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SUMMARY

In preparation for a computer simulation demonstration of non-
stationary post-detection compensation, we have concerned ourselves in
this report with the task of generating a one-dimensional image signal
with a #=! power spectrum, matching a two-dimensional image with a
x~? power spectrum,., Using the insight provided by our previous work
on nonstationary post-detection compensation, we formulate the image
as a set of rectangular pulses of various widths, randomly distributed
across the field-of-view. By relating the distribution of pulse height to
pulse width, we are able to keep the average pulse height independent of
width, but make the second moment of pulse height depend on pulse
width, This allows us to adjust the average pulse count as a function
of width so that the power spectrum is x! , and yet maintain that
approximately one-half of the '"object region' is empty — a general
characteristic of satellite images, and a key item in exploitation of

nonstationary post-detection compensation.
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1. Introduction

In a previous report, * we developed the concept of nonstationary
post-detection compensation as a way to take account of the information
available a posteriori in defining a filter for compensating an image. The
nonstationary filter concept as presented there was developed by means of
a combination of analytic and heuristic techniques. This left the demon-
stration of the concept's suitability as a matter for further study. As a
practical matter, we believe that the only really sound approach to this
demonstration is an empirical one. Accordingly, we have sought to apply
our nonstationary post-detection compensation concept to a one-dimensional

problem, so as to facilitate computer demonstration.

It is the objective of this report to define, in sufficient detail to
support subsequent computer programming, a procedure for generating
appropriate one-dimensional images manifesting appropriate target image
statistics. As noted earlier, the key feature of a realistic two-dimensional
target image in a region where an interesting abundance of detail is present
is the fact that its power-spectrum behaves as ¥ , where » denotes a
spatial frequency, and the power-spectrum is the fully two-dimensional
power-spectrum. In restricting ourselves to treatment of the one-dimensional
image problem, we cause the power-spectrum of interest to take on a
u- -dependence. In the next section, we shall discuss the other character-
istics we seek in the image pattern we shall generate. In the sections after
that, we shall present a method of generating such an image, and then will
prove that the one-dimensional image so generated does indeed have the

desired properties.

* D. L. Fried, "Analysis of Techniques for Imaging Through the Atmos-
phere,' Rome Air Development Center Report No. RADC-TR-77-196,
June 1977; Chapter 2, AD# B019 u482L.
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2. Desired Image Properties

First and foremost, the one-dimensional image we seek to gener-
ate will have a power-spectrum behaving as % . This leads us to hypo-
| thesize that the image should be considered to be formed of a randomly
? dispersed set of rectangular pulses, with the number of pulses of each
é width and the average intensity for each pulse so chosen that the composite
pattern has a 1 power-spectrum. We shall incorporate this hypothesized

formulation of the total image pattern as a sum of rectangular pulses into

our presentation of the other desired image properties.

We consider the object pattern to be formed of a randomly selected

array of pulses. We expect the pulse sizes to cover a range from some

maximum size, comparable to about one-eighth of the total image field-

-
il " T

of-view, to a minimum size. The minimum size is chosen simply for
lack of interest in smaller details, with the understanding, however, that

there actually is no smallest size cut-off.

We assume that the number of pulses of each width is a random
variable, as is the positioning of each pulse and the intensity of each
pulse. These values are, however, subject to certain coﬁstraints. To
maintain the compactness of the total image within the field-of-view, i.e.,
the desired property that the image appear to be that of a contiguous whole
rather than of a uniform random distrjbution over the entire available field-
of-view, we assume some constraint on the distribution of positioning of

the pulses. To maintain the concept of the target object as made up of

different size elements of related characteristics, we shall assume that
the average intensity (i.e,, the pulse height) associated with each pulse

width be independent of the pulse width, (However, we allow the distribu-

tion of pulse height to be a function of pulse widths — providing that the

function does not affect the average pulse height. )
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The average number of pulses of each width is constrained by the
need to achieve a -1 power-spectrum, but to the extent that the relation-
ship between the mean and second moment of the pulse intensity can be
made a function of the pulse width, we can correspondingly adjust the mean
number of pulses as a function of pulse width. Our concern, in remarking
on this fact, is that examination of typical real objects of interest shows
that in the compact region which contains most of a two-dimensional object,
about three-quarters of the space is entirely empty. For a one-dimensional
object pattern, the corresponding factor would be that about one-half of the
space will be entirely empty. In our choice of the intensity (i.e., pulse
height) distribution for each element size (i.e., for each pulse width), we
shall choose the distribution so that the second moment implies an average
number of elements (i. e., pulses) of that size, which when ""sumhmed' over

all element sizes considered results in the desired 50% vacancy.

It should be remarked that this procedure only specifies the average
number of elements of each size. The actual number of elements will be a
random variable with this average value — except that for the largest ele-
ment, we shall impose the requirement that there is always one, and only

one element, This will not be a random variable.

With the image properties as set forth here, we are now ready to
consider definition of a procedure for generating a randomly ''chosen"

sample image with these properties. This is taken up in the next section.
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3. Sample Image Generation

We propose to consider an image defined on a "field-of-view' of

2» points (where in practice we shall use n=10 , 2» =1024). We num-
ber these positionsas 0, 1,2, .. .2*-1. Tomaintain the compact-
ness of the object, we define a standard deviation, ¢, , defining the image
pattern spread, and consider the center point of each pulse making up the
image to be randomly distributed in accordance with a gaussian probability
distribution with this standard deviation and mean value £ =2(a-1 , Thus,
if some pulse is centered at 4 , then £ will be chosen as a gaussian ran-

dom variable with probability density

P, (£) = (21 o2P/2 exp [-& (1-2)3/042 ] (1)

We will use o, =2(*®), or for n=10 , ¢,=28=256, and £ =512 . This
means that the nominal width of our object pattern will be spread over about
3 o, = 768 points, or three-quarters of the field-of-view, and that the

pattern will be nominally centered in the middle of our field-of-view.

We shall consider our largest element to be a pulse of width

a, =2(s=8)= 27 = 128 (2)

We shall consider a set of pulse widths

a"=a°Z"H 3 for W =0;1,2,; sy 03 ; (3)

so that for the n = 10 size field-of -view we intend to consider, w takes

8 values (i.e., W=0,1,2,..., 7).

To interpret the requirement that approximately one-half of the

object area be entirely empty of pulse elements, we need first of all to

define what we mean by the object area. Arguing from insight gained from
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a study of sample targets with x1 power spectra, we would suggest that
the object area be considered to be about six times the size of the largest
element., Within this size region, the target elements take up about one-
half of the space in one-dimension (and one-quarter of the space in two-
dimensions). This means that the object area is 6 a, . Assuming a power

law dependence for the average number of elements of size ’aoﬂ-" , the

average number is
ﬁ“ = bv ’ (4)

then the average space taken up by all the elements will be

7 7
J'—'z auﬁu =Z (a, 2-+) b~

[-'I W=0 W=0

i . (b/2p 5)*

| YN (5)
H=0

| But for half the object space, i.e., half of 6 a, , to correspondto y ,
| it follows that

3=) /2¥ = Hy
W=0
i
~ 1-m/2) (6)

* This formulation is strictly valid only where the area density of elements
is so low that there is a negligible probability of element overlap. With
our 50% area density objective, this approximation is not strictly valid.
However, at this density the overlap correction factor will be close enough
to unity that we can ignore it — doing so being no greater an approxima-
tion than our "estimation' that the area fill factor should be 50%, The re-
sult of this approximation in Eq. (5) will be that the patterns we generate
will actually have a slightly less than 50% area fill factor.




Solving Eq. (6) for b , we get

b = 1.3333 ; (7)

which implies that N, = {1, 1.3333, 1.7778 , 2.3704 , 3.1605 , 4.2140,
5.6187 , 7.4915} .

We shall show in our analysis that for this set of values of lﬁu to
be compatible with a »® one-dimensional power-spectrum, it is necessary
that the ratio of the second moment of pulse height (i.e., of element inten-
sity) divided by the square of the first moment, i.e., ((L R)/(] )® , depend

on W according to the relationship

LR

ay = ' 15

where

c=1.5 (9)

A proof of this will be presented in the next section. In order to achieve
this ratio of second moment to first moment squared, we shall assume
that the pulse heights are random variables, distributed for each pulse
width according to a log-normal distribution, with the basic parameters

of the distribution dependent on the pulse width.

The log-normal distribution is characterized by two parameters.
The first is the logarithmic standard deviation, ¢ , and the second is
the logarithmic mean, : PR I, obeys a log-normal distribution with

these parameters, then the probability density associated with I, is

p, (L) = (27 0, 8F/2 13 exp (-4(on(L,/T) - T1%/02} o (10)

where 1, is a reference intensity value corresponding to the median

value of intensity,

gt
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Accordingly, we can write for the first moment

(L) = [dip(@]I
)
)
=T [ dz (@m g 2r/2 exp [-Q -(‘—:;f—‘;ﬁ] exp (¢) (11)

where we have introduced the notation g =g, (I/To) and replaced the variable

of integration I by ¢ . Completing the square in the exponential, this can

be rewritten as

- teo (£-02-Lp
(L) =L, (2n 22 [ de exp [-* =5 ]
~e L
(0,24 i? LT
X exp [-&% et S e i UL’ :l
o= - (03+Lp-I2
=5 eaia toe i

It follows from Eq. (12) that the first moment, (I} will be independent
of W (and equal to the mean pulse height for the largest element), if

L= -% 0,2 (13)

In the same manner, we can write for the second moment

(13y = [dip @MP
te : B
= L0 [dt@no2ne e -“q—:;l-J exp 24) . (14)

w o .
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Completing the square in the exponential, this can be rewritten as

(13) I;.(z“ o')"" J' “ exp '—"i iz_zgk___"
%
Xexp‘-i(zqum' U']
2g3+LP-I8
=L exp[t( 1:3’ ] (15)

Combining Eq. 's (12) and (15), and making use of Eq. (13), we get

I3
S{]:-)}' = exp (o‘tﬂ) (16)

It follows from this that Eq. 's (8) and (9) will be satisfied if
o? = Wn (c)
= 0.40547 W ' (17)
and from Eq. (13) that
L=-0.20273 w (18)
In practice, we would generate the random pulse height, 1, by

generating the random variable, L, , where L, has the gaussian proba-
bility density

(A. In

p, (L,) = @n oo/ exp[ § s A (19)
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and generate I from our random choice of L, by the relationship

L =T exp (L) (20)

With this method of choosing the random pulse height, § , the mean pulse
height will be independent of pulse width, while the second moment of pulse
height will be so dependent on pulse width that, in combination with the depen-
dence of mean pulse count on pulse width [cf. Eq. (4)], the x nature of

the image power-spectrum is insured.

At this point, having completed our definition of a method of gener-
ating the random sample image, we need to prove that this method does
indeed yield an image with a x1 power-spectrum. We take this up in the

next section.




4. Image Power Spectrum

The image generated by the preceding process is a random selection
from an ensemble of possible images, the nature of the ensemble being such
that the image power spectrum presumably behaves as 2 , In this section

we shall show that it does indeed behave in this manner.

The randomly selected image can be written as

7 Ny
stp) = 5 Z oW, 8, )L, : (21)
N-.O M=0

where we have used the dual subscript on I.'. to indicate a separate choice
of I for each pulse of width a, , the choice being random over the.set
M=0 to l\" . Welet p=0,1,2, ..., 1023 denote the ppsitions

in the field-of -view. The quantity N, is a Poisson distributed random
variable with mean value ﬁ' » calculated in accordance with Eq.'s (4)

and (7). The quantity I“' « 18 a log-normally distributed random variable,
calculated from Eq. (20) with L a gaussian random variable selected in

accordance with Eq.'s (17), (18), and (19). The quantity £ is a gaus-

W, ¥
sian distributed random variable selected in accordance with Eq, (1). The

function @(p;W, 1) denotes a pulse of width, W , centered at £ . Thus,

1 if |p-l,| < }a, .
ep;W, ) = (22)
0 if lp-“ > * a' .

To prove that the form of S(p) has a x+ power spectrum, we

start by considering the fourier transform of g . Thus we write

.
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1 +eo
i 26;W,2) = [ dp exp (-ixp) @(p:W, £)
|
' £+a“/2
% dp exp (-inp)
i L-a,/2
; a/2
: = exp (-insg) | dp’ exp (-ix p?)
é -a“/Z
/
i sin (x a_/2)
! =exp (-in £) a, —Ta_J.Z_ ’

which is a random variable inasmuch as L is a random variable.

Based on this, we can write the fourier transform of the randomly

generated image signal, S(p) , as

+te
St) = [ dp exp (-ixp) Sfp)

s N te
4 z Z . 5 J' dp exp (‘-iup)o(p:W-l...-)

H=0 M=0
e Z Z how 806Vt )

=0 M=0

sin (& ay/2)
<3 B L e e, )

(23)




Here the quantities in the curly brackets have been isolated because they
contain all of the random aspects of S(x) . At this point, to develop a

relationship between the random fourier transform and the power spectral

e R A S L e AN St

density, we make use of the fact that the power spectral density function

associated with the random image signal S , namely PSD(x) can be

written as «
PSDx) = 2n [ dx* (8%(x) 5(x°) (25)

From this, it follows that

7 2 sin (& a./2) sin (x* a_/2)
PsD) =2r) ¥ ay ay, [ &x — —
- ]

W=0 W=0

w

Ny Ny :
X<z r (’u.nl\«,-)(exp [i(uzu._-u’l.w'.])) : (26)

M=0 wW=a0

Here we have separated the ensemble average over {". and over Ly,
based on the argument that the intensity and position of each element are
statistically independent. The outermost ensemble average is over the
choice of N, , the random number of elements. Tbo evaluate the ensemble
average over {, in Eq. (26), we first of all note that we are not inter-
ested in spatial frequencies lower than (2 a, , i.e., in values of x any

smaller than
®, =2n/(23,) =n/a, (27)

We shall evaluate the ensemble average over £ by separately treating

o n
the two cases in which (W,M) = (W’,M*), and when it is not. We argue that
the case when (W,M) £(W’,M*) makes a negligible contribution, since in

this case 1". and z','. are statistically independent gaussian random

variables, so that

-12 -
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(exp [i(n 2, ,-% £, .)])

= exp [ -0 +x*?) g2+i (x-»*) T] (28)
Considering that o, =2 a, , it follows that for all values of n of interest

tous, gx?0 is greater than 2n® , and then, since exp (-2m¥)=2,67x10~2 ,
the value of the ensemble average is negligibly small.

This leaves us with only the case where (W,M) =(W’,M*’) as a possible

contribution to the power spectral density. In this case, since £, , and £,

.
are identical, we can write :
{

{Cexp [i(n Ly, n -u"'.,,,...)])]u.m, "= N

= exp (-3 (k-»P o8 +i (x-%’) L] (29)

Because of the relatively large value of g,

, we can treat the gaussian in

Eq. (29) as a delta function, i.e., as (2m 0‘3)1/3 8(x-»’) in evaluating the
»’-integration in Eq. (26).

Thus we get

7 sin 0n 3n/2) 2 N
PSD) = @n¥3 6, ) @R[So7z QW)+ (0)
W=0 =0

where here the ensemble average is only over the choice of N, for each

value of W , and the choice of I, for each value of (W,M) . These
two random features are statistically independent, and factorable in terms

of their effect on the power spectral density as defined in Eq. (30).

Thus,
since

(]‘...> = (1.’)

(31)

- 38 &




i.e., the value of (!“..9) is independent of M , (though as we have set

up the statistics of I , it retains a dependence on W ), we can rewrite

Eq. (30) as

sin (u a /2)]) (32)

e .
PSDi) = (2m)¥% o, ) (8@ N, (1)) [— 73—

=0

Making use of Eq.'s (3), (4), (7), (8), and (9), and the statement immed-
iately following Eq. (12), we can rewrite Eq. (32) as

PSD(x) = (2m)¥3 g, Z a,® 2 b T3 c-¥
w=0

-(W+1)
sin (x a, 2 )-8

A N 2=-(W+l) ]

IS in (x a, 2=(N+1
=(2n)¥3 o, a3 L Z [ [‘m,‘( a:oz-(un) b]. G3)
N=0

It is easy to see that the power spectral density is the sum-.of a set of
seven power spectra each of which is constant at low frequencies, but then
breaks at some ''knee-frequency'', and after that falls off at 12 dB per
octave. Each of the seven successive spectra has a constant region value
that is a factor of two less than the preceding, but a ""knee-frequency"
that is a factor of two higher. Since 12 dB per octave corresponds to a
factor of four fall-off for each factor of two increase in frequency, it is
apparent that at each knee frequency there is some one of the sequence

of seven subsidiary power spectra that is dominant, with the one just pre-
ceding and the one just following reduced by a factor of two. Thus the

sum of all the subsidiary power spectra should vary with frequency as

- 14 -
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« the response at the knee-frequency varies with knee -frequency. This is
‘1 a x? dependence. This situation is indicated in Fig. 1, where we show
; the curvesfor W=0,1,2,...,6 (W=7 is off the graph), and

! the sum of these curves making up the power spectral density. The sum
quite clearly follows the knees of the W-curves, and therefore has the

i n<.dependence.

- 15 -




5. Comments
With the technique defined in the preceding section, we have estab-
lished a method of generating a one-dimensional image with a x1 power

spectrum. Our next objective will be to use this procedure to develop sample

images which we will then filter to simulate the effect of the CIS transfer

function, and after that corrupt with Poisson distributed noise, i.e., re-

placing the filtered intensity at each signal point with a Poisson distributed

random variable with that mean value. We will then subject such a one- i
dimensional image to the nonstationary post-detection compensation pro- {

cedure which we described earlier.

R —
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