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Abstract: Two formulas, equationa (20) and {21), are derived for the
intensity along a raypath in terms of the horizontal dis-
tance traveled by the wave front and the angle which the
ray makes with the horizontel. Dotk formulas are amenable

{ to digital computation in peraliel with & regular digital
meyath caleulation.

Background

For over e decada, the standard meens for computing intensity along &
gound raypath in weters with variable sound veloeity (versus depth) has
been to spproximate the sound velocity functiom by 2 continuous broken-iine
function,; end, then, coupute the vertical distance separating two closely
adjacent mys. This vertical distaunce is campared with the initlal engle
between the rays in order o determine en approximate value of the
divergence. The difficulties with this approach concern the sound velocliy
approximation end the closeness with which the two neighboring rays must
he taken to ¥y~ 1ld reasonable intensitles. Obviocusly, the closer a pair of
rays are taken in initiel angle, the more accurate the calculation rmst be
for eech vey to preserve & significant value of vertical distance between
theu. .
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There are two methods by which the standard calculations of the
pairsof rays can be effected: sequentielly or simultanecusly. In the
former, one camputes the first ray and stores the z (vertical) ordinates
for & certain predetermined x (Borizontael) values; then the same is done
for the second ray; and finally the storsd z-ordinates are differenced
to form Az's. In the latter, one has two camputers of matched accuracy
for the computation of the raypaths; the computetion ylelding the
respective z ordinstes for the same rumning variable x; then a different-
ing calculation, either continuous or discrete, between the z's to form
Az as & function of x follows. Both meens require high accuracy of ray-
path calculation (higher than if one just wished to compute the ray it-
self); both are amenable to digital calculation; only the latter seems
suiteble for analcg implementaticn. The former requires a very extensive
and fest memory end a large computer to achieve any considerable speed
at meking a complete socund raypath end intemsity plot. The latier requires
matched accuracies that ere difficult and expensive to cbtaln and meintain
from an analog unit.

The goal behind the epprcach initieted here is to fird an auxiliary
means of ccmputing the sound intensity change elong e raypath. The form
of the calculation would be to calculste the coordinates of a single ray
and while so doing, put these into a second cquetion which would compute
the sound intensity (or scme function of it) directly. It is hoped that
ir this manner, scme of the high accuracy and matched unit requirements
can be eliminated and reasonable enaliog meaans arrived at.

Socund Rayrath Intensity Calculation

Because the lateral extent of the oceans is many times greater than
the depth dimeansion, the fall off in intensity elong a ray 12 measured
in terms of horizonital aistence x. Acoustic intensity is power per unit
aree snd ite loss is messured from some stepdard sphere of unit redius.
The intensity &s e funciicz of x along the raypath is given approximately

by

P coc o (47)(a9 )
x(aP)(pz) cos O

whers the ©, x, and z quantities are as shown in Figure 1 and ¢ is angle
in the horizontal plana. As can be seen, the usual assumptions apply:
the urection of the sound raypath does not very in the horizontal plane,
thus scund veloeity is 2 z depeadent fuactlon only; 2 is the depth
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dimensicn and is measured with increasing size downward; ¢ is the angle
the raypath mekes with the horizontel axis measured positively from x
to z; and 90 is the initial angle at which the rey leaves the traus-
ducer.

Transducer

> X aXiS

Depth Plane showing oo, 8, x, z along & Reypath

Figure 1

The intensity elong the raypath can be defined o8 follows:

lim P cos Oo AOO
1 = A040 >
Az 3 :

406’0 x cos Q

: .P cos Oo (&
(1)

x coc @ \dz

.

vhere it must be remsubered to toke Az or dz in the positive direction.
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The yproblem of evaluating I reduces to eveluzting on,v’d-z or
inversely dz/doo.

dz/d@c for the Nc Gredient: Case

Thiz is simply done £ .areferznce to the egkatch.

R > X a’ﬂi(é

~
¥ \

B arie

Az = sec @ (x sec ©_) 40
0 C o

Az 2

= X sec O
A0 :
[
4. . e =
a.go = X 3&¢ Qo

Substituting iuto equation (1) one gete

P cos @ P
g — -y
x - @ ¢
X c0s Qo z 8ec A * sex © s
UNCLASE [*IED
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Bquation (2) reduces to the inverse squars lav along the path length,
R, when one notes that

R = x sec 00.

dz/do o for the Linear Gradieat Case

It is well known that for the linear gradient case, the raypaths
become arcs of circles. Iet the velocity equation be given by

Vi) =¥, +¥ (2 -12) (3)

where vo is the scund velccity at depth 2z o and V' represents the gradient --
it is a negative pumber for decreasing scund velocity with increasing depta.

Snell’s law along a particular scund ray can be written

v
v(z) = cos 8. (%)
cos °o
Differentiate and obtain
dz -V
V' — w2 = sin Q
dao cos ©
o
or
Az Vv
—y - 2 sin 0.
do V' cos @
©
But
g = tan ©
and, therefore,
dx -V
il L cos 0.
de V' cos @ o
: UNCLASSIFIED
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Let us define A_ by

A s‘-':-:‘—:%;; (5)
o)
and thus we get as the diffential equation for the sound raypath
%— = Ao gin ©
% = Ao cos O =

vhich are evidently circles of radius A Integrating and applying the
conditionas x =0, z = z, at © = 0 gives the parametric eguations of the
raypath circie:

{z - %X, = -Aj (cos © - cos Go)

3 (7
t x = A (smo-vamoo)

Eli.minstion‘of the parameter O givec the equation of the circle in the
closed fom

os(z-z)i-x -2A cos O (v-z)+2A sin O_ x. (8)
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Sound Raypath Circle Sound Velocity Curve
Figure 2

It is evident from equations (3) end ‘%) end Figure 2 that a physical
reypath will not travel arcund a complete circle because to do so requires
a negative velocity. In fact, since in the oceans the sound velocity
rarely vaeries by more than 8 o/o total, only small ercs of these circles
will be encountered in practice.

The computation of dz/d0_ ie done as & limit of the ratio Az/AQ,.
Suppose what ve take two neargy rays emitted from the same transducer, &
00 2y and a 01 ray. The equation for the circular raypaths are given by

. g = o
0, ray: (z-zo) + X -2A1cosol(z-z°)+2A.1unolx=o

°o ray : same as equation (8)
where
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SO ; A, = 2
v V' cos Ql V' cos GQ

We wish to compute Az iz - z for identicel values of x. Solutioms of the
ecuations for each ray are:

-

x . Vix vix |2 1/2
P e Sl N 1-;-21:&:;@1 -
VO

vo v

o £
9 v, V'x \AF 2 1/e
zZ =g e — l-tha-nQO - \-— s

j

From these, it is evident that

4z Az
o (-]
- B Y 1fe
Az Vo o} i \ Vix
— e e 1l +2 ten Oo —_—h - \
. Vv b0 v j v
[>] D - C (o} , -
where d denotes differentiation with respect to expliciu variables only
= 1 -1/2
dz 2 ¥ix V'x =
— =x 2ee” 0_ |1 + 2 tan © - . (9)
40 ¥ Yiv v
O (o] [a] &

=

Therefore, equation (1),becomes

V'x V'x
P 1+2tan0°. -

Vo Vo

I =
x2 sec3 e s cos @
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But, from equation (Tb), one can compute that the radical is nothing more
than cos € sec Oo ; therefore,

P cos 6 sec O

I =
x2 eec2 ’Jocos &
(10)
I= 4
xa sec2 2

Equations (2) and (10) are identical in form. Eowever, in the ‘nterpre-
tetion of equation (10), the distance along the reypath, R, is no longer
equal to x sec @ . Conseguently, the raypath intensity comiours differ
from the isovelogity case.

What bas bera derived to this point, equation (10), is not new; it 1s,

for exemple, derived more elegauntly in C. B. Officer's "Introduction to
the Theory of Sound Transmission," McGraw-Hill, 1958, pgs. 48-50, 59-61.

Continuous Linear Segment Approximation to the Non-linear Gradient .

It has been customary for some time to approximate non-linesyx sound-
velocity gradients by continuous lineer segments for the purposes of approxi-
mate calculation of sound raypaths in the ucean. The raypeths which resulit
are arcs of circles, as gbove, but with different radil in each depth seg-
ment. The tangent lines ©n the resulting raypath are continuous over the
bounderies of the depth segments. In general, the linear segment approxi-
mation is an "eye" fit with unequal depth segmenis.

V(z)
M
NS
N
Ny
03 z° zo Z, 23 2" 2 ; 2‘
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The equations governing the segrenis cve:

V(Zi) =V

. 2 B et 1

v(z) = v, + (z “5.) Vi (11
v1+1 = Vl -+ (Zi X ‘zi) Vi

where all subscripts run over L =0, 1,. . . snd where the second of
equation (11) applies only between z, and Z, 4q°

dz/d'eo for Contirmocus Iinear Segment Approximation

o)
Sicigant to seg it - - et cotvied BT coassing.
p : ;
: X, : Xa i i
Raypath vith x, z, and © J>tation
Figure 3
AT R LECLASSIFIED
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Here, again, we investigate the 1limil cof 42/A86 but for the situveticn
of the raypeth generated by the linear segment gpprgximtion. The notation
is different from the above; the runaing subacript n refers to the n-ith
depth segnent crossed by the ray while z_ wre’era to the initial depth of
the ray (Sransducer depth) vhich is not ..ecesse.rily or a segment boundaiy .
The ray picture may look scmething like Figure 3.

In Pigare 3, the bourdaries of the depth segment are shown by
dashed lines intereecting the z-axis. We cbserve that the sequence x
is increesing while the sequences 2z and 9 are not necessarily so.
If, as is drawm in Figuye 3, the ra.?pe, sh réaches a poirt of tangency with
a segnent boundary, the ray 1s considered not to have crogsed the boundsry
and will continue oan in the same veloclity gradient reglcn a3 before the
point of tangency.

For the calculation of the ratic Az/-:\eo_. the notation of Figure L
applies.

Ar” /

JdV _ /'

R y, 5 dz v”"
Z D2y .
\ 4 B T MR S
2 anis é‘; Ep
AR
d¥ '
Jz Vn
X,‘. Xy X

Geometry and Notation for Az/AOo Calculation
DRue 'mcmasn'mn i
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Care must be taken in using the geometry of Figure 4 becsuse of the
different relative magnitudes of x a and xr'z The rule is
. S
On {positive)—» - S e C (as shown)

8, (negative) > xl" -x, > 0 (not shown)

From the figure, the equations governing the arcs of the ©_-ray(and 50 ray)
fram x| (and x’;) to x are given by equation (13), (respectively)

2V v
2 2 n n
(z-zn) +(x-xn) + 5 (z—zn)— v tcnen(x-xn)=0
o n
(13)
)’/ v
(E—z)2-).(::-3;’)2+-—-—-ll (£-2)-—~2¢tand (x-x')=0
n n v n v n n
n n

From Snell's law, along each curve one gets

L \/Vﬁaecaeo-vﬁ

v
n

& \[Vif;zsec2 5O-V§
tan 6. = +
v

n
n

ten On

vhere the sign is positive for On positive end negative for © o negative. The

solubion of equation (13) for z end z Yield:

URCLASSIFIED




URCIASSIFIED

v v
zZ = zn - + -

' '
vn vn

= A4 v

Z =2 - _E. -+ -—E

ire v

a

File No. 26.2000

August 8, 1960
~13- REZ:cdn

14 - (x- xn)
Yn Ya
A 2] 12
’ (Vn (x xn) )
v
n
! i
2V sz sec” © -~ V2
1+ 2 e 2 2. (x -x')
- ¥ v »
n n
24{1/2
~(V!'1 (x - xl;) )
v
a

vhere the sign conventions again follow On. The expression for Az E )

divided by 40, 6, - 6,

i

s
1

AOO AGOVn
Lraligs

1 ]

vn

1

n

o =
‘ -
av \/vﬁ sec” 6 -V

n
(x - x
n
Vn Vn
2l1/2
(v:" (x - ‘1.1) \
AR |
2 V"‘ \/Vi aeca 90 - Vl2
(x -x)
Ya Ya
USCLASSIFIED
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: (V;1 (x - xn) )2 1/2

By noting that x - x' =% - X+ Ax with the same convention as is in
{(12) and then expand ng t #3rat of the radicals as a function of Aax,

one gets
Az S Gope }
= —{—= X(6,) - X(6,) ! +
E s
AQO AOO Vn : A

1 \ﬁzsec Q-V \'A

n
_-'_-——(x—xn) Ax

x(@ ) v, v,

+ (Ax)2 (etc)

vhere the definition of X(Go) is

2 vr; \/Vi sec:2 9, - Vﬁ
x{(e,) = |1 +
v \/

v b5 "n))a 1/2

v
n

(x-xn).-(

If we multiply through by one over AOO and pess to the limit, we arrive at
the preliminary form of the recursion formu.a

2 ‘
- 80 HEG LSRR TN R
Q, V. 29, x(eo) L& v, ae, »
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.

The procedure is now straight forward: compute the pertial derivative,
express the derivative dz/den in terms of dzn/doo, and simplify

Y 2
83X +vt'! Visec Qota.neo (x~xn) :
o (15
e v 2 i
o n X(Qo) Y \/\ri sec” O Vﬁ
The expression for r.izn/dgo can be evaluated as follows:
Azn z e z
— = for Qr positive and
AGO 40 5
Az, z - z, "
—_— = ——— for On negative, vhere the equations for z and z are:
A® 40
(] ©

v 2V
(z-z)2+(Ax)2+ - (z -2.) + 2 ten 6_ (&x) = O
o v B -
n-~1 n-1
2V
(i-zn)2+(Ax)2+ - (8 ~ 3.) + =2 tan 6 (Ax) =0
L} vl
n -1 n -1

It follows then that in the limit as Aeo goes to zero, the formel
expressions for the derivatives will be the negative of each other. There-
fore, the jcint calculation can be written as

Az 1 v \' 2V

il 9 a __=® § = -—-'-‘-‘-’:unon(Ax)
’ L} L

A°o 690 vu-l vn-l vn
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(&-1 A")Z i
e

a

i3

VWhere the sign convention is the upper wken © is positive and the lower
when ©  is negative. Expanding the radical a8 & function of Ax ylelds

Az 3 v -V
.. s B-1ano | ax+(ax)? (ete.)

' a
a0, a0, l , U, A

wvhich upon passing to the limit becomes, exactly,

dz e dx dx

—_—= 4 tan@n—-——-or = 'tanen — (16)

aeo doo doo
in wvhich the sign ccnvention is the usual cne. This is certainly the
expected result for this calculation. Using equations (1%), (1‘5{ (16), and
the definition of tan © ? ORe gets

dz b} V! (x ~-x_ )] dz tan ©_ (x - x_) '

e i ik A R = = (17)

e, x(oo) v, tan 0 | a6 cos O sin 6

This is the recursiom relationship vhich carries the derivative over the
boundary from one gradi-nt to another. To further simplify the equation,
the following two relatiocnships are noted:

x(oo) = cos @ sec O

Vx" (x-xn) sin ©

Vn tan On sin °n

1l
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and, therefore,

dz cos O |sin @ dzn tan Oo (x - xn)

— = — e

dGO cos G 8in Qn deo coe Qn sin Qn
or
dz dz sin 6 tan 0 (x -~ x_)
cos & — = cos 9, s ]4- 2 = (18)
=19° dOo sin Gn sin On

Repeated application of equation (18), decreasing the index n, yields the
desired formala:

n

de (x, - x ) sin © x -
cos 0 — = tan ¢ }: 3 Sk - "o (19)
aeo X sin Gi St sin Qi sin °n
The reciprocal of the intensity function is given by
r n - -
1 x 8in 6 (xi Xy 1) sin © x -x
= : @
I P cos Go 1 sin 91 -1 sia 91 sin Gn

Equation (20) has the following properties:
I. It reduces to the inverse of equation (10) for the first term omly case:

1l xa
O, 3
I P cos Go

II. The sum of two adjacent terms of the series are 1dcnt.1cally"equal to a
corresponding single term if, and only if, the velocity gradients across
the boundary are the same:

UNCLASSIFIED
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X +1 "% +xn'xn-l ___xn+1'xn-l
sin9n+luin9n sinensinun_l sin9n+lain9n-1

ST ]
ifa.ndcnlyirvn .-vn~l.

IITI. The lnverse intensity can be writicn as a2 sum of & term which reduces

to the linear gradient loss plus & sum of gradient dependent terms
which becomes zero in the absence of a change of gradient:

3 x -vo(smo-sineo)

|

- 4
P cos Go Vo cos GO

n+1
(x, - x ). V!
+ £in 6_ sin 9 Z - i-1 .i-1
1

(21}
: 2 sin Gi sin Qi i

‘o

where X411 =% a.nden 1 = 0. That the first term reduces to x vhen
the gradient is linear can be seen from (7b).

Equation (20) is not really new either; its essence can be found in
equation (89) of Chapter 3 of "Physics of Sound in the Sea" and elsevhere.
However, I have not seen it written in this form -- usually it is written
from crossing to crossing of the velocity break points -- nor have I seen

the condition that only actual crossings of break points (and not tangencies
to them) need be considered in the sumnation. :
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