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NOTATION AND NUMBERING

We define some notation which may not be completely standard.

All points and sets are in ]Rrl 
unless indicated otherwise.

1) ]R~ 
E (x E 11~~I x  > 0)

2) For x, y E IE
TI
, denote their inner product by (x ,y) 

~ 
~~~~

3) Let jixil = (x ,x) h /’2 be the norm of x.

14) Denote by d(,.) the distance function defined as

d(A,B) = inf ~x-y~
x€A
yEB

5) Let the ball about A of radius c , where A may be a point or

a set , be

B(A , € )  (x € ]R ” J d ( x,A) < c)

6) For any positive integer in, let inn (l,2,...,m). If in = 0,

then r n n c~.

7) conv{A 1,
A
2,...,A J  is the convex hull of t’ie sets (or points)

A1, A2
, ... , A~ .

8) lR~~~~~
in is the space of all real-valued matrices with n rows

and in columns .

m~n
9) If s C n and ~ c m are index sets, then, for A € lB ,

li- i

_______—



A
a,. 

consists of the rows of A indexed by a, and

A consists of the columns of A indexed by ~I
A is the submatrix of elements whose indices are in a x ~~.

1

10) For two sets A and B,

AN B = (xix € A, x ~~B)

and

A - B = fzJz = x-y for some x € A, and y E B).

11) The boundary of a set C is called ~C, and the interior of set

0C is called C

Numbering

The chapters are numbered by Roman numerals and the sections

are numbered consecutively within each chapter, i.e., 11.1, 11.2, etc.

All theorems, lemmas, and examples are numbered consecutively within

each section. Equations are numbered separately and are identified

by being enclosed in parentheses. Equation (V.1.2) is the second

equation in Section V.1, for instance. The chapter numeral is omitted

for results or equations referred to within the same chapter.
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THE COMPUTATION OF ECONOMIC EQUILIBRIA BY PATH METHODS

Thomas R. Elken

ABSTRACT

An introduction to the economic equilibrium model is given

and it is demonstrated that a path method can be used to compute

equilibria for pure exchange economies in a nonlinear setting.

Next, a model is described for an economy in which the utility

functions are piecewise linear and the consumption and production sets

are polyhedral. It is shown that an equilibrium for this economy is

the solution to a system of bilinear equations subject to certain

linear inequality and cornplementarity constraints.

Two approaches are discussed for computing equilibria for such

economies. The first is the bilinear complementarity algorithm (BCA)

and the second is the hoinotopy retraction algorithm (HRA). Convergence

proof s are given for both methods using the general theory for path

methods described above.

The BCA and HRA have been implemented as computer prograir.s.

Detailed descriptions of the algorithms are given, and the results of

some numerical experiments are reported. Seven small problems were

solved by both algorithms. No conclusion could be drawn as to which

algorithm was superior, but both performed well enough that it appears

that much larger equilibrium problems also can be solved efficiently

by these methods. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



TIlE COMPUTATION OF ECONOMIC EQUD.~IBRIA BY PATH METHODS

CHAPTER I

I. Introduction and Summary

This report is concerned with two algorithms for computing

equilibria for a general piecewise linear economy. Proofs will be pre-

sented which show that these algorithms converge under certain conditions

and the computational results from the first implementation of these

algorithms will be reported . The first algorithm is the bilinear corn-

pleinentarity algorithm of Wilson [ 1976]. A new proof of convergence

is given here using the results on subdivided complexes in Elken [1977],

and a detailed description of an algorithm which is suitable for numerical

implementation is presented. The second algorithm is new but it is

heavily influenced by the ideas of Wilson [ 1976] and Kellogg, Li , and

Yorke [ 1976]. We call it the homotopy retraction algorithm. Both

algorithms show great promise in computing equilibria for larger models

than has been possible up to now.

This report constitutes the second half of the author’s dissertation.

The first half is contained in Elken [1977]; we will call this work

Part 1. The reader who is interested in the proofs for the two convergence

theorems in this report will have to be familiar with the definitions

and results in Chapter II of Elken [1977]. Those readers interested in

the algorithms, their implementation, and the numerical experiments will

find that this report contains all the relevant material.I



In Chapter II of this report we introduce the economic equilibrium

problem in its traditional form and show how it can be solved by a path

method. (A ~~~~ method is a procedure for solving a system of nonlinear

equations by following a (piecewise) differentiable path from a known

starting point to a solution for the system of equations; see Elken [1977]

for more details.) We also introduce the piecewise linear formulation

of an economy as it was developed by R. Mantel [1967] and R. Wilson [1976].

It is this formulation which we use to develop algorithms to exploit the

linear structure to compute equilibria for this model of an economy.

In Chapter III we present a generalization of the piecewise linear

equilibrium problem, the bilinear complenientarity problem (BCP) of Wilson

[1976]. Wilson defined a path and proved that it led from an easily

obtained starting point to a solution of the equilibrium problem. We

present a new proof’ of this and an algorithm which exploits the linearity

of this model to reduce the nonlinear path-following problem to the

lowest possible dimension (< the number of consumers). The last part of

this chapter is a description of the algorithm as it is implemented

in a computer program.

In Chapter IV we present a new path method for computing economic

equilibria and prove that it is convergent. We also describe, in detail,

an algorithm based upon this path method which has been numerically

tested .

Chapter V contains the results of some computational experiments

with the algorithms presented in the previous two chapters. The

conclusions are primarily a comparison of these two methods, but it is

2 
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hoped that comparisons with existing codes will be made in the

future.

Chapter VI suggests some promising directions for future research.

An Appendix is included which describes one method for generating piece-

wise linear approximations to nonlinear uti1it~ functions of several

variables.

3
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CHAPPER II

COMPUTING ECOHOMIC EQUILIBRIA

11.1. Introduction

The concept “ equilibrium” suggests that opposing forces are

in balance. Economi c equilibrium theory is concerned with the balance

of the demand from consumers with the supply provided by producers.

Each agent in the economy is concerned only with the maximization of

his satisfaction or profit depending upon whether he is a consumer or

producer, respectively. To be more explicit, a special class of economies

is considered, namely, private ownership economies in which consumers own

the resources and control the producers. Given a price system, each

producer maximizes his profit, which is distributed to consumer-share-

holders. The wealths of the latter are thereby determined, and they

maximize their satisfaction from the consumption of goods subject to

their wealth constraints. As a result of’ this process, each agent chooses

an action. The state of an economy in which these optimal actions of

consumers and producers are compatible with the resources is called

an equilibrium.

The traditional questions which have been studied by economists

are: Does a price system exist which puts the economy in equilibrium?

Is an economy at equilibrium stable? That is, if there is a violation

of one of the conditions of equilibrium, do rational actions of’ the

agents tend to restore an equilibrium. An excellent work which deals

with these questions is Arrow and Hahn’ a General Competitive Analysis

[1971]. This work also provides an excellent introduction to the

literature of economic equilibria theory.

14



This work is concerned with the existence question as it

arises in the problem of coi~puti~~ equilibrium prices and activities.

The question of stability will not be diccuesed . The ability to compute

equilibria for large—scale models is important because it may allow a

great improvement in economic modelin.c.

The difficulties inherent th economic model are well known,

“The problem of collecting reliable data on the technological
processes that a~~. currently available ts enormous, tc say
nothing of the diff ic ti t y cf inventing appropriate input-
output coefficients for orcductive techniques that remain
to be discovered.” (3ca~f [1973], pp. ~-P .

Because of the large size ~ most e~onoinic models, the linear programming

formulation is invariably used. The advantage of the equilibrium model

over linear programming is that c~osurner demands and their dependence

upon price are recognized ~tnJ mc~~e~~ed with some rationality. Unless

the system is prepared to tolerate stric~ ra t ioning,  consumers will

respond not only to the ava .obi’.it.y of item s but also to their price.

Thus, we see the importance of computing equilibria as an aid in

economic planning.

The f irst  algorithms for the comput ation of economic equilibria

were developed by Scarf [l~67 1 , He developed an algorithm for solving

fixed points of a function which maps the unit simplex into itself.

Then tne equilibrium problem war trsricform~ d into such a fixed point

problem . To illustrate how this transformation can be accomplished

we will deal with a pure exchange economy , i .e. ,  we ignore production

for the moment.



Suppose there are n goods in the economy of m consumers

or traders, and that each of the consumer’s preferences are represented

by a utility function. To be precise, let y E be a vector of the

n goods and irE :IR
nl be the vector of prices for the n goods. A

bundle of goods x is preferred to a bundle y by consumer i,

i = l,...,ni if and only if u.(x) > u~(y) where u
~
:iR ’1 —~.iR is a

strictly concave and continuous utility function. The demands of the

~
th 

consumer are determined by the solution to the following problern~

maximize u
~
(y)

subject to 7T~ < 75w
1 

, (1.0)

where w1 is the initial endowment of the ~th consumer, i =

We shall assume that the solution to this problem can be written as a

continuous function of the prices iT, d~ (ir). The individual trader’s

excess demand function is d
~
(-rr) - w1, i = 1, ..., in. The excess demand

will be positive for those commodities whose stock he wishes to increase

by exchange and negative for the remaining items. The market excess

demand function g is the sum of the individual excess demand functions

m
1g(jr) = ~~~ (d.(ir) - w )

i=l

An equilibrium price vector ~ is one for which all of the

market excess demands are less than or equal to zero

g(ir) <0, (1.1)

ir > O , ir~~~O , (1.2)

ir
T
g(ir) = 0 . (1.3)

6
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Equation (1.3) implies that there is a zero price for any commodity

whose demand is strictly less than zero.

An important property of the excess demand function is that (1.3)

will be satisfied for any price system u because the value of each

consumer’s excess demand is identically zero. This property is known

as Wairas ’ law. Another property which is easy to derive is that the

excess demand function is homogeneous of degree zero, that is, if the

prices are scaled up by a constant factor, the demands remain the same.

This implies that it is sufficient to search for an equilibrium price

vector on the unit simplex, &~. The following function from into

S” has the property that a fixed point is an equilibrium:

x. + max(O , g . ( r r ) )
f.(ir) = , i~~~ n .1 n —

i + ~ max (O,~~~(r ) )
1=1

To see that a fixed point of f is an equilibrium point,

the equat ion ~ = f(ir) can be written

= +

with a = 1 + max[0,g.(iy)]. If a is in fact greater than one,

then the condition ~.(a-l) = max [O,g.(~~] implies that ~~~(7T ) > 0

whenever > 0. Since some is. are strictly pos itive this violates

= 0. Therefore a = 1 and, henec, g.(-n ) < 0 for all i,

and is is an equilibrium vector.

L - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



One procedure for moving towards equilibrium is a price adjust-

ment in which the pr ice of a good is increase d if the excess demand

for that good is positive, decreased if the excess demand is negative.

This is the classical t~tonnement or “ groping” for an equilibrium

(Wairas [18714]). Scarf [1960] has shown that for virtually arbitrary

excess demand functions, this process can be unstable. This price

adjustment is globally st ’ble, however , if a certain gross substitu-

tability between all commodities is satisfied (Arrow and Hurwicz [1958]).

The differential equation which expresses this process is

= g(lr) (1.14)

We will now show that a convergent price adjustment process can

be defined which behaves like (1.14) initially. Suppose that the excess

demand function g is differentiable. Since the excess demand function

is homogene ous of degree zero, g’ (~~
-
~
-) has rank n-i, in general; hence ,

we must re’~uce the dimension of the problem by one. This can be done

by solving the problem on the unit simplex or the nonnegative portion

of the unit sphere, [x C ]R n IX  > 0, lxii = 1). We shall follow a certain

amount of tradition in mathematical economics by considering a distinguished

commodity or ‘numeraire ’ (Quirk and Saposnik [ 1968]) so that the pr ice

of other goods are measured in terms of this numeraire good .

Suppose the re are n+l commodit ies with prices ir0,rr1,...,7r~
where is the unit price of the numeraire good. We make the follow-

ing assumption on the excess demand function ~~ (ir) , i = O,...,n.

8
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:1
Assumption 1.1. If = 0, then g~(is) > 0, 1 = 0,1,.. ., n.

Thus , no equilibrium price vector will be on the boundary of
n+1 So we will work in the domain of price systems ~~~~~

which satisfy ir~ > 0. In this domain, by the homogeneity property

of price systems, one can normalize a price vector by dividing by 
~Thus a price system (~r0,.. .,ir~) can be represented by a unique point

~~~~~~~~~~ 
... , 

~~~~~~~~~~~~~ 

in

With this interpretation, the space of price systems is ]R~~.

Suppose that the excess demand functions g0 (ir ) ,  ... , g~ (ir) are

and satisfy Wairas’ law. Then

= - 

~!‘ 
g~ (ir) . ( 1 .5)

This along with the boundary condition 1.1 implies that the equations

g
1(ir) = 0 , i = 1,..., n

are necessary and sufficient conditions for economic equilibrium.

Let f1(p) = g1(1, is~
/ir
~
, , I = l,...,n

Then consider the application of the following version of Kellogg,

Li, and Yorke’s deformation. Pick some p0 such that p~ € and

for exactly one I C n, p~ = 0, say i = 1. Then the boundary condit
ion9



Li......uurr _-~~~~~~~ r rU— w — - -
~

- -

(111 .1.1) can be shown to hold on D = tpIO < p~ < P, i C n) for some

P > 0 because of Assumption 1.1 and equation (1.5) (cf. Smale [ 1976],

p. 116). Mm D x [-1,1] and F:M is denoted by

F(p,O) = ef(p) — (1—~)(p—p
°)

Then by the theory of Section 11.1, if 0 is a good value for F,

there is a C1 curve with boundary points at (p°,0) and (p*,1)

and, of’ course, f (p *) = 0. But if (p(t), e(t) ) = [0,T] —,F~~(O) such

that (p(O),&(O)) = (p
0
,O) and (p(T),O(T)) = (p*,1), then ~(t)

satisfies

/~~(t) \
F’ (p,e)( 1 = 0

\ ô( t)  /
or

1~ 
(t) 1

(~~‘ (p) - ( 1-e)I t f (p)  - (~~
-
~~
°fl =

Le(t)J

At t = 0  we have e = o ,p = p 0, & (t)=7~>0, and

j(t) = ?~f(p) (1.6)

Thus, initially at least, the adjustment of prices by a retraction

method , is the same as the classical t~tonnement method of’ price

adjustments. It can be said, with reference to the equilibrium problem,

that the parameter 9 of the retraction method allows a smooth transition

10
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from dtonnetnent to a global Newton method. To see this consider again

the relation

[Of’(p) - (1—9)I)p(t) = —9(t)(f(p) - p + p0)

or

f’(p) ~(t) - ~~~~ (t) = - (f(p) - p + p°) (1.7)

As p(t) ~~p* and e(t) — l  along F~~(0) it is clear that the

second term on the left side of ( 5 . 7)  vanishes. Also for (p,e) € F 1
(O),

p - p° = e/ (l - e )  f(p), hence, (5.7) is approximately

f’(p) ~(t) = -  ~(t) (
~~~~~

+
~~~~~~~

_) f(p)

So for some 7s. > 0, j(t) almost satisfies f ’  (p) ~ (t)  = -7~f(p), the

global Newton equation of Smale [1976].

11.2. The Piecewise-Linear Model of Exchange

The usual assumptions made in the literature of economic equi-

librium theory include assumptions that the utility functions are

concave, the consumption sets are convex as are the production possi-

bility sets. It is well-known that concave functions can be approximated

to an arbitrarily small tolerance by piecewise linear functions and

that convex sets can be approximated very closely by polyhedral convex

11 
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sets. In this section the discussion will center around a model of an

economy in which the utility functions are assumed to be concave and

piecewise linear, and the consumption and production sets are polyhedral.

This model was introduced by Rolf Mantel [1968]. He gave an

ingenious proof of the existence of economic equilibria without using

the methods of combinatorial or differential topolo~ r. Mantel’s

approach did not seem to be computationally efficient, for it involved

a complex limiting operation at one point. G. Dantzig, B. C. Eaves,

and D. Gale [1976] did use this model as the basis for a new approach

to computing equilibria. They solve the problem by computing a fixed

point of a point-to-set map whose values are determined by the solution

to a linear program. We will not discuss this algorithm further,

even though it promises to be one of the main competitors to the

algorithms we present here.

Both Dant zig, Eaves and Gale [ 1976] and this work are concerned

with solving equilibrium problems with a relatively small number of

households or traders (about 3-10 ) and a large number of goods (up to

300). One obvious example of a problem of such a scale would be if 3

to 10 countries were considered to be consumers who were involved in

the production and trade of up to 300 goods.

For simplicity, we will first present a model which allows only

linear utility functions and ignores production. Later it will be

shown how the general piecewise-linear economy can be formulated and

solved in essentially the same manner.

12
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Consider a simple exchange economy with in households and

£ goods. Each household I C rn has available a finite set S~ of
i S.

activities such that, if it chooses a vector z ]R of nonnegative

activity levels, then it obtains the utility yizi and it consumes
i i  . . Ithe vector B z of quantities of the commodities, where y C ]R

and B1 C ~~2XS1 If w1 C is household, l’s initial endowment

1 i i  iof goods, then its excess demand function is g~(z ) = B z - w

Notice that in the terminology of the pure exchange problem in Section 1,

U.(z1) = r
1z1. Also, in that pure exchange problem, if all of the

activities in S~ are merely the consumption of a particular commodity

then all of the technology matrices are identities (B
1 

= I C ]RtX2).

Definition 2.1. A price vector ~~
- 
~L 0, and a consumption allocation,

i C m constitute a competitive equilibrium iff

a) the net trades are feasible with free disposal:

~~~>0 i E ~~ ,

and

b) Given the nonnegative price vector j~~,

i i imaximizes U(z ) = y z

subject to ~B~z
’ < Trw

1 
, > 0

for each i C in.

This notion of equilibrium is clearly equivalent to that in

Section 1. If is considered to be a function of ~~~, then B~~
1

Is equivalent to d
1(ir), the demand function of Section 1.

13
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A similar notion is that of a quasi-equilibrium, which is

defined as

Definition 2.2. A specification ~~~~ I C m) is a quasi-equilibrium

if f

a) ~~~ B1z1
<~~~I~~ w1, ~~~~~~~ 1 C m  and

b) Given > 0, 

-1

— i i  i
minimizes is(B z - w

subject to > ri~~ z1 > 0

for each i C in, and this minimum is zero.

Condition b) can be interpreted as choosing to minimize

the net expense of maintaining the utility level t~1(~~) and requiring

that the budget be balanced exactly ~(B~~
1 

- w
1) = 0.

The following conditions will be assumed throughout:

Assumption 2.3.

a) For each consumer i E in, the consumption set

X1 (x C ~~~~~2

f (
~~~ z

1 > 0) Bizi x)
- I is bounded below.

b) The induced utility function Ui(x) = max(y
i
z
h
lz
i
>0, B

1
z1<x) on

X~ is insatiable, i.e., for all x
1 C X1 3 x2 C X~ such that

U
i(x

l
) < 1J’(x 2 ) ,  I C m.

c) The initial endowment w
i is strictly positive for each i C in.

1~4 
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Debreu [ 1959] has shown that these assumptions imply that a

competitive equilibrium exists, and that a quasi-equilibrium is equivalent

to an equilibrium.

Let us consider, for a moment the complexity of the problem of

computing equilibria for this class of economies. B. C. Eaves [1975]

has shown that if B
1 

= I, i C ~, this problem can be formulated as a

linear complementarity problem, and with these assumptions. Leinke’s

algorithm [ 1965] will yield a solution after a finite number of

additions, multiplications and comparisons. However, when B
1 

is

allowed to be more general, a problem with rational data may have an

irrational solution. The following example, due to Andreu Mas-Colell,

is such a problem:

B1 — ’ 5 ’  B2 —~~~~
1 B3 —~~~

25
‘ i i — ~5 )~ — 

~~~~

w
1 

= -. = (1) , I 1,2,3.

Mas-Colell has shown that every equilibrium price vector ff is a

positive scale of (1 + 
~~ 

1). Thus, no finite algorithm can hope

to solve this class of equilibrium problems exactly.

Next , we introduce the auxiliary linear program which has the

property that, if the correct constants are used in the right-hand side,

the solution to the linear program is a quasi-equilibrium and, hence,

an equilibrium.

15 
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The objective of the linear program is to maximize p, a measure

of exports from the system, subject to maintaining utility levels v.

and feas ibility of tra des, i.e.,

maximize p

subject to > v~, i C rn

E B
i
zl + pe < E (2.1)

iCm i=l

1z >0, i C i n ,

where e C is a strictly positive vector. This formulation is

due to Wilson [1976]. It also was influenced by Debreu’s [1951] notion

of a coefficient of resource utilization. If e = 

~~~l 
w~, then

p = i-p is the coefficient of resource utilization. In Debreu’s

theory, if p = 1, then the economy is on the Pareto optimal frontier

(any increase in one consumer ’s ut ility would re quire another consumer ’s

utility to decrease for the trades to remain feasible).

The dual for the auxiliary linear program is

in in
minimize ir( ~~~ w

~
) - E ?~1v.

i=1 i=1

(2.2)

subject to ~re = 1

i€ ~~

ir> 0, 
~i ?°’ 

i C i n .

16 
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Here, -~r is the price vector and 7~
•••1 

can be interpreted as i’s

marginal utility of income. Let u~ ii (w
1 

- B’z1), i ~ , be i’s

budget surplus. If complementary slackness holds for the dual problems

(2.1), (2.2) then irB1z1 
= ?~r

izi = 7~ v1 
and we have u~ = -

for i C in. Also,
i

qs(~~B z  + pe) = ir (Ew)
i I

and
i s e = l

imply
p =~~~u. . ( 2 .3)

Thus, at a solution to the primal and dual programs, these

relationships will hold.

Lemma 2.1.~ If the utility levels ~~ are chosen so that u~ = 0, i C

at an optimal solution ~~ ~~
, i~~ in; ~~, I C in, ~) to the problems

(2.1), (2.2), then (-~; ~~, i C in) is a quasi—equilibrium.

Proof. Clearly, the trades are feasible because (2.3) implies p = 0.

All that remains to show is that minimizes (B1z1 
- w

1
)

subject to y1z > it 1, z
1 

> 0. Call this problem (P). The dual

problem (D) is to maximize A.v. subject to < ~~~ 7~ > 0.

and satisfy the constraints of (P) and (D) because they satisfy

the constraints for (1 .l)  and (2.2). Also, the complementary slackness

conditions, ~~~~~~ = ~~~~ and = ifB
1
~~ are satisfied by the

optimality of the variables for (2.1), (2.2). Thus, ~~ is an optimal

solution of (F). I
17
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This lemma provides motivation to parametrically vary the

initial utility assigimients vi 
and adjust the solutions of (2.1)

and (2.2) until u1 
= 0 for all i C rn. Consider slack variables

t~ > 0 such that y
1
z
1 

= v~ + t~. Then, instead of varying v~,

we can vary t~, ignoring the complementary slackness with the dual

var iable

Thus, we can state the equilibrium -problem as:

Find (ir ,?\,~~ (i C ~~, p; s, t, z1 (i C m),p) which satisfy

1
1
z
1 _ t

~ = 11. i € m ,

~ B z  +pe + s  =~~~ w ,
1=1 1=1

- 
~~~ i

1 
~~ = 0 , 1 C (2.3)

ire - p = 1 ,

irs =0 ,

i i
~~z = 0 , 1 C m ,

1 . 1and (ir, ,~ (~~ C in) ,  p; s, t, z (i ~z- 
~ 

p) ~-O

and

i C i n , (2. 1k )

Solution -procedures for this formulation of the problem will be

discussed below, but f irst , it is important to discuss the choice of

the initial utility levels v1, i C in.

An obvious candidate for the initial utility level assignment

v
1 

is consumer I ‘s induced utility Vt for the initial endowment w1,

i.e.

18 
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Vt = U~(w
1
) max(ll zh

f z
i > 0, B1z1 < w~ ) , (2.5)

or dually

Vt = minCir1w1l ii-
1 > 0, ir

1
B1 > i~•~) (2.6)

Lemma 2.5. With the choice v~ = Vt~ 
u1 > 0, for i C in at a solution

to (2.3).

Proof. u. = irw1 
- 

~~~~~~ 
by definition. Suppose 7\

iVt > irw1. Since

> 0, we cannot have = 0. If > 0, we have

—l 1

However, 7~~~iT > 0, and by the dual feasibility (2.2) of and ir,

— i i  i
7~1 irB >~~

which contradicts the optimality of Vt in (2.6). Hence,

= 
1 

- A V t  > 0 .  
~~~

Since we are trying to find a solution of (2.5) for which uj = 0,

it would seem to be advantageous to choose Vj as large as possible.

For arbitrary choices of Vj larger than Vt the constraints (2.5)

may not be feasible. For theoretical purposes it turns out to be

preferable to choose v~ C ~°‘Vt~• In this case, the following

equivalent properties are easy to veri fy

19
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(1) ?~ t1 
= 0 implies u. = - 7~. (v . + t

1) > 0

(2.7)
(2) u. = irw1 - 7~. (v ~ ÷ t1) < 0 implies 7~1

t. > 0

This property will be exploited from two points of view:

(a) If the condition u~ > o is enforced, (2.7) is a complementary

type of relationship between u~ and ~~~~~ i C 
~~
,

(2) If one considers f (?~;ir , t) - ?~. . ( v .  + t
1) and one is solving

f(7\;7r,t) = 0 subject to ~ C ~~~~~~ then (2.7) is the boundary con-

dit ion that states, for ~ C ~~~~~~~~ f(X; ir , t) points into ]R~~.

11.3. The General Piecewise Linear Economy

Now we allow further constraints to be added to each consumer’s

consumption set and a finite number q of firms which are owned by

the consumers . Suppose that each consumer i owns the fraction

of firm j, where o-~ > 0, j C q, and 
~iCm 

o~ = 1, for each j C

Before we can define the consumption sets we must define production

sets for each of the q firms. Let

Y. = (y C ~~~~~~~~ 
u~ > 0) D~u~ < d

3, y < E~u3 +

be the ~th firms ’ production set where is a vector of initial

endowments for each j  C ~~~ . Each household’s consumption set is defined

as 

20 
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X. = (x C ]R ~~I ( 3 z1 > 0 )  A1z1 < a 1, x > B izi - E o~~y~ y~ C YjC1 ~ j

With these definitions, we can define an equilibrium for economies

with production

Definition 3. 1. A price vector -
~~ , a consumption allocation z1, i C ~~~,

and a production allocation y3, j C 
~j, constitute a competitive equi—

librium if and only if

a) ~~>O and -ir~~~0,

in . q . m
b) Z B

1
~~~~< ~ 

~~1 ÷ ~:i=l i=l i=l

c) ~~ maximizes ify

subject to 
~ 
C j C j, and

—i . . i i
d) z maximizes ~ z

— i—i — i  ~
-, i—i i i  i

subject to irB z < ir(w + z.~ cr .y ) , A z < a , for every i C in.
jC~ ~

A quasi-equilibrium (or the compensated equilibrium of Arrow and Hahn

1 1971]) replaces condition (d) with

—i . . . — i i
d’) z minimizes -rrB z

i i  i—i — i—i i .-—jsubject to -r z 
~ 

r z and -n-(B z -w - 
~~ (T

jY ) = C. i C

If we combine Assumption 2.3 (using the new definition of consumption set~

with the assumption below, then equilibria exist and coincide with quasi-

- 

- equilibria (Debreu [1959]).

21
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Assumption 3.2.

a) free disposal

b) production is irreversible

c) (Y~ - (in3 ) )  n = (0), i .e . ,  there is no free production and the

firm may produce nothing at all.

The auxiliary linear program is now defined as

maximize p

i isubject to r z > , i C in

i i  iA z  < a , i C r n

- 1 Djuj < d j , ~~~~

m . . q . . in . q

~ B
1
z
1 

- ~ E3u3 + pe < ~ w
1 

+ in3

1=1 j=l i=1 j=l

z1 >0, iE~~, u3 >Q , j E q

whose dual is

in . . qI ii ~
-, jjminimize t [-nw +~~~a -~~~v ] +  L ~~d

1=1 j=1

subject to ire = 1

- irE~ > 0

viAl ÷ TTB - ~ 0 
(3.2)

ir, 6~ (j C ~~), v
1
, 
~~ 

(j C in) all > 0

Next we prove the

22 



Lemma 3.3. At a solution to (3.1) and (3.2) and for yi a solution

to max(iry~y ~ Y
3) , the following equations holds

~ q ~~~~~~.

u~ if [w~ + ~1 cr~y3 
- B 

~
j=1 ~

= if(w1 + ~ a~~o~~) + ~
1a1 + E ~

3(o-~d
3) - ~~~~~~ 

+ 

~
), for all i C m.

j=l 3 j=l

Proof . y~ satisfies max

subject to D3u3 < d3 (P)

y - E~u~ < i n3 , u . > 0

Hence , ify~ = mm ~~d
3 +

- irE~ > 0 (D)

i r= i f, ~~>o.

But, using the complementary slackness properties of the optimal solution

~; ~~~~ 
~~~~~

, ~~~) to (3.1) and (3.2), it is true that

~~~~~ - = 0

and

83D~U3 = ~~~

If y3 is chosen so that y~ = + ~~~~ then it is clear that

(y3, u3; -
~~ , ~3 ) is a solution for (P), (D). Hence,

Repeating this argument for each j C ~~~, we get

23
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q . q . . q
~~ = if( ~ o~d3 ) ÷ 

~
( ~~ i~ in~~) ‘ (3.3)

j=l ~ j=l ‘~ j=1 “

Again, using complementary slackness yields

— i — i  — i  i — i  i— i
-irB z = v A z  - ?~ y z

(3.1~)
— i i  — ,

= v a - ?~1
I.v~ + t

~
)

Summing (3.3) and (3.)~) yields the result . •
The proof to Lemma 3.3 shows that an optimal solution to (3.1)

and (3.2) yields profit maximizing production vectors by letting

y3 in3 + ~~~ Thus a proof similar to that for Lemma 2.~4 would

demonstrate the following

Lemma 3.1i. If it1, I C in are chosen so that = 0, i C in at an

optimal solution for (3.1), (3.2), (-i, z~ (i C m), y
3 (j € 

~)) is a
- 

I competitive equilibrium, where y3 = in3 +

Also, a proof similar to Lemma 2.5 would prove the key property

= ~(w
1 + + vial ÷ 

j~1 
~i(0~~3) - 

~i
(vi + t

~
) > 0

when ?~1
t~ = 0 if it . < where

Vt = max( 1
1z11z

1 > 0 , A1z1 < a
1

, B
1

z
1 

< w1 + ~~~(4)
j +

3— (3.5)

< cJ~d~, for all j C 
~ ) .

2~
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Next we show how the freedom to add constraints to the households’

sets allows the consideration of piecewise linear utility functions.

Suppose U . (z i) is a concave, piecewise linear utility function defined1 5
on ]R

÷
1. Then the epograph of iii, E1 = ((z0, z)1z0 < u1(z), z €

is a convex set which has a piecewise linear boundary . Hence, the

epograph of u1 
can be written as a polyhedral convex set

= [(z0,z)Iz~ < g1.z + c 1., z C ~~~~~~~~~~~ j € L.)

where q~~ C 1R 1 and L
i 

is the number of pieces of linearity for

u~. Thus, the following problems are equivalent

maximum 1 
(3.6)

1 1
subject to ir(B z ) < iiw , z > 0

maximum z~

subject to z~ - g
1~
z~ < d~~, j C

, ii  i i
iri~B z ) < w , z > 0.

In this case = (l,0,...,0) and the matrix [A
u
la
h] in the auxiliary

linear program (3. 1) can be adjoined to the matrix

[e , —g j 1, — 
~~~ , 

_g
~~ fc 1]

In the next two chapters we describe algorithms which utilize

- 

- 

the structure of the models which were described here.
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CHAPTER III

THE BILINEAR C0MPLEMEI~TARITY PROBLEM

AND AN ALGORITRM FOR COb’II’UTING ECONOMIC EQUILIBRIA

This chapter presents a generalization of the problem described in

(11.2.3) and (II.2.~~) which is called the bilinear cotnplementarity

problem. This approach to computing equilibria was Introduced by

Wilson [1976]. In the first section we essentially reproduce the results

of that paper except that we use a new proof based on the concept of a

subdivided complex introduced in Chapter II. The rest of the chapter

describes a bilinear complementarity algorithm in enough detail to be

implemented on a computer. The result s of computational experiments

using this first implementation of a bilinear complementarity algorithm

are reported in Chapter V.

111.1. The Bilinear Complementarity Problem

The bilinear coinplementar ity problem (BCP) is to find x, y > 0

such that

± y = b, A C ~~n~< n  b C

— x~y~ = 0 . i C in

x1
y~~= O , i C n \ m

Notice that if in = 0, the problem is the same as a linear

complementarity problem (LCP) (cf. C. Lemke [l9(’~] or B. C. Eaves [1~ 71b~~ .

2(
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It is easy to verify that the :-~cuilihrium problem, as we have

formulated it in (2.3), (2.14) can be 3thted in this form. It is an area

of interest to determine what other problems can be formulated as a

BCP other than the equilibrium problem or those which can be formulated

as linear complementary problems. We present the general problem mainly

to ease the notational burden.

The constraints ( 14 .1) are weakened for algorithmic purposes by

adding slack variables u~ > 0 , 1 -C in to the bilinear constraints:

(x,C )  - x.y. = u ., i C ~ where C C

Now we define the set

W = ((x,y,u) > O j A x  + y = b , (x ,C . )+  x~y~ = ~~ i C m , x1,y~~=O, i>m),

(1.2)

and for k = 0,l,...,m let Wk 
be the subset of W for which u~ = 0

for i < k, and x.y. = 0 for > k. A solution to the LCP defined

by (A,b) yields a point in w0 ~
T
c > 0. The solution to the

BCP is a point in W~. The bilinear complementarity algorithm (BCA),

to be defined in the next ~e t :~cn provides a procedure for tracing a

path f rom W0 to W~ provided that certain assumptions are satisfied.

We shall define the ‘algorithm” by defining a mapping F from

an n+m+l-dimensional subCivided complex into and proving that

F~~(O) is a path with the desired properties when 0 is a good value.

First we define a collection of nets and show that it is a subdivided

complex .

27 
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A basis ~ is a subset of the variables (X1,Y1, 
I C ~~~, U~, i C in)

(capital X~ can be considered as an index or a name for x~, etc.)

consisting of (x~ i.) for i < k for some 0 < k < m, (X1,U.) or

(Y.,U.) for k < I in, and exactly one member of (x1,Y1) for I > m.

This definition is slightly more restrictive than that in Wilson [1976].

A path-basis ~(i) for i = k+l is obtained by adding the (k+l)
St

element to a basis ~3. A sub-basis 13(i,j) for i ~ j is obtained by

deleting a ~
th member of ~(i).

Now if ~ is a basis, path basis or subbasis, then ~~(~ ) is

the non-negative orthant of ~~2n+m indexed by the set of variables ~~.

Note that if ~ is a basis or sub-basis, then O’(~~ ) is an n+m.-dimensional

set, and if ~ is a path basis, then ~~(~) is an n+m+l-dimensional set.

Also, a facet of ~ is an orthant corresponding to a basis or path

basis. Define the collection of cells

(~~~~(~~ ) I ~~ 
is a path basis) . (1.3)

The following assumptions are of vital importance.

Assumption 1.1: In W, (x,C 1
) > 0 for each i C

In the equilibrium problem, this property is satisfied by Lemma

2.5, which depended upon the positivity of w~ and the choice of it1,

1 C m.

28
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Assumption 1.2: The subset W* = ( ( x ,y, u) C ~~~ u~ > 0) is bounded.

The conditions on the economic problem sufficient for assumption

1.2 to hold will be studied in the next chapter. This assumption implies

that we can confine our attention to the compact set

K = ((x,y,u) C ~~2n+in10 < (x,y,u) < ke)

where k>0 is a sufficiently large constant.

?~7= (~~(~) fl K~~ is a path basis) . (l.~ )

and assume that there are no redundancies in the problem so that each

cell C of is m+n+l dimensional. Define M = UCE ~~ C. Now we can

prove the

Lemma 1.3. (M,~~1) is a finite, compact subdivided (m±n+1)—complex.

Proof. The number of path bases is less than (
2n+xn

) which is finite.

ô~~~~) is closed and K is compact so, by (i.1~) each cell C €

Is a compact (m+n+l)-cell. All that remains to show is that (M,?~)

satisfies the definition for a subdivided complex (11.3.2, Part 1).

Since there are only a finite number of (in-I-n+l)—cells in

property (c) is satisfied.

By the definition of W, the facets of a cell C of

— 
correspond to some variable x 1 (or y~ or u1) being held at zero ,

where X1 C ~ and C = O’(~~ ) fl ~~ *. Thus, since we can associate

2q
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each cell C c with a basis of sub-basis, we can associate

each cell C’ c C with a. set of variables ~ not con-

strained to be zero. Define p (C) = ~ to be the set of variables

associated with C and let 1(~ ) = C be the cell associated with ~~~.

a) (any two (m+n+l)-cells of ~J7 are disjoint or meet in a

common face). Let C1, C2 € ‘71/ . and ~p(C.) = 
~~~

., i = 1,2. If

~ 
~2 

= ~~ then C1 fl C
2 

= ~~
‘
, a common face. Otherwise, it is clear

from the definition of face, that if 
~l 

r~ ~2 
= ~ then ~ = cp 1(~~)

is a face for both C1 and C
2
.

b) (Each (m-i-n)-cell of 977 lies in at most two (m+n-f-l)—cells.)

By definition, any (m+n)-cell, say C2 of is the face of

some (m+n-i-l)-cell of 1Z,~’ , say C1. Suppose 
~2 

= cp(C0) and ~(k) =

cp(C1) then there are four cases to consider concerning the type of

variable which is in B(k) but not

1) X~ or Y~ for i < k. In this case there is no path-basis

which can be formed by adding a variable to 
~~~~~

. Hence, there is no

(m+n-i-1)_cell, other than C1, which contains C
2. (Note that C

3 ~

in this case.)

2) Xk, 
~k’ 

or Uk.

2a) If X k or 
~k is in ~ (k) but not 

~2’ 
then 

~2 is a

basis. By definition the only path basis which can be formed is by

adding Uk_i to let 
~ 

= 

~2 
u (Uk l~

• Then C
3 

= cp(~3
) is the

only other cell containing C
2.

;b) If (Uk~ 
= ~-(k)\e3, then the only adjacent cell containing

C - ,  other than C1, corresponds to the path-basis formed by adding the

30 
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(~~ 1) St variable (Xk+l or 
~k÷l~ 

which is not in

3) X~, Y1, or U. for k < I < in.

3a) If X~ or is in ~(k) but not in 
~2’ 

then since

~ ~~ 
the adjacent cell is identified with the path-basis formed

. h .by adding the i variable which was riot in ~(k).

3b) If U. is in ~(k) but not in then there is no

adjacent cell to C1 which contains C3, i.e., C3 ~ ~M.
1~) X~ or for m -c- j  < n.

If (xi) = ~(k) \ I~3~ 
then C2 = 

~2~ ’ 
where 

~2 
= 

~3 
U (Y.),

is the only (mi-n+l)..cell, other than C1, which contains C3. The

situation is analogous when ~(k) ~ ~2 
= ~~~ I

Notice that the adjacency of cells and indeed the definition of

(M,~~ ) is dependent upon the ordering of the households i = 1,2,... ,m.

Thus, the efficiency of the algorithm is influenced by the ordering of

the households.

Let the function F = M —* be denoted by

/ A x + y - b
F(x ,y, u) = I

\ (C
~~~

,x) - x.y~ — u~, I C in

F is smooth on each (m+n+l)-cell C c 
~
/ . For the next theorem, we

require the

Assumption 1.14. The cardinality of W
0 

is finite and odd.
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Conditions sufficient to ensure that Assumption 1. 14 hold have

been supplied by various authors (e.g., B. C. Eaves [1971b]). Now we

prove the main result.

m+n
Theorem 1.5. If 0 C1R is a good value for IF with respect to

(M,~~ ) and Assumptions 1.1, 1.2, and 1.14 are satisfied, then

i) F~~(O) is a subdivided 1-complex neat in (M,7~) .

ii) The cardinality of the set of solutions to the BCP is

finite and odd.

iii) There is at least one connected component of F 1(O)

with one boundary point in W0 and the other in W
m•

Proof. i) follows immediately from Theorem 11.3.17 (Part 1).

Due to Proposition 11.3.18 (Part 1), and Assumption 1.14, ii) will be

demonstrated if it can be shown that all boundary points of F 1
(O)

are in W and W .0 in

The details of the proof of Lemma 1.3 will be used here.

Remember that ~(l) refers to a path basis with t1~7’.1 > 0 and

t1
A . = 0 for I > 1. If the face C

2 
of C

1 
= cp (~( 0)) has

~~~~~ = 0, then by case 2a) ,  C1 is the only cell containing C2 .

Hence, C2 ~ -AM . The union of all such facets will be called f0.

Similarly , if C~, is a face of C1 = q~~ (m)) such that u1 = 0, i C in,

then C1 i~ the only cell containing C
2 

(see Case 2b). These facets

in the boundary of M will be called fin• It is clear from the

definitions that W0 
= F 1(0) f l f0 and W = F 1(0) fl fin• Since

32
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F
1(O) is neat in M, If we can show that F’

~~(O) fl ~M = W
0 

U W ,

then since 1w01 is odd and J~F
’(0)J is even, we will have shown

that is odd.

From the proof of Lemn~ 1.3 it is evident that the only facets

in ~M are either in f°, f”~, or of the type described in 1) or 3b).

Suppose (x,y,u) C F 1
(O) Is in a cell of the type described in 1).

Then y~, = 0 and 0 = u. = ~~~~~ ) which contradicts Assumption

1.1. Suppose ~~~~~~ C F 1
(~ ) is in a cell of the type descr ibed in

3b). Again, this is impossible because 
~i

•
~ i = 0 and = 0 is a

contradiction.

Thus F 1
(0) fl ~M = W0 U W and ii) is proved.

Since each connected component of F~~(0) with a b~jndary point

in f° has another boundary point in either f° or ?‘, a simple

counting argument will demonstrate (iii). 
~

We now show how the linear pure exchange equilibrium problem can

be formulated as -a BCP~ the corresponding formulation for the model

which includes production Is analogous.

The linear constraints in (2.3) define a system of n linear

equations In 2n variables Ax + y b where n = in + £ + 
~~ =l ~~ 

+ 1

and A is a square skew-symmetric matrix of the form

~ 
0 D l

I (1.5)
L _ D T o J

and

33 
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0

•
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H B
1 

B2 . Bin

-v1

-V
in

in

w.
1i=l

0

0

1

The variables x, y C have the form

x = 

~~ 
(i C m), in; z~ (i E ~), p]

y = [t1 (i C i n) ,  a; ~~~~‘ (i C in ) ,  p]

In this formulation p is constrained to be non-negative, so

in the dual problem
ire - p = 1

314
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But since ~~~ = p > 0 except for points in W~, p = 0 is

satisfied until a solution to the BCP has been attained.

The bilinear constraints (2.14) are expressed by

(C ., x) - x 1y. = 0, 1 € in

where

= [0,..., -v1. 0, . . .,  o, w1; 0 ~T

t t
. th
1 element

Corollary 1.6. If the primal and dual linear programs (v.2.1) and

(V.2.2) have unique solutions, then, that solution (x
0,y0, u°) € W0

Is a boundary point of some path r ~ F’~~(0). The other boundary

point (x*, y*, u*) of y is a solution to the equilibrium problem

(v.2.3, 2.14).

Proof. After observing that any point in W0 is a solution to the

linear programs (2.1) and (?.2), iii) of Theorem 1.5 shows that

(x*,y*,u*) C W~ Hence u~ = 0 and the constraints (2.3) and (2.14)

are satisfied. I

111.2. The Bilinear Complernentarity Algorithm

In the remainder of this chapter we explain in detail an algorithm

for following the path, described in Section 1, which leads to an

equilibrium. 

~~~~- V ~~~~~~~~~~ - - ---- ~---~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~
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The algorithm described here solves an equilibrium problem as

formulated in Sections 2 and 3 of Chapter V, not the bilinear comple-

mentarity problem in its most general form. The reasons for this

restriction are twofold; 1) we have not found any other classes of

problems which can be formulated as BCP’s, 2) The dimension of the

linear systems of equatIons can be reduced signIficantly by dealing

with D rather that A in equation (1.5). We still refer to this

algorithm as the Bilinear Complementarity Algorithm (BCA) because the

complementary property ( 11.2 .7) Involving and U . is what

motivates the definition of the algorithm.

In the remainder of this section we give a more general descrip-

tion of a bilinear complernentarity algorithm. In the following sections

we describe In detail the linear operations we use to reduce the dimen-

sion of the path following subproblem and a specific method for solving

that subproblem. The algorithm we describe here is implemented in a
V 

computer program (BCA). The details of the implementation and a report

on the numerical results using this code will be in given in Chapter V.

Next we describe in more detail the overall structure of the

algorithm. This structure can be inferred from the proof that (M,~~~)

is a subdivided rn—complex and the proof that F~~ (0) leads through

the cells of 91/ to an equilibrium point in Section 1. However, to maice

the strategy for determining which cell (or path-basis) is adjacent a

little clearer we will now give a verbal description with some visual

aids.

A basic point in W is In W
d 

for some d = 0,l,...,m. It

is characterized by the fact that u~ = 0 for i < d and u~, > 0

- -— ~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~ -- -~~~~~—- -- -.VV —-
~~~~~
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~~~
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for i > d and that x~y~ > 0 f;r i < d and x1y1 = 0 for

i = d+1, ..., n. It is useful to depict the variables which are
positive and zero in a chart~

1 2 3 14 5 6 7 8 9 10

x

+ ÷ o
~~~~o J o  + +  +

FIGURE 2.1

The difficult transit iCfl~~ to understand are those for which the

current facet whIch F~~(0) intersects is a basis. Suppose that the

last cell which the algorithri pacs~d through ~at u2 > 0 and Figure 2.1

represents the fact that u,~ just hit zero. The next step is to intro-

duce either or Y~ into the path—hasis,whichever is not In the

current basis. In this case. y7 is now allowed to be positive.

1 2 3 14 5 6 7 8 9 10

~~ ::c ~~+1+~0 o j o  ÷

y + + o j o  + +
~~~

-i- 0

U 0 0 + - f

FI~ JBE ~~~
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Now we follow F 1
(0) through the cell defined by the current

path basis until some other variable goes to zero. We hope that U

3

hits zero so that we move towards an equilibrium where u~ = 0, i C in.

Suppose that x~ or y~ hits zero for some i > 14. Then the adjacent

path basis Is formed by adding the variable complementary to the one

that hit zero, i.e., if y3 
hits zero, introduce x8. It is impossible

for x~ or y. to hit zero for i < 3 because u. = 0 implIes

x1’y1 > 0. Similarly, u14 cannot hit zero because x14•y14 = 0 implies

u14 > 0 (recall I T ( V .1)). There is one more possibility. If x
3 

or

y
3 

hits zero, then we are again at a basic point, and, according to

the definition of a path-basis, the only adjacent path-basis is formed

by introducIng u2. Since u2 is no longer constrained to zero, one

could say that we have “back-tracked” in our goal of forcing all the

budget surpluses to zero. However, the theory of Section 1 says that

thIs goal will be reached, eventually. In fact, by the proof of

Pro-position II.3.lB (Part 1), only a finite number of cells need be

traversed before an equilibrium point is reached.

Below is a more complete specification of the decisions involved

in choosing the adjacent cell.

Bilinear Complementari~y~~1goritbm

0. Initialize: co0 (x0,y°,u
0) is determined from the solution of

the linear prograzn (II.-’.l), with the associated basis 
~~~

. m is

the number of consumers. Let j  := 0, d : 1.

1. If d = m+1, STOP - u. is an equilibrium point. Otherwise let

:= U 
~
tx d) or t

~ d~~’ 
whichever is not in 

~~~
.. Go to Step 14.

V —t -- -~~~~~~~~~~~ — -— -
~~ ~~~~—--- - -V—



2. := ~~ U Ud, go to ~~.

3. If [Y1
) = 

~j—1
\ I~~ then = U (X

1)

If (X1
) = 

~
j_l\ t3~ then = U (Y

1)

14. Follow the path (Fl )l(o) from w. into the interior of
3

until the cu~~e intersects a facet , call it

r j Let be the point in that intersect ion. j  := j -i’l.

5. a) If C Wd, ci := d+1, go to 1; else,

b) If cu~ C W
~~i

, d :=d-1, go to 2; else,

c) is a sub-basic point, go to 3.

I,

111.3. Exploiting the LP Structure

We shall now change from the notation of the bilinear comple-

mentarity problem to a linear programming type of notation. It will

be important to distinguish between the primal and dual structural

variables contained In x and the primal and dual slack variables in y.

The piecewise linear equilibrium problem can be formulated as

follows:

find ~~~~~~~~ > 0

such that

Dx + I t = b  (14.i~

- = c

= (C ~~~ - ~~t1 = 0, i € in

~i
4G
I 

= o, i 
~

(x ,~~) = 0.

3 ’

iJ~~~~ ~~~~~ — --
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~1

where

C ~~ t, ~ C ~~
k and D C ~~R X 2

It is clear that either the constraints of II( .3) an-i (‘1. 14)

or the equilibrium condibicri~- in II. ~.14 may be expres~:e’~ ~u’ above.

The size of k is determIned by the number of consumers , the number of

goods and the number of exogenous constraints ;n the consumers and

producers.

The fir ~-t m r~or~r’onents of the primal right-hand side are the

Initial utility ‘evels ‘ri, I C rn. To determIne these values, one

can either solve ‘ms.lier linear programs as described in ( 2. 6~ or

(3.5) of Chapter V or L~t v1 0, 1 C n. It is strongly suggested

that the former course b~ take~. because good starting values will

signIficantly reduce the run time of the BCA, and the choice of v. 0

will usually re~~1t in a highly degenerate solution to the linear

program, which ‘aay cause problems ~:ith the BCA . Once these parameters

have been e~ ta~ lL~hr ~ the initial point ~~ = (x 0 .~
0 , t°,~

0 , u°) is

determined by ~-oivin:~ the auxiliary linear program

n~.x~ -:~~e cx

- uu e(~t to Dx + t = b ( 14.2)

x, t > 0,

to find (x°,t
’
5. Ir the revised simplex method (Dantzig [l9t-3]) is

used , the optin~ti rha icw price.~ and relative costs can be

extracte . Finally , the init ai budget surpluses



-- .-V,. ~~V~V~~ VV -

,C
, ,  \O ) - C

can be determined. By tj.e lerTerltary - iackne~s condition of the

optimal primal ar -i -diV r i i  va ’-ie i ie~’, -,~‘t~ 0, 1 C m . and, hence,

U? > 0 for each i in. Let i
° be ~ VFi ~~V Index set of th-c k basic

primal variables and be the £ basic dual variables.

Then the initial (BCA ) basi.~ cc;~ V .;i~~ t5 0 ±
’ (x,tl 

(~ l ’ the primal basic

variables , ~~ ~~~~ 
the IC ’a t L ~~;i C 1 ~r~able~, ~ nLi u . ,  i C in .

The non—basic van a~ Le t
1 

will be a-t ie to to form the

first path basis ~~~. The path V V~~ 1j~~~~I~ the ~CA foLlows is determined by

(F! )
_l
(o) where FJ - = 

r~ n+1 ~~~~~~~~~~~~ 
is defined in Section 1.0~ ce-:- +

It would be possible ~c’ fuilo -, t~ it path through the (m+n+l) dimensional

cell 
~~~~~~~~~~~~~~~~ 

but we can ~‘:~ the 
‘ V ely lin~a~ structure o±~ ( 14.1) and

the positivity of (C ~~ . ~ ) .  I ~~ reduce the dimension of the path

following portion of th : a1~~ r.:.  In a typical path-basis 2 there

are n variables which are ~a~’ie for eLt- her the primal or dual problem

and m+1 other variill~~~V - . .r’~ei-e arc d vaniables,-V-:here d has the same

value as in the rIescr~~t,~ur. -
~~~~ the BCA,among (A ., I -

~~ m~ , (t .,  ~ rn)

which are in .
~~~~ 

~‘~ t- not :~ ~~~~~~~ ~~~ - i ”  i~rn ; V~~annir ~~ basis, call them A
V 

and t .  Also in ~O are - - -r _ i+l 2 Iget surpluses u. which are

positive. Using the pri:-Ial an t  Vu al  Or ~V~~i~~ inverses, we can represent

the n basic variables in t~e~ r~:- of the ~ variables A and t , so
1’

we have reduced the dimensiou by n. The variables Ud÷l~~~•~ ~~ 
must

stay positive because ?~~~~
. 0, 1 h-i in, so we can ignore them.

•1

~
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The variable U
d 

and the constraint U
d 

= ~C 
~~

, A) —

can be ignored if we treat ~ ,d’ A’ 
- 

~d
td 0 as

a constraint helping to define the cell we are in . Thus , we have

reduced the path following problem to one in the d variables A

and t and the d—l equations , “C .,A) - A.t. = 0, 1 C
V ..1 1 1

corresponding to u1 = 0, i C d-l. Next we describe the details of how

this reduction of dimension is carried out in practice.

In linear programming codes it is common to maintain two integer

vectors which can pick out the basic variables and tell which row of

the matrix they pivot on. The row a bas ic column “pivots on” is the

index corresponding to the winner of the mm -ratio test performed when

that column entered the basis. We shall also maintain analogous index

vectors for the dual variables. To summarize, the following information

is maintained and revised during the course of the BCA.

= the primal basic variable which pivots on row i, i C K

~(i) = the dual basic variable which pivots on row i, I C

~
O if ~~~~r(j) = j En.
I if j  C o and pivots on row i,

if j~~~&
= 

- 
j E n .

I if j  C g arid column j  pivots on row i,

= index set of those A-variables not in a’, but allowed to be positive

= index set of those t-variables not in a’, but allowed to be positive

d = the number of pairs (A 1,
t.) which are both allowed to be positive.
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Remark. a) M U V d

b) The current path basis ~ ‘ can be written

= ( ( x , t ) ,  ~~~~~ A , t , ~~~~ u
~÷1~ ... , Us).

The variables A and t will be referred to as superbasicV _ _ _ _ _ _

variables (to follow the terminology of Murtagh and Saunders [1977]

in reference to the nonbasic but positive variables in their GRG

algorithm). They are independent variables which determine the values

of the dependent or LP-basic variables. Next we show how the dependence

can be numerically calculat ed.

Let the primal k x k basis matrIx P be partitioned as

x t
0• a-

lB 0 1

LA IJ

with the columns of P permuted so the basic slack columns are on the

right and the rows they pivot on are at the bottom. One can write

~ C A L ]  and [ :~L]  
( 14.2)

Dividing the primal system into basic and non-basic variables, we have

W ]~ (~~~~~~~~~~

) J: L] 
(

~~~~)=
b .

If we want to see the effect of t~ . ~ € v on the basic variables,

143
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one merely updates ej. a column of I, in the usual manner. That is

solve

P s = e ~~ P b = b , ( 14.3)

so that

( 
~

) = - [S] -
~~~~ + .

Clearly, the permutation of the rows and columns of P was not

necessary in this case, because we are assuming that the primal basis

is factored so that it is easy to solve systems such as (14.3). It Is

useful, however, to use the permuted from of D to describe the calcu-

lations in the dual system. One must keep in mind that, in practice,

D is not actually permuted: the index sets a- and r allow one to

pick out the elements needed to perform the calculations below. We write

the dual system in terms of its basic variables in a- and its non-basic

variables in a-.

(A ,~~ ) ~ 
] 

+ ~~~~~ [~~~j ] = c = (cl,c2)

Multiplying by the dual basis inverse,

lB__E l
l 

13
1 

B
I
E 1

I I V__
I I

L O  -IJ L ° -I 
J

yields the updated tableau

1424



~

~~-l AB~
1E F

÷ (A
a-~ç) L3-i -B~~~ ] 

(C~~~
l
, ~~~~~ - c2) .

Suppose -we want to determine the effect of A., j C ~~~, upon the

basic variables; i.e., we want to calculate the appropriate row of

(AB~~, AB 1
E - F). Now, -AB 1 

is part of the primal basis. Let e~ 
V

be the j
~~
’ unit vector and solve 5T~ e~. Then pick out the components

of 5
T which correspond to the x

a 
columns of P (~ (i) < £) and

call the result ~~~~. To get the appropriate row of AB~~E-F, just

calculate

-T _ -T
-s = - s E - F ..2 1

Then we have

( A , ~~ ) = ~~~~~~~~ + (c1B~~, c1B~~~ - c2) ( 2 4 . 5 )

If we want to update the row corresponding to 
~~~

. for some

j C , the procedure is very similar. We want to calculate the 
V

appropriate row of (B~~,B~~E). The desired row of B 1 is that row

corresponding to the column of B associated with x~, row y(j).

Suppose this is the qth 
row of P. Then (B~~)q 

is found by solving

T Ts P = e
q

and extracting the component s s’~ such that ~(I) < £ to form

Let ~i
’
~ = ~~E arid we have
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= ~~~~~~~ + (c~B~~, c1B
1E - c2) . (14.6)

The set of updated columns corresponding to t~ will be 
V

Gl C and the transpose of the updated rows corresponding

to will be GT C The following equations give us the

basic variables in terms of the superbasics

1 X \
I ~~~~~~~~~ +~~~> O

V —

a

(14.7)
JA  \

I I = G 2 A +~~~> O
-

(1

We have described how G1 and G
2 

can be computed from -]

scrat ch; below we 411 describe how and G2 are updated as the

basis changes and superbasic variables are added and dropped.

First, however, we describe how the first d—l bilinear

equations ( 14.i) are expressed as f(A ,t ), a function of the super-
I-i- V

V basic variables. Only the bilinear equations which are binding

(u1 = 0, 1 C d-1) are included in f. Hence, f maps into

~~d-l The inequality, /C
d,A) 

- Adtd >0, 
referred to on page 142

is called the bilinear inequality. It also will be reduced to a

function

> 0 (24.8)

of the superbasics. This inequality, along with the inequalities in

(1.7) determine the cell which the algorithm is currently concerned with.
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By substituting the correct expression in (24 .7) for the basic

primal and dual variables involved in the first d bilinear functionals,

we can write

u = h  + D A  - dlag(A )(F t + e )
~ 1 l~~i ~ l v  1

u = h2 + D2A - diag(t )(F0A ÷ e
2) , 

(14.9) V

where diag(y), yC ]R~~, is the diagonal nxn matrix with y as the diagonal.

Basically, f(A ,t ) could be written as f(A ,t ) = (u ,u ) , but we
I_i V I-~ V V

eliminate the functional corresponding to U
d and let q(A ,t )  =

as it is expressed in ( 14.9) .

Now we are in a position to describe a method for executing

Step 14 of the BcA.

III.~4 . The Path-Following Subroutine

It has been shown that the path defined by

f~~(0) = ( ( ~ ,t )~ f(A ,t ) =0)
V 

~

in the cell S as def ined in (24 .7) and ( 14.8) is identical to the path

(FJ~~.(~ .~)
1
(O) described in Step 24 of the BCA. Thus, we consider an

“ j/

algorithm for following f~~(O) from an initial point (A0,t
0
) C

,.L V

into the cell S until the opposite boundary point of f~~(O) fl S

is reached.

The algorithm to be described here is an adaptation of’ the path

following algorithm in Section 111.3. The adaptations are intended to
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speed the progress across a cell on the assumptIon that a) f~~(0) is nearly

linear and b) the cells S are in general so small that the non—

linearit ies of f 1(Q) are not significant. The linear approximation

to f 1
(0) at (A

0
,t
0) is used to mal~e a guess at which facet T of

~~ V

S f~~(O) will intersect. Newton’s method will be used to calculate

—lthe intersection of T with f (o).

For simplicity let the variables (A- ,t ) be represented by
~ V

z ~ IR d
. Since the superbasic variables are changing with every

change of cell, the association of (A ,t ) with z is only temporary. In
V

Chapter III (Part 1) we discuss in detail how the tangent to f~ -(0) can be

calculated. Suppose that z0 € ~S is our initial point . There

calculate which satisfies

V f t ( z )~ 0 , V

V 

~~Q !I = 1 ,

and 
~~ 

points into S.

V We only require that have norm one so that we can easily

measure distance along

T(a) = z
0 

+ a~0 a> 0

the linear approximation to f~~(O) at z0.

The next step is to determine how far one can move along

T(a) until some facet T of S Is hit. For the linearly defined

facets this corresponds to a ratio test in linear programming. We

want the smallest positive a such that
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(G1 T(i))1 
÷ = 0 ,

j C 2 .

Let a~ be the smallest positive root of the n equations above .

There is one facet iefined by the bilinear equation q(z) = 0.

To find the point where T(cz) first intersects this facet we solve

for the smallest positive root of the quadratIc equation

q(T(a)) =0 . 
V

Let ~ be that root , and replace u~ with the minimum of a* and &

If a* is larger than some maximum step size a ax, we let a3~/2 be

the step length and return to the curve f
1
(0) along a normal hyper-

plane to T(a) as in Algorithm 111.3.1 (Part 1). If a* is less than a
mex

we include the equation defining the facet containing T(a*) =
d d-l

with the d-l functionals in f~ ~ —, 1R and use Newton ’s method

to solve that system of equations . If the resulting solution is in

S (or nearly so), the desired endpoint of f~~ (O) and the desired

facet of S have been found. If z* ~~

‘ S, then a point z’ on

V the segment conv{z1,z*] is found which is on one of the violated

constraints. Newton’s method Is again initiated at z
3 

to f ind the

intersection of ~~l(~ ) with this facet of S. In practice. it is

rare for T(a) to pick out the wrong facet, and, if that happens,

the procedure described above usually has to be performed only once.
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Z 1~ ~?
‘ S

/
/
/ ~Jz ’ .

.~~~~~~ \‘ 3
__ __ ___

, 

.

.

.
.
. z2

zl

“

-~ I
‘S 

~~~~~~~~~~ . 0~~

/ ‘ ~~~~~zlH
T1

(a) ‘—...~~~~~~

I

~~~~~~ T~ (c~ )

1. ~~~~~ > a stepsize Is reduced
I max’

2. Z24~~~S

3. z’ € conv[z~ .z*] is determined.

FIGU1~E 14. 1

Above is an example of the corrective mechanisms of the

algorithm for following f~~(0). To find the correct endpoint.

It required 2 tangent calculat ions and 8 Newton iterations. Our
V 

computational experience suggests that for most applications of this

algorithm only one tangent calculation and one Newton step are required.
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Next we give a precise description of the algorithm.

Algorithm 14.2.

0. We are given a , ~~ , v, d, G1, G2, f and q as defined in Section 2.

Let z = (A ,t ) determine the initial point in a facet of S.1

The particular facet of S is determined by the pair (pd, s) where

V 

1 , if ((G
1)5 ,z1) 

+ = 0 ,

pd = 0 , if q(z1) = 0 , (14.1)

—1, 
if ((G2

) , z
1
) + = 0 .

Call the binding constraint b
5(z) = 0. 

~l’ ~2’ ~3 
> 0 are fixed

parameters . Let i := 1.

1. Calculate f’(z~) [Hlh] ~~d-lx d

2. Solve H.y = -h. (Since f’ (Z j ) is of full rank, if det H = 0,

choose another (d-l) x (d-l) submatrix of f’(z
1

) , H’ , and let

h’ be the vector left over. Set H := H’, h := h’ and repeat

this step.)

3. Let ~ = sgn(det H), if I > 1 go to 5.

14. 8 : sgn (Vb (z
1), (y,

l)).

co : 8.c~, go to 6.

5. 8 :=co•ci.

6. 
~i 

:= 5 , define T
~

(a) = Z
i 

+

51
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7. Solve the n linear equations in a defined by

( ( G 1)~~~ , T(a) ) + = o, i € K 
V

( ( G 2 )~~~~, T(a) ) + = 0, i € 2

and the quadratic defined by

q(Q.(a)) = 0

Let a~ be the minimum positive real root of these equations and

let (pd,r) define the facet which Q.(cr~) is contained in in the

same manner as (14.1). Let b (z) = 0 be the equation defining

this facet.

Let A = 1 and z° = T(z*)

8. Find the minimum pos itive scalar ~ such that

Ti (a ) = 0 , i C d .

If ~ > a~- go to 9. Otherwise, let r be the index such that

Tr(&) = 0, and let pd = 1 or -l depending on whether Z

corresponds to tr on Ar• Let A = 2, and a~ := &, z0 = T(cr3~),

and b (Z) =

9. If c~ < a go to Step 10.max
9.5 Otherwise, let a~- :=

V z = T(c~ ),

b (z) = (-s, z0—z)
and A = 3 .
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10. Define
/ f(z)

g ( z )  =
\ b (z)

and iterate

2+1 2 , 2 - 1  2-z = z — g (z ) g ( z  , 2 =

4 2+1until ~g(z ~ 
< 

~~ 
If the termination criterion is never

realized go to Step 9.5.

11. If A = 1 or 2 go to 12, else A = 3. Let i := 1+1, z. :=

and go to 1.

12. Let (z*) = z2~~ . Check that

((G1)1 , z*) + 

~i 
> _ ‘

3 
I C K ,

((G2)~~~,z*) + 

~~~
• > — r i € 2

and q(z*) > -c3. If z* ~-.~ t isfies these inequalit ies, go to 13.

Otherwise, define pd and r to correspond to the most infeasible

constraint and represent that constraint by b (z) > 0. Now solve

b (- -z~ 
- +- (~ — O)z.) = 0r - i

for “ C [0.1]. Let 7
0 

= + ~i- .’)z1. A = 2, and go to Step 10.

13. If pd = 0 and d = m go to Step iL.

Otherwise STOP .
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114 . To get a more accurate final solution calculate

—1
- gi (~*) g(z*)

and repeat until

<

and then STOP.

V 
We shall call this algorithm the endpoint finding subroutine.

Several remarks can be made about this subroutine.

a) The theory underlying steps I through 6 is contained in Section 111.2

on the orientation of paths.

b) The principal computational effort involved with this subroutine

can be divided into two parts: the calculation of Jacobian matrices

and the solution of linear systems, and those operations involving

the constraints defining S—-the calculation of a* and checking

that z~ c S.

c) The former operations are of order a’(d3) while the latter are

V J ~~(d.n). If n is very large in comparison with d (as is

usually the case), then the latter type of operation takes more

time than the former. Since d increases as the BCA runs its

course, the work done in this endpoint subroutine increases.

d) One could apply Theorem 111.3.16 (Part 1) to state that if amex 
is chosen

small enough, this subrout ine will follow the right path and

converge to the right endpoint. In general we choose amex = 10 or 100
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depending on the problem . The Newton iterations cannot be guaranteed

to converge with ~uch large step lengths, but they always have.

3) Since we are using exact partial derivatives in Newton ‘s method we

can state that these subroutines converge quadratically to the

endpoint ~~* of f~~ (O ) (cf .  Ortega and Rheinboldt , 10.2.2 ,

[ 1970]). This means that

2+] .z — zlim
£ 2 Vz — z ~

or intuitively, the number of decimal places of accuracy eventually

— doubles from iteration to iteration.

III.~
V . Moving from Cell to Cell

An important factor ~n the efficiency of the BCA is the matter

of how quickly all of the revisions can he made to the basis, updated

columns, and function definitions. If a good linear programming routine

is used to solve the auxiliary linear program , the subroutines from that

code involved in updating the basis and solving systems will perform

the cell changing operati ons very efficiently.

A flowchart of the decisions and operations Involved in deciding

which cell is adjacent is given on the following pages.

L VV ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ VV V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V~~~~~~~~~~~~~~~~ V~~~ VV
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Is td basic?
d E ~~
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~~~ 

: 1 ~~~~~~~~~~~~~~~ 

: d~~~~~~~~~ 

:=- 1~~~~~~

1

Endpoint Subroutine,
I Output : pd, r

m o  
_____

[~~~ r m?~~ 
yes .,<. pd = 0? J

f yes J p d =  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

(next page)

I STOP 1 
_ _ _  _ _ _ _

= d? 

- 

Ye

,

,,
,,
[
~ € ~~~ yes

>

-l remove td Remove Ad from super—- basics; Choose s, the
Choose s, the incoming from super- incoming basic variable;basic variable ; Pivot on basics, Pivot on G and G,,.and Update basis Update curr~nt basis~
factorization an.] index set~ d (s in, r out);
(a in, r out); 

p 
Superbasic change:

Superbasic change: (A ~ 
in, t5 out)

(~~~~ 
in, t~ out); d :=

Revise definition of f; 
go to 1 

r
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pd :
~~~~~~

V 

r = d? 

pd := 0 
—

Choose s , the incoming yes remove t
d from

dual basic variable: 
C & ? )- superbasics;Pivot on and G

2; Choose a, the incomingUpdate current basis dual basic variable.(r in, a out); Jno Pivot on G
1 andSuperbasis change 

Update current basis(t5 in, A~ out) remove Ad from 
(r in, a out);

Revise definition of f superbasics: Superbasis change:
s := r d : d—l (t in, A out);

of f ;

FIGURE 5.1
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Next we expand upon some of the operations described briefly

in the large boxes of the flowchart.

“Choose s, the incoming primal (dual) basic variable.”

We will consider the case when pd = -1. What transpired during

the endpoint subroutine was that changes in A caused the constraint V

G2 A +~~~~~ >02. ~ 2 —  V

to become binding, where y (3 )  = 2. This means that some coefficient,

G221 ~ 0, 
i € u. Since the 3

th 
variable must leave the dual basis,

the ~th el~nent must enter the primal basis. To determine s, the

variable which enters the dual basis, let

s = arg maxIG2 2 . I
i€ ~~ V

We choose the largest element in absolute value to aid somewhat in

keeping the basis matrix well conditioned, because G22 
will be the

pivot element in a straight forward update of the primal basis matrix.

If p = 1 and £ = y(3) we similarly find

a = arg max

and bring the column corresponding to t5 into the basis matrix and

remove the column corresponding to the ~th primal variable.

‘Pivot on Gl and G2”
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Since the basis is to change, Gl and (12 must be updated.

Obviously, one could update the basis and recalculate Gl and G2 as

described in Section 1, but if there are several columns in Gi and G2,

this would be rather expensive. Also the current right-hand sides

E and ~ must be updated. We will describe the operations performed

if p = 1 and £ = i (r) and s = arg max 1G121 1 has been chosen.
1 E v

First we pivot to update Gi:

Calculate the eta vector defined by Gl
5

l/Gl
2

: -Gl./Gl
2 , i ~ 2.

Update the columns, Gl~~ and 5.

V := G12 . (6.1)

G l . : ~= O£3

Gi . := G l .  + v•~ , j  ~ s.

v •= b 2

: 0 (6. 2)

b := b + v~~

In the 2th row we now have

~ Gl t . + l•t +~~~~~ = 02 , j  a 2

j  ~s
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But since t > 0 is now basic we want

t = ~. Gi .t . +~~ >0s jCv £ 3 3  2 —

j  ~s

so we must change the signs of the 2
th 

row’s coeff icients:

Gle . := —G12 . , j C 
~~, 

j ~ s (6.2)

h2 := -b2

Now the r~ dual variable is entering the dual basis, but since

r > d, this is not a superbasic variable . So we must calculat e the
th .updated column corresponding to the r dual variable as described in

(14.5) or ( l i .~~) depending on whether the variables is a A- or a

~-variab1e. Call this updated column Y. V

n = ~(s~ is the row we are pivoting on because the A5 
is

leaving the dual basis. Define the eta vector

=n n-

~i~~~~~i~~n ’ i~~~n ,

as usual and repeat the operations in (6.1), (6.2) and (6.3) with

G2 replacing Gl. E replacing ~~~, r replacing s , and n replacing 2.

“Update current basis (r in, s out)”

V~~~~~~~4
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Use the subroutines of the linear programming code to update

the current basis factorization when column 3 enters the basis and

column s leaves. Alsc revise the index sets a, &, y - , j to account

for the change as follows :

Let k be a dummy var iable and

k := i(s) Ic : ~(r)

cr(k) := r &(k) := s

y(s) :=0 ~(r) : 0

y ( r )  := k f(s) := k

“Superbasis change (A in, t5 
out)”

Update the index sets:

v : = v\s.

Add the column

-

i 

(:~
)

corresponding to A. as calculat ed in ( 14.5) to the matrix G2, using

the new basis fac~. o::-ization to calculate s1. Remove the column of Gl

corresponding to t .

“Revise the definition of f(A ,t ) “
L~ ‘1

Actually we also revise the definition of q(A ,t ) ,  the
V

bilinear inequality, here too. This is just a recalculation of the

bilinear equations of (1. ~) using the updated matrices Gl and G2 ,
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and the revised right-hand sides b and e to again express the basic

variables in terms of the new superbasics.

The major work done in the change from cell to cell is the pivot

on Gl and G2, the calculation of two new superbasic columns, and the

update of the basis matr ix . Clearly, the efficiency of this port ion

of the algorithm depends upon the efficiency of the particular sub-

routines of the LP code which is used.

It appears to be that an interesting area for algorithmic

research and experimentation lies in studying the endpoint algorithm

V itself. Many variants of Newton’s method could be used to solve the

nonlinear equations involved. Perhaps sophist icated differential

V 
equation methods could be used to follow the path.

In Chapter V we shall report on the numerical results from

the testing of a code which implements the algorithm described in this

chapter.
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CHAPTER IV

A HO~-~~T2l’Y I~ET11DD F02 CC~-~2UTIN6 EQUILIBRIA

IV.1. A Convergence Theorem

The bilinear compiementarity algorithm described in the last

chapter is essentially a systematic procedure for balancing the budgets

of the m consumers sequentially. One might guess that a rather large

number of cells would be traversed before equilibrium is reached. For

example, at least m cells must be traversed in which the curve

F~~~O) hits a budget constraint. In this chapter, we investigate a

path method which immediately relaxes A
~
.t. = O~ i C m, and adjusts

the variables so as to solve for all of the budget surpluses at once.

We use the homotopy retrac-tion method from Section IV.1 (Part 1) to motivate the

~~nstruction of the deformation which defines the path of interest.

We will again utilize the pure exchange model of Section 11.2 as

the generic example to ease an already cumbersome notational load.

The more general economy of Section 11.3 can be dealt with in an analogous

manner. The assumptions which guarantee that equilibria exist and

coincide ~-ith quasi-equilibiia, II.2. 5, will be in effect here. The

utility \alues v~ will be chosen in accordance with (2.7). The same

primal anV -
~ dual auxiliary lthear programs (II .2 .l~ anJ (2.::.

, will again serve

as a vehicle for treating the equilibrium problem as ~n equsVt i~~~~~ solving

problem.

By Lemma 11.2. ~, solving the equilibrium problem is equivalent

to solving for

2
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U )E  (1T,A,~~~(i€rn),p ;s,t,z
1(i€ rn),P)

which satisf ies

= o , ~ € D , (1.1)

where

f-ii(co)wl - A1(m)(t1
(m) + v

l) \
f(w) = ( ) (1.2)

\~~~~)W
m 

- A (CD) (t (U) ) + vm) /

ir (cn ) refers to the f irst m components of co, etc., and

D (m~ l
i
z
i 

- t. = v. , i € rn

• ~. B
1
z
1
+ p e + s =  ~ 1

i=l i€~

,

Tre — p = l

~s = O

i i
~~z = 0 , i E m

) . (1.3)

3 m .  m .Since f maps ( -ir ,A, t )  C ]R into ]R , it does not appear

that the path methods such as the homotopy retraction or strong path

methods can be used to solve this problem. But, under some quite reason-

able assumpt ions, it can be shown that D is a collection of m-dimensional

polyhedral sets which form a subdivided rn-complex. By a careful choice
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of an initial point, an analogue of the homotopy retraction method will

be used to define a path leading to an equilibrium point.

In the definition of D (1.3) the complementary relation
V 

~~~~ = 0, i € in, is not enforced. For this reason, none of these

variables will be constrained to zero during the course of the algorithm.

By V.2.7 we have that if A1 or t~ = 0 then f
~
(u) > 0, i C in. Thus,

the retraction function which maps points in into can be

defined in terms of A(u ) C or t(m) C IRE. In either case, the

boundary condition that f(w) points into for A(w) C ~]R~ (or

t(w) € ~1R~~) will be satisfied. Since D is not a bounded convex set,

we must make some assumptions to allow us to conclude that the path

V defined by the deformation is bounded. The assumptions required are

more natural when the A-variables are kept nonnegative by the intrinsic

properties of the path, rather than the t-variables. The sign of the

t—variables will be unrestricted, but if a solution of (1.1) can be

found, then f
~
(ro) = 0 implies that A1(w) and t.(c~) are positive

by 2.7 of Chapter II.

The preceding discussion motivates consideration of the set

K ~ D, defined below. If we define

1 1w (z (cf, ‘. L 
~~ , 

p ( u ) ,  7r (cof l .

(~~~~~~~( V u ) .  I € in , p ( w ) ,  s (i~~)

and let

L. - 
T.TT - 

— - -

~~~ 
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V
~~L V V ~ 

- I

iT 1 
-

-B 0 
0

_~mT 
. 

urn

_eT o -l
A =  - 

, b =— ~ 
V

B
1 

Bm e
-V .

1

-v
in 

m _
-r

then

1 2

K E~~m~A (At) ) + i ~ 
) = b, m

1 w2 > a, (m1w2 ) = O~ . (1.14)

A set I = (wi, m2, Aa~ 
t )  of n variables (ii = Is~~+ 2 +m+l)

consisting of exactly one of each pair (m~,u~ ), i € n-rn or

i € ~~~, is a feasible basis ii’ the columns of A~I~ corresponding to

~ 
([A1I].~~) is a nonsingular matrix and the system

1.
S A

A

~A~I) + [A 1 ] = b , (1.5)
2 ~~~~ .V

U)

S

ta

1 2
w , U) >0a a —

has a solution, where A (A1 I A 1 ‘
~~

‘ I) and t ~t~k1 ~ I) .

_ _



V ~~~~~~~~~~~~~ - - ~~~~~~~~~~~~~~~ 

- ---- --~~~~~---~~~ -- - -

A characteristic set of variables ic a set F = �T U ~, U ~ for some feasible

basis I. Note that a basis determines a characteristic set (c—set), V

but not vice versa. Since a c-set F always contains all of the A-

and t-variables, it can always be determined by r = r\ [A 1,t., i C in).

Let ~ be those variables complementary to y .

Corresponding to each c—set of variables F, we def ine the set

-

~~ = 
~

w l [ Aj I ]  

[ 

°

~~~ J 

+ [A
~~ 1I~~] [ ~ ] = b , ~~~, u~ > 0, w~, u~ = O~~ ,

V 

(1.6 )

where
V 1

: • .

~~~~~~
: _A

A~~ 
and

0 

.
.~~~~~~

0

V are the columns corresponding to the A- and t-variables. These

sets will satisfy the definition of a cell (II. ~5, Part 1) if we assume that

each cell corresponding to a characteristic set of variables satisfies

the constraint qualification. This will im ply that there is a point

-
~~~ 

L C such that T.~ >> 0 and T~ >> 0. Let ~~~
‘ = fCrJF is a c-set).

(We will occasionally refer to elements of as characteristic cells

or c—cells to emphasize their correspondence with some c—set of variables.)
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Define K =  U C .
C E ~~ ~

An important step in applying the theory of Chapter II (Part 1)

is to show that (K, ~~) is a subdivided rn-complex.

Lemma 1.1. (K ,X )  is a subdivided rn-complex.

Proof. We make use of the one-to-one correspondence between c-cells

and c-sets. Property (c) if 1.3.2 follows because there are only a

finite number of characteristic sets.

The proof follows the lines of Lemma 111. 14.3 (Part 1) because, again,

any cell C C can be associated with a set of variables (c~ ,u~~)

not constrained to be zero. Define q ( c )  = ~ to be the set of vari-

ables associated with C and let q~~~(~) = C be the cell associated

with ~~. Property (a) now follows from Part a) of the proof of

Lemma 111.14.3. Property (b) follows from Case 14) of part b) of the

proof of the same lemma. 
~

Below we will expand the subdivided rn-complex (K ,~~’) by

adding the parameter e needed to define the deformation. Clearly

if Cola = C
~ 

X [0,1], c
~ 
C ~~ and L a-, then (L,~~ )

is a subdivided (m+l)-complex . Define F:L —~]R as

F(w,O) = Gf(m) - ( l-e)( A(m) - A
0
) (1.8)
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It will be assumed that A° = A (w°) for some a)~ ~ K

which is easy to compute. For theoretical purpc~ses it will be useful

to choose 0P such tha~ ~. ( r V ) 0 C JR in
. This appears to be necessary

in order to show ~ba t F~~(O) is bounded. The process of following V

F~~(0) to  an equili~ r~i~-i point will be called the homotopy retraction

metho.~.

~e~t w e -  ~~cribe the a us~r~tions necessary to prove that we can

coflsi~er a C~~~~~~ :V~~Lc~~~ subset of L.

Assumption 1.2. (Bcunded utility). Even household’s utility is bounded

for a fixe1 level of exports. That is, for fixed p and any i C in,

the linear program

maximize ~~~~~~~~~ V

subject to ~ B
1
z1 + pe < ~ z~ ~

i~m 1Cm

has a finite objective value. We also make the assumption that the

utility is bounded below for fixed p.

The first part of the assumption is fairly standard in the

literature (or . Da.itzig, Eaves, Gale [1976]). The second part seems

as innocuous as the first. Even though there might be an unattractive

activity ,i C Si for some I (y
~ ~ 

0) it seems reasonable to assume

that household i can perform only a f inite amount of that act ivity,

even if the resources of the other households are made available to him.

(V
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Assumption 1.3. (Bounded production)

a) The amount of export s the system is capable of producing is bounded,

the optimal value of

maximize p

subject to ~ B1z’ + pe < ~ w~, z~ > 0
iCm 1Cm V

is finite (call this optimal value

b) The solution to this linear program and its dual is unique.

Part b) will not necessarily be satisfied for an arbitrary

problem, but by rerturbing the objective vector and the sum of endowment s

this property can be satisfied.

Assumption 1.14. (1r(cs),w~~ > 0, Vi C in for u E K.

This assumption is a weakening of Assumption IV.2.3 (Part 1), but it

also implies the existence of equilibria and that equilibria and quasi—

equilibria coincide (cf. Arrow and Hahn [1970]). In models with

production, this assumption can be weakened to

/ 7T ( 3)) , w~ + ~ a~cn’~) > 0  V ~ i C K.
j r l

This assumption implies that the value of each consumer ’s assets is

positive for any realization of w C K. This condition is very difficult

to verify for any particular problem, in contrast to the assumption

V that w1 >> 0, for any I C in. However, computat ional experience
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V indicates that Assumotion 1. 14 is often satisfied in practice.

V 
Now we are in a position to prove that major result of this

section, that the component of F~~(0) leading from (w0,0) terminates

at a point (U)*,l) which is an equilibrium point. First, we must show

how to choose an initial point uP such that A(U)°) 0 and

(w0,o) C 1.

Let (z~, I C m. p0. s0) solve the problem

ii
maximize p

subject to ~ B
i
Zi + pe ÷ s = ~ w

1 
(1.9)

1Cm iCm

p, s > 0, z1 > 0, 1 C in

and let (~~, I C in, p0, ir0 ) solve the dual problem

minimize Tr ( ~ w1)
iCrn

subject to ~re - p = 1

1 C m

V J ~~ r > 0 , ~~~~~~~ i C m .

Then let t10 = r
1z~ - v~, i C in and = 0 ~ It is easy to

see that (o°O) = ( -IT
0, 

A0, ~~ (i C ~), p
~ 

s~ , t0, z~ (i ~~ p0~0)

is the only point in L with A(w) = 0 due to assumption 1.3(b) .

Our deformation F :L ~~ ff ~m has the simple form

71
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F(w,Ø) = Of’(U)) — (1—6) A (m) , (U) , e) C L .

We will be assuming that 0 is a good value for F w.r.t. (L, ge’).

Lemma 1.6. If P is the component of F~~(0) containing 0)0, and

AssumptIons 1.2 and 1.3 are satisfied, then P is a bounded set. 
V 

-

Proof. Suppose that P(a):[0,T] —~L is a continuous parametrization

of P where T < + ~ . First we show that A(P(a)) >> 0 for any

a> 0. Since we begin at the facet of L for which 9 = 0, it is

clear that

~ 
de(a)

a=0

Since A(0) = 0, Assumption 1.14 gives us that f(m°) >> 0.
V 

Also, we can express f solely as a function of A(w), initially,

because the t variables are basic at the start . Thus ,

= [df’(A) - (i-o)Ilf(A) + A]

At a = 0, given that 9(a) > 0, it must be true that ~(O) satisfies

-i~(o) =
or - . 

- - 
- 

- - 

dA (a) 
= f(A(O)) >> 0

Hence, there is some > 0 such that for any a C (O,c], A(a) >> 0.

Suppose there is an & C (e,T] such that A~(&) < 0 for some i C in.
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Then by the cont inuity of A~ (a ), there must be some C (
~, ~

] such
that A1(a) = 0. Then, since P(s) € F~~(O),

= 0

This is impossible because (a) e( ~ ) = 0 implies that A(s) 0 and,

hence P(o) = P(&) which contradicts the fact that 0 is a good value

for F, and (b) A1(~~) = 0 implies f.(w(~ ) )  > 0. Thus A(a) >> 0

for any a>0.

The fact that A(a) >> 0 for any a C (o ,T] immediately yields

that f(co) > 0 for any u C P because

f() = 
1 

7~ (co) > 0 , 1 C

From equation (Iv.2.3, Part 1), we have

In
p (w) = ç(co) > 0 , U) C P

i=l

Thus, by Assumption 1.3(a), 0 < p (co ) ~~~~ for any CI) C P.

It is well known that the optimal value of a linear program is

a continuous function of the right-hand sides for which the linear

program has a feasible solution and finite optimal value. Consider

the following continuous functions of p.
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= max(r~z~~~~ B
i
z
i 
< 

~ 

w~ - pe, z1 > 0, 1 C rn ) ,  i € 

V

cp~ (p) = min(yiz
h

I~~ B1zi < 
~ 

wi 
- pe, z~ > o, i C in), i € m.

By Assumption 1.2, ~1(p) and p~(p) are finite for any p C [0,p~], and,

by continuity, ~~(p) attains its maximum, t~, and cp1(p) attains its

minimum, t~, on [0,p~] for any I C in. From the definition of D D P

(1.3) we have for U) C P.

i C m .
1 1 i  — 1  1 —

Next we show that A(co) is bounded for u~ C P.

1r(m) C C ii- j -n- > 0, ~e = 1), a compact set . Clearly b~ (ir ) = lrB
i

is a continuous function of -ir . Thus b1 is bounded above by k~e~

for some k > 0 and e1 C ~ is a vector of ones.

Since y1z1 is an insatiable utility function, > 0 for some

J C s~~. Pick j = arg min(-r~ Iy~ > o). Then the constraint A.yi < irB1
— k C s ~ 

1

< ke1 implies that < k/y
r 

~ 
<co for any i € in. Since

A1 > 0, (A(w ) co C P) is a bounded set. Since t (w) and A(co) are

bounded in their respective subspaces, we can use (1.5) to claim that

V all other variables are bounded. Given a feasible basis I, we have

1
U)a

= [A~I]~~ [b - [A~~~I ]  (:)1
-714
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Since and co~ are continuous functions of A(co) and t(w) for

each of the finite number of bases ~~, we conclude that w. is bounded

for any i C 2n when w C P. Therefore P is bounded.

Once again we redefine our subdivided (m4-1)-complex. Choose a

constant Q > 0 large enough that for any u) C p, ~~~ . C ( -Q,Q) for any

i C 2n. Define C C 11 ((co, 9) I w~ € [ -Q,Q ], 9 C [0,1]) for any cell

C Cx’. Let be the collection of all such cells, and let

M = U C. Then (M,~~,) Is clearly a subdivided (mi-1)-complex which
CC ~7

is compact. We can now state and prove the main result.

Theorem 1.7. If 0 is a good value of F with respect to (M, ‘)~)

and Assumptions 1.2, 1.3, and l.1-f are satisfied, then the component of

F
1(0) containing (w~,o) leads to the boundary point (w*,l) and

~~~* is an equilibrium point for the piecewise linear economy.

Proof. The facets of the cells of which are contained in the boundary

of M are those corresponding to = + Q, I C 2n or the E~ = 0 and

1 boundaries. By Corollary 11.3.19 (Part 1), the opposite boundary point to

(U)0,o) in P must be in the boundary of M. Here we are using the

fact that 0 is a good value for the compact complex M. We have

already shown that (a) > 0 for a > 0 and the path P never hits

a boundary corresponding to 
~
w
~

j = Q for any I C 2n. Thus, P must

lead to a boundary point (w*,l). By the definition of F, f(w*) 0.

Also the proof of Lemma 1.6 shows that A(co*) >> 0, so by Assumption 1)4,

7, -
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t(co*) >> 0. Finally, since w~ C K, we appeal to Lemma IV.2.4 to

conclude that c&~ is an equilibrium point. 
~

IV.2. The Homotopy Retraction Algorithm For Solving the Piecewise

Linear Equilibrium Problem.

In these sections we describe how the theory of Section 1 can

be implemented as an algorithm with some nice convergence properties.

Much of the description here depends upon methods and notation that was

introduced in the previous sect ion of this chapter.

We are putting the problem into the form

find (x,t;A,~~) >0

such that

Dx + It = b

A D —~~I = c

f (x , t ;N ,~~) = = ((c . ,A) - ?\it i) i€rn =

iCk\ m

(x,~~) =0

- kx2 kxm
Where again D C , and C € ]R contains the appro-

priate constants determining the income of the consumers as discussed

in Lemma 111.3.3 (Part 1). -

Again, we reduce the problem to deal only with the superbasic

variables A and t . We will write the defining inequalities for
V

a typical cell in terms of the matrices Gl and G2 and the updated right-

hand sides calculated as in Sect ion 14. Thus (?~
.7) of Chapter III can be

written

_____ ~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ 5 5 ~~~~~~~~~ VV -~~
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Cr = {At~x~~ (~: )  

= Gl t ~ >0, 
—

x ,t ,~~ ,A = 0, ( )=02 A +~~~>0 V

— a 
~~- 15t —

a a a

The initial point ~uP (A0 t0,x
0
,~
0) is determined by solving

the auxiliary linear program 11.3.1 rather than the procedure suggested

in Chapter Illwhich result s in an initial point w ’ such that A
~
(w’) = 0,

i C in. Solving the auxiliary linear program will result in a point

which is much closer to the f inal solution than a solution for which

A
~
(cn) = 0, i C in. Thus, for reasons of algorithmic efficiency we choose

an initial point which is not theoretically guaranteed to converge.

However, in nearly all examples which have been run on the computer

convergence was achieved. 
V

The method still makes use of some of the desirable feasibility

properties of the homotopy retraction method by calculating the boundary

point which f(co0) points at from A1(co
0), i in. To do this we let

a = mm (A 1(w
0
)/f1(w

0) )
I

and = A
~
(cI)°) - af.(co)), i C in. Then A° C is the “initial

point” of the algorithm even though the algorithm never was at a point ~ 
V

such that A (w) = A°.

The deformation which, along with the subdivided in-complex

, defines the path the algorithm follows is given b elow.
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F(w,6) = Of(w) - (l-0)(A(w) - A°)

co C K, 0€ [0,1].

= a/(i + a)

Again, the variables in co are expressed in terms of X~, and t~

as in (1.9).

F(w,G) = 0(h + D A - diag(A )(F .t + e ) - (l- )(A — A°)
~~ 1 v 1

0(h + D0 A - diag(t )(F A + e ) (5.1)2 ~~~ A 2~~~ 2

- ( 1-e)(G2 A + c - A°)
~~ ~1 ~t ~1

It is important to choose the parameters vt, i C in be chosen
V 

large enough that A~(co
°) > 0. Often the choice of’ v1 suggested, in

Section 111.3 will result in positive dual multipliers, but if not,

v1 must be increased (parametrically) until all A
i are positive,

i = 1,2,..., m. If some A1(w
°) = 0, then a = 0, oO = 0, and

A° = A (co0). In the optimal solution to the auxiliary linear program,

the slack variables on the first m rows, t~, i C in are never basic,

so t = (t1,t2 tm)~ 
and ~ = ci. Thus, for the first cell, the

function is

F(w,O) = O(h2 - diag(t )(e2
) )  - (1-9) (

~ -

and

F ’ ( ~o, e)  
~~ 

= [-9 diag(e2)~h2 
— diag(t )e2]0=9 V
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But if 0
0 

= 0, the matr ix F’ (~, 9) 
~ 

is clearly not of full rank,

and hence the first step of the path following algorithm cannot be

executed. Thus, the importance of choosing v~ so that A1(w
°) > 0,

i € in is clear.

In Section 11.1 (Part 1) on the discussion of the homotopy retraction

method the dimension of the problem was increased by one by the hoinotopy

parameter 0. This was done primarily for theoretical reasons—-it is

easier to analyze the behavior of a path which ends at a boundary point

V of a complex, rather than a point at which the deformation function is

undef ined . However, one might suspect that it would be worthwhile to

formulate the deformation in the lower dimension for computational

purposes. For example, if = 0, the deformation could be defined

h(cz) = A(co ) - 

~~ ~~~~~~ 
f (w)

1’ /

and the path would be h~~(A
0
). However, f1(w) —~O and A1(w)/f1(w) .—, + 

~~

as the algorithm nears a solution and h’ (co) becomes unstable.

A tail routine such as Newton ’s method can be used when the current

point is near an equilibrium, but the decision as to when to institute

this tail routine is by no means an easy one. Both approaches were

experimented with and the homotopy approach was found to be much more

stable.
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IV.3. The Path-Following Algorithm

Next we present the path following algorithm which was implemented

in the HRA code to be described in Chapter V. The algorithm is

essentially identical to that presented in Section 111.4; we include

this description for completeness. Motivation and a verbal explanation

of the algorithm are given in Section iii.14.

Again we are given the data contained in a, p., V , Gi, ~~~~~, C,

z = (A ,t ), 0 , f as defined in (1.9), and (pd, s) describing the

variable currently at zero which is allowed to increase. Define

Gl t + b  if p d = l
a(s),.

b5(z,0) =

G2 A +~~~~~ if p d = - l .
— p. 5
a(s),.

Algorithm 3.1. The homotopy retraction algorithm ( }tRA).

0. i = 0, User supplies amax and 
~l’ 

€2~ 
€
3~

1. Calculate F’(zi,-e.) = [HIh] € ~~
IflxIfl+l

2. Solve H.y = -h (if det H = 0, rearrange columns of

[HIh] —~ [H’ Ih’] and repeat Step 2).

Let ~ := sgn(det H)

if 1> 0  go to Step 14.

3.  5 : sgn( (Vb5(z~,
0~ ) , (y,l))),

:‘ ~•~;;, go so Step 5.
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5. Let vl = 5 •

6. The tangential approximation to F~~(O)

T (a) = a{ + a
2, 

a C ~

where a
1 

:= v

and a2 := (z.,~~.).

7. Solve the n linear equations in a defined by

(G1 1 , T(a))+~~1 = O , i C k

(6. 1)

(~~~~~ 
. , T(a))÷~~ . = O , iC~~

a a + a  = 1
l,m+l 2,m+l

Let a* be the minimum positive real root of all these equations.

If a primal variaote hits zero, pd = 1

If a dual variable hits zero, pd := -l

Let r : =  the index in (6 . 1) corresponding to the row for which

T(cr*) is L~ n~in,.

Let V~~ 1=

If a1~~÷1 
+ aV V m÷l = 1, let ~ : 3.

Let (z°,0°) = T(a~)

‘3. If a* < a go to Step 9 . Otherwise, let ~~ : =  a*/2, (z0,e°) =

T(a~), br(z~
0) (a1. (z

°,e°) - (z,0) ) ,  ~ := 1, and go to Step 10.

8i 
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9. If’ pd and r describe the primal variable “p”, let ~~ := 3.

If L~ = 3 go to Step 13.

10. Define
/ F(z,0)

g(z,o) (
\ b ( z ,0) 

-

and iterate

2+1 2+1 2 2 , £ £ —l 2 2
(z ,e ) = (z ,e ) — g (z ,e ) g(z ,o ), 2 = 0,1,2,...,

2+1
until g(z ) <

11. If ~ = 2 go to Step 12.

Otherwise, let i :=
2+1 2+1

(z
~
,e
~
) := (z ,9 ), and go to Step 1.

12. Let (z *,e*) = (z
2
~~,e

2
~~)

Check that Gl.t* + ~ > ~~v — 3

and G2~~*+~~~>_ € 3 ,
and 0 *C  [0,1].

If so, return the values (z 3(-
, 0*, pd, and r) to the main program.

Otherwise, let pd and r define the most infeasible constraint ,

solve

b~ (p. (z*,e*) + (l..p.)a2) = 0

for p.~~ ~~l let

(z°,0°) = p .(z*,O*) +

and go to Step 10.
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13. (Tail Routine). Perform the Newton iteration,

= z2 
— f’(z2)~~ f(z

2
) , 2 = 0,1,2,...

until I f f(z2~~)II < € 1. Let (z*,O*) := (z2~
1
,l) and go to Step 12.

Again, several remarks are in order:

a) The sizes of e
~
, i C 3,  and amax may be chosen to suit

a particular problem. Typical choices might be €1 = 
~2 

=

= lO~~, and amax = 5. The choice of amax will radically affect

algorithm efficiency. If it is too small, many Newton iterations vii].

be used to cross larger cells when it would probably work to take big

jumps across in the facet which the curve seem to hit. If is

too large when F 1(O) takes a sharp curve, Step 10 may not converge.

b) (Step 9) ‘
~
p” is the variable which the original auxiliary

linear program was maximizing. Recall from the discussion in Section

V.2 that P = u~ = 
~~~l 

fj(co) and if our -path is “near ” that of

the theoretically desirable path described in Section IV.]., then

> 0, 1 € in. Thus, if the path hits the “p = 0” facet we are

close to an equilibrium and the tail routine can be implemented.

c) It is worth discussing how F’(z,e) is computed in Step 10

assuming that a subroutine is avai].able for computing f’(~~,t). From

the definition of F(z,9) in (5 . 1)  it is apparent that

F’ (A ,t ,e)
I, V

,t )-(i-~). 1~~~ o1 f(~ ,t ) + ( - (5.2)
~.L V L~

2
1~• J I.& V \ G 2 ? ~ + 

~ / J
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The calculation is not much worse than calculating f’ (A ,t )
p. V

if the values of f(A ,t ) and G2 A + are saved from the calcu-
p. V .i. p. p.

lation of F(A ,t ,0) as suggested by (5. 1).
p. V

d) If we replace the first line in Step 8 by

“If a~- < amax go to 9, otherwise, let c~ :=

Then this algorithm is essentially the path following algorithm

of Chapter I, which was proven to be convergent given E2~ 
and

are small enough . This course of action would result in an inordinate

amount of work for large cells--work which is not necessary in most

cases.

IV.14. The Cell Switching Decisions and Operations

The decisions necessary in the “main program” of this algorithm

for equilibrium calculation are very simple. Initially t = 0 and

v = ~~, so any one of the first in primal variables may be specified

as binding--we choose pd = 1, s = 1. With the correct initial choice

of v~, i C ~~~, all budget surpluses will be positive. An argument

similar to that in the proof’ of Lemma 1.6 will show that all the vari-

ables t~, i C v increase initially, and, hence, the initial tangent,

a1, point s into the interior of the initial cell. Thus , no problems

are encountered due to the fact that we are starting out at the vertex

of the initial cell.
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Flowchart for cell switching and basis updating.

(The same abbreviations will be used as in Section VI. 14.,)

S TART

pd 1, s

Homotopy Path
_______________________ 

Algorithm, output: _____________________________

pd, r 
V

[d  = 0? j yes STOP , Equilibrium1

4i
no

pd := -l 

/d=

~~~~~~~~~~~~~~~~~ 

pd := 1

V Choose s := incoming Choose s := incoming

basic variable, dual basic variable. V

Pivot on Gl and 02. Pivot on Gl and G2,

Updat e current basis Update current basis
factorization and factori zation and

index sets: (s in, r out ) index sets: (r in, s out)
Superbasis change: Superbasis change: 

V

(i~ in , t out ) (t in , A out),

Revise def init ion of f, Revise definition of f,

s := r s : r

FIGURE 3.1

85

V S  V - ~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~



_ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
V - —

~-

The reader is directed to the comments following Figure VI.5.l 
V

- 

for a discussion of the abbreviated description of the algorithm in

the boxes of’ Figure 3.1.
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CHAPTER V

RESULTS FROM COMPUTATIONAL EXPERIMENTS

In this chapter we report the results of numerical experiments

with a code which implements the Bilinear Complenientarity Algorithm

(BCA ) of Chapter III and Homotopy Retraction Algorithm (I~~A) of

Chapter IV. A large part of the work involved in this experimentation

was in the construction of some test problems. We shall discuss how

these problems were generated and what sort of preprocessing was necessary

in order to solve the problems with these algorithms. The two codes are

named BOA and HRA , respectively. The only differences in the codes are

those absolutely necessary to implement the different path definitions

of the two methods .

Both BOA and HRA use LPM1, an all-in-core FORTRAN linear pro-

gramming code written at Stanford by J. A. Tomlin. LPM1 stores the

problem matrix by columns packed in a vector of non-zeroes, a vector of

the same dimension giving for each non-zero coefficient its row index ,

and a vector giving for each column the position of its first nonzero

element in each of the two above vectors. The eta file is stored using

the same principle. It uses an L-U factorization for inverting the

basis followed by product form updates. 



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _~~~~~~ V V :~~~~~~~~ S~~~

V.1. Computer Implementation of the Algorithms

The BOA and HRA codes are written in FORTRAN-IV and are compatible

with both the WATFIV and FORTRAN -H compilers. The results to be reported

here were done with the FORTRAN-H compiler with full optimization

(OPT = 2). The testing was performed on an IBM 370-168 computer located

at the Stanford Linear Accelerator Center. BCA consists of 3,837 lines

of code while REP. is 3,632 lines long . LPM1 occupies 1,819 lines of

each of these programs.

The form of the data input will not be described in detail here,

but most of the data is input as the auxiliary linear program in MPS
— standard format. A small amount of additional data must be added to

describe the vector C(’,I) ,  for I = 1,.. .,m, which contain the

coefficients necessary to calculate the budget surplus of the 1th 
~~~

sumer. The details of input and output are contained in “A Programmer’s

Guide for BOA and HRA : Two programs for computing economic equilibria, ”

to be published as a technical report .

V.2. ~xperimental Design
1

The primary object ive of these numerical experiment s is to

demonstrate that a path-following philosophy along with an exploitation

of the linear-programming structure can be implemented to solve some

problems of moderate size (up to 6 consumers and 56 goods). It was

hoped that the run times would be short enough for these problems that
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it would be clear that these algorithms show promise for considerably

larger problems. By larger problems we mean those concerned with V

about 10 traders and 250 goods. A model for which such a capability

would be useful is a model of international trade where the traders are

countries or groups of countries.

A secondary objective is to compare the performance of the BOA

and BRA codes as they process the same set of’ test problems. The only

conclusion we can make is that the BCA performs better on certain

problems and worse on others, in comparison with the BRA algorithm.

One of the biggest difficulties in performing this experiment

was in finding or manufacturing suitable test problems. Some small

examples were given in Wilson [1976] which have been solved by hand.

Two of these were solved by the BOA and HRA codes mainly to verify that

the codes actually were computing equilibria. Three problems were

adapted from the three equilibrium problems in Scarf [1973]. The last

two problems appear for the first time here. The run times will follow

the problem descriptions.

Prob lem Descriptions

Problem 1. This problem is due to Andreu Mas-Colell. There

are three traders and two commodities. Each trader has one unit of

each good and the utility functions are, respectively,

tuin(x, 2y)

min(2x, y)

m.tn()~x, 5y)
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where x and y are the quantities of the two goods consumed.

One can easily verify that the demand function derived from

these utility functions will have a ray as its range. Thus the activities

of the traders can be reduced to one each and the utility functions are

reduced to linear functions. The problem data is, now

y’= ( l ) , i€ ~~

B1 = ( ~
‘
~~) , B2 = ( 

1 ) , B3 = ( 
~~~

i 1w =
~~~l~~~’ 

iC~~~.

= (1,1,14) is determined from the formula (V.2 .6) . We choose v .

to be slightly less than vt as suggested in Section V.2:

= .9, v
2 

= .95, v
3 = 3.92.

This example is used to show that an equilibrium problem of

this form can have rational data and an irrational solution. The

equilibrium prices are some scalar multiple of the vector

= (1 + ~/3, 1)

The prices computed by both algorithms are correct to six decimal

places,

= (.732051, .2679149)
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Problem 2. This example is due to Alan Whisman. It is reported

in Wilson [1976]. It is concerned with four consumers and three goods.

The utility functions are linear, but the B’ matrices are non-trivial.

Again, there are no firms.

Problem data:

1 1 1

1 2  2
B
1
= 2 2  w1 = 2

3 2  1

2 1 1
1 =  

4 3  I i
B2 = 3 2 w2 = I ~1 2

1 1 1 1

B3 = 1 2 3 0  5
0 0 4 3  4

14 ___1~ 
=

1 2 11
B4

= 1 0 w4 =~ 1
0 0 Li
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Problem 3. This is the first of three examples taken from Scarf’s

The Computation of Economic Equilibria [1973). This is a pure exchange

model, while the next two include production. This example involves 10

commodities and 5 traders . Each trader has 10 activities, the consumption

of each of the 10 commodities, so the activity matrix Bi = 1€

for i = 1, ... , 5. Each consumer has an initial stock v1 € ]R 10 of

commodities prior to trade and a utility function.

10 1/b 1-1/b
= sign(b . — 1). ~ a € 5

j =l ‘~~ ~

for final consumption. This is a special case of the class of constant

elasticity of substitution or CES utility functions. For convenience

we will refer to this functional form as a CES utility function .

Scarf’ s algorithm uses the demand functions derived by maximizing

u1(y), subject to 4°7T~Y. < E~°7r. w. .  to derive a mapping whose fixed

point corresponds to an equilibrium. To implement either of our

algorithms we must calculate a piecewise linear approximation to each

consumer’s utility function.

From an econometric point of view, it is probably just as easy

and accurate to assess a utility function in a piecewise linear form

as in some standard nonlinear form. However, if one is trying to

approximate a nonlinear functional on by linear pieces, it may

take a very large number of pieces. For this reason, we are not trying

to duplicate the answers which Scarf computed, although in some cases

we come close. As a rule of thumb, we compute twice as many pieces

of linearity as the dimension of the domain of the utility function.
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In this example, we compute 20 pieces of linearity for each of the five

consumers. The details of the calculations involved in this prepro-

cessing are described in the Appendix. The prices obtained in the

equilibrium solution were not very close to those computed by Scarf,

but that is to be expected.

The problem data is given below.

Initial Stock of Commodities

Consumer

i .6 .2 .2 20 .1 2 9 5 5 15

2 .2 11 12 13 1~4 15 16 5 5 9

.1~ 9 8 7 6 5 5 7

1 5 5 5 5 5 5 8 3 17

5 8 1 22 10 .3 .9 5. 1 .1 6.2 11

Utility parameters a . .

Consumer

1 1 1 3 .1 .1 1.2 2 1 1 .7

2 1 1 1 1 1 1 1 1 1 1

3 9.7 .1 5 .2 6 .2 8 1 1 .2

13 1 2 3 13 5 6 7 8 () 10

5 1 13 11 9 13 .9 8 1 2 10
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Utility parameters b 
I

Consumer

1 2.0

2 1.3

3 3.0

13 0.2

5 0. 6

Problem 13. This is the Wairasian equilibrium model on pp. 109-113

of Scarf [1973]. The problem involves 5 consumers , 6 commodities and a

production sector. One can think of the production sector as being a

single firm . The consumers share ownership of the firm in the sense

that they own the factors of production--capital, unskilled labor, and

skilled labor. The six commodities may be described as follows:

1. Capital available at the end of the period.

2. Capital available at the beginning of the period.

5. Skilled labor.

13. Unskilled labor.

~~~. Nondurable consumer goods.

6. Durable consumer goods.

The activity matrix for the firm is

13 13 1.6 1.6 1.6 .9 7 8
-5. 3 -5 -

~~ -2 —2 -1 -13 -5

E1 = ~~~~ — l -~~ — 13 —l 0 -3 —2

-1 -€ —3 — l —8 0 —1 —8
0 0 6 8 7 0 0 0

3.5 0 0 0 0 0 0

(
~14

-

~~~~~~~~~~~



The consumers have initial endo~ments of commodities 2, 3, 13
and 6 given in the following matrix:

Commodity

Consumer 2 3 13

1 3 5 .1 1

2 .1 .1 7 2

3 2 6 .1 1.5

13 1 . 1 8  1

5 6 .1 .5 .2

The consumer ’s utility functions are of the same form as in the

previous problem. The specific values of a.. are given in the

following matrix:

Commodity

Consumer 1 2 3 13 5 6

1 13 0 .2 0 2 3.2

2 o. 13 0 0 .6 13 1

3 2 0 .5 0 2 1.5

13 5 0 0 .2 5 13.~
5 3 0 0  . 2 1 3 2

The activity matrix B1 is composed of zeroes except that

B~~. = 1 if a . J 0. Of course zero columns can be omitted. TheiJ

elasticities of substitution are given by

b~ = (1.2 , 1. 6, 0. 8, 0.5, 0. 6)
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Problem 5. This problem, taken from pp. 113-119 of Scarf

[1973) deals with four consumers and fourteen commodities:

1. Basic agricultural goods.

2. Processed food .

3. Textiles.

13. Housing services and heating .

5. Entertainment .

6. Housing, end of period.

7. Other capital, end of period.

8. Steel.

9. Coal .

10. Lumber

11. Housing, beginning of period.

12. Other capital, beginning of period.

13. Labor

113. Foreign exchange.

The consumers have initially a nonzero holding only of

commodities 11-13. The following matrix describes this ownership

pattern:

Commodity

Consumer 11 12 13

1 20 30 6

2 13 20 8

3 0 0 10

13 8 75 6
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In this case the productive sectors involves import and export

activities. The activity analysis matrix is given in Scarf.

The utility functions are of the form

7 a .
u . ( y )  = U y~~3 i=l •-~

where
7
~ a1. = l , j = l, ... , 13 .

i=l

These Cobb-Douglas utility functions are homogeneous of degree one,

i.e., for any )~ > 0, ~u~ (~~) = u~(~i). This means that our piecewise

linear approx imations are tangent to the graph of u~ along a ray

rather than at a single point . As one might expect , this means that

our piecewise linear approximation will be better for this form of

utility function than for the constant elasticity of substitution

utilities.

The coefficients a1~ are given by

Commodity

Consumer 1 2 3 13 5 6 7

1 .1 .2 .1 .1 .1 .3 .1

2 .2 .2 .1 .1 .1 .1 .2

3 .3 .2 .3 .1 .1 0.0 0.0

13 .1 .2 .1 .1 .1 .1 .5

L _ _ _ _ _ _ _ _ _ _ _ _ _ _  — 
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To make some sort of comparison between the Cobb-Douglas and

CES (1) utility functions, we also solved this equilibrium problem

using the former type of utility function. We used intensities a~~.

proportional to those in the table above arid let b~ 1.2, i = 1,2 ,3, 13.

Below is a comparison of the equilibrium -prices derived from this

model using 1) Scarf’ s results, 2) our results using FL approximation

to the Cobb-Douglas utility function, and 3) our results from a FL

approximation to a CES utility function . (We use abbreviations for

the names of the commodities.)

Equilibrium Prices

SCA}~F 
~~~~~~~ 

CES

1 AGR1 .0621 .0613 .01395
2 FOOD .0583 .0595 .0500

3 TXTL .09813 .0977 .0830
13 HSVH .07113 .0706 .01379
5 ENT R .0658 .0650 .013913
6 HE~ .06213 .06113 .O67 14~
7 CEND .0689 .0722 .0680
8 STEL .0981 .0999 .0831
9 COAL .0902 .0888 .0721

10 LUMB .0795 .0773 .06513
11 }tBEG .0562 .0552 .1858

12 CBEG .o62o .0650 .0613

13 LABO .0365 .0300 .0328

F~XC .0928 .0956 .081i0
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We note here that the JIRA path passed through only 3 cells to

reach the equilibrium prices in column 2 while it passed through 37

cells to reach the equilibrium prices in column 3. The computational

results reported later for this example are concerned with the approxi-

mation to the Cobb-Douglas utility function.

The next two examples are new.

Problem 6. This example has 6 households and 13 goods. Five

of the consumers have piecewise linear utility functions, the sixth has

a linear utility function. Some of the initial endowments of the con-

sumers are zero. In this case the entire auxiliary linear program

matrix will be given to show how the piecewise linear utility functions

are handled.

One notes that this matrix (Figure 2.1) could easily be put into a block

diagonal form with coupling constraints, but since our LP code does

not take advantage of such structure we leave it in the form such that

the v~ , I = 1, . . . ,  in are in the first m rows . This allows us to consider

the slack variables t~ , I € rn as the first m primal variables which

eases the indexing problems in the code.

The initial endowments are given below.

Commodity

Consumer 1 2 3 13
1 2 2 1

2 1 13 3 2

3 0 0 3 13
13 1 1 3 0.5

5 1 2 0 2

6 2 3 2 1

(~ ) 
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We will call this problem 6a. To create problem 6b we just

changed three entries in the matrix of Figure 2.1.

Problem 7. This is a dynamic model in which three consumers

attempt to maximize their discounted utility subject to a budget con-

straint while the producers maximize profit. The model is an adaptation

of the Mananaguay model of W. P. Drews [1976]. In its original form

it was a dynami c linear programming model of the economy of a developing

country. The country was mythical so the data was not empirically

supported, but the numbers were reasonable on the basis of past

experience. This model was over five two-year periods and included -

sophisticated techniques to deal with distortions due to the finite

planning horizon. The model offered a rich choice of objective functions,

including one which maximized a weighted sum of consumption and one

which minimized the dependence upon imports.

We substantially alter the model 1) to reduce the size of

the problem and 2) to make the expansion in the consumption sector

which an equilibrium formulation allows. We reduced the size of

the model by dropping the number of periods to three, eliminating import

and export activities and simplifying the end-correction mechanism.

Arbitrary levels of capital stocks are defined which must be left to

the society at the end of the third period. This is an admittedly poor

method for handling finite horizon problems, but its simplicity suits

our purpose.
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We will not present the data of the problem here, just a few

statistics. There are 8 perishable goods in each period (including

three kinds of labor) and. 8 capital goods in each of the three periods

plus a fourth set of 8 capital goods which is bequeathed at the end

of the planning horizon. Since the 3anie good in two different time

periods is considered to be two different goods, the model deals with

56 goods. In each period there are 8 production activities, 9 capital

goods construction activities, and 18 consumption activities, 6 for

each consumer. Hence, there is a total of 105 activities. The

utilities are discounted at a rate of 15% between the two year periods

for an annual rate of about 7.5%.

Preprocessing

Before we present the numerical results it would be useful to

discuss how the initial utility levels v1, I € rn were determined.

For the pure exchange problems 1, 2, 3, and 6, we used the procedure

suggested in Section V.2, i.e. solve the linear programs

v* = ma.x(r1z1
1A

1z1 < a1, B
1
z
1 
< w1, z~ > 0), i € tn

and let V
1 

= v~~, I C in. In general, the solution of these m linear

programs took about as much computer time as the solution of the

resulting auxiliary linear program. The initial utility levels v~

derived in this manner were very satisfactory for these models.

For the models with production, many times the consumers are so dependent
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upon the other consumers and the productive sector that it does not

make sense to determine as suggested in Section V.3. In these

cases we either guessed at the initial utility levels or followed the

procedure described. be1ow~

1. Guess at the equilibrium prices ir of the consumers initially held

commodities w1.

2. Calculate their wealth W’ = iTw
1
.

5. Calculate Vt inSX u1(z
1
)

• — i  isubject to 7TZ < W

using the nonlinear utility function u1.

This value Vt will usually be less than the equilibrium

utility level for consumer i because the piecewise linear utility over-

estimates the actual utility function (see Appendix A). If a -poor

choice of initial utility level causes the algorithm to fail for any

reason, a better choice can usually be made by examining the output

from the failure.

Several times the HRA algorithm failed to converge because of

poor initial utility levels. The BCA failed only if the choice of some

v1 was so large that f1(m) = (C ., N) - 7~1(v1 + t
~
) is negative after

the solution of the auxiliary linear program. We will report one

example in which the HRA code failed but the BCA code worked.
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V.3. Numerical Results

On the succeeding pages, tables will give the numerical results.

First, though, we will describe the various measures used to evaluate

how much work is being done to find an equilibrium solution.

1. L.P. iterations and L.P. time: The solution of the

auxiliary linear program is definitely part of the HRA and BCA 50

the amount of work done to solve it must be measured. If the utility

levels v~ are very good the largest percentage of work will be done

in the LP portion of the algorithm. The LP time is measured using the

subroutine LEFT1A supplied by the numerical analysis package at SLAC.

The accuracy of this timer seems to be about +.O2 sec.

2. Number of cells traversed and path-following time:

The number of cells traversed i~ important because it counts the number

of times the basis and the superbasic columns are updated. This work

really outweighs the work done to follow the path through the cell.

The path-following tirne measures the time spent after the auxiliary LP

is computed and before the output of the final solution.

~~~. Scalar function calls: This refers to the number of times

any of the consumers budget surp lus functions are evaluated. In the

BCA the work involved is on the order of the dot product of two vectors

~~ ~~d (see (IIL~~.~~)), where d Is the number of budget surpluses

currently “at zero .” In the HRA there are always ~n superbasic vari-

ables so,on the average, a little more work is done.
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13. Jacobian evaluations: To compensate for the changing

dimension of the BCA jacobians, here we counted the number of partial

derivatives calculated and divide by m
2
. In the 1-IRA we just count the

number of times a jacobian is calculated. Since the formulas (111.13.13 )

make it relatively easy to compute partial derivatives exactly, that is

what is done. Each time a jacobian is calculated a linear system is

solved in either code, so this figure represents more work than the

evaluation of a. jacobian.

5. CPU time: This includes input time, which is not negligible,

and the output time of the equilibrium solution which is negligible.

Thus the LP time and the path-following time will not add up to the

CPU time.

Problem Statistics

Consumers,
Problem Goods LP size Density Iterations LP time

1 3,2 6 x 13 50% 1 .005 sec

2 13,3 8 x 11 40.9% 5 .02 sec

3 5,10 116 x 56 13.9% 95 1.75 sec

13 5,6 
- 

52 x 56 15.1% 33 .514 sec

5 14,114 75 x 57 113.6% 82 .8~ sec

6(a) 6,13 23 x 20 18.5% 12 .07 se~
(b) 16 .08 sec

7(a) 3,56 97 x 107 11.8% 96 1.63 sec

(b) 90 1.63 sec

TABLE 3.1
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Comparison of Algorithms

BCA (Bilinear Complementarity Algorithm)

HRA (Homotopy Retraction Algorithm)

Number Path Scalar
of Cells Following Function Jacobian CPU

~roblem Traversed Time Calls Evaluations Time

1 BCA ~~ .13 sec 37 13 .18 sec

HRA 2 .12 2~) 7 .17 sec

2 BOA .15 2 .21

HRA 1 .10 16 2 .19

3 BOA 1313 1.61 164 7 139

HBA 20 .92 319 55 3.90

BCA 21 .31 82 3 .91
HRA 19 .5 337 66 1.17

5 BOA 136 1.2) i66 114 2.69
1313 8 l.~413

6a BOA lli .L~ 1913 11

5 .08 90 12 .35

6b BOA 114 .21 2147 114 .135
HRA 5 .11 130 18 .~8

7a BCA 1.83 126 13 4.54
ItRA 69 3.137 629 175 6.19

7b BCA 35 1.135 70 4 4.18
HRA 60 FAILED TO COMPUTE A SOLUTION1

TABLE 5.2

17b. uses the same data as 7a. A different starting point caused the
HBA to diverge.
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Comparison of HRA on Problem 5 with Two Different Utility Functions

Number Path Scalar
Utility of Cells Following Function Jacobian CPU

?unction Traversed Time Calls Evaluations Time

Douglas 3 .09 sec 1414 8 1.1413 sec

~ES 57 1.41 sec 559 118 2.55 sec

TABLE 3.5

The solutions calculated by the codes are equilibrium points if

they satisfy the systems of equations (11.2.3) and (11.2.3) and the non—

negat ivity of the variables. Of course, no finite algorithm can calculate

exact equilibria, in general. During the course of the algorithm the

linear inequalities are maintained to a tolerance of lO
u
, i.e., in

the linear approximation Algorithm 111.5.2, 
~2 

= lO~~~. This is the

default tolerance setting in LPM1 for the non-negativity of the relative

cost coefficients. The final application of Newton’s method for calcu-

lating a zero of the budget surplus function f(w)  terminates when

II f (w ) II < l0~~~ (
~ = 10

3.0 
in Algorithm 111.5.2). These tolerances

are among the user-supplied parameters. The choice of is rather

arbitrary ; since Newton’s routine is quadratically convergent, a smaller
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tolerance will not appreciably affect run time. However, since the

accuracy of the variables and function parameters are only on the order

of ~~~~~~~~~~ it would not be appropriate to set €
~ 

lower than that . To

set 
~2 

smaller than 1O~~ may appreciably increase the run time of

the simplex method for solving the auxiliary linear program. Another

tolerance is of importance in these algorithms. The termination

criterion for each Newton routine for returning to the curve is €
3 

= 10~~.

Making this parameter larger may reduce the run time marginally, but

one runs a risk of moving outside of the radius of convergence surround-

ing the curve with the next step along the tangent.

v. 14. Conclusions

The conclusions that can be drawn from such a limited testing must

be tentative at best. However, it has been shown that some medium-sized

problems can be solved quite quickly using path methods . In our opinion

this experience shows that these methods show promise for the solution

of problems with up to 10 consumers and 200 goods . This is only specula-

tion, though, at this point.

Referring to Table 3.2, we see that the 1-IRA was faster 6 times

and the BOA was faster on 3 problems. This indicates that there can

be no conclusion drawn concerning which method is better. The HBA

appears to be more erratic. Compare the results from problem 5 and 7

for example . The increase in CPU time for the BCA is more in proportion

to the change In problem size than the increase for the HRA .
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It may be that the HRA is superior for problems with Cobb-

Douglas utility functions. We cite the evidence from Problem 5 in

Table 3.2 and Table 3.5. However, more testing must be done with

problems having Cobb-Douglas utility functions before this statement

can be made with any confidence.

An interesting fact not reported in the tables above is that

for the BOA, the number of bilinear equations which are binding

increases throughout the course of the computation on such problem.

The theory does not guarantee that this type of monotone improvement

occurs, but it is fortunate that this behavior seems to be common.

One way of measuring the progress of the IIRA is to note how 0 increases

from ~0 € (0,1) to ~~ = 1 at an equilibrium. In several examples

0 increased and then decreased for several cells. In problem 7b,

0° = .256 increased to .697 before decreasing to 0, caus ing the program

to stop execution.

The HRA passed through fewer cells than the BOA in every problem

but Number 7; this advantage must be large in order for the HRA to take

less path following time because the BOA is concerned with cells of

smaller dimension than m most of the time. This fact explains the

relatively small number of scalar function calls and jacobian

evaluations for the BOA in comparison with the number of’ cells traversed.

This comparison of algorithms is not extensive enough to allow

us to make authoritative conclusions. It does allow us to say that

these algorithms show promise for the goal of solving economically

significant equilibrium models.
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CHAPTER VI

SUGGESTIONS FOR FUTURE RESEARCH

We close this work with some ideas for continuing this investi-

gation. Some of these hypotheses are more speculative than others

but they all deserve to be mentioned.

1. Chapter IV gives a convergence proof for the

Homotopy Retraction Algorithm (HRA) when the starting point is

the zero vector. For computational efficiency, we solve an auxiliary

linear program which results in a starting point which is closer to

equilibrium (Section IV.2), but, as problem 7b indicates, convergence

is no longer guaranteed. Another difficulty is in choosing the

initial utility levels v~, i C m in such a way that a) all dual

multipliers ~~ i C m, are positive, and b) all budget surpluses

I € m are positive.

Although the author has tried unsuccessfully to merge other

homotopy deformations with the piecewise linear economy to define a

convergent path method, there still may be promise in such an enter-

prise. It is certainly possible that some other deformation could

define a path which would have better computational properties than

the 1-IRA. One simple alternative would be to involve the t variables

(slacks corresponding to the utility levels) rather than the h-variables

in the deformation F(co,O), i.e.,

— 
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F(u , O) = 0f(~~) - (l-4(t(w) - t°)

Other possible path methods which could be adapted to this problem

are the strong path method (Section IV.5, Part 1) or any of the class

of path methods discussed in Section 111.7 (Part 1).

One possible remedy for the initial point problems of the

1-IRA would be to solve the auxiliary linear program (11.2.3) with rather

conservative initial utility levels, and then parametrically increase

those v. for which 7.~. = 0. One would continue this increase until

was positive and stop before f1(n) went to zero (7~ = 0 =~f~ > 0).

When these conditions were satisfied for i = 1, 2, . . . ,  in, the HRA

would be instituted.

2. We discussed earlier why it was reasonable to consider

models with few consumers and piecewise linear utility functions,

but interesting extensions to our theory are possible which would

deal with the problems of many consumers and nonlinear utility

functions.

In competitive economies the various agents make decisions

independently, using only a little common information (prices).

Perhaps some sort of decomposition principle could be used to account

for the effects that the decisions made by a large number of households

have on the system. Another method to ease the computational burden

would be to take advantage of the block-diagonal structure of the

linear program by using a GOUB algorithm (see Winkler [l972} for a

survey and unification of these methods).
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If one is trying to approximate a nonlinear utility function

in many variables, better methods may be available than using a

globally defined piecewise linear function. If one could deal with

only the hyperplanes which are binding or near binding, the dimension

of the problem could be reduced considerably. The rows corresponding

to these hyperplanes are columns in the dual auxiliary program. Perhaps

some sort of column generation algorithm could be used in the dual

system to bring in a column whenever the current point is in an inaccurate

portion of the current PL approximation.

3. Nothing has been said in this dissertation with reference

to the problem of stability in equilibria theory and computation.

If the economy is, for some reason, displaced from equilibrium, what

process will bring it back to the desired point? It appears as though

a path of the form of the homotopy retraction algorithm could be

defined which would lead to the equilibrium for any point in a neighbor-

hood of the equilibrium. A sensitivity analysis of the auxiliary

linear program could yield insight into the stability of the equilibrium.

I i.~
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APPENDIX

TIlE CALCULATION OF PIECEWISE LINEAR UTILITY FUNCTIONS

There are clearly many possible ways to compute a piecewise

linear approximation to a given utility function. We will present

one method which is relatively simple and easy to refine. We will

not give any detailed justification for this particular method.

n 1 .The epograph of a concave utility function U: ]R —, IR is

defined as

epo(u) ( (x ,t ) J x  € jR~~, t € ]R
1
, t < u(x))

One could evaluate u(x0 ) by finding

t0 = sup t=u(x0) .

(x ,t ) Ce p o ( u )

We will define a polyhedral approximation epo(~) to epo(u) and the

piecewise linear approximation Li of u can be evaluated as

sup t.

(x0,t)€epo(Li)

We will find an outer approximation using hyperplanes tangent to the

boundary of epo u. Assume that u is differentiable. Suppose

t° = u(x~). Then the tangent hyperplane to epo(u) = ((x ,t) It - u(x) <0)

at (xO,t
O) is

f(x,tfl((—’cki(x
0),l), (x,t) - (x°, t°) )  =0)

3.13 
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or letting c° = to 
- (~~(x0 ), x0) we have that

epo(u) c ((x,t)!t - (‘c7u(x
0),x~ < c°)

epo(Li) can be calculated by choosing a number of points of tangeny

i = 0,1,..., in) and calculating the appropriate gradients:

epo(Q) = ((x,t)Jt - (~~(x1), x) < c1, i O,...,m) . (1)

The problem which remainz is to make some sort of’ choice of

points of tangency. Pick two utility levels U
1 

and U
2 

which

are likely to be in the range of those under consideration in the

problem. Given a vector v S’~ = Cx C iR~~E~x1 = 1, x > 0), it is

usually quite easy to find scalars )~. such that u(?~v) = 1J~ . Our

procedure, then, is to choose n vectors v1, . . . ,  vr
~ scattered in

some manner in the unit simplex and to find the corresponding points

= ~~v
1 such that u(x1) = U1, for i € n. Then we choose n

~i+1 2n 3. imore vectors v , ... , v which yield x such that u(x ) = U2,

I C 2n\ n. The points x1, i C 2n will be the points of tangency

in the definition of epo(~i), (i~.

One way to choose v1, i € 2n is to distribute them around a

point v* which maximizes the utility subject to a budget constraint

assuming all prices are equal, i.e. ,

v* solves maximize u(v)
n

subject to ~ v3. < 1.
1
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We arbitrarily choose v1, ... , vn to be convex combinations

n i . .thof v* and each of the vertices of S . If e is the i unit

vector for some i € ~, then

v1 =av* + (l_a)ei , i c u .

Let d
1 
= (l/(n-l))e - (l/(n-l))e~- where e C ~~n is a vector of ones.

Then v~~
’, is chosen to be some convex combii~ tion of v* and d1,

n nthe centroid of S. = (x ~~
. S x. = 0). Let

1 1

v
n+i 

= av-* + (l-a) d’ , i C n.

We chose a to be 1/2, but other choices are certainly possible.

To illustrate what our piecewise linear approximations look like

we must use examples in three different dimensions.

The first illustrates why we choose points of tangency at two

different utility levels (Fig. A.1): in general, concave utilities

have decreasing marginal returns.

Ll(x)
utility

FIGURE A .l
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In two dimensions we can see the piecewise linear approximation

to two level curves.

/

- 

( /
/ 2 1

/ u :IR -# ]R

/
/

2 ~
1 

v ~~ u(x) = U
2

~~~ 
1 

u(x)=U1

FIGURE A.2

In three dimensions the dispersion of v1, 3. C 2n around the

simplex is apparent.
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(0,1,0) (1,0,0)

FIGURE A.3

It may be that the hyperplanes generated with this particular

choice of U1, U2, and a yield answers which seem to be bad in some

sense. In that case, information gained from the solution of that

problem can be used to adjust the parameters v*, U1, U2 and a so

— as to achieve a better approximation to u in the region of interest.

With this refinement the equilibrium problem can be solved again.
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