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PREFACE

This final report was submitted by Exxon Research and Engineering
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with Captain Heidi E. Cron and Mr. L. C. Angello as Project Engineers.
Dr.(William F. Taylor of Exxon Research and Engineering Company, Government
Research Laboratories, Linden, New Jersey, supervised the work. J. L. Kaufman,
E. C. Brown, and A. R. Cunningham of Exxon Research and Engineering Company,
Exxon Engineering Petroleum Department, Florham Park, New Jersey, conducted
the engineering planning study. C. A. Smith and M. G. Luzarraga of Exxon
Research and Development Laboratories, Baton Rouge, Louisiana carried out
the preparation of a sample of jet fuel from Paraho shale oil.

This report describes the third phase (Phase 3) of a study being
carried out by Exxon Research and Engineering Company for the United States
Air Force. The study is directed at evaluating the current technology for
the production of aviation turbine fuels from synthetic crude oils. The
scope of the program involves engineering analyses, experimentation, design
projections, and considerations of availability and economics.

Many individuals from the Department of Defense, NASA, and Exxon
made valuable contributions to this study. The authors wish to acknowledge
the helpful advice and encouragement received from the following individuals:
Messrs, H, Shaw, J. P. Longwell, F. H, Kant, and R. B, Long. Dr. J. W. Harrison
had overall management responsibility for the project.
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SECTION I

SUMMARY

An engineering planning study was made of the effect of processing
shale oil in a refinery processing both shale oil and petroleum to a full
product slate including jet fuel.

This study was part of an overall program whose object was to
investigate the feasibility of producing aviation turbine fuels from
synthetic crude oils. In this Phase 3 engineering planning study the
results and conclusions of the Phase 1 state-of-the-art assessment and
Phase 2 pilot plant experimental study were further investigated. The
Exxon RESCUE Linear Program for Refinery Planning was used to provide a
framework for the analysis.

The study which involved a number of arbitrary but well-defined
assumptions, was done in the context of a grass roots refinery processing
shale o0il and petroleum in segregated operations. Shale oil processing was
restricted to distillation and hydrotreating of the kerosene and gas oil
fractions, whereas petroleum processing involved a full spectrum of refinery
processes with a relatively high level of conversion of heavier fractions to
lighter fractions to meet a high motor gasoline demand. Conversion processing
options for shale oil fractions were specifically excluded due to a lack of
such data available to the program. The hydrotreated shale keroszne was
blended to jet fuel product and the hydrotreated shale vacuum gas oil and
untreated vacuum resid were blended into fuel oil or liquid plant fuel dis-
placing petroleum fractions which are in turn converted to lighter products.
Shale oil was incrementally introduced into the refinery which was initially
processing 100 kB/CD of petroleum crude while the refinery was constrained to
produce the same volume of prime products. Refinery processing effects and
refining cost effects in terms of the average cost per unit of total prime
product were calculated. Base case studies were made for processing Paraho,
Tosco, and Garrett shale oil. Additional studies were made to explore the
sensitivity of the base case results to increased jet fuel demand, increased
fuel oil demand and maximum jet fuel production.

The major conclusions of the study are as follows:

® Shale oil may be used to replace or supplement petroleum crude
and still meet historical jet fuel demands.

® Jet fuel yield per barrel of shale oil is low. The principal
mechanism for producing incremental jet fuel from shale oil is
to have shale fuel oil and distillate fractions replace petroleum
fractions as fuel oil flux and free heavier petroleum fractions
for use as conversion process feed.

® The volume of shale oil that may be run is limited by the
availability of fuel oil outlets and the unavailability of
conversion outlets.
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® A program of developing data on conversion of shale fuel
oll fractions should be pursued.

In adaition, a sample of Jet A type aircraft turbine fuel (approx-

imately 328 gallons) was produced from Paraho shale oil via initial fractionation

followed by catalytic hydroprocessing which met the following specifications:

Total sulfur

Total aromatic content
Flash point

Freeze point

Smoke point

Viscosity at -30°F
ASTM distillation

API gravity

This aviation turbine fuel was produced by hydrotreating a 310/500°F
cut of Paraho shale oil over HDS-3A catalyst at 700°F, 1200 psig, 1 LHSV, and
4000 SCF/B Hy. At these conditions sulfur content was reduced from 0.74 wt.Z
to generally less than 10 ppm. No noticeable catalytic hydrodesulfurization
deactivation had occurred after thirty days on oil. However, catalyst
activity for denitrogenation and aromatics hydrogenation had both declined
during the course of the run. Product nitrogen levels increased from less
than 5 ppm to 40-100 ppm, and aromatics contact increased from ca. 10 vol.%
initially to 15-16 vol.%Z at the end of approximately 30 days. The hydrogen
consumption involved in upgrading the kerosene fraction of a Paraho shale
oil to meet Jet A fuel specifications at these process conditions initially
was ca. 1050 SCF/B at SOR. Hydrogen consumption was somewhat lower at the
end of the run which reflects the decline in catalyst activity for aromatics
hydrogenation.
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SECTION II

INTRODUCTION

Domestic petroleum product production is now, and is forecast
to continue to be (National Petroleum Council, 1973), heavily dependent
on foreign crude oil feedstocks. Wide recognition of this dependence
has led to renewed interest in the production of hydrocarbon liquids
from coal and shale deposits to augment the domestic fuel base. The
degree to which synthetic fuels developments mitigate foreign dependence

is of obvious significance to the logistics support planning of the Armed
Forces.

This program is a three phase effort sponsored by the U.S.
Air Force Systems Command to determine the feasibility of producing
aviation turbine fuels, in particular, from other-than-normal petroleum
sources. In Phase 1, literature data relating to the extent of domestic
mineral resources and to the many proposed processes for the extraction or
transformation to crude fuel liquids were assessed. Approaches to the
production of finished fuels from the crude liquids, based on current
petroleum oil technology, were also assessed. Phase I concluded that
shale-derived oils should be preferentially investigated as a source of
aviation turbine fuels, both because they more nearly resemble natural
petroleum than do other synthetic crudes, and because significant quantities
of shale oil are expected to come onto the market before coal-derived
materials are available. The properties of coal-derived liquids, on the
other hand, make them ideal for the production of other finished products,
such as certain motor gasolines, and could add indirectly to aviation turbine
fuel availability by permitting back-out of regular petroleum crude from
gasoline manufacture.

In Phase 1II, the experimental segment of the program, the objective
was to determine whether specification JP-4 and/or Jet A aviation fuels
could be produced from synthetic crude oils via hydrotreatment of selected
synthetic crude oil fractions. Three shale oils and two coal liquids,
obtained from the respective process developers, were investigated. Feed
fractions encompassing the jet fuel boiling range were distilled from the
starting crude oils and hydrotreated at varying severity over nickel and/or
cobalt-molybdenum catalysts. Final narrow-cut (Jet A) and/or wide-cut (JP-4)
jet fuels oils were blended from the hydrotreated products. From the
inspections obtained on the final jet fuel blends, including results of the
Jet Fuel Thermal Oxidation Tests (JFTOT), it was concluded that the production
of jet fuels from shale oil-derived crude oils is technically feasible, and
apt to be much more straightforward than would be the comparable production
from coal-derived oils. Hydroprocessing severity is important to the production
of specification fuels. Production of specification jet fuel from shale
liquids will require at least a moderate severity operation employing a
1500 psi total pressure. Final fuels prepared from coal-derived fuels,
however, did not meet density specifications unless hydrotreated at high
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severity conditions employing 2200 psi pressure. Increased processing
severity, in general, improved the thermal stability and decreased the
aromatic and nitrogen content of the product fuel. Sulfur levels of the
processed fuels were all well below specifications at all processing
severity levels.

In the Phase 3 portion of the program described in this report
an engineering planning study of the effect of processing shale oil in a
refinery processing both shale oil and petroleum crude was carried out.
In addition, the preparation of a 300 gallon sample of Jet A type fuel,
prepared to the Air Force requirements from Paraho shale oil was carried
out. This work is also described in this report.




SECTION III

] AN ENGINEERING PLANNING STUDY OF THE EFFECT OF
PROCESSING SHALE OIL IN A CONVENTIONAL REFINERY

3.1 1iIntroduction

The purpose of this study was to determine the refining impact
of producing aviation turbine fuels from synthetic crude oils. Planning
Engineering did this study as the third phase (engineering phase) of an
overall assessment of producing aviation turbine fuels (ATF) from domestic
synthetic crude sources. Briefly, Phase One was an overview of the
problem considering raw material availability, synthetic crude production,
optimum processing paths and ATF production. Phase Two was an experimental
phase in which analyses of the synthetic oils were obtained and test runs
made on hydrotreating synthetic crude oil ATF fractions. The Phase Three
engineering work took advantage of the results and conclusions of Phases
One and Two.

3.2 General Purpose and Limitations

The overall objective of the engineering planning study was to
explore the impact of producing jet fuel from a refinery crude slate
including both shale o0il and petroleum. The framework for the analysis
was the results and conclusions of the previous work in the program;

b however, to an extent the quantitative bases for the study although well
defined, was arbitrary. Thus, the significance of the study lies not eo
much in the quantitative results presented but in the qualitative and/or
directional effects which were obtained. The refining cost effects shown
should not be construed to represent an absolute, real cost for producing
jet fuel from shale oil. Likewise, the processing sequence chosen for

1 the shale oil, although a logical extension of work in the previous two
phases of the program, should not be construed as an optimum processing
sequence.

] The reader will find much data in this study on refining costs,
refinery crude runs, product yields, energy consumption, etc. The
derivation of this data, and the bases and assumptions behind them is well
documented in this study. However, bases and assumptions become outdated

as they are set, especially when they apply to a relatively new field such
as refining of shale oils. The real objective of this study is to provide

a framework upon which further consideration of how best to process shale
oil in refineries may be based, and the significance of this study is not

in the quantitative data presented herein but in the qualitative discussions.

3.3 Study Bases
3.3.1 General

It is likely that as shale oil comes into significant commercial
production, it will be processed in conventional petroleum refineries along
with petroleum crudes rather than in refineries designed specifically
for shale oil refining. This approach will. minimize the processing required
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to produce salable products from shale oil as well as reduce the performance
and quality risk normally associated with the introduction of new products.
Shale oil production will most likely reduce foreign crude imports otherwise
needed to meet increasing product demand in the U.S.

The U.S. Midwest - Petroleum Allocation for Defense District II
(or PAD II) - was chosen as the basis for defining raw materials character-
istics and availability, product.volume and quality, and processing capabil-
ities for this study. PAD II was chosen because it is thought to be typical
of the entire U.S. and it is a possible recipient, via pipeline, of shale oil.
Definition of the refining capabilities of PAD II is based on recent petroleum
industry and U.S. Bureau of Mines data. Current operation was chosen as a
basis over a forecast of future demand, raw material supply, etc. to make the
results more understandable and to avoid jeopardizing the validity of the
results with an erroneous forecast. 1975 is used as the base year for
defining investments and operating costs.

Although the base refinery is modeled after present day, average
PAD 11 operation in terms of raw materials, demand slate and processing
sequence, the base case as well as all other cases in this study are based
on grass roots refining capacity. No attempt was made to define existing
refining capability or existing spare capacity in PAD II. This approach
allows evaluation of the full impact of the shale oil on the base refinery.

3.3.2 Crude Basis

Several different types of crude are processed in the PAD Il
district. For simplicity and clarity of calculations and analyses, this
broad petroleum crude slate was modeled as a 67/33 mixture of South Louisiana,
a low sulfur domestic crude, and Arabian Light, a high sulfur foreign crude.
This mixture is similar in demnsity, sulfur content and distillation character-
istics to the average of all crudes run in PAD II. A comparison of qualities
for these two model crudes is shown in Table 1.

Only synthetic crude oils resulting from shale are considered in
the Phase Three work. Phase One considered several synthetic crude oil
sources. Phase Two considered only five sources, three from shale and two
from coal. Analysis of the Phase Two datz indicated that conventional
specification ATF could not be produced from the coal-derived synthetic
crudes without extreme processing steps. Thus, the Phase Three work was
limited to the three shale-derived crudes - Garrett, Tosco and Paraho.

Shale oils from three different production processes are considered
in this study. Only raw shale oils with no mine-site upgrading are considered.

Garrett shale oil results from in-situ retorting of shale rock. Tosco shale

oil is produced by a hot ceramic ball retorting process. Paraho shale oil is
produced by a gas combustion retorting process. Assay data for the raw shale
oils were developed as part of the Phase Two program. Qualities of the three
shale oils and shale oil fractions are summarized in Table 2.




TABLE 1

PETROLEUM CRUDE QUAL.TIES

So. Louisijiana Arabian Light

Whole Crude

Sp. Gravity (°API) .8438(36.2) .8529(34.4)

Sulfur, wt% .19 1.69

Nitrogen, wt% .06 .04

C4-, LV% on Crude 1.4 2.0
Light Virgin Naphtha (Cs5/160)

LV% on Crude 3.8 6.1

Sp. Gravity .6578 .6524

Sul fur, wt?% .001 .023
Heavy Virgin Naphtha (160/375)

LV% on Crude 19.9 20.4

Sp. Gravity .767 .775

Sulfur, wt% .01 .03
Kerosene (375/460)

1V% on Crude 10.8 8.9

Sp. Gravity .817 .798

Sulfur, wt? .03 .11
Light Atmospheric Gas 0il (460/550)

1V% on Crude 13.6 9.3

Sp. Gravity .841 .828

Sulfur, wt?% .05 .80
Heavy Atmospheric Gas 0il (550/650)

LV% on Crude 14.2 9.8

Sp. Gravity .862 .858

Sulfur, wt% .125 1.38
Vacuum Gas 0il (650/1050)

LV% on Crude 29.3 30.5

Sp. Gravity .903 .916

Sulfur, wt7% .34 2.36
Vacuum Resid (1050+)

LV7% on Crude 7.0 13.0

Sp. Gravity .98 1.025

Sulfur, wt?% .87 4.19

Notes:

(1) Numwbers in parentheses next to cut names represent boiling ranges
and are given in °F based on 15/5-distillation.

f.
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TABLE 2

RAW SHALE OIL ASSAY QUALITIES

Garrett
Whole Shale 0il
Sp. Gravity ("API) .9042(25.0)
Sulfur, wt% ‘ .64
Nitrogen, wt% 1.30
Viscosity, CS @ 100°F 15.8
Pour Point, °F 50
Naphtha (3107) (1)
Yield on Crude, LV% 1.26
Sp. Gravity .814
Sulfur, wt% 43
Kerosene (310/500)
Yield on Crude, LV7 14.04
Sp. Gravity .841
Sulfur, wt% .58
Smoke Point, mm 14
Luminometer No. 32
Nitrogen, wt% (2) 1.06
Bromine No. (2) 23
Aromatics, LV% (2) 38.9
Gas 0il (500/1050)
Yield on Crude, LV7 80.2
Sp. Gravity .906
Sulfur, wt% .54
Nitrogen, wt% 1.36
Con Carbon, wt% -
Pour Point, °F 74
Pitch (1050+)
Yield on Crude, LV% 4.5
Sp. Gravity 1.059
Sulfur, wt? 1.32
Nitrogen, wt?% 1.98
Pour Point, °F 2120

Notes:

1)
(2)

Tosco

.9279(21.0)
.67
1.85
27.1
70

7.10
.762
.90

13.86
.824
.82
17

40
.78

17.6
1.034
.53
2.32
125

e R e e e

Paraho

.9383(19.3)
71
2.00
78.5
85

6.80
.847
71
16
32
1.36
23
39.4

84.2
.936
.62
1.96
1.3
87

9.0
1.03

.48

3.06

Numbers in parentheses next to cut names represent boiling ranges
and are given in °F based on 15/5 distillation.
These data not obtained from assays but rather from subsequent

Phase Two results.




The three shale oils are chemically similar to petroleum crude
oils. As refinery feedstock, shale oils have relatively high nitrogen and
sulfur content although only the nitrogen level is unusually high compared
to petroleum crudes. Shale oils are more dense than petroleum crudes. This
is reflected in a lower API gravity (19-25°API for the shale oils). The
shale oils also have less material boiling in the naphtha and kerosene
boiling range (500°F boiling point or lower) than do petroleum crudes. This
is an important difference since the U.S. has a relatively high demand for
light products (e.g. motor gasoline). The fuel oil fractions of shale oil
have higher pour points than corresponding petroleum fractions.

3.3.3 Product Demand Basis

The base demand pattern for refining products in the U.S. Midwest
1s summarized in Table 3. Refining products are broken down into five broad
categories: LPG (liquified petroleum gas) - motor gasoline (mogas) including
i regular, premium and unleaded grades - Jet Fuel, both naphtha type and
% kerosene type - distillates including diesel oil, heating oil, kerosene and

other distillate products - residual fuel oil including fuel oil as well as

asphalts, waxes and lubes. PAD II like most of the U.S. requires a relatively
high level of conversion of fuel oil and distillate to naphtha to meet a high
(58% on total liquid product) motor gasoline demand. Product specifications
for these five products are summarized in Table 4.

Throughout this report the terms Jet Fuel and ATF (Aviation Turbine
Fuel) will be used interchangeably. Two general types of Jet Fuel are
produced in the U.S. Midwest - Jet A and JP-4. Jet A is an aviation turbine
fuel used primarily in commercial aircraft. JP-4 1s the so called "wide cut"
or "naphtha type" Jet Fuel used in military aircraft. In the U.S. Midwest,
Jet Fuel production is approximately 80% Jet A/20% JP-4. Total jet fuel
production in PAD II is 5% of total liquid product. By comrarison, in 1974
jet fuels averaged 6.3% of total U.S. domestic production ),

3.3.4 Refining Basis

The hypothetical grass roots petroleum refinery used as a basis in
this study produces 100 kB/cD(2) of products from petroleum with a process
sequence typical of the present day refining industry in PAD II. No attempt
was made to define existing capacity or possible spare available capacity.
Onsite processing equipment considered typical of PAD II is listed in Table 5.

A process flow scheme for the Base Case is shown in Figure 1.
Crude oil is separated into several fractions in a two stage distillation
train of atmospheric and vacuum distillation. In the atmospheric tower crude
oil is separated into light ends gas (material that boils below 70°F), naphtha,
kerosene, light atmospheric gas oil (LAGO), heavy atmospheric gas oil (HAGO),
and atmospheric residuum (material boiling above 650°F typically). The
atmospheric resid (650°F+) is further distilled in a vacuum distillation step

(1) F. H. Kant et. al, "Effects of Changing the Proportions of Automotive
Distillate and Gasoline Produced by Petroleum Refining" EPA-460/3-74-018,
July 1974.

(2) In accordance with SI conversion k = 103, M = 106,
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TABLE 3

PAD II PRODUCT DEMAND SLATE

Product LV% on Total Liquid Product
LPG 2.5
Motor Gasoline 58.0
Jet Fuel (1)

Naphtha Type 1.0
Kerosene Type 4.0
Distillate 23.5
Fuel 0il 11.0
Total Liquid Product 100.0

Total Prime Product 97.5

(ex. LPG)
Notes:

(1) The terms Jet Fuel and Aviation Turbine Fuel (ATF) are used
synonymously in this report.




TABLE 4

PRIME PRODUCT SPECIFICATIONS

Motor Gasoline

(RON + MON)/2
RVP, psi
Lead, cc/gal

Jet A ("Kerosene Type' Jet Fuel)

Sp. Gravity
Sulfur, wt%
Luminometer No.
Aromatics, LV7
Freeze Point, °F

JP-4 ("Naphtha Type'" Jet Fuel)

Sp. Gravity
Sulfur, wt%
Luminometer No.
RVP, psi
Aromatics, LV%
Freeze Point, °F

Distillate

Sp. Gravity
Sulfur, wt%

Fuel 0il

Sulfur, wt7
Viscosity, CS @ 122°F

87.5 min.
7-10.5
(1]

.775-.830
.2 max.
45 min.
20 max.

~-36 max.

.751-.802
.3 max.
50 min.

20 max.
=53 max.

.890 max.
.3 max.

.7 max.
10-350
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TABLE 5

TYPICAL U.S. MIDWEST
ONSITE PROCESSING
FACILITIES

Distillation

Atmospheric Pipestill

Vacuum Pipestill

Crude Light Ends Facilities
Unsaturated Light Ends Facilities

Hydrotreating

Naphtha Hydrotreater

Kerosene Hydrotreater

Heavy Atmospheric Gas 0il Hydrotreater
Vacuum / Coker Gas 0il Hydrotreater

Fuel 0il Conversion

Fluid Catalytic Cracking
Delayed Coking

Mogas Processes

Catalytic Reforming
Alkylation

Miscellaneous

Merox Treating - LPG
- Cat Naphtha
MEA Scrubbing of H2S Rich Gas
Hydrogen Production
Claus Plant (With Tail Gas Cleanup)
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producing a vacuum gas oil (VGO) and vacuum resid, (matgrial boiling above
1050°F typically). The light ends and naphtha are sent to a series of
fractionation towers (light ends or gas plant) which recovers a gas,contain-
ing ethane and methane for use as refinery fuel, propane for LPG sales,
butanes for mogas blending, light virgin naphtha (LVN) for JP-4 and mogas
blending and heavy virgin naphtha (HVN). Most of the HVN is processed in a
catalytic reformer to make a high octane motor gasoline blending stock while
a small portion is blended intec JP-4.

Kerosene is mildly hydrotreated to improve its physical properties
(odor, color, etc.) and is then blended either into Jet Fuel or to distillate
products such as automotive diesel o0il or home heating oil. LAGO and HAGO
are blended to distillate products or fuel oil, or used as feed, along with
VGO, to a Fluid Catalytic Cracking (FCC) unit. The FCC converts the atmos-
pheric and vacuum gas o0ils mainly into naphtha to help meet the mogas demand.
Other FCC products include unsaturated light ends, cat distillate and cat
plant "bottoms'" which is a tar-like substance. The light ends go to a
separate unsaturated light ends plant where refinery fuel gas, FCC C3's
(propane and propylene) and C,'s (butanes and butenes) material used as
LPG or as Alkylation plant feed are recovered. The Alkylation plant is a
unit that produces high octane motor gasoline by chemically combining
propylene or butene with isobutane. Cat distillate is blended either to

distillate or fuel oil dispositions. Cat plant bottoms is blended to fuel oil.

Vacuum resid (1050°F+) is either blended to fuel oil dispositions
or converted to lighter products in a Coker., The Coker produces unsaturated
light ends, coker naphtha and coker gas oil. The coker light ends are
processed in a common plant with FCC light ends. Coker naphtha and heavy
coker gas oil are fed to the FCC. Light coker gas o0il goes to distillate
and fuel oil dispositionms.

In addition to these onsite process facilities, all offsite support
facilities required for the refinery such as utility, pollution control,
tankage and general offsite facilities are also included. The definition of
offsite support facilities is based on historical data and experience.

Utility facilities cover such operations as steam generation, power
distribution, cooling water circulation, refinery fuel distribution, and
other miscellaneous utilities associated with operating a petroleum refinery.

Pollution control facilities provided are for a '"restrictive
location," typical of what would be required to build a refinery in the U.S.
today. Primary and secondary wastewater treating is included. A Claus
Sulfur plant followed by a tail gas cleanup plant is provided to treat sulfur
rich refinery gases. All high sulfur feed to the refinery's fluid cat cracker
is desulfurized. A total refinery limit of 10 LT/CD (for 100 kB8/CD products)
of SO, is imposed.
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General offsites facilities include interconnecting lines, safety
facilities, fire protection, crude receipt and product shipping, blending,
chemicals handling, building, site development, civil improvements and
other miscellaneous facilities typical of a petroleum refinery. Tankage
includes crude tankage, product storage and any necessary intermediate
tankage.

The onsite processing facilities described above and in Table 5
refer, to processing of petroleum crude only. For this study it is assumed
that shale oil is processed in facilities segregated from the petroleum
crude. Tis approach avoids any problems with compatibility of shale oil
fractions with’ petroleum fractions and problems associated with the quality
of shale/petroleum mixture fractions as feed to conventional petroleum refining
units neither of which has been commercially demonstrated. No conversion
facilities are provided for shale oil fractions since only limited data on
employing the best current technology for such pperations are available.

-

The processing sequence for processing the raw shale cil (shown in
Figure 2) is as follows. The shale oil is fractionated in an atmospheric
tower producing a 500°F~ (15/5 distillation) overhead, primarily kerosene,
and a 500°F+ (15/5 distillation) resid. The 500°F (15/5 distillation) backend
on the kerosene is a conservative approximation for shale kerosene represent-
ing industry average Jet A quality.

The Phase Two work indicated that Jet-A quality material can be
produced from shale kerosene, if the shale kerosene is hydrotreated to
reduce sulfur, nitrogen and aromatics content, and to improve burning
characteristics. The 500°F~ overhead is hydrotreated and fractionated
into kerosene and naphtha. The Phase Two effort demonstrated that hydro-
treating process conditions for shale kerosene are more severe than those
normally required for petroleum kerosenes. The process basis for the hydro-
treater is to produce a kerosene of Jet A quality. Table 6 summarizes the,
quality of the hydrotreater prcduct. Process and economic information for
the severe hydrotreater is based on evaluation and extrapolation of data
from the Phase Two work.

Whatever hydrotreatad shale naphtha is recovered is blended to
JP-4 or motor gasoline. The kerosene is blended only to Jet Fuel. The
500°F* resid is distilled in a vacuum tower producing a vacuum gas oil (VGO)
and a small volume of vacuum resid. The VGO is hydrotreated to reduce
sulfur and nitrogen content. he treated shale VGO and the vacuum resid are
blended into either fuel o0il for sales or liquid plant fuel, displacing
petroleum fractions which are in turn converted to lighter products. These
same shale fractions are allowed to displace refinery gas from use as plant
fuel to fuel gas sales.

3.4 Approach to the Study

The refining impact of producing ATT (Jet Fuel) from shale oil
includes changes in processing, erergy requirements, grass roots capital
investment, raw mateiials requirement, etc. These changes manifest them-
selves as an increase iu total refining cost. The increased cost is due
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TABLE 6

HYDROTREATED SHALE KEROSENE QUAILITY

Garrett Tosco
Sp. Gravity, °API 43.0 45.1
Sulfur, wt?% (Max.) 0.2 0.2
Aromatics, LV (Max.) 20.0
Luminometer No. 48
Smoke Point, MM 22
Nitrogen, wt%

Bromine No.
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both to the cost of facilities required to process the shale oil and to the
increased conversion of heavy petroleum fractions required as shale oil
fractions displace petroleum fractions from fuel oil and plant fuel
dispositions.

The study is done with the aid of a refinery, linear programming,
computer model. Linear programming (LP) is a mathematical technique for
finding the optimum configuration of a complex system. LP is widely used
throughout the petroleum industry as well as other industries. As applied
to this situation LP is being used to define the optimum refinery processing
sequence for both petroleum and shale oil consistent with product demand,
crude availability, product quality, heat and material balance constraints.

The Base Case for this study is a grass roots refinery producing
100 kB/CD of 1iquid product (97.5 kB/CD of prime product - i.e. ex LPG)
according to the base demand pattern in Table 3 by processing a 100%
petroleum crude slate (67/33 So. Louisiana/Arabian Light) in refining
facilities typical of PAD II. The product yield is shown below:

Motor Gasoline 58.0 kB/CD
Jet Fuel#* 5.0 kB/CD
Distillate 23.5 kB/CD
Fuel 0il 1i.0 kB/CD

Total Prime Product 97.5 kB/CD
*'"Jet Fuel" represents a 4/1 combination of Jet A/JP-4.

Increments of each shale oil are brought into the crude slate, replacing
Arabian Light crude, while the refinery is forced to meet the same prime
product demand as the Base Case. Production of LPG and refinery fuel gas,
both relatively low volume products, is allowed to vary. This results in a
series of cases (Series A) for each shale oil, with an ever increasing volume
of shale oil in the crude slate. Since, in this study, shale oil fractioms
boiling above 500°F cannot be converted to lighter products, there is a
practical limit as to how much shale 0il may be introduced into the crude
slate. This 1limit is reached when virtually all of the fuel oil and plant
fuel demand has been satisfied by shale oil derived fuel oil. For each of
the shale oils, the limit is approximately 16 kB/CD (per 100 kB/CD of product).
Further discussion on deriving this limit and the implications of reaching

it is contained in the discussion of results which follows.

Another series of cases (Series B) bringing shale oil into a second
base refinery producing a higher volume of Jet Fuel is also presented in this
report. The product yield for this series of cases is shown below:

Motor Gasoline 58,0 kB/CD
Jet Fuel 10.0 kB/CD
Distillate 23.5 kB/CD
Fuel 0il 11.0 k®/CD

Total Prime Product 102.5 kB/CD
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This second series is meant to show the effect of producing Jet Fuel at a
higher rate, relative to other prime products, than current PAD II demand
indicates.

Two additional sensitivities are also considered in this report.
The first (Series C) is sensitivity of the Series A results to an increased
fuel oil demand. This is considered since the fuel o0il plus plant fuel
demand effectively controls the maximum volume of shale oil in the crude
slate. Series C is run only for Paraho shale oil, since Paraho has the
largest 500°Ft yield of the three shale oils and thus is the most severely
limited. The product yield for Series C is shown below:

| Motor Gasoline 58.0 kB/CD
‘ Jet Fuel 5.0 kB/CD
Distillate 23.5 kB/CD
Fuel 0il 15.0 kB/CD

Total Prime Prcduct 101.5 kB/CD

The second additional sensitivity (Series D) is an attempt to
determine the maximum amount of Jet Fuel that can be produced from processing
shale oil given the crude, demand, quality and processing constraints in this
study. Demand for motor gasoline, distillate and fuel oil is maintained at
the Series A level; petroleum crude availability is fixed at 100 kB/CD of the
67/33 So. Louisiana/Arabian Light mix. Tosco shale oil is allowed to come
into the crude slate and Jet Fuel (maintaining a 4/1 Jet A/JP-4 ratio) pro-
duction is sllowed to reach its maximum. This maximum is about 20 kB/CD and
is discussed, in detail, in the results section of this report. Tosco shale
0il is chosen for this sensitivity since it has the highest kerosene yield
1 of the three shale oils and as such produces the most Jet Fuel per barrel.

It should be pointed out that the (approximate) 100 kB/CD of

1 products that is the basis for this study is chosen arbitrarily for ease of
calculation. This study does not mean to imply that all, or even most, of
the PAD II refineries process something close to the average crude slate or
produce the average product slate using the typical process equipment. Some
refineries run domestic crude, some a combination of domestic and foreign.
Some refineries have more conversion capacity than others. The base refinery
F in this study is a purely hypothetical, average PAD II refinery. Similarly,
data given in this report on shale crude runs of zero to 16 kB/D (based on
100 kB/CD products) does not imply that all refiners will be investing in
equipment to process these small volumes of shale oil. Some refiners will
process shale oil, others will not. Those that do will be building facilities
of practical refining capacity. Thus, investment and operating cost levels
for the shale oil processing equipment in this study are based on costs
consistent with practical refining capacity.

3.5 Economic Basis

Commercial shale oil production is not expected to be a reality until
the mid-1980's or beyond. Cost escalation, inflation and raw materials cost
in general and the development of shale oil projects in particular will depend
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on prevailing economic conditions at some time in the future. The timing of
shale oil projects will depend on U.S. energy demand, OPEC's position, U.S.
Government policy, rate of discovery of new domestic petroleum resources and
other factors that are impossible to forecast. Rather than arbitrarily
attempt to predict an economic/political scenario for some indeterminate
time in the future, a historical basis of 1975 costs was chosen to define
investment and operating cost levels,

To properly perform the economic analyses required for this study,
it is necessary to arbitrarily set raw materials costs and by-product values.
Prime product values are not required since each series of cases is run at a
constant prime product production. Crude oil - including foreign, domestic
and shale oil - cost is set at $12.50/BBL (or approximately $13.50/FOEB)(1),
Other raw material and by-product values are approximately in cost parity
with this crude price assumption. Refinery fuel gas value is set at $15.00/FOEB
or $1.50/FOEB over crude. Propane LPG and imported butanes are set at an
average value of $5.CO/FOEB and $6.00/FOEB above crude ($11.10/BBL and
$13.05/BBL) respectively. It should be emphasized that the above values are
completely arbitrary and are not meant to reflect present day or projected
values at any particular location.

Investments presented in this study are based on 1975 costs and
provide for onsite as well as all offsite support facilities required for
the refinery. As is typical for a study of this type, a 20% contingency is
included in the investments.

The econcmic results of this study are given iu terms of average
refining cost per barrel of prime products. This represents the minimum
amount that a refiner would have to charge for the average barrel of prime
products te reccver refining expenses plus achieve a return on investment
with the return criteria and economic bases used in this study. Average
refining cost is defined as the total refining cost less by-product credits.
Refining cost includes the following items:

Raw Materials

Fuel

Utilities

Manning

Maintenance ,

Catalyst and Chemicals

General Expenses

® © & ¢ 2 % o ¢

Cost of Capital

(1) One Fuel 0il Equivalent Barrvel (FOEB) = 6.05 x 106 BTU (IHV).
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No working capital items such as crude and product inventory or warehouse spares
are included in these costs since the basis for such items is highly location/
situation dependent. These costs could represent a significant addition

to the average refining costs presented in this report. By-products include
LPG and refinery fuel gas, low volume products the volumes of which are allowed
to vary in this study, as well as delayed coke and sulfur. Raw materials and
fuel values were discussed previously. Power cost is indexed to the $15.00/FOEB
fuel value. All other operating costs are given typical 1975 values. The
annual capital recovery factor assumed is 20.4%/yr. This provides a 10% DCF
after tax return assuming a 16 year project life, 50% tax rate, sum-of-the-
year's-digits depreciation, centroid of investment one year prior to startup

and no salvage value.

As already stated, these economic bases are completely arbitrary.
Sufficient information is provided, in the case summaries for each series of
cases, to adjust the economic results presented in this report to any alternate
economic basis. The economic bases used in this report are summarized in
Table 7.

3.6 Discussion of Results

3.6.1 General

As previously discussed, this study is done with the aid of a
linear programming (LP) computer model of a refinery. LP is a mathematical
technique to find the optimum configuration of a complex system. The word
optimum as used here is in the mathematical sense. The LP model in this
study is finding the optimum of a very constrained refining system (i.e.
product demands and processing sequence fixed; crude slate essentially fixed)
or in mathematical terms a local optimum. Identification of the more universal
optimum, i.e. the most efficient way of processing shale oil in U.S. refineries
requires a much more extensive study beyond the scope of this work.

Much of the data presented in this study and discussed in the
following pages is given in terms of average refining cost. As suggested in
the discussion of the economic basis used in this study, the economic basis
is arbitrary. For this reason, sufficient infcrmation is presented for each
case for the reader to substitute an alternate economic basis for the one
used here. A sample calculation of average refining cost is given in Table 8.

3.6.2 Series A - Base Demand Pattern

The Series A cases involved bringing increments of Garrett, Tosco
and Paraho shale oils into the base refinery crude slate while forcing the
refinery to maintain the base demand pattern. Case summaries for the Garrett,
Tosco and Paraho shale oil Series A are presented in Tables 9 thru 11
respectively. Average refining cost for each of the Series A cases is
plotted vs. shale oil input in Figures 3 thru 5.




TABLE 7

ECONOMIC BASES

e Raw Materials Cost

+ Crude $12.50/BBL
+ Butanes (Avg.) $13.05/BBL

e By-Product Values

+ PRefinery Fuel Gas $15.00/F0EB(1)
+ LPG $11.10/BBL

+ Coke $34/LT

+ Sulfur $30/LT

e Utilities

+ Fuel $15.00/FOEB

+ Power 3.2¢/KwH

+ Raw Water 60¢/kGal
e Capital Recovery(z) 20.4% yr of

Total Investment

Notes:

(1) One fuel oil equivalent barrel (FOEB) = 6.05 x 10° MBtu (LHV).

(2) Provides 10% DCF return.
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TABLE 8

SAMPLE CALCULATION OF AVERAGE REFINING COST

Raw Materials
kB
+ Crude (100.76 b
kB
CD

x $12.50/BBL) =

+ Butanes (6.22 x $13.05/BBL) =

Utilities
+° Puel (8.65 L-FOEB

> X $15.00/FCEB) =

+Rmﬂ%6Wx%%x&mMm=

4 Water'@1l.1 EL%%l x §.60/k Gal) =

Other Costs

+ Manning, Maintenance and General Expenses

+ Chemicals and Catalyst

Capital Recovery

+ .206 == x 336 M§ x s
3 YR 365 CD

By-Product Credits

+ LPG (2.44 %% x $11.10/BBL) =

k _FOEB
CD

+ Coke (266 %% x $34.00/1LT) =

iy
b

Total Net Refining Cost

+ Ref. Gas (1.41
+ Sulfur (50

x $30.00/LT) =

Average Refining Cost

- STAGPAGL SR
+UBLGE x G
cD

Garrett Series A - 8 kB/CD Case (see Table 9)

x $15.00/FOEB) =

Cost, k$/CD

1259.5
81.2

129.8
22.7

6.7

83.0
7.0

187.0

(27.1)
(21.2)
(9.0)

(1.5)
1718.1 k$/Cp

17.62 $/BBL

of Prime

Product

s e L




CASE SUMMARY

GARRETT SERIES A

Shale 0il Input 0 kB/CD 4 kB/CD 8 kB/CD 12 kB/CD 16 kB/CD

e Refinery Inputs

+ Crudes, kB/CD

South Louisiana 66.67 66.67 66.67 66.67 66.67
Arabian Light 32.77 28.54 26.09 22.80 21.95
Garrett Shale 0il 0.00 4.00 8.00 12.00 16.00
Total Crude Input 99.44 99.21 100.76 101.47 104.66
+ Butanes, kB/CD
Isobutane 1.89 1.83 1«77 1.67 1.68
Normal Butane 4.37 4.43 4.45 4.47 4.49
Total Butane Input 6.26 6.26 6.22 6.14 6.17
o Refinery Outputs
+ Prime Products, k/cp(l) 97.5 97.5 97.5 97.5 97.5
+ By-Products
LPG, kB/CD 2.27 2.36 2.44 2.57 2.48
Refinery Gas k FOE/CD 0.45 0.17 1.41 1.69 4.31
Coke, LT/CD 317 281 266 246 243
Sulfur, LT/CD 53 50 50 49 50
¢ Refinery Fuel, wroe/cp(?
+ Process and Steam Gen.
Liquid Fuel 2.34 2.44 4.02 4,53 7.44
Gas Fuel 4.31 4.37 3.00 2.64 0.00
+ Carbon on FCC Catalyst 1.57 1.56 1.63 1.80 1.78
Total Fuel Consumption 8.22 8.37 8.65 8.97 9.22
o Utilities
+ Power, MW 27.6 28.5 29.6 30.5 31.8
+ Water, M Gal/CD 10.8 10.9 11.1 11.2 11.4
® Economic Data G)
+ Total Investment, M$ 307.5 318.0 334.0 349.0 368.5
+ Manning, Maintenance and
General Expenses, k$/CD 80.0 80.5 83.0 85.5 88.5
+ Chemicals and Catalyst, k$/CD 6.0 6.5 7.0 7.0 7.8
Notes:
(1) Breakdown as follows: Mogas 58.0 kB/CD, Jet Fuel 5.0 kB/CD, Distillate 23.5 kB/CD,

(2)
3

Fuel 0il 11.0 kB/CD.
One fuel oil equivalent barrel (FOER) = 6.05 x 106 Btu (Luv).
Economic data based on 1975 average cost.




TOSCO-SERIES A

Shale 0il Input 0 kB/cD 4 kB/CD 8 kB/CD 12 kB/CD 16 kB/CD
® Refinery Inputs
+ Crudes, kB/CD
South Louisiana 66.67 66.67 66.67 66.67 66.67
Arabian Light 32.77 29.25 26.52 22.81 21.67
Tosco Shale 0il 0.00 4.00 8.00 12.00 16.00
Total Crude Input 99.44 99.92 101.19 101.48 104.34
+ Butanes, kB/CD
Isobutane 1.89 1.82 1.79 1.68 1.69
Normal Butane 4.37 4.41 4.45 4.46 4.49
Total Butane Input 6.26 6.23 6.24 6.14 6.18
e Refinery Outputs (1)
+ Prime Products, kB/CD 97.5 97.5 97.5 97.5 97.5
+ By-Products
LPG, kB/CD 2.27 2.37 2.40 2.53 2.44
Refinery Gas, k FOE/CD 0.45 0.85 1.86 1.74 4.26
Coke, LT/CD 317 286 270 246 235
Sulfur, LT/CD 53 51 52 50 51
e Refinery Fuel, k FOE/CD(Z)
+ Process and Steam Gen.
Liquid Fuel 2.34 3.12 4.49 4.58 7.40
Gas Fuel 4.31 3.70 2.55 2.56 0.00
+ Carbon on FCC Catalyst 1.57 1.57 1.59 1.79 1.77
Total Fuel Consumption 8.22 8.39 8.63 8.93 9.17
e Utilities
+ Power, MW 27.6 28.5 29.3 30.1 31.3
+ Water, M Gal/cD 10.8 10.9 11.1 11.2 11.4
e Economic Data(3)
+ Total Investment, M$ 307.5 318.0 331.5 344.0 361.0
4+ Manning, Maintenance and
General Expenses, k$/CD 80.0 81.0 83.0 85.0 88.0
+ Chemicals and Catalyst, k$/CD 6.0 6.5 7.0 7.0 8.0
Notes:

(1) Breakdown as follows: Mogas 58.0 kB/CD, Jet Fuel 5.0 kB/CD, Distillate 23.5 kB/CD,

Fuel 01il1 11.0 kB/CD.

(2) One fuel oil equivalent barrel (FOEB) = 6.05 x 106 Btu (LHV).

(3) Economic data based on 1975 average cost.
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TABLE 11

CASE_SUMMARY

PARAHO-SERIES A

Shale 0il Input 0 kB/CD 4 kB/CD 8 kB/CD 12 kB/CD 16 kB/CD

e Refinery Inputs

+ Crudes, kB/CD

South Louisiana 66.67 66.67 66.67 66.67 66.67
Arabian Light 32.77 29.42 26.58 23.39 22.16
Paraho Shale 0il 0.00 4.00 8.00 12.00 16.00
Total Crude Input 99.44 100.09 101.25 102.26 104.83
; + Butanes, kB/CD
i Isobutane 1.89 1.82 1.77 1.67 1.67
| Normal Butane 4.37 4.42 4.45 4.46 4.48
1 Total Butane Input 6.26 6.24 6.22 6.13 6.15
e Refinery Outputs
: + Prime Products, kB/CD(l) 97.5 97.5 97.5 97.5 97.5
+ By-Products
LPG, kB/CD 2.27 2.44 2,42 2,53 2.66
Refinery Gas, kFOE/CD 0.45 0.97 1.88 2.27 4.15
Coke, LT/CD 317 308 266 242 296
Sulfur, LT/CD 53 52 52 51 56
e Refinery Fuel, xroe/cp‘?
+ Process and Steam Gen.
Liquid Fuel 2.34 3.17 4.53 5.17 7.39
Gas Fuel 4.31 3.71 2.47 1.97 0.00
+ Carbon on FCC Catalyst 1.57 1.56 1.62 1.79 1.82
Total Fuel Consumption 8.22 8.44 8.62 8.93 9.21
e Utilities
+ Power, MW 27.6 28.6 29.7 30.7 32.2
+ Water, M4 Gal/CD 10.8 10.9 11.1 11.2 11.6
e Economic Data(3)
+ Total Investment, M$ 307.5 320.0 336.0 351.0 373.5
+ Manning, Maintenance and
General Expenses, k$/CD 80.0 81.0 83.5 86.0 90.0
4+ Chemicals and Catalyst, k$/CD 6.0 6.5 7.0 7.5 8.0
Notes:
3 (1) Breakdown as follows: Mogas 58.0 kB/CD, Jet Fuel 5.0 kB/CD, Distillate 23.5 kB/CD,
Fuel 011 11.0 kB/CD.
; (2) One fuel oil equivalent barrel (FOEB). = 6.05 x 108 Btu (uW).
: (3) Econcmic data based on 1975 average cost.
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3.6.2.1 Processing Effects

How does the grass roots refinery processing change with the
introduction of shale oil into the crude slate? It is important to first
examine the Base Case refinery balance in more detail. In order to meet
the relatively high demand for light praducts (principally mogas), conver-
sion of some, but not all, fuel oil and distillate fractions in the Fluid
Cat Cracker and Delayed Coker 1s required. Referring to Figure 1, some
heavy atmospheric gas oil (HAGO) and even some hydrotreated vacuum gas
oil (VGO) bypass the cat cracker (FCC). Some potential cat reformer feed
bypasses to JP-4 blending. The motor gasoline (mogas) pool is made up largely
of reformate and cat naphtha. The distillate pool consists of light and heavy
atmospheric distillate, cat distillate and kerosene. The fuel o0il pool
contains cat distillate and cat fractianator bottoms, atmespheric distillate,
hydrotreated VGO and vacuum pitch.

As shale oil is brought into the crude slate, VGO and then HAGO
originally bypassed are introduced into the FCC. This happens for two
reasons. First, shale oil 500°F+ fractions displace petroleum blendstocks
in the fuel o0il pool necessitating more conversion of petroleum fuel oil
stocks. Secondly, the yield of reformable naphtha on total crude decreases
requiring more cat naphtha to meet mogas demand. The volume of coking
decreases commensurate with the decrease in yield of petroleum 1050°+. Cat
distillate 1s blended into the distillate pool to make more room for
additional shale 500°F+ fractions in the fuel oil pool and to compensate
for atmospheric gas oil being withdrawn from the distillate pool for cat
cracker feed. Liquid plant fuel begins to displace refinery gas as a
means of increasing outlets for shale based fuel oil.

As even more shale oil is brought into the crude slate the above
effects are intensified. The FCC, having exhausted all possible sources of
feed, begins to recycle more cat distillate than normal. This increases cat
naphtha yield making up for an ever decreasing yield of reformate and aids in
destroying cat distillate thus making room in the sales fuel oil pool for more

shale fuel oil. This higher recycle FCC operation produces more gas than normal

at the same time that gas is becoming less valuable as a refinmery fuel. Thus
fuel gas export starts to increase rapidly. The refinery, unable to convert

any more petroleum liquids from the base crude run, must import more crude to
meet the same prime product demand. These effects may be seen in Table 9 for
Garrett shale oil. Bringing in 4 kB/D of Garrett shale oil - from zero to

4 XB/D on the total crude slate - backs about 4 kB/D of Arabian Light out

of the crude slate. The same incremental shale oil import - from 12 kB/D

to 16 kB/D - backs out less than 1 kB/D of Arabian Light. The effect of

the introduction of shale oil on the base case refinery process flow

scheme is illustrated in Figure la, which shows the 8 kB/CD Garrett shale

oil case results.

3.6.2.2 Maximum Shale Volume

As demonstrated by the above analysis there is a practical limit
to the volume of shale oil that can be processed under the given processing
and demand constraints. That is, without the opportunity to convert shale
fuel o1l fractions to lighter products, the volume of shale oil processed is
effectively limited by the available plant fuel and fuel oil outlets. This

——
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limit for each of the shale oils is approximately 16.0 kB/CD (per 100 kB/CD
liquid product).

The realization of this limit accentuates the need for determining
a philosophy for how shale oil will be processed in petroleum refineries.
Traditional residual fuel oil outlets may decrease in the future with the
growth of coal and nuclear energy industries. The question of whether shale
fuel oil fractions should be converted to lighter products or blended to
sales fuel oil depends on several factors. Among these factors are the
economics of conversion, the quality of resulting conversion products, the
volumes of shale oil that refineries will be required to process, etc. This

question cannot be answered until data are available on conversion of shale
oil fractions.

Another point to consider is whether this maximum is optimistic
from a product quality point of view. Although sulfur, viscosity and nitrogen
levels for the shale oil fractions are acceptable, these fractions have
unusually high pour points compared to petroleum crude fractions (see Table 2).
This presents little problem for the plant fuel pool which is a stream internal
to the refinery. However, as shale fractions comprise more and more of the
sales fuel oil pool, fuel oil pour points may rise to levels unacceptable in
the current market. There are several unknowns that cloud an evaluation of
the magnitude of this problem. Among them are the effect of blending petroleum
derived and shale derived fuel oils on pour point, the effect of hydrotreating
shale VGO on its pour point, the applicability of petroleum pour point blending
techniques to shale o.1 pour points. It is expected, however, that this
potential pour point probiem could be handled via relatively minor modifications

to oil movement and storage facilities and/or special product formulation
techniques.

3.6.2.3 Refining Cost Effects

Using Figure 3, the Series A refining costs for Garrett shale oil,
as an example average refining costs per barrel of prime product increases
as shale oil is brought into the crude slate. At first the rise is slow
representing the phase in which potential conversion process feeds, originally
bypassed, are converted to lighter products. The slope of the curve gradually
increases as available conversion process feeds become fully utilized and

the refinery is forced to import more crude to meet the same prime product
demand.

3.6.3 Series B - Increased Jet Fuel Demand

The Series B cases differ from Series A only in the volume of Jet
Fuel produced. The Series B cases produce 10 kB/CD of Jet Fuel keeping all
other prime product volumes constant. This series is designed to show the
effect on the theoretical grass roots refinery of producing a higher volume
of Jet Fuel on the overall demand slate. Case summaries for the Garrett,
Tosco and Paraho Series B cases may be found in Tables 12 thru 1l4. Figures
3 thru 5 show the comparison of the Series A and Series B costs.
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TABLE 12

} CASE_SUMMARY

GARRETT-SERIES B

Shale 0il Input 0 kB/CD 4 kB/CD 8 kB/CD 12 kB/CD 16 kB/CD

e Refinery Inputs

+ Crudes, kB/CD

South Louisiana 66.67 66.67 66.67 66.67 66.67

Arabian Light 38.06 33.85 30.60 27.13 26.31

Garrett Shale 0il { 0.00 4.00 8.00 12.00 16.00

Total Crude Input 104.73 104 .52 105.27 105.80 108.98

+ Butanes, kB/CD

Isobutane 1.96 1.83 1.79 1.78 1.76

Normal Butane 4.30 4.32 4.39 4.45 4.45

3 Total Butane Input 6.26 6.15 6.18 6.23 6.21

e Refinery Outputs

+ Prime Products, k/cp‘l 102.5  102.5  102.5  102.5  102.5
+ By-Products
LPG, kB/CD 2.10 2.39 2.46 2.44 2.46
Refinery Gas, kFOE/CD 0.49 0.00 0.62 0.98 3.54
, Coke, LT/CD 350 316 295 273 270
1 Sulfur, LT/CD 61 58 56 55 56

] e Refinery Fuel, xroe/cp?

4+ Process and Steam Gen.

Liquid Fuel 2,22 2.32 3.38 4.05 6.97

Gas Fuel 4.41 4.61 3.78 3.29 0.61

+ Carbon on FCC Catalyst 1.70 1.65 1.61 1.60 1.63
Total Fuel Consumption 8.33 8.58 8.77 8.94 9.21

] e Utilities

1 + Power, MW 28.3 29.4 30.4 31.1 32.4
+ Water, M Gal/CD 10.9 1.2 11.3 11.4 11.7
: e Econcuic Data(3)
+ Total Investment, M$ 321.5 332.5 345.0 357.5 377.0
+ Manning, Maintenance and
General Expenses, k$/CD 83.5 84.5 86.0 87.5 90.5
+ Chemicals and Catalyst, k$/CD 6.5 6.5 7.0 7.5 8.0

Notes:

(1) Breakdown as follows: Mogas 58.0 kB/CD, Jet Fuel 10.0 kB/CD, Distillate 23.5 kB/CD,
Fuel 041 11.0 kB/CD. 6

(2) One fuel oil equivalent barrel (FOEB) = 6.05 x 10° Btu (LHV).

(3) Economic data based on 1975 average cost.
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TABLE 13

CASE SUMMARY

TOSCO-SERIES B

Shale 0il Input 0 kB/CD 4 kB/CD 8 kB/CD 12 kB/CD 16 kB/CD
b e Refinery Inputs

+ Crudes, kB/CD

South Louisiana 66.67 66.67 66.67 66.67 66.67
Arabian Light 38.06 33.90 30.11 27.43 25.59
Tosco Shale 0il 0.00 4.00 8.00 12.00 16.00
Total Crude Input 104.73 104.57 104.78 106.10 108.26
+ Butanes, kB/CD
Isobutane 1.96 1.82 1.80 1.81 1.76
Normal Butane 4.30 4.31 4.40 4.44 4.44
4 Total Butane Input 6.26 6.13 6.20 6.25 6.20
® Refinery Outputs
+ Prime Products, k8/cp‘l) 102.5  102.5  102.5  102.5  102.5
3 + By-Products
i LPG, kB/CD 2.10 2.42 2.42 2.38 2.41
! Refinery Gas, kFOE/CD 0.49 0.00 0.16 1.33 3.09
Coke, LT/CD 350 317 292 277 261
Sulfur, LT/CD 61 58 55 56 56
e Refinery Fuel, kroe/cp?
+ Process and Steam Gen.
Liquid Fuel 2.22 2.32 2.89 4.40 6.49
Gas Fuel 4.41 4,61 4.24 2.94 1.05
+ Carbon on FCC Catalyst 1.70 1.65 1.59 1.54 1.63
Total Fuel Consumption 8.33 8.58 8.72 8.88 9.17
e Utilities
+ Power, MW 28.3 29.4 30.0 30.7 31.9
+ Water, M Gal/CD 10.9 11.2 11.2 11.4 11.6
e Economic Data(3)
+ Total Investment, M$ 321.5 331.0 340.0 353.0 368.5
+ Manning, Maintenance and
General Expenses, k$/CD 83.5 84.5 85.0 87.0 89.5
+ Chemicals and Catalyst, k$/CD 6.5 6.5 7.0 7.5 8.5
otes:

(1) Breakdown as follows: Mogas 58.0 kB/CD, Jet Fuel 10.0 kB/CD, Distillate 23.5 k$/CD.
Fuel 011 11.0 kB/CD.

(2) One fuel oil equivalent barrel (FOEB) = 6.05 x 108 Btu (LHV).
(3) Economic data based on 1975 average cost.




Shale 0il Input 0 kB/cD 4 kB/CD 8 kB/CD

e Refinery Inputs

+ Crudes, kB/CD

12 kB/CD 16 kB/CD

South Louisiana 66.67 66.67 66.67 66.67 66.67
Arabian Light 38.06 33.86 30.62 28.26 27.13
Paraho Shale 0il 0.00 4.00 8.00 12.00 16.00
Total Crude Input 104.73 104.53 105.29 106.93 109.80
+ Butanes, kB/CD ;
Isobutane 1.96 1.83 1.79 1.80 1.78
Normal Butane 4.30 4.32 4.39 4,44 4,45
Total Butane Input 6.26 6.15 6.18 6.24 6.23
¢ Refinery Outputs
+ Prime Products, ws/cp D) 102.5 102.5 102.5 102.5 102.5
+ By-Products
LPG, kB/CD 2.10 2.39 2.46 2.40 2.53
Refinery Gas, kFOE/CD 0.49 0.00 .63 2.07 4.06
Coke, LT/CD 350 314 291 274 322
Sulfur, LT/CD 61 58 57 58 63
e Refinery Fuel, kroe/cp?
+ Process and Steam Generation
Liquid Fuel 2.22 2.33 3.40 5.22 7.58
Gas Fuel 4.4 4.58 3.72 2.11 0
+ Carbon on FCC Catalyst 1.70 1.65 1.60 1.56 1.60
Total Fuel Consumpticn 8.33 8.56 8.72 8.89 9.18
e Utilities
+ Power, MW 28.3 29.5 30.4 31.4 32.8
+ Water, M Gal/CD 10.9 11.2 11.3 11.4 11.8
e Economic Data(3)
+ Total Investment, M$ 321.5 332.5 345.5 361.C 383.0
+ Manning, Maintenance and
General Expenses, k$/CD 83.5 84.5 86.0 88.0 92.0
+ Chemicals and Catalysts, k$/CD 6.5 6.5 7.0 8.0 8.0

Notes:

1)

(2)
3)

Breakdown as follows: Mogas 58.0 kB/CD, Jet Fuel 10.0 kB/CD, Distillate 23.5 kB/CD,
Fuel 041 11.0 kB/CD.

One fuel ofl equfvalent barrel (FOEB) = 6.05 x 106 geru (1uv).
Economic data based on 1575 average -const.
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3.6.3.1 Refining Effects

The refining effects of the incremental Jet Fuel production can be
best understood by first comparing the base cases (100% petroleum crude) for
Series A and Series B (Figures 1 and 6, respectively). The most obvious
difference is that Series B requires a higher level of crude run to make the
incremental volume of liquid product. The refinery produces the incremental
Jet Fuel by blending kerosene that made up part of the distillate pool in
Series A to Jet Fuel. Another important effect is that considerably less
atmospheric gas oil is cat cracked in the Series B base case. This reflects
a lowered required conversion of crude to mogas in Series B as demonstrated
by the lower yield of mogas per barrel of prime product (56.5% in Series B vs.
59.5% in Series A). The effect of the introduction of shale oil on the high
jet fuel demand refinery process flow scheme is illustrated in Figure 6a,
which shows the 8 kB/CD Garrett shale oil case results.

What 1s the effect of bringing shale 0il into the crude slate of
this Series B base refinery? The effect is qualitatively the same as in
Series A. The main difference is that problems associated with limited
availability of shale fuel oil outlets in Series A are postponed to a
slightly higher volume of shale oil since the base Series B case processes
less of the potential cat cracker feed than Series A.

3.6.3.2 Refining Cost Effects

Average refining cost as a function of shale input is compared for
Series B vs. Series A in Figures 3 thru 5 (representing Garrett, Tosco, and
Paraho shale oils, respectively). Due to the lower level of conversion
required to produce the Series B demand pattern, the overall level of refining
cost per barrel of prime product is actually lower for Series B than for
Series A. The same trends apply in Series B as in Series A. That is, there
is an initial phase in which available conversion unit feeds are optimized
(postponed slightly in Series B) followed by a phase of rapidly increasing
cost in which the refinery, short on available conversion feed, imports
higher volumes of petroleum crude to meet prime product demand. The maximum
volume of shale oil that can be processed in the Series B scenario is
essentially the same as for Series A since the volume of the ultimate
disposition of shale fuel oil cuts, i.e., shale fuel o0il plus liquid refinery
fuel, was essentially unchanged.

3.6.4 Series C - High Fuel 0il Demand

As discussed under Series A the limited availability of outlets for
fuel o0il and 1liquid plant fuel limits the volume of shale oil that can be run
to approximately 16 kB/CD. This limitation is most severe for Paraho shale
oil since among the three shale oils considered, Paraho has the highest fuel
oil yield (see Table 2). Series C is an attempt to discover how the base
refinery processing sequence would change with a higher fuel oil demand. The
case summary for Series C may be found in Table 15. Average refining costs
for Series C are compared to Paraho Series A in Figure 7.
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TABLE 15

CASE SUMMARY

PARAHO-SERIES C

Shale 0il Input 0 kB/CD 4 kB/CD 8 kB/CD 12 kB/CD 16 kB/CD

® Refinery Inputs

+ Crudes, kB/CD

South Louisiana 66.67 66.67 66.67 66.67 66.67
1 Arabian Light 36.79 32.68 29.59 26.47 23.39
Paraho Shale 0il 0.00 4.00 8.00 12.00 16.00
Total Crude Input 103.46 103.35 104.26 105.14 106.06
+ Butanes, kB/CD
Isobutane 1.97 1.81 1.82 1.76 1.67
Normal Butane 4.31 4.32 4.41 4.44 4.46
Total Butane Input 6.28 6.13 6.23 6.20 6.13
] ® Refinery Outputs
: + Prime Products, ka/cp‘) 101.5  101.5  101.5  101.5  10L.5
: + By-Products
. LPG, kB/CD 2.03 2.37 2.31 2.37 2.46
Refinery Gas, kFOE/CD 0.40 0.02 0.9 1.52 2.04
Coke, LT/CD 319 280 260 236 211
! Sulfur, LT/CD 57 55 53 54 52
e Refinery Fuel, kFoe/cp(?
+ Process and Steam Gen.
Liquid Fuel 2.24 2.35 3.65 4.57 5.36
Gas Fuel 4.43 4.54 3.42 2.67 2.03
+ Carbon on FCC Catalyst 1.59 1.62 1.57 1.62 1.78
Total Fuel Consumption 8.26 8.51 8.64 8.86 9.17
e Utilities
+ Power, MW 27.9 29.2 30.0 31.0 32.0
+ Water, M Gal/CD 10.8 11.0 11.2 113 11.5
e Economic Data(3)
+ Total Investment, M$ 315.5 328.0 341.0 355.5 371.0
+ Manning, Maintenance and
General Expenses, k$/CD 82.0 83.5 84.5 87.0 89.0
+ Chemicals and Catalysts, k$/CD 6.0 6.5 7.0 7.5 8.0
3 Notes:

(1) Breakdown as follows: Mogas 58.0 kB/CD, Jet Fuel 5.0 kB/CD, Distillate 23.5 kB/CD,
Fuel 0il 15.0 kB/CD.

(2) One fuel o0il equivalent barrel (FOEB) = 6.05 x 10® Btu (1HV).
(3) Economic data based cn 1975 average cost.
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3.6.4.1 Refining Effects

Compared to the Series A base case the Series C base case (see
Figure 8) requires an overall lower level of conversion. This is reflected
by a lower atmospheric gas o1l feed to the cat cracker in Series C.

As expected, raising the volume of fuel o0il outlet allowed a
greater volume of Paraho shale oil to be introduced into the refinery. The

practical limit for shale oil increased from about 16 kB/CD to 20 kB/CD
(per 100 kB/CD liquid product).

3.6.4.2 Réfining Cost Effects

As may be seen in Figure 7, the overall level of average refining
costs for Paraho Series C is lower than for Series A due primarily to a
reduced level of conversion. The Series C curve remains in a "low slope"

phase longer than the Series A curve reflecting the increased availability
of fuel oil outlets.

3.6.5 Series D - Maximum Jet Fuel

Perhaps the most significant series of all, Series D attempts to
define how the theoretical grass roots refinery would make incremental
barrels of Jet Fuel (with reference to the base demand pattern) by processing
incremental barrels of shale oil (with reference to the base crude slate).
Tosco shale oil is chosen for this sensitivity since it gives the highest
yleld of Jet Fuel per barrel shale oil of the three shale oils considered.
The product demands and crude runs for this case are as follows:

Crude Run Product Demand
So. Louisiana 66.7 kB/CD Fixed Mogas 58.0 kB/CD Fixed
Arabian Light 33.3 kB/CD Fixed Jet Fuel 5.0 kB/CD Minimum#*
Tosco Unlimited Distillate 23.5 kB/CD Fixed
Fuel 0il 11.0 kB/CD Fixed

*Ratio of 4/1 Jet A/JP-4 is maintained.

3.6.5.1 Refining Effects

As Jet Fuel demand is increased product blending is rearranged
such that potential Jet Fuel blendstocks that were going to other products
(e.g. kerosene to heating oil or to fuel oil as a diluent) now get blended
to Jet Fuel. As these sources of kerosene are exhausted the initial cutpoint
of the kerosene is lowered (reducing cat reformer feed) to increase Jet Fuel
production. This operation, of course, is limited by the need for reformate

in the mogas pool both to maintain mogas volume and more importantly, to
meet specification on mogas.

3.6.5.2 Maximum Jet Fuel Volume

Under the constraints previously described the maximum practical
volume of Jet Fuel that can be produced is about 20 kB/CD (per fixed volume
of other liquid products). This volume is limited by two factors. The
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first, as discussed above is that incremental Jet Fuel production from the
petroleum fractions 1s at the expense of cat reformer feed and the volume
and quality of the mogas pool suffers. The second, as discussed under
Series A, is that producing Jet Fuel from the Tosco shale oil also produces
fuel oil as a co-product and fuel oil outlets are limited.

3.7 Data Needs

Throughout this report, mention is made of additional data that
would be required for further definition of the impact of producing Jet Fuel
from shale oils. The most basic of these needs is for data on the compatability
of petroleum and shale crude oil fractions. Can petroleum and shale oil be
processed in admixture? Are the resulting admixed fractions suitable as feed
to downstream proceses units or as products in themselves?

As discussed previously, both the total volume of shale oil that
could be processed and the maximum volume of Jet Fuel that could be produced
(within the context of the demand slate) are limited because no conversion
options are available to shale fuel oil fractions in this study. Data should
be developed as to the suitability of shale fuel oil fractions as feed to
such processes as Fluid Cat Cracking, Coking, Visbreaking, Hydrocracking.
Data should also be developed on the cat reformability of shale naphthas.

3.8 Conclusions

Phase Two experimental work demonstrated that conventional quality
Jet Fuel could be produced from shale kerosene. This Phase Three work has
demonstrated that historical yields of Jet Fuel in the U.S. Midwest can be
met with up to 162 shale oil in the region's crude slate. In fact, up to
twice the historical yield can be achieved. Jet Fuel yields on shale oil
are relatively low. The principle mechanism for producing incremental Jet
Fuel from shale oil is to have shale distillate and fuel oil fractioms
replace petroleum fractions in existing distillate and fuel oil dispositions
allowing petroleum fractions to be converted to lighter products.

Data should be developed on conversion of shale fuel oil fractioms
to lighter products. This study has shown that without conversion optionms,
the volume of shale oil that can be processed is limited by the availability
of shale fuel oil outlets. Such data are required before a study on the most
efficient way of processing shale oil in petroleum refineries can be done.

Average refining costs per barrel of prime product increase as
the volume of shale oil in the refinery crude slate increases. This occurs
for two reasons. First, the high level of processing required for raw shale
oil fractions increases costs. Secondly, the low yield of light fractionms
(boiling below approximately 500°F) on raw shale oil requires increased
conversion of heavy (500°F+) material to meet the same product demands.
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SECTION IV

PREPARATION OF A SAMPLE OF AVIATION TURBINE FUEL
FROM PARAHO SHALE OIL

4.1 Introduction

As part of the Phase III program a sample, ca. 330 gallons, of
Jet A quality aviation turbine fuel was prepared for the Air Force by
hydrotreating a 310/500°F cut of Paraho shale oil over HDS-3A catalyst
at 700°F, 1200 psig, 1 LHSV, and 4000 SCF/B Hp. Prior to this production
run, an exploratory study was conducted to verify the process conditions
required to meet Jet A fuel specifications. The results of these studies
are presented in this portion of the report.

4.2 Experimental Program

The experimental program consisted of a short exploratory run
designed to confirm the hydrotreating conditions and the actual production
run. Both pilot plant studies were conducted in HTT unit which consists
of four independent reactor systems. Each reactor has its own temperature
and pressure control. A unit schematic is shown in Figure 8a.

4.2.1 Paraho Shale 0il Hydrofining Exploratory Study

4.2,1.1 Feedstock and Catalyst

Paraho shale oil (125 barrels) was distilled at the Exxon Crude
Assay Laboratory in Baytown, Texas. The feedstock utilized in this program
was the 310/500°F cut (approximately 380 gallons) obtained from this raw
Paraho shale oil. Detailed inspections of this feedstock are given in
Table 16.

The catalyst utilized in this pilot plant study was HDS-3A which
is the same commercially available NiMo catalyst which was used in the
Phase II portion of the program.

4.2,1.2 Unit Operations and Analytical Techniques

In this run the reactor was charged with 60 cc of HDS-3A catalyst
diluted with approximately 70 cc of mullite to maintain a uniform temperature
in the reactor. The reactor was constructed from 3/4" schedule 160 stainless
steel (type 304, 27" in length) and was operated in a downflow mode. A 10%
HyS in hydrogen blend was used to sulfide the catalyst. Typical pilot plant
operating procedures were discussed in detail in the Phase II final report.
Initial operating conditions of the pilot plant unit were as follows:
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TABLE 16

FEEDSTOCK INSPECTIONS

Feedstock 310/500°F Paraho Shale 0il
ERDL F.S. No. 4119
AP1 Gravity, 60/60 56.3
Sulfur, Wt. % 0.743
Nitrogen, Wt. % 1.158
Carbon, Wt. % 84.67
Hydrogen, Wt. % 12,55
Bromine No., cg/g 66.4
FIA, Vol. %
Aromatics 36.9
Olefins 24.3
Saturates 30.6 »
PM Closed Cup Flash Pt., °F 162
Smoke Pt., mm 15
Kin. Viscosity @ -30°F, cs 11.42
ASTM D-86
1BP/5% 342/3741)
10/20 384/390
30/40 397/402
50/60 407/416
70/80 419/431
90/95 436/446
FBP 469
% Recovery
% Residue
% Loss

(1) Average based on distillations of ten drums of FS-4119

Once-Through Mildly H/T
310/500°F Paraho Shale 0il
4202

0.149
0.342
85.63
13.83

8.3

25
9.17

258/309
335/368
380/392
402/410
416/430
443/455
473

100

0

0
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Unit HTT
Reactor 4
Catalyst HDS-3A
Volume, cc 60
Feedstock 310/500°F Paraho Shale 0il
ERDL F.S. No. 4119
Process Conditions

LHSV 1.0
Pressure, Psig 1500
Temperature, °F 700
Treat Gas, SCF/B (100% Hp) 4000

These conditions were set to correspond to the base case conditions utilized

in earlier pilot plant studies conducted by the Government Research Laboratories
with a slightly different kerosene cut from Paraho shale oil. During this
exploratory study the effect of reducing total pressure to 1200 psig on

product quality was also investigated. At the higher pressure initial indica-
tions were that the aromatics content was well within specifications although
the flash point was slightly low. Lowering pressure could conceivably reduce
the amount of hydrocracking, and thus increase the flash point. Also, it was
expected that the level of aromatics hydrogenation would be less at the lower
pressure which would tend to reduce hydrogen consumption.

Detailed run conditions are described in Table 17. Product inspec-
tions included gravity, sulfur, nitrogen, bromine number, carbon/hydrogen, FIA,
PM closed cup flash point, freeze point, smoke point, kinematic viscosity @
-30°F, and ASTM D-86. Product sulfur and API gravity were determined daily for
unit control. Carbon/hydrogen analyses were also obtained on a daily basis in
order to determine hydrogen consumption. These results are also shown in Table 17.

4.2.1.3 Discussion of Results

As ghown in the following table, most Jet A fuel specifications were
easily met at the hydrotreating conditions employed in this study. Initial
indications from the exploratory study (see Table 17) were that flash point
would be the limiting specification in meeting fuel quality requirements.

As expected, lowering pressure to 1200 psig resulted in a decrease in both
the smoke point and the level of aromatics hydrogenation.

B R L D B T P A T T -
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Effect of Pressure on Product Quality

Jet A Spec Hydrotreated Paraho Shale 0il

Reactor No. - 4 4

Run No. - 2 2

Balance No. - 3 10

Process Conditions |
Catalyst - HDS-3A HDS-3A };
LHSV - 1.0 1.0 !
P, Psig - 1500 1200 {
T, °F - 700 700 |
Treat Gas, SCF/B - 4000 4000

Liquid Product ;
S, wppm Max. 3000 187 190

Aromatics, FIA (Vol.%) Max. 20 9.8 13.4 |
PM Closed Cup Flash Pt., °F Min. 105 96 98
Freeze Pt., °F Max. -36 =49.0 -46.3 |
Smoke Pt., mm Min. 25 32.0 29.0 !
Kin. Viscosity @ -30°F, cs Max. 15 7.74 7.30 3

ASTM D-86 2
10% Max. 400 349 347 |
50% Max. 450 397 397 |
FBP Max. 550 514 505 |

API Gravity 39-51 47.4 48.3 |

|
1

4.2.2 Paraho Shale 0il Hydrofining Production Run

4.2.2.1 Feedstock and Catalyst

The feedstock utilized for the majority of this run was a 310/500°F
kerosene cut (FS-4119) obtained from a raw Paraho shale oil. Detailed
inspections are provided in Table 16. In order to meet the contract
obligation for 300 gallons of Jet A quality aviation turbine fuel, however,
towards the end of the run it was necessary to hydrotreat off spec material
that had been mildly hydrotreated at low temperature during unit startups
and shutdowns. Detailed inspections of this feedback (FS-4204) are also
shown in Table 16.

The catalyst utilized in this pilot plant study was also HDS-3A
which is a commercially available NiMo catalyst.

4.2.2.2 Unit Operations and Analytical Techniques

In this run each reactor was charged with 900 cc of HDS-3A catalyst.
The reactor for each unit consisted of six tubes (3/4" schedule 160 x 34" Lg.)
placed in series, each having a nominal internal volume of 165 cc. Mullite
was placed at both ends of each tube for preheat purposes and to limit catalyst
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attrition. In addition, a guard chamber charged with 10 cc of catalyst and
operated at the same temperature as the reactor was positioned ahead of each
reactor bundle to help diagnose and prevent plugging problems. An electronic
differential pressure cell was used to monitor pressure drop across the guard
chamber. A 10%Z H3S in hydrogen blend was used to sulfide the catalysts.
Operating conditions of the pilot plant unit were as follows:

Unit HTT

Reactor 3 4
Catalyst HDS-3A

Volume, cc 900

Feedstock 310/500°F Paraho Shale 0il
ERDL F.S. No. 4119
Process Conditions

LHSV 1.0

Pressure, Psig 1200

Temperature, °F 700

Treat Gas, SCF/B (100% Hz) 4000

For the production run, the operating pressure was maintained at 1200 psig
since data obtained in the exploratory study had indicated that Jet A quality
material could be produced at these conditions. Also, it was felt that better
activity maintenance information would be obtained at the lower pressure.

Detailed run conditions are described in Tables 18 and 19. Product
inspections included gravity, sulfur, nitrogen, bromine number, carbon/hydrogen,
FIA, PM closed up flash point, freeze point, smoke point, kinematic viscosity
@ -30°F, and ASTM D-86. Product sulfur, nitrogen, and API gravity were
determined daily for unit control. FIA analyses were obtained periodically
to measure catalyst deactivation for arcmatics hydrogenation. Carbon/hydrogen
analyses were also obtained regularly to determine hydrogen consumption.

These results are also shown in Tables 18 and 19.

4.2.2.3 Product Quality of Hydrotreated Paraho Shale 0il

Operating conditions for the production run were set at 700°F,
1200 psig, 1 LHSV and 4000 SCF/B Hz. At these conditions a total of 296
gallons of product was collected in 21 nominal 15-gallon composites. In
order to meet the 300-gallon contract obligation, additional hydrotreating
of off spec material that had been mildly hydrotreated was required.
Inspections of the composites are shown in Table 20. An overall sample
inspection was calculated by arithmetically averaging the individual
composite inspections. As shown in the following table the overall sample
inspections all meet those required for Jet A aviation turbine fuel.

R B T —
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Product Quality of Hydrotreated Paraho Shale 0il

Jet A Spec Hydrotreated Paraho Shale 0il

Total Sulfur Content, wppm Max. 3000 115
FIA Aromatics, Vol.Z% Max. 20 14.3
PM Closed Cup Flash Pt., °F Min. 105 127.6
Freeze Pt., °F Max. -36 -42.7
Smoke Pt., mm Min. 25 26.6
Kin. Viscosity @ -30°F, cs Max. 15 9.13
ASTM D-86

10%, °F Max. 400 366

50%, °F Max. 450 407

F3P Max. 550 496
API Gravity 39-51 46.0

4.2.2.4 Unit Operating Experience

4.2.2.4.1 Operating Problems

For both units during the production run, smooth operations were
interrupted by recurrent plugging problems both in the guard chamber located
just ahead of the reactor tube bundle and in the transfer line between the
reactor outlet and the high pressure separator. As shown in Table 21,
inspections of the discharged material from the guard chamber indicate that
it is not coke due to the relatively low carbon and hydrogen content. Much
of the material appears to be iron and iron sulfide, although the overall
material balance with the inspections that were obtained was less than one
hundred percent. The high a-Al703 and Si0j concentrations with trace amounts
of CoO and MoO3 indicate that catalyst fines were also contained in the
material discharged from the guard chamber.

Due to the large quantities of 1liquid that were being processed in
the unit, accurate measurement of product contaminant levels was difficult.
As a result, very limited kinetic information was obtained. Of particular
difficulty was the product sulfur content. The hydrotreated product contains
a certain amount of dissolved H;S, most of which is removed after nitrogen
stripping. In the presence of air, however, any residual HyS will readily
oxidize to form elemental sulfur which is retained in the liquid product.
While exposure of the sample to air was limited as much as possible, a
certain amount of oxidation was unavoidable due to the high concentration of
HyS present in the liquid product. Thus, total product sulfur concentration
as measured by x-ray will reflect the elemental sulfur content as well as
that sulfur not removed during hydrotreating. For the bulk of the pilot
plant program, liquid product samples were mercury treated to remove elemental
sulfur. This explains the discrepancy in the sulfur values shown on the
activity plot for each unit (Figures 9 and 10) and those reported for the
15-gallon composites in Table 20.
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TABLE 21
INSPECTIONS OF GUARD CHAMBER FINES

ERDL Sample No. 720351
Sample Description HTT-3-02 § HTT-4-03
Guard Chamber Fines

Insgections

r C, Wt. % 9.7
H, Wt. % 1.05
S, Wt. % 15.7
Ni, Wt. % 0.383

: Vv, Wt. % 0.026 |
Fe, Wt. % 27.9 ]
Co0, Wt. % 0.084 .
MoO,, Wt. % 2.22
a-A}ZO , Wt % 17.0 ‘
510,; fe. % 12.5 :




 BA -

4.2.2.4.2 Catalyst Activity and Activity Maintenance

a. Desulfurization

As shown in Figures 9 and 10, sulfur content was reduced from
0.74 wt.% to generally less than 10 ppm at the process conditions employed
in this study. No naoticeable decline in catalytic hydrodesulfurization
activity had occurred after thirty days on oil.

b. Denitrogenation

Catalytic hydrodenitrogenation activity at these conditions
declined during the course of the run. Product nitrogen levels increased
from less than 5 ppm to 40-100 ppm at EOR. The unusually high nitrogen
levels on HTT-3 around day 10 were probably the result of poor operations
due to plugging during that time period.

c. Aromatics Hydrogenation

At the process conditions utilized in this pilot plant program,
catalyst activity for aromatics hydrogenation declined substantially during
the course of the run. Aromatics content as determined by FIA analysis
increased from ca. 10 vol.%Z at SOR to 15-16 vol.% at EOR.

4.2.2.4.3 Hydrogen Consumption

The amount of hydrogen consumed in upgrading the kerosene fraction
of a raw Paraho shale to meet Jet A fuel specifications at the process
conditions employed in this study is ca. 1050 SCF/B at SOR. Due to the
steady decline in catalyst activity for aromatics hydrogenation, hydrogen
consumption at EOR was somewhat lower. Hydrogen consumption as a function
of X aromatics reduction is illustrated in Figure 11. In general, the data
in the upper portion of the graph represent SOR values while that in the
lower portion represent those observed at EOR. Linear regression of these
data gives ca. 10 SCF/B hydrogen consumption per volume percent reduction
in aromatics. Increased hydrogen consumption, of course, increases the
cost of processing synthetic fractions to jet fuel.

The data at 1500 psig operating pressure shown in Figure 1l was
obtained in the exploratory study. Within the limitations of the carbon/
hydrogen analysis which is used to determine hydrogen consumption, there
was no observed difference in the amount of hydrogen consumed at this
pressure and that measured at 1200 psig.

4.3 Conclusions

® A sample of Jet A type aviation turbine fuel was produced from
a 310/500°F cut from Paraho shale oil by hydrotreating over
HDS-3A catalyst at 700°F, 1200 psig, 1 LHSV and 4000 SCF/B
of Hy which met the following specifications:

- Total sulfur content
- Total aromatics content
- Flash point
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Freeze point

Smoke point
Viscosity at -30°F
ASTM distillation
API gravity

MR T TG, € T TR ey o

® At the process conditions employed in this study no noticeable
decline in catalyst hydrodesulfurization activity had occurred
after thirty days on oil. Sulfur content was reduced from 0.74 wt.Z%
to generally less than 10 ppm.

® Catalyst hydrodenitrogenation activity at these conditions declined
during the course of the run. Product nitrogen levels increased
from less than 5 ppm to 40-100 ppm at the end of approximately
30 days.

® Catalyst activity for aromatics hydrogenation also declined during
the run. Product aromatics content increased from ca. 10 vol.% at
the start of the run to 15-16 vol.%Z at the end of approximately 30
days.

® At the process conditions investigated in this study, initial
hydrogen consumption was approximately 1050 SCF/B. Due to the
steady decline in catalyst activity for aromatics hydrogenation,
hydrogen consumption was somewhat lower at the end of the run.

5 @ Within the limitations of the carbon/hydrogen analysis which is
: used to determine hydrogen consumption, there was no observed
difference in the amount of hydrogen initially consumed at

1500 psig versus that initially consumed at 1200 psig operating
pressure.
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APPENDIX I

EXXON RESEARCH & ENGINEERING COMPANY

RESCUE LINEAR PROGRAM FOR REFINERY PLANNING

ER&E's RESCUE Linear Program for Refinery Planning is a flexible
planning tool often used in refinery optimization studies. It helps op-
timize process selection, determine blending operations, select crudes and
product mixes, etc. The following sections describe what refinery linear
programming (LP) is, ER&E LP capability, and the specific LP model used by
ER&E Planning Engineering.

Why LP in Refinery Planning

The requirements of a typical refinery project could be satis-
fied in a great many ways. These alternatives, and their interactions,
are sc complex that only a limited number can be studied were it not for
LP techniques. Thus, the use of LP can determine the optimum project
configuration, which might otherwise be missed. Furthermore, the cost
of the planning effort is substantially reduced by the use of LP.

Linear programming is a technique of creating a model of various
available business, logistic, and technical altneratives, and selecting
the optimum combination of these alternatives. In a petroleum refinery
situation, these alternatives typically include the selection of crudes,
processes and their conditions, and product blending components.

The linear programming model contains all these alternatives and
their economics, as well as restrictions on the selection of these alter-
natives. These restrictions include material balances, product quality
requirements, product demands, feed availability, and equipment limita-
tions. The structure of the model is that of a number of linear equations,
each describing one of these restrictions. Typically, there are many more
alternatives (variable in the equations) than there are equations, so there
is more than one solution. From these alternatives, the linear program
determines that particular solution which is the economic optimum.

ER&E Began LP in Early 60's

ER&E has extensive experience in the development and running of
linear programs. The planning group began about 15 years ago developing
and using LP, and were among the first in industry to incorporate this
technique into planning studies for actual refinery projects, Over the
years, many models for various specific applications have evolved. These
applications range from hemispheric supply models, which involve simplified
refinery process representations, to highly detailed representations of
the processing alternatives for a single refinery. These models have been
developed and run for Exxon Corporation affiliates, as well as selected
potential licensees of ER&E technology.




- 70-

The continual use and growth of LP work has resulted in a large
up-to-date data bank, which accurately details crudes, processing alter-
natives, product qualities, operating costs, utilities, etc. In additionm,
this experience provides background and techniques for setting up models
with the required degree of complexity, and efficiently selecting alter-
native scenarios to be examined. These data, and the experience of ER&E
planning, are available with RESCUE.

A Comprehensive Tool for Refinery Planning

RESCUE is a dynamic, flexible tool used in refinery planning
studies to optimize the process selection and develop running plans. Some
of the features of the model are outlined below:

® Crudes - Many of the high volume North American, South American,
Mid-East, and Far East crudes can be simulated by the model.
Other crudes can be added if sufficient characterization data are
available to adequately estimate processing effects.

® Processes - Over 30 refinery processes are included in the model.
Where significant, a range of operations for the process units is
given. For example, these include Powerformate octane level,
Flexicracker severity, and RESIDFINER product sulfur level. Thus,
not only do the LP results show the processing sequence that
should be used, but they also point to the specific operation for
many of the units. A list of most of the processes is shown in
Table A.

The process data can be modified to more accurately reflect a
specific refinery situation. This, along with simple procedures
for selecting only those of the many available process options
which are applicable, can result in a model which is highly
specific for any particular refinery. Information can be added
on other processes from data already in-house. These include

many competitive processes, for which non-confidential data are
already available at ER&E.

® Products/Product Qualities - All critical qualities are tracked
in the model for a full range of products, to ensure that speci-
fications are met. As an example, for each grade of gasoline,
the model follows Research Octane, Reid Vapor Pressure, sulfur
content, gravity, volatilities, and derived specs. Distillate
specifications include sulfur content, flash point, gravity,
cloud point, and volatilities. A list of the products and the
qualities typically followed is shown in Table B.
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Utility Requirements - The requirements for power, cooling water,

and steam have been provided in the model for each processing option.
The LP thus determines the total utilities for the optimum set of
processing alternatives. In developing the overall steam requirements,
the LP ensures that a high and low pressure steam supply and demand

are both in balance. This is done via options to select major process
drivers using either electric motors, condensing steam or back pressure
steam. Thus the model, in effect, provides an initial energy optimi-
zation/driver selection for the entire refinery.

Refinery Fuel and Emissions - The LP solution balances the fuel
needs of the refinery - liquid and gaseous refinery fuel and
hydrogen plant feed. The sulfur content of the refinery fuel is
also tracked. By providing options for low sulfur components

to enter the refinery fuel oil pool, as well as a flue gas de-
sulfurization option, total sulfur emissions specifications can
be met. Additionally, the offsite investments include allowances
for waste treatment to the specifications currently typical of
the United States.

Tankage and General Offsites - The amount of feed, intermediate and
product tankage, and an allowance for the general offsite support
facilities is also estimated for each onsite process option.

Thus, the LP representation of the refinery is a complete one,
rather than just accounting for onsites alone.

Investments - Investment data for all facilities are based on
up-to-date feedback from Exxon's refinery projects around the
world. Provisions are available in the model for selecting the
unit cost of many of the critical process units at the appro-
priate size range.

Economics - Investments for each onsite unit, each utility, the
tankage and general offsites are available in sufficient decail
so that adjustments to the specific economic conditions at any
particular refinery can easily be made. The economic factors
that can be individually tailored include the labor situation,
desired return levels, escalation rates, etc. In addition, the
cost of purchased power can be easily adjusted to the specific
location.

Most of the information required for a planning study are already

available, stored within the data bank. The additional information re-
quired to create a model which is specific to a particular refinery is
relatively simple. It consists of the desired specifications for each of
the products, crude and product prices, and economic bases, such as time,
location, and return rate. A listing of the typical information required
for an LP study is presented in Table C.
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The results from the linear program directly provide the infor-
mation of interest in a planning study. This includes, for the optimum
process sequence, a complete material balance, size and type of process,
onsglte and offsite inveatments, utility requirements, details of product
blending, sulfur emisaions, and operating costs.

A typical planning study for a licensee would involve an P
model of 300-400 rows and 600-800 activities. These small models can
easily be generated from the large data bank, excluding activities
which are not of interest. This results in more efficient, faster run-
ning LP's. The data bank, on the other hand, is large - about 700 rows
by 2300 activities.

LP Model & Techniques
Constantly Updated

RESCUE is dynamic. It is currently being used in a number of
Exxon affiliate and licensee applications. In the course of this work,
the existing data are constantly being updated, and new processing alter-
natives developed. Techniques for setting up and running the LP are also

continually being enhanced. These improvements are immediately incorporated

into our LP technology, and become available to the next user of the pro-
gram. In addition, a new data management system is under development.
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TABLE A
PROCESS CAPABILTITIES

Ceneral

® Capability to handle a wide range of conventional crudes as well as
synthetic crudes from coal, shale oil and tar sands.

® Crude specific approach to processing and blending for greater accuracy.

® Capability to restrict overall refinery sulfur dioxide emissions.

APS
® Overhead and sidestream cutpoint flexibility

® Tlash tower for segregated crude operation.

vPs

® Ilexibility to distill RESTDFINED product.

Naphtha HYDROFINING

Kero HYDROFINING

® Flexibility for hydrosweetening or high severity hydrotreating to meet
smoke point specifications.

AGO HYDROFINING

Saturated Light Ends

® Choice of LPG recovery levels.

U-JHC Hydrocracking

® Capability to handle virgin atmospheric and vacuum gas oils as well as
cat/coker gas oils.

® Operations to maximize LPG, naphtha, jet fuel or distillate.

® Single stage and two stage operations.

® Production of SNG feedstocks.

® Production of aromatics precursors.




FLEXICRACKING

Cat

Capability to handle virgin atmospheric and vacuum gas oils as well as
coker gas ol and coker naphtha. These stocks can be processed untreated
or after desulfurization.

Operations to maximize production of olefins, naphtha or distillate.

Heat balance formulation maintains energy balance around cat unit
including the fractionator and cat light ends.

Flexibility to add regenerator flue gas scrubbing.

Production of ethylene/propylene for use as chemical feedstocks.

Production of carbon black feedstock.

Naphtha Splitting

Naphtha cutpoint flexibility to optimize distillate/heavy cat naphtha
split.

tinsaturated Tight Ends

Cat

Choice of light ends recovery levels.

Naphtha HYDROFINING

e Mild or severe hydrotreating to meet projected mogas sulfur specifications.

® Flexibility to blend desulfurized cat naphthas directly to mogas.

® Hydrotreated naphtha available for aromatics extraction.

Cat

Gas 0il HYDROFINING

@ Range of severities.

Coker Naphtha HYDROFINING

® Treated naphtha available as SNG feedstock.

Coker Distillate HYDROFINING
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ﬂzﬁﬂa Alkylation of Propylene and Butylenes

® Product can be tailored for aviation or mogas.
194 Recovery

iCs_Recovery

LVN Isomerization/Mol Sieve

® Can isomerize with or without sieving.
® High purity iC/iCg available to mogas.

® Option for molecular sieving of LVN to

provide nCS/nC6 for steam cracker
feed.

POWERFORMING
® Cyclic and semi-regenerative reforming.
® Range of octane severities.
e Feedstock cutpoint flexibility.

® Wide range of feeds including virgin stocks, hydrocracked naphthas.
and cat/coker naphthas.

® Option to split reformates for optimum mogas blending and recovery
of aromatics.

® Option to maximize aromatics production for chemicals.

GO-FINING

® Capability to handle virgin and cracked stocks.

RESIDFINING
® Range of product sulfur levels.

® Option to desulfurize deasphalted oil.
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IFluid Coking

FLEXTCOKING

® Range of coke gasification levels available.

Delayed Coking

Deasphalting

Asphaltene Flaking

Steam Reformer (HZ Production)

® Range of suitable feeds and fuels from reformer tail gas to light virgin
naphtha.

Cryogenic "2 Recovery

Sulfur Plant & MEA

Sulfur Plant Tail Gas Cleanup

Flue Gas Desulfurization
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TABLE B

it

Products and Product Qualities

Product

i it

LPG (Propane)

LPG (Butane)

Gasoline (2 grades)

Sales Naphtha (3 grades)

Jet Fuel/Kerosene

Diesel Fuel

Heating 011

Fuel 011 (4 grades)

Refinery Fuel (Two Systems;
Hy Plant feed and Other)

SNG

Sulfur

Coke

Qualities

Max. %
Min. %

Min. %
Max. %

RON Clear
MON Clear

RVP

Cq4
Propylene

c
Bﬁtylene

% Sulfur
Volatility

Distillation

Freeze

Wt% Sulfur

Point

Cetane Index

Flash Cloud

Gravity Volatility
Wt% Sulfur Volatility
Gravity

Wt% Sulfur Heating Value
Viscosity

Sulfur

1000 BTU/SCF

e
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TABLE C

TYPICAL INPUT INFORMATION
FOR LP PIANNING STUDY

Required Product Specifications

Specifications for all products of interest, as shown in
Table B.

Required Economic Information

Crude Prices, $/B, and Availability

Capital Recovery Factor

DCF return
Depreciation method
Project life

Tax rate

Major Product Price Spreads, $/B

Mogas
Kerosene
Diesel Fuel
Heating 01l
LSFO

Investment Basis

Time
Location

Utilities
Purchased power, ¢/kwhr
Cooling water, ¢/M gal

Purchase tions (if an

iC4-, $/B
Others

Byproduct Credits

Coke, $/ton
Sulfur, $/ton
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