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1.0 INTRODUCTION

The turbulent mixing of two streams inside a duct occurs in many devices of
interest to the engineer. Typical examples are jet pumps, composite propulsion systems
such as air-augmented rockets, and various low-speed combustors. The flow field within
engine test cells often involves the mixing of a high-speed exhaust jet with a low-speed
secondary flow. In many applications, one must consider the occurrence of exothermic
chemical reactions in the mixing process. And some flows, with low-speed secondary
streams, have regions of recirculating flow along the duct wall.

Ducted flows without recirculation (Fig. 1a) can be accurately predicted by solving
the boundary-layer equations, in which lateral pressure gradients are neglected and the
velocity gradients in the lateral direction are assumed to be much larger than those in the
axial direction. After the specification of a semi-empirical model for the turbulent
transport of momentum, energy, and mass, the boundary-layer equations can be solved
by finite-difference methods (e.g., Ref. 1) or by integral methods (e.g., Refs. 2 - 6).

In the duct flow field without recirculation, the axial velocity components are
directed downstream throughout the entire flow. However, if the initial velocity of the
secondary stream is very low compared with that of the primary stream, then a
recirculation zone can occur along the duct wall (Fig. 1b). If the entire secondary flow
is entrained by the mixing layer before the mixing layer propagates to the duct wall, then
recirculation must occur to satisfy the requirement for additional mixing layer
entrainment.

Experimental investigations, such as that of Barchilon and Curtet (Ref. 7), have
identified the main features of ducted flows with recirculation. The wall static pressure
gradually rises between the duct entrance and the front stagnation point (FSP), which is
the station at which recirculation begins (Fig. 1b). The wall static pressure then remains
nearly constant between the FSP and the station where the outer edge of the shear layer
reaches the wall (Note that the edges of the shear layer are somewhat arbitrarily defined).
Downstream of this station, which is the beginning of the reattachment region, the wall
static pressure rises rapidly. In addition, the reverse-flow velocities along the wall, which
are largest at the onset of reattachment, decrease quickly in the reattachment region and
become zero at the rear stagnation point (RSP). Downstream of the RSP, the axial
velocity components are everywhere positive, and the flow eventually becomes a fully
developed pipe flow.

The experiments indicate that the reversed flow, between the edge of the shear layer
and the duct wall, is highly turbulent and well stirred. Therefore, the flow in this region
is nearly one-dimensional, with small gradients in the axial velocity and species profiles.
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In essence, the flow between the axial stations defined by the FSP and the onset of
reattachment appears to be a free turbulent jet that is mixing with a nearly
one-dimensional outer flow. Of course, the velocity of this outer flow varies considerably
in the axial direction.

Duct Wall
- \
?.i'i,‘,’"ﬁ _ Turhulenténg/z{/%
=L G IIIs
_

Primary Nozzle

v

I

™

/ \ Velocity Profile

a. Flow without recirculation

Rear
Front Stagnation  ~t2onaion Point
Point ]
N N L
y( > )
— \ .
¢ — Turbulent Mixing Zone
|

/ \ Velocity Profile

b. Flow with recirculation
Figure 1. Schematic of ducted mixing processes.

The wall boundary layers are very thin in the region of recirculating flow, and wall
viscous effects seem to be important only far downstream of the RSP (Ref. 4).

Flows with recirculation are truly elliptic in nature because, in certain regions, the
axial flow gradients become large compared with the lateral gradients. Therefore, an
accurate analysis of recirculating flows must be based on solution of the Navier-Stokes
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equations. During the past several years, much progress has been made on numerical
techniques for solving these equations. For example, the finite-difference analysis of
Gosman, et al. (Ref. 8), has been widely used for predicting recirculating flow fields. But
in spite of the potential of the finite-difference approach, there are several reasons why
this approach cannot yet be considered a reliable analytical tool for routine engineering
applications (Refs. 9 and 10). First, with an adequately fine mesh for the flow
configurations of interest, the computation time is large. Second, there are unresolved
accuracy problems in the numerical algorithms; finite-difference solutions of combustor
flows commonly do not conserve fuel species to an acceptable degree. Third, specification
of boundary conditions is difficult and is often done in an arbitrary manner. Finally, as
with any analysis of turbulent flow, an adequate semi-empirical model of the turbulent
transport processes must be specified; with the finite-difference approach, the transport
model must be applicable to every point in the flow field.

There is a simpler approach to the engineering computation of ducted flows with
recirculation. The integral form of the boundary-layer equations can be used to describe
flows with recirculation if the profile shapes for velocity, species, etc., are specified. Hill
(Refs. 4 and 11) used this integral approach to predict constant-density ducted flows
with recirculation. Of course, the streamwise turbulent transport terms are neglected in
this approach, which results in a poor description of the flow in some regions. But the
overall flow field predictions are adequate for many engineering purposes, and the
integral method is computationally efficient. In addition, the very nature of the integral
method ensures that momentum, species, etc., are conserved.

In this report, the integral approach is applied to the prediction of variable-density
ducted turbulent flows with and without recirculation. Flows with equilibrium chemical
reactions are included in the formulation. The flow geometry considered is either
axisymmetric or planar, and provision is made to calculate flows with an arbitrary
centerbody. In the "basic" integral analysis- described in Section 2.0, the streamwise -
turbulent transport terms are neglected. The predictions of the basic analysis are
compared with available experimental results in Section 3.0, and the regions of the flow
that are poorly predicted are identified. An "extended" integral analysis, in which the
streamwise turbulent transport terms are included, is described in Section 4.0.

2.0 FORMULATION OF BASIC INTEGRAL ANALYSIS

The mathematical approach used in the present analysis is similar to that used for
the "1-D Core Theory" of Ref. 2. Indeed, the present analysis can be considered an
extension and a refinement of the "1-D Core Theory," which is applicable only to
axisymmetric flows without recirculation.
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21 FLOW REGIMES

Several flow regimes! can occur in a ducted turbulent flow. These regimes are
characterized by the width and position of the turbulent shear layer and by whether or
not the flow recirculates. The integral analysis must be formulated differently for each of
the flow regimes. The flow regimes that can occur in a nonrecirculating flow are
illustrated in Fig. 2, and the regimes that can occur in a ducted flow with recirculation
are illustrated in Fig. 3. Thus, there are six possible flow regimes and five possible
sequences of these regimes.

Second
‘&;I;:me-l-‘mgme—’\_’m”d Reglme

Turbulent Mixing Zone

14 s 7 r —p—

a. Mixing zone propagates to centerbody before it propagates

to duct wall
First First Wall Third Regime
Regime Regime
L L L L L y] L Vi L L L bl

Turbulent Mixing Zone

r 4 —p——

b. Mixing zone propagates to duct wall before it propagates
to centerbody
Figure 2. Possible sequences of regimes for flow
without recirculation.

I1n the nomenclature used to describe the regimes, "first" indicates a regime in which there is a
potential core of jet fluid between the centerbody and the inner edge of the shear layer. "Second"
indicates a regime in which the shear layer extends to the centerbody but has not yet reached the duct
wall. "Wake" indicates a regime in which a region of reversed flow exists betwcen the outer edge of the
shear layer and the duct wall.
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Note that, when the initial value of the secondary velocity is zero, the "first" regime
(Fig. 3) will not occur, and recirculation will begin at the duct entrance (in the " first
wake" regime).

First | Second+75econd Wake__l_. Third Regime
Regime Regime Regime , LT,
i L

Turbulent Mixing Zone

7 ———p—

4 L4 7 7 7 - >

a. Recirculation begins in second regime

First o First Wake First Wall ] .
l‘Regime" Regime g lltegllme —,'T'/Thljri Regime

L L ——
— sp >= RSP
o Turbulent Mixing Zone
—— -

b. Recirculation begins in first regime and mixing zone propagates
to duct wall hefore it propagates to centerbody

First | First Wake Second Wake hird Redi
Regime | Regime Regime —"—’ Third Regime
P P 4 Y Y i ¥ Y] yi / L L M L
: RSP

-~ fspf

¢. Recirculation begins in first regime and mixing zone propagates
to centerbody before it propagates to duct wall
Figure 3. Possible sequences of regimes for flow with recirculation.

2.2 BASIC ASSUMPTIONS
The principal assumptions used in the analysis are:

1. The flow is steady and either planar or axisymmetric.
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2.  All gases obey the perfect gas law.
3. The flow is described by the integral form of the boundarylayer equations.
4. The turbulent Prandtl and Schmidt numbers are unity.

5. The mixing layer is fully turbulent (negligible laminar transport), and the initial
boundary layers are negligible.

6. The mixing layer velocity profiles are shape-similar and are represented by a
cosine function.

7. The inviscid portions of the primary and secondary flows are one-dimensional
and isentropic (first, first wake, first wall, and second regimes).

8. For mixing with simultaneous chemical reactions, the reactions are in
equilibrium.

9. The duct and centerbody surfaces are frictionless and adiabatic.
10. The static pressure is constant in the first wake and second wake regimes.

11. In the wake region, between the outer edge of the shear layer and the duct
wall, the axial component of velocity and the element species are
one-dimensional (first wake and second wake regimes).

2.3 BASIC EQUATIONS

The basic boundary-layer equations are:

Continuity
aa_x (pur?®) + air (pvr®) =0 1)
where
a = 0 for planar flow
a = 1 for axisymmetric flow
Axial Momentum
@ du ® du - 0 @aguy) - radp
put dx e dr dr (pel‘ ar) ' dx )

where € is the turbulent eddy viscosity.

10
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- 0

5 (per”

dal

dr )

- ()r (prra r3() (4)

Nomenclature for the integral analysis is shown in Figs. 4 and 5. Equations (1), (2),
and (4) are integrated (Ref. 2) to obtain five integral equations: (1) a continuity equation
for the entire flow, (2) a momentum equation for the entire flow, (3) a momentum
equation for the flow between the centerbody surface (ro) and ry, (where ry, = i+ b/2), (4)
a species conservation equation for the entire flow, and (5) a species conservation equation

for the flow between re and rp,.

First Second . .
‘-'Reglme Regime —1—* Third Regime
™ /
| w Tw® fix)
2 s b bl=ry-rc
\Ujl\'\ l o l
ri A —
re ™ fix)
a. Mixing zone propagates to centerbody before it propagates
to duct wall
First First Wall Third Regime
Reglme Regime
_. Uy £ ry = fx
“a
. b ( Py - T}

Z

lrc = f(x)

I
1

b. Mixing zone propagates to duct wall before it propagates

to centerbody

Figure 4. Nomenclature for integral analysis of flow
without recirculation.

11
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First Wake Secong! Wake Third Regime
Regime Regime

U‘

Figure 5. Nomenclature for integral analysis  of flow
with recirculation.
The integral equation are:

Overall Continuity
fw_a (pu) r®dr = p_u_r? di - p.u,re dr, (5)
ax . cC Cc ¢ dx W ow o ow dx

where the subscript 'c" indicates properties along the centerbody surface and the subscript
p

"w" indicates properties along the duct wall.

Overall Momentum

f

arl a—~1
6 { uz)radr = a di - _uzra_dr_“’ - Lw ~T¢ ap 6
f p P°°°dx Pwlwtw 3, @+ 1) dx ©

C

Half-Radius Momentum

T

m m a-+1 a+l
rf a_i (pu?)r®dr - u, rf a_i (pu)r®dr = r & - (u - u_)p u_r% g _ DL_rc—] dp
[ c

€ C° dx {a-1) dx

N

where the subscript "m" indicates the properties along ry, and 7, is a turbulent shear
stress.

Overall Species

) dr dr
c
Half-Radius Species
l’m l'
J & ora - c, f (pu)r%dr = e - pou (C, - Crg e ()
c Te

12
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where qq, is a turbulent species flux.
¥

Because the flow is one-dimensional for ro < r <rjandfor (r; + b) <r <ry, the
integral equations can be rewritten as

Overall Continuity

r.~b
[a+1 a+1] ! I:ra+1 —{r _b)a-—]]
(peud + [ 2 (puir2d w ~' d
T e+ ) dx Pelle! ¥ dx puirodr (a+ 1) dx (p“’u‘”)
1
dr_ 10
=Pcucr?:d_xc _'pvn"'lwr‘it-vTxl ( )
Overall Momentum
r+b
[ra+l _ ra—lj ! [ra+1 _ (r.+b)a"1]
L 2% ) dpud - 2 (udear+ L — 4 (p, )
la+ 1 s Pete o @+ 1) P
1_ uzra drc 2 a l:|l‘ [aH a+l] dp
= Pellefe o T Puwlelw dx T e+ ) dx (1)
Half-Radius Momentum
T
[rc_z+l Ia+1] m [a-t-l a+1]
Li e Jdd( 8 (pud)r®dr - ( )
@r1  dx ele ';raxp mTEE ke
i
rm
dr l.¢1+1 _ ra+1
- il @dr = 2 4 (u, -u)p.ur® < — [m—CJd_p
llm I ax (PU)I' r Tmrm + uc um p(_- c o dx (a+]) ix (12)
Overall Species
r—b
[a+1 - a+1] 1 [a+l (r. +b)a-.—1]
C - C)r®d d ( C
T et Y d P Ye ) :“ X (pu yrédr + @< 1) i Pwlw w)
! ar dr
= pcucccrt(l:d—xc u Cw w d_: (13)

Half-Radius Species

[a+l afl] (P,“ )+ J' 9 (puC)rdr -~ C, _[_w d (pou)

T e+ ) la + 1)
l

r
m

- C, f 6_?& (pu)r®dr = q r% - p u (C_. - C )¢

dr

© dx (14)

Equations (10) through (14) apply to all six regimes shown in Figs. 2 and 3. Of
course, r, goes to r, in the second, second wake, and third regimes. In the first, first

13
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wake, and first wall regimes, C. = Cj = 1, and p. and u, are the isentropic variables (o, and
uj). In the first and second regimes, Cy, = 0, and py, and u,, are the isentropic variables (p,
and u,). The pressure gradient terms are zero in the first wake and second wake regimes.

2.4 SHEAR LAYER PROFILES
The shear layer velocity profile is described by

il-1u
W

- L cos (,,"bf:) (15)

L
u_—-u 2
c w

The velocity at the half-radius control surface (r, ) is

u. = L(u. + u) (16)

m c w
2

For a constant-pressure nonrecirculating flow, the element species concentration
profile is related to the velocity profile by

C—Cw _ u-u a7n
C.-C u —-u
j w ]

w

Similarly, the total enthalpy profile is related to the velocity profile by

H-H“_ _ u-u, (18)

H.-H u,—u
J w ] w

Thus, C, H, and u are linearly related in a constant-pressure nonrecirculating flow. This is
the well-known Crocco integral solution obtained from Egs. (2), (3), and (4). In the
ducted mixing problem, however, the pressure gradient terms are negligible only in the
first wake and second wake regimes. In addition, uy, Cy, and Hy vary with x, even in
the constant-pressure wake regimes. Therefore, Eqs. (17) and (18) cannot be used. The
approach that has been taken in this study is to assume that the concentration-velocity

relation can be expressed as
K
C—Cw _ u-u_ (19)
C] - CW uj —-u,

where K can be a function of x. The mixing zone concentration profiles described by
Eqgs. (15) and (19) are shown in Fig. 6 for various values of K. Note that a powerlaw
relation similar to Eq. (19) has been used to describe profiles that deviate from the
Crocco relation because of nonunity transport coefficient ratios in free turbulent flows

14
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(Ref. 12). Also note that the linear relationship between H and C is retained, even for
flows with recirculation.

1.0 N .y T T T
S
£ 03 Velocity Profile h
5 -
C 06 -
=]
>
-é 04F 0.5 -
= 1008
E 9 1.5
‘Eu 02 I k=10 ¢ 4\‘\ —
[=]
=
0 | \&- —=
0 0.2 0.4 0.6 0.8 1.0

Mixing Zone Coordinate, (r - r;}/b

Figure 6. Mixing zone concentration and velocity profiles.

25 COMPUTATION OF DENSITY

For unity Prandtl and Schmidt numbers, the stagnation enthalpy and the gas
properties are uniquely related to C, and the density field is calculated with the
techniques described in Ref. 2. Namely, the stagnation temperature, specific heat, and gas
constant are specified as a function of C, which varies from zero (pure outer stream gas)
to one (pure jet gas). For chemically frozen flows, only the T,, ¢;, and R values at C =
0 and C = 1 need be specified. For flow with chemical reactions, an equilibrium
chemistry analysis is used to specify T, cp, and R as tabular functions of C.

At any point in the shear layer, u is given by Eq. (15), Cis given by Eq. (19), and
To, cp, and R are determined. The density can then be obtained from the energy
equation and the perfect gas law. Therefore, the density can be expressed functionally as
p = plu, C, p) (20)

2.6 TURBULENT TRANSPORT TERMS

The turbulent shear stress (r, ) that appears in Eq. (12) is given by

15
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2D

m = Pme 2

where € is the turbulent eddy viscosity. The turbulent species flux (qn )} that appears in
Eq. (14) is given by

9y = Ppe 9

gr (22)

The eddy viscosity model used in this study is the same as that described in Ref. 2.
Namely, the Prandtl model for free-turbulent flows is used, with the coefficient (k) taken
to be a function of the half-radius Mach number (M, ).

Thus,

i = uyl 23)
and

k = k, [0.66 + 0.34 exp (~3.42 M2)] (24)

In the first and first wake regimes, k, is set equal to 0.007. In the other four regimes, k,
is set'equal to 0.011. '

For nonrecirculating flows, this eddy viscosity model has been shown to provide
reasonably accurate predictions as long as the secondary velocity (u, ;) is not larger than
about 0.3 times the jet velocity (u;,) (Ref. 2).

For flows with recirculation, the eddy viscosity model is modified somewhat. The
predictions of the reattachment region (in the third or first wall regimes) are improved if
the eddy viscosity is held constant, or "frozen," at the value that is computed at the
beginning of reattachment. This modification is discussed further in Section 3.1.

2.7 METHOD OF SOLUTION

Sufficient information is available to transform Egs. (10) through (14) into a system
of ordinary differential equations that is linear in the derivatives of the dependent
variables. The transformation procedure is described in Refs. 2 and 13.

First Regime - The flow is completely described by four parameters (p, 1, b, X), so
Eq. (14) is not used. The resulting system of equations is

16
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N 42 - N, 3y Ngdb 4 Ny 4K - N (25)

dx dx dx dx 5

where N = F for the continuity equation, N = G for the overall momentum equation, N
= H for the half-radius momentum equation, and N =1 for the overall species equation.
The equations of the coefficients for all regimes are presented in Appendix A. The
numerous auxiliary equations necessary for computation of the coefficients are developed
in the same manner as described in Ref, 2.

After the coefficients are evaluated numerically, Eq. (25) is solved for the derivatives
(dp/dx, dri/dx, db/dx, dK/dx) by use of a matrix factorization technique. The resulting
equations for the derivatives are numerically integrated with a modified Euler technique
(variable step size).

Second Regime - As in the first regime, the flow is fully described by four
parameters; these are chosen to be (p. uc, b, K) and the resulting system of equations is:

.. dp N, e N, db _ dKk _ N
]\] dx B e dx A dx N4 dx \ (26)

Third Regime - The flow is fully described by five variables (uy,, uc, p, Cy, K), and
Eq. (14) is required. The resulting system of equations is

du - d dC - .
N N + N, P LN N. 4K = N 27
Ly 7 2dx 3 ix T e T 6 @7

where N =] for the half-radius species equation.

First Wake Regime - The five dependent variables are (uy, r,, b, Cy, K), and the
resulting system of equations is

Second Wake Regime - The five dependent variables are (uy, ue, b, Cy, K), and the
resulting system of equations is

hY

dllw+\2‘:jc+N3db+N \sdl(=j\' (29)
x

1 dx dx 4 I dx dx 6

First Wall Regime - The five dependent variables are (uy, 1, p, Cw, K), and the
resulting system of equations is

17
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du . dr, 1 dC .
Ny —%4+ N, —i =+ Np "L 4 N, —“wy N, dK - X (30
1d!c+ 2dx :'3113(4-"'d)(+ % dx 6 )
Notes on the Computer Program - Which of the six regimes will occur in a given
flow, and the sequence of these regimes, is generally not known beforehand. Therefore, a
series of tests is incorporated in the computer program to automatically provide the
correct sequence of regimes.

In the present computer program, the duct wall and centerbody geometries are each
described by a pair of functions: a fourth-order polynomial in x describes the radius up
to a prescribed axial station, after which the geometry is conical.

The basic integral analysis has been programmed for numerical solution with an IBM
370/165 digital computer. A typical flow field computation requires a CPU time of about
30 sec.

3.0 RESULTS AND DISCUSSION OF BASIC INTEGRAL ANALYSIS

For ducted flows without recirculation, the present analysis yields predictions that
are nearly identical to those of the "D Core Theory" of Ref. 2. Therefore, the major
emphasis in this section will be placed on comparing the predictions with experimental
results for flows with imbedded recirculation regions.

Similarity parameters have been proposed to correlate the occurrence and extent of
recirculation in constant-density axisymmetric flow (Refs. 14, 15, and 16). These .
similarity parameters are applicable to constant-area ducts without centerbodies. Perhaps
the most widely used similarity parameter is that proposed by Becker, et al. (Ref. 16),
which is commonly called the Curtet number:

Y (ARG RETE ) KL

where r, is the primary nozzle radius and
u = (= uy) (’_)2 . (31a)

The relationship among C;, u,1/uj1, and rq/ry, is shown in Fig. 7.

Correlations of experimental data have shown that recirculation will occur when C;
is less than 0.7 to 0.9. In addition, experimental data on the axial location and extent of
the recirculation region in various duct geometries are well correlated when plotted versus
C;.
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Note that the Curtet number is not applicable to variable-density flows or to flows
in ducts with variable cross-sectional area. Schulz (Ref. 9 and 17) derived a
variable-density similarity parameter but found that it does not adequately correlate the
location and extent of recirculation observed in variable-density experiments. That is, the
variable-density results do not collapse onto the constant-density results when plotted
versus the similarity parameter.

1.2 T T T
rnfrw = 0 032 0 075 0 15

L0 0.30

Curtet Number, Cy
=] o
(= o]

e
IS

Constant-Density Flow
in a Cylindrical Duct

0.2 —

0 1 I ]
0 0.06 0.10 0.15 0.20

Velocity Ratio, Ual’ujl

Figure 7. Curtet number as a function of velocity ratio.

3.1 EXPERIMENTS OF BARCHILON AND CURTET

Barchilon and Curtet (Ref. 7) conducted an extensive series of experiments on
constant-density flows in a cylindrical duct. The nozzle-duct radius ratio (r,/ry) was
0.075, and the secondary-to-primary velocity ratio (u,j/uj;) was varied from zero to a
value high enough to prevent recirculation. Predicted and experimental results for all six
of the Barchilon and Curtet flows are shown in Figs. 8 through 10. Only Test No. 1 (C,
= 0.976) was conducted with a secondary velocity high enough to avoid recirculation
along the duct wall.

Unless otherwise indicated on the figures, all the computations were made with the
eddy viscosity "frozen" in the reattachment region (Section 2.6). Two of the flows, Tests
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No. 4 and 6, were computed with both the frozen eddy viscosity model and the local
eddy viscosity given by Eq. (23). The predicted distributions of wall velocity (Figs. 8d
and f) show that the position of the RSP is predicted much better with the frozen
viscosity. The need to arbitrarily freeze the eddy viscosity in the reattachment region is a
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0 | ] | 1 | i 0
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0.06 1 I ] T T l
O  Experiment (Ref. 7)
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=
= 004
=3
=
= 00
3
=
E 0
O
>
0 1 2 3 4 5 6 7

Axial Distance, xIrW

b. Test Number 2, C; = 0.714, u,q/u;y = 0.0465
Figure 8. Wall velocity distributions for Barchilon and
Curtet experiments.

result of the very strong history effects on the turbulence when the mean flow changes
rapidly with distance. Simple local eddy viscosity models are clearly inadequate for
rapidly changing flows such as occur in the reattachment region.

20



AEDC-TR-77-115

The predicted distributions of wall velocity (Figs. 8a through f) illustrate a
characteristic feature of the integral solution. The magnitude of the peak reverse flow
velocity is overpredicted, and a cusp is formed in the velocity distribution at the
beginning of reattachment. In the region near the mixing zone attachment point,

0.04 T T I I I !
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=
§ 0l /_
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2
g -002 |- —
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-0.04 | 1 ] ] | ]

0 1 2 3 4 5 6 7

Axial Distance, x/r,,
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0.02 T T T

I 1 |
Frozen Eddy Viscosity ©
0 \ 0 \ o/

0.4 o Experiment (Ref. 7)
—— Theory

Local Eddy
Viscosity

Velocity Near Wall, uw’“jl
=
s
T

-0.06 | l ] | | ]
0 1 2 3 4 5 6 7

Axial Distance, xlrw

d. Test Number 4, C, = 0.305, u,4/u;; = 0.0170
Figure 8. Continued.

streamwise turbulent transport of momentum is very significant. Of course, this
streamwise momentum transport, which is neglected in the basic integral analysis, tends
to round the cusp in the wall velocity distribution.
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In spite of the locally unrealistic behavior of the predicted wall velocity distribution
near the onset of reattachment, the solution seems to recover, and the slope of the
velocity distribution at the RSP is fairly well predicted.
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f. Test Number 6, C; = 0.075, ugq/ujy =0
Figure 8. Concluded.
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Axial distributions of centerline velocity for the six Barchilon and Curtet flows are

shown in Figs. 9a through f. In general, the predicted distributions

Centerline Velocity, “c’ujl

Centerline Velocity, uc’”jl

are satisfactory.
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Figure 9. Centerline velocity distributions for Barchilon

and Curtet experiments.
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Figures 9d and f illustrate that the frozen eddy viscosity model yields slightly better
predictions of the centerline velocity decay rate than does the local viscosity model.

LOT T l | | | T
©  Experiment (Ref. 7)
~ 08k — Theory -
é—
=U
2 06
k-
D
>
@ 04}
E
S o2}
0 ] | ] ] ] ]
0 1 2 3 4 5 6 1
Axial Distance, x/r,,
¢. Test Number 3, C, = 0.506, u,,/u;; = 0.0316
10 | T T l | 1
o Experiment (Ref. 7)
—~ 08 — Theory -
é—
=U
2 06 -
2
>
e 04} Local Eddy —
= Viscosity
£
S 02| -
Frozen Eddy Viscos it¥
0 ] ] ! | |
0 1 2 3 4 5 6 7

Axial Distance, m’rw
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Figure 9. Continued.
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Figurq 9. Concluded.

Axial distributions of wall static pressure for the six flows are shown in Figs. 10a
through f. In general, the predicted wall pressure in the reattachment region tends to rise
too abruptly, and the peak wall pressure is overpredicted; this overprediction becomes
larger as C; is increased.
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The static pressure in the first wake and second wake regimes is assumed to be
constant. However, as shown in Figs. 10c through f, the experimental wall static pressures
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Figure 10. Wall pressure distributions for Barchilon
and Curtet experiments.

decrease slightly with distance downstream of the FSP, until a minimum is reached at a
station upstream of the predicted shear layer attachment point.
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In the integral analysis, the wall frictional effects are assumed to be negligible. To
evaluate the validity of this assumption, a wall shear stress term was added to the right
hand-side of Eq. (11); the shear stress is equal to 1/2 cfypwuw?2 where cgy is the skin
friction coefficient. As shown in Fig. 10a for C; = 0.976, the effect of even a fairly large
value of c¢fy, on the pressure distribution is small. And the effect on the uy, and u,
distributions is negligible (Figs. 8a and 9a). For flows with recirculation, the effect of
wall friction is even smaller than that shown for C; = 0.976.

Distances from the entrance of the mixing duct to the front and rear stagnation
points are shown in Fig. 11 for the Barchilon and Curtet flows. The analysis predicts no
recirculation for C; greater than 0.84; on the other hand, the experiments show that
recirculation persists for C; values up to about 0.95. The predicted effect of the
secondary-primary velocity ratio on the location of the FSP is in excellent agreement
with the experimental results. These experiments show that the location of the RSP is
independent of C;; the analysis predicts that the distance to the RSP is a mild function
of Ct.
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Figure 11. Extent of recirculation zone for Barchilon and
Curtet experiments.
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The analysis yields complete spatial distributions of the axial velocity component (u)
and the density (p) in the flow field. By integrating the continuity equation between the
axis and a particular streamline, the geometry of that streamline can be determined.
These computations were carried out for several streamlines in the recirculation region of
the Barchilon and Curtet Test No. 6 flow. As shown in Fig. 12, the predicted streamline
shapes are realistic; in addition, they are in fairly good agreement with the experimental
shapes (Ref. 7). The largest differences between the predicted and experimental
streamline shapes occur near the duct entrance, for x/ry, less than one; these differences
are attributed to deviations from one-dimensionality in the experimental wake region u
profiles.
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Figure 12. Predicted streamline pattern for Barchilon and Curtet
Test No. 6 (Ua1ll.lj1 = 0).

Predicted and experimental loci of u = 0 are also shown in Fig. 12. The predicted
locus is satisfactory for x/ry, greater than one, but is less so near the duct entrance,

3.2 EXPERIMENT OF HESKESTAD

In the Barchilon and Curtet recirculating flow experiments, r,/r, was only 0.075,
and the turbulent mixing layer reached the axis well upstream of its intersection with the
duct wall. Therefore, the flow pattern was as shown in Fig. 3a or Fig. 3¢, and the entire
reattachment process occurred in the third regime. For much larger values of r,/ry , say
0.5, the shear layer will reach the duct wall before it reaches the axis, and the flow
pattern shown in Fig. 3b will be observed.

Heskestad (Ref. 18) measured the wall pressure distribution in a constant-density
axisymmetric sudden-expansion flow; u,j/u;; was zero and r,/ry was 0.498. The
predicted pressure distribution, obtained with the eddy viscosity frozen in the
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reattachment region, is in good agreement with the experimental distribution (Fig. 13).
As shown in the figure, reattachment begins in the first wall regime; however, the
predicted RSP occurs just downstream of the transition to the third regime.
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Figure 13. Wall pressure distribution for the experiment of Heskestad.

The predicted results obtained for the Heskestad geometry, as well as those obtained
for the Barchilon and Curtet geometry, indicate that the concept of freezing the eddy
viscosity in the reattachment region is successful for a variety of configurations.
Therefore, all of the calculations described in the remainder of this report were obtained

with the frozen viscosity model.
3.3 EXPERIMENTS OF BECKER, ET AL.

Becker, Hottel, and Williams (Refs. 16 and 19) conducted a series of experiments on
constant-density axisymmetric flow with recirculation. The nozzle-duct radius ratio
(ra/rw) was 0.032. Therefore, reattachment occurred in the third regime. In addition to
measuring the mean velocity field in their experiments, Becker, et al., measured optically
the concentration field by use of a smoke tracer in the jet.

The axial location and extent of recirculation measured by Becker, et al., is shown
in Fig. 14, along with the predictions of the integral theory. Also shown in the figure are
the predictions for the geometry of Barchilon and Curtet; the predictions for the two
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geometries differ little when plotted as a function of C;. In contrast to the Barchilon and
Curtet results on the location of the RSP (Fig. 11), the results of Becker, et al.,
substantiate the predicted trend that the location of the RSP depends somewhat on the
Curtet number.
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Figure 14. Axial extent of recirculation for the experiments of
Becker, et al.

Axial distributions of jet species concentration at the duct wall (Cy ) are shown in
Fig. 15 for the three values of C; investigated by Becker, et al. The predicted locations of
the FSP's are indicated by arrows on the abscissa; as shown in Fig. 14, these predicted
FSP locations are in excellent agreement with the experimental locations. The
experimental Cy values become significant at an axial station about one duct radius
upstream of the corresponding FSP. Indeed, the experimental distribution for C; = 0.137
indicates that pure secondary-stream fluid exists nowhere in the flow field, even at x = 0.

The predicted C,, distributions in Fig. 15 show that the wall concentration remains
zero for some distance downstream of the FSP, then rises rapidly to the fully mixed
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value. The basic integral analysis was formulated with the assumption that the turbulent
Schmidt number (S;¢) is unity. Computations for the C; = 0.345 flow were also made
with Sc¢ = 0.7 in the wake regimes; as shown by the dashed line in Fig. 15, this increase
in the eddy diffusivity causes the predicted Cy to begin to rise at the FSP. But even with
Sct = 0.7, the predicted C,, distribution is in poor agreement with the experiment.
Clearly, the axial diffusion of jet species upstream of the FSP is significant; of course,
this streamwise turbulent diffusion is neglected in the basic integral analysis. The best

that can be said of the predicted C,, distributions is that the fully mixed value is reached
at approximately the correct axial station.
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Figure 15. Wall concentration distribution for the experiments of
Becker, et al.

The efficiency of a recirculation zone as a stirring device is strikingly demonstrated
by the results shown in Fig. 15. For this geometry, reattachment does not begin until
x/ry is greater than four; therefore, the velocity field is very nonuniform for the axial
distances shown in Fig. 15. On the other hand, the concentration profiles become
uniform (C, = C.) at an axial station only about one duct radius downstream of the
FSP. Of course, this observation is valid only for small values of rp /1, ; for large values of
In/rw, such as investigated by Heskestad, the concentration profiles remain nonuniform at
distances far downstream in the third regime.
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34 EXPERIMENTS OF CHEDAILLE, ET AL.

Chedaille, Leuckel, and Chesters (Ref. 20) investigated an axisymmetric recirculating
flow configuration thit was similar to the one investigated by Becker, et al.; r,/ry was
0.031. However, Chedaille, et al., heated the jet to give T5j3/Toa1 = 1.51 and made
temperature measurements in the flow field. These temperature measurements permit tht
distribution of jet species concentration in the flow field to be deduced.

Axial distributions of wall and centerline concentration are shown in Figs. 16a and b
for two of the flows investigated by Chedaille, et al. Even though these flows involve
density gl_'adients, the experimental results are similar to those obtained by Becker, et al.
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Figure 16. Wall and centerline concentration distributions for v.~
experiments of Chedaille, et al.

The C,, distribution begins to build up at an axial station well upstream of the FSP.
However, Cy, and C. do not approach the fully mixed values as rapidly as for
constant-density flow. The predicted results are qualitatively similar to those obtained for
the Becker, et al.,, geometry. For S;; = 1, C, remains zero for some distance downsteam
of the FSP, then rapidly rises to the fully mixed value. For S¢i = 0.7, the predicted Cy,
distribution begins to rise just downstream of the FSP.
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3.5 COMPARISON WITH OTHER PREDICTIONS

In the limiting case of constant-density flow with a small value of r,/ry, (nearly a
point-source jet), the present integral analysis becomes similar to that of Hill (Ref. 11).
The extent of recirculation predicted by the present analysis for the configuration of
Barchilon and Curtet is shown in Fig. 17, along with Hill's prediction. The two
predictions for the location of the FSP are nearly the same. However, Hill's analysis,
which is based on a local model for the eddy viscosity, greatly overpredicts the distance
to the RSP. The present theory would yield similar results if a local, rather than a frozen,
eddy viscosity were used in the reattachment region.

The finite-difference elliptic analysis of Gosman, et al. (Ref. 8), was applied to the
flow configuration of Barchilon and Curtet (C; = 0.305). Lateral variations of the eddy
viscosity were assumed to be negligible, and the axial distribution of the eddy viscosity
was prescribed to be the same as that obtained in the basic integral analysis. Therefore,
differences between the elliptic and integral solutions are attributable to the different
governing equations and numerical procedures, rather than to different turbulent
transport properties.

The axial distribution of centerline velocity predicted by the elliptic analysis (Fig.
18a) is in better agreement with experiment than is the prediction of the integral
analysis. But the prediction of the integral analysis for the axial distribution of u,, is
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Figure 17. Comparison of present theory with Hill’s results on
extent of recirculation.

better than that of the elliptic analysis (Fig. 18b). The elliptic prediction of the location
of the FSP is particularly poor. This result must be attributed to the numerical
procedures or to the specification of the vorticity boundary conditions, because the flow
upstream of the FSP is nearly parabolic and the eddy viscosity model used is realistic in
this region. (Experience has shown that the location of the recirculation region predicted
by the elliptic analysis can be significantly affected simply by changing either the
computational mesh or the method of specifying the vorticity at the primary nozzle lip
(Refs. 9 and 17.) In the present computations, these factors were selected after some trial
and error to yield a good prediction of the centerline velocity distribution.)

In the computations, the Barchilon and Curtet flow was assumed to have tracer
species in the primary fluid. Predicted axial distributions of the concentration of this
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tracer along the wall and along the centerline are shown in Fig. 18c. The elliptic solution
yields the physically realistic result that C, begins to increase upsiream of the FSP.
However, with the eddy viscosity model used, the computed counterstream diffusion of
species along the wall is less than shown in the experiments of Becker, et al. (Note that
the fully mixed concentration predicted by the elliptic analysis is higher than the correct
value of 0.250. However, in this particular computation, the error is only about 10
percent.)

One of the major objectives of making the calculations with the Gosman program
was to evaluate the species profile shape function that is used in the integral analysis. The
relationship in the shear layer between the normalized concentration and the normalized
velocity is shown in Figs. 19a through c. The integral and elliptic results are compared at
equivalent values of u, rather that at equivalent axial stations. For flows without
recirculation, the integral analysis predicts that the concentration profile parameter (K)
remains nearly one (Fig. 19a). However, downstream of the FSP, K increases rapidly as
the recirculation velocities become larger (Figs. 19b and c¢). The elliptic analysis also
predicts a large distortion of the concentration profile relative to the velocity profile. So,
even through the concentration profiles predicted by the two analyses are different in
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detail, one can conclude that the large distortion of the concentration profile predicted
by the integral analysis is qualitatively correct.

3.6 DISCUSSION

The integral analysis shows that, for constant-density axisymmetric flows, the Curtet
number is a very good correlating parameter for the occurrence of recirculation, even for
In/tw values much larger than are usually considered. Predicted limiting values of the
initial velocity ratio (uaj/uj;) that just eliminate recirculation are shown in Fig. 20. Of
course, the limiting velocity ratio depends strongly on r,/ry. But when the results are
interpreted in_terms of C,, the limiting value of the Curtet number is seen to change by
onty 10 percent as r,/ry is increased from 0.02 to 0.50 (Fig. 21).

Based on the comparisons with experiment that have been presented, several
conclusions can be drawn about the basic integral analysis of ducted flows with
recirculation. First, the overall velocity field, including the location of the front and rear
stagnation points, is fairly well predicted, at least for flows with small density gradients.

40



AEDC-TR-77-115

The major deficiency in the velocity predictions is the unrealistic cusp in the wall
velocity distribution. The predicted concentration field is much less satisfactory than the
predicted velocity field; a major deficiency in the analysis is the neglect of counterstream
turbulent diffusion of species near the FSP. Note that, for the flows that have been
considered, the density is uncoupled or is only weakly coupled to the concentration.
Therefore, errors in the concentration field have only a small influence on the predicted
velocity field. However, when the density is strongly coupled with the concentration, as
it is in the hydrogen-air experiments of Schulz (Ref. 9) and Chriss (Ref. 21), the
erroneously predicted concentration field can be expected to lead to significant errors in

the predicted velocity field.
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Figure 20. Limiting velocity ratio for recirculation in a
constant-density flow within a cylindrical duct.
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Clearly, the major deficiencies of the basic integral analysis are the neglect of
streamwise diffusion of species (which is particularly important near the FSP) and the
neglect of streamwise turbulent transport of momentum (which is particularly important
near the beginning of reattachment). A deficiency of less importance is the neglect of the
small but significant axial pressure gradients that occur between the FSP and the
beginning of reattachment. An extended integral analysis, in which these deficiencies are
avoided, is formulated in Section 4.0.

1.0 T T

No Recirculation
i / L \— Theory

Recirculation 7

Curtet Number, C;
o
oo

0.6 1 i | 1
0 .1 0.2 03 0.4 0.5
Radius Ratio, r/r,,

Figure 21. Limiting Curtet number for recirculation in a
constant-density flow within a cylindrical duct.

4.0 FORMULATION OF EXTENDED INTEGRAL ANALYSIS

All of the assumptions used in formulating the basic analysis are retained in the
extended analysis, with two exceptions. First. streamwise turbulent transport is not
assumed to be negligible in the first wake, second wake. first wall and third regimes (The
analysis of the first and second regimes is unchanged). Second, it is not assumed that the
static pressure is constant in the first wake and second wake regimes; instead, the axial
distribution of static pressure in these regimes will be computed.

4.1 BASIC EQUATIONS

The basic differential equations that describe the flow field are:

Continuity

9 (pur® + 2 (pve® =0 1)
dr dar
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Axial Momentum

pur? % + pvr® g_u = —r®
X r

Q.:'Q.v
* |

+ 0 (rr® + B (or®) 32)
or dx

where 7 is the turbulent shear stress and o is the turbulent normal stress in the axial
direction.

Element Species Conservation

pur® 9C 4+ pvr@ 9C - 2 (qr% + a_a(Bl'a) (33)
where q is the lateral turbulent species flux and @ is the turbulent species flux in the
axial direction.

As in Section 2.3, Egs. (1), (32). and (33) are integrated to obtain five integral
equations:

Overall Continuity

v dr dr
f 6_2 (pu) c%dr = p_u r _c e — (5)
c

Overall Momentum

r -
dr

w a+l _ a+l
9 gy - 2ra " uzra(_ir_‘"—[rw —rc] dp
! dx pu) e = pener dx Pulwlw 3 (@ + 1) dx
¢ r
+ f 9 (o) dr (34)
X

Half-Radius Momentum

m . |
J- gf_z_(puz)radr - u, j a_i(pu)radr =7, 1% + (u, - um)pcu_ra%

[a+1 a+1] 4 ;m
dp a aq 35
e o ;r 2 {o)r%dr (35)

Overall Species

r
w

. dr d
f a_?(' (pu(,)radr = pcucccr‘:‘ d_xc - Pwuwcw ¢\1\ i J' a (B)radr (36)
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Half-Radius Species

T
m

rm
d
f (_a_a._(puC)radr - C, f 9 (pu)r®dr = q.r% + pu (C, - Cm)rzi
X
r

r dx m dx
[ [

+ f 2 (@) dr (37

Equations (34) through (37) are the same as Eqs. (6) through (9), except for the last
term that appears on the right-hand side of each equation.

The static pressure is no longer assumed constant in the first-wake and second-wake
regimes. Therefore, an additional equation must be introduced to permit the pressure to
be calculated. The additional equation is chosen to be an axial momentum equation for
* the flow near the wall. Because 7 and du/dr are assumed to be zero in this region, the
wall momentum equation is:

o e _dp L d (o) (38)

4.2 STREAMWISE TRANSPORT TERMS
A gradient model of the streamwise transport processes is assumed. Therefore,

(39)

and

B = pedC (40)

where the eddy viscosity is assumed to be a function of only x; the eddy viscosity model
is the same as that used in the basic integral analysis (Section 2.6).

With the gradient model for o and B, the streamwise ‘transport terms in Eqs. (34)
through (38) contain second derivatives of u and C with respect to x. These second
derivatives cause the system of equations to be elliptic in nature; of course, the solution
techniques used for solving the integrated boundary layer equations are not applicable to
this elliptic system. However, the solution techniques described in Sections 2.7 and 2.8
can be used if the streamwise transport terms are computed approximately.

Leibnitz' rule is applied to the streamwise transport integral terms that appear on
the right-hand sides of Eqs. (34) through (37):
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f_ﬁ(a)radr— d faradr—a @ Tw oy g f@
r dx x 7 dx

[ [

r r

" " lr
f 4 (g)r%dr = 4 J' or%dr — ¢ % m oy o.r%
rc a)( dx rc X

¥ dr r
:" a_i(ﬁ)radr = ﬁ J' Br2dr - B % =+ B.r% =<
c

T

c

Now, we introduce the approximation that, at any x,

d_‘_’x_./-()radr = A_lx‘/‘()radr —Zl; [ﬁ)radr:l

9

" o dr d
:ra—‘z.(ﬁ)radr = dixrjﬁradr - B, i B.r% —<
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drc

o 41)

"li (42)
43)
(44)
45)

where Ax is the computation step size and the subscript "2" denotes a quantity evaluated
at the last upstream computation station, (x - Ax). With Eq. (45) and the definitions of ¢

and 8, Egs. (41) through (44) become:
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r v
a a _ ac a _ l‘w de
lJa—(ﬂ)r dr—A_Ex:rP xr dr p“er“.dex
[+ [
rw
dr  dC
a c_ 1 C
+ p.erg dxc A [e f P g_x r dr] (48)
rc Q
. . . dr_ dC
9 adr = e dC ragr - a fy &
:fax (ﬁ)l‘ ' Axr p x e Pm€ m dx dx
c [+
d ;m
r. dC
r¢ & “e_ 1 dC raq 49
+pcecdx dx Ax[f;fpaxr I‘]Q ( )
[

Similarly, the streamwise transport term on the right-hand side of Eq. (38) is
approximated by

d du
d = Yw_ 1 w (50)
4 (o) = Lop,e [p“s — ]Q

In the first-wake, second-wake, and first-wall regimes, the terms in Egs. (47) and
(49) that contain drp/dx are nonlinear in the derivatives of the dependent variables.
Therefore, in these regimes, dr,, /dx is approximated by (drp, /dx)g.

4.3 METHOD OF SOLUTION

With the approximate streamwise transport terms, Egs. (5), (34), (o). (36), 37,
and (38) can be transformed into a system of ordinary differential equations that is linear
in the derivatives of the dependent variables. The transformation procedure is the same as
used for the basic integral analysis.

First-wake regime - The flow is completely described by six variables (uy, 1;, b, Cw,
K, p). The resulting system of equations is

Ny ey Ny S N e N, S Nk N oy, D)
dx dx dx dx dx dx !
where N = F* for the continuity equation, N = G* for the overall momentum equation,
N = H* for the half-radius momentum equation, N = I* for the overall species equation,
N = J* for the half-radius species equation, and N = L* for the wall momentum
equation. The equations of the coefficients for all the regimes are presqnted in Appendix
B.
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Second-wake regime - The six dependent variables are (u,,, uc, b, Cy, K, p), and the
resulting system of equations is

Ny Sweon, By vy a2

dx = da dx dx

[=9
F

- N - N, (52)

5

|
+ N, %P
6dx

o

X

Third regime - The wall momentum equation is not used in the third- or first-wall
regimes. The five dependent variables are (uy, uc, p, Cw, K) and the system of equations
is

du du - d dC
N, ey Ny e o N, 2o N, 5wy N, 4K 2 N (53)
Pax Tl TR T e g v s 6

First-wall regime - The five dependent variables are (uy, rj, p, Cw, K), and the

system of equations is

dC
w + N

dx 5

o
-~

. du dr d
N vy Npo 1 + N, 2P 4 N
] 2dx 3dx 4

dx

Y (54)

2

X

With the coefficients evaluated numerically, Eqs. (51) through (54) are solved with
the same techniques that are used in the basic integral analysis.

4.4 INITIATION OF THE WAKE REGIMES

In order to account for the counterstream turbulent diffusion of species in the
vicinity of the FSP, the first-wake or second-wake regime (whichever is appropriate for
the particular flow) is initiated upstream of the FSP. Thus, the wake regime that is first
encountered in a given flow is initiated with a positive value of uy , rather than with u,,
= 0 as in the basic analysis.

As the outer flow approaches the FSP, the velocity decreases toward zero. In a
region just upstream of the FSP, the velocity is sufficiently low so that the turbulent
motion in the recirculation region can propagate upstream. Thus, the appropriate wake
regime must be initiated at the axial location where the approach velocity (u,) is equal to
an average turbulent fluctuation velocity (u’) in the outer flow.

The fluctuating velocity (u’) is calculated by assuming that the eddy viscosity in the
outer flow is the same as in the shear layer at the particular axial station. But the eddy
viscosity (€) is the product of a turbulent velocity scale and a turbulent length scale (%):

e =u'f (55)
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The length scale in the outer flow is assumed to be proportional to the width of the
outer flow, that is, to [ry - (r; + b)]. With the eddy viscosity defined by Eq. (23), the
turbulent velocity scale in the outer flow is described by

yo kblu - (56)
clr, - (r; + b)l
where c is a prescribed constant, which should be about one. At each axial station in the
first and second regime computations, u, is compared with u’ obtained from Eq. (56).
The appropriate wake regime is initiated when u, = u'.

4.5 DISCUSSION OF THE EXTENDED ANALYSIS

Although streamwise transport terms have been included in the momentum and
species conservation equations, the analysis must be considered at best only
"quasi-elliptic,” since it was developed only to compute approximately the locally elliptic
regions in flows that are grossly parabolic. Because of the assumptions in the analysis, the
downstream boundary conditions are implied to be only weakly coupled to the
recirculation region. That is, the duct must have no abrupt changes in cross-sectional area,
and must be long enough so that the flow downstream of the RSP approaches the fully
mixed condition. In essence, the downstream boundary conditions are assumed to be
isolated from the elliptic region by a region of parabolic flow.

5.0 CONCLUDING REMARKS

The basic integral analysis; which involves the solution of the integral form of the
boundary-layer equations, is -computationally efficient and yields results that are
sufficiently accurate for many purposes. Indeed, the predictions for the location and
extent of recirculation in ducted flows are very good, at least for flows with moderate
density gradients. -But the streamwise -turbulent transport terms, which are neglected in
the basic analysis, are important in establishing the concentration field near the front
stagnation point and in establishing the velocity field near the onset of reattachment.

In the extended integral analysis, which has been programmed for numerical
solution, the streamwise transport terms have been included in an approximate manner.
The validity of this quasi-elliptic analysis must be established by comparison with the
available experimental results on constant-density and variable-density ducted flows with
recirculation.

The eddy viscosity model used in this study yields satisfactory results for the flows
considered. But for complex variable-density flows, such as occur in combustion systems,
the simple eddy viscosity model can be expected to be unsatisfactory. A more
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sophisticated turbulence model, based on solution of the turbulent kinetic energy (TKE)
equation, will be required for complex flows. For flows without recirculation, the present
integral analysis has already been extended to include solution of an integrated TKE
eqution for the shear layer (Ref. 22).
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APPENDIX A
COEFFICIENTS FOR THE BASIC INTEGRAL ANALYSIS

The following parameters are defined:

y = (c = )b

r%dr = ab®ydy + rébdy; @ = 0 or 1

S]"k = a_az; {(pw)
Sea, = a(?Tk (pu®)
S3., = aa_k (puC)
S‘“k =p aik (u)
SSzk =p 6_?': Q)

where zy is 4 generalized variable.

The first and second regime coefficients (F, G, H, and 1) are:

1 1

a+t+l a4l

I, - ab? | S, vd a ls, d ('-_‘__'c);l(.)

1 a I];ly ¥ o j 1z, y + @+ ip P yu;
1] o

S i P
a =+ | H (Pa a)
1 1
F'2 = ab® fS” vdy + r‘izbs S]z2 dy

+

n a
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1

1
1 -1
G, = ab® |S ydy + t¢b | S dy + rtlh _ r‘: A (p.u?)
1 = “221- J i 221 v — a+1 dp 1]
[+]

a
a+l a+1 a+1 a+l
+ |- {r; + D7 d (Pau?) N L
a+l dp ) a+]

1 1
2
Gy = ab fszzz ydy + r%b IS222 dy
(+) o
1 1
2 v o
Gy = adb f52zs ydy r$b I~213 dy
[+ L]
1 1
2 dv
Gy = ab fs2z4 ydy + rfb J-s2z4 dy
o 0
1 1
d dr
Gg = -ab? !Sz ydy - rfb Is2z dy - pgul r4 %" + poul 1% T,
(4]
1/2 1/2 1/2
I, = ab® Sy, ydy - rb I Sy, dy - umab2J' S,, rdy
L+
1/2 1 1
a~1 a+l a* a+
¢ S Lk S d u?) — d ,)_rm ~Te
~u, b J-S]zl dy (—a++-) [d_p (p]uj) u 5 (p]u“] (_ —
o
1/2 1/2
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172 152 1/2 142
2 a , 2 ; . a .
Hy = ab fﬁzz.‘ vdy + r$b f52zq dy — u_ ab '[S]"s ydy — u b f SI/.‘ dy
n o a n
L2 1/2 152 1/2
2 . 2 : : .
I, = ab 52zl vdy + b 5214 dy - u,ab 9 ., ydy — u_ % b bl/" dy
4] 9 a [\]
1/2 1/2 1/2
= —ab2 fSZ 53"d." - rtlzb 527.__‘ yd)" + 0., ab2 fslz }’d}’
[ n o
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a g a a '
+u,t¢hb fblz"’ dy + r % - (u, ~ u ) p.u r? -
o
1 1
ot o atl ( ) b2 S d b 5 1
[, = i c 4 u.) + a ydy - r ¥
1 il e 3z, 3z,
[+]

‘;—.
I
2]
[=n
r~
17 2]
o
N
-
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]
+
]
-3
o
N
[0
N
-
=9
<

L 1

d
I. = -ab® |S +dy b | S dy + pu Cr a Te
5 32.—,.\' Yy - I ”37,5 ; cecee dx

° ("

In the first regime (where p; = pj,uc =uyjand C; =1),2; =p, 23 =r1;,23 = b, z4 = K, and z;
= x. In the second regime (where r; = 1), 23 = p, 22 = u., 23 = b, 24 =K, and z5 = x.
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The third, first wake, second wake and first wall regime coefficients (F, G, H, 1, and
1) are:

1 1
a+1 a+l
2 _ ) 1= (r,+ b)
F, = ab Jslzl ydy + r$b S]z1 dy + l: w — ] a_f_ (p )
o 4]
1 1
F, = ab? Islzz ydy + r%b Islzz dy
1 1
a+l _ a-l
F3 = ab2 J'Sly ydy + rtllb Jslzs dy + 8 ( : 7z 1 ) _(ﬂ; (p]u])

[+ a

- . el pn)
2 r, -~ -
F, = ab IS]Z4 ydy - r%b J-Slz4 dy - ( — ) agw (p,u,)

1 1
2 Av .
Gy = ab fs2z2 ydy + r$b Jszzz dy
() [+]
1 1
atl _ a+l at+l _ a+l
G. = ab? S, ydy « % S, dy + 8 (e ~Te Y+ 8 (D "Tc ) d (pud)
8 224 7 ! 27‘3y a+1 a+l dp Pifi
0 L+
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a+l a-1
. < . . ~(r ~h)
G, = ab> |S vdy - r2h | S dv + [Iw ) d_ 2
74 a J’ 214 s 1 241_,. ; P a(:w p“u“)
0 O
1
G, = ab? Iszzs vdy - c%b J‘S,, 5 dy
1 1
G, = —ab? |, viy — 1% |'s,. d 2 a4y 2a I
6 = " 22, Y¥ T T P22, B T PulaTw gt Pl
a o
1/2 1/2 1/2 1
H, = ab? szzl ydv + rabf 527‘1 dy - umab2 fs“‘l yd_v—umr‘ilb—/-sh1 dy
o o o n
1/2 1/2 172 1/2
2 : 2
H, = ab fSZZZ»d\ ' rgbf Sgs, d¥ = upab fslz ydy —u_ r‘l’bfsllzd),
a [] [+ [+
1:2 1/2 172
2 dv a ; 2 -dv
Hy = ab '[5223 ydy + r$b f 5223 dy - u ab IS]ZJ ydy
[+] 2] L]
1/2
ay S d o+l _patl e+l | ja+l q 9
- u_ r“ . o+ O _m ¢ )+ & e ) L (p.u?)
mot f 17, & a+1 a+1 dp Pi%]
ratl ra+1 ( )
- 51] 1 < a U
m P ap Ti'i
1/2 1/ 1/2 1/2
2 <
1, = ab Sy, vdy + b f Sg., 4 ~ ug ab? fsh4 ydy - u_ ab? fslz4 dy
[} [+) [+ [+
1/2 1/2 1 1/2
0, = ab? fszzs ydy + r%b fszzs dy - u_ absz]zs ydy — u_r%b fslzs dy
n 0 [o] [+]
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1/2 1/2 1/2
2 v a . 2 dv
He = -ab fszzﬁ)d} - r%b fszzﬁd) + u_ab fslzﬁ ydy
0 Q ]
1/2
+ u, r¥b ./-S]zﬁdy + 7,2 4+ pou ré ddL: (u, ~ u,)
o
1 1
a+l a+l
2 . a , "w —(ri+b)
I, =ab fSSZI)dY - b fs3zl dy + ( P ) a‘?w (pwuwa)
[+ o

I, = asz 5322 ydy + rfb S3z2 dy

9 r&tl _ L atl d
= d ab ; 2 ¢ )18 b,
Iy ab 5323 ydy + rf Ssza dy + & e ) T (pjuj)

1
r&Fl _ . 4 pRtl
Vv . w i ¢
14 = agb? 5324 ydy - rf b! 5324 dy - ( ) ac. (Pw“wcw)

a-+ ]

L
I, = abzf 53zs ydy + riabf 5325 dy

[+]
1
Iﬁ = _ab2 S vdv — r2b S dy - puC radi—p uwC ,ra_dl
3zsaf i 326 cc ccdx w ““'dx

1/2 1/2

Jl = abzf s3zl)'dy + I'iabf Sazl d)’

o ° 1/2 1/2

- Cmab2f Sl?']_ yd_\' - le‘iabf S].Zl d}.

9
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1/2 1/2
- Cmabzf S]z2 ydy — Cmriabf Slzz dy
& °
1,2 1/2
]3 = ab2/ 8373 ydy + rfzb S3z3 dy
1/2 1/2
_Cm abz 8123 ).-d)r — Cmriabf Slza dy
I_.LH-]. atl p
i c
. 3(1—Cm)( - )H(pju])

1,2 1/2 1/2

Js = a.b2f 5325 ydy - riabf 53z5 dy — C,, ab? [ Sl'l-s ydy

o

1/2 1/2 1/2

Jg = _abzf S326 ydy — ri‘lb/ 5326 dy + C, a.bzf S]zs ydy
o

1.2
dr
+ Cmr? bf S]zﬁ dy + Pclc (Cr,-Cm) rg_c +qm rrﬁ

dx

In the third regime (where r;=r1.,b=ry -Te,and § =1),z; = uy, 23 U, 23 =P, 24 =
Cw,z5 =K, and zg = x.
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In the first-wake regime, z; = uy, 23 =15, 23 = b, 24 = Cy,, 25 = K, and zg = x (the
pressure is constant in this regime; therefore 6 = 0).

In the second-wake regime (where r; = 1), Z; = Uy, 23 = U, 23 =b, 24 = Cy, 25 = K|
and zg = x (the pressure is constant in this regime ; therefore & = 0),

In the first-wall regime (where b=ry —rjand 6 = 1), 2; =uy, 23 =13, 23 = p, 24 = Cy,
zs =K, and zg = x. ’ ’ )
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APPENDIX B
COEFFICIENTS FOR THE EXTENDED INTEGRAL ANALYSIS

The parameters defined in Appendix A are also used in this appendix. Whenever
possible, the coefficients are written as the basic analysis coefficients with additional

terms as required.

In the first-wake and second-wake regimes, the coefficients (F*, G*, H*, [*, J* L*)

are:
lq‘]* = lq]
[72* — Fz
1:'3* - ]:‘3
]'.*4* - |:'4
lc‘.* = F‘s
1 1
a+l a+l
F* = gb® [S,. ydy + r2% [S,. d +('i;'c)i(..)
6 “ j'z(,nyr ! f”ey (@+ 1) dp Pt
[+ 0
NIRRT
@+ D * 3p
l"T* = Fﬁ
1 1
2
G;* = G - ab i ‘[Shl wly - r'lzb ALx Isi7l dy
[+ o
a+l _ a+ d
- &L Pw < (e, + b) 1] = ep 1% Tw
Ax @+ 1) w dx
1 1
- 2 dr
Gy* = Gy ~ ab? £ |S,, ydy - ab fs,ﬂ dy ~ ecprl —=
o ]
1 1
" er®
Gy = Gy ~ ab® & 5123 ydy - 2 fsq'zs dy
o [J
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1 1 1 !
2 , 2 ‘dv
Gg* = ab _[52’6 ydy + % f52z6 dy - ab A Is-uﬁ)d) - rgb A fs4z6 dy

[+]

-}
I - I 1 1
N (r':H'1 +) [a —(r + b))% ] 2 aP“ + l'?+ a+] (P u2)
(a+ 1) la + 1) 9p -1 dp
a
G* = Gg - A_lx far dr
T Q
1/2 1/2
2 .
Hi* = H; - ab I_\Lx Sy, ydy - r$b Ss'x_ J- 5421 dy + liepmr?n (dr,/dx)g
1/2 1/2
2 r
Hy* = H, — ab ALx S4, ydy - r%b Af_xf S4z dy PSS _d_;:_
1/2 1/2
2
Hq* = Hy - ab A_fx f 5423 ydy - r$b i f 5473 dy
[+ [+]
Hp = H,
H* = I,

172 1/2 1/2 1/2

Hg* = ab? f Sg. ¥dy + r?bf Sy, & - u,, ab? f S1a, ¥y - umr‘;bfslzsdy
o [ ] o

6
o

1/2 1/2 ( . 1)
a+ a+
- ab? ¢ S dy — _€ % S, dy+ MNa. " / d
ab A_f 425 7Y Ay i 4z, VT @+ 1) (Plu)

o

( atl _ a+l) ) (atl _ a+l : @ (3 /dw) Ju
- . m c 1 r r/dx)y —_¢
m T @+ ) (l u’ ¥ a+l Ty Pmlm i T P
1/2 1/2
2
+ ALx. ab J‘S.;y? ydy + i r?b J- S4z7 dy

° o
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> = Hy - . f or?® dr
. Ax
rl 2
1 1
: I, dc
I~ =1, - £ab? |S, ydy - € % S, dy - a e
I ! Ax @ f Dzl y ) AX r' azl " Ecpcrc dx allc
[} [+
1 1
) a dr ac
I* =1, - ﬁab szlz vdy — h\_f‘_ rll)J‘,5z d; €.pcre d: 7
[+] [
1 1
Ed 2
L= =1, - _f: ab fsszs ydy - ALx rb fsszs dy
a =]
1 L
ko 2 Q velr a r ar
I* =1, - A_fx ab f35,4 vdy - Ac_x ribISSz dy €PTo d: rﬁv
[<]
a+l a+l
- £ p, [r“' — (= B ] + ep, 1% dry,
Ax @+ 1) v dx
1 1
2 oc
I* =1, - i ab f5575 ydy - ALx r¢b J‘Ssl dy - ¢,p 2 - £ GKC
[} [*]
1 1
at+l _ a+l +1 1
I* = ab? S, ydy + r%b JS, dy + rl—rc) _d (pjuj) + [rt‘lv - ('|+l’)a+]
6 6 @+1) dp @+ 1)
0 [}
1 1
dp 2 . a dr, 9C
xi u C, ___5 - i ab jsszﬁ ydy — i rib 1S5, dy - e p 1@ d: _a_pc
' [+] o
Tw 1 1
I* = I, - _L ad ¢ ab? |S.. ydy + € ¢
7 6 Ax j Brédr| + A a f 5z, ydy Ax ib 55z7 dy
b ¢ ° °
1/2 1/2
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1/2
. de g
2 = Ay C [
Jo* = Iy - Be—x ab f S.:')zzyd)r - A—‘x I.cizb f 5522 dy - ‘cpcrc:- ' GT
° (llr
Pm” m dx /@ au
1/2 1/2
2
]3* = J3 - ﬁ ab f 557.3 ydy — ﬁ r‘lzb f 5573 dy
1/2 1/2
2 aC
.]4*=J4—A_‘xabf5524ydy—ﬁ r‘ilb./-Ssz dy - ep, o ( 03c
[ [>)
1/2 1/2
2 .
.15* = J5 - A_Ex ab fsszs ydy - ﬁ r‘llbf 5525 dy
] [+]
dr . dJ o
- €.p.t2 d_xc BKC + ep % (dr fdx)g _m
1/2 1/2 1/2
Jg* = abzf Sg, vdy + r‘i’bf Sg, dy = C ab S, ydy
1/2 1/2 1/2
. 2 dv .
- Cmr‘i’bf Slz‘5 dy - IE:': ab fSSZsydy - A_Ex r‘i‘bfsszﬁd}
o <o
a+l _ a+1 a+l _ a+1
[ ] 4 (p,u) - C, [ ] 4 (p.u)
(a+l) dp 11 (a+1) dp )
_ a dr, acc dr /d ac,,
€cPcle Ix Jp + €py Ty Uy x)2 Tp
*m 1/2 1/2
2 " r
= Jg - A I Brede | + 5 ab f S5, YO - £ rfb f S5z, B
ri 2 o o
Li* = pyuy - ﬁ Pw
L*=0
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Ly* = 0
Ly =0
Lg* = 0

Lg* = 1.0

du
I_I-* = = 'l_ w
‘ Ax [pwE dx ]2

In the first-wake regime (where C. = 1 and e. =0), 21 =uy, 22 =15,23 =b, 24 = Cy,
z5 =K, zg = p, and z7 = x. In addition,

du/dx = 0

In the second-wake regime (where r; = 1. and €, =€), Z3 = Uy, Z3 = Ug, Z3 = b, 24 =
Cw,2z5 =K,z =p,and z7 = x.

The coefficients (F*, G*, H*, I*, J*) in the third- and first-wall regime are:

Fy* = I
F2* = F2
Fg* = Fy
Fg* = F,
Fg* = Fg
Fe* = F,
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1 1
2 d
G2* = G2 - ab ﬁfs472ydy = l-citb .Se_x fs4z2d"' Eopcrcé ‘—XE
[ ] [1]
1 1
G,* = G, — € ab® |S dy — € % [S, d
3 3T A f4z3Y> Ap i f4 y
[+ ] []
Gy = G,
Gs* = Gy

X 6 A X

) r 4 ts )

1/2 1/2
dr
= 2 (dy — r%b _€ d 1 2 m
"1* = H] - agb i f54zl ydy rlb & f 547 y + TN -

[+ [¢]
1/2 1/2

—_
-
*
1]
et
==
L]

o o E ¢
1 1
dr  dC
I, *=1 - € ab S ydy -~ € r%b S ly — @ ¢ c
1 1 xa IS/ ydy Ax s ISI dy €PcTe dx a“w
o (]
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1 1
. dr gC
I* =1, - € ab? | S, ydy - € r9 [S. dy — 1@ e e
2 2 Ax * fszzy Y Ax ! J‘57‘2 y ‘ePele dx auc
[+] [
1 L
aC
I,* =1, - € ab® |S.. ydy — _¢ r2 |S. dy - a o,
3 3 ._\xa j 3)' y _\xrl f573 ¥ €PcTe ix op
[+ [:]
1 1
2 v dr dr, dC
14* = 14 - A—Ex ab f5524 ydy - Z\c—x r‘llb jss,‘, dy + €, T2 - fcpcrfé dc a(‘c
[+ [«]
1 1
dr_ gC
I = 15 - A‘—x ab? fs'z ydy - ﬁ b f557 dy - ecp.r dr 9K
[+] [
1 1 ow
2 a 4]
[6* = |6 + A_Ex ab f557 ydy + ﬁ rlbeSZG dy - _Lx Br®dr
0 ] T Q
1 1
= 2 , a dr_ gC dr  9C
e o [ =[S b e ot 3 e Y 26
[*] [} w w
1/2 1/2
2 vdv
Jg* =y - & ab f S5, Yy - 3£ rc;bf S5, 9
[:] o a drm a ‘m a dl’c aC
T PmTm g, T fePele T o
[+
1/2 1/2
= 2 v
Jg = I3 - St; ab / SSZs ydy — ﬁ rf‘bK/- S.'-_'.as dy
dr_ dC d ac
+ P I'?'larm ) = cPc g drc ]
X p X p
1/2 1/2
* € 2 cdv .
Jo = J4 - £ @b f S5., vdy - irf’b'[ Sz, ¥
(/]
d d
NP N
X Cw
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172 1,2

* 2 . .y € .a
.ls = -l._-) -_ ix- ab E[ Sszs "d" - A_x r'l bf Sszs dy

dr a("m dr, dC,
t €Pm rl‘.'l"; dx ""—aK - €cPe ca' d: aK
r
1.2 1.2 m
* 2 e , 1
Te" = Jg + _;_x ab f 5526 ydy + i r{zb'[ S”Zﬁ dy — o J- B radr
0 rl 2

In the third regime (wherer,=r, andb=ry - r.), Z; = Uy, 22 = U, 23 =P, Z4 = Cy, Zs
=K, and zg = x. In addition, €; = € and du/ap = du./ap = 0.

In the first-wall regime (where b=r1y -1;, C.=1l,and e, = 0), z; = uy, 23 =71, 23 =
p, 24 = Cy, 25 =K, and zg = x. In addition,

9C = 9t - ¢
du dp
ac ac ac ac
m — m m _ L JEPRE
auh r'!ul_ ﬁrl dp
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NOMENCLATURE
Shear layer thickness
Element fraction of primary stream gas
Curtet number
Constant in Eq. (56)
Wall skin friction coefficient
Specific heat at constant pressure
Coefficients in system of ordinary differential equations for basic analysis

Coefficients in system of ordinary differential equations for extended
analysis

Front stagnation point

Stagnation enthalpy, including chemical heats of formation
Eddy viscosity coefficient

Eddy viscosity coefficient for constant-density flow
Parameter in species profile equation

Turbulent length scale

Mach number at half-radius control surface

Generalized coefticient in system of ordinary differential equations
Static pressure

Lateral turbulent species flux

Lateral coordinate

Lateral distance from centerline to centerbody surface
Lateral distance from centerline to inner edge of shear layer

Lateral distance from centerline to half-radius control surface
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Tn Primary nozzle exit radius

I'w Lateral distance from centerline to duct wall
R Gas constant

RSP Rear stagnation point

S Generalized integrand (Appendixes)

Sct Turbulent Schmidt number

T, Total temperature

u Axial velocity component

Uy Characteristic velocity defined by Eq. (31a)
u Turbulent velocity scale

v Lateral velocity component

X Axial coordinate

Ax | Integration step size

y Dimensionless mixing zone coordinate (Appendixes)

z123...Zx  ‘Generalized dependent variable {(Appendixes)

a Geometric parameter (one for axisymmetric flow, zero for planar flow)
g Turbulent species flux in axial direction
5 Numerical factor used in the appendixes (8§ = 0 where pressure is constant, 6

= 1 when pressure is variable)

€ Turbulent eddy viscosity

P Density

o Turbulent normal stress in axial direction
T Turbulent shear stress
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SUBSCRIPTS

1

Conditions in plane of primary nozzle exit

Conditions in isentropic secondary flow

Conditions at centerline or at centerbody surface

Conditions in isentropic primary flow

Indicates a quantity evaluated at last upstream computation station
Conditions at half-radius control surface

Conditions at duct wall
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