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The cons erg once of subspoco iterat i on for the solution c,f eigc!~pairs

C) : j~ studied . The theoretical conv’.i’~ cncc rate is de~ived and is prc-
sented with emphasis on the theory in the light of practical imp l i ca—
tions. Varicus techniques to accelerate the convergence of the 3uh-
space iterations are prop~scd artd are tested in a prelin~inarv
manner on some demonstrative sample problems. •. -

I . ~~~~~~~ ~~~~~ v~ ~1. Introduct ion ~~~~~~~~~~~~~~~~

During recent years the dcve lopment of solution techniques for cal-
eulatir ig the t igunsystern of large eigenproblen is has attracted an

• eigenp coblem encountered in computational mechanics is th e ea~co-
~~ increasing amount of atteotion [1 — 3 ] .  A particularly important

lation of sonic cigeripairs of the gcnera liy.ed cigenprobiern

•

~ 
~ 

(1)

where K and M are the stiffness and mass matrices of the discrete
degree of freedom system , and (X ~, cO~) is the l’th cigenpair . if the
order of K and M is n , we h~ ve n eigenp~irs which v order n~
follow s,

I 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ �

~~~ (2) 

‘Inus, the solution for p elgenvalues and corresponding eigcnvectors
can be written as

D D C
~~~~f~flflflf~ Th
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576 K. J. Bathe onver ence of Su~:

(3) T obj ec vc
ge c propert S oJ

where the columns of t~ store the eigenvectors and A is a diagonal as s on pre entir
matrix with the elgenvalues on the diagonal . Firs in the aper

Among the techniques for calculating the lowest elgenvalucs and spac~ iterat i a are
corresponding eigenvectors of Eq. (1), the subspace iteration method erjua t ~n sol d is
has found increasing use [1, 4—6 ] . The subspace iteration method hofl’ ti e i a mizati
has been applied successfully to the solution of a large number of l~cst env hie am.
problems and Table 1 summarizes some typical solution times. In I su~~~ ice, the r .
previous publications , the basic equations of the method have been / p~

’nve genc rate
presented , and the practical implementation was discussed [4, 7] , 

//
/ discu sed. A par

but no detailed discussion of the convergence of the subspace itera- / ~ meth I is he sclu
lion method was given. However, for the practical use of the tech- per , he s art ing
ni que and in the search for methods to increase the effectiveness of in d a ’ t gether ~.

the basic algorithm , it is Important to have ~ufiicient insight into the a an her )f tee~: ,
convergence characteristics. i r tions arc pro 1.

2 . The ‘uh~pace~Table 1 Solution Times Using Suhspace Iteration Method
As ume the foi l :

Maximum Number E s a and t b :
half of Corn— Central ~odj~ ei~~Cf lVl~System band— Mass cigen— puter proces— .

System order width matrix pairs used sor sec. i.l foil sung m i r e
(1) Establish

Wind— 5952 215 Diagonal 10 CDC 7600 1000 
~~~~~taru i~
Perform

Dam 2916 491 Diagonal 4 CDC 7600 495 
verse iter

In atru— 10156 548 Diagonal 20 CDC 7600 3921 is cmployi
meat (9) (1036) appro.ximcabinet

(3) After iter.
Insula- 1965 221. Diagonal 25 CDC 7600 192 

to ver ify ttion
frame- cigenvecto
w rk

kff $i~ u Q
0

: .. , l~.IiaI 
- . 
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K. J. Bathe Convergence of ~~b - ~~ ce_Iterat ion __________ 577

(3) The obj eetive of this paper is to discuss in detail the conver-
gence propertie s of the subspace iteration meth od with specific cm—

A is a diagona phasis on pres~-:i! leg the theory in the light of practical imp lications .
First , in the paper , the basic equations that are solved in sub-
space Iteration are briefl y summarized , and the impo rtance of each

- ce iter on metho equation solved is explained. Emphasis is placed to show in detail
it erat ’ n method how the rninimit at ion of the Ray leigh quotient is used to extract the
lar number

~~~~~~~~~eigen~~~ies and 

a number of tec)miques to accelerate the convergence of the subspace

best cigenvalue and cigenvector approximations from the current

~o lion tim . In subspace. In the next part of the paper the proof for the ult imat e
method ii c been convergence rate is given , and relevant practical consequences are
disc us cd [4 , 7] , / discussed . A particularly impurt : nt phase of the subspace iteration

~e s space iter/ method is the selection of an effective starting subspace. In the pa-

~~~~~~

of t1

~

c c h -  

_ _

per , the starting subspace that has been foun d effective is de~;crihcd
c effective ess of in detail together with various recent experiences gathered. Also ,

~ient insi it into the

iterations arc proposed .

2. The Subspace Iteration Method
ethod 

sponding eigenvectors . The sul~space iteration solution consists of

Assume in the following that the order of the matr ices  K and M in
Eq. (1) is n and that we require the lowest p cigenvalues and corr e—

Corn Ccnt ia/ (1) Establish q starting iteration vectors , q > p, which span

the following three  steps:

Ul)C 76~~~~~00

( DC 600 

the starting suhspace E1.
(2) Perform subspace iterat ions , in which simultaneous in—

_________________ verse iteration is used on the q vectors , and Ritz anal ysis
~~~~~~600 3021 is employed to extract optimum cige nvaluc and cigenvcctor

(103
approxirnatT ns at the cud of each inverse iteration.

2 0 9

2 
(3) After Iteration convergence , use the Sthrm sequence check

to verify that the required elgenvalues and correspondin g
elgenvectors have been calcul ated.

.-.-—-.p.?~
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The verification of the solution results in step (3) is strai ght— Iteration is sed , s~~~p
forward and Is discussed in detail in[7] .  The effectiveness of the method~~~

’ p. 47~~~ but
algorithm lies in the proce dures used in steps (1) c u d  (2). conv~~~ence ~~~

‘racterh

• Assume that we have established the q starting iteration vectors , p1 s empi ed to te’.~ 4

in X1, then the subspacc iteration in (2) is as follows: d vect approximati-
For k = 1, 2 , . . . ,  iterate from subspace Ek to subspace Ek÷l : the Ra cigh quo~~~ t ef

by F icd[8], $lk[9],

1 ~-~~k (4) n • s of subsJ~ce iterati
erformeycvith q vcctoi

Calculate the projections of the matrices K and M onto Ek~l : ously t~~ iie minimlzatii

~~~nsidering)he coi

~ k +1  ~ k+ 1L~ k+ 1 (5) fe~~~res are o~~erved ,

/Is; namel$~’ the mini a

1 ~~~

‘
i-i ~—~ i’ - i ‘ (

~
) / best appi~~ lmations to

space/d the ultimate
Solve for the cigensystem of the 1) i ~~) l  ~ted matrices: bo~~~ spccts in th folli

~k ~~~~~~~ 1 , (7) Min imi tion of R~
The Rayl gh minimum

C a l c u l a t e  an improved approximation to the elgenvectors: -

X~ in p(q~~ ,

~ k l  ~ kE1 Qk - F1 ‘ (8)

where the m~~imum is
Tb -n , provided that  the iteration vectors in X~ are not orthogonal to
one of the required cigenvectors (and assuming an appropriate order—
ing of the vecto r s) ,  we have p(ip -~

~ k~1 
-

~~~~~ as k -~~~~ .

AssuminØiiat K and ~
Th e  essential ingredients of the subspnec Iteration above are positiv semi—definite

the simultaneous vector inverse iteration in Eq. (-1) and the use of
the Rayleigh minimum princi ple in Eqs. (5) to (8). SInce Inverse < X1 � P(~P~ � �

—n - — — — ~~~ -~~~~—~~~
. .— —,- — - —— . — - —.—— -~~~~ .— ,. .- —  —~~ —— . . -~
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p (2) is strai ght Iteration is used , subspace iteration is closely related to the QR

~‘ctiveness o he method [7 , p. 470] , but subspace iteration displays much better
ax~d (2) . convergence characteristics because the Ray lei gh minimum princ i—

• it e ’  ion pie is employed to extract in each iteration the “best” eigenvalue
• and vector approximations. The use of the principle of minimizing

D subspace E :  the Rayleigh quotient of an iteration vector has also been explored
- by Frled[8], Falk [9] , and Schwarz [3]. h owever , the effective-

(4) ness of subspace iteration derives from the fact that the iteration is
performed with q vectors , where q � p, which are used simultane-

o o Ek + l : ously In the minimization of the Ray leigh quotient .
Considering the convergence of suhapace iteration , two distinct

(5) features are observed , which are both important in practical anal y-
sis; namely, the minimization of the Ray lei gh quotient that yields

(6) best approximations to the required eigenpairs in the current sub-
space and the u l t i m at e  convergence rate of the iterates . We discuss

5: - both aspects in the following sections.

(7) 3. Min imizati on o f ]  y leigh C t ient in Subsj~~ce Iteration
The Rayleigh min imum princi ple states that

ye ors:

= mm p(q~ , (9)
(8

where the minimum is taken over all possible vectors ~~~, and

~e not ort gonal to
appro iate order— Tc~ K~p(~ ) — — -  

, (10)
-

Assuming that K and M are positive definite matrices , or that M i s
ration above re positIve semi-definite in case M Is a diagonal matrix , we h ave
1) and th use of

Sin tn

,

~~~~~.” o < X p ((~) � X ~~~ . (11)
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In the k’th suhspace iteration we solve for the vectors x1, 
~2’ ~~~~~~~ where y s elem t

wh ich are stored in 
~k+1’ 

and use the Rayleigh minimum principle With S . (5) t~4’8), i

as a mechanism to generate “best” elgenvalue and vector approxima- th same el$proble :

tions. The fact that indeed the Ray leigh minimum principle is used ent is so/ed; I.e.,
car, be demonstrated by defining a typical vector ~ in the suhspace 

an-I tha~
4’1so the

Ek+l as 9/ing the f~~ tha

to ~~~luate in ach su

q ai$roximat ns, it fol

(12)

ial ~ ;

Then substituting ~ Into Eq. (10) and using the conditions ap(~)/~y1 0, and in part i lar, it

I =1,...,q, which must be satisfied at the minimum of p((~ , we to calcula the va uc~
obtain the eigenproblem from E (9) , b aus

nicns’ nal s cc in ~vl
pM~ , (13) lie ii erent proc

strates c rnechanisn

where the elements (i,j) of ~ and M ar c ~~~~ and ~~~~~ rcspcc- highe eigenvatuo • I

tively. The solution to Eq. (13) can be written flay igh m i ni In pr:

e envalues vcs[7],
i~y = M y p  , (14)

]t2 mI ~~
where the matrix Y stores the eigcnvectors of Eq. (13) and p Is a
diagonal matrix storing the corresponding ei~;~n~alu es, p = diag (p1). 

whe the mini urn is

The elements p1 are the approximations to the r quired cigenvalues
of Eq. (1) calculated using the Rayleigh mInimu m principle and the = 0

corresponding clgenvector approximations are

Howe r, In the s bs1:

q (1 ,

~ =>~~~ 
; j = 1,2,. ..,q , (15) 

-T —• 1=1

• 
T~

-
~

- -- — —— - - - -  
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ie vectors 
~1’~2’/ 

where y.. Is element (i,j) of Y. On comparing now Eqs. (13) to (15)

irdmuni prine~~ e / : With Eqs. (5) to (8), it is realized that In the k’th subapace iteration

- ~l vector apploxima/
’ the same cigenproblenu as in the minimization of the Rayleigh quo—

-
~ princiy~~

’
is us/ tiemut is solved; i .e., Eq. (7) and Eq. (14) are the same equations,

~ in tI/subsp~~
’e and that also the same elgenvector approximations are calculated .

7’ • 
Us ing the fact that the Rayleigh minimum principle is employed

to evaluate in each subspace iteration the new cigenvalue and vector

approximations, it follows that in the k’th subspace iteration ,

/ (12) 
-

( 
; ; .‘. ; xq �x ~~~�~~ (16)

~nditions p(~)/~y. 0, and, in particular, it is possible to show the actual mechanism used

-u r n  of (
~~, 

we / to calculate the values >~
k t

~~~ . The condition that � follows

— from Eq. (9), because the subspace Ek÷~ 
is contained in the n-di-

- mensional space in which K and M are defined.
/ (13) The inherent procedure employed to evaluate ~~~4 1) demon-

strates the mechanism used to evaluat e the approximations to the

mud ~~~~~~ respec 7
/ higher eigenvalues. First we observe that as an extension of the

/ Ray leigh minimum principle , the mininiax characterization of
cigenvalues gives [7] ,

/ (14)
• = mm p(~ ) , (17)

q. ( 1% a n dp i s aJ

• -a Iy~s, p = diag)~~). where the mli. murn is taken over all p subject to the restriction

$g~ired eigen~4ues
n ~rinc lP~~hd the 

~ 
0 . (18)

I’ However , In the subspacc iteration we have using the notation of Eq.
( (12),

(1V
7 = , (19)

- _ _—-r--• - - --~~~~~~ -. * •.•---- .--- •- • - -  - • -  - - - - - - - • --- -

- - • • ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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where Is the Eronecker delta. Hence, inc1icate~,t~~ in)he

corre~~~ndiagÁgcz
= m m  P(~) (20) 

ac/~~acy l~)Ithe 1
imposed/This fact

where the minImum is taken over all possible vectors ~ defi ned in A~~~heL . iI~~~~ r~Eq. (12) that satisfy the orthogonality condition res,~1’~s, nar~~~y tha

y(iculated/mmedia
(21) 

~~~~~~~~~~~~ m e t
in lean y ield tl~To prove that A2 ~ we ccnsider the auxiliary problem of ar~,~~ tculated1j~~ nt

evaluating ~~~~~~ where / /
-I’. Conv~~g~nce A

= mln p(~ ) (22) In the py~vious sect
estab~~ h opt imum -

subject to thu Cu ditlon 
eigy~vec tor s 174 SI

sj4’
~space eo~~ergee-T 

2 / J‘
~ ~-~~i 

0 . those rcq~4recI. I i ;
vec tor i~~rates to ti

However , since ~ 4~~1) , because Ek+i is contained in t h e  space convey~ence.
spanned by (p , . .  . , p , and also ‘1) 

~ ~~~~~ beca use the rc stric— Aoiiowin- the s’-1 -n (k+1’ it ion in Eq. (2 1) is the most severe one , we conclud e that < st~~space it er5~~ ons
In analo~~’ to the concluu ion reached on the calculation of f~orn the fi~~~e d ci:

4c ~~~ we can conclude that in the subspace iteration , we evaluate [7 , p. 42/’i. This

rclatio/fo r the vec
~4

k+ 1) 
- mm p(’~ (24)

sub j ect to the constraint , /
where ~ is)~e rnatr

= 0 
‘ J 1, . .  .,l-1 . (25) Since ~~/nonsingul

vers~(Hence, in the calculation of the approx imation to the l’th eigenpalr , /Introciu~~~~ the
(1-1) constraint equations have to be satisfied. Tills observation i~

’g by ~
T
,%e obtain

- 
- - - 

- - - - - -
~~~~~~ 

-,
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indicates that in the subspace iteration the higher eigcnvalues and

/
7 7 corresponding eigcnvectors arc , in general , calculated with less

,,/ (20) accuracy than the lower eigenpairs , for which less constraint s are

-/ imposed. This fact is also observed in practical eigensolutions .ectorsp cic fi~~~ in 
Another important deduction can also be made from the above

/~~~ 
results , namely that the required eigenvalucs and eigertveetors are
calculated immediatel y if Ek ~ 

contains the subspace corresponding

/ (2l~,,
, 

to ~~,.. . ,
~~~

. in otl er words , if linear combinations of the vectors

• ( / in ~ - can yield the required eigenvectors then these eigenvcctor s
Uxi lith-y probIu~i of 4s+1

/ - are calculated using Eqs. (5) to (8) .

4. Convergence Analy si s

/ (22) 
In the previous section we discussed the mechanism that is used to

( / -~ establish optimum approximations to the required eigenvalues and

/
/ cigenvectors in a specific suhspace , and we also deduced that if the

/ - subspaee converged , the eigcnvalues and vectors calculated arc
(23) 

tl~ose required. However , we did not discuss the convergence of the

• / vector iterates to the required ruhspace and the ultimat e rate of
convergence .

It de ~h -t t ~~~~~~~~~~ 
Following the work of flutishauser [10] , the convergence of the

_/
~~ subspace Iterations is convenientl y studied by first changing basis

alculation ~f
/ - from the finite element coordinate basis to the basis of eigenvcetorsatlon , wVcvaluate

/ [7 , p. 425]. This change of basis is achieved using the following

/ / relation for the vectors X in Eq. (4),
(24) —k

~ k~~~~~k (26)

7” where ~ is the matrix storing all cigenvectors , ~~ [(p , . .. ,ø ] .
/ (25’ — — —1 ~/ ‘ Since ~~‘ Is nonsingular, there is a unique Zk for any Xk, and vice

/ / versa.
the i th cigcnpalI

/ ‘ Introducing the relation of Eq. (26) Into Eq. (4) and premultiply-
his observatl~fi T

/ ing by ~ we obtain for the first equation that Is solved in suhspace
Iteration ,

- - 
~~~‘ - --_-__ 

~~~• —

- - 
— --— 

— — — ---—----
- - ~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ ,•, ,~ ~~ -
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~~~k+1 = (27) • 1

- 0
and then equations equivalent to Eqs. (5) to (8), hut which express 

0
the relations in the new basis , are used to evaluate Z~ ÷1. The con-

vergence rate of the iteration is established from Eq. (27) ar5cl using
the fact that in the subspace iterations always the optimsun approxi— = 0
mations to the required eigcnvalues and cigenvectors are calculated. ) IA

For the convergenc e analysis let the iteration matrix 
~k be q±1 , 1 q-l-

denoted as follow s, Zq~2 i~”Xq+

-

~~~~~~~

0 0 • The Ek+l ~

(28) 

~~~~~~~~~ i k+ Y

q -f-1 , 1 q-l l , 2 q+1,q
Z

~~~2 1  
Z
~~

)
2 2  z~~~~q 

~~~~~+1 = 
~~~~~~~~~~- 

n , 1 fl ,~~ n ,q 
- 

q , q-~
, (k) ~l 

—

where is com pletely genes-al , because the unit  q xq matrix ! can £q+2 q+
always be obtained by linearly combining columns , provided Zk is

not deficient in the vectors e~ I = 1,... ,q. Using Eq. (27) we then

obtain, i (k) A1
1

But In t prcvi
we calcu e the bes 

— - - - — — —- ~~~ r~
— - - — • —- • r- —~~— —r -‘~~. .  

•

~~ - - n -  — -~~~

•- —
-
~~~~~~~~~~~~~~~~~~~

- — - -- -- — — - -
-
~~~ 

-

— 

• . - • 
••. _~~ 4~~~~~~~~~~~~~ _* ‘~ - _ s _
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(27) 
- 0 0 -

~

q•
k

(
]

)

~~

fl(

~~~

j fl

~•/
/ 1/:2

.t i in umn a roxi— Lk+1 = 0 0 1/A (29)

7a
~~~ia7 

- 

:~‘~:: :f~ :::
/ - 

~~~~~~~ z~~~/~~ • . .  z~~q/~~i 
-

.

/ 

The subspace E~ ÷1 spanned l~y Zk+l is not changed if we multi ply
column i in 

~~~ 
by ~~ i .e., Ek i l  is also spanned by Zk~ I ,  where

~2’

= ~(k) A1 7 (k) ~‘2 (k) 
~~~ (30)k+ 1 q4-1, i Xq m 1  

5q+1, 2 X~ 11 
Zq+1,q Xq•4 j

~
(k) A1 (Ii ) A 2 

•~~ ~
(k) Xq_

X q rnatr i>k.Scan q+2 , 1 A~~2 q±2 , 2 Aq~~ q+2 , q
)rovid

~~YZk ~S .

we then . .

(k ) A 1  ~~~~~~~~~ (k)~~~~j

- 

Zn , 1 Zn, 2 An 
Z~~ q ~~ 

-

But in the previous section we hav e shown that in Eqs . (5) to (8)
we calculate the best approximations to the eigenvectors that can he

—
~~~~~ ---—-— ------ -~~~ ---- —----—--~~~~ ~~ - .--——- ---—--5--.--- --—- - - - - ----- ----- -~~~--—--- 

- 
‘ - -~~‘

- ?-
~~~ ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ,~



586 K . .J. Bathe Con\’er~~nce of So sa

extracted from ~ - 
. Similarly, in the subspace iteration using Eq. iteration ye ors a;e

(27) the best eigenvector approximations arc extracted from the vec— - subspaceA ~
tors stored in Z1~~, .  But on in specting the columns of 

~k ’1  h~ Eq. Iates)/’the fiy~~ itec~
(30) we find that ultimatel y the i’ th colum n is the best approximation I in)Ke selec/on of t’ .~

to the vector e. in the subspace Ek÷l . The order and ultimate rate ~~tain v~4ors that a
of convergence to the i’th eigenvector is thus obtained by evaluating ‘sub~sp~~~ of K and~~~

l •
/rwo casey’~or w

- 

~ i 
II~ - 

~~~~~~~~(L~~~~
l)2(~~~~~

2 

31 

~~~~i7d ~rlX 1~~~t

I! (k) 
— 2l~ 2 

— / ~~:(Z~~~,I~

2 
‘

whei ’c is the i ’th column of Zk, and similar for ~~~+1)~ h e nce , — a _ac1
~~~

-~ca ~~
- e . J l ~ A1 /- 

1-) 
- 

~ r— (32) wherq/11 — 

~i~ 2 q l-1 
/
‘

/ r F l/
and convergence is linear with the rate of convergence equal to --a

1. We, therefore , conclude that provided the columns in Xk÷1 —c
in Eqs. ( 1) and (8) are ordered appropriately , and provided t h e  start—
i~ -~ ~tmli space is not orthogonal to the required least dominan t sub— ‘ e p rojec as of

Sp ace  spanned by (pr , .. ~~~~ the i ’th column in 
~ k+1 converges

l in ear l y with the rate X j Aq+1 
to (pr . Since the cigenvalucs arc cal- 

~ 2 
— La ~eulated using the Ray leigh quotient , the i’ th eigenvalue in Eq. (7)

con verges linearl y with the rate (X i/)sq+i ) 2 to A1. and

5. Seketion of St arting Suhspaee
The f i r s t  step in the subspace iteration method is the selection of 

a

the starting Iteration vectors in X1. We showed that if starting 
T2ge

roblem

— ~~~~~~~~~~~~~~~ — —-~~~~~~~~~ —•-- - - - -— --- - -~~~ —— ~~—r— - - - - — - - - 
- -- — - - I

—
~~~ 

—

‘
~~~— —;- 
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~eration u sim ~~~~~. Iteration vectors are used that span the least dominant p-dimensional
eted from,%e vec— subspace of K anti M, the subspace iteration In Eqs . (4) to (8) calcu-
s of Z~%’ in Eq.

,/ lates in the f irst  iteration the required vectors 
~~~~~

, . . . ,(p ~• The aim
:st ~~‘proxima~ 6n In the selection of the starting iteration vectors is , therefore , to
nd ultimat at e obtain vectors that as closely as possible sp an the least dominant
ted by c luating 

- subspaee of K and M.
Two eases for which the starting vectors can be chosen to span

exactly the least dominant suhspace of K and M are, fir~. Lh y, when
—

~~ I the mass matrix is a diagonal matrix with only q nonzero masses

21_ 31) 
and, secondly, when K and M are both diagonal matrices.

In the case of a diagonal mass matrix with only q nonzero diag-
onal mass elements , the first subspace iteration yields

~(k+1) K K M 0 I
z/encc [z z:1 ~ = [

~ ~1 ~1’ (33)

(32) where

/
flee ~~f~a1 to 

~2 
= 

[~~j  

. (34)
cylumns inlk+l
ovided th/st- rI-

domin~~(
’sub- The projections of K and M arc

1 con/~rges
v~~tes are cal- 

~2 
= 

~~~~~~~~ (35)
I in E q. (7)

/ and

/ = PTMP . (36)f —2 — a——a
e select~~i of

I lf~~~-hing The elgenproblem corresponding to the projected matrices Is thus

— ---- -C - --___- -“ -—--- 5 ~~ -- -• - - — - - - - - —-- -- --5- 

—--- — —---— ~~~— - — 
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-

- 
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(37 e~~~~~all~~~~ :d~
’
g

I Now substitutiflg !a ~a~
1’ where 

= and K is the stiffness %:~~~~tors~~~~~
matrix obtained by statically condensing out in K all zero mass de- on of the 0 sp’ -:

:::es 

of fr dom, we realize that Eq. (37) can be rewritten as 

:: at:fl: d SU!

But Eq. (38) Is the elgenproblem from which all finite cigenvalues of tiv: t the use I
Eq. (1) are evaluated. thence , we obtain in the first sub3pace itera— Imp ove the s ut~
tion the lowest q finite cigenvalues and correspond ing eigenvectors. i ration v or be

In the second case when K and M are both diagonal matrices teration
which is really a triv ial case , the un h t  ent ries in the unit  starting In ddlt ion C
iteration vectors are ch osen to correspond to the smallest values of to t - sniaUe valt
ktj /m1~. 

Thus, the uni t starting vectors are alread y multi ples of t t consi ration (

- 
- the required eigenvectors and the values k11/m~ 

are the correspond— hyslca , the n
- ing required eigenvalues. the c pl ing b cc

- In pra ct ice , the specific matrices assumed above are hardly en— thi coup lin is hi~

- 
countered, but the reau Its  concerning the construct ion of the starting ecs of ecdom I

- 
iteration vectors indicate , how in general anal ysis effective start— ~stiff” d a tive s~
ing vectors can be estahUshed. The fundamental observation is that
in both cases above the degrees of freedom with the smallest ratios 6 Aecel ation e

- k
~
/m

~t arc excited, and because the mass of the system was already the s ution of

lumped to a sufficient ext ent , convergence is obtained in one sub— ing , nly a fe sub
space iteration . If mass is not lumped to the extent used In the two e vergenc to 6 d
cases above , iteration is required , Lut the starting vectors should ystems th a ni
still be unit vectors with their entries corresponding to the degrees dams a lar numi
of freedom with the smallest values k~1/mi1. The actual scheme sch es t acceler
proposed in[4 ] , which has been emp loyed extensively, uses as the
first column In MX 1 the dIagonal of the mass matr ix  M , and as the
next columns unit vectors with their entries ~1 corresponding to the

I ~ 
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smallest ratios ~~~~~~~ The first fu l l  column is used in order to

(37) excite all mass degrees of freedom . Since we are iterating with q

vectors, ~ � p, when ~vm~- want to converge to p vectors , the ((1 - I )

is tIme stif ~~~ss unit vectors would assure convergence in one subspace Iteration if

all zero m, s de— one of the two special cases above is considered.

rcwrit~~~ as It has been claimed that starting iteration vectors with random

numbers are sufficientl y effective [10 , 11]. Based on the above oh-

(38) servations , and some numerical experiment s, it is believed that in

most cases the above starting subspacc is considerabl y more eflce-

~ini t e ige nv a~~~s of tive than tile use of random number s in the starting vectors. But to

r s suhsp it e ra7 
improve the solution characteristics it is rec om mended that ti m e q ’t ii

mm g ci nvectory( iteration vector be a random vector and be generated new in each

-igoi/ matr i~~~ , iteration .

~h~y(~nit st~~!in g In addition to considering the degrees of freedom corresponding

~~n alles~~-alues of to the smallest values k1~/mi~, it appears that an additional in m por—

•ady m~fti ples of tant consideration can be derived from the values k~./(k.. k. . ) .
I 2 ~ ii ))

arc )~e corresp~~d_ Physically, the magnitude of the value ~~~~~~~~~ 
is a measure of

/ the coupling between the degrees of freedom i and j. h owever , if

Wove are $
‘rdly en- this coupling is high , it is probably not effective to excite both de-

etion o~~hc startj ng grees of freedom i and j in the starting iteration vectors , beca u se

~is e~$ctive st~/t_ “ stiff” relative displacements arc only activated in the higher modes .

oh~~rvatlon)~ that

~m e smalles/ratios 6. Acceleration of Convergence

-ys tem ~y~~s already In the solution of some problems , notab ly those with high mass lump-

m in ed i~6ne suh_ ~~ ing, only a few subspac e Iterations , say 6 to 8, are required for
- nt u/ed in the)~ o convergence to 6 digit precision on the cigenvalucs. However , when

-ci ‘/eetors s~~u1d systems with a continuous mass distribution are considered, such as : ‘
Kng to the1~~

grees dams, a large number of iterations may be required. In such cases,
• actua~icheme / schemes to accelerate the convergence are very desirable.

:vel~(uses as

and
(rrespondi g to the

-- 5------ — • - —5-- -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ --—--,- --— - -— 5--. -- - -— -• _s_r—___ - - ---S- - - — - - -  -

- 
- 
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6. 1 Shifting where Is emcnl
One way to accelerate convergence Is to Impose a shift p onto time has cc-n a )lled sued
matrix K, I .e., to iterate on the matr ix ~z rather than on~~. In t

eigenvalues and elgenvectors it is necessary to choose the shift in alreap he nc~L - -I
judiciously. A conservative value for p is p < A 1, and in practice rs, b/’also the v~~
we may choose p = 0. 9X1. However, it then follows that p can only stor in high eed -

be chosen once has been approximated to a sufficient accuracy ar used ~•-} ever th
(say, to three digits), which means that the shift will he imposed af— yen in . (30).
ter the first few suhspaee iterations . The new ra te of convergence of
the i’th iteration vector to the i’th eigenvector is then (~~

_IL)/(Aq~1
_ P• 6. Overxe xation

It is noted that this shifting will , therefore, greatly increase the rate is an ( - ablishe~~ft
of convergence to the lower eigenvalues , but if q is large the rate of of it~ r’ ions re rc
convergence to the higher eigcnvalues of the required spectrum may [7] 41. Spc ficall)
only be marginally increased. o rielaxa n, the ii

Together with imposing a shift Chebyshev polynomials may also can be r need y a I
be employed in the iteration vectors to accelerate the convergenc e have en ob - rved i
LiO][12]. Although some experience has been obtained , the overall se- chin~ r time n~P
effectiveness of using Chebyshev pol ynomials in time eigensolutioii of er efo , that I ~~
large systems has not been established as yet. inmpr e th e c ver~

For small banded systems, time determinant search algorithm in od.
presented in [7) has proven to be efficient, and it appears that do— To I orporate
pending on the bandwidth of the system the shifting strategies used (4) to ) remain una
in that technique could be very effective in subspace iterations. obt ned from

6.2 Use of Altken ’s acceleration process 
~ k+1 = ~ +1

Assume that we have calculated X.I< , Xk+l, XI +2, then using Altken ’s
acceleration technique, improved iteration vectors for are ob— w re w i he overt
tam ed by calculating [13) Fo an anai~$s

con er the enpri

~~~~~ ~~~~~~~~~~~~~~~~ _ (~~ - ~~~~~~~~~~~~ - 2x
~
r’) ÷~~

(k+2)
~ , (39) - t s. Th~~~~~erger

Ike to h e

_-_ •--_ -—_-r —-~~~~ ----—-,,,~~
. 
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where x~~ is element (i,j )  of Xk . Altken ’s acceleration procedure
shift p onto th has been applied successfull y in Iteration methods and the use of the

the m - than o <. technique in subspacc iteration might, therefore , be promising.
require ( owes A pract ical disadvantage using Altken ’s acceleration t ehn ique
oose t shif may already be noted. Namel y, not only time current Iteration voc—
and n p ctice tors, but also the vectors from the two preceding iterations must be

- s that can only stored in high speed storage or on back—up storage , because they
dc aceurac are used whenever the improved iteration vectors are calculated as

vi he inipo d af— given in Eq. (39).
- of cony gence of

hen ( • I 1)/(XqdP)~ ~~ 3 Overrelax~t1on
ty in - ase t rate it is an established fact that overrelaxation can reduce the number
s I rgc t rate of of iterations required in the solution of systems of linear equations
red sp trunm may [7][14]. Specificall y, in the Gauss-Scidel method with successive

overrelaxation, the number of iterations required for convergence

~n ials 
~
y also can be reduced by a factor of 2 or more. Similar improvements

the coi ergence have been observed in the iterative solution of eigenproblcms, when
aine , the overall searching for the minimum of time Rayleigh quotient [3]. It appears,

igcnsol on of therefore, tha~ In some cases overrelaxation might also significantly
Improve the convergence characteristics of the subspace iteration

care algor~~ftn method.
a ears t t do- To incorporate overrelaxation into the subspace iterations , Eqs .
strate es used (4) to (7) remaIn unaltered, but the new iteration vectors X.K~~ 

are
e It atmons. obtained from

~ k+1 = + w(
~ k+ 1 ~k+1 — (40)

en using~~Ttken’s

for 
~(2 

are/b— where w is the overrelaxatlon factor.
,/‘ / For an analysis of the effect of the overrela xat lon factor , we

/ consider the elgenproblem formulated in the basis of the elgenvec-
+ X

jj ~‘ , (39) tors . The convergence anal ysis In Section 4 shows that we would
like to have

._ _~~~~~ _,-‘- -.. - - _ , . - , _ •- -



- -~~~~-“ -~~~ - - -~~~~~~~~~-- -- - --- - - - - - -

592 K. J. Bathe Conver ~
)

~~~
”

~/U

k+ 1 [
~
] •  

(41)

But then using Eq. (40) we conclude that W should be selected such
that

Zq+j j ~~~(zq+i ,j  ~~~~~~~~~~~ zq+j , j ) 
= 0 = ~~~~~~~~ 

(42) 

2 L

which gives 
-—

= 1 - xj~ q÷j (43)

Hence , it appears that a different W should be employed for each Ite r— -

at ion vector J = 1, . . . ,q. Although we could, based on the current -

elgenvalue approximations , at best estimate appropriate W-values -

for the iteration vectors, Eq. (43) shows that w should be larger
than one. ~

K L
7. Some Numerical Solutions

To study In a preliminary manner the convergence characteristics
of the subspace iterat ion method with and without the accelerat ion EX PLE ~schemes discussed above, the solution of a few elgenproblems was 7 FR
considered. The immediate aim was to Identify whether the acceler- /
a th on  schemes would indeed be reducing the number of iterations 1 gure 1/Sample

considerably. The next step of this work will be to optimize the 
/ 7

acceleration schemes and develop an improved subspace Iteration Thes/prob le~~s ha
method . be/of mteL y(ions am

Figure 1 summarIzes the di3cret e systems that have been anal- pa~r~. ,/ ,/
yzed In this study using the subspace Iteration method , and gives the T,~tdes 3And 3
size and order of the corresponding stiffness and m ass matrices. Conv~rge e in th e

— - - - — •~~~~ ~ ø - f l~~~~~ - ~~~~~~~~~ -—-- • •t= - - - - ——-s— - —- -

~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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/
7(41)

/ EXAMPLE I ANALYSIS  OF 60 ELEMENT UNIFORM
/ ) -- 

S P R I N G  MODEL
b e’ecte uch

• , n-q J ~
’
(4

~ ) - 

L
,q f
/ E~~3OOOO, L~~O.O833
/ 

) L~ 10 , A = I ,
I I _ _ _ _  —--—--- - p=O•000104

7 (43)

/ —- -- —  I OL

‘inyc for ca Iter--

‘(I a the cre ri t ~~~~~~~~~
—— 

-__________ 
___________

elate ‘—values _______ —-_-— ——

moul e larger 
_______ —

~~~~~~~~~~
- -  K R

- characte stic I LK L

he ac era/ EXAMPLE 2 ANALYS IS OF 10 STOREY AND 3 BAY
~cn oblcr was : FRAME ON SPRING SUPPO RTSh her t~€ accel er—
r of ~~

‘
~ations Figure 1. Sample analyses .

) oj~ mfze)1~e -

~#‘pace i�atlon These problems have been selected because a relativel y large num-
/ ber of iterations are required for solution of the required elgen-

it h~p6 been ~p~l- pair s.
and gJp~ s the Tab les 2 and 3 summarize the resu lts obtained in the anal yses.

~ass

,7

~ices • Convergenc e in the Iterations was measured by [7 , p. 504)

__________ ____________ ________ _____ 

ii
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Table 2. Anal ysis of Spring Model: k = 375; m 0. 00013; consis— Usin the yen

::e

mass l 

i : : o n  relaxation 

1
~~

1m: 

~~celerat 1on nU I~~~~~~~~~~~~~~~~~

~~~~~~~~~ : 16 :: :: ~ 

- :: :: -

it:ration 

~~~ce~%atio~~~ :e

t~~n~ 
7 10 25 20 6 25 26 

/~nce s~~~ting a

Table 3. Anal ysis of Frame Model: k L = io~; k1~ 106; lumped be d

,

~~~ope/

with shifting nu �ber of/uhspa ee
no with over— to p with Aitken ’s w4s ohs~~~ied tha t t imCase acceleration r elaxation (Sec t . 6 . 1) accelerat ion 

~ ery s~~ sit ive ~~ t ime
ntui~ber of 2 8 22 2 8 22 2 22 2

number of 4 16 30 4 16 30 4 30 4 f~~mu1a ~~u 1d result
(or the~,LlutIon.

nu mber of 25 14 18 16 12 20 11 18 25 / I’
iterations

B/sed on/c

~‘nd the w m m ’m c r i c~
— xr) road ed that c or

x (k41) � tol = 1~ • eig solutio , still
j rti ng a ~spacc !

iques esent In
where I s the approximation to A 1 calculated In the k’th subspac e pears cry oznlsln i
Iterat ion. The results in the ta bles display the following solution in ti det minant se
features . 

-
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.00013; Co IS — Using the ovc i-relaxation scheme with an arbitrarily picked

/  
value ( = 1.6 for all iteration vectors the number of iterations re-

— quired for convergence was reduced in almost all cases.
vith Al en ’s Considering shifting to a lower bouj id on A 1, It is seen that the
acce-l ation number of iterations required for convergence is reduced sign i f i— ¶

22 cantly when onl y a small number of (-igenpairs are sought but , as

/  ~~ expected , when relatively many cigenpairs arc to he extracted a

,7 ,~ o sing le shift into the vicinity of the smallest eigenvalue required

/ ,/
‘ does not result in a substantial decrease in the total number of sub—

/  ,/ space iterations need ed .

/  ,,
726 Since shifting accelerates the convergence to the cigenvalues in

/ /  the vicinity of the shift , additional shi fting to the higher eigcnvalues

/ /
1 should be performed , but a stable and effective algorithm is s t i l l  to

be developed. 
- -/ . / In these anal yses the Aitkcn acceleration did not reduce the total

•~g,1,
7 J~ number of suhspace iterations required for solution . In addition , it
with ~ 4ken ’s was observed that the process of using Aitken ’s acceleration was
accylerat ton
/ / very sensitive to the time at which the acceleration was applied. It

,
~,/-2 ,/ was found that Ai tken ’s formula should only he employed once time

/  
— Iteration vectors converged linearl y, otherwise the application of the

~~ 

/  / formula could result in an increase of the number of iterations needed

25 

for the solution .

8. Conclusion s

/ 7 Based on the theoretical convergence study of suhspace iteration
/ and the few numerical experiments presented in this paper , it is

concluded that the original subspac e iteration method can, for many
elgensolutlons , still be improved signi fi cantly, improvement s in the
starting subspace should be possible. Among the acceleration tech-
niques presented in the paper the use of overrelaxatlon factors ap—

i the k’thyd~~9~ce pears very promising. In addition , shifting strategies as employed
in the determinant search method should be explored .

/
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~~~~~~~~~ e vectors but the deve’opment :f str~~egIes 
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sh ’~ 1d also lead to an extension of the technique to be able to calcu- [7 K . . Bathe an

late intermediate eigenvalue s. .1cm t Anal is
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