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S U M M A R Y

In preparation for a computer simulation demonstration of non-

stationary post-detection compensation, we have concerne d ourselves in

this report with the task of generating a one-dimensional image signal

with a ~~~~~ power spectrum, matching a two-dimensional image with a

pç~~ power spectrum. Using the insight provided by our previous work

on nonstationary post-detection compensation, we formulate the image

as a set of rectangular pulse s of various width s, randomly distributed

across the field-of-view. By relating the distribution of pulse height to

pulse width , we are able to keep the average pulse hei ght independent of

width , but make the second moment of pulse height depend on pulse

width. This allows us to adjust the average pulse count as a function

of width so that the power spectrum is ~~ , and yet maintain that

approximately one-half of the “object region” is empty — a general

characteristic of satellite images, and a key item in exploitation of

nonstationary post- detection compensation.
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1. Introduction

In a previou s report, * we developed the concept of nonstationary

post-detection compensation as a way to take account of the information

available a posteriori in defining a filter for compensating an image. The

nonstationary filter concept as presented there was developed by means of

a combina tion of analyt ic and heuristic techniques. This left the demon-

stration of the concept ’s suitability as a matte r for further study. As a

practical  matter , we believe that the only reall y sound approach to this

• demonstration is an empirical one. Accordingly, we have sought to apply

our nonstationary post-detection compensation concept to a one-dimensional

problem , so as to facilitate computer demonstration.

It is the objective of th is report to define , in suff icient detail to

support subsequent computer programming, a procedure for generating

appropriate one-dimensional images manife sting appropriate target image

statistics. As noted earlier , the key fe ature of a realistic two-dimensional

target image in a reg ion where an inte resting abundance of detail is present

is the fact  that its power-spectrum behaves as ~~ , where ,t. denotes a

spatial frequency, and the power-spectrum is the fully two-dimensional

power-spectrum. In restricting ourselves to treatment of the one -dimensional

image problem , we cause the power-spectrum of interest to take on a

,t-1-dependence. In the next section, we shall discuss the other character-

i st ics we seek in the image pattern we shall generate. In the sections after

that , we sh all pr esent a method of generating such an image , and then will
prove that the one-dimensional image so generated doe s indeed have the

desi red properties.

* D. L. Fried 1 “Analysis of Technique s for Imaging Through the Atmos-
phere , ” Rome Air Development Center Report No. RADC-TR-77- 196 ,
June 1977; Chapter 2 , AD# 8019 ‘482L .
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• 2. Desired Image Properties

First and foremost , the one-dimens ional image we seek to gener-

ate will have a power -spectrum behaving as ~~~ . This leads us to hypo-

thesize that the image should be considered to be formed of a randomly

dispersed set of rectangular pulses , with the numbe r of pulses of each

width and the average intensity for each pulse so chosen that the composite

pattern has a ~t4 power-spectrum. We shall incorporate this hypothesized

formulation of the total image pattern as a sum of rectangular pulses into
our presentation of the other desired image properties.

• We consider the object pattern to be formed of a randomly selected

arr ay of pulses. We expect the pulse sizes to cover a range from some

maximum size , comparable to a bout one-eighth of the total image field-

of-view , to a minimum size . The minimum size is chosen simply fo r

lack of interest in smaller details , w ith the understanding , however , that

there actually is no smallest size cut -off .

We assum e that the number of pulses of each width is a random
varia ble , as is the positioning of each pulse and the intensity of each
pulse. These value s are , however , subject to certain constraints. To
maintain the compa ctness of the total image w ithin the field-of-view , i. e . ,
the desired property that the image appear to be that of a cont iguous whole
rather than of a uniform random distrzbution over the entire available field-
of- view , we assume some constra int on the distribution of positioning of

the pulses. To maintain the concept of the target object as made up of

different  si ze elements of related charac ter istics , we shall assume that

the avera ge intensity (i. c. the pul se height ) associated with each pulse
width be independent of the pulse width. (Howeve r , we all ow the distribu-
tion of pulse height to be a function of pulse width s — providing that the
fu nct ion does not af f ect the average pulse height. )

- 2 -
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The aver a ge number of pulses of each width is constrained by the
need to achieve a k~

1 power-spectrum, but to the extent that the relation-
ship between the mean and second moment of the pulse intensity can be

made a function of the pulse width , we can correspondingly adjust  the mean

number of pulses as a function of pulse width. Our concern, in remarking
on this fact , is that examination of typical real objects of interest  shows

that in the compact region which contains most of a two-dimensional object ,
about three-quarters of the space is entirely empty. For a one-dimensional

object pattern , the corresponding factor would be that about one-half of the
space will be entirely empty. In our choice of the intensity (i. e . ,  pulse

hei ght) distribution for each element size (i.e . , for each pulse width), we

shall choose the distribution so that the second moment implies an avera ge
number of elements (i. e. , pulses) of that size , which whe n “ suthmed” over
all element size s considered results in the desired 50% vacancy.

It should be remarke d that this procedure only specifies the aver age
number of elements of each size . The actual number  of elements will be a

random variable with this average value — except that for the large st ele-

ment, we shall impose the requirement that there is always one , and only

one element. This will not be a random variable .

With the image properties as set forth here , we are now ready to

conside r definition of a procedure for generating a random ly “chosen”
sample image with these properties. This is taken up in the next section. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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3. Sample Image Generation

We propose to consider an image defined on a “field-of-view” of

2’ points (where in practice we shall use n = 10 , 2’ = 1024). We nuin - 4
ber these positions as 0 , 1 , 2 , . . . 2’- 1 • To maintain the compact-

ness of the object , we define a standard deviation , o~ , defining the image

pattern spread, and consider the center point of each pulse making up the

Image to be randomly distributed in accordance with a gaussian probability

distribution w ith this standard deviation and mean value 1 =2(a-t) , Thus ,

if some pulse is centered at L , then £ will be chosen as a gaussian ran-

dom variable with probability density

~~ 
(L) = (2n 2)~’a exp [j  (L~ 7) 3/ a 52 ]  (1)

We will use o~ 2C’’) , or f or n = 10 , a5 - 2 8 256 , and T = 512 . This

means that the nominal width of our object pattern will be spread over about

3 ; = 768 points , or three -quarters of the field-of-view, and that the

pattern will be nominally centered in the middle of our field-of-view.

We shall consider our large st element to be a.pu lse of width

a0 25’~~
) 2’ = 128 (2)

We shall consider a set of pulse widths

= a02w , for W = 0 , 1 , 2 , . . . , n-3 , (3)

so that for the ii = 10 size field-of-view we intend to consider , W takes

8 values (i.e., W 0 ,  1 , 2, . . . , 7 ) .

To Inte rpret the requirement that approximately one-half of the

object area be entirety empty of pulse elements, we need first of all to

define what we mean by the object area. Arguing from insi ght gained from

- 
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a study of sample targets with ~t.1. power spectra , we would suggest that

the object area be considered to be about six time s the size of the largest

element. Wi thin this size reg ion, the target elements take up about one -

half of the space in one -dimension (and one -quarter of the space in two-

dimensions). This means that the object area is 6 a0 . Assuming a power

law dependence for the average number of elements of size a0$~ w , the

aver age number is

(4)

then the average space taken up by all the elements will be

~~~~~~~~~ ~~~~ (a~,2-~1) bM

w_o w.o

= ~ % (b/2)1 (5) *

11.0

But for half the object space, i.e., half of 6 a0 , to correspond to 
~

It follows that

7

. ...r ~~~~~~~~~~~~~ (b/2~~ -1
— L ~~~~~~~ = 

(b/2) -1
11a0

~ l.- (b12) (6)

* This formulation Is strictly valid only where the area density of elements
I. so low that there is a negli gible probability of element overlap. With
our SG% area density objective , this approximation Is not strictly valid.
However , at this density the ove rlap correction factor will be close enough
to unity that we can ignore it — doing so being no greater an approxima-

tion than our “estimation” that the area fill factor should be 50%. The re-
suit of this approximation in Eq. (5) will be that the patterns we generate
will actually have a slightly less than 50% area fill factor. 
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Solving Eq. (6) for b , we get

b = 1 .3333 , (7)

which implies that = ( 1 , 1.3333 , 1.7778 , 2. 3704 , 3. 1605 , 4 .2140 ,

5. 6187 , 7 .4915)

We sha U show in our analysis that for this set of va lue s of N11 to

be compatible with a t-~ one-dimensional power-spectrum, it is necessary

that the ratio of the secon d moment of pu lse hei ght (i. e . ,  of element inte n-

sity) divided by the square of the fi r s t  moment , i. e . ,  ( ( I~)2)/ ( I .~ >3 , depend

on W acc ording to the relationship

a _ c w , ( )

where

c 1.5 (9)

A proof of this will be presente d in the next section. In order to achieve

this ra t io of second moment to f i røt  moment squa red , we shall a ssume

that the pulse hei ght s are r andom va r iables , dist ribute d for each pulse

width according to a log-normal distribution, with the basic parameters

of the distribution dependent on the pulse width.

The log-normal distribution is characterized by two parameters .

The f i rs t  is the logar ithmic standard deviati on , ci., and the second is

the logarithmic mean, E . If I~ obeys a log-normal distribution with

these parameters, then the probability density as socia ted with 
~~ 

is

p, (L,1) (21T a~ )-i/a L~4 exp ~ ~~~~~~~ fT~~) - 3 / OL~~) • (10)

where Is a reference intensity value corre sponding to the median

value of intensity.
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Accordingly, we can write for the f irs t  moment

1 .
(1W >  = $ dlp , (I) I

L

= ~ f d ~ (2ii ai
2)~~

/2 exp [-* 
(L t)2

1 
exp U)  , (11)

where we have introduced the notation .t g9~ (I I I~,) and replaced the variable

of integration I by .~~ . Completing the square in the exponential , this can
be rewrit ten as

+0~

(I a) = 1, (2r~ aL )~
V dL exp [-1 ~ ]

X exp r I *  aL
3 ]

— - (a’~ +t)~-1~= ~ exp 
] (12)

It follow s from Eq. (12) that the f i rs t  moment , (Ia) will be independent

of W (a nd equal to the mean pulse hei ght for the la rgest element ), if

= ..~~~~~2 (13)

In the same manne r , we can write for the second moment

= .1 dl P t (I) I~

= ‘ r d L  (2tT CrLR)4/$ e*p [_
~~ 

~~~~~~ exp (U) . (14)

- 7 -
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Completing the square in the exponential , this can be rewritten as

• (
~~~ ~~L

’
~~~~~

’ s
~~~~~ 

exp 
~ -* 

U - - 
~~

X e~~~ j~ I
= ~~~3 exp ~~ (2 - 

(15)

Combining Eq. ‘a (12) and (15), and making use of Eq. (13), we get

( I s - )
= exp (aL3) (16)

It follows from this that Eq. ‘s (8) and (9) will be satisfied if

~~~~
$ Wb~(c)

= 0.40547 W (17)

and from Eq. (13) that

t -0.20273 w (18)

In practice , we would generate the random pulse height . L11

generating the random variable , L11 , where L 11 has the gaussian proba-

bility density

p.,, (L ,,) = (2n~~’)4/’ exp 1-è , (19)

- 8 -



-~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- - -—

~~~

• and generate I~ from our random choice of L~ by the relationship

(20)

With this method of choosing the random pulse height, I~ , the mean pulse

height will be independent of pulse width, while the second moment of pulse

height will be so dependent on pulse width that , in combination with the depen-

dence of mean pulse count on pulse width [cf. Eq. (4)], the ,rt na ture of

the image power-spectrum is insured.

At this point , having completed our definition of a method of gene r-

ating the random sample image , we need to prove that this method does

indeed yield an image with a ~t-t power-spectrum. We take this up in the

next section.

_ 
- 9 -  
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4. Image Power Spectrum

The Image gene rated by the preceding process Is a random selection
from an ensemble of possible Images , the nature of the ensemble being such
that the Image power spectrum pre sumably behaves as ,~ a. • In this section
we shall show that it does indeed behave in thi s manner.

The randomly selected image can be written as

S(p) = 9 (p;W , LW N ) 1~~~ , (21)
11.0 5.0

where we have used the dual subscript on to Indicate a separate choice
of I for each pulse of width a5 , the choice being random over the.set
M = 0 to N,, . We let p = 0 , 1 , 2 , . . . , 1023 denote the ppsitlons
in the field-of-view. The quantity N,, is a Poisson distributed random
variable with mean value ii,, , calculated in accordance with Eq. ‘s (4)

and (7). The quantity I,, is a log-normally distributed random variable,

calculated from Eq. (20) with L a gaussian random variable selected in
accordance with Eq. ‘a (17), (18), and (19). The quantity £~ , 

Is a gaus-
sian distributed random variable selected in accordance with Eq. (1). The
function 9(p;W, z) denotes a pulse of width, W , centered at £ . Thus,

1 if I P L I  ~~ I a 5 ,

— 9(p;W, t) = (22)
0 if I p - L l > 1 a 5

To prove that the form of S(p) has a ,t-I power spectrum, we

start by considering the f ourier transform of ~ • Thus we write



. - ~~~~-—
- -.- --------- —----- --- _ _

1

- 

~~~~~~~~~~~~~~~~~~~~~~~~~

-

~ (,~;W , L) = j ’  dp exp (-i,tp)9(p ;W, L)

= f dp exp (-i~~p)

a~/2
= exp (- i , tL )  f dp’ exp (_ i~t p ’)

sin ( , t a / 2 )
= exp (-ii L) a5 t a5i~ 

‘ (23)

which is a random variable ina smuch as £ is a random variable.

Based on this , we can write the fourie r transform of the randomly
generated image signal , S(p ) , as 

—

~~t) I dp exp (-i,I p) Sip)

= I~ ~ $ dp exp (-1k p) 9(p;W , L~ •)
11.0 5.0

= 
~~~

‘ 

~~~I5 5 .~ (,~, W ,L5 5 )
5.050

I

= a~ 
5~~~~~

,
a;/2) {)~ I~,,,• ezp (- l i I ~,.)} (24)

w.0 5.0

- 1 1 -
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Here the quantitie. in the curly brackets have been isolated because they

contain all of the random aspects of ~ (,t ) . At this point , to develop a

relationship between the random fourier transform and the power spectral

density, we make use of the fact that the power spectral density functi on

associated with the random Image signal S , namely PSD(x ) can be

written as

PSD(k ) = 2i~ d,~” <~~*(k) ~ (k )  (25)

From this, it follows that

‘ ‘ sin (~ a5 / 2)  sin (st’ a~~/2) k
PSD~it ) = 2ir ’1~ ~~~~~~ 1 1 . f dt  k a 11

11.0 W~..0

N~
x (~~ 

r’ ( I ~.,,5c,5) ( e xp t i ( k L5.,
_ 1

~”L ~ ,.] )  )  . (26)
M.0M’.O

Here we have separated the ensemble average ove r I., , , ,  and over

based on the argument that the intensity and position of each element are

statistically independent. The outermost ensemble average is over the

choice of N.,, , the random number of elements. Tb evaluate the ensemble

average over in Eq. (26), we first ci all note that we are not inter-

este d in spatial frequencie s lower than (2 
~~~~ 

, i. e . ,  in value s of s. any

smaller than

k
0 

= 2TT / (2%) = 1T/ % (27)

We shall evaluate the ensemble average over t~ • by separately treatin g

the two cases in which (W,M) = (W’, M ’) ,  and when it Is not . We arg ue that
the case when (W , M) ~ (W’,M’) make s a ne gl igible contribution , since In

thi. case 1,, • and 1, , ~~ are statistically independent gaussian random

variables , so that

- 
-  

_ -



(exp E i ( k  £5,11—W ~~~~~~

= exp 
~ -*

(ka + k~
3) ~~ + i (,t-~~) Tj (28)

Considering that a1 =2 a0 , it follows that for all values of Pt of interest

to Us , ~~Pt*c~1
$ is greater than Zn5 , and then , since exp (-2i r$) 2 .67xl0-9  ,

the value of the ensemble average is negligibly small.

Th is leaves us with onl y the case where (W , M) (W’, M ’) as a possible
- •  contribution to the power spectral density. In this case , since ~~~ and

are identical , we can wr ite 
-

= exp [-~ (Pt-MI3 a,~
1 + i (i~t -Mi 7] (29)

Because of the relatively lar ge value of 
~ 

, we can tr eat the gaussian in

Eq. (29) as a delta function , i. e. , as (Zn ~~1)V3 6(K-,ti in evaluating the

M’-integration in Eq. (26). Thus we get

sin (Ma/2) ‘~
PSD(k) = (Zir )W3 as ~ (

~‘w ) {  Pt ~~/2 > (30)
11.0 5.0

where here the ensemble average is only over the choice of N,, for each

value of W , and the choice of I.,, • for each value of (W , M ) . These

two random feature s are statistically independent , and factorable in terms

of their effect on the powe r spectral density as define d in Eq. (30). Thus ,

since

< 1 W .’) = (I.,,’) (31)

_ _ _ _ _ _ _ _  

--_ _ _
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i. e. , the value of ( 1 W .’) is independent of M , (though as we have set

up the statistics of I , it retains a dependence on W ), we can rewrite

Eq. (30) as

2, — sin ( M a / 2 )
PSDGt ) = (2n)3” a~ L (a~~ N5 (I.,,”) 

[ Pt ,
~~~ 

]
~ 

(32)
11.0

Making use of Eq. ‘a (3), (4), (7), (8), and (9), and the statement Immed-
iately following Eq. (12), we can rewrite Eq. (32) as

PSD(M ) = (ZTt)W’; ~ ~~~ b~ 1’ c ’5
W.0

— (5 . 1 )

sin (k a0 2 a
2— (W+1 ) 

]

sin (Pt a0 Z— (W4 1)~ •
= (Zn )W3 a5 a05 ~,, 

V z~ Pt 5o 2-C~~ 
1) ] (33)

11.0

It is easy to see that the power spectral density is the sum.of a set of

seven powe r spectra each of which is constant at low frequencie s, but then

break. at some “knee-frequency” , and afte r that falls off at 12 dB per

octave. Each of the seven successive spectra has a constant region value
that is a factor of two less than the preceding, but a “knee-fr equency”
that is a fac tor of two higher. Since 12 dB per octave corresponds to a

factor of four fall-off for each factor of two increase in frequency, It Is

apparent that at ea ch knee frequency ther e is some one of the sequence

of seven subsidia ry power spectra that is dominant , with the one just pre-

ceding and the one ju st following reduced by a factor of two. Thus the

sum of all the subsid iary powe r spectra should vary with frequency as



th~~~~~pense a~~ be 1 u  a r w ~~~ kn~~~~~~quancy This is
a k~ dependence. This situation is indicated in Fig. 1, where we show
the curves for W = 0 , 1 , 2 , . . . , 6 (W = 7 is off the graph), and
the sum of these curves making up the power spectral density. The sum
quite clearly follows the knees of the W-curve s , and therefore has the

‘v 4-dependence.

9.
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5. Comments

With the technique def ined in the pre ceding section , we have estab-
lishe d a method of generating a one -dimensional image with a Pt~ power
spectrum. Our next objective will be to use this procedure to develop sample
image s which we will then filte r to simulate the effect of the CIS transfer
function , and after that corrupt with Poisson distribu ted noise, i.e. , re-
placing the filtered intensity at each signal point with a Poisson distributed
random variable with that mean value. We will then subject such a one -
dimensional image to the nonstationary post-detection compensation pro-
cedure which we described earlier. —

I

-ì
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