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PREFACE

Under the sponsorship of the Tactical Technology Office of the

Defense Advanced Research Projects Agency , The Rand Corporation has

been developing hydrodynamic design criteria employing concepts of

boundary—layer control.

This report presents the results of numerical computations and

analyses of boundary—layer stability and predicted transition for a

series of heated wedge flows having both favorable and adverse pressure

gradients. The results are generalized in a form that is useful for

the conceptual design of axisymmetric bodies that employ combinations

of heating and shaping to achieve an extended region of laminar flo~~~~~
Preliminary versions of these results were presented at the Second

Low-Speed Boundary—Layer Trans i~ ion Wotk~hop in Santa Monica, California,

September 13—15, 1976 , and at the Second International Conference on

Drag Reduction in Cambridge, England, August 31—September 2, 1977.

The report should be useful to hydrodynainicists, designers of

submersibles, and others engaged in applying fluid mechanics method-

ology to the improvement of underwater vehicle performance. Related

Rand reports include:

R-1752-ARPA/ONR, Low-Speed Boundary-Layer Transition Workshop,
W. S. King, June 1975.

R-1789-ARPA , Controlling the Separation of Laminar Boundary
Layers in Water: Heating and Suction, J. Aroesty and
S. A. Berger, September 1975.

R-1863-ARPA, The Effects of Wall Temperature and Suction on
Laminar Boundary-Layer Stability , W. S. King, April 1976.

R-1898-ARPA, “e9 ” Stability Theory and Boundary-Layer Transi-
tion, S. A. Berger and J. Aroesty , February 1977. 

___________

R-1966-ARPA , The Buoyancy and Vari able Viscosity Effects on a W hite Se~tj~nWater Laminar Boundary Layer Along a Heated Longitudina l Buff Section ~Horizonta l Cy linder , L. S. Yao and Ivan Catton , February 
~ o1977. 

_ _ _ _ _ _ _

R-211l-ARPA, Entry F low in a Heated Tube , L. S. Yao , June 1977. 

O1SRlBU~M~f~ :; ~.IT Y cIJIJtJ
___________________
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R—2164—ARPA , The Effects of Unsteady Potential Flow on Heated
Laminar Boundary Layers in Water: Flow Pr operties and Sta-
bili ty, W. S. King, J. Aroesty, L. S. Yao , and W. Matyskiela ,
November 1977.

R-2l65-ARPA , Approximate Methods for Calculating the Pr operties
of Heated Laminar Boundary Layers in Water. P art I: Constant
Surface Temperature , C. M. Harpole , S. A. Berger , and
J. Aroesty, January 1978.

R-2209—ARPA, Simp le Relations for  the Stability of Heate d Laminar
Boundary Layers in Water: Modified Dwin-Lin Method, J. Aroesty,
W. S. King, G. N. Harpole, W. Natyskiela, A. R. Wazzan, and
C. Gazley, Jr. (in process).
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SUMMARY

Appreciable drag reduction is possible if extended regions of lam-

inar flow can be maintained . Although a variety of techniques for

boundary—layer control have been explored, only recently has the effect
of heat transfer on the stability and transition of water boundary

layers been Investigated. In spite of an early experiment~
:
~~ which did

not indicate any favorable effects of heating on the stability of a

water boundary layer in a tube, speculation continued~
2’3’4~ that the

heating of water boundary layers might increase their stability because

of the large variation of viscosity with temperature. An approximate

analysis for flat—plate f1ow~
5
~ and numerical computations

(:6
~
l
~

8) have
confirmed the increase in stability for stagnation, flat—plate, and

separating flows. Spatial amplification computations’9~ also indicate

an appreciable effect of heating on boundary—layer transition for flat—

plate flow.

This study presents additional computations for the stability and

predicted transition characteristics of water boundary—layer “wedge”

flows for Hartree 8’s ranging from —0.15 to +0.40 and surface tempera-

tures up to 67°C (120°F) above the ambient temperature. Both the mini--

mum critical Reynolds number and the predicted transition Reynolds num-

ber of these “similar” boundary layers increase as the surface tempera-

ture is increased above the ambient level.

The interacting effects of pressure gradient and surface heating

on stability and predicted transition may be approximately character-

ized by a boundary—layer shape parameter such as H — 6*16. The com-

puted distance Reynolds numbers for neutral stability and predicted

transition are given as a function of H. Although this stability—

transition map has been formed by computations for similar boundary

layers, it can usefully be employed in the analysis of heated bodies

with nonsimilar boundat.y—layer development. Several examples are pre-

sented which show that for near similar flows this map is quite accurate;

for an extreme departure from similarity the boundary—layer history must

— 
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be considered. In order to maintain an extended region of laminar flow,

it is apparent that the boundary—layer development should follow a path

in which the shape parameter is kept as low as possible over as great

a range of Reynolds number as possible.

4
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NOMENCLATURE

A = amplitude of disturbance

a = amplification ratio

c = disturbance velocity

c — local laminar skin—friction coefficient

c specific heat
p
H — boundary—layer shape parameter = 6*10

h = heat—transfer coefficient

k — thermal conductivity

L = characteristic length

Nu = Nusselt number = hx/k

n = e exponent , natural logarithm of amplification ratio

Pr = Prandtl number = c u/k

R — Reynolds number based on boundary—layer thickness U 6/v

R.L = freestream length Reynolds number =

Re = Reynolds number = U X/v

t percent freestream turbulence level, also time

T = temperature

u,U = velocity in x direction

v = velocity in y direction

v’,u’ — velocity fluctuations

x = distance in flow direction

y = distance normal to wall

— spatial amplification rate

B — Hartree parameter

6 — boundary—layer thickness

6* boundary—layer displacement thickness

ii viscosity

v kinematic viscosity

w dimensionless frequency —

— d imensional frequency

$ — stream function . .

• — disturbance velocity wplitude ~~~~~~~~~

~~ P~~~ ‘~‘~~~-JIOT 
~~

- —&~~~
- ., ‘ -~ ~~~~ .~
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= shear stress

T
L 

= laminar shear stress

8 = boundary—layer momentum thickness

0 — disturbance temperature amplitude

Subscripts

e condition at edge of boundary layer

w = wall condition

x = conditions at station x
= freestream conditions

6* — based on boundary—layer displacement thickness

(crit) = neutral stability

(e9) = condition for amplification ratio = e9

TS = Tollmien—Schlichting waves

j

‘U
‘
~~~ . - 

- 

~~~~~~~~~~~~~~~~~~ -



—i-

t. INTRODUCTION

The design of high performance hydrodynamic and aerodynamic bodies

requires among other factors a knowledge of the process of transition

from laminar to turbulent flow and of the dependence of transition on

the pressure distribution, the surface temperature, the surface rough-

ness, freestream turbulence, etc. When surface roughness is not a

factor and the freestream turbulence level, t , is very low, say t =

u’/u � 0.2%, transition in boundary—layer flows results from the

growth of Tollmien—Schlichting waves. The growth of Tollmien—Schlichting

waves, in flows where the parallel flow assumptions are reasonably valid,

can be determined from linear instability theory. That the theory of

small disturbances is capable of predicting the growth (or decay, etc.)

of Tollmien—Schlichting waves has been demonstrated as early as 1942

by the well—known measurements of Schubauer and Skramstad~~
0
~ and most

recently by the measurements of Rogler and Reshotko.~~~~ It has been

demonstrated that under these conditions, the transition Reynolds num-

ber , or bounds on the transition Reynolds number, can be predicted using

linear instability theory (Liepmann ,~~
2) Smith and Gamberoni,~~

3
~ Jaffe

et al.
(14)

). The premise behind these forecasting techniques is that

the flow remains laminar until the disturbance amplitude (the Tollmien—

Schlichting wave with the most dangerous frequency) is amplified by a

factor e~ where 7.0 � n � 10. Recently, Mack~~
5
~ showed that the well—

known flat—plate transition results of Dryden can be predicted from

linear instability theory using an amplification ratio e’~ where

n —8.43 — 2.4

where t is the percent turbulence level; the fit is best, in the range

of .08 < t < 1.0. It Is to be expected that the total amplification

ratio at transition is lower for higher freestream turbulence levels

if we assume that transition occurs when u’/u0, reaches a fixed level,

say 4 percent. Within the framework of linear instability theory,

disturbances begin to amplify once the critical Reynolds number
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Rex( rjt) is reach’~d. The process terminates, transition occurs, at Re ,

where the initial disturbance amplitude is amplified by a factor of e’~;

let us denote this Reynolds number by Rex(e9). Within linear instabIlity

theory, Re (rjt) for a body of revolution, e.g., is directly dependent

on the local boundary layer, which is determined by the local pressure

gradient, the br’dy shape, and the surface boundary conditions, e.g.,

surface heating, cooling, suction, blowing, etc. On the other hand,

Re (9)~ which is the result of integrated spatial amplification rates,

is dependent both on the local critical Reynolds number and on the

width of the neutral stability curve at each station; that is to say,

ReX(P9) is dependent on the local boundary layer as well as on the his-

tory of the boundary—layer development.

If the characteristics of the local boundary layer can be well rep-

resented by the shape parameter H(x) E 6*/0, the variation of H with

Re for a body of revolution, e.g., may well serve to determine the

stability of the boundary layer to small disturbances If a relationship

does exist between H and Re and/or Re . • . Relation—x(crit) x(transition)
ships between H (or U” and ~~, which are related to H) and Re

~ 
do exist

for certain boundary layer flows, for example, two—dimensional wedge

flows.(7
~
9
~
l6
~
l7) However , relationships between H and Rex(transition)

are not , yet available in the literature. Suçth a relationship would be

an invaluable tool in the design of high performance hydrodynainic and

aerodynamic bodies; the development of such a relationship is the object

of this study. In arriving at this relationship, it is assumed that

Re . ~~Re 9.
x(transition) x(e  )

Second , it is also assumed that the stability characteristics of a body

of revolution at a given station can be approximated by the stability

characteristics of a two—dimensional wedge flow with the same pressure

gradient as that of the body of revolution at the station in question.

With these two assumptions in mind , we proceed then to formulate

(compute) a relationship between Rex(crit) and H(Re ) and a second re-

lationship between Re 9 and H(Re ) for adiabatic and heated two—
x(e ) x

dimensional wedge flows. This task requires knowledge of (1) the

--~ -- - ~~~~~~~~~—-. ---- .~~~~~~~~~~~~~~~~

p
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boundary layer on adiabatic and heated two—dimensional wedge flows and

(2) the stability characteristics (e.g., critical Reynolds number,

spatial amplification rates, etc.) of those boundary layers. This

information is also given in this report.

- ~~~,, • 
- 

-

- ~~~~~~~~~~~~~~~~ 
- ‘~~~ ~
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II. ANALYSIS

DETERMINAT ION OF THE MEAN FLOW

The mean flow profiles for heated wedge flows in water with T
e 

=

19.4°C (67°F) and 19.4° C � T � 86° C (67° � T � 187°F) have been calcu-
lated as outlined by Kaups and Smith.~

2
~ In these calculations all

fluid properties are allowed to vary with temperature only (a good

assumption for water boundary layers at moderate pressures). In cases

where buoyancy effects are not important, viscosity is found to be

the most important variable fluid property (Fig. 1). Therefore, in

formulating the stability problem, only viscosity variations with

temperature have been taken into account. The variation of the follow-

ing boundary—layer characteristics (6*/x),~~T, (O/x)/~~~, (cf
/2)/~~~,

and Nu/ (~~~~ Pr~”~) with (Tw 
— Te) are shown in Fig. 2 and the varia-

tion of H = 6*10 with (T — T
e
) is shown in Fig. 3.

FORMULATION OF THE LINEAR STABILITY PROBLEM
Neglecting temperature fluctuations, assuming viscosity is a

function of temperature only, and taking all other fluid properties

constant , Wazzan et al.~
6
~ found the linearized parallel flow stabil-

ity problem of water boundary layers with heat transfer can be ade-

quately treated by solving the Orr—Sommerfeld equation modified to

include the variation of viscosity with temperature:

(U — c) ($” — 
2~ ) — U”$ + -

~
-j
~ 

[ u ( ~” — 2c*
2
$” +

+ 2~i ’(4” — a2$’) + ~~~ + 2
$)] = 0 (1)

All quantities in Eq. (1) are dimensionless where the reference values

for velocity, length, and viscosity are the edge velocity, U
e~ 

the

boundary—layer thickness 5, and the edge viscosity 
~~ 

R is the Reynolds
number based on 5, R — Ue6IV • The prime indicates differentiation

with respect to y where y y*/sS with y* the physical distance meas—

ured normal to the surface . $ is the amplitude of the disturbance

- - ~~~~~~~~~~~~~~~~~~~~~~~~~ - ‘~~~~~ -~~ ~7- ~~~~~~~~~~~~ A~~~~~ -~-
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which is described by the stream function ~ = 41(y) e~~~
C
~~
t) where

a and c are complex quantities with ac , the frequency, taken real.
In this case, the amplification is purely spatial; the amplification

factor is of the form e . The proper boundary conditions for this
problem are

41 = 41’ 0

T’ = 0  
a t y = O

(2)
41 = 41’ — 0

at y -. 1
T’ = 0

The Effect of Temperature Fluctuations on the Stability of Water Bound-
ary Layers with Heat Transfer within the Parallel Flow Assumption

Iii deriving Eq. (1), temperature and viscosity fluctuations were

neglected. We now demonstrate the validity of this assumption. Con-

sidering temperature to be the only state variable but allowing for

viscosity as well as temperature fluctuations, Eq. (1) within the paral—

lel flow assumption is replaced by the more general stability equa—
(18)

tions

(U — c)0 — T’41 = ~ -

~~~~

— (0” — a
2
0) (3)

and

(U - c) (41” - ct241) - U”41 = - —k {~(.“ - 2a241” + a441) + 2~ ’ (41” -

r 2 2—
+ 

~~~~~~~~ + a2Ip) + 
L.
U’
~
” -

~~
-—

~~ 
+ U ’ (T’) 2 LIL

dT d~

+ 2U”~ 
d2 + u” + u’ d~

+ 2U” ~~~~ ®~ + u~ ~~ (4)
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where Eq. (3) is the energy equation, Eq. (4) is the momentum equa-

tion , Pr is the mean Prandtl number , T is the mean temperature ,
ia(x—ct) —

T 0(y)e is the temperature fluctuation, 1.i is the mean

viscosity, p ’ is the viscosity fluctuation with p p(T) + (dp/dT)T’ +
O(T’ 2). A crude order of magnitude analysis of the new terms appear-

ing in the right—hand side of the momentum equation [Eq . (4) ] vis—à—vis

the right—hand-side terms of Eq. (1) is made as follows . At a point
in the boundary layer we assume 41 0, 41’ 0’, 41” 0”, a 1/iS ,
y 6 , U T , d/d y 1/6. Now setting for example a u”41 , and
b U ’T”(d~~ /dT 2)0 , we f ind

2 2
(a/b) 6 6 

= -~~~ >> 1 . (5)
U T  p

Repeating the above analysis for other terms of Eq. (4), we find that

the ratio of new terms in Eq. (4) arising from allowing for the vis-

cosity and temperature fluctuations, to terms in Eq. (1) is always

of order 6 and hence can be neglected. These conclusions were recently

confirmed by Lowell and Reshotko.~~
9
~ These authors computed the

stability of the flat—plate boundary layer in water with heat transfer.

All fluid properties were allowed to vary with temperature in computing

the mean flow as well as in computing its stability characteristics.

These new results differed only slightly from the earlier results of

Wazzan et al.,’6’~~ primarily due to the difference in ambient tempera-

ture (see below). Therefore, it appears that for water boundary layers,
with moderate rates of heat transfer , it is sufficiently accurate to
compute the effect of heat transfer on stability by using the single

stability equation, namely, Eq. (1).

p - -~-~~~~~~ — - ‘
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111. RESULTS

Equation (1) was solved for several wedge flows, 8 = —0.15, —0.10,

—0.05 , 0 , 0.10 , 0.20 , 0.30 , and 0.40 , at — Te 
= 0, 2.8, 11.1, 16.7,

27.8, 44.4, and 66.7°C (0, 5, 20, 30, 50, 80, and 120°F) with T = 19.4°C

(67° F) . The critical Reynolds number Re
Cen t) and the spatial ampli-

fication rates a as a function of Re were computed. The variation ofi x
Re with (T — T ) and with H are shown in Figs. 4 and 5. Re6*(crit) w e crit
initially increases with increasing AT (

~ T — T
e
) or with decreasing H.

However, as AT is continuously increased , Re attains a maximum value
crit

and decreases slightly (see also Fig. 7) as AT is further increased or

H is further decreased . Since the effect of surface heating on boundary—

layer stability is due primarily to the variation of viscosity with tem-

perature, the results are thus dependent not only on the temperature dif-

ference AT = (T = T ) but also on the temperature level, T . This is

evident in Fig. 4,where previous results for Te 
= 15.6°C (60°F) are com-

pared with the present results for Te — 19.4°C (67°F). Even this rela-

tively slight change in ambient temperature results in an appreciable

difference in the rate of change of viscosity with temperature, and con-

sequently in the predicted stability.

DISCUSSION OF STABILITY RESULTS

Rayleigh theorems for inviscid instability state that for a boundary—

layer f low , the necessary and sufficient condition for amplified and neu-

tral inviscid instability is that U”(y) must vanish somewhere in the

*Incompressible flow over wedges yields boundary layers which are
“similar”—— i .e., the boundary—layer velocity profile for a given wedge
flow retains the same shape as the boundary layer develops (see, e.g.,
Ref. 4). Flow over a wedge having an included angle of 1TB is charac-
terized by an external velocity variation

B

Ue 
2—8

where B is the Hartree parameter. Some common flows correspond as
follows :

8 — 1.0 stagnation point
B — 0 flat plate parallel to the flow
B — —0. 1988 boundary—layer separation 

—- - - — --— ________________________________________

-p -~~~~~~-~~~ 
- . .  - . -

~~~~
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boundary layers in water
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WEDGE FLOWS WITH HEAT TRANSFE R IN WATE R Te 67°F
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Fig. 5—Critical Reynolds number for heated wedge flows in water

- — —— *-.--.-— - — — -— 
— 1_____ - - 

—

- 
- . .



—13—

- 

~~ 0 

-

- ISOT I-)ERMAL WEDGE FLOWS
WAZZAN, OKAMURA, AND SMITH ( 1968)

o FLAT PLATE WITH SUCTION AND BLOWING
TSOU AND SPARROW 11970)

.~~ FLAT PLATE WITH ASYMPTOTIC SUCTION

Re8. ’ 

- 

HUGHES AND REID (1965)

10 I I I I I I I I I I I

1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2

Fig. 6—Critical Reynolds number as a function of the boundary—layer shape
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boundary layer , i.e., the mean velocity profile must be inflected.

In addition, some correlation appears to exist between Re and
(9 20) cnit

the location of the inflection points. ‘ In fact, in adiabatic

liquid flows, T = Te~ 
Recrit decreases as the location of the inflec-

tion point moves away from the wall. That is, in adiabatic flows,

Re decreases as B becomes more negative. In flows with zero orcnit
favorable pressure gradient (B � 0) where the profiles are not in-

flected , the boundary—layer characteristics of greatest importance

to its stability characteristics are U”(y) and to a lesser extent
16—18) In adiabatic f lows it is known that for B 0 ,

where U”(O) >
< 
0, Re~~1~ f or B 

< 0 is smaller than Re n t  for B > 0.

In fact, when a U”(y) distribution is the result of pressure gradient

effects only (adiabatic flows), a strong correlation exists between

Re n t  and B [or U”(y) or simply u”(O)
] or the shape parameter H.

The shape parameter provides a simple and convenient means of generaliz-

ing stability computations; Fig. 6 shows results for isothermal wedge
(2 1) (22 ,23)flows and for suction and it is apparent that the effects of

suction are essentially the same as favorable pressure gradient. Pre-

vious results for heated wedge f1ows~
6’~~~~ are shown in Fig. 7; here

also the effects of a boundary—layer modification by heating are qualita-

tively similar to the effects of pressure gradient except for rela-

tively large temperature differences (e.g., over about 45°C or 80°F).

The critical Reynolds number thus exhibits a simple variation

with U”(O) or with H; Re
crit increases as H decreases (Figs. 4, 5,

and 6) or as U”(O) decreases and/or becomes increasingly more nega-

tive. This dependence on U” or H, in fact, is to be expected . An

inspection of the Orr—Sommerfeld equation shows the boundary—layer

characteristics that directly influence the eigen values, and hence

Recit , are U”(y) and U(y), with U”(y) being the dominant term. There-

fore , it may be asewned that the heating of water boundary layers ,
which produces variations in H similar to those produced through the

effect of pressure gradient alone, leads to increased stability and

particularly to increasing critical Reynolds number. This assump-

tion, however, is found to be only partially true (Figs. 5 and 7).

These figures show that with initial heating H decreases and Recrit
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increases in agreement with the trend observed in Fig. 5. However,

Figs. 5 and 7 show that a1thoug~’ H decreases monotonically with in-

creasing surface temperature, Re6~ 
exhibits a maximum (at least

(crit)
for f lows with B � 1.0). The dif f erence in the var iation of Re iS*(cn it)
with H, when produced through the effect of pressure gradient alone

(adiabatic flows) or through the combined effects of pressure gradient

and surface heating, can be qualitatively understood through an exam-

ination of the Orr—Soinmerfeld equation.

In the adiabatic case, only U” and U appear in the Orr—Sommerfeld

equation and hence the monotonic variation of Re
ô* 

with U” or H.
(c r it)

In the nonadiabatic case, the small disturbance equation is a modified

Orr— Soimnerfeld equation that contains not only U” and U but also
p, ~~

‘ , and p” . This alters the natur e of the problem in two ways.
In the adiabatic case the pressure gradient aff ects R6~ mainly

(cr it)
through the mean velocity term U” (which can be represented by some

function of H) ,  whereas in the nonadiabatic case heating affects

ReiS* 
not only through the mean velocity U” term (which can

(cnit)
still be represented by some function of H) but also through the

terms p, p ’, and p” that appear in the modified Orr—Sommerfeld equa-

tion. Second, the nature of the eigen function 4 (and consequently
all eigen values and properties depending on the eigen values such as

Re ) is different in the two cases. En the adiabatic case, theen it
differential equation for 4 (the Orr—Sommerfeld equation) includes

only the f unction ~ and the even derivatives ~~
“ and •“, whereas in

the nonadiabatic case , the differential equation for • (the modified

Orr—Sonznerfeld equation) includes not only • and the even derivatives
•“ and $“ but also the odd derivatives •‘ and +“ . Therefore, in the

case of heating , although U” or H still characterizes the boundary

layer , neither present a complete relationship between the mean flow

and the eigen function •, and hence Re 6~ . Physically , this may
(crit)

be interpreted as follows: with heating, initially H decreases rapidly

indicating a decrease in momentum loss (Fig. 3) and the stability, e .g . ,

Re iS~ 
, increases. However, with still increased heating rates,

(crit)

— — — - . - - -- . ---~~
- - . - -—-- ,- . -

~~~~~ - —---~.-.—.- --——-—--— - -— ————-- -—- 

~
_
~-‘~~ c4-
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H continues to decrease but at a much slower rate (Fig. 3). In the

meantime, ~i , .u t
~~ and ~i ” continue to vary appreciably with increasing

T .  In fact p, which has a destabilizing effect,~
6’8~ continues to

decrease rnonotonically with heating, whereas )i ’ and 3i”, and in particu-

lar p ’(O) and ji”(O), which have a stabilizing effect,~
8
~ reverse their

trend in variation with temperature (change from increasing with T

to decreasing with T ) near the temperature where Re exhibits a
v cnit

maximum for wedge flows with B < 1.0. Therefore, for high heating rates

the variation of H with T becomes negligible and the variation of p, u ’,

i” with Tw dominates the effect  of heating on Recrit . Therefore , at

high heating rates it is expected that Re~~ will exhibit a maxi—
(crit)

mum with T (Fig . 4 of this study and Fig. 1 of Ref . 8).

In the case of 8 = 1.0 , the maximum in Re~~ with Tw is not
(en it)

observed (Fig . 7) because the unstable zone (region contained within

the neutral curve) is rather limited , and in the initial stages of heat-

ing when H is fast decreasing with T
~ 

the unstable zone is fast ap-

proaching a point. In fact, at just about the temperature when the

variation of H with T begins to slow down considerably and p,  p ’ , and

ii” begin to dominate , the unstable region shrinks to zero and the flow

becomes totally stable.
In spite of this discussion on the relative importance of H and/on

the p , ~~‘ , and ii ” to the stability characteristics of a given boundary

layer , Figs. 5 , 6 , and 7 show that over a large range of H values , a

decrease in H results in increased stability, e .g . ,  increasing Re~~ (cn it)

LINU R STABILITY THEORY OF TWO-DIMENSIONAL DISTURBANCES AND TRANSITION

Of more practical importance than the variation of Recrit with

surface temperature and pressure gradient is the effect  of these two

parameters on transition. Although the transition process is complex

and involves nonlinear processes in the f inal stages of breakdown to

turbulence, much insight into the process of transition and its depend-

ence on, e.g., heat transfer and pressure gradient can be gained fnom
a study of the effect of these parameters on linear instability charac-

teristics, such as Recnit and the spatial amplification rates, local

--

~

--

~

- - _ _ --——-w- _— ——--- - — -  - —
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and integrated values, particularly in the case of slowly amplifying bound-

ary layers.

Because of the three—dimensionality of turbulence, early workers tended

to ignore the role of two—dimensional linear amplification mechanisms, bet-

ter known as Tollmien—Schlichting mechanisms or TS mechanisms. Schubauer
(10) (12)and Sknamstad and Liepmann verified, however , the features of the

TS mechanism in flat—plate flow. On the other hand , Emmons~
24
~ verified

the existence of three—dimensional turbulent spots prior to transition.

Cniminale and Kovasznay~
25
~ and Brooke~

26
~ demonstrated , for various oblique

TS waves, that localized areas of initially intensified disturbances should

develop with strong two—dimensional features in the linear regime.
Reconciliation between early TS amplification and the final three—

dimensionality of turbulence was achieved when transition was recognized

to begin with linear TS amplification and to terminate with turbulent spots

and wedges overcoming the mean laminar flow. 
(27) 

This model was reinforced

when the qualitative eff ects of cooling, heating, suction, pressure gra-

dient, Mach number, etc., on the stability of TS waves (theoretical studies

and experimental observations) and on transition (experimental observations)

were often found to be parallel.

Freestream Turbulence-—Boundary—Layer Interaction

Disturbances that may excite or feed TS waves include:~~
6’28’29~

I. Temperature——density——entropy mode

II.  Vonticity——tunbulence mode
III. Sound mode

Mode I interacts with the boundary layer because of the growth of the bound-

ary layer in the freestream direction. This mode is therefore not important

in instability studies within the framework of the par’ailel flow assumptions.

Mode II can disturb the boundary layer across stream lines because as it
(30)

enters the layer it becomes distorted and stretched. Some measurements

by Hall~
3
~~ and by K1ebanoff~

32
~ suggest that a boundary layer exhibits a

variable receptivity towards freestream vorticity fluctuations. Aside from

these observations, the effects of Mode II on TS waves are virtually unknown.
According to Obremski et ai.,~~

6) sound of frequency w , Mode III , exc ites

- - - -
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regular, coherent TS waves of the same frequency but different wave length,

and the boundary—layer has a non—zero receptivity to acoustic dis-

turbances with frequency in the modified TS range. Furthermore, when the

primary acoustic frequency falls in the TS susceptibility region, 
~TS’(33)the onset of transition can be dramatically changed. Since the sus-

ceptible dimensional frequency band scales primarily with U2/v , i.e.,

w*v (dimensionless)
U

a change in freestream velocity U (or a change in unit Reynolds number

would change the onset of transition. Schubauer and Skramstad~~
0
~(34) (35)and Spangler and Wells in subsonic flow, and Kendall in super-

sonic flow, verified the strong influence sound has on transition; the

elimination or reduction of sound sources was found to greatly increase

the transition Reynolds number. [The importance of sound on transition

in water boundary layers is yet to be demonstrated.] Aside from these

observations on the effect of sound on transition, the process through

which parts of the freestream sound energies become internalized as

growing TS waves is not well understood.

Assessment of Transition

A disturbance growing according to linear instability theory sooner

or later reaches a state where (1) the linear theory ceases to be valid,

and nonlinear processes commence; (2) the boundary layer becomes locally

turbulent——turbulent spots are formed and grow and increase in number;

and (3) these spots spread into the neighboring laminar flow until the

mean flow becomes fully turbulent. Therefore, satisfactory assessment of

the beginning of transition for approximately two—dimensional boundary

layers requires at least three elements:~~
6) (a) adequate knowledge of

the input disturbance and the corresponding boundary—layer receptivity ;

(b) knowledge of the development of the mean profiles and access to their

stability characteristics; (c) information on the length of the nonlinear

processes and secondary instability as dependent on pressure gradient,
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heat transfer , etc. Since the information required in element (a) often

is not available in the literature, one usually characterizes a dis-

turbance in terms of the ratio a[u,x(1),x(2)] of its amplitude A,
a A /A , at two locations, x(l) and x(2).x(2) x(l)

According to Kiebanoff et a1.~
32
~ stage (1) is reached, for a flat

plate, when the rms velocity fluctuation u’ in the boundary layer reaches
(u’ /U) = .015, but the first appearance of turbulence spots is
expected at (u ’/U) 0.2. That is, beyond the onset of nonlinearity

an amplification factor of 10 to 15 times (~e
2
~
5) is required .~

16
~

Liepmann
(]2) 

hypothesized that at the breakdown to turbulence the Reynolds

stress t = —pu ’v’, due to the amplified fluctuations u’, becomes compar-

able in magnitude to the maximum mean laminar shear stress, rL 
= 

~

in the boundary layer. The ratio t/t
L 
is given by

= 
c {kb /U )[a(x)] }

max

where u ’ disturbance amplitude at neutral point
n

b —

and k — u’v’/uv

where u and v are the velocities in the x and y direction, respectively.

For a given frequency w’~ the amplification a is given by

a(x ,w*) exp [_RL f (a
1
/R)(U /U,,) dx]

where here x is made dimensionless by division by the characterist ic
length L.

Suiith~~
3
~ reduced Liepmann’s criterion for transition to an explicit

dependence on the laminar skin friction coefficient, the disturbance input

at the neutral point x~, and the total amplification rat io (Ax(t)/AX (fl)),

______________ p ~~~~~~~~~~~~~~~~ ‘ -~~t -
~~ ~~~~~~~~~~~~ ~‘
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where n refers to the neutral point and t to the transition point. Smith

studied available transition data for attached boundary layers where the

freestream turbulence level was low. Assuming linear theory valid up to

the transition point , Smith showed that the ratio of the disturbance

amplitude at transition A to that at the neutral point A is givenx(t) x(n)
by (A

x(t)/Ax(fl) 
a(x

~
,w
~
) = e9. Later, more accurate calculations~~

4
~

showed (A /A E e
10
. In any event, since in the nonlinear zone thex(t) x(n)

2.5amplification to transition is ~ e , we find that for boundary layers with

low freestream disturbance levels the linear TS amplification of about e7~
5

does control to a large extent the major part of the development of the dis-

turbance to the beginning of transition and that element (b) of the trans-

ition process (paragraph 1 of section on “Assessment of Transition”) appears,

at least in this case, to dominate elements (a) and (c).

In spite of the dominant role of element (b), however , the role of
element (a) remains extremely important . For example, when Spangler and

We1ls~
34
~ minimized sound disturbances in their measurements of transition

in a low—speed boundary—layer channel, their Rx(t) exceeded five millions!

These results, where a mixture of vorticity and sound disturbances is

present, cannot be predicted using any of the presently available forecast-

ing techniques.~
36
~ Hence a knowledge of the receptivity of the boundary

layer to vorticity and sound disturbances is needed for further progress,

and much attention needs to be given element (a). In the absence of such in-

formation and in view of the fact that the TS mechanism may describe, in

the absence of the ef fec ts  of surface roughness, vibration, and sound, the
substantial growth of disturbances up to the emergence of the final three-

dimensional turbulent spots and wedges and the beginning of transition, it

is not unreasonable to employ, for the present, linear theory in bracket-

ing the Reynolds number at the beginning of transition for two—dimensional

and axisymmetric boundary—layer flows (in axisymmetnic flows x is replaced
by s, the distance measured along the body surface).

Therefore, in certain boundary—layer flows where the linear mechanism

dominates the growth of disturbances to transition, the transition Reynolds

number can be bounded by Re on the lower side and by Re on theX ( it) X(e 9)
upper side. Computations of the values of Re

X(9) 
for heated wedge flows
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are shown in Fig. 8 as a function of temperature difference and the trends

are seen to be similar to those for the critical Reynolds number. Coinpu—

tations for both the cnittcal and predicted transition Reynolds numbers

are shown as a function of the shape parameter in Fig. 9.

A plot of Re and Re 9 vs H for two—dimensional wedge flowsx ( r it) x(e )
with and/or without heating (as shown in Fig. 9) can perhaps be used as

a guideline in bracketing Re on a body of revolution, for example.
X ( t )

This can be accomplished by computing for the body of revolution H vs Re.

If this locus of Re vs H falls between the two curves labeled Rex x(crit)
and Re (9) in Fig. 9, the flow over the body may be considered to be

completely laminar. If the locus of Re vs H crosses the Re 9 curve,x x(e )
the boundary layer may be assumed to undergo transition at the Re of the

intersection point. If the locus lies very close to the Re curve,
X
( it)

then the body is conservatively designed, whereas if the locus lies very

close to the Rex(e9) curve, then more heating and/or a more favorable

pressure gradient would be desirable (to maintain laminar flow). These

remarks, of course, may not hold completely since, as stated earlier, in

heated flows H alone does not totally determine the stability, and hence

the transition behavior of the body. Further confidence in this suggested

analysis can be gained as measurements of Re vs H become avail—
x(tra s)

able and are used to check the validity of the trends indicated in Fig. 9.

The format of Fig. 9 has been chosen so as to allow easy application

to specific problems. The path of boundary—layer development over a given

shape on this diagram remains the same, since the shape parameter is only

a function of the relative position on a (unheated) body. The path of

boundary—layer development then simply moves up or down as the size and

velocity of the body are changed.

As a test of these rather speculative comments, the wedge—flow com-

putations have been compared with three cases of the development of non—

similar boundary layers. The first of these is the development of a

boundary layer in a heated tube; for this case, experimental data exist.~
37
~

The boundary—layer development on the tube wall does not correspond to the
similar type of boundary layer computed for the wedge flows; the local

value of B increases parabolically from zero near the tube entrance to a

p -
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Fig . 8—Variation of Rex(e9) for heated wedge flows in water . - 
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positive value at the end of the tube. The path of the boundary—layer

development on the Re
x
_H plot of Fig. 9 would thus follow, not a ver-

tical line as would be followed by the similar boundary layer on a

wedge, but rather a line which is initially near vertical and curves

slightly to the left corresponding to the increase in the local value

of B (and decrease in the shape parameter H) as the flow proceeds along

the pipe. The experimental measurements of Barker and Jennings’37~ were

made In a 6.1 m (20 ft) long, 0.1 in (4 in.) diameter tube using water at

about 11°C (52°P). Their measurements correspond to conditions of

velocity and wall temperature necessary to maintain a laminar boundary

layer along the length of the tube. To attain these conditions, they
found that it was necessary to follow carefully a “laminar path” In which

velocity and wall temperature were simultaneously increased. Their data

describing this “laminar path” are shown in Fig. 10 in comparison with

wedge—flow computations for Re (e9) for the mean value of B in the tube
(equal to two—thirds the value at the downstream end of the tube) and

f or an ambient temperature of 11°C (52°F). Agreement is remarkable up

to a transition Reynolds number of Re = 31 x io6 corresponding to a
wall temperature about 5.5°C (10°F) above the ambient temperature. As

the wall temperature is increased further, however , the measured values
become increasingly less than the predicted ones. Whether this is due to

buoyancy—induced secondary flows , to dirt deposits on the tube wall, or
to downstream effects has yet to be determined.

The second case is a much more severe test of the wedge—flow com-

putations. Computations of the boundary—layer development on a very blunt
(38)*

body of revolution are shown in Fig. 11 against a background of the

wedge—f low computation shown in Fig. 9•** The boundary—layer development

f or four unit Reynolds numbers over the unheated body are shown; also pre-

sented is the case of the body heated 5.5°C (10°F) above the ambient tern—

perature. For this body, the departure from similarity is seen to be

*This shape was suggested to us by Professor A. 3. Acosta of the
California Institute of Technology.

**The isothermal wedge—flow lines of Fig. 9 are reproduced in FIg. 10
as dashed lines.

- . - - ~~~~ ‘~~~~- - ,..~
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extreme. The Initial path of boundary—layer development is initially
almost horizontal on the Re

x
_H plane with H increasing very rapidly as

the boundary layer develops over the shoulder of the body; H then reaches

a maximum and decreases rapidly on a higher horizontal path. The com-

puted value at which an amplification ratio of e9 occurs is shown on

each of these paths (except the lowest unit Reynolds number where the

maximum amplification ratio attained is e7~
8). The results of these

same computations are also shown in Fig. 12 in comparison with some

experimental transition data~
39’40~ for this shape and with the posi-

tion of an amplification ratio of e9 deduced from the wedge—flow map

of Fig. 9. Figure 12 also shows the position of neutral stability as

a function of the free—stream Reynolds number both as deduced from the

wedge flow map and as computed from the local boundary—layer character-

istics by the modified Dunn—Lin approximation. 
(41) 

In the case of

neutral stability, the use of the shape parameter H is seen to compare

favorably with the -calculation from the details of the boundary—layer

profile; however , the growth of disturbances is seen to be more sensi-

tive to the details of the boundary—layer development with the positions

deduced from H being premature compared to the exact computations. The

experimental data for the lowest turbulence levels are seen to agree

well with the exact computations for an amplification ratio of e9. As

the free—stream turbulence level increases (e.g., at ReD 
= 2.5 x l0~),

transition is seen to correspond to considerably lower amplification

ratios. It will be noted that for this body, the predicted and experi-

mental transition points generally occur somewhat downstream of the point

predicted by a simple application of the wedge—flow correlation. This

is presumably because of the effect of the boundary—layer’s history——

effectively coming from a very stable condition into the region of

instability.

The third case, less severe than the second , concerns the boundary—
layer development on a relatively slender body of revolution——a 13:1

Reichardt forebody. Figure 13 shows the paths of boundary—layer develop—

ment on this body at a single unit Reynolds number and several surface

temperatures. The boundary—layer development on this body, over most of
its length, more closely approximates the similar wedge flows. The

-p 

- ~~~~~~~~~~~~~~~ ~
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0.5 Fsjeutr , . of FIg 
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Fig. 12—Comparison of computed neutra l stdbility and predicted
transition (e 9 )  with experimental transition data and

with values deduced from the map of Fig. 9
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computed positions of an amplification ratio of e9 are shown on these

curves and are seen to coincide closely with the wedge—flow computations

for Re 9.x(e )
These example comparisons appear to confirm the utility of the appli-

cation of the wedge—flow results, and their “correlation” in terms of
6*the shape parameter H = ~~
—
, to estimation of boundary—layer stability and

transition for non—similar flows . For near similar flows (Figs. 10 and
13) the wedge—flow results compare very well with experiment and exact

computation. For an extreme departure from similarity (Figs. 11 and 12),

the boundary—layer history must be taken into account. In general, keep-

ing the shape parameter as low as possible over as great a range of

Reynolds number as possible is desirable for maintaining an extendt~d : 
-

region of laminar flow.
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