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CONVERGENCE OF SUBSPACE ITERATION
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\1 The convergence of subspace iteration for the solution of eigenpairs
is studied, The theoretical convergence rate is devived and is pre-
sented with emphasis on the theory in the light of practical implica-
tions. Varicus techniques to accelerate the convergence of the sub-
space iterations are proposed and are tested in a preliruinary

manner on some demonstrative samnple preblems.

During rccent years the development of solution techniques for cal-
culating the eigensystem of large eigenproblems has attracted an
increasing amount of attention[1-3]. A particularly iimportant
eigenproblem encountered in computational mechanics is the calca-

i lation of some cigenpairs of the generalized eigenprobiem

Kp = AMO M
where K and M arc the stiffness and mass matrices of the discrete
degree of freedom system, and ()\i,@i) is the i'th eigenpair, if the

order of K and M is n, we have n eigenpairs which v 2 order as

follows,

NSRSy S S,

(2)
Z LSRR R RS
E
| Thus, the solution for p eigenvalues and corresponding eigenvectors
i can be written as
i
!
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e properties of
where the columns of ? store the eigenvectors and 1} is a diagonal as|s on pregentir
matrix with the eigenvalues on the diagonal, Firstfy in the paper

Among the techniques for calculating the lowest eigenvalues and @ iterati¢n are
corresponding eigenvectors of Eq. (1), the subspace iteration method : d is ¢
has found increasing use[1,4-6]. The subspace iteration method w the mpAnfmizati
has been applied successfully to the solution of a large number of 58 envghie an:
problems and Table 1 summarizes some typical solution times, In

previous publications, the basic equations of the method have been 1 g rate i:

presented, and the practical implementation was discussed (4, 7],

discugsed.| A parti

but no detailed discussion of the convergence of the subspace itera- metheéd is the selec

tion method was given. However, for the practical use of the tech- per, [the sfarting s
nique and in the search for methods to increase the effectiveness of in ck?’(t gether w
the basic algorithm, it is important to have sufficient insight into the a nupiber pf techni.

convergence characteristics,
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Convergence of Subspace Iteration 577

The objective of this paper is to discuss in detail the conver-
gence properties of the subspace iteration method with specific em-
phasis on presenting the theory in the light of practical implications,
First, in the paper, the basic equations that are solved in sub-
space iteration are briefly summarized, and the importance of cach
equation solved is explained, Emphasis is placed to show in detail
how the minimization of the Rayleigh quotient is used to extract the
best eigenvalue and eigenvector approximations from the current
subspace. In the next part of the paper the proof for the ultimate
convergence rate is given, and rclevant practical consequences are
discussed. A particularly important phase of the subspace iteration
method is the selection of an cffective starting subspace. In the pa-
per, the starting subspace that has been found effective is described
in detail together with various recent expericnces gathered. Also,
a number of techniques to accelerate the convergence of the subspace

iterations are proposed.

2. The Subspace Iteration Method
Assume in the following that the order of the matrices K and M in

Eq. (1) is n and that we require the lowest p eigenvalues and corre-

sponding eigenvectors. The subspace iteration solution consists of

the following threc steps:
(1) Establish q starting iteration vectors, q > p, which span

the starting subspace El'

(2) Perform subspace iterations, in which simultaneous in-
verse iteration is used on the g vectors, and Ritz analysis
is employed to extract optimum cigenvaluc and eigenvector
approximat’ons at the end of each inverse iteration.

(3) After iteration convergence, use the Sturm sequence check
to verify that the required eigenvalues and corresponding
eigenvectors have been calculated.
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: i
The verification of the solution results in step (3) is straight- i
forward and is discussed in detail in[(7]. The effectiveness of the s
algorithm lies in the procedures used in steps (1) and (2). i
Assume that we have established the q starting iteration vectors, |
in )_(1, then the subspace iteration in (2) is as follows:
Fork =1,2,..., iterate from subspace F‘k to subspace F’k+1= |
KXjip © MX, - © ‘
Calculate the projections of the matrices K and M onto Ek+1: i
K, . =%XF KX 5 ‘;
Br+1 = Zx128ka1 ©)
M . =%1 MX 6 :
Tkt Sk+l—"k+ * (6) i
Solve for the cigensystem of the projected matrices:
!
> L 3 3 2. a : : =
K191 = Mo S !-lékfl ’ (7) 3. MinimigAtion of Ra
|
Calculate an improved approximation to the eigenvectors: t
T " Zen%a - (8) ‘
Then, provided that the iteration vectors in X, are not orthogonal to
one of the required cigenvectors (and assuming an appropriate order- i
ing of the vectors), we have s
- . - ;
By=bs Bt s kas, ;
AssumingAhat K and ¥
The essential ingredients of the subspace iteration above are positiv# semi-definite
the simultancous vector inverse iteration in Eq. (4) and the use of {
the Rayleigh minimum principle in Eqs. (5) to (8). Since inverse : < xl <P < N\ <=
!
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Convergence of Subspace Iferation 579

iteration is used, subspace iteration ie closely related to the QR
method [7, p. 470], but subspace iteration displays much better
convergence characteristics because the Rayleigh minimum princi-
ple is employed to extract in each iteration the "best" eigenvalue
and vector approximations, The use of the principle of minimizing
the Rayleigh quotient of an iteration vector has also been explored
by Fried[8], Falk[9], and Schwarz[3]. However, the effective-
ness of subspace iteration derives from the fact that the iteration is
performed with g vectors, where q = p, which are used simultane-
ously in the minimization of the Rayleigh quotient.

Considering the convergence of subspace iteration, two distinct
features are observed, which are both important in practical analy-
sis; namely, the minimization of the Rayleigh quotient that yields
best approximations to the required eigenpairs in the current sub-
space and the ultimate convergence rate of the iterates, We discuss

both aspects in the following sections.,

3. _Minimization of Rayleigh Quotient in Subspace Iteration

The Rayleigh minimum principle states that

A =minp@ , )
where the minimum is taken over all possible vectors @, and

¢ Ko

P = . (10)
T oetm

Assuming that K and M are positive definite matrices, or that M is

positive semi-definite in case M is a diagonal matrix, we have

inverse 0< ).1 LpE) < )\1 Lo, (11)
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In the k'th subspace iteration we solve for the vectors X ,%,, ...,
which are stored in ):(k oy and use the Rayleigh minimum principle
as a mechanism to generate "best" eigenvalue and vector approxima-
tions, The fact that indeed the Rayleigh minimum principle is used

can be demonstrated by defining a typical vector (_Z} in the subspace

Ek+1 as
q

) :ZWE{ . (12)
i=1

Then substituting <Z) into Eq. (10) and using the conditions bp@)/byi =0,
i=1,...,q, which must be satisfied at the minimum of p(@), we

obtain the eigenproblem
Ry = pMy , (13)

where the elements (i, j) of K and M are )_?iFE}_Ej and 8;1 ij, respec-

tively, The solution to Eq. (13) can be written
KY = MYp , (14)

where the matrix Y stores the eigenvectors of Eq. (13) and pis a
diagonal matrix storing the corresponding eigenvalues, p = diag (pl).
The elements p; are the approximations to the required eigenvalues
of Fq. (1) calculated using the Rayleigh minimum principle and the

corresponding cigenvector approximations are

q
@j=§ yij;zi ; J =22 0vesq (15)
i=1
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where yij is element (i, j) of Y. On comparing now Eqs, (13) to (15)
with Egs. (5) to (8), it is realized that in the k'th subspace iteration
the same cigenproblem as in the minimization of the Rayleigh quo-
tient is solved; i.e., Eq. (7) and Eq. (14) are the same equations,
and that also the same eigenvector approximations are calculated,
Using the fact that the Rayleigh minimum principle is employed
to evaluate in each subspace iteration the new eigenvalue and vector

approximations, it follows that in the k'th subspace iteration,
(k+1) | el (k+1)
"15)‘1 5 )‘z—)*z ; 2 xqsxq *)h (16)

and, in particular, it is possible to show the actual mechanism used
to calculate the values )\_(k ") The condition that A< kgkﬂ) follows
from Eq. (9), because the subspace F’k+1 is contained in the n-di-
mensional space in which K and M are defined.

The inherent procedure employed to evaluate )\g‘-*l) demon-
strates the mechanism used to evaluate the approximations to the \
higher eigenvalues., First we observe that as an extencion of the \
Rayleigh minimum principle, the minimax characterization of |
eigenvalues gives [7],

) = min p@) , (17) i 1

where the mi;imum is taken over all ¢ subject to the restriction
O Mp. =0 , (18)

However, in the subspace iteration we have using the notation of Eq.
(12),

T -
) M‘Ej ¥ 6{, ) (19)

T —— ="
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where aij is the Kronecker delta, Hence,

W = min p@ e

)

where the minimum is taken over all possible vectors <Z) defined in
Eq. (12) that satisfy the orthogonality condition

3'Mp =0 . (21)

To prove that kz < kgk & we censider the auxiliary problem of
evaluating X;k+l), where

3k+1)
%

= min p(®) (22)

subject to the cordition

¢ Mp =0 . (23)

. SR+ 2
However, since >‘2 < )\,(Zk 1), because B,

feat is contained in the space
spanned by ¢

PiseeesPns and also ~A2(k s < Ag(ﬂ), because the restric-
tion in Eq. (21) is the most severe one, we conclude that Az < )ékﬂ).
In analogy to the conclusion reached on the calculation of

1 : : ;
), we can conclude that in the subspace iteration, we cvaluate

5

T — S
T g s s e o TR Y

)*10“1) - min p@ (24) ¥
subject to the constraint,
wlog= ¢ Lo
0] yxgj—o » | Ea RN o (G (25)
Hence, in the calculation of the approximation to the i'th cigenpair,
(i-1) constraint equations have to be satisfied, This observation
.A.‘:...-.-,,’,..,.,...;,.... — - B — - n_— - —— - - - _M. A~ - ~
-—
SR — ——
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indicates that in the subspace iteration the higher eigenvalues and
corresponding eigenvectors are, in general, calculated with less
accuracy than the lower eigenpairs, for which less constraints are
imposed. This fact is also observed in practical eigensolutions.,
Another important deduction can also be made from the above
results, namely that the required eigenvalues and eigenvectors are

calculated immediately if E contains the subspace corresponding

k+1
to Ppsees ,(gp. In other words, if lincar combinations of the vectors
in Z{kﬂ can yield the required eigenvectors, then these eigenvectors
are calculated using Eqs. (5) to (8).

4. Convergcence Analysis

In the previous section we discussed the mechanism that is used to
establish optimum approximations to the required eigenvalues and
cigenvectors in a spccific subspace, and we also deduced that if the
subspace converged, the eigenvalues and vectors calculated are
those required, However, we did not discuss the convergence of the
vector iterates to the required subspace and the ultimate rate of
convergence,

Following the work of Rutishauser [10], the convergence of the
subspace iterations is conveniently studied by first changing basis
from the finite element coordinate basis to the basis of cigenvectors
[7, p. 425]. This change of basis is achicved using the following
relation for the vectors }_gk in Eq. (4),

}_(k " ?Z ’ (26)

where ¢ is the matrix storing all cigenvectors, ¢ = [(91, Siwio ,tgn].
Since @ is nonsingular, there is a unique Zy for any X, , and vice
versa,

Introducing the relation of Eq. (26) into Eq. (4) and premultiply-
ing by ?T we obtain for the first equation that is solved in subspace

iteration,

NP

e
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Az:k+1 Z 27
and then equations equivalent to Eqs. (5) to (8), hut which express

the relations in the new basis, are used to cvaluate Z The con-

vergence rate of the iteration is established from E q.I (+217) and using

the fact that in the subspace iterations always the optimum approxi-

mations to the required eigenvalues and eigenvectors are calculated,
For the convergence analysis let the iteration matrix rék be

denoted as follows,

1 0 0
0 1 0
0 0 .
0 0
: g 0
Z, = i 3 (28)
k 0 0 1 ’

L) & L)

qu 1 qll 2 q+1 q
L) 200 L)

q+2 1 q+2,2 q+2 q
&) ) S

. ayl n, “n »d |

where Zk is completely general, because the unit q xq matrix [ can
always be obtained by linearly combining columns, provided 7—‘k is

not deficient in the vectors ¢ i=

obtain,

e L gy v

Ty

i g g -
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Zpesy =

The subspace E

column i in Zi by >i’ loeds P’k-irl

T

1/)L:l 0

0 1/‘>2
0
0 0
&) (k)
Zqil, 1/)‘q+1 “qn, o/ A1
O DU Y

q+2,1 g2 “g+z,2

& &)
2/, "gfz/%

q+2

1 spanned by ékﬂ

1 0
0 1
& 0
0 0
T S T
q+1,1 )\q+1 q+1,2 )\q+1
W
02,1 % 5 "a2,2 X,
W, R TR
n1A n,2 A

is also spanned by 7, .,

0

1
/ A

(k)

Zq*-l, q/ >‘q +1
(k)

zq+2’ q/)\q 19

(k)
b Zn o/

—_ o e

(k) )Lq

q+l, g >\q+1
® N

7 i
q+2,q )\q+2

Z

L0 X
n,q A,

(29)

is not changed if we multiply

where

(30)

But in the previous section we have shown that in Eqs. (5) to (8)

we calculate the best approximations to the eigenvectors that can be

e ot e
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extracted from ):(kﬂ' Similarly, in the subspace iteration using Eq.
(27) the best eigenvector approximations are extracted from the vec-
et But on inspecting the columns of ék+1
(30) we find that ultimately the i'th coliimn is the best approximation

tors stored in Z in Eq.

to the vector & in the subspace E The order and ultimate rate

k+1°
of convergence to the i'th eigenvector is thus obtained by evaluating

n-q 2
) Z(k) 2 /A +1
(k) a1 \ Ay
Iz e ll, N IS q+ i
(k) _ A n-q 2
I7” -y “an 0 Y
ZoRsis
qH,1
=1
where ng) is the t'thcolumn of Zy» and similar for '_'(kﬂ). Hence,
120 - o, 3, >
P ol qa g
4 Tgla S

and convergence is linear with the rate of convergence equal to

'\i/>‘q i1 We, therefore, conclude that provided the columns in )-(k+1
in Egs. (1) and (8) are ordered appropriately, and provided the start-
ing subspace is not orthogonal to the required least dominant sub-

space spanned by Pryens "—Dq’ the i'th column in X converges

k+1
lincarly with the rate )‘iAq+1 to P Since the eigenvalues are cal-
culated using the Rayleigh quotient, the i'th eigenvalue in Eq. (7)
converges linearly with the rate ()\i/)\qﬂ) to >‘i'

5. Selection of Starting Subspace

The first step in the subspace iteration method is the selection of

the starting iteration vectors in X We showed that if starting

1°

e Ay R Y R oy A e e e mpngr.

Convergence of Sulfsp

i iteration vegfors are

subspace/f K and M,
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iteration vectors are used that span the least dominant p-dimensional
subspace of K and M, the subspace iteration in Eqs. (4) to (8) calcu-
lates in the first iteration the required vectors Proeee ,(_pp. The aim
in the selection of the starting iteration vectors is, therefore, to
obtain vectors that as closely as possible span the least dominant
subspace of K and M,

Two cases for which the starting vectors can be chosen to span
exactly the least dominant subspace of K and M are, firstly, when
the mass matrix is a diagonal matrix with only q nonzero masses
and, secondly, when K and M are both diagonal matrices.

In the case of a diagonal mass matrix with only q nonzero diag-
onal mass elements, the first subspace iteration yields

r

=
A
=
1o
| =—

—aa -ac | g -

i % ?‘_2 x ) (33)
where
oo LBy
= ) (34)

~c
The projections of K and M are
=T
Kp=E, M (35)
and
- FIMF

Mz 7 !.‘a M.I_‘a ' (36)

The eigenproblem corresponding to the projected matrices is thus
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o R
Ea M).{ 4 AI.‘-a ‘\_‘[Ea).s * (37)

Now substituting Ea = Ea-:\_{, where E;l = l_\:,l and ;Sa is the stiffness
matrix obtained by statically condensing out in K all zero mass de-

grees of freedom, we realize that Eq, (37) can be rewritten as
K X = \Mx . (38)

But Eq. (38) is the eigenproblem from which all [inite cigenvalues of
Eq. (1) are evaluated. Hence, we obtain in the first subspace itera-
tion the lowest q finite eigenvalues and corresponding cigenvectors.

In the second case, when K and M are both diagonal matrices,
which is really a trivial case, the unit entries in the unit starting
iteration vectors are chosen to correspond to the smallest values of
kii/mii‘ Thus, the unit starting vectors are already multiples of
the required eigenvectors and the values kii/mii are the correspond-
ing required eigenvalues,

In practice, the specific matrices assumed above ave hardly en-
countered, but the results concerning the construction of the starting
iteration vectors indicate, how in general analysis effective start-
ing vectors can be established. The fundamental observation is that
in both cases above the degrees of frecdom with the smallest ratios
kii/mii are excited, and because the mass of the system was already
lumped to a sufficient extent, convergence is obtained in one sub-
space iteration, If mass is not lumped to the extent used in the two
cases above, iteration is required, but the starting vectors should
still be unit vectors with their entries corresponding to the degrees

of freedom with the smallest values k“/m The actual scheme

ii’
proposed in[4], which has been employed extensively, uses as the
first column in MX, the diagonal of the mass matrix M, and as the

next columns unit vectors with their entries +1 corresponding to the

L R Y g . v N -r -

2 SR
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smallest ratios kii/mii' The first full column is used in order to
cxcite all mass degrees of freedom, Since we are iterating with g
vectors, 4> p, when we want to converge to p vectors, the (q-1)
unit vectors would assure convergence in one subspace iteration if
one of the two special cases above is considercd,

It has been claimed that starting iteration vectors with random
numbers are sufficiently effective [10,11]. Based on the above ob-
servations, and some numerical experiments, it is believed that in
most cases the above starting subspace is considerably more effec-
tive than the use of random numbers in the starting vectors, But to
improve the solution characteristics it is recommended that the ¢'th
iteration vector be a random vector and be generated new in each
iteration. ‘

In addition to considering the degrecs of freedom corresponding
to the smallest values k. /mi , it appears that an addltxondl impor-
tant consideration can be derived from ﬂlL values k /(k“ l\]))
Physically, the magnitude of the value k /(k k)J) is a measure of
the coupling between the degrees of frccdom i and j. However, if
this coupling is high, it is probably not effective to excite both de~
grees of freedom i and j in the starting iteration vectors, because

"stiff" relative displacements are only activated in the higher modes.

6. Acceleration of Convergence

In the solution of some problems, notably those with high mass lump-
ing, only a few subspace iterations, say 6 to 8, are required for
convergence to 6 digit precision on the eigenvalues. However, when
systems with a continuous mass distribution are considered, such as
dams, a large number of iterations may be required. In such cases,
schemes to accelerate the convergence are very desirable,

R . -y
it
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590 K. J. Bathe

6.1 Shifting

One way to accelerate convergence is to impose a shift 4 onto the
matrix K, i.e., to iterate on the matrix K -gM rather than on K. In
order to preserve stability and convergence to the required lowest
eigenvalues and eigenvectors it is necessary to choose the shift
judiciously. A conservative value for g ispu < >\1, and in practice
we may choose U = 0, 9X1. However, it then follows that 4 can only

be chosen once )\1 has been approximated to a sufficient accuracy

(say, to three digits), which means that the shift will be imposed af- ven in J. (39).
Overr ()}Aon

ter the first few subspaceiterations, The new rate of convergence of
the i'th iteration vector to the i'th eigenvector is then ()i—u)/()\qﬂ—u).

It is noted that this shifting will, therefore, greatly increase the rate
of convergence to the lower eigenvalues, but if q is large the rate of
convergence to the higher eigenvalues of the required spectrum may
only be marginally increased.

Together with imposing a shift Chebyshev polynomials may also
be cmployed in the iteration vectors to accelerate the convergence
[10][12]. Although some experience has been obtained, the overall
effcctiveness of using Chebyshev polynomials in the eigensolution of
large systems has not been established as yet.

For small banded systems, the determinant search algorithm
presented in[7] has proven to be efficient, and it appears that de-
pending on the bandwidth of the system the shifting strategies used

in that technique could be very cffective in subspace iterations.

6.2 Use of Aitken's acceleration process

Assume that we have calculated Xk X then using Aitken's

Zer12 Zieazr
acceleration technique, improved iteration vectors for Xic 4o are ob-

tained by calculating [13]

2
£ (k+2) &) (k“l) oy D) | (k+2)
¢ R —( *ij ) ( =y X§j ) » (39)
o v ARl i < e y G 2 " o T vy S e T Y e e e ———— B e e o —_

— g N Wt " o w
T e
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i 3t OE)
where )‘ij

has been applicd successfully in iteration methods and the use of the

is element (i, j) of J_{k Aitken's acceleration procedure

technique in subspace iteration might, therefore, be promising.

A practical disadvantage using Aitken's acceleration tcchnique
may already be noted. Namely, not only the current iteration vec-
tors, but also the vectors from the two preceding iterations must be
stored in high speed storage or on back-up storage, because they
are used whenever the improved iteration vectors are calculated as

given in Eq. (39).

6.3 Overrelaxation

It is an established fact that overrelaxation can reduce the number
of iterations required in the solution of systems of linear equations
[71[14]. Spccifically, in the Gauss-Seidel method with successive
overrelaxation, the number of iterations required for convergence
can be reduced by a factor of 2 or more. Similar improvements
have been observed in the iterative solution of eigenproblems, when
searching for the minimum of the Rayleigh quotient [3]. It appears,
therefore, thai in some cases overrelaxation might also significantly
improve the convergence characteristics of the subspace iteration
method.

To incorporate overrelaxation into the subspace iterations, Egs.
(4) to (7) remain unaltered, but the new iteration vectors )_(k 4 are
obtained from

Kpern = Fpe 0 Ners - X i

where w is the overrelaxation factor.

For an analysis of the effect of the overrelaxation factor, we
consider the eigenproblem formulated in the basis of the eigenvec-
tors. The convergence analysis in Section 4 shows that we would
like to have

P 4
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—

Za=l |- (41)

o

" But then using Eq, (40) we conclude that W should be selected such

that

Z +wlz ij_-_z =0 1=1,...,n-q (42)

at,j g Ay 9 : ) St P 1

which gives

w = _Tl (43)
1 —Xj qH

Hence, it appears that a different w should be employed for each iter-
ation vector j = 1,...,q. Although we could, based on the current

eigenvalue approximations, at best estimate appropriate w-values

for the iteration vectors, Eq. (43) shows that w should be larger

than one,

7. Some Numerical Solutions

To study in a preliminary manner the convergence characteristics
of the subspace iteration method with and without the acceleration
schemes discussed above, the solution of a few eigenproblems was
considered. The immediate aim was to identify whether the acceler-
ation schemes would indeed be reducing the number of iterations
considerably. The next step of this work will be to optimize the
acceleration schemes and develop an improved subspace iteration
method,

TFigure 1 summarizes the discrete systems that have been anal-
yzed in this study using the subspace iteration method, and gives the
size and order of the corresponding stiffness and mass matrices.
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EXAMPLE | ANALYSIS OF 60 ELEMENT UNIFORM
SPRING MODEL

fe2L-wfa2L ofe-20 >

i

E=30000, I=0.0833

L= |O, A= "
p=0.000104
(43)
- oL
loyed for eagh iter-
rrent
priate h-values
wulgbe larger , A ' KR
w KD““ tiWVg)j‘u J"
KL \! S

e

EXAMPLE 2 ANALYSIS OF |10 STOREY AND 3 BAY
FRAME ON SPRING SUPPORTS

Figure 1, Sample analyses,

These problems have been selected because a relatively large num-
ber of iterations are required for solution of the required eigen-
pairs,

Tables 2 and 3 summarize the results obtained in the analyses,

1ass mapfices, Convergence in the iterations was measured by [7, p. 504]
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Table 2, Analysis of Spring Model: k =375; m =0,00013; consis-
tent mass, tol= 10-8

with shifting

no with over- toi with Aitken's
Case acceleration relaxation (Sect. 6.1) acceleration
number of 2 8 22 22 2 22 22
eigenpairs
number of 4 16 30 30 4 30 30
iteration
vectors
number of 7 10 25 20 6 25 26
iterations

Table 3. Analysis of Frame Model: kp, = 105; kg = 106; lumped
mass, tol = 10-7

with shifting

no with over- top with Aitken's
Case acceleration relaxation (Sect. 6.1) acceleration
numberof 2 8 22 2 8 22 2 22 2
eigenpairs
number of 4 16 30 4 16 30 4 30 4
iteration
vectors

number of 25 14 18 16 12 20 11 18 25
iterations

() _ ()
I =

X(k+1) stol , i=1,..,p,
i

where )\i(k) is the approximation to Al calculated in the k'th subspace
iteration. The results in the tables display the following solution
features,
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.00013; copbis- Using the overrelaxation scheme with an arbitrarily picked

value «w = 1,6 for all iteration vectors the number of iterations re-

quired for convergence was reduced in almost all cases,
Considering shifting to a lower bound on )\1, it is seen that the
number of iterations required for convergence is reduced signifi-

cantly when only a small number of cigenpairs are sought but, as

expected, when relatively many eigenpairs are to be extracted a
single shift into the vicinity of the smallest eigenvalue required i

does not result in a substantial decrease in the total number of sub-

space iterations nceded. i

Since shifting accelerates the convergence to the eigenvalues in

the vicinity of the shift, additional shifting to the higher eigenvalues

should be performed, but a stable and effective algorithm is still to
be developed.

In these analyses the Aitken acceleration did not reduce the total

number of subspace iterations required for solution. In addition, it
was observed that the process of using Aitken's acceleration was

very sensitive to the time at which the acceleration was applied. It

was found that Aitken's formula should only be employed once the

iteration vectors converged linearly, otherwise the application of the

formula could result in an increase of the number of iterations nceded

for the solution,

8. Conclusions

Based on the theoretical convergence study of subspace iteration

and the few numerical experiments presented in this paper, it is ;
concluded that the original subspace iteration method can, for many

eigensolutions, still be improved significantly. Improvements in the
starting subspace should be possible. Among the acceleration tech- i
niques presented in the paper the use of overrelaxation factors ap-
1 the k'th spdce pears very promising, In addition, shifting strategies as employed |
lowing/Solytion in the determinant search method should be expiored,

Pl |
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! In this paper, the use of the subspace iteration method was only

considered {or the calculation of the smallest eigenvalues and cor-

responding eigenvectors but the development of shifting strategies
Bathe an

1t Analyéi,

should also lead to an extension of the technique to be able to calcu-

late intermediate eigenvalues.,
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