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DETECTION IN NON—GAUSSIAN BACKGROUND

Philip Rudnick

A B S T R A C T

The problem of detecting a small signal in a non-Gaussian
background is discussed analytically for a very limi ted set of
conditions . It is supposed that the background contains bursts
of noise whose complete rejection might aid detection. For sev-
eral specific detection procedures , f.rnulas are derived by which
empirically known distribution functions of the background may
be used to predict a change in detection threshold resulting
from burst rejection. Particular attention is given to the useof
the first—order distribution function, even though it alone does
not completely determine the results . A suggestion by Birdsall
connecting this study with the use of the likelih ood ratio is
also discussed .
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DETEC TION IN NON—GAUSSIAN BACKGR OUND

Philip Rudnick

INTRODUCTION

Current theories for the detection of a signal in noisç
have recently been summarized by Peterson , Birdsall and Fox .!I’
These theories employ a very elaborate specification of the noise
statistx~s, namely a probability—density fun~~ion in n dimensions,
where n is the number, ordinarily quite large , of parameters re-
quired to specify the receiver input in complete detail through-
out the allowed integration time. The case of Gaussian statis-
tics leads to distribution functions which can be expressed in
ternis of such accessible quan tities as power and cross correlation
coefficient . Consequently the general theory can be carried
through to practical conclusions in the Gaussian case, and one
has assurance that the indicated methods are the best , in some
defined sense.

If tie noise background has non—Gaussian statistics, the
practical situation is very different The designer of a detec--
tion apparatus is not likely to have full knowledge even of the
first and second order statistics of the background , and will
quite certainly have no information of n—th order complexity.
He will, in addition , wonder whether these statistics, when ob--
tam ed, will prove to be sufficiently stable and otherwise prac-
tically adaptable fir use in apparatus design In this situation
realizable first steps in the adaption of detection processes
to non—Gaussian noise are needed, even though they be neither
general nor optimum.

This study deals mainly with a quite limited and specific
question, that of detection in the presence of a background which
has a somewhat impulsive orbirst—like character , and of rejecting
these impulses as a means of improving detection . Particular
attention is given the first order distribution (of instantaneous
values of backgraznd) as a guide to design of detection procedure .
Of course, higher order statistics are also relevant and if these
are not known , the mathematical foundation is necessar ily in--
complete.

The calculations that follow are concerned with back-
ground noise whose distribution functions are unspecified and

1
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largely arbitrary. The results are expected to be of value pri-
marily when they are used in conjunction with empirically observed
distribution functions for the background actually present in
some detection problem. In this way, one may predict detection
thresholds for small signals, from experimental observations on
the background statistics alone, and without any actual detec-
tion experiments .

NOTATION AND FORMULATION OF PROBLEM

The diagram in Figure 1 indicates the principal class of
detection processes to be discussed ( though one will also be in-
cluded to which Figure 1 is not appropriate).

x(t)

1 

generalized~ y(t~

Figure 1. General block diagram of detector.

x(t) represents the detector input. It will be, alter-
natively, either one of two stationary time series,
representing background noise alone, or background
p]us the small added signal which is to be detect-
ed. In either case , the time average x(t) is zero .
No frequency—selection procedures are considered
here , aid it will be supposed that any appropriate
filtering has already been done . x( t) will be con-
sidered either a continuous function of time, or
a series of discrete samples taken at equally
spaced instants.

xe(t) is the envelope of x(t), in the sense used in Ap
pendix I.

2
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y(t) is the output of a generalized rectifier. The
instantaneous value of y(t) is either a function
of the absolute value of the instantaneous input
I x ( t ) I ,  o rof  xe(t), and will also be written y[xJ .
Thus the rectifier may include “integration” over
one “period” of a narr ow— band input , but not longer.

z(t)  is the result of nmning linear averaging of y(t) .
The averager may be a low pass filter.

T is the effective averaging time of the averager
and must be chosen consistent with some response—
time stipulation in the basic detection problem.
Since small signals are contemplated , T will al—
ways be long compared to the correlation time of
x(t),  and to the sampling interval , if x(t) is
discrete . T is also the correlation time of the
output time series z(t) . Loosely one may say that
z(t )  presents one new independent value (on which
a judgment of “signal present” or “signal absent”
may be based) each T seconds , and that each such
value is derived fnnn the input x( t) during a like
interval T,

n is , if x(t)  or xe(t) is sampled , the number of
such samples occurring in time T.

to — T/n , is the interval between samples ,

f(u)  is the first order probability density for instai—
tareous values of x(t)I for badcgronnd only ; f(u)du
is the fraction of time during iâ~ich u ” I x ( t ) k u  + du.
The derivative of f(u) is assumed to vanish as
u —. 0.

f(u) + g(u) is the corresponding probability density when
Ix(t)I also contains the signal.

F(u) and
F(u) + G(u) are corresponding probability densities for the

envelope xe(t), without and with signal. F(u) is
assumed to vanish as u —.-O.

f2(u,v,r) — f2(u,v,—r) is a synmmtrized second order proba-
bility density for background only; f2(u,v,r)du 

dv3
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is the joint probability that u c t x ( t ) I <u  + du and
v < Ix(t + r)ku + du, or that u <Ix (t + r)t<u +
du and u < I x ( t ) I < u  + du; as an alternative f 2 has -~~

the corresponding meaning for Xe~ -

E(w) and V(w) are, respectively, expected value or mean, and
variance of any quantity w depending on the input
or its envelope , in the absence of signal. w may
be a function of the instantaneous value of I x ( t ) I
or xe(t ) ,  or it may be a quantity determined by
ife whole set of input values extending through an
integration interval T,

E5(w) and
V5(w) are , respectively, mean and variance as above, ex-

cept that the signal is present,

2 is the variance or “power” of the signal which may
be contained in x( t ) ,  This is the only property
of the signal which needs enter our main discus-
sion,

R — 
E5(z) — E(z) (1)

1/2
[v( z)]

is an output signal—to—noise ratio which will be
used here as a criterion of detection capability.
The signal is assumed small enough to make a dis-
tinction between V5(z) and V(z) unnecessary in
this expression,

NA, N~, etc. are special values of
-the numerator in Eq, (1) re-

ferring to specific detection processes A, B, etc,,
to be defined later,

VA(z), VA(y),
VB (z), etc. are special values of V(z) or V(y) also referring

to specific detection processes A, B, etc.

Further notation is defined in the following section.

4 
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REJECTION PROCESSES , DESCRIPTION

If a background noise contains impulses or bursts of suf-
ficient prominence, it can be conjectured that such bursts may
contribute dis~ropcrtionately to the fluctuation V5(z) and their
elimination may have a benefit outweighing the loss of signal
which must also occur, Hence, the next two sections are devoted
to calculating the reduction in signal and reduction in noise ,
respectively, which result when noise bursts are rejected. In
this section several specific processes are described, all di—
rected generally toward burst elimination. For this purpose, we
define further notation, and assign more specific properties to
the detection process,

a is a rejection limit, defined by the condition
y(t) — 0  whenever x(t)~ >a, or alternatively
xe(t)  > a.

q — f  f(x) dx or f  F(x) dx , is the expected
fraction of the input x(t) or Xe (t)  not rejected,
when no signal is present ,

P l—q, is the expected fraction of input rejected.

(l/q) wf(x) dx or the corresponding integral

with F(x) replacing f(x). It is the special case
of E(w) when averaging is over nonrejected input
values only,

PA (T),PB (T), etc, are autocorrelation coefficients, for noise
only, of y( t ) in processe s A, B, etc. They are
normalized to p (0) — 1. PA is given by Eq. (9).
For p B~ 

see Appendix II,

rA, rB, etc. are correlation times , defined as in Eq. (8) or
(11), for processes A, B, etc.

q’ is an actual fraction not rejected during an inter—
val T , for a fixed rejection limit a It is a
random variable.

a’ is a variable rejection ]imit , fixed during any one
sample (cI approximate duration T) but varied from
sample to sample in such a way as to reject the
same fraction p from each sample,

5
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We now specify three distinct detection processes A, B,
and C which may be considered at least loosely as specializations
of the scheme outlined in Figure 1, and one additional process,
D, of somewhat different character. Each process is understood
to include operation on x(t) or xe(t), either of which may be
continuous or discrete .

Process A

All values of y(t), including the zero values resulting
from rejection , enter the averaging process, The duration or
number of. such zero values contained in one integration interval
T and affecting one instantaneous value z(t) is of course subject
to sampling fluctuations .

Process B

The zero values of y(t) resulting from rejections do. not
eiter the averaging process , ad z(t)is an average of non—rejected
values of y( t ) . These values are , of course, not uniforml y dis-
tributed in real time and might be dealt with instrumentally by
an averager capable of intermittent operat ion in real t ime . We
will, ?cwever, presume the non--rejected y(t) values to be stored
and then re—presented uniformly on a new time scale in which the
gaps arising from rejection have been closed , as illustrated in
Figure 2, The labeling of the new time scale will differ from
realtime only by shifts of crigin as one passes from one retained
segment to another, On this scale the averaging will be conducted
with an integration time qT, corresponding to qT/q~ for tie orig-
inal data0 The difference between this latter t ime and Tis con-
sidered negligible . The maximum amplitude transmission factor
of the integrating filter is for convenience taken to be q.

Process C

The rejection limit is the variable ~~~~ defined above ,
which results in a fixed fraction p of zero values of y(t). These
are included in a simple average, as in process i. (This same
procedure might , however , equally well be considered a variant
of process B,)

Process D

In this cast the final output of the detection process
is taken tobe the rejected fraction (1 — q~~ 

with q~ as defined

6
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above . As will be shown later , an equivalent choice is the var—
iable limit a’ corre sponding to fixed rejection fraction , also
defined above.

REJ ECTION PROCESSES, OUTPUT SIGNAL

The numerator of the right member of Eq. (1), is an
expected increment in output resulting from the presence of a
signal. This will now be evaluated for the specific processes
just described, The results prove to be expressible in terms of
the first order distribution of the background and the power of
the signal.

Process A

If y depends on x rather than its envelope, we write

E(z) — E(y)

— j a  y [x] f(x) dx

and

Es(z)  — j
a 
y[x] [f(x) + g(x)] dx.

By subtraction

NA E5(z) — E ( z) f y[x] g(x) dx. (2)

Process B

The situation now differs from that above in that the
distribution functions are now normalized to unit total probab—
ility over the interval O~ x ~a, and the filter transmission
factor q is inserted. Hence

8
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) y f(x) dx
E(z) q °

a
10 f(x) dx

j a  y [f(x) + g(x)J dx
E3(z)  — q

ja [f(x) + g(x)] dx

Treating g(x) as a small quantity, we obtain

NB — E5(z) — E(z) — 
j a  [y[x) — ~~g(x) dx. (3)

Process C

Here one may recognize for each value of a, a mean ‘,alue
of z which depends on a’. The final E(z) is , strictly, a mean
of these means , but to a satisfactory approximation when the
relative fluctuations in ~ are small , we will calculate E(z)
as a single mean associated with the limit a, just as in A.

E(z) f a  y(x) f(x) dx.

A similar approximation will be made in the presence of signal,
but with a higher limit .

a +8
E5(z )  — y(x) [f(x) + g(x)] dx

with 8 determined by

a
q J~ f(x) dx — Jo [f(x) + g(x)] dx

9
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or

f(a)  8 ~ j a  g(x) dx, (4)

Hence

NC E5(z) — E(z)

— j
a 

[y(x) — y(a)IJ g(x) dx. (5)

For later convenience, Eq. (2), (3), and ( 5) are integrated by
parts to give:

Nc f~[ j a  g(x) dx] - 

dy [xJ dx (5’)

N A — NC y [a]10 [g(x)~ dx (2’)

N8 NC — — y ] f a [_g(x)~ dx. (3’)

These results apply for either continuous or discrete input,
When y depends on Xe, g(x) is replaced by 0(x),

Process D

If (1 — q’) is the chosen detector output, we have

E(l — q’) — 1 — q

and

E5(l — q’) — 1 — I a f~
f(x) + g(x)] dx.

10 • 
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Hence

ND — f0
&

[_g(x)] dx. (6)

If ~ is the chosen output, we have approximately

E5(a’) E(a’) — (a + 8 )— a — 8

= [1/f(a)]f0
a
[_g(x)] dx

where S is the quantity in Eq, (4). This, of course, differs
from Eq. (6) only by a constant factor.

Next, we draw on results developed in Appendix I, which
express g(x) and 0(x) in terms of f(x) or F(x), and the signal
power v.2 , We may note the typical behavior for the increment
g(x) indicated in Figure 3. The net area under the curve of
g(x) against x is zero , with the negative portion lying to the
left of the positive . Hence the integral

j  r—~
(
~)1 dxo L  J

which appears in Eqs . (2’),  (3’), (5’) and (6) is normally a
positive quantity. This leads to the inequalities

NA< NB C Nc (7)

These relations are readily understood intuitively. Eq.
(6) shows that the presence of signal causes a systematic in-
crease in the rejected fraction of input , N8 measures an increase
in the mean non—rejected y, due to signal. NA is less because
it is also affected by an increased proportion of zeros caused
by the presence of signal, NC is greater because it is also af-
fected by the increased rejection limit ,

Equations (2’), (3’), (5’), and (6) have been combined
with (37) or (38), and y has been specialized to either x2 or

11
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x l ,  appropriate to a square law or linear detector. The re-
sulting specific expressions for the numerator in Eq. (1) are
suninarized in Table 1.

REJECTION PROCESSES , OUTPUT NOISE

The denominator in Eq. (1) represents the root—me an—
square fluctuation in the output z in the absence of signal.
Unlike the output signal evaluated in the preceding section,
this output noise does not in general depend solely on the first
order distribution of y, but on higher statistics as well. In
the special case where the input consists of discrete and ide-.
pendent values of the variable x, the first order distribution
does determine all the statistics. For this reason, this spec-
ial case will be included in the following, even though in most
real detection problems, spacing of input values would be so
chosen as to yield at least moderate serial correlations.

Process A

For a continuous input, the mean squared output fluctu-
ation V(z) may be calculated as the product of two factors , one
the effective band width of the averaging filter, (l/T), and the
other the power spectrum density of the filter input y(t) at
zero frequency. The latter is obtained through tie Fourier trans-
form of the autocorrelation of y. Thus

VA(z) — ~ V~(y) f ~(r) dr — ~~ V~(y) (8)

with

— 
a a 2 ...2V~(y) PA(T) — 10 10 ytul y Lvi f2(u,v,r) du dv — q y (9)

and

V~(y) — q ~2 — (q y)
2 

- q[(y
2 

— y2) + p y2]. (10)

When the input is discrete, the integration in Eq. (8) is re-
placed by a sunmiation; we then have

13
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Table I,

VALUES OF OUTPUT DUE TO SIGNAL
FOR PROCESSES A, B, C, AND D

y ” x 2 N~~~ u1’ qo
2

NB ~~~~~

Nc — q0 2 {l —

y — lx i NA ~~~ {fs o) — f(a) — a J~— 
4~~~]}

NB 2° ~f(o) — f(a) — (a fl) 
[ df(a)

J}

Nc ~~~~~ {f(o)  — f(a)}

form of y N - ~ 1- ~.LL~1not relevant 0 2 dx

14
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Table I. (Continued)

y - x~ NA ~~~ 2 { ~ — 
3 aF(a) 

- 1 a2 

~ 
dF~a)]
}

NB 2qt7 2 
{l — .~~ 

aF(a) [1 — I

_ !
~~~~~~~~~~

-
~~~~~~~ I dF(a)

4 q 1 dx

N0 2q(72 {1_ ~~. aFLaI}

y — xe NA - ~~~~ ~~ ~ F(x) dx — 2F(a) - a [_ CIF( aJj

NB — ~~~~ {j a ~ F(x) dx — 2F(a) [1 — .~~ ~e]

_ ( a_ c ) [_ (1~~~)]}

N0 ~~~~ {fa ~~ F(x) dx — F(a)}

form of y ND — 
1 ~2 f l F(a) + ~~

_ dFI a)
not relevant 2 ~ a L dx
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T
A to 1 + 2~~ flA (it o)l 

, (11)

Combining Eqs. (8 ) and (10) gives

VA(Z) ..4~ q[(~~ — y
2
) + p y21 (12)

In the special case of discrete, independent input vali’.
TA t

0 
and we have

VA(Z)  = ~ [
~ 

y2) + ~ 5~2] ( 13)

In order to calculate VA (z) as a function of the re
jection limit, knowledge of the First order distribution f(x3 or
F(x) serves to evaluate all factors but TA in Eq~ (12).. In the
event that the first order distribution , but not the second , is
known for some particular background , it would appear to be of
some use to evaluate Eq.~ (12) as a function of the rejection
limit a in so far as possible, but to regard the correlation
time rA as constant, independent of a. In so doing one is net-
lecting a factor which may easily be substantial , but does not
appear at all likely to be overriding. Any reduction in f iuctu—
ation which might be indicated in this way would be an over--
estimate only if an effect of re jection were to increase auto- -
correlation coefficients and hence TA O

Process B

VB(z) is calculated in the same general way a.- above~
with some specific changes. The averaging time of the filter
is qT rather than T, its maximum power transmission f~~ tor is
q2 rather than 1. The autocorrelation of y has been iltered
(see Figure 2), so that a different correlation time “B is in~
troduced .

1€
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We now have

V~(y) ~2 —

V8(z) — 
~~~ ~B~B

(Y) — q (~ 
— (14)

Again, for discrete, independent inputs,

VB(Z) 
— I ~~ — ~~ (15)

In this extreme case, Eq. (13) is greater than Eq. (15)
by the last term which can be interpreted as resulting from the
fluctuation in the number of zeros which enter the process A av-
erage. At the other extreme, for continuous input it is shown
in Appendix II that the autocorrelations of y (and hence TA and
r~) differ in processes A and B in such a way that Eqs. (12) and
(14) give identical fluctuation values, and VA (z) VB(Z),

Process C

V0(z) is calculated in Appendix III for the discrete—
independent input case, with the results

VC(Z) — ‘2 + p(yLal — ~)2] (16)

No formal analysis has been found for the case of continuous in—
put, but one may suppose that the result will usually resemble
the above in containing terms involving respectively (V(y,a’))
(see Appendix III for notation) and V(a’), and further that the
two terms will have, rather than a coninon coefficient 1/n, two
distinct coefficients involving different effective correlation
t imes, but both of the order of TilT,

Process D

Depending on whether q~ or a
2 is chosen as the final out-

put, the relevant variance is V(q9) or V(a~). These are, to a
sufficient approximation , related by a consnon factor .

_____ • f2(a) or F2(a) (17)

17

_



SIO Reference 58-34

In the discrete—independent input case , V(q 2 ) is essen— .
tially the variance of a binomial distribution,V

V(q’) ~~~ . (18)

Again, for continuous input, formal analysis is lacking. One
may, however, consider that n will be replaced by an effective
number of “independent opportunities” in time T for the alter-
native events whose probabilities are q and p. This number may
be of the order of T/ r A, as suggested in connection with process

COMP ARISON OF DETECTION PROCESSES

In the foregoing, VA(z) ~ V~(z) has been demonstrated
for the cases of discrete—independent, and continuous , input ,
Taken in conjunction with Eq. (7), this indicates that process
B generally has a lower threshold than process A, No general
comparison of B and C has been found possible. The greater sig—-
nal from C is offset , surely in the discrete— independent case ,
and probably also in the continuous, to some degree by increased
output noise arising from the fluctuations in the rejection limit
a’. In view of the analytical difficulties in treating process
C , actual comparison with B in specific cases will probably need
to be done empirically, Similarly with process 0, though one
may suppose here that the greater information loss involved will
usually operate against the effectiveness of the process.

GENERALIZATION OF PROCESS A

One may generalize the rejection process by replacing
the rejected values of y with a fixed number b , rather than with
zero, This then includes “clipping” as the special case b ~ y(al,

Formally, we define process A’ as like process A except
that y ‘~ b when lx (t)l > a .  One finds , for output signal s

NA’ ja (yfxi —- b) g(x) dx

NC — (y la~ —. b) ja [.g(x)] dx. (19)

18
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This result includes Eqs . (2 ’) , (3’), and(5’) as special cases,

Turning to the output fluctuations, we will make only
the following remarks. Equation (10) is replaced by

v~9(y) • q [(y2 — + p(b — y)2]

and Eq. (13) by

vA ,(z)  — (1/n) V~,(y). (20)

The final signal—to—noise ratio R for the discrete—independent
input cas e , obtained from Eqs. (1), (19), and (20) has a maxi-~
mum with respect to b, at fixed a, which is readily calculated
and occurs for b>y

The i~dification of Eq. (9) for this process is straight-
forward, but will not be given here.

LIKELIHOOD SHAPING

The whole of this sec tion rests on a suggestion made by
T. 0. Birdsall, of the University of Michigan, in conversation
with the writer . We observe that the computations of Appendix I
determine the 1ike1i1~ood ratio for an instantaneous value of
x(t), say L(x), and introduce the following form for y:

y (x] — log L(x) — log [ 1 + ~~ (21)

The resulting value of z is an exact likelihood—detector
output if the input x—values are discrete and independent, and
is proposed for consideration in the case of autocorrelated in-
put also. Further analysis or empirical investigation is needed
to determine the extent to which this result differs from the
true likelihood output for an autocorrelated input.

Sinç]ification of Eq. (21) is permissible. From Eq. (28),
for example, we have

19
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L(x) - 1 + ~ 2 
~~~~~~~~~~~~~~~ (22 )

The appropriate value for ~ 2 in this expression is the power of
a signal which the process is designed to detect, that is to say,
a threshold signal. Set~i,ng NA from the first line of Table I,
fo~ example, equal to VA /2(z) from Eq. (8) shows the threshold
~r

h to be of the order

1/2
[~~~vA(x 2

) 1

Inserting this in Eq. (22) gives

1/2
L(x) •

~~~ 
+ (

~
) w(x) (23)

where

w(x) VA (x) d
2f~(X)
/
”
2f9( )

is of order of magnitude unity or less. Since we suppose T > > l ~,
L(x) differs little from unity and the logarithm in Eq. (2r)

~nbe expanded in a power series, of which only the first degree
term need be retained ,

TA 1/2y[xJ (‘r ) w(x)

To this approximation, constant factors have no effect and may
be omitted. Thus we may take, f inally

— 
d2f~(x)

,/ (24)
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or, if the input envelope is employed ,

y~~J — [d~~~x — (1/x) dF(x)] 
j

~~~~~y 
+ (25)

These functions maybe called likelihood shapes for the detector
characteristic. When f’(x) is the Gaussian distribution, Eqs.
(24) and (25) become, essentially, y(x] — x2 .

From Eq.(24) one may readily find the final output sig-
nal—to—noise ratio.

R ~~~ 
{j

(z
~[d
2f~~x)]

2 

} (26)

TL is the correlation time for the time series y determined by
Eq. (24). Here again we have a factor depending only on the
first—order distribution, and the factor TL involving also the
second order distribution unless the input values are discrete
and independent.

SUMMARY REMARKS

Theforegoing results may be applied to study small—signal
detection problems in which the background statistics are not
necessarily Gaussian. Empirically determined distribution func-.
tions for the background noise may be used to calculate or esti-
mate detection thresholds. Effects of the following character-
istics of the detection process may’ be studied:

a. peak rejection or clipping with various
limits (values of a). 

-

b. various detector characteristics (forms
of the function y~x) ).

c. the special two—valued detector char-
acteristic (y — 0 or 1) implied in Pro-
cess 0.

21
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d. the special detector characteristic, Eq.
(24) or (25) determined by likelihood
shaping.

As previously pointed out, detection thresholds depend
only on a first—order distribution if the input values are dis-
crete and independent. In the more usual case of autocorrelated
input, most of the processes discussed are fully determined by
the second—order distribution, but even in these cases it is to
be hoped that the first—order distribution alone may be roughly
indicative . Processes C and 0 involve statistics beyond the
second order.
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A P P E N D I X  I. EVALUATION OF g(x) M4D G(x) .

Let f~ (x) , or f ’(x)  + g’(x) be the probability density
for x itself , defined over — w < x <~~~~~. The even parts of these
functions willbe f(x)and f(x)+g(x). The density f’(x) +
will be the convoluti,on of f ’(x) and the probability density for
signal alone, s(x).~1

f’(x) + g’(x) f f9(x — u) s(u) du. (27)

f’(x — u) is now expanded as three—term power series
about f  9 ( x )  and it is assumed that almost all values of u (inC—
stantaneous signal ) are small enough , and the function f ’(x )
smooth enough to justify the use of the expansion in Eq. (27),
Thus we have

f~(x) + g’(x) •1:[f’x — 
df’(x) u+l/2 d

2f’(x) u2] s(u) du

or

g’(x) — 1/2 d
2f’(x) 0.2 (28)
dx2

and

g(x) — 1/2 d2f(x) ~. 2 (29 )
dx2

recalling that the mean signal is supposed zero.

When envelopes of noise and signal are considered , the
rule of combination becomes a vector addition Let the noise
only and signal only be represented by N(t) [coswt + 0(t)] and
S(t) [cos ~it + Ø .(t) J , respectively. The envelopes N(t) and
S(t), and the phase difference Q — 0(t) —~~(t) are assumed to be

23 
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three independent random variables, with 9 un iformly distributed
over the circle, They serve to determine the envelope of noise—
plus—signal , say E , by the relation:

E2 • N 2 + 2NS cosG + S2 with N , S, E all ~ 0. (30)

Let the joint probability density in the (N , 5, o) space be
(1/2~~ F(N) se(S), which then serves to determine the distribu-
tion of E by

[F(E1) + G(El)] dE

— 1R (]/2 ii ) F(N) se(S) dN dS d9, (31)

The region of integration R is the volume within which
E1<E<E1 + dE.

The integral in Eq. (31) is now transformed to new in-
dependent variables (E,u, v) given by u — S cos 9, v S sin 0,
and Eq. (30). The Jacobian is

-1/2
oçN . S. ~~~ — (1 — v2\  1 (32)
aLE , u, v) \ ~~~/ S

and we write F(N) — F1 (E,u,v), Then

[F(E1) + G(E1)1 dE

1 2 —1/2
~~~R Tfl

Fl (E
~
u,v)s e(5)(1_ ~~~~) ~~dE du dv

or with slight simplification, replacing El by x

F(x) + G(x)

— 
‘E—i 

Fi(x,u,v)(l — 
v2)_l/2 

[~~~~~]du dv (33)
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The further argument is restricted to x satisfying

x2 >> v2 (34)

that is to x with magnitude greater than that of almost all
signal values. F1 is expanded as a power series in u and v, in-
cluding quadratic terms, about (x, 0, o). After some reduction,
one obtains:

F(x) + G(x)

_ fE_xEF x — 
dF(x) u + 1/2 d2F(x) u2 

— 
1 dF(x) v21

4i 
+ 1/2 v ]  [

~;~
S)] du dv. (35)

It is now to be noted that the third square bracket inthe in-te—
grand is the probability density in the (u , v) plane. Because
of the restriction (34), the integration is over almost all
values of u and v, Hence the effect of the integration is merely
to replace u, u2, and v2 by their respective mean values 0, CT2,
and (72 (taking the mean of S2 to be 2 (72), We have, finally,

G(x) — 1/2 [d
2F(x) 

~~ 
dF(x) + ~~ F(x)] 0.2 , (36 )

In view of the limitation (34), Eq. (36) is not correct, for a
fixed a-2, at x — 0. However, withoutfurther analysis, the rela-
tive error involved in using Eq. (36~ over the range 0 ~ x
will be assumed small, for small a~ . The limiting behavior of
Eq. (36) as x -, 0 seems satisfactory.

For use of these results we require the integrals:

f ~ [_g(x)] dx — — 1/2 df(x) 0.2 (37)
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since

df(O) 
—

dx

and

J [—o(x)J dx — l/2 [_ dF(x) + 1 F(x)] 0.2 (38)

if

F(O) — 0 and 
dF(O) and d2F’(O) are finite .

dx
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A P P  E N D  IX II. EFFECT OF CLOSING GAPS

Equation (12) gives the output variance V(z)  for a con-
tinuous input containing gaps, as in the upper part of Figure 2.
To show the effect of closing the gaps, we separate the proba-
bility density f2 into components as follows:

f2(u,v,r) — f 0(u ,v ,r) + f0 f1 (u,v,r, w) dw, (39)

f0 (u,v, r) is the probability density for ordinate pairs (u,v)
separated by an interval z containing no rejection gaps;
f1 (u,v,-r, w) dw is the probability density for such pairs when
the interval r contains rejection gaps of total duration lying
between w and w + dw. Equations (8) and (9) may then be written

VA(S) — ~ j~ drf0af0
a
~ y [u] y [vJ [f 2(u,v,r) — f (u)  f(v)] du dv

- i f af a du dv y [u] y [v) JL  dr [_ f(u) f(v)  + f0(u,v,r)

+ J~ ~1
(
~~”~~ 

w)]dw . (40)

For large r , x(t) and x(t + r )  are presumed to vary independ-
ently. The square bracket in the integrand of Eq. (40) then
vanishes for large r; t1~ integration with respect to r is assumed
to converge and the upper limit may be set at a sufficiently
large positive number L rather than a’.

The double integral in Eq. (40) with respect to w and r
will now be transformed to new independent variables w and

— r— w. (An ordinate pair originally characterized by (r, w)
will have the separation ’r ’ after gaps are closed.) The Jacobian
is unity. The original region of integration is shown in Figure
4, together with contours without whidi the density f 1 effective-
ly vanishes . These represent the assumed behavior ,that as r-...a,,
the rejected fraction within the interval r becones increasingly
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predictable and w/~ -s. (1 —q )  is the only region of nonvanishing
f1. Hence the region of integration may be altered to O x cx,
O c r 9  < q L as also shown in Figure 4. For the term involving the
constant f (u)  f(v) we write dr  — dr~/q, but because f0(uv ,L)
vanishes approximately, we assume

j
L 

f0(u,v,r) dr — j qL 
f0(u ,v,~ t)d~~ .

Hence the final transformed expression can be written
(using r for r’)g

VA(S) — 

~~ f
a
f

a du dv y [uJ y [v] f ~ 
dz

.{_ ~1u)2f(v) 
~ 

{f0(u,v,t) + j 11(u,v,r+ w,w) dw}]
}

— 
~~~~~ 

(41)

The relation to 
~B 

follows when one observes that the
term in the integrand which is in square brackets is the proba-
bility density analogous to Eq. (39) into which f2 must be
changed by the gap—closing operation .
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A P P E N D I X  III. CALCULATION OF V~(z).

The case of discrete , independent input values is con-
sidered , Of the n values of x occurring during T, the lowest
nq are retained and will be referred to as an x—sample. These
samples are classified into subgroups according to the value of
a’. Within one subgroup the x—values are distributed independ—
ently over the interval 0 <x <a ’, yielding the following mean
and variance for y:

f ~~~~~~ f(x) dx
E(y,a~) — 

0

f a  f(x) dx

Ja
9
y2~~] f(x) dx 2

V(y ,a’) a9 — E (y,a’)

Jo f(x) dx

We use < > to denote a mean with respect to at , and
note that in this case z can be regarded a.~ a mean of (nq) values
of (qy), in which y means a retained value. Hence

E~(Z) — q

Vc(z) “ <V(z,a’)> + <E 2(z ,a’) >  — <E( z ,a’)>2

+ <E2(y,a’)> — <E (y,at)> 2]

We take, approximately:

<V(y,a’)>.” V(y,a) — ? —

30
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<E2(y, a’)> —<E(y, a,)>2 — (
dE(~ ;a))

2 
V(a’)

dE(y;a) - .fi~1 (yla] — Y)

and

V(a’) — nfZ(a)

using Eqs. (17) and (18). Combination of the last five equa-
tions leads to Eq. (16).

V
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