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Abstract : ¶~vo foz~u1aa, eq~uaticna (20 ) ana. (21), are derived for the
intensity along a raypath in terms of the horizontal dis-
tance traveled by the wave front and the angle vhicb the
ray n~.kes with the horizontal . Both formulas are amenable
to digital ccenputs.tion l.a raflel i~’itb a regular digital
~‘?~~ ith ~~~~~~~~~~~~~~~~~~~~~~

Back~rouad

For over e. d~cc4e , the standard i~~ r~s for coixiput lag intensity along .
sound ray~n.th in vnterz~ with variable sound velocity (versus depth) has
been to prox~imte tLr~ ~o velocity function by ~ continuous broken-Line
function , end, then, ca~~ute the ve~tica.1. distance ee~*r~ting two closely
adjacent :.aya . This vertical distance is conpared with the initial angle
between the rays in order GO determine an approximate value of the
divergence . The difficulties with this approach concern the sound velocity
approx1a~tlon uid the closeness with which the two ncighboring rays must
be taken ~;o y~ ~ id reasonable intensities . Obviously, the closer a pair of
rays arc taken in initial angle, the more accura te the calculation raist be
for each ray to preserve a significant value of vertical distance between
thai .
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There ~re two methods by which the standard calculations of the
~air~of rays can be effected~ seq.uentia.Uy or simultaneously . In the
former , one computes the first ray end stores the z (vertical ) ordinates
for a certain predetermined x (horizontal ) values; then the same is done
f or the second ray; and finally the stored z-ordinatea are differenced
to form ~z ’o. In the latter, one has two computers of r~mtched accuracy
for the computation of the raypath~ ; the computation yielding the
respective z ordinates for the same running variable x; then a different.
lag calculation, either continuous or discrete , between the z ’ s to form
zS~z as a function of x follows. Both n~ana require high accuracy of ray-
path calculation (higher than if one ju st wished ~o compute the ray it-
self) : both are amenable to digital calculation; only the latter seems
suitable for analcg implementation. The former requires a very extensive
and fast memory and a large computer to achieve any considerable speed
at mskiag a complete sound raypath end intensity plot . The latter requires
matched accuracies that are difficult and expensive to obtain and maintain
from an analog unit .

The goal behind the a~~roneh initiated here 5~ to find an auxiliary
~eans of computing the sound intensity change along a raypath . The form
of the calculation would be to calculate the coordinates of a single ray
.~~d while so doing , put these into a second cquation which would compute
tbe sound intensity (or sccxe fuaction ot’ it) directly. It is hoped that
lxi thi~ :~annsr , sc~e of the high accuracy and matched unit requirements
~an be eliminated and reasonable analog means arrived at.

Sound Pa.y~atb Intensity ~~1culat ion

Because the lateral extent of the oceans is meny times greater than
the depth d1~~nsion , the fall off in intensity along a ray is measured
in terms of horizontal distance x. Acoustic inten sity is power per unit
area and Ito loss is measured from some standard sphere of unit radius.
The intensity as a func~ ~~~ of x along the raypath is given approximately
by

P cac ~t~Ø)(à~0
COB 0

where the 0, x , and z quantities are as shown in Figure 1. and 0 is angle
in the horizontal plane . A. can be seen , the usual a~suniptiOflø apply :
the 1ire~tion of the sound raypath does not vary in the horizontal plane,
thu~ sound ycloctt j is a z ds~.onJ~ont ~io~ only; z is the depth

..., ~ 
~~~~~~~~~~~~~~~~~~~~~~ 
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dimension and is measured with incre asing size downva.rd; 9 is the angle
the raypath mekea with the horizontal axis measured positively from x
to z; and 0

~ 
is the initial angle at ‘iehich the ray leaves the trans-

ducer .

Tra wsdir~er
— 

~~~

~~.aAJ5

Depth Plane shoving Q,
~~ 

0, x, z along a Raypath

ure l

Th~ intensity e.long the raypath can be defined r~ follows:

h a  P eos O /60
I;8Ø-~o — 0 1 0

x e o~~Q 14 6%

P eo5 00 f 600 \I— 3.z eoo Q ~dz

where it met be rev~e~bered to tak e 6z or dz in the positive direction.
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Tb~ problem of evaluating :: .e& ~~~~ to e-tal .z~tlng d~0/~inversely dz/d00 .

dz/dQ for the I~o Gradient Case0 _________________ _____

Th~~ is sinpiy done i~. ~ i refe~~nce t~ the tk~tcI .

— —--- ÷- x .
~ ~

.: i ~

N 

~~~~~~~~~~

Z~~c~s

Az see ‘

~~ 

(x sec 0 ) 60

Az 2x sec 0
60,

X 3~?C~~~ 0
~

L
~ 0 

C

Subatitutin~ :U to eqt~t~.~~ ~ ) one ~eta

P c o ~~0 P0 
_______• I ~ 2 2• cos 00 ise x se~
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Equation (2) reduces to the inverse square law along the path length ,
R , when one notes that

R = x sec

dz/d00 for the Linear Gradient Case

It is veil biovn that for the linear gradient case, the raypaths
bec~~~ arcs of circles , let the velocity equation be given by

~ (z) = V 0 +v ’  (z - (3)

where V is the sound velocity at depth z0 and ?’ represents the gradient --
it is a0negative number for decreasing sound velocity with increasing dept a.

SnoWs law clong a partIcular scuud ray can be written

V
7(z) = cos 0. (u. )

cos

Differentiate and obtain
1.

dz -v
eln O

dO cos
or

-v0
— =  — a i n O .
dO ‘P cos Q0

dx
~ tan 9

and, therefore

dx -v
—

~~~~ 0 cos O.
60 V’ c0s 90
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Let us define A0 by

(5)
Vt cos

and thus we get as the diffential equation for the sound raypa th

(6)
= A

0 
cos 0

which are evidently circ les of radius A . Integrating and. applying the
conditions x = 0, z = at 0 = 0

0 
gives°the parametric equations of the

raypath circle ~

- x0 = -A0 (co. 0 - cos

(7)
x = A0 

(sin 0 - sin o~)

El4tnlnation of the parameter 0 gives the equation of the circle in the
closed form

o (z - z0)2 + x2 - 2&~ cos Q~ (z - z~ ) + 2A.~ sin O
~ 

x. (8)

UNCIASSIFIND
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• ~v~ter cvr~.9~e lie

/ ~~~ 8~

/ 1A4
2

/

/~ epaf sve ~1

/

Sound Raypath Circle Sound Velocity Curve

!~~~re2

It i~ evident fr~s equations (3) and ~1i.) and Figure 2 that a physical
raypath will not travel around a conpiete circle because to do so requires
a ne~~tive velocity. In fact , since in the oce’~ns the sound velocity
rarely varies by moie than 8 d o  total, only ~~ 1 1 arc s of these cinches
will be encountered in practice .

The c~~~utation of dz/dO is done as a hal t of the ratio Az/6Q~.
Suppose what we take two rays e~iitted fran the same transducer, a
9 ray and a ray The equation for the circular raypaths are given by

~1 ray : (
~ 

~~~~~)2 +~~
2 - 2A.~, coa 01 (

~ -~~0) + 2 A1 sin O1 i = 0

Q
~ 

ra~ : same as equation (8)

where

• UNC1AS8IF1~ D
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-v -v
— 

0 A
7’ cos 0 V t cos

We wish t~ canWte t~z •~
‘ z - z fez’ identical values of x. Solutions of the

eçuat ions for each ray are

V V F V x  V’x 2 1/2
z = z ~ ~~~~~~~~~~~~~ 1.~ .2 t a ~i Q  — -

~~v v’ 1 v0 V0

V V [ ~V ’ x v’~ 
2 1/2

z =~~ 
_9..~~~~ 2. I 1 + 2 t a n o  1— - ——0 .,, v’ I ° 1~ o

Fr an these, it is evide nt that

dz Az
dO —

o o

dz V 5 1 V’x ~ V ’x 2 1 1/2
—- = Il+2 tan O — i  -
d0~ V ’ b 0 , 

~ 
° v0 J ~~ ~

wt~ere ö denotes differentiation witI ~ respect to exp1ici~. variable s only
1 - 1/2dz 2 1 V’x~ V’x 1

2 I
— = x see 0 1 + 2 tan 0 (-

~
-—- ) - (—

~~
-“ - (9)

Therefore, equation (l),becamos

I Iv’x V’x 2 1 1/2
? I 1+ 2 ta n o F -

• I 
o
~~vo V0

= 
z2 sec3 O0 coa Q

-• :. ~~~~~~ 
• • 

- ~E~i ~ 
- , 
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But , fran equation (7b), one can con~u~e that the radical is nothing more
than cos 0 seC therefore,

P cos 0 sec 0
1 2 2x eec ‘

~ cos 0

P (io j
1 = -  -

2 2
x sec 0

~q~uations (2) and (10) are identical in for~n. Eowever, In the ~.riterpre-
tatlou of equation (10), the distance along the raypath, R , is no longer
equal to x see 0 . Cons~quently , the raypath intensity contours differ
fr an the isove1o~ity case .

What has b -:~ derived to this point, equation (10), is not new; it is,
for eza~~1e, derived more elegantly in C. B. Officer t a “Introduction to
the Theory of Sound Traxinmisslon ,” McGraw-Null, 1958, pgs. ~e8-50, 59-61.

Continuous Linear Seg i proximation to the Non-linear Gradient.

It has been customary for scwe time to approximte non-linear sound-
velocity gradients by continuous linear segments for the purposes of approxi-
mate calculation of sound ray~~the in the ocean . The raypatha which result
are arcs of circles , as above, but with different radii in each depth seg-
ment. The tangent lines to the resuJ.ting raypath are continuous over the
boundaries of the depth segments . In general , the linear segment approxi. -
matl.on is an “eye” fit with uneq~a1 depth seg!nen~s.

V(z)

a, a,

-

~~~~~~~

-—
- • It, - • - W.. -~j -a’ ‘C— - •
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The equations govc~rning the segment s c—e :

V (z1) = V
1

V (z) -= v1 + (z - z1 ) V~
= v~ (z~ + ~ 

-Z~~) v~

where all subscript s run over i 0, ~~ . - and where the second of
equation (U) app lies only between and Z1 ~
dz/d~ for Continuous Linear Segment Approximation

_ _-  —- —- -- —-~ —

1~ 
- - 

_
~~~p~~ t jP’~. 9 4:.~~ .

- - )•~t CC~~?’~’4~i

~~~~~~~~~~ 2.

Raypath with z, z, and 9 ~~tation

4. ~~~~~~ - 
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Here , again, we investigate the 1~r.i~ c-f ~~/A9 but for the situation
o~’ the raypeth generated by the 11 ~

‘ se~~~nt appr8ximatior~ - The notati c-n
is different fran the above; the xunni~~ subscript n refers to the n-t b
depth segment crossed by the ray while ~~ ee Iera to the initial depth of
the ray (transducer depth ) which is no-~ .~tcceose.ri1y on a segment bount~ar~ .
The ray pIcture my look s~~~tbing 1ik~ Figur.~ 3.

In ?-igure 3, the boundaries of the depth segment are shoin by
dashed lines intereecting the z -axis . We observe that the sequence x
is increasing while the sequences z end 0 are not nec~ssanily so.
If, as La drawn in Figure 3, the ra~pa’.b rLkches a point of tangency with
a segment boundary, the ray is eon~ide.~ed not to have crossed the boundary
and will continue on in the same ve1oc:~.ty gradient region as before the
poInt of tangency.

For the calculation of the ratic Az/~0 . the notatIon of Figure ~fapplies.

a z ,,

d? 7)

4

Oe~~~try and Notation for Calculation
— 

!!~!J~. 
- 

ucz ss~,’:r~~

H1!~S~ I ’.
_ _ _ _ _ _  - - _ _ _ _ _ _ _ _ _ _  flfl~1TR~CLT ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Care must be taken in using the geanetry of Figure ~3 bec&use of the
different relative magnitu des of x~ and x~ . The rule is

0 ( posI t ive)—~ x~ - x~ < 0  (as shc~ n)

Q~ (negative ) ÷ - X~ ~ 0 (not shovn )

Fran the figure, the equations governing the a~ca of the ~ -ray(and ~~ ray)
frau ~~ (and x~) to x are given by equation (13), ( respect~ve1y)

2 1!  2 Vxi ( z - z ) - — - i taxi Q ( x - x ) = 0xi r xi xi
n

(13)

- 2 2V  2 V
( z _ z ~ )2 + ( x _ x :) + ---—

~~~ 
( z - Z ) _ - - . _ . a ~~5.~~9 ( x - x ~ ) u i oxi

n xi

Fran Snell ’ ~ law, along each curve one gets

~J~~~sec2 g
t a u 9 = +  0 0 xi

Vxi

- ~J~~~seo2 ~~~~~
tan O = +  -

32 v
xi

where the sign is positive for Q~ positive and negative for Q
~ 

negative . The

sobi~iou of equation (13) for z and ~ ~ie1d:

UNCLP~SS~~I!D
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= - + ~~~ + __________  
(x - x )

v~~(x-x ~) 2 11/2
V JU

V V I 2 ? ’  ~j v
2 sec2 o - v 2

~~~~~~~~~~~~~ 11+ —a ° - p---- ~ ( x - z ~)
‘p V 1 I - V V

~ I. xi

V3 (x - x~ ) 

~ 

2 1/2

V J JU

where the sign conventions again foflov The expr ession for 8~, z -
divided by à00, ~~ 

-

= !.~ 1 + 
2
-!~. ~ ~~ ~~,

2 
~~ 

- 
~ (x -

- 
jv~_(x - 

2 1/2

• 
- V~L - [ 

+ 
2 V ~ see2~~~ - 

(x -

~~ 
V~ 

ft

- 

F ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ ~~~~ 
- 
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- 
(V ’_

(x - ~ 
2 1/2

V
n

By noting that x - x ’ x - x + & with the same convention as Is in
(12) and then expand~ng the f~r~t of the radicals as a function of Ax ,
one gets

Az 1 V f I
= — -~ Ix (~0) - x(o0) +

A V~ 
~

1 ~h~2 sec2~~~_ y 2
— 

0 D U
o Ax

x(~0) V~ ~~~~~~

+ (Ax )2 (ete)

where the definition of x(o0) ~

[i. 
~ ~/V~ ~ (x - x~) - (v~ 

( x -  x~) ) 2] 
1/2

If we multiply throngli by one over and pass to the Lialt , we arrive at
the pze1i~n1n~ry fore of the recursion foi~~~-~a

~• ; ‘. x (90) 
+ 

i. 
[

~/~2 ~~~2 Go - v’ (x - x~} dx

x(~0) 
L 

V~

UNCI SSJF~L~u
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The procedure i~ no~ straight forward : coapute the partial derivative ,
express the derivative dz/d9~ in terms of dz~/dG0, and simplify

v~ V2 sec2 G0 tan Q
0 ( x . x ~ )

= 
~n x(o) v~ ~Jv~ see2 00 - 

(15)

The expression for dz can be evaluated as fo11c,~,a:

Az z - z
= for 0r positive andAG0

Az
= for 0

32 
negative , where t he equations for z and ~ are:

• AG0 AG~

2 V  2 V
(z - z~)

2 
+ (&)2 

+ —~~~~~~~~~~ (z - z
~~

) + tan 0~ (Ax ) = 0 
-

2 V  2 V
(~~- z 32

)2 + (Ax )2 +~~~~ (~~
_ z 1)+ 

V~~~_ 1 ~~~~~~~~

It foUova then that in the limit as AG0 goes to zero, the toi~~1
• expressions for the derivatives will be the negative of each other . There-

fore , the jc lnt calculation can be writ ten as

Az 1 V V I 2 V ’

• 
= 

~ ~~~ 

- ~~ 1 - 
- ~ ten Q

~ 
(Ax)

n - i  n - I L

• UNClASSIFIED
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2 1/2
in- I .

VU

Where the sign convention is the upper when 9 is positive and the lc~xer
when is negative. Expanding the radical a function of Ax yields

= + 
~~ 1~

V
~ _ 1 t e n Q I~~~+ (Ax )2 (ete )

AG0 
- AG0 V~~~~1 

~ 
V~ j

which upon passing to the limit becomes, e~~ctly ,

Az dx dx
= + tan — or = tan — (16)

AG0 A9~ AG0

in which the sign convention is the usual one - This is certainly the
expected result for this calculation. Using equations (iii), (15), (1.6), and
the definition & tan 9~, one gets

Az 1 f y
~ (x - x~)l dx~ tan 9~ (x - x~)

— = — J l -  - — I—  + (iT )
A% x(00) ~ ~~ 9~ J 

AG0 cos 9~ sin

Thi. is th. recursion relationship which carries the derivative over the
boundary fran one gradi nt to another. To further simplify the equation,
the followinG two relationships are noted :

x(%) cos Q see

V~~(x~~x~) 
_ _ _

sin

IC ASSITIED
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and, therefore,

= ~~~~~~~ _ _  + 
tan 9

~~~
(x

~~~~
x)

~~

dQ~ cos 0 sin 9~ AG0 cos sin

or

Az An [sin ~ 1 ~~ ~ -

= coa gn — I—— i + 0 (18)
dO0 ~~~~~ 

0
~ J sin

Sepeated application of equation (18), decreasing the index n, yields the
desired torxmals :

dx I ~ (x~ - x~ - ~~
) sin 9 x -

cos- 0 --— = tan G + (19 )
AG0 

° L 1 sin G~ - ~ 
sin G~ sin 9

The reciprocal of the intensity function is given by

1 
= 

x ain
2
~~ [j _ 

- ~ i - ~~~ 
sin 

+ 
x - x~ (20)

I P cos G sin 
~~~ - ~ 

sin sin 9

Equation (20) has the following properties:

I. It reduces to the inverse of equation (10) for the first term cely case :

23. x
= 

p~~~~~2~~

II. The sum of two adj acent ter ms of the series are identically equal to a
• corresponding single term if, and only ii the velocity gradients across

the boundary are the same :

- UNCLASSIFI-

~~~~~ 4~~~r~~~~ -~ _ _— •UP ;.~~~~~P~~~~~~~~~ I~ ~ - *

___

~ —



File No. 26.2000
August 8, 1960

UNCLASSIFIED -18- - REZ:cdn

- +  

X~~~~% _ 1  ., Xn + 1 ~~~~n _ 1  -
s i n Qn + l ein Q

fl a i n GU st h on - l  sin G~ ~ 1 ain 9~ ~

if and only if V~ : V ’

III. The inverse intensity can be written as a sum of a term which reduces
to the linear gradient loss plus a ~ im of gradient dependent terms
which becomes zero in the absence of a t~hange of gradient :

1. _ x 
[~~ V0 9 - ~~~t n 90

p eoa2 o~ L - cos 0

U + 1 (x~~_ x
1 ). I v’

+ sin sin ~~ 
— 

- 1 
- 

j~~ (21 )
2 sin 9i sin @

~ - ~~

where x~ + ~ 
= x and Q~ + ~ 

= 0. That the first term reduces to x when
the gradient is linear can be seen from (7b).

Equation (20) is not really new either; Its essence can be founa in
equation (89) of Chapter 3 of “Physics of Sound in the Sea” and elsewhere.
However , I have not seen it writ ten in this form -- usually it is writ ten
fran crossing to crossing of the velocity break points - - nor have I seen
the conditio n that only actual crossings of break points (and not tang encies
to them) need be considered in the summ ation.
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