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PREFACE

Under the sponsorship of the Tactical Technology Office of the

Defense Advanced Research Projects Agency, Rand has been investigating

the fluid mechanics and hydrodynamics of low-drag submersible vehicles.

Preliminary studies of such vehicles often involve characterization

of surface heating effects on the hydrodynamic stability of laminar

boundary layers in water. Elaborate numerical solutions of the Orr-

Sommerfeld equations are usually required for such characterization,

even for preliminary conceptual studies.

An analytic method first developed more than 30 vears ago is re-

viewed and modified to provide a simple set of relations for determin-

ing the effect of heating and pressure gradient on the minimum critical

Reynolds number of laminar boundary layers in water. This new method

does not obviate the need for aumerical solution of the Orr-Sommerfeld

equation, such as might be required for "e911 calculations. However,

it does provide an inexpensive and simple way to estimate the effects

of w-01 temperature and pressure gradient on the mainimum critical

Reynolds number.

This report should We useful to hydrodynamicists. designers of

submersibles, and others engaged in the application of iluid mechanics

to the improvement of underwater vehicle performAnce. Related Rand

reports include:
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SUIMIARY

A simplified method is described for calculating the effect of

surface heating on the hydrodynamic stability of heated laminar

boundary layers in water. The method involves modification and up-

dating of relations first developed by Lin for a constant-property

fluid and later by Dunn and Lin for a compressible one. These modi-

fied Dunn-Lin relations for the minimum critical Reynolds number give

results in substantial agreement with numerical integration of the

Orr-Sommerfeld equations. The method is then employed to evaluate

the influence of ambient temperature level and wall temperature dis-

tribution on the minimum critical Reynolds number. Preliminary

studies indicate that wall temperature distributions can be found

that have a strong favorable effect on the stability of laminar

boundary layers in water, even for adverse pressure gradient flow.

2.j
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I. INTRODUCTION

Successful laminar flow hydrodynamics relies on the manipulation

of velocity profiles in the wall region of the laminar boundary layer

to enhance flow stability. Pressure gradient, body shaping, suction,

and surface heat transfer are classic methods for accomplishing this

manipulation.

Recent theoretical and experimental studies suggest that surface

heating in water holds promise for enhancing boundary-layer stability

by slowing the growth of Tollmein-Schlichting instabilities, or by

increasing the surface area over which two-dimensional, infinitesimal

disturbances are damped. In the absence of a comprehensive theory of

boundary-layer transition, linear stability theory currently provides

the sole analytic guide for manipulating mean flow velocity profiles

to delay transition.

Even for preliminary engineering applications, no single parameter

describes the stability of a particular velocity profile. However,

the minimum critical Reynolds number can be extremely useful, both as

a precise measure of the extent over which all two-dimensional, infin-

itesimal disturbances are damped and as a simple qualitative surrogate

for the stability characteristics of a particular velocity prufile [I].

In 1946, C. C. Lin [2] published a simple set of relations for

determining the minimum critical Reynolds number from the velocity pro-

file of a constant property laminar boundary layer. The original Liu

relations [2,31,

v(c)(l - 2A) - .58 , (la)

Recent computations by Wazzan and Gazley (1] suggest that the
minimum critical Reynolds number may also he useful in correlating
transition predictions obtained by the 'e9" method.

'4i.
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where

[uyc ] ((yd
v(c) =3 (lb)

3.U (0) C (ic)

25 L (0)
(Re a) (lRemin-crit 4 , (Id)

c

Ye =height of critical layer, and c = wave speed, normalized to free-

stream velocity, were based on asymptotic analysis of the Orr-Sommerfeld

equations (valid for large values of aRe6 , small values of the wave-

length, a, and small values of c) and a numerical factor derived from

a more complete calculational method. These relations were widely

used (31 until the advent of computer-based schemes for the solution

of the Orr-Sommerfeld equations. In 1946, Lees and Lin (4] extended

the original Lin relations to the compressible flow of air, and later,

Dunn and Lin [5] and Mack [61 presented further compressible extensions

of the original Lin analysis of the neutral curve separating staýble and

unstable regions. However, special difficulties associated with com-

pressibility diminished the role of this analytic approach in high-

speed dynamics, and computer-based numerical solutions have since pre-

empted stability analysis for air flows.

For the case of practical heated water boundary layers. tho situa-

tion is simpler. Water density is nearly constant, temperature and

viscosity fluctuations have little effect on stability, and the primary

departure from the constant property incompressible flow originally

considered by Lin is the variation of wan flow viscosity aith

temperature.

On the basis of numerical testing Warzan 17.81 sugg~steo that

viscosity and temperature fluctuatioarm are negligible wW that the
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appropriate Orr-Sommerfeld equation for heated water boundary layvio

is still fourth order but includes derivatives of mean flow viscosity

with normal distance. The equation is

(U- c)(W" - 04) - U" +(i)[ l(t"" - 2a 2 '#1 + (4

(2)

+ 2u'(€'" - a2$'i) + Vit(Oil + O20)] 0

where primes refer to d/dn; j = Y/6; R6 = U6/v; the disturbance stream

function ip(w,y,t) = O(Tn)e i(" ct); and a and c are real along the

neutral curve. Both velocity and viscosity are normalized by their

values as n -, -. It was also demonstrated that the omission of the

terms pi' and "!' had a small effect (- 3%) on the numerical calculation

of minimum critical Reynolds number. This is not surprising for the

extremely stable flows sometimes encountered with heated water boundary

layers, because the derivatives of ý are large in the critical region,

and the terms g' and P" are essentially of unit magnitude or less.

In this briet report, we show how the Lin relations and the Dunn-

Lin theory may be used after slight modification to estimate the min-

imum critical Reynolds number for hoated water boundary lay-rs. The

appropriate approximations and dimensional factors in these new rela-

tions are based on recent calculations of the Orr-Sommerfeld equations

for constant property flow. The results of our modified Ounn-Lin theory

are then vompareU with values obtained from numerical studies of the

Orr-Sommerfeld equation for heated water boundary layers. O ý1 the

accuracy of these itew relations has been established, they are used to

indicate the effect of changing temperature levels on the minimum crit-

ical Reynolds number. The surprisingly powerful effect of tompeoature

variation in the maintenance of a stable flow is illustrated by the

case of an unfavorable pressure gradient. Wecause of t'-ir a4curacy

and simplicity, these relations can be useful in prelitattary feai-

bility and optitti~atioat 4tudiO6 of 1ariur fhlw hydrudytUwaC.



-4-

II. REVIEW AND ANALYSIS

For- •'onv !,nfl e, we briefly review the Dunn-Lin method for solving

iEq. (2) along the ne., ýr,' curve (but only those aspects of the method

thzt are inetrumentai in this modification; complete elaboration is

found in Refs. 2, 5, or 6).

Because ciR 6 is expected to be large, classic asymptotic methods

should be sufficiently accurate for engineering estimates. First, the

inviscid Orr-Sommerfeld equation obtained after neglecting terms of

O(l/CR6) is considered:

(u- c)€-a)-U" 0 . 3)

Following Lin [21, the solution of this equation that satisfies the

outer boundary conditions U(0) • '(o) = 0 is called O(n) and is cal-
2

culaoed by a power series in a

The viscous solution is more complicated. The modified Tollmien

variation, C. used for obtaining the dominant viscous solutions of

Eq. (2). accounts for both departures from linearity of the velocity

profile and variab'.e viscosity. It is defined by

Tho leading tersi of Eq. (2) tl~ou becoa

F ~ý 0- ic F ; (~)0 U S

whr'e M() ii tOw doiant vivpa¢o *olut iou ot the O3rr-Smmerfold

Oqtwtiou. twr@ a f Lou. intipe•n•tit sol*otions of thi* 4quutioo. Two

a.-re v-sentially inviscid solutions atl arc alroa4v itueltgt4e in OhW

itui•scd Wo-lrio ) 001), oW e W i tf W gio titiag goltctow toUaonnd

-- -
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-, •. Thus, there is only one accepta6le viscous solution. This

solution uaust be maultiplied by a factor to give the correct asymptotic

form as aR6 -5 -. This factor introduces an error not larger than
- 1/3

O(Ca6) in Eq. (5).

The appropriate viscous solution is vis(r0), where

-vis" 2 (~~/ ~/ ~~

(6a)

f d f 1/2•t1 (1) 3/2

and

S~(6b)

Thus the required approximate solution is the lUaear combination

a4(n) + is )
the no-daip conditions at the wall. o(O) '(0) - u. must Ntiil

be W atistied. This leads- to the relatious

40(0) +÷ bvii(O 0 . (74)

4(0) + t vi*(O)) 0 . (7b)

which two viult ina t•he ei¢ovgotwae re1tiou

viii
v it *(to) 4
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The ratio of the viscous solutions can then be written as

vis(0) =i (2 r( j U d F(Z) , (9a)

where

Z - - C(O) = (aR 6 ) 1 / 3[- di] (9b)

and F(Z), the Tietjen's function, is defined by

-Z C

-z
F(Z) = Z (9c)

-J1/3 L3 3

if )A is defined by

( cO 1/2 r U -i,c 11u'(o ) c3

Eq. (9a) becomes

f (0) e

vis dn q

and the eigenvalue relation (E. (8)) becows

WOD() U -(0)

iON -1
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It is traditional to write this equation in the form

E(a,c) = F(Z) , (13a)

where

E(• c) (0) U'(0)
E (a,( c(l + )" (13b)

The quantity X is usually small. If both velocity gradient and

viscosity are constant, the X is identically zero. In other more

realistic cases, departures from this constancy in the region between

wall and critical layer are generally small enough to result in 1ll << 1.

However, its selective inclusion in numerical calculation results in

more accurate estimates.

Equation (13a) can be recovered from the original Dunn-Lin formu-

lation by setting M1 Z 0 and Tw = I and permitting .i to vary with n.

It is also customary to introduce the modified Tietjens function de-

fined by 3(Z) = 1/[il - F(Z)], and to rewrite E(ct,c) in terms of auxiliary

real valued functions u(a,c) and v(a,c) defined by

1 (1 + X)(u + iv)
-E I + X(y + iv) (14)( C*,c)

The secular relation (Eq. (13a)) then becomes

l + m~u + iv) .(Z) a W r(Z) + io.(Z) W (15)
I + )X(u + iv) r

where 3(Z) it decomposed into real aind imaginary components.

Lin (2) showed that t•e ivviscid solution could be written as

-2 2' 2(- c)" +•K (1 c)+ 0 0 + K "+
U÷ ivI " I

C +U +0 1- h-+ .+

(16)[
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rlc

where Kl(C) =f (U - c)-2 dy,

0

Tic y

K 2 (c) =f (U - c)-2 dyJf (U - c) 2 dy

o 0

lc y

K3 (C) (U - c)-2 dYJf (U c)2 dYJf (U- c)- 2 dy

(17)
rcn

H1 (c) ]fo (U - C)2 dy

Tic

H2 (c) dYO (U - C)2 dYfo (U - c) 2 dy

rfo

ney 
y2

H 3 (c) " f (U-c) 2 dY f (U-c)- 2 dy (U c)dy

0 0f

By direct evailuation oi Eqs. (16) and (17) io- sw.11, a and c. Liu

fouud thut Eq. (1b),

Tv' (O)U(n• d U"01
V 

[ U 
-1 

,

Is 4 suitable approimatiou fo v.

Liu also determined that tthe inimum value of UeS is appritnated

when (Z) has Its saximum value. correi dfit. t•o D(Zfo ) - 0, 34 )

=.U . Or (ZO) 1.4•8. and Z,) 3.21. Hie t•ma propo*Wd an iteratloo
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procedure, valid for small values of X, for solving Eq, (15). The

procedure is based on neglecting terms of 0(X) in evaluating U, but

retaining such terms in the evaluation of v. From Eq. (15):

u e! Zr (Z) (18a)

and

vel + XI[I - 20r(Zo)1}= ] i(Z= ) . (18b)

Equation (la), Lin's original relation for determining c, thus

fo'.lows from Eq. (18b). The relation between Re6 and Z follows from

Eqs. (9b) and (10):

(Z)3 u'(°)2 PAU
( 6Re)critical 3 (1 + X)2

Originally, U.in estimated a from a crude numerical solution of Eq.

(16) for the BlaqiuN profile,

a -,% kiI (U)c C (20)

lie .hrz44 approximated Eq. (19) by

(R6) crit ical 4 1d

aitor twg-nýeittg X and adjust•ng |tita conita•zt* to agree with reoJltbs

obtained from hIt own more dc-taled iealculattots. lo Ow ra=m spirit

a* Liu, we a41o a4*u•w. that C - U, e.0), terms of 4W) lat Eq.

ýtJ(0 IMU(0) 6*
*Vitical 4 6,(1

ii
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where the numerical constant is now chosen to agree with recent accu-

rate numerical calculations for the constant property Blasius boundary

layer.

Because X is a small quantity, we bypass the required numerical

quadrature between wall and critical layer, and with sufficient accu-

racy estimate it by

-. 4 [1 U'(O• ) + .5 1 () (22)

This formula results from thc assumption of a linear viscosity profile

and parabolic velocity profile between wall and critical layer and the

evaluation of the dominant term in the integral in Eq. (10). The re-

quired modifications of the Dunn-Lin theory are then Eqs. (Ia), (lb),

(10), and (22) for determining nc and c; and Eq. (21) for the evalua-

tion of the minimum critical Reynolds number, (Re6*)critical.

X

Ur.

S... ... .. . • : -- '-'•"... II i " i II S Il iS i l If ! | • Z ip|
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III. RESULTS

FIGURE 1

A comparison between values of (Re 6 d)critical calculated by the

present approximate method and those calculated by numerical solution

of the Orr-Sommerfeld equation is shown in Fig. 1. The lines are based

on published results of Wazzan and co-workers [7-101 for Falkner-Skan

similarity flows at various surface overheating. The symbols corre-

spond to the current results. Although no single profile shape factor

can uniquely correlate (Re 6 ,)critical when both pressure gradient and

surface heating are present, It BE 6*/0 remains a convenient parameter

for presenting these results.

The open circles are computed by our approximate formulas for

wedge flows at zero AT. The agreement between exact calculation and

the proposed method is remarkable in Lhe practical range of U between

2.2 and 3.

The asterisks correspond to the case of 6 - 0 (flat plate) and

various surface overheating. Note that the agreement between exact

and approximate methods is again satisfactory in the region between

It w 2.59 and HI F 2.2. where a stability reversal occurs at AT increases

pa~it 7S'F. The method agrees with exact calculations in predicting the

existence and location of the maximum attainable critical Reynolds

number, both for this case and for the case of 6 - -. 1988 (closed

circles).

For 0., the tethod appears to overpredict ( )crittvcal in

the region of large surface overtwating corrcspouditg to valuos of U

less than 2.3.

The case of 1.0 (crosses), vorreponding to an extremely

favorable pressure gradient, is more problomatic. Exact kalculations

indicate that (ge 6 *)c 'tih'4l exhibits. a loeal maximum at 2.2 10 4 and

H - 2.O5 and then increase, again with further surface overheating.

"The approximate method. however, exhibits an absiolute max!aum at

H - 2.05, corresponding to AT 40'F. The agrm#eeent between tOw exact

and approxim•aw v•es is pod up to this value of surface overheatiug.
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Max a ATo
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.2'
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The modified Dunn-Lin method can be used with reasonable con-

fidence when moderate surface overheating, of the type achievable

in p~actice, is considered.

FIGURE 2

Figure 2 shows the vari:laon of (Rex)critical with surface over-

heat for a series of favorable and unfavorable pressure gradients of

the Falkner-Skan type. The symbols in this figure represent results

obtained by numerical integration of the Orr-Sommerfeld equations,

and the lines refer to the approximate method.

The agreement between exact and approximate computations is again

satisfactory in the practical range of "Os" between +.10 and -. 10.

These results support our previous observation about the method being

accurate for practical levels of pressure gradient and surface over-

heating.

FIGURE 3

In Fig. 3, the modified Dunn-Lin method is used to calculate the

dependence of (Red,)critical on ambient water temperature for several

surface overheats and Os of .10, 0, and -. 10. The variation of water

viscosity with temperature is the primary mechanism for the surpris-

ingly large effect of ambient water temperature on (Rep)critical'

corresponding to a three-fuod increase when ambient temperature is

decroa,%ed from 75"F to 45*F.

FIGURE 4

All of the provious results are for constant u•ll temperature.

Figure 4 compares reaults obtained by the prosent • thod with exact

computat iou* for variable wall teccraturt (AT - X) &d .n advertsae

pressure gradie•nt corropodug to 8 a -. 10. The ability of the

approximate wettod to prdict the qualitative features of the

~~6~citialvariation vith 6T is again demonstrated. Nott that

the variable wall tpe~rature itwerease* 5tability over the constant

wall1 tomperature case when the local taperatuzre differmece Isa greater

thau 45*F. Thd *urpribiu~iy pcowful of te4.a of w411 tempercaturo
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variation in increasing the extent of stable laminar flow is due pri-

marily to the upstream history of the thermal boundary layer and its

ability to appropriately deform viscosity and velocity profiles in

the region between critical layer and wall.

CONCLUSION

We have developed a modification of Lin's method that can be

used to estimate the minimum critical Reynolds number of a heated

laminar boundary layer. This method is both simple and surprisingly

accurate. As in Lin's original work, the method is most applicable

when c - 0, a -* 0, and aRe 6 - 00. The internal details of the method

do not agree entirely with exact analyses in other ranges of these

parameters, but the few required constants have been chosen so that

predictions of minimum critical Reynolds number are consistent with

results of more elaborate numerical integration of the Orr-Sommerfeld

equatio~ts.

This method, which we have labeled the "modified Dunn-Lin method."

can be used with confidence in engineering studies of laminar boundary

layer control in water. Preliminary studies, based on this method,

suggest that an appropriate surtace temperature distribution can promote

stability, even for flows experiencing adverse pressuru gradients.
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