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Section 1

BACKGROUND AND PROBLEM STATEMENT

1.1 Introduction and background

The research performed under this grant (DAAG 29-77-G-0093)
is a.continuation of the work done by the author while partici-
pating in the Laboratory Research Cooperative Program (September
1975 - May 1976), Task Order 76-20, Basic Agreement DAHCO4 72-A-0001.
The contents of this report should thus be considered as a comple-
ment to the final report (VandeLinde[l]) for the work just mentioned
above. 1In the rest of this introduction, we give a brief descrip--
tion of the problem considered in [1]. Next, in 1.2, we state the
results obtained therein, and finally, in 1.3, we describe the
specific task undertaken in our research (i.e., under grant #DAAG
29-77-G-0093) .

The following identification problem was considered in [1]:

Let 6 be a vector of unknown parameters [al.,.ap b ...bp] of a

1
linear, single-input single-output system modeled in discrete time

by

y(n)+aly(n~l)+....+apy(n-p)=b1u(n-l)+....+bpu(n-p) (1 1)

z(n)=y(n)+w(n) {1:2)
where the following conditions are assumed to hold:

Assumption 1 The linear system is stationary and the order p

is known;

Assumption 2 The system inputs {u(n)} are free from observation

errors and their statistical characteristics are completely known;

Assumption 3 The polynomials A(x) = 1+a1x+....+apxp and

x+....+bpxp have no common factors;

B(x) = b1+b1




i
;
%

Assumption 4 The inputs {u(n)} and the measurement noise {w(n)}

are both zero-mean, finite-variance, ergodic sequences independent
of each other;

Assumption.S The probability distribution F of w(n) is

given by
F = (1-e)K+eC (1.3)

where K+ a symmetric, zero-mean, finite variance distribution

which is completely specified

C+ a distribution which is only specified as belonging
to SC » the class of all zero-mean, finite variance,
symmetric distributions
e+ a fixed number, 0<e<l , which may not be known.

Typically, however, €<0.2. As C varies over SC r(1.3)

defines a convex set P for possible F .
Using onlvy the measured inputs {u(n)} and measured outputs
{z(n)} , the IDENTIFICATION TASK is to construct an on-line
identification scheme whose performance --- as measured by the
variance (or root-mean-square error) of estimation and speed of
convergence -- is more or less uniform, i.e. robust, over different
distributions for w(n) . Next, in 1.2, we briefly describe the
results obtained in [1l] for this (ROBUST) IDENTIFICATION TASK
(R.I.T.).

In closing, we mention here that the estimation of 6

under Assumptions 1-4 only has been the most widely studied problem
in system identification (Astrém and Eykhoff [2], Eykhoff [3] and
Box and Jenkins [4]). In all such studies, though, the only

concern has been to estimate the parameters with no consideration

of desensitizing identification performance to the distribution of




w(n) . Assumption 5 was added in the problem formulation in [1]
for two reasons. Firstly, it was deemed reasonable to assume
some, but not complete, knowledge of the operating environment.
Additionally, since any parameter estimation scheme is based on
the assumed model for w(n) , such a model (Assumption 5), which
allows for variations in the characteristics of w(n) , is clearly
necessary to carry out the task of constructing an identification
procedure that works more or less uniformly well in a variety of

situations.

1.2 Previous results

The approach in [1l] for the stated R.I.T. is now described.
A review of comparative evaluations of the existing identification

methods (Isermann, Baur, Bamberger, Kneppo and Siebert [5], Saridis [6]

and Sinha and Sen [7]) established that the method of correlation--
henceforth referred to as CR -- has the best performance as an
identification scheme for the parameter estimation of systems of
(1.1) and (1.2) under Assumption 1-4. Additionally and more impor-
tantly, while the {w(n)} wused in [5],[6] and [7] were quite
different, CR was uniformly the best method in each study. Given
these facts, the reasoning in [l] was straightforward -- with the
addition of Assumption 5, CR could still be expected to have the

best performance for a particular F , although for different F

in P , the performance of CR itself would vary. Thus, desensitiz-
ing the performance of CR to the distribution of w(n) without
incurring a loss of its existing advantages would provide a

solution to the ROBUST IDENTIFICATION TASK. Before describing the

modification of CR done in [1], we briefly recapitulate the

essentials of the method.




With the assumption of ergodicity, we have the autocorrelation

of the input given by
N
R ,(m = E[u(n)u(n-m)] = lim 1 ] u(n)u(n-m) (1.4)
N-e n+l n=0

and the crosscorrelation between the output and the input given by

N
R ,(m) = E[z(n)u(n-m)]= lim 1 ] z(n)u(n-m) (1.5)
N+ N+1 n=0

Since E[w(n)u(m)]=0 for all n,m, we also have

(m) E[z(n)u(n-m)]

R
zu

Ely(n)u(n-m) ]J+E[w(n)u(n-m)] (1.6)

E[y(n)u(n-m)]

Ryu(m)

The convolution equation

Rwﬁm igohanﬁmm) (1.7)

relates Ryu to R, . through the impulse response {hk} of the

system. If the input autocorrelation is known, then (1.7) provides

estimates of the impulse response from estimates Rzu(m) of the
crosscorrelation since Rzu(m)=Ryu(m) from (1.6). 1In particular,
using a white {u(n)} , for which Ruu(n)=0 for all n#0 , the
{ﬂk} are simply obtained from

RZU e

h, = (1.8)
k Koo 0)

The parameters [al....ap bl....bp] can then be estimated from the
{ﬁk} by a least squares procedure -- see for instance, p.32,
Section 1 of [1].

The modification of CR in [1l] was a non-linear estimation of
the crosscorrelation instead of the usual linear scheme. We give

below the general non-linear form, of which the linear scheme is

just a special case with g(°*) as the identity function:




R ,(mn)=R_(m,n-1)~A(n)g[R,,(m,n-1)-a(n)u(n-m)] (1.9)

With n=0'1,2,oo.

A(n)=1/n+1

~

Rzu(m,-l)=0
and
g(x)=s;x |x|<d1
=s,d;sgn x 4, < |x|<d2 (1.10)
=s,(x - H sgn x) d2i1x|<H

=0 |x|>H

Szdz’sldl)

H = (
S
2

51>0'52i0'd2>d1>0 .
(sl,sz,dl,dz) were chosen as functions of the parameters of K ,
the specified part of F . As with the unmodified CR,
[al....ap bl....bp] were then estimated from the {azu(m)}
Extensive computer simulations were carried out in [1],
with 20 different distributions for w(n) , seven sets of values
for the parameters (sl,sz,dl,dz) and three linear processes to
study the performance of (the modified) method of correlation for
different w(n) using these non-linear estimators of Rzu(m) .
One of the seven sets of values of (Sl'SZ'dl'dZ) corresponded to
the linear estimator (i.e. g(x)=x for all x), which is the common
method of estimating crosscorrelations on-line. The result of [1]
showed quite clearly that identification of [al....ap bl""bp]

using the non-linear estimates of Rzu was indeed ‘robust' in the

sense of better and more uniform performance than CR for such




varying w(n) . However, some important work remained to be done.
We next describe the specific task which arises naturally from

the work of [1l] and which we have undertaken in our research.

1.3 Problem statement

There is a primary need, to show for any estimation scheme,
that the procedure is consistent in estimating the unknown para-
meters. Although the simulations in [1] did not yield any diver-
gent results, the consistency of the non-linear estimators of
R (given by (1.9)) were not analytically shown. This is the

zu
specific task undertaken in this research: to (analytically)

demonstrate the consistency of the 'robust' estimators of Rzu

as defined by equation (1.9).




Section 2

CONSISTENCY OF SOME ROBUST ESTIMATORS

OF CROSSCORRELATION

2.1 Notation, assumptions and preliminary results

For notational convenience, we re-write equation (1.9) as
X (n)=x(n-1)-A(n)g[x(n-1)=-z(n)u(n-m)] (2.1)
with n=0,1,2,...
x(-1)=0
A(n)=1/n+l
and g(*) is defined by (1.10)
Clearly, x(n) represents azu(m,n) . Note that m can be
supressed in the index of x , since it is fixed for a set of
iterations.
To prove the consistency of (2.1), we need two additional

conditions (besides Assumptions 1-5):

Assumption 6 {u(n)} 1is an independent, binary sequence;

Assumption 7 g(+) 1is the so-called 'soft-limiter' function,

defined as

g(x) = x |x|] <a

1

(2.2) |
d;sgn ix] = &

1

1

Clearly, equation (2.2) is a special case of equation (1.10) with
sl=1,sz=0,d2=w . As before, dl is chosen as a function of para-
meters of K , the known part of the distribution for w(n) .
Remark: Since the method of correlation is most often implemented
during normal operation with an independent, binary sequence as the

common choice of test signal (Sage and Melsa [8]), Assumption 6 is

not an unrealistic condition.




: Our method of proof needs, not surprisingly, results regarding
'% properties of the probability distribution of z(n)u(n-m) for
systems of (1.1) and (1.2) under Assumptions 1-7. We consider

: : first the more general case with Assumption 6 replaced by Assump-

tion 6-a:

Assumption 6-a {u(n)} 1is an identically distributed, independent
sequence with a zero mean symmetric distribution (not necessa;rily
binary).

Then for zero initial conditions and u(n)=0 for n<0 , we

may write

y(n) = z ho5u) (2.3)

for the natural, undisturbed output of a system defined by equation
(1.1). Thus,
n-1

z(n)u(n-m)=[ J h__.u(j)+w(n)Ju(n-m)
j=o0 ™7

= ) h__.u(j)u(n-m)+w(n)u(n-m)+h u2(n-m) (2.4)
j=0 -3 m

Term I Term IIX Term III
We now state our first result:
Lemma 1: If {u(n)} is independent, zero-mean and symmetrically
distributed, the distribution of 2z(n)u(n-m) given wu(n-m) is
symmetric around its mean of hmu2(n-m) s

We write [A|B] to denote a random variable A given a

random variable B.




Proof: The distribution of [z(n)u(n-m)|u(n-m)) is simply the
distribution of z(n) scaled by a constant (= u(n-m)) . So we
consider equation (2.4) with u(n-m) now a constant.

Term I now is just a sum of zero-mean, independent random
variables with (identical) symmetric distributions, and so is
itself a random variable with a zero-mean and a symmetric distri-
bution (Papoulis [9]). Term II is also a zero-mean, symmetrically
distributed random variable, since w(n) is such and the mean
and symmetry (of a random variable) are unaffected under multipli-
cation by a constant. Also, Term II is independent of Term I.

Term III, however, is a constant, since u(n-m) is given,
and not a random variable.

The stated result (Lemma 1) immediately follows.

b Remark: Lemma 1 states that

E[z(n)u(n-m) |u(n-m) I=h_u® (n-m) (2.5)

where E[°*] denotes the expectation operator. Remembering that

E[A]=EB[E[A|B]] , where the outer expectation EB is over B ,

we may check our result (of Lemma 1) by computing E[z(n)u(n-m)]

from Eu[E[z(n)u(n—m)lu(n-m)]] . Thus,

E[z(n)u(n-m)]

E [Elz(n)u(n-m) [u(n-m)]]

]

Eu[hmuz(n—m)] (from Lemma 1)

hmEu[uz(n—m)]

hmRuu(O) (2.6)

We have already seen that Rzu(m)=E[z(n)u(n-m)] = hmRuu(O) for
white (zero-mean, independent) {u(n)} , so our result checks.

Henceforth, we refer to hmRuu(O) by R .




If we impose the more restrictive Assumption 6 instead of ;
6-a, that is, {u(n)} is now an independent, binary sequence,
the following result is obtained:
Lemma 2: If {u(n)} is an independent, binary sequence, z(n)u(n-m)
has a symmetric distribution around a mean R(=hmRuu(0)) -
Proof: From Lemma 1, the distribution of [z(n)u(n-m)|u(n-m)] is
symmetric around its mean hmuz(n"m) 5

Since {u(n)} is binary, uz(n)=constant for all n . In

e Lt arh il e Al

other words,

i

R_(0) = E[u®(n)]

uu
constant (2.7)

]

]

uz(n—m) , in particular

That is, the distribution of [z(n)u(n-m)|u(n-m)] is symmetric

around a mean hmRuu(O)(=R) which is independent of u(n-m) ,

the conditioning random variable. Thus, our result follows.
Remark: We could as well prove Lemma 2 by directly considering
equation (2.4).

Term I is the sum of products of pairs of independent,
identically distributed random variables which are zero-mean and

symmetric and so is itself zero-mean, symmetrically distributed.

Similarly, Term II is also a zero-mean, symmetrically dis-
tributed random variable. The sum of Terms I and II is still
zero mean, symmetrically distributed. Since Term IIJ, hmuz(num) v
is a constant for binary {u(n)} , Lemma 2 follows.

We require one more preliminary result before proceeding to

the proof of consistency for 2.1:




S ————

Lemma 3: For {u(n)} independent and binary,

El[g[R-z(n)u(n-m)]] = 0 (2.8)
Proof: The distribution of 2z(n)u(n-m) is symmetric around its
mean R (Lemma 2). Define a new random variable Q =R-z(n)u(n-m).
Clearly, Q has a symmetric distribution about a mean of zero.

Now ,

E[g[R-z(n)u(n-m)]]

]

[ g[R-z(n)u(n-m)] dp, (2.9) w

where DZ is the distribution of =z(n)u(n-m) . Substituting Q

for [R-z(n)u(n-m)] , we can write 3

Elg[R-z(n)u(n-m)]]

= | s(@an (2.10)

where DQ is the distribution of Q .

Since g(-) is an odd, bounded continuous function, our desired
result follows.
We are now in a position to state and prove our main result,

which we do in 2.2.

2.2 Proof of Consistency

The principal result of our work may be stated as:

Theorem

Given a linear system described by equations (1.1) and (1.2)
under Assumptions 1-6, equation (2.1) (or (1.9)) defines a
crosscorrelation estimate that is consistent, with convergence

in the mean square. for g(*) defined by Assumption 7 .




14

In other words, under the assumed conditions,

A m.s.
m m
Rzu( ,n) —_— RZU( )
m.s. .
where R denotes convergence in mean sguare.

Proof: We essentially follow the method of Robbins and Monro [10].

Recalling equation (2.1),
x(n) = x(n-1) - A(n)glx(n-1)-z(n) u(n-m)]

0= 01 2 e
x(-1) =0
©o
1 R 2 2
=7 ) Bin} = g0 B nY <
Remembering that Rzu(m) = hm Ruu(O) = R , we set

x(n) = R = [x(n-1) - R] - A(n)g[x(n-1)-2z(n)u(n-m)]
Squaring both sides,
[x(n)-R1% = [x(n-1)-R1% + a%(n) (g(x(n-1)-z(n)u(n-m] }°

-2 A(n) [x(n-1)-Rlg[x(n-1)-z(n)u(n-m)]

Taking expectations w.r.t. x(n-1),

E{{x(n)-R}?|x(n-1) =[x (n-1) -R] 2

+ 32 (M E[{g[x(n-1)-z(n)u(n-m)]}2 |x(n-1)]

-2 A(n) [x(n-1)-R]E[g[x(n-1)-z(n)u(n-m) ] |x(n-1)]

Sset E[g[x(n-1) - z(n)u(n-m)]| x(n-1)] = B[x(n-1)]
There are three cases to be considered:

(a) x(n-1)=R: B[x(n-1)] = 0 by Lemma 3.

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)
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(b) x(n-1)>R: Point by point [x(n-1)-z(n)u(n-m)]>[{R-z(n)u(n-m)],
and since g(-) is an odd, bounded, continuous, monotonically
increasing function,

. BIx(n-1) > 0 . (2.16)
t

(c) x(n-1)<R: Point by point [x(n-1)-z(n)u(n-m)]<[R-z(n)u(n-m)],

and for reasoning similar to that in (b) above,

B[x(n-1)] < 0 . (2.17)

f Setting E[x(n)-R]2 = B(n) , and using (2.14), we obtain

B(n)=B(n-1)+AZ () EEMg [x (n-1) -z (n) u(n-m) 1} 2 |x (n-1)] ]

-2 A(n)E[{x(n-1)-R}B [x(n~-1)]] (2.18)

Set E[E[{g[x(n-l)—z(n)u(n-m)]}2}x(n—l)]] = f(n)

and E[{x(n-1)-R}B[x(n-1)11 = e(n) .

e s o g e

Since we are only considering distributions of finite variance, 3
f and g(<) is odd, continuous and bounded, it follows [10] that

0<f(n)<» . Also, because of (2.15), (2.16) and (2.17),

e(n) >0 . |
We may re-write (2.18) as

B(n)=B(n-1) + A%(n)£(n)-2 A(n)e(n) (2.19)

Summing over (2.19), we get
' n-1 2 n-
B(n) = B(1) + J A“(EG) -2 ] A el)) (2.20)
j:l Jj=
Note first that with f(n) > 0 , and ]} Az(j) < ® ,
j=1

ve have a2(j)£(§) < = from [10].

1
j=1
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Since B(n) > 0 , from (2.20) we have

n-1 o
I A eld) £ 222 1B + T AP(HIELH)) < @ (2.21)
i=1 j=1

o0
Hence, the positive term series )  A(j)e(j) converges.
i=1

I

Thus, lim B(n) = B(1) + § a%()£(§) - 2

) A(deld
n->o J=l Jj=

1

B exists. and B > 0 .

Since A(n) = 1/n+l , we have from [10],

lim B(n)=B=0 .

n->

j.e. 1lim E[x(n)-R1% = o

n->«

A
r m,n) - in m uare .
or, Rzu( ,) Rzu(m) ean square

Remark l: For consistency, we only have to show that

lim P[lﬁzu(m,n)-Rzu(m)|>e] = 0 , i.e. convergence in probability.
n->o

A
Our theorem demonstrates mean square convergence of Rzu(m,n) to

Rzu(m), and since convergence in mean square implies convergence
in probability, we have established a stronger form of convergence
than is required for consistency.

Remark 2: Some of the results of this section have been reported
earlier (Basu and VandeLinde [11]), and details of all results

(of Section 2) can be found in Basu [12].
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Section 3

CONCLUDING REMARKS

The principal result of this research has been to show the
consistency, with convergence in mean square, of the robust
estimator of crosscorrelation described in [1]. There are
several important issues, however, that remain to be addressed.

Clearly, the first obvious undertaking would be relaxations
of Assumptions 6 and 7.

Specificall,, one might attempt to prove consistency under

the following sets of assumptions:

(a) Assumptions 1-5, 6-a and 7

(b) Assumptions 1 through 7, with 6-a replacing 6
(c) Assumptions 1 through 6

(d) Assumptions 1 through 5 and 6-a

(e) Assumptions 1 through 5 alone

We have listed the above sets (a)-(e) in increasing orders
of generality (of problem formulation) and of difficulty (of
solution). We should mention, though, that none of these tasks
are trivial. 1In fact, our conjecture is that, for these possible
relaxations of Assumptions 6 and 7, we might have to pursue a
different approach to prove consistency. Recently, in 1977,
Ljung [13] and Kushner [14] have proved convergence of certain
classés of recursive stochastic algorithms using ideas of
stability and weak convergence theory, respectively. While their
results are not directly applicable to our case, their methods
might still be of some benefit -- at the very least, they provide

two alternative avenues of approach.




e

In a more general regard, it would be desirable to derive
asymptotic propefties of the recursive estimator of Rzu -—
namely, does the distribution of {ﬁzu(m,n)} converge to
some stable distribution, hopefully normal? Asymptotic normality
would provide the considerable benefit of an explicit expression
for the asymptotic variance of the estimator, enabling in turn
a more analytical treatment of the robust identification
problem (see, for example, Appendix B of [1] for general ideas
of precisely formulating a robust problem). Our recursive
scheme, unfortunately, has an inherent lack of tractable
mathematical structure for tackling such questions. We note
that equation (2.1) defines a sequence {x(n)} which is not
stationary, not Markovian, nor does it have any martingale
properties. It is small consolation to add that all general,
stochastic, recursive algorithms operating on dependent data
suffer from similar drawbacks and to date, no results have
been obtained with regard to asymptotic distributions of such
schemes.

Other questions of interest are choice of dl (for
assumption 7) -- and choice of (Sl’sz'dl'dz) in the more
general case -- for improving rate of convergence. Lastly,
but not least, is the question of the ‘'best' transformation to
use to obtain the estimates {gi,bi} from the {ﬁi} . For
noisy {ﬁi} , as is obviously the case here, this is quite an

open question.
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