0 implies that A(@) = 0 and,
hence P(0) = P(&) which contradicts the fact that 0 is a good value
for F, and (b) xi(a) =0 implies fi(w(&)) >0. Thus A(a) >0
for any o > 0.

The fact that A(a) >0 for any « € (0,T] immediately yields

that f(w) >0 for any w € P because

fi(w)=l—;7§§‘”—)->\i(w)go, i

From equation (IV.2.3, Part 1), we have

m
=]

p(w)=§fi(w)20, w€ P,
i=1
Thus, by Assumption 1.3(a), 0 < p(w) < p+ for any w € P.
It is well known that the optimal value of a linear program is
a continuous function of the right-hand sides for which the linear
program has a feasible solution and finite optimal value. Consider

the following continuous functions of D

[f




gogerleg e B g i
<I>i(p)=ma.x[rzl2 Bz < L w -pe, 2 >0,i€m), i€nm,
=) i=1
= sy By i
cpi(p)=min{rz|2 Br < L w -pe, 220, 1€En}, 1€m

i=1 i=1

By Assumption 1.2, <bi(p) and q>i(p) are finite for any p € [O,p+], and,
by continuity, d>i(p) attains its maximum, t;, and cpi(p) attains its

. +
minimum, ti, on [O,p ] for any i € m. From the definition of Do P

(1.3) we have for w € P.

- +
t, =¥, <%, o) <t % , 1em.
A i - "1 - i i

Next we show that A(w) is bounded for w € P.

w(w) € {7|r >0, me = 1), a compact set. Clearly bi('rr) = Bt
is & continuous function of . Thus bi is bounded above by lxre:L
for some k >0 and ei € ]RsfL is a vector of ones.

Since )rizi is an insatiable utility function, r;.‘ >0 for some

J € sy Pick j = arg min(rilyli{' > 0). Then the constraint 7\iYi S'TTBI

k€si

< ke implies that A < k/ri = 7\1 <w for any i€ m. Since

N 20, {AMw)|w € P) is a bounded set. Since t(w) and Alw) are
bounded in their respective subspaces, we can use (1.5) to claim that

all other variables are bounded. Given a feasible basis £, we have




et 4 s o A S RSP A B RS
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Since mi and m; are continuous functions of A(w) and t(w) for
each of the finite number of bases 3, we conclude that Wy is bounded

for any i€ 2n when w € P. Therefore P is bounded. .

Once again we redefine our subdivided (m+l)-complex. Choose a
constant Q > O 1large enough that for any w € P, Wy € (-Q,Q) for any
i € 2n. Define € =C N {(0,6)|w; € [-Q,Q], 6 € [0,1]) for any cell
€ € o{ Let % be the collection of all such cells, and let
M= U C. Then (M, 27) is clearly a subdivided (m+l)-complex which

cem

is compact. We can now state and prove the main result.
Theorem 1.7. If O is a good value of F with respect to (M, 77)
and Assumptions 1.2, 1.3, and 1.4 are satisfied, then the component of

F 1(0) containing (ap,o) leads to the boundary point (w*,1) and

w¥ 1is an equilibrium point for the piecewise linear economy.

Proof. The facets of the cells of 7 which are contained in the boundary

of M are those corresponding to W, = +Q 1i€2n or the ¢ =0 and

@ = 1 boundaries, By Corollary II.3.19 (Part 1), the opposite boundary point to
(wp,o) in P must be in the boundary of M. Here we are using the

fact that O is a good value for the compact complex M. We have

already shown that o(a@) >0 for o >0 and the path P never hits

a boundary corresponding to [wil =Q for any i€ 2n. Thus, P must
lead to a boundary point (w*,1). By the definition of F, f(aw*) = O. :
Also the proof of Lemma 1.6 shows that A(w*) >> 0, so by Assumption 1.k, 7




i

t(w*) > 0. Finally, since w* € K, we appeal to Lemma IV.2.k4 to

! conclude that w* 1is an equilibrium point. l

V.2, The Homotopy Retraction Algorithm For Solving the Piecewise

Linear Equilibrium Problem.

In these sections we describe how the theory of Section 1 can

be implemented as an algorithm with some nice convergence properties.

Much of the description here depends upon methods and notation that was |

introduced in the previous section of this chepter. |

We are putting the problem into the form

find (x,t57,8) > 0
such that
Dxe =0Tt = b
i N =-t(€I=c
!
; . — \ = - =
Aty =0, i€x\m
(x,¢) =0 .

kx4

Where again D € R , and & mREXM

contains the appro-
priate constants determining the income of the consumers as discussed
in Lemma III.3.3 (Part 1).

Again, we reduce the problem to deal only with the superbasic
variables %u and tv. We will write the defining inequalities for
a typical cell in terms of the matrices Gl and G2 and the updated right-

hand sides calculated as in Section 4, Thus (.7 ) of Chapter III can be

written 76




X

(o
. = {?\,t,x,g g | =6t +B>0,
ag
A=
U Ll
x_)t_)coy')\czo; e )=C12 )\“+ CEO}
g g g

The initial point s ()p,to,xo,go) is determined by solving
the auxiliary linear program II.3.1 rather than the procedure suggested
in Chapter III which results in an initial point ' such that xi(w') =0,
i € m. Solving the auxiliary linear program will recsult in a point
which is much closer to the final solution than a solution for which
xi(w) =0, i€ m. Thus, for reasons of algorithmic efficiency we choose
an initial point which is not theoretically guaranteed to converge.
However, in nearly all examples which have been run on the computer
convergence was achieved.

The method still makes use of some of the desirable feasibility
properties of the homotopy retraction method by calculating the boundary

point which f(wo) points at from Ai(wo), i € m. To do this we let

o = min (ki(wo)/fi(wo)) ’
i€m

and Ag = Ai@no) - of, (@), 1 € m. Then AO € Bﬂif is the "initial

i
point" of the algorithm even though the algorithm never was at a point w
such that A(w) = 2\°.

The deformation which, along with the subdivided m-complex

’K.ﬁ{), defines the path the algorithm follows is given below.

7




n

Fw,0) = 0f(w) = (1-6) (A(w) = N°)

w€ K, 0€ [0,1].

6]
il

a/(1 + )

Again, the variables in ®w are expressed in terms of %u, and t,

as in (1.9).

= = . AY ~ 0
F(w,8) = e(hl + Dy Au dlag(Au)(Fl tv + el) = (1-9)(xu- xu) ,
ofs, ¥, B diag(t, ) (F, %u *te,) (5.1)
- (1-8)(G2 N +c - AO)
e M M v

It is important to choose the parameters v{, i €m be chosen
large enough that %i(mp) > 0. Often the choice of A suggested, in
Section III.3 will result in positive dual multipliers, but if not,
vy must be increased (parametrically) until all %i are positive,

0]

21,2, B EC some Ai(up) =0, then @ =0, 6° =0, and

ko = %(QP). In the optimal solution to the auxiliary linear program,

the slack variables on the first m rows, ti’ i € m are never basic,

so tv = (tl’t2"“ ; tm), and , = ¢f. Thus, for the first cell, the

function is

P, 0) = 0(n, - aleg(t )(e,)) - (1-6) (3 - A

F(w, 8) 9=90 = [=6 diag(e2)|h2 - dlag(tv)ee] ¥ :
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But if 80 = 0, the matrix F'(w,6) " is clearly not of full rank,
and hence the first step of the pathJ;;llowing algorithm cannot be
executed. Thus, the importance of choosing v, 8O that )i(wp) >0,
i€m is clear.

In Section II.1 (Part 1) on the discussion of the homotopy retraction
method the dimension of the problem was increased by one by the homotopy
parameter ©. This was done primarily for theoretical reasons--it is
easier to analyze the behavior of a path which ends at a boundary point
of a complex, rather than a point at which the deformation function is
undefined. However, one might suspect that it would be worthwhile to

formulate the deformation in the lower dimension for computational

purposes. For example, if )g = 0, the deformation could be defined

KIQD)
Mw)=Mw)-ﬂFJf®Q

and the path would be h-l()p). However, f. (w) -0 and xl(w)/fl(w) S5+

1
as the algorithm nears a solution and h'(w) becomes unstable,

A tail routine such as Newton's method can be used when the current
point is near an equilibrium, but the decision as to when to institute

this tail routine is by no means an easy one. Both approaches were

experimented with and the homotopy approach was found to be much more

stable.

[,




IV.3. The Path-Following Algorithm

Next we present the path following algorithm which was implemented
in the HRA code to be described in Chapter V. The algorithm is
essentially identical to that presented in Section III.k; we include
this description for completeness. Motivation and a verbal explanation
of the algorithm are given in Section III.k.

Again we are given the data contained in o, 4, v, G1, G2, ¢, b,

Ty = (k“,tv), 90, f as defined in (1.9), and (pd, s) describing the

variable currently at zero which is allowed to increase. Define

1}
=

Glc(s),. tv + b if pd
bs(z,e) =

Ge_ Ao, if pd
a(s),. ™

]
1
=]

Algorithm 3.1. The homotopy retraction algorithm (HRA).

0. i = 0, User supplies Oﬁax and €1r €5» €3.

2 Calculate F'(zi,ei) = [H|n] € ) b

2. Solve Hy = -h (if det H = O, rearrange columns of
(H|h] - (H' |h'] and repeat Step 2).
Let ® := sgn(det H) |

if 1 >0 go to Step L.

e & := Sgn((%s(zi’ei)’ (y:l)>):

w 1= B°w, go SO Step 5.




R

1)
1 v, L)l

The tangential approximation to F-l(O)

= 1
= Q Qe
T () a0 +a,, @€ R, ,

v

where al s

and B 2 (zi,H.).

Solve the n linear equations in & defined by

]

(@, , (@) + b,

3.

a; 1€x

—~
3
=

L
+
o

fl
o

, €

I~

&, m1” ¥ % w1
Let a*¥ be the minimum positive real root of all these equations.
If a primal variapble hits zero, pd := 1
If a dual variable hits zero, pd := -1
Let r := the index in (6.1) corresponding to the row for which

T(o*) is binding.

Let A := 2, :
¥ - ¥
If a‘l,m+l %+ 29.2’m+1 L, let A := 3,
Let (zo,ao) = T(a*)
¢ 0 0
If ok < . &° to Step 9. Otherwise, let o* :=o*/2, (2,9 ) =

T(o*), br(z,n) = (al,(zo,eo) - (2,0)), A :=1, and go to Step 10,
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¢ 10.

1L,

If pd and r describe the primal variable '"p", let A := 3.

If A=3 go to Step 13.

Define
F(z,0)
g(Z,Q)

br(z,e)

and iterate
£+l 4+1 g L £ £\=1
(Z 560 ) = (Z »60 ) - g'(z +8") S(Zz’ez)) £ =0,1,2,...,

until ezt < &5

If A =2 go to Step 12.

Otherwise, let i := i+l,

£+ _O+]
= (2,8

(zi,ai) : ), and go to Step 1.

Let (z*,0%) = (zhl,e%l)

Check that Gl-t* + b > =€3;

—65 P
and gx € [0,1].

and G2NX + b>

If so, return the values (z*,0%, pd, and r) to the main program,
Otherwise, let pd and r define the most infeasible constraint,
solve

b, (- (2%,0%) + (L-p)a,) = 0

for vl (= ]Rl, let
(2 480,
(Z 0 ) - H(Z*)e*) + (1'u)52-:

and go to Step 10.
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13. (Tail Routine). Perform the Newton iteration,

ik -
B T I R S -

£+1

i
until ||f(zz l)ll < e Let (z*,6%) := (2 ,1) and go to Step 12.

1
Again, several remarks are in order:

a) The sizes of €4 i€ 3, and & o D&Y be chosen to suit

e perticular problem. Typical choices might be ¢, = T ol e, = 1077,
=L
€3 = 10 ', and Ao ™ 5. The choice of & ax will radically affect

algorithm efficiency. If it is too small, many Newton iterations will
be used to cross larger cells when it would probably work to take big
jumps across in the facet which the curve seem to hit. If O nx is
too large when F'l(o) takes a sharp curve, Step 10 may not converge.
b) (Step 9) "p" is the variable which the original auxiliary
linear program was maximizing. Recall from the discussion in Section
V.2 that p =5 _ u,
the theoretically desirable path described in Section IV.1l, then

= Zl::l fi(w) and if our path is "near" that of

fi(m) >0, 1 € m. Thus, if the path hits the "p = 0" facet we are
close to an equilibrium and the tail routine can be implemented.

¢) It is worth discussing how F'(z,6) 4is computed in Step 10
assuming that a subroutine is available for computing f'(T\u,tv). From

the definition of F(z,6) in (5.1) it is apparent that

F*(\,t ,0)
pov

A I
. [-J-r (2t )=(1-9)- [52-“—

A
0]'1’(7\ )+ ( T— ) -] (5.2
W ¥ G2u.7\u + CH
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The calculation is not much worse than calculating f'(xu,tv)
if the values of f(%u,tv) and Geu-xu + Eu are saved from the calcu-
lation of F(?\u,tv,e) as suggested by (5.1).

d) If we replace the first line in Step 8 by

"If o* <a . g to 9, otherwise, let o* := amax’"

Then this algorithm is essentially the path following algorithm

and «

of Chapter I, which was proven to be convergent given €5 -

are small enough. This course of action would result in an inordinate
amount of work for large cells--work which is not necessary in most

cases.,

IV.4., The Cell Switching Decisions and Operations

The decisions necessary in the "main program'" of this algorithm
for equilibrium calculation are very simple., Initially tv =0 and
v =m, so any one of the first m primal variables may be specified
as binding--we choose pd =1, s = 1, With the correct initial choice
of Vis i € m, all budget surpluses will be positive. An argument
similar to that in the proof of Lemma 1.6 will show that all the vari-

ables t i € v increase initially, and, hence, the initial tangent,

i)
8y, points into the interior of the initial cell., Thus, no problems
are encountered due to the fact that we are starting out at the vertex

of the initial cell.

8k




Flowchart for cell switching and basis updating.

(The same abbreviations will be used as in Section VI.k4.)

Homotopy Path

Algorithm, output:

pd, r

pd := -1

Choose s := incoming
basic variable.
Pivot on Gl and G2.
Update current basis
factorization and
index sets: (s in, r out)
Superbasis change:

(As in, ts out)

Revise definition of f,

S :=7T

yes

pd = 0?

STOP, Equilibrium

\/ no

pd = 17

FIGURE 3.1
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no

is found.

pd: 3= L
Choose s := incoming
dual basic variable,
Pivot on Gl and G2,
Update current basis
factorization and
index sets: (r in, s out)
Superbasis change:

(ts in, As out),

Revise definition of f,

s (=T




The reader is directed to the comments following Figure VI.5.1

for a discussion of the abbreviated description of the algorithm in

the boxes of Figure 3.1.
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CHAPTER V
RESULTS FROM COMPUTATIONAL EXPERIMENTS

In this chapter we report the results of numerical experiments
L with a code which implements the Bilinear Complementarity Algorithm
(BCA) of Chapter III and Homotopy Retraction Algorithm (HRA) of
Chapter IV. A large part of the work involved in this experimentation
was in the construction of some test problems. We shall discuss how
these problems were generated and what sort of preprocessing was necessary
; in order to solve the problems with these algorithms. The two codes are

named BCA and HRA, respectively. The only differences in the codes are

those absolutely necessary to implement the different path definitions

of the two methods.

Both BCA and HRA use LPMl, an all-in-core FORTRAN linear pro-
gramming code written at Stanford by J. A. Tomlin. LPMl stores the
problem matrix by columns packed in a vector of non-zeroes, a vector of
the same dimension giving for each non-zero coefficient its row index,
and a vector giving for each column the position of its first nonzero

element in each of the two above vectors. The eta file is stored using

the same principle. It uses an L-U factorization for inverting the

basis followed by product form updates.
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V.1l. Computer Implementation of the Algorithms

The BCA and HRA codes are written in FORTRAN-IV and are compatible
with both the WATFIV and FORTRAN-H compilers. The results to be reported
here were done with the FORTRAN-H compiler with full optimization
(OPT = 2). The testing was performed on an IBM 370-168 computer located
at the Stanford Linear Accelerator Center. BCA consists of 3,837 lines
of code while HRA is 3,632 lines long. LPMl occupies 1,819 lines of
each of these programs.

The form of the data input will not be described in detail here,
but most of the data is input as the auxiliary linear program in MPS
standard format. A small amount of additional data must be added to
describe the vector C(:,I), for I =1,...,m, which contain the
coefficients necessary to calculate the budget surplus of the Ith con-
sumer. The details of input and output are contained in "A Programmer's
Guide for BCA and HRA: Two programs for computing economic equilibria,"

to be published as a technical report.

V.2. Experimental Design

The primary objective of these numerical experiments is to
demonstrate that a path-following philosophy along with an exploitation
of the linear-programming structure can be implemented to solve some
problems of moderate size (up to 6 consumers and 56 goods). It was

hoped that the run times would be short enough for these problems that
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it would be clear that these algorithms show promise for considerably
larger problems. By larger problems we mean those concerned with

about 10 traders and 250 goods. A model for which such a capability
would be useful is a model of international trade where the traders are
countries or groups of countries.

A secondary objective is to compare the performance of the BCA
and HRA codes as they process the same set of test problems., The only
conclusion we can make is that the BCA performs better on certain
problems and worse on others, in comparison with the HRA algorithm.

One of the biggest difficulties in performing this experiment
was in finding or manufacturing suitable test problems. Some small
examples were given in Wilson [1976] which have been solved by hand,
Two of these were solved by the BCA and HRA codes meainly to verify that
the codes actually were computing equilibria. Three problems were
adapted from the three equilibrium problems in Scarf [1973]. The last
two problems appear for the first time here. The run times will follow

the problem descriptions.

Problem Descriptions

Problem 1. This problem is due to Andreu Mas-Colell. There
are three traders and two commodities. Each trader has one unit of
each good and the utility functions are, respectively,

min(x, 2y)
min(2x, y)
min(kx, S5y)
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g where x and y are the quantities of the two goods consumed,
One can easily verify that the demand function derived from
these utility functions will have a ray as its range. Thus the activities

|
|
| of the traders can be reduced to one each and the utility functions are

reduced to linear functions. The problem data is, now
L
3 Y=(l); 16.3_
B o5 2 3 .25
B_(l)) B_( 5)) B-(.zo)}
i 1
v = 1 Xy 1€ 3

v* = (1,1,4) is determined from the formula (V.2.6)., We choose \

to be slightly less than v; as suggested in Section V.2:

Vo= .9, ¥ B «95; Ve =435.92,

This example is used to show that an equilibrium problem of
this form can have rational data and an irrational solution. The

equilibrium prices are some scalar multiple of the vector

= {1+ ¢35 1) .

The prices computed by both algorithms are correct to six decimal

places,

7 = (.732051, .2679L49) .
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Problem 2. This example is due to Alan Whisman. It is reported
in Wilson [1976]. It is concerned with four consumers and three goods.
The utility functions are linear, but the Bi matrices are non-trivial.
Again, there are no firms.

Problem data:

i Faky
=
1
E Bl = wl = 5
‘ 3 2
- s
Y‘:
4
B2= e 2 w2= ;
a2 3

13 e S
- 0 3

B§= 30 ‘AP:B)
i b o3 ly

L R

Y =
1 2

Bh = 1 0O wh = +
0 0
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Problem 3. This is the first of three examples taken from Scarf's

The Computation of Economic Equilibria [1973]. This is a pure exchange

model, while the next two include production, This example involves 10

commodities and 5 traders. Each trader has 10 activities, the consumption

of each of the 10 commodities, so the activity matrix BL = 1€ ®R10X10
for i =1, ... , 5. Each consumer has an initial stock wi (2 Iilo of
commodities prior to trade and a utility function.
10 1/bi 1-1/bi
u; (y) = sign(b, - 1)- T &, 7y, o BEB

J=1

for final consumption. This is a special case of the class of constant
elasticity of substitution or CES utility functions. For convenience
we will refer to this functional form as & CES utility function.

Scarf's algorithm uses the demand functions derived by maximizing
ui(y), subject to ziowjyj < Zioijij to derive a mapping whose fixed
point corresponds to an equilibrium. To implement either of our
algorithms we must calculate a piecewise linear approximation to each
consumer's utility function.

From an econometric point of view, it is probably just as easy
and accurate to assess a utility function in a piecewise linear form
as in some standard nonlinear form. However, if one is trying to
approximate a nonlinear functional on Iilo by linear pieces, it may
take a very large number of pieces. For this reason, we are not trying
to duplicate the answers which Scarf computed, although in some cases
we come close, As a rule of thumb, we compute twice as many pieces

of linearity as the dimension of the domain of the utility function.
92




In this example, we compute 20 pieces of linearity for each of the five

consumers.

The details of the calculations involved in this prepro-~

cessing are described in the Appendix

equilibrium
but that is to be expected.
The problem data is given below.
Initial Stock of Commodities

Consumer

1 .6 %, 2 20 %

2 e 1L 12 155 1L

3 B9 8 T 6

L 1 5 5 SR

5 8 it 22 10 o

Utility parameters

Consumer

1 X 1 3 1 ol

2 1 1 4 i il

b %t U 2 6

L 1 2 3 L 5

> 1 )5 Bk 9 L
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a, .
1

16

~ o &

The prices obtained in the

solution were not very close to those computed by Scarf,

o R = HER R - . |

15

17

L

n

10

10




e e YV

Utility parameters b

Consumer
12 2.0
2 1.3
3 5.0
L 0.2
2 0.6

Problem L. This is the Welrasian equilibrium model on pp. 109-113
of Scarf [1973]. The problem involves 5 consumers, 6 commodities and a
production sector. One can think of the production sector as being a
single firm. The consumers share ownership of the firm in the sense
that they own the factors of production--capital, unskilled labor, and
skilled labor. The six commodities may be described as follows:
1. Capital available at the end of the period.
2. Capital available at the beginning of the period.
3. Skilled labor.

L4, Unskilled labor.

5. Nondurable consumer goods, :
6. Durable consumer goods.

The activity matrix for the firm is

L L 1.6 1e & 1.6 .9 7 8
=5.5 a5 -2 -2 -2 -1 =4 a5
gl - -2 -1 -2 i -1 0 =3 =2
=} -6 =3 -1 -8 0 -1 8
0 6 8 7 0 0 0
L 3.5 0 ¢ 0
ol




The consumers have initial endowments of commodities 2, 3, 4

and 6 given in the following matrix:

Commodity
Consumer 2 3 L 6
i 5] 5 ot
2 AL ol < 2
5 & 6 LS 5
Y 1 ARIRERES 1
5 6 e a0 2

The consumer's utility functions are of the same form as in the
previous problem. The specific values of aij are given in the

following matrix:

Commodity
Consumer 1 g2 g 4 9., 6
;. L 0 2 0 2 2
2 O © O 6 & 1
3 2 0 5 0 -
Y 5 0F @ 2. 5 4.5
5 3 0 © B alihiis g

The activity matrix B' is composed of zeroes except that
B?J = 1 §f aij # 0. Of course zero columns can be omitted. The
elasticities of substitution are given by
by = {32, 1.6, 0.8, 0.5, 0.6)
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12,
13.
1h.

commodities 11-13%.

Problem 5. This problem, taken from pp. 113-119 of Scarf

Basic agricultural goods.
Processed food.

Textiles.

Housing services and heating.
Entertainment.

Housing, end of period.
Other capital, end of period.
Steel.

Coal.

Lumber

Housing, beginning of period.

Other capital, beginning of period.

Labor

Foreign exchange.

[1973] deals with four consumers and fourteen commodities:

The consumers have initially a nonzero holding only of

pattern:

Consumer 11
1 20
2 L
3 0]
i 8

12
30
20

0

{2

The following matrix describes this ownership

Commodity

13
6
8

10
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In this case the productive sectors involves import and export
activities. The activity analysis matrix is given in Scarf.

The utility functions are of the form

a.
uy(y) = X Yy5 »

where

i

i§1 85 = 3l =L o 2 B
These Cobb~-Douglas utility functions are homogeneous of degree one,
l.e., forany A=>0, %uj(y) = uj(%y). This means that our piecewise
linear approximations are tangent to the graph of uj along a ray
rather than at a single point. As one might expect, this means that
our piecewise linear approximation will be better for this form of
utility function than for the constant elasticity of substitution
utilities.

The coefficients aij are given by

Commodity
Consumer i 2 3 L 5 6 it
L b e ok vl s e ik
& 2 e i will 1k 1 o
3 ) 2 Bl i ol 10508 050
L 1 < o i ol o 3

o




To make some sort of comparison between the Cobb-Douglas and
CES (1) utility functions, we also solved this equilibrium problem
using the former type of utility function. We used intensities aij
proportional to those in the table above and let bi = 1.2 4 =1,2,5.0.
Below is a comparison of the equilibrium prices derived from this
model using 1) Scarf's results, 2) our results using PL approximation
to the Cobb-Douglas utility function, and 3) our results from a PL

approximation to a CES utility function. (We use abbreviations for

the names of the commodities.)

Equilibrium Prices

SCARF £8§§AS CES
1 AGR1 L0621 .0613 .0k495
2 FOOD .0583 .0595 .0500
3 TXTL .098L .0977 .0830
N HSVH L0714 .0706 .0L79
5 ENTR .0658 .0650 .oLok
6 HEND L0624 L0614 L0674
7 CEND .0689 .0722 .0680
8 STEL .0981 .0999 L0831
9 COAL .0902 .0888 .0721
10 LUMB .0795 Q7T L0654
11 HBEG .0562 .0552 .1858
12 CBEG .0620 .0650 .0613
13 LABO .0365 .0300 .0328
1k FEXC .0928 .0956 .08Lo

e




We note here that the HRA path passed through only 3 cells to
reach the equilibrium prices in column 2 while it passed through 37
cells to reach the equilibrium prices in column 3. The computational
results reported later for this example are concerned with the approxi-
mation to the Cobb-Douglas utility function.

The next two examples are new.

Problem 6. This example has 6 households and U4 goods. Fivé
of the consumers have piecewise linear utility functions, the sixth has
a linear utility function. Some of the initial endowments of the con-
sumers are zero. In thig case the entire auxiliary linear program
matrix will be given to show how the piecewise linear utility functions
are handled.

One notes that this matrix (Figure 2.1) could easily be put into a block
diagonal form with coupling constraints, but since our LP code does
not take advantage of such structure we leave it in the form such that
the vi, i=1,..., mare in the first m rows. This allows us to consider
the slack variables t,, 1 € m as the first m primal variables which

eases the indexing problems in the code.

The initial endowments are given below.

Commodity
Consumer L 2 5 L

1 b8 2 1 g

2 1 L 3 2

2 0 0 3 N

I i 1 o 0:5

5 1 2 0 2

6 L2 > 2 L .
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We will call this problem 6a. To create problem fb we just
changed three entries in the matrix of Figure 2.1.

Problem 7. This is a dynamic model in which three consumers
attempt to maximize their discounted utility subject to a budget con-
straint while the producers maximize profit. The model is an adaptation
of the Mananaguay model of W, P, Drews [1976]. 1In its original form
it was a dynamic linear programming model of the economy of a developing
country. The country was mythical so the data was not empirically
supported, but the numbers were reasonable on the basis of past
experience. This model was over five two-year periods and included
sophisticated techniques to deal with distortions due to the finite
planning horizon. The model offered a rich choice of objective functions,
including one which maximized a weighted sum of consumption and one
which minimized the dependence upon imports.

We substantially alter the model 1) to reduce the size of
the problem and 2) to make the expansion in the consumption sector
which an equilibrium formulation allows. We reduced the size of
the model by dropping the number of periods to three, eliminating import
and export activities and simplifying the end-correction mechanism.
Arbitrary levels of capital stocks are defined which must be left to
the society at the end of the third period. This is an admittedly poor
method for handling finite horizon problems, but its simplicity suits

our purpose.
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We will not present the data of the problem here, just a few

statistics. There are 8 perishable goods in each period (including
three kinds of labor) and 8 capital goods in each of the three periods
plus a fourth set of 8 capital goods which is bequeathed at the end
of the planning horizon. Since the szame good in two different time
periods is considered to be two different goods, the model deals with
56 goods. In each period there are 8 production activities, 9 capital
goods construction activities, and 18 consumption activities, 6 for
each consumer. Hence, there is a total of 105 activities. The
utilities are discounted at a rate of 15% between the two year periods

for an annual rate of about 7.5%.

Preprocessing

Before we present the numerical results it would be useful to
discuss how the initial utility levels Vs i €m were determined.
For the pure exchange problems 1, 2, 3, and 6, we used the procedure
suggested in Section V.2, i.e. solve the linear programs
i

v* = ma.x{rlleAlz1 La, Bzt < wl, 7t >0}, ie

1B

and let ¥y = v?,‘i € m, In general, the solution of these m linear
programs took about as much computer time as the solution of the
resulting auxiliary linear program. The initial utility levels vy

derived in this manner were very satisfactory for these models.

For the models with production, many times the consumers are so dependent
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upon the other consumers and the productive sector that it does not
make sense to determine v§ as suggested in Section V.3, In these
cases we either guessed at the initial utility levels or followed the
procedure described below:
1. Guess at the equilibiium prices T of the consumers initially held

commodities wi.
2. Calculate their wealth W = 7w'.
3. Cealculate v¥ = max ui(zi)

subject to %zi < Wi,

using the nonlinear utility function u;.

This value v? will usually be less than the equilibrium
utility level for consumer i because the piecewise linear utility over-
estimates the actual utility function (see Appendix A). If a poor
choice of initial utility level causes the algorithm to fail for any
reason, a better choice can usually be made by examining the output
from the failure.

Several times the HRA algorithm failed to converge because of
poor initial utility levels. The BCA failed only if the choice of some

v, was so large that fi(w) = (C NI 7\i(vi + t;) 1is negative after

syl
the solution of the auxiliary linear program. We will report one

example in which the HRA code failed but the BCA code worked.
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V.3. Numerical Results

On the succeeding pages, tables will give the numerical results.
First, though, we will describe the various measures used to evaluate

how much work is being done to find an equilibrium solution.

1. L.P. iterations and L.P. time; The solution of the

auxiliary linear program is definitely part of the.HRA and BCA so

the amount of work done to solve it must be measured. If the utility
levels v, are very good the largest percentage of work will be done

in the LP portion of the algorithm., The LP time is measured using the

subroutine LEFT1A supplied by the numerical analysis package at SLAC,

The accuracy of this timer seems to be about +.02 sec.

2. DNumber of cells traversed and path-following time:

The number of cells traversed is important because it counts the number
of times the basis and the superbasic columns are updated. This work |
really outweighs the work done to follow the path through the cell.

The path-following time measures the time spent after the auxiliary LP

is computed and before the output of the final solution.

3. Scalar function calls: This refers to the number of times
any of the consumers budget surplus functions are evaluated. TIn the
BCA the work involved is on the order of the dot product of two vectors
in R¢ (see (IILL.9)), where d is the number of budget surpluses
currently "at zero." In the HRA there are always m superbasic vari-

ables so,on the average, a little more work is done.
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L,

dimension of the BCA jacobians, here we counted the number of partial
derivatives calculated and divide by m?.

number of times a jacobian is calculated.

Jacobian evaluations:

To compensate for the changing

In the HRA we just count the

Since the formulas (III.L.L)

make it relatively easy to compute partial derivatives exactly, that is

what is done.

Each time a jacobian is calculated a linear system is

solved in either code, so this figure represents more work than the

evaluation of a jacobian,

5.

and the output time of the equilibrium solution which is negligible.

CPU time:

This includes input time, which is not negligible,

Thus the LP time and the path-following time will not add up to the

CPU time.
Problem Statistics
Consumers,
Problem Goods LP size Density Iterations LP time
1 3.2 6 x L 50% 1 .005 sec
2 I, 5 8 x 11 Lo, 9% 5 .02 sec
3 5,10 116 x 56 13.9% 95 1.75 sec
L 5,6 52 x 36 15.1% 33 .54 sec
5 4,14 75 X 57 14, 6% 82 .85 sec
6(a) 6,4 23 x 20 18.5% 12 .07 sec
(v) 16 .08 sec
7(a) 3,56 97 x 107 11, 8% 96 1.63 sec
(v) 90 1.63 sec
TABLE 3.1
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Comparison of Algorithms
BCA (Bilinear Complementarity Algorithm)

HRA (Homotopy Retraction Algorithm)

Number Path Scalar
of Cells Following Function Jacobian CPU

[Problem Traversed Time Calls Evaluations Time
1 BCA L .13 sec 37 L .18 sec

HRA 2 .12 29 7 .17 sec
2 BCA 8 .15 Ys 2 20

HRA 1 .10 16 2 .19
3 BCA i 1.61 164 7 L, 49

HRA 20 .92 319 55 3.90
L BcA o) <AL 82 5 91

HRA 19 5% 387 66 1.17
5 BCA 46 525 166 14 2.69

HRA 3 .09 Ly 8 1.4k
6a BCA 1k .18 194 11 R

HRA 3 .08 20 12 o5
6b BCA 14 o oLy 14 L5

HRA 5 STl 130 18 .38
7a BCA L1 185 126 13 L, sy

HRA 69 Sl 629 173 6.19
7b BCA 35 145 70 L L.18

HRA €0 FATLED TO COMPUTE A SOLUTTON' .

TABLE 3.2

17b. uses the same data as 7a. A different starting point caused the
HRA to diverge.
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Comparison of HRA on Problem 5 with Two Different Utility Functions

“Number Path Scalar
Utility of Cells Following Function Jacobiean CPrU
Function Traversed Time Calls Evaluations Time
Cobb-
Douglas 5 .09 sec Ly 8 1.4k sec
CES 51 1.41 sec 559 118 2.55 se
TABLE 3.3

The solutions calculated by the codes are equilibrium points if

they satisfy the systems of equations (II.2.3) and (II.2.3) and the non-
negativity of the variables. Of course, no finite algorithm can calculate

exact equilibria, in general. During the course of the algorithm the
L

linear inequalities are maintained to a tolerance of 10  , i.e., in
the linear approximation Algorithm III.5.2, e, = lO_u. This is the
default tolerance setting in LPML for the non-negativity of the relative
cost coefficients. The final application of Newton's method for calcu-
lating a zero of the budget surplus function f(w) terminates when

e ey = 10°%°  4n Adgorithm III.5.2). These tolerances

f{w)] < 10
are among the user-supplied parameters. The choice of €9 is rather
arbitrary; since Newton's routine is quadratically convergent, a smaller
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tolerance will not appreciably affect run time. However, since the

. e ——

accuracy of the variables and function parameters are only on the order

14

} of 10~ , it would not be appropriate to set ¢ lower than that. To

1

set €5 smaller than 1o'h may appreciably increase the run time of

the simplex method for solving the suxiliary linear program. Another
: tolerance is of importance in these algorithms. The termination
criterion for each Newton routine for returning to the curve is ¢, = 10'5.

3
Making this parameter larger may reduce the run time marginally, but

e

one runs a risk of moving outside of the radius of convergence surround-

ing the curve with the next step along the tangent.

V.4, Conclusions

The conclusions that can be drawn from such a limited testing must

be tentative at best. However, it has been shown that some medium-sized
problems can be solved quite quickly using path methods. In our opinion

this experience shows that these methods show promise for the solution

of problems with up to 10 consumers and 200 goods. This is only specula-

tion, though, at this point.

Referring to Table 3.2, we see that the HRA was faster 6 times
and the BCA was faster on 3 problems. This indicates that there can 3
be no conclusion drawn concerning which method is better. The HRA
appears to be more erratic. Compare the results from problem 5 and 7
for example, The increase in CPU time for the BCA is more in proportion

to the change in problem size than the increase for the HRA.
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It may be that the ERA is superior for problems with Cobb-
Douglas utility functions. We cite the evidence from Problem 5 in
Table 3.2 and Table 3.3. However, more testing must be done with
problems having Cobb-Douglas utility functions before this statement
can be made with any confidence.

An interesting fact not reported in the tables above is that
for the BCA, the number of bilinear equations which are binding
increases throughout the course of the computation on such problem.

The theory does not guarantee that this type of monotone improvement
occurs, but it is fortunate that this behavior seems to be common.

One way of measuring the progress of the HRA is to note how 6 increases
from &€ (0,1) to ©* =1 at an equilibrium. In several examples

€ increased and then decreased for several cells. In problem 7b,

90 = .256 increased to .697 before decreasing to O, causing the program
to stop execution.

The HRA passed through fewer cells than the BCA in every problem
but Number 7; this advantage must be large in order for the HRA to take
less path following time because the BCA is concerned with cells of
smaller dimension than m most of the time. This fact explains the
relatively small number of scalar function calls and jacobian
evaluations for the BCA in comparison with the number of cells traversed.

This compafison of algorithms is not extensive enough to allow
us to make authoritative conclusions. It does allow us to say that
these algorithms show promise for the goal of solving economically

significant equilibrium models.
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CHAPTER VI
SUGGESTIONS FOR FUTURE RESEARCH

We close this work with some ideas for continuing this investi-
gation. Some of these hypotheses are more speculative than others

but they all deserve to be mentioned.

1. Chapter IV gives a convergence proof for the
Homotopy Retraction Algorithm (HRA) when the starting point )P is
the zero vector. For computational efficiency, we solve an auxiliary
linear program which results in a starting point which is closer to
equilibrium (Section IV.2), but, as problem 7b indicates, convergence
is no longer guaranteed. Another difficulty is in choosing the
initial utility levels Vi i €m in such a way that a) all dual

multipliers Ai’ i € m, are positive, and b) all budget surpluses

fi(w), i € m are positive.

Although the author has tried unsuccessfully to merge other
homotopy deformations with the piecewise linear economy to define a

convergent path method, there still may be promise in such an enter-

prise. It is certainly possible that some other deformation could
define a path whiéh would have better computational properties than

the HRA. One simple alternative would be to involve the t variables
(slacks corresponding to the utility levels) rather than the A-variables

in the deformation F(w,0), i.e.,
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Flw,0) = of(w) - (1-.) (t(w) - t°) .

Other possible path methods which could be adapted to this problem
are the strong path method (Section IV.3, Part 1) or any of the class
of path methods discussed in Section IV.7 (Part 1).

One possible remedy for the initial point problems of the
HRA would be to solve the auxiliary linear program (II.2.3) with rather
conservative initial utility levels, and then parametrically increase

those vi for which %i = 0. One would continue this increase until

A, was positive and stop before fi(w) went to zero (Ai =0=f, > 0).

When these conditions were satisfied for i =1, 2, ..., m, the HRA

would be instituted.

2. We discussed earlier why it was reasonable to consider
models with few consumers and piecewise linear utility functions,
but interesting extensions to our theory are possible which would
deal with the problems of many consumers and nonlinear utility
functions.

In competitive economies the various agents make decisions
independently, using only a little common information (prices).
Perhaps some sort of decomposition principle could be used to account
for the effects tﬁat the decisions made by a large number of households
have on the system. Another method to ease the computational burden
would be to take advantage of the block-diagonal structure of the
linear program by using a GGUB algorithm (see Winkler [1972] for a

survey and unification of these methods).
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If one is trying to approximate a nonlinear utility function
in many variables, better methods may be available than using a
globally defined piecewise linear function. If one could deal with
only the hyperplanes which are binding or near binding, the dimension
of the problem could be reduced considerably. The rows corresponding
to these hyperplanes are columns in the dual auxiliary program. Perhaps
some sort of column generation algorithm could be used in the dual
system to bring in a column whenever the current point is in an inaccurate

portion of the current PL approximation.

3. Nothing has been said in this dissertation with reference
to the problem of stability in equilibria theory and computation.
If the economy is, for some reason, displaced from equilibrium, what
process will bring it back to the desired point? It appears as though
a path of the form of the homotopy retraction algorithm could be
defined which would lead to the equilibrium for any point in a neighbor-
hood of the egquilibrium. A sensitivity analysis of the auxiliary

linear program could yield insight into the stability of the equilibrium.
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APPENDIX

THE CALCULATION OF PIECEWISE LINEAR UTILITY FUNCTIONS

There are clearly many possible ways to compute a piecewise
linear approximation to a given utility function. We will present
one method which is relatively simple and easy to refine. We will
not give any detailed justification for this particular method.

The epograph of a concave utility function u:]Rn - ]Rl is
defined as

1

epo(u) = {(x,t)|x € R”, t € R™, t < u(x)) .

One could evaluate u(xo) by finding

g = sup t = u(xo) s

(xo,t) € epo(u)

We will define a polyhedral approximation epo({i) to epo(u) and the

piecewise linear approximation §i of u can be evaluated as

ﬁ(xo) = sup Biee
(x°,t) € epo ()

We will find an ouper approximation using hyperplanes tangent to the
boundary of epo u. Assume that u is differentiable. Suppose

- u(xo). Then the tangent hyperplane to epo(u) = {(x,t)[t - u(x) < 0)
at (xo,to) is

() [((-(),1), (x,t) - (,t°) =0},
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or letting & -t - Oﬁu(xo),xo) we have that

epo(u) c {(x,t) [t - (Wu(x®),x) < %) .

epo(i) can be calculated by choosing a number of points of tangeny
{xi, i =0,1,..., m} and calculating the appropriate gradients:

epo(fl) = ((x,t)]t - (W(x"),x) < S R S (1)

The problem which remains is to make some sort of choice of

points of tangency. Pick two utility levels U1 and U2 which

are likely to be in the range of those under consideration in the
problem, Given a vector v & s = (x€ Einizgxi =1, x>0}, it is
usually quite easy to find scalars Xi such that u()iv) = Ui' Our
procedure, then, is to choose n vectors vl, Veiey v scattered in
some manner in the unit simplex and to find the corresponding points
xi = %ivi such that u(xi) =1

o+l

more vectors v o, ... , v yhich yield x* such that u(xt) = U2,

1’ for i€ n, Then we choose n

i€ ggS\ n. The points xi, i € 2n will be the points of tangency
in the definition of epo(i), (1).

One way to choose vi, i € 2n is to distribute them around a
point v* which maximizes the utility subject to a budget constraint
assuming all prices are equal, i.e.,

v* solves maximize u(v)

n
subject to L v, < 1.
1
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We arbitrarily choose vl, A v? to be convex combinations

of v* and each of the vertices of S% TIf el is the i*® unit

vector for some i € n, then

vi o= avk + (1-a)e” i€

1=

i i -
Let d” = (1/(n-1))e - (1/(n-1))el where e € R™ is a vector of ones.
Then vn+l, is chosen to be some convex combination of v* and di,

the centroid of S? ={x € Sn[x.1 = Q). Let

vV avx + (1-@)al,  ien.
We chose « to be 1/2, but other choices are certainly possible.
To illustrate what our piecewise linear approximations look like
we must use examples in three different dimensions.
The first illustrates why we choose points of tangency at two
different utility levels (Fig. A.l): in general, concave utilities

have decreasing marginal returns.

? F G(x)
utility u(x)

Ys

] ,
Ul u:]Rl—>]R1

1 2 3
X X X
FIGURE A.1
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In two dimensions we can see the piecewise linear approximation

to two level curves.

FIGURE A.2

In three dimensions the dispersion of vl, i € 2n around the

simplex is apparent.
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FIGURE A.3

It may be that the hyperplanes generated with this particular
choice of Ul’ U2, and @ yield answers which seem to be bad in some
sense. In that case, information gained from the solution of that
problem can be used to adjust the parameters v¥, Ul’ U2 and Q sO
as to achieve a better approximation to u in the region of interest.

With this refinement the equilibrium problem can be solved agein.
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