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Section 1

BACKGROUND AND PROBLEM STATEMENT

1.1 Introduction and background

The research performed under this grant (DAAG 29-77-G-0093)

is a continuation of the work done by the author while partici-

pating in the Laboratory Research Cooperative Program (September

1975 - May 1976), Task Order 76-20, Basic Agreement DAHCO4 72—A-0001.

The contents of this report should thus be considered as a comple-

ment to the final report (VandeLinde [1)) for the work just mentioned

above. In the rest of this introduction , we give a brief descrip-

tion of the problem considered in El). Next, in 1.2, we state the

results obtained therein, and finally , in 1.3, we describe the

specific task undertaken in our research (i.e., under grant *DA.AG

29—77—G—0093)

The following identification problem was considered in [1]:

Let 0 be a vector of unknown parameters (a1...a~ b1
...b~] of a

linear , single-input single-output system modeled in discrete time

by

(1 1)

z(n)=y(n)+w(n) (1.2)

where the following conditions are assumed to hold :

Assumption 1 The linear system is stationary and the order p

is known;

Assumption 2 The system inputs {u(n)) are free from observation

errors and their statistical characteristics are completely known;

Assumption 3 The polynomials A(x) = l+a1x+.. . .+ax~ and

B(x) = b1+b1x+....+b~x~ have no common factors;
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Assumption 4 The inputs {u (n) I and the measurement noise {w(n) I
are both zero-mean, finite-variance , ergodic sequences independent

of each other ;

Assumption 5 The probability distribution F of w(n) is

given by

F = (1—e)K+cC (1.3)

where K~ a symmetric , zero-mean , fini te variance dis tribution

which is completely specified

C-~ a dis tri bution whic h is only specifie d as belon ging

to SC 
, the class of all zero-mean , finite variance ,

sym metric dis tri butions

c~ a fixe d number , O<c<l , which may not be known.
Typically, however , c< 0.2. As C varies over S~ , (1.3)
defines a convex set P fo r possible F

Using onl’, the measured inputs {u(n)} and measured outputs

{z(n)} , the IDENTIFICATION TASK is to construct an on-line
identification scheme whose performance --- as measured by the

variance (or root-mean-square error) of estimation and 3peed of

conve rgence -— is more or less uniform , i.e. robust, over d ifferen t

dis tributions for w (n) . Next, in 1.2, we br ief ly describe the

results obtained in [1] for this (ROBUST) IDENTIFICATION TASK

(R.I.T.).

In closing , we mention here that the estimation of 0

under Assumptions 1-4 only has been the most widely studied problem

in system identification (Aström and Eykhoff t2] , Eykhoff (3 1 and

Box and Jenkins (4]). In all such studies, though , the only

concern has been to estimate the parameters with no consideration

of desensitizing identification performance to the distribution of
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w(n) . Assumption 5 was added in the problem formulation in [1]

for two reasons. Firstly, it was deemed reasonable to assume

some , but not comple te, knowledge of the operating environment.

Additionally, since any parame ter estima tion scheme is based on

the assumed model for w (n) , such a model (Assumption 5), which

allows for vari ations in the charac teris tics of w (n) , is clearly

necess ary to carry out the task of construc ting an iden tifica tion

proce dure that works more or less uniformly well in a vari ety of

situations .

1.2 Previous results

The approach in [1] for the stated R.I.T. is now described .

A review of comparative evaluations of the existing identification

methods (Iserrnann , Baur , Bamberger , Kneppo and Siebert (5], Saridis [ 6]

and Sinha and Sen [7]) established that the method of correlation—-

hencefor th referre d to as CR —— has the best performance as an

iden tifica tion scheme for the parameter es timation of sys tems of

(1.1) and (1.2) under Assumption 1-4. Additionally and more impor-

tantly, while the {w(n) I used in [5], [6] and [7] were quite

differen t, CR was unifor mly the bes t method in each study. Given

thes e fac ts , the reasonin g in (1] was strai ghtforward -- wi th the

addition of Assumption 5, CR coul d still be expec ted to have the

best performance for a particular F , although for different F

in P , the performance of CR itself would vary . Thus, desensitiz-

ing the performance of CR to the distribution of w(n) without

incurring a loss of its existing advantages would provide a

solution to the ROBUST IDENTIFICATION TASK. Before describing the

modifica tion of CR done in (1) ,  we briefly recapitulate the

essentials of the method .
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With the assum ption of ergodici ty, we have the autocorrela tion

of the input given by
N

R
~~

(m) = E(u(n)u(n-m)] = u r n  1 ~ u(n)u(n-m) (1.4)
N-~~ n-Fl n=O

and the crosscorrelation between the output and the input given by
N

R~~~
(In ) = E[z(n)~i(n—m)]= lim 1 ~ z(n)u(n—m) (1.5)

N-~~ N-Fl n=~O

Since E(w(n)u(m)]=O for all n ,m, we also have

R (m) = E[z(n)u(n-m)]

= E(y(n)u(n-m)]+E[w(n)u(n-m)] (1.6)

= E[y(n)u(n-m)]

= R
~~~

(m)

The convolu tion equation

R (m) 
n~ O 

hn Ruu (m_n) (1.7)

relates 
~~~ 

to 
~~~ 

through the impulse response {h
k

} of the

system. If the input autocorrelation is known , then (1.7) provides

estimates of the impulse response from estimates R
~~~

(m) of the

crosscorrelation since R
~~

(m)=R (m) from (1.6). In particular ,

usin g a whi te ~u(n)} , for which R (n)=0 for all n�0 , the
{hk} are simply obtained from

R (k)zu
k = R ~(0)uu

The parameters (a
1... .a b1. . . .b] can then be estimated from the

{ h
k
} by a least squares procedure --- see for instance , ~•32 ’

Section 1 of [1].

The modification of CR in [1] was a non-linear estimation of

the crosscorre lation ins tead of the usual linear scheme . We give

below the general non-linear form , of which the linear schem e is

just a special case with g(’) as the identity function :
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~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (1.9)

with n=O,l ,2...

A(n) 1/n+l

and

g(x)=s1x x)<d1

=s1d1sgn x d1 < xI<d 2 (1.10)

=s2(x 
- H sgn x) d2~~Ix I<H

=0 xJ>H

s d -s d
H = (2 2 1 1)

s1>0,s2<0,d2>d1>O

(s1,s2,d1,d2) were chosen as functions of the parameters of K

the specified part of F . As with the unmodified CR,

[a . . . .a b . . . .b ] were then estimated from the {R (m) } -1 p 1  p zu

Extensive computer simul ations were carrie d out in [1],

with 20 different distributions for w(n) , seven sets of values

for the parameters (s1,s2,d1,d2) and three linear processes to

study the performance of (the modifie d) method of correla tion for

different w(n) using these non-linear estimators of Rzu (m)

One of the seven sets of values of (s1,s2, d1,d2) corresponded to

the linear estimator (i.e. g(x)=x for all x), which is the common

method of estimating crosscorrelations on—line. The result of (1]

showed qui te c learly that iden tifica tion of (a1.. . .a b1. . . .b]

using the non-linear estimates of Rzu was indeed ‘ robust ’ in the

sense of better and more uniform performance than CR for such
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varying w(n) . However, some important work remained to be done.

We next describe the specific task which arises naturally from

the work of (11 and which we have undertaken in our research.

1.3 Problem statement

There is a primary need , to show for any estimation scheme ,

that the procedure is consistent in estimating the unknown para—

meters. Although the simulations in [1) did not yield any diver-

gent results , the consistency of the non-linear estimators of

Rzu (given by (1.9)) were not analytically shown. This is the

!pecific task undertaken in this research: to (analytically)

demons trate the consis tency of the ‘robus t ’ es timators of 
~~~

as defined by equation (1.9).



Section 2

CONSISTENCY OF SOME ROBUST ESTIMATORS

OF CROSSCORRELATION

2.1 Notation, assumptions and preliminary results

For notational ~.~onvenience , we re—write equation tl.9) as

x(n)=x(n—l)—A(n)g[x(n—1)—z(n)u(n—m) ] (2.1)

with n=O ,1,2,...

x (—l)=O

A(n)=1/n+1

and g(•) is defined by (1.10)

Clearly, x (n) represen ts R
~~~

(m
~
n) . Note that m can be

supressed in the index of x , since it is fixed for a set of

iterations.

To prove the consistency of (2.1), we need two additional

conditions (besides Assumptions 1-5):

Assumption 6 {u(n)} is an independent , binary sequence;

Assumption 7 g(.) is the so-called ‘soft—limiter ’ func tion ,

define d as

g(x) x l x i <

(2.2)
= d1sgn ~ 

Jx~ >

Clearly , equation (2.2) is a special case of equation (1.10) with

s1=l ,s2=O ,d2=~ . As before , d1 is chosen as a function of para-

meters of K , the known part of the d istribution for w(n) -

Remark: Since the method of correlation is most often implemented

durin g norm al operation wi th an inde penden t, binary sequence as the

common choice of test signal (Sage and Melsa (8]), Assum ption 6 is

not an unrealistic condition.



Our method of proof needs , not surprisin gly, results regarding

properties of the probability distribution of z(n)u(n-m) for

systems of (1.1) and (1.2) under Assumptions 1—7. We consider

firs t the more general case with Assumption 6 replaced by Assump -

tion 6-a:

Assumption 6-a {u(n)} is an identically distributed , independent

sequence with a zero mean symmetric distribution (not necessarily

binary) -

Then for zero initial conditions and u(n)=0 for n<0 , we

may wri te

n- 1
y(n) = ~ h~~ .u(j) (2.3)

j=0

for the natural , undis turbed output of a sys tem define d by equation

(1.1). Thus,

n- 1
z(n)u(n-m)=1 ~ h~_ .u(j)+w(n))u(n-m)

j=0 ~

n-l 2
= ~~ h - .u(j)u(n-m )+w(n)u(n-m)-i-h u (n-rn) (2.4)m

j~~(n-m)

Term I Term II Term III

We now state our f irst resul t:

Lemma 1: If ~u(n)} is independent, zero-mean and symmetrically

dis tributed , the distribution of z(n)u(n-m) even u (n-m) is

symmetric around its mean of hmu
2(n_m ) .

We write [Af B] to denote a random variable A given a

random variable B. 
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Proof: The distribution of tz(n)u(n-rn)fu(n-m)) is simply the

distribution of z(n) scaled by a constant (= u(n-m)) . So we

consider equation (2.4) with u(n-m) now a constant.

Term I now is just a sum of zero-mean , independent random

variables with (identical) symmetric distributions, and so is

itself a random variable with a zero—mean and a symmetric distri-

bution (Papoulis ( 9 1) .  Term II is also a zero-mean, symmetrically

distributed random variable, since w(n) is such and the mean

and symmetry (of a random variable) are unaffected under multipli-

cation by a constant. Also, Term II is independent of Term I.

Term III, however , is a constant, since ü(n-m) is given,

and not a random variable.

The stated result (Lemma 1) immediately follows.

Remark: Lemma 1 states that

E[z(n)u(n_m)}u(n_m)]=hmU
2(n_m) (2.5)

where E [~ ] denotes the expectation operator. Remembering that

E[A]=E B(E [Af B]] , where the outer expectation EB is over B ,

we may check our result (of Lemma 1) by computing E(z(n)u(n-m)]

from E
~~
(E[z (n)u(n_m)fu(n_m)]] . Thus,

E[z(n)u(n—m)] = E
~~
[E(z(n)u(n-m)fu(n—m)]]

= Eu (hmU
2(n_m) ] (from Lemma 1)

= hmEu [u 2(n_m))

= h R (O) (2.6)

We have already seen that Rzu (m)=EEz(n)u(n_Tn) ) = hmRuu (O) for

white (zero—mean , independent) ~u (n ) } , so our result checks.

Henceforth , we refer to hmRuu ( O) by R

L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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If we impose the more restrictive Assumption 6 instead of

6—a , that is, {u(n)} is now an independent, binary sequence,

the following result is obtained:

Lemma 2: If {u(n)} is an independent, binary sequence, z(n)u(n’-m)

has a symmetric distribution around a mean R (=hmR u (O))

Proof: From Lemma 1, the distribution of [z(n)u(n-m)Ju(n-m) ] is

symmetric around its mean hmu
2(n

~
xn)

Since {u (n)I is binary , u2(n)=constant for all n . In

other words,

R (O) = E[u2(n)]

= constant (2.7)

= u2(n-m) , in particular

That is, the distribution of tz(n)u (n-m) fu(n—m )] is symmetric

around a mean hmRuu (O) (=R) which is independent of u(n-m)

the conditioning random variable. Thus, our result follows.

Remark: We could as well prove Lemma 2 by directly considering

equation (2.4).

Term I is the sum of products of pairs of independent,

identically distributed random variables which are zero-mean and

symmetric and so is itself zero-mean , symmetrically distributed.

Similarly, Term II is also a zero-mean , symmetrically dis-

tributed random variable. The sum of Terms I and II is still

zero mean, symmetrically distributed . Since Term II] hmu
2(n

~
m) ,

is a constant for binary {u (n)) , Lemma 2 follows.

We require one more preliminary result before proceeding to

the proof of consistency for 2.1: 
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Lemma 3: For {u(n)} independent and binary,

E[g[R—z(n)u(n—m)]) = 0 (2.8)

proof: The distribution of z(n)u(n in) is symmetric around its

mean R (Lemma 2). Define a new random variable Q R-z(n)u(n-m).

Clearly, 0 has a symmetric distribution about a mean of zero.

Now ,

E[g[R-z (n)u(n-m)]]

= / g (R—z(n)u(n—m) ] dDz (2.9)

where D
~ 

is the distribution of z(n)u(n-m) . Substituting Q

for [R--z (n)u(n—m) 1 , we can write

EEg [R-z(n)u(n~-m)))

= f g( Q ) dD ( 2. 1 0 )

where DQ is the distribution of Q

Since g(•) is an odd, bounded continuous function, our desired

result follows.
I

We are now in a position to state and prove our main result,

which we do in 2.2.

2.2 Proof of Consistency

The principal result of our work may be stated as:

Theorem

Given a linear system described by equations (1.1) and (1.2)

under Assumptions 1-6 , equation (2.1) (or (1.9)) defines a

crosscorrelation estimate that is consistent, with convergence

in the mean square. for g() defined by Assumption 7

~~~~~~~~~~~~~~~~~~~~~ .4,—__t__ - ~~~~~~
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In other words, under the assumed conditions,

~~~~ R (m)

m. s.where .... ÷ denotes convergence in mean square.

Proof: We essentially follow the method of Robbins and Monro [10].

Recalling equation (2.1),

x(n) = x(n—1) — A(n)gEx(n—1)—z(n) u(n—m)] (2.11)

n = 0 ,1,2,...

x(—1) = 0

A(n) 
~~~ n~l 

A (ri) = 
n~l 

A2(fl) <

Remembering that Rzu (m) = h~ Ruu (O) = R , we set

x(n) — R [x(n—1) — R] — A(n)g [x(n—l)—z(n)u(n—m)] (2.12)

Squaring both sides,

[x (n)—R]2 = [x(n—l)—R] 2 + A2(n) {g[x(n—1)—z(n)u(n—m] ~2

—2 A(n) [x(n—1)—R]g (x(n—l)—z (n)u(n—mfl (2.13)

Taking expectations w.r.t. x(n-l),

E[{x(n)—R }2 fx (n—1)]=[x(n—l)—R]
2

+ A2(n)E [{glx(n—l )—z(n)u(n—m)J} 2 fx(n— 1)1

—2 A (n) (x(n—1)—R]E (g [x(n—l)—z(n)u(n—m)lfx(n—1)] (2.14)

Set EEg (x(n—1) — z(n)u(n—m))J x(n—l)] = 8[x(n—l)1

There are three cases to be considered:

(a) x(n—l)=R: B[x(n-1)J = 0 by Lemma 3. (2.15)

_ _ _ _ _ _ _ _ _
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(b) x (n-l)>R: Point by point (x(n-1)-z(n)u(n—m))>[R-z(n)u(n-m)],

and since g(- ) is an odd, bounded , continuous, monotonically

increasing function,

8[x (n—l) > 0 . (2.16)

(C) x (n-l)-< R: Point by point (x(n—l)—z(n)u(n-m)J-< [R-z(n)u(n—m)J,

and for reasoning similar to that in (b) above,

S(x (n—l)] < 0 . (2.17)

2Setting E(x(n)-R] = B (n) , and using (2.14), we obtain

• B (n)=B (n—l)+A 2(n)EIE[{g(x(n--l)—z(n)u (n—m)]}2fx (n—1)]]

—2 A(n)E[(x(n—1)—R}~~[x(n—1)]] (2.18)

Set E[E({g[x (n_1)_z(n)u(n_m)]}2~ x(n-l)]] = f(n)

and E[~x (n—l)—R}8(x (n—1)11 = e(n)

Since we are only considering distributions of finite variance,

and g(~ ) is odd , continuous and bounded, it follows [10] that

- Also, because of (2.15), (2.16) and (2.17),

e(n) > 0 .

We may re—write (2.18) as

B(n)=B(n—l) + A2(n)f(n)—2 A(n)e(n) (2.19)

Summing over (2.19), we get
- 

n-l n-l
B(n) = 8(1) + ~ A2(j)f(j) — 2 ~ A(j) e(j) (2.20)

j=l j=l

Note first that with f(n) > 0 , and ~ A2(~~) < ~~

we have ~ A2(j)f(j) < ~ from [10]
j=l

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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Since B(n) > 0 , from (2.20) we have

n-i Co

~ A (j) e(j) < 1/2 (B(l) + ~ A2(j)f(j)] < (2.21)
j=l j=l

Hence, the positive term series ~ A(j)e(j) converges.
j=l

Thus , u r n  3(n) = B(1) + ~ A
2 (j ) f (j )  - 2 ~ A(j)e (j)

j=1 j=1

= B exists. and B > 0 -

Since A(n) = l/n+1 , we have from [10],

u r n  B(n)=B=O -- i  fl-).Co

i.e. u r n  E[x (n)-R]2 = 0
fl-~Co

or, R2~~
(m ,n) -

~~ 
Rzu(m) in mean square -

Remark 1:For consistency, we only have to show that

u r n  Pf JR
~~

(m,n)_R
~~

(m)f>c] = 0 , i.e. convergence in probability .

Our theorem demonstrates mean square convergence of Rzu(m,n) to

R ( m ), and since convergence in mean square implies convergence

in probability, we have established a stronger form of convergence

than is required for consistency.

Remark 2: Some of the results of this section have been reported

earlier (Basu and VandeLinde (11]) , and details of all results

(of Section 2) can be found in Basu (12).
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Section 3

CONCLUDING REMARKS

The principal result of this research has been to show the

consistency, with convergence in mean square, of the robust

estimator of crosscorrelation described in (1]. There are

several important issues, however, that remain to be addressed.

Clearly, the first obvious undertaking would be relaxations

of Assumptions 6 and 7.

Specifica11~~, one might attempt to prove consistency under

• the following sets of assumptions:

(a) Assumptions 1-5, 6-a and 7

(b) Assumptions 1 through 7 , with 6-a replacing 6

Cc) Assumptions 1 through 6

Cd) Assumptions 1 through 5 and 6—a

Ce) Assumptions 1 through 5 alone

We have listed the above sets (a)—Ce) in increasing orders

of generality (of problem formulation) and of difficulty (of

solution). We should mention , though, that none of these tasks

are trivial. In fact, our conjecture is that, for these possible

relaxations of Assumptions 6 and 7, we might have to pursue a

different approach to prove consistency. Recently, in 1977 ,

Ljung (13 ] and Kushner [14] have proved convergence of certain

classes of recursive stochastic algorithms using ideas of

stability and weak convergence theory , respectively . While their

results are not directly applicable to our case, their methods

might still be of some benefit -- at the very least, they provide
two alternative avenues of approach.
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In a more general regard, it would be desirable to derive

asymptotic properties of the recursive estimator of 
~~~ 

—-
namely, does the distribution of {

~~~~
(m,n)} converge to

some stable distribution, hopefully normal? Asymptotic normality

would provide the considerable benefit of an explicit expression

for the asymptotic variance of the estimator, enabling in turn

a more analytical treatment of the robust identification

problem (see , for example , Appendix B of (1] for general ideas

of precisely formulating a robust problem) - Our recursive

scheme , unfortunately, has an inherent lack of tractable

mathematical structure for tackling such questions. We note

that equation (2.1) defines a sequence Cx(n)} which is not

stationary, not Markovian, nor does it have any martingale

properties. It is small consolation to add that all general,

stochastic, recursive algorithms operating on deoendent data

suffer from similar drawbacks and to date, no results have

been obtained with regard to asymptotic distributions of such

schemes.

Other questions of interest are choice of (for

assumption 7) —- and choice of (51
,S21d1,d2) in the more

general case -- for improving rate of convergence . Lastly,

but not least, is the question of the ‘best’ transformation to

use to obtain the estimates ~~~~~~~ from the {h.} . For

noisy {~~~~} , as is obviously the case here, this is quite an

open question. 

~~~~-~~~~~~~ - - -  -
~~~~~~~~~~ 

-
~~

- - - --
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