
u.u SYSTEM UEVELOVMtNI CORP SANTA MONICA CALIF F16 WI —

NU SOFTWARE ACQUI SITION MANAGEMENT GUIDEBOOK: SOFTWARE MAINTENANCE—ETC (U)
OCT 77 .1 R STANFIELD. A M SKRUKRUD F19628—76—C—0236

IMCLASSIFIED SOC—TN—5772/OO*/02 ESD—TR—77 —327 It

~ti.

I
I

END I
OATh

FI L NE 0

______ 5-78
DOC

1.0 I~~~~~ ~~~~

_ _ _ _ ~~ ~ 2.2

LI ~ ~

• Ui!)’ .25 1111I~•~ HM~•6

MICROCOPY RESOLUTION TEST CHART
T~O~ A1 BUREAU O~~SI M~DA~DS ~% 3 3

ESD~~~~ 77~3fl

_ _

S O F T W A R E A C Q U I S I T I O N M A N A G E M E N T ___

G U I D E B O O K : S O F T W A R E M A I N T E NA N C E

LC~ J. R. Stanfield
A. M. Skrukrud

October 1977

Approved for Public Release;
—

D stribuflon Unlimhed. ~
)

Prepared for

DEPUTY FOR COMMAND AND MANAGEMENT SYSTEMS
ELECTRONIC SYSTEMS DIVISION
HANSCOM AIR FORCE BASE, MA 01731

-~~~

~~~ Tii~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~

LEGAL NOTICE
.

When U. S. Government drawings, specifications or other data ore used for ~purpose other than a definitely related government procurement operation, the
government thereby incurs no responsibility nor any obligation whatsoever; and
the fact that the government may have formulated, furnished, or in any way sup-
plied the s&d drawings, specifications, or other data is not to be regarded by
implication or otherwise as in any manner licensing the holder or any other person
or conveying any rights or permission to manufacture, use, or sell any patented
invention that may in any way be related thereto.

OTHER NOTICES

Do not return this copy. Retain or destroy.
This Technical Report has been reviewed and s approved for publication.

WILLIAM J. WHITE, Capt, USA? JOHN C. MOTT-SMITH
Project Engineer Project Manager

~~~~~~~~JOHN T. HOLLAND, Lt Col , USAF
Chief , Teàhnique s Engineering Division

FOR THE COMMANDE R

c~~~~~~6S~~, colonel , USAF
Depu ty Director , Co~npu ter Systems

Engineering
-

-.

r
~~~~~~~~~

-
~~~~
-

~~~~~~~~~
—- ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _

UNCLASSIFIED
SECURITY CLASSIFICATION OF Y MIS PAGE (Wh.n Data Entered)

REPORT DOCUMENTATION PAGE 
ACCESSION N; 

READ INSTRUCTIONS

___________________________________________________ 
BEFORE_COMPLETING_FORM

1
~~~~~~~ c IPIENT S~~~~~~~~~

(
~2~~ •..j~I ? 7~~!~~~]

GOVT .
OVE RED

(~~ ~~~ ontract ~k JunU~OFTWARE ACQUISITION MA
___________~ UIDEB O0K

— i Oct

~

~~~~~~~~ 4. TITLE (mid Si.btiti.) 
____________________

D. s~~ n unmun ~s .., O
~~LJi~~~~

uIER

________________  

~-‘TM-5772J~~4~V21 ~~~~
-
.

I~~ (LUTIIt ( 

tanfield 
NUMBER(s )

~~~~ ~1~~.~~kru krud J ~~F1 9628- _C
~~~36] —

~~~~

~~~ _ _ _ _ _ _ _ _ _ _ _ _

~~. PERFORMING ORGANIZATION NAM E AND ADDRESS 10. PROGRAM ELEMENT. PROJ E
AREA & WORK UNIT N U M B E

SYSTEM DEVELOPMENT CORPORATION
2500 COLORADO AVENUE 

.
- 

PE64740F, Project 2
SANTA MONICA , CAL . 90406 

_________________________

U A U CI I .  CONTROLLING OFFICE NAME AND ADDRESS

Deputy for Command & Managei~~nt Systems (
~ ~~~~CD f tC!~Lectronic Systems t~.vision

Hanscom .AFB, Mass. 01731 
__________________________

14. MONITORING AGE NCY N A M E  & ADORESS( 1I dilI. ,.nt Iron, Controtltn4 0111cc) IS. SECURITY CLASS. (ol this r.port)

UNCLASSIFIED
~iT ,

SC H E D U L E

19. DISTRIBUTION STATEMENT (01 this Report)

Approved for public release; flistributi on Unlimi ted

D o c
~17. D ISTRIBUTION S T A T E M E N T  (of th, abstract .nt.,.d In Rlock 20. II dilf.r.nt from Report)

p~’~ 
24~~~ I\I I

I I
1$. S U P P L E M E N T A R Y  NOTE S ~.

. .
19. KEY W ORDS (Continue on rev.,., aid. If nec.asasy mid Identify by block number)

COMPUTER PROGRAM MAINTAINABILITY SOFTWARE MAINTAIN ABILIT Y
COMPUTER PROGRAM MAINTEN ANCE SOFTWARE MAINTENANCE
MAINTAINABLE SOFTWARE
MAINTENANCE

~O. A 9 ST RA C T  (Continue ml r.v.te. aid. if n.c.a.aty and ld.nt lij. by bloc k numb. ,)

This report is one of a series of Software Acquisition Management (SAM)
guidebooks which provide information and guidance for ESD Program Office

• personnel who are charged with pl anning and managing the acquisition of
coimnand , con trol , and comunicatlons system software procured under Air
Force 800 series regulations and related software acquisition management
concepts. ~~~~~~~~~~~~~~~~~~ 

.. .~ -

~~~~ FORM j

~~~ i JAN 73 •~~3 LOITION OF I NOV 65 Ii

SECURITY CLA  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ :

::iTi

~~~

:’::: :~:::::~ .~L:..



UNCLASSI FIED
SECURITY CLASSIFICATION OF THIS PAGE($7, .n DaIa Eni.,.d)

20. ABSTRACT (cont’d)

The scope of this document is l imited to those acquisition and development
/ activities , occurring throu ghou t the SAM cycle , whic h impact software mainten-

ance. It includes discussions of system turnover to the using command and the
transfer of program management responsibility to the supporting command . The
computer program life cycle is al so considered . Most of the information
provided in this report covers the impl ementing command’s responsibilities
during the SAM cycle. However, software ma intenance dur ing the Deployment
Phase i s also d iscussed to prov ide the bac kground for proper pl ann i ng . Curren t
programming concepts are discussed as well as thc~ military regulations, speci-f ications , and standards. Within these constraints , th is report emphas izes
what the Program Office can do to spec i fy and procure ma inta ina ble software ,
includ ing procureme nt of the fac il iti es , support tools, an d documen tation
necessary to sup port software ma i ntenance ac ti v iti es.

,. ~~ ~~ .—~~~~ c~c,
‘~~ .~~~~ ~~~

~c . - -— —.

~~~~~~~ 
,.,~~~~~

‘

‘ ~~~~~~

\••
~~~~~ 

‘

~~

‘ 
. 

~~~~~~~~~~\ç- ~~~~~ ‘ I

_--. UNCLASSIFIED
SECURITY CL*SS,FICA ’ ,O N OF T HIS PAGt(R7,.n Data Fnter..f I

~~~~----~
—

~

. ..--. .-.-
~

- - -.  _~.. —.. -
~

- -..-.- — .- -.-
~ 
.. —.-.-- —.-—.—— - ..__~,_ — —



-- ~~~~~ —~~--
. -

~~~~~~~
- - - -- - -.

PREFACE

The Software Maintenance guidebook is one of a series of Software Acquisition
Management (SAM) guidebooks designed to hel p ESD Program Office personnel in
the acquisition of embedded software for command , con trol an d comm un ica tions
systems. The contents of the guidebook will be revised periodically to
reflect changes in software acquisition policies and practices as well as feed-
back from guidebook users.

This report was prepared by System Development Corporation (SDC) under the
direction of the Computer Systems Engineering Directorate (MCI) of the
Electronic Systems Division (ESD), A ir Force Systems Command (AFSC). Contri-
butions were made by: Mr. 3. Mott-Smith and Captain W. White (ESD/MCI);
Mr. 3. Trachtenberg (AFALD/AQE); Mr. M. Landes (RADC/ISI); Mr. M. Ml eziva (ESD/
EN); Mr. M. Zymaris (ESD/DRT); Mr. 0. Peterson (The MITRE Corporation);
Captain 3. Haughney (AFCS/LO); and Mr. G. Gehlauf (AFLC/LOAK).

The SAM Guidebook series covers the following topics (National Technical Infor-
mation Service accession numbers for those already published are shown in
parentheses):

Regulations , Specifications and Standards (AD-A0l 640l)

Contracting for Software Acquisition (AD-A020444)

Monitoring and Reporting Software Development Status (AD-A01 6488)
Statement of Work Preparation (AD-A035924)

Review s and Audits
Computer Program Configuration Management
Computer Program Development Specification
(Requirements Specification)

Software Documentation Requirements (AD-A027051)

Verification
Validation and Certification -

Overv iew of the SAM Gu idebooks
Software Ma i ntenance
Software Qual ity Assurance
Software Cost Es tima ti on an d Measuremen t
Software Development and Maintenance Facilities (AD-A038?34)

Life Cycle Events (AD-A037ll5)

1
(Pa ge 2 blank)

~

p --
. ~~ iT~~~~ i~~~~~~~~~ T .T

- ‘

~~~~~~ ~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~

TABLE OF CONTENTS
Pa ge

PREFACE 1
LIST OF FI GURES 4

SECTION 1. INTRODUCTION 5

1.1 Purpose 5
1.2 Scope 5
1.3 Software Mainta i nabilit y 7

1.3.1 Definition 7
1.3.2 Factors which Support Software

Maintainability 8

1.4 Contents 10

SECTIO N 2. AC QUIRING MAINTAINABLE SOFTWA RE 11

2.1 Defining and Specifying 11
2.1.1 Planning Considerations 11
2.1 .2 Development Specifications and the

Full-Scale Development Phase RFP 14

2.2 Monitoring and Evaluating 19
2.2.1 Preliminary Design Review (PDR) 19
2.2.2 Critical Design Review (CDR) 21
2.2.3 Coding and Debugging 23
2.2.4 Formal Qualification Test (FQT) 24
2.2.5 Functional Configuration Audit (FCA) . . .  26
2.2.6 Physical Configuration Audit (PCA) 27

2.3 Design Change and Error Correction Control 27
2.3.1 Design Change and Error Correction 27

2.3.1.1 Version Concept 28
2.3.1.2 Design Control 29
2.3.1.3 Error Correction Under Internal

Configuration Management 30
2.3.1.4 Updating Process 31

2.4 Trans fer an d Turnov er 32
2.4.1 Configuration Management 33
2.4.2 Change Processing During Transfer and

Turnover 33
2.4.3 Software Documentation 34

2.5 Maintenance During Deployment Phase 34

3

- -~~~~~~~--- .,~~~ ~~~~~.. -- -
~~~~~~~ 

.—- -
~~~~~~~~~~~~~~~~

--  - --



~~~— — —w—~~w ~~~~~~~~~~~~~~~ 
- -

~~~~~~ 
-

~~~ ~ -;:~~ ~~~~~~~~~~~~~~~~~~~ 
.— -

~~~~~~~~

- —:

- -. . - - -~~ - -

TABLE OF CONTENTS (cont ld )

Page

SECTION 3. APPLICABLE REGULATIONS , SPECIFICATIONS , AND STANDARD S . . . 37

3.1 RSSs with D i rect Impact on Software Ma i ntenance . .  37
3.2 Implementation of RSS5 39
3.3 Potential Pitfalls in Applying RSSs 41

APPENDIX A - Des ign ing Ma inta ina bl e Software 43

APPENDIX B - Glossary 57

APPENDIX C - Bibliography 61

LIST OF FIGURES

Figure 1. Sumary of System Acquisition , Mode l CPC I , Computer
Pro gram Life Cycle , and Command Responsibility 6

Figure 2. Milestones for Acquiring Maintainable Software 12

Fi gure 3. Cost of Approaching Hardware Capacity 16

Figure 4. Softwa re Errors Cost More to Fix as Computer Program
Life Cycle Advances 22

Figure 5. IlHarmonics u Nature of Error Corre cti on 29

Figure 6. Design Approaches to Increase Module Independence 45

Figure 7. Some Approac hes for Defi n i ng Modules 46

Fig ure 8. To p Down Developmen t 49

Figu re 9. Summary of Coding Techniques 51

Figure 10. Chec kl i st for Commen ti ng Computer Program Code 52

Figure 11 . Structured Programming Basic Control Structures 54

S

4 

~~~~- - . ~~~~~~~~~~~~ --~~ ~~~~~~~~~~~~~~~ -~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~-~~~~- ~~~--



~~~
‘ T  

- 
-

SECTION 1 - INTROD UCTION

1 .1 PURPOSE 
-

The Software Maintenance guidebook is designed to assist Air Force Electronics
Systems Division Program Office personnel in the acquisition of mainta inable
command , contro l , an d commun ications system software procured unde r A i r Force
800—series regulations and related software acquistion management concepts.
Many of the items and procedures discussed are applicable to smaller , l ess
compl ex systems; but , i n al l cases , the guidance herein should be tailored
to the needs of individual projects. The information provided in this guide-
book is directed towards Program Office management personnel and a member
of the Engineering Division , referred to as the Software Director , who is
generally responsibl e for managing software acquisition.

1.2 SCOPE

The scope of this document is limited to those acquisition and development
activities which impact software maintenance and which occur prior to the end
of Full-Scale Development. It includes discussions of system turnover to the
using command and the transfer of program management responsibility to the
supporting command . The computer program life cycle is also considered . Its
relationship to the Software Acquisition Management (SAM) cycle is shown in
Figure 1. Most of the information provided in this guidebook covers the
impl ementing command ’s responsibilities during the SAM cycle. However,
software ma i ntenance during the Deployment Phase is also discussed to provide
the background for proper pl anning . Current programming concepts are
discussed as wel l as the military regulations , specifications , and standards
(RSS5). Within these constraints , this guidebook emphasizes what the Program
Office (P0) can do to specify and procure mainta i nable software, incl ud i ng
procurement of the facilities , support tools , and documentation necessary to
support software maintenance activities. Guidance is given by:

• Defining software maintainability and those factors necessary
to achieve maintainabilit y (see 1.3).

• Locating those points in the acquisitio n cycle where the maintain-
ability aspects of software can most appropriately be evaluated
(see 2.2).

• Listing those considerations which should be made to identify -

• support requirements , e.g., facilities , support software, and
training (see 2.1).

• • Defining the role of testing in the acquisition of maintainabl e
software (see 2.2 and 2.3).

5

- $1 

- .. -~~~~~~~~~~~~~~~
- - — . -

~-- _;~ .:_ _ .-_.__~~~_-~~~ - — -  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
_. -~~~~ _- ---—~—-~- _z. .~~~

____ __ -. .~~ . . .~~~~... _ -:~~~~~



~~~~~~~
— -

~~~~
-.‘-‘

~~
‘—-

~~ 
- -
~~~~~~~~~~~~~~

-—
~~~~~~~~~~~~~~~~~~~~~~~~

— I- —

I-
0LiJ I/) O.. —

‘ E ~~.. 
I—.

‘ >- 0
0 —. I/I 0S __I 00~ —

~~~ ~~- 00
05 LU — L)
‘—. 5 0 ~~ — U) C

D LI.. 0 0 0
C..) ~ 0. — — —. —~ .0

S 0.. 0 0 I— I— I—
0 5 ~~ 0 — < (.~ C.o ‘ I— I— —I

— LU —0.. C..) LU ~~ I ~~~ 0.. U)
— 2°U) —C. .) — I—

L.) 0 — o.
>-~~~~ W O .~~ E0 o - .~~>1 I-

— ...J 1-0
C..) < (_) 0. —. 0
0. ~~ ~~ ~~ s-i .0
C~) 0~ 0 sO

~~ .1I- — —‘ I- I- U)
LU .4 0. sB C/) C..)

‘-a0 5-. LU LU — w.4 c)V 1 1- LU
Li.) LU o
>. _~ ~~~~~ 00 C..)

~ ~~~~~~ -~~~0LU LU __ 0 0 - LU to._.i C.) 0
00L) 0C.)

LU — Z C.)
~~~ . —  LU I~~~_l 1 C.) .._ -~~~z ~ C.) ~— c_~ I/) C. to

~~ 
~

) .~~~~~ -i U.) C)
I— U) C.) 0
LIJ W ~~ ~

)Z 00  0 LU —

S — — 

~ u~. LU W I.)L U ,  — ‘-I >,
2 0 t f l (J

~~~>-C.  1—0C.) 
~ ~~ — ~~ — ~~~ Cl) 0)

U- ‘4-
—

~~~~~~ ~ II II
H

0

— — I
~~

z
~ 

— .g’
U-

>~~~°C/) L )
LU
0.
Cd,

-J

2
0. 1-Li.)
C.) LU~~~I- .-.
0
C.) >- LsJ

—

U. C.)
.~~ Cd,

6 

—I.. -- — ~~~~~~~~~~~~ - —
~~

—. 
- — .— - ——-—.———--.



-- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- -

• Outlining the relationship of the Computer Resources Integrated
Support Plan (CRISP) to the acquisition process , to the Program
Management Responsibility Transfer (PMRT), and to software
turnover (see 2.1 , 2.4, and 2.5).

• Describing the various concepts and tools which can aid in the
acquisition of maintainable software (see 2.1 and 2.2).

• Discussing the significance of configuration management concepts
to software maintenance (see 2.1 through 2.5).

• Describing the use of a Program Support Library (PSL), version
releases , and Version Description Document (VDD) (see 2.2 and 2.3).

• Identifying pitfalls and practical approaches to developing
maintainabl e software and controlling the software maintenance
process (see 2.1 , 2.2, 2.3, and 2.5).

• Discussing a strategy for handling software maintenance for
multiple sites (see 2.5).

This guidebook does not elaborate upon the various types of funding citations
or their use . However, the SD should be aware that (1) the implementing com-
mand is responsibl e for planning the necessary funds for development through
the Full-Scale Development Phase , and (2) that these are normally R&D funds .
After PMRT , the supporting and using commands are responsible for funding
operational support and maintenance (Operations and Maintenance [O&M] funds).
Therefore , the discussion in this guidebook , from Conceptual Phase through
Ful l -Scale Development Phase , is concerned with activities which the SD can
control . Subsequent to Full-Scale Development , this guidebook is concerned
with activities for which the SD must plan.

1.3 SOFTWARE MAINTAINABILITY

The following discussion defines software maintainability and identifies
the factors necessary to achieve maintainabilit y .

1.3.1 Definition

Computer-based command and control systems character istically have a long
life and usually must be adapted at one time or another to new operational
requirements or to new equipment . In these events the computer program must
be modified , or extended , perhaps drastically. In addition , although thor-

-
• oughly tested prior to transition and turnover , l ar ge sof twa re systems

7

--—. L~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -

inevitably contain undiscovered errors which surface eventually and must be
corrected. In this context, then , the following definition of software
maintainability is adopted :

Software maintainability is the property tha t, within a given
operational environment, software can be corrected , amended,
or modified to meet new requirements in a timely and cost
effective way, ‘and without regression of the parent system.

The word regression in this definition refers to an unfortunate property in
some large software systems that modifications to one portion may provoke
errors in another. Changes therefore may lead to a domino effect requiring
more changes and more testing. Some old , muc h modified systems or modules
may actually die of regression .

1.3.2 Factors which Support Software Maintainab ility

Factors affecting software maintainability fall into three categories:

• Personnel , facilities , and tool s.
-

• Documentation and configuration management.

• Inherent design and understandabilit y .

Personne l , facilities , and tools comprise the maintenance environment , part
of the operational environment caveated in the definition of software
maintainability . Although this environment is the responsibility of the
maintenance organization , the acquisition organization must understand it
wel l enough to account for its essential needs prior to turnover. For
personnel , consideration of the qualifications of the maintenance programmers ,
whether entry level , blue suit , intermediate , or system level may infl uence
the choice of programing language . For instance the automatic test equip-
ment that is part of a large radar early warning system should be programed
in ATLAS , an application-spec i fic language which allows knowledgeabl e
hardware people who do not have specific programming experience to construct
new tests. If a more general , procedure-oriented language such as FORTRAN
i s used , more expensive training requirements will be generated that will
endure for the life of the system. Issues such as this should be addressed
by the P0 in conjunction with the Computer Resources Working Group (CRWG),
and necessary analyses and trade-offs performed and referenced in the CRISP.

8

~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - —~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



Facilities , as opposed to tools , are existing facilities within which
software maintenance will be performed . If they are different from the
(contractor ’s proposed) developirent environment , then the Compt~ter ProgramDevelopment Plan (CPDP) should address the resultant problems of transporting
or reac qu i r i ng essen ti al tools.

The term tool s, refers to software tool s including compilers , PSL , event simu-
• lators , language and machine simulators , environment simulators , test generators ,

and data reduction processors. The P0 must acquire the ownership and documen-
tation of the tools needed for maintenance , must control the contractor ’s use

- - of proprietary tools , must negotiate limited rights where appropriate and in
genera l , assure that needed tools are available and usable for maintenance . The
Request for Proposal (REP) should require identification of all proprietary tools
and any conditions or reetrictions placed upon their use. The contract should
reflect this and should require delivery , or contain options to purchase all
needed tools. The contract should contain , or at least should not precl ude , any
needed licensing agreements.

Documentation and confi guration management provide the necessary technical
and status information to support software maintenance. Documentation
includes the specifications and supporting materials , such as positional
handbooks and user gu ides , needed to modify the software. The documentation
must be easy to use , understandable , and , most importantly, must reflect
the current software. Implicit in every software maintenance task is the
requirement to keep the documentation up-to-date. Careful definition and
organization of documentation with consideration of its intended uses and
requirements for update can significantly ease the software maintenance task.

Configuration management includes the identification and statusing of all Con-
figuration Items . Accurate statusing of the software, documentation , and all
c hanges , both proposed and installed , is a must for effective software main-
tenance (see Configuration Management guidebook).

Design of the software is the key to its maintainabilit y . The top-level of
the design is specified in the Development (Part I) Specification in terms
of Computer Program Confi guration Item (CPCI) definition , performance require-
ments, i nterfaces , growth requirements , and design constraints. F—laintainable
software requi res adequate design. This leads the P0 to place design con-
straints on the developer. In certain critical areas of the software design ,
these constraints may limit performance and they may therefore have to be
relaxed. For example , the developers, may be required to use a High Order
Lan gua ge (HOL ) for programm i ng wh ich canno t be accomodated i n the hardwar e
specific and time-critical portions of the executive. Most of the design
does not appear in the Development Specifi cation ; it is documented in the
Product (Part II) Specification. Proper design includes :

9

L - - _ -- 
- _ *___ w -—



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~

-_-—--—

• A l imited number of interfaces between modules .

• Communication between modules limited to the defined interfaces.

• Well documented , easy to understand design.

• Limited equipment interfaces.

• A control l ed data base.

• Limited access to the data base by each module.

• Programming style for clarity of function (readability) and
ease of verification.
- Singular functional performance of each module which l eads

to small modules (i.e., only one function per module).

• Separate modules for input , output , and computation of functions.

1 .4 CONTENTS

The subsequent contents of this guidebook are presented in two sections and
three appendixes , as fol l ows :

• Section 2 - Acquiring Maintainabl e Software. Discusses: (1) the
definition and specificati on of maintainabl e software; (2) mon i toring
the evolving software design and evaluating contractor effectiveness;
(3) design change and error correction during subsystem-development
test and evaluation; (4) transfer and turnover; and (5) mainten-
ance during the Deployment Phase.

• Section 3 - Appl i cable Regulations , Specifications , and Standards.
Discusses those regulations , specifications , and standards that
impact the development of software.

• App~~dix A - Designing Maintainabl e Software. Discusses considerations
important to the design of maintainable software. Provides infor-
mation that the P0~can use to eva l ua te the con trac tor ’s design as
defined in his proposal and CPDP. Also provides information that
the P0 can use in- preparing for PDR , CDR , PCA .

• Appendix B - Glossary. Defines specific terms and acronyms used
in this guidebook.

• Appendix C - Bibliography . Provides a list of books and papers
that are particularly relevant to the subject of software main-
tenance .

10

L. ____- -_ _- - -
- - - -_ _ _ _ _ _

—

~

—---- ‘ —-- --

~~

—-

~~~~~

-.- ----  

~~~~~~

—

~~
- - -

~~

—.-

~~
--
~~~~~~~~~~~~~~

— ---- __--- --
~~ 
—— -._ - - - —--- - ---- - --- _--- —p



- _ _ _
~I~

_
~

_ _

SECTION 2 - ACQUIRING MA INTAINABLE SOFTWARE

This section discusses how the SD can plan and monitor the computer program
life cycle to obtain maintainable software. It provides specific guidance for
the SD during software acquisition and development . Figure 2 relates the
contents of this section to the major mi lestones of the system acquisition cycle.

2.1 DEFINING AND SPECIFYING

Planning for mainta i nable software should be started during the Conceptual
and Validation Phases. The SD is responsible for ensuring that planning for
maintainable software and support requirements are considered in the analyses
and tradeoff studies conducted during these phases. Such requirements
include excess computer capacity , support software, and documentation . These
requirements must be reflected in the contractual specification, the Statement-
of-Work (SOW), the Contract Data Requirements List (CDRL), the Data Item
Descr ipti on (DIDs ) , an d the Computer Resources In tegra ted Support P l an (CR ISP ) .
The SD should monitor studies and tradeoffs at the System Requirements Review
(SRR) and System Design Review (SDR) to ensure that both softwire maintenance
and mission performance requirements are being satisfied .

2.1.1 Planning Considerations

Planning for maintainabl e software is a relatively new concept and currently
availabl e guidance is minimal . During initial planning, the SD In consultation
with the using and supporting commands should determine the scope , content,
and l evel of maintenance required to satisfy their needs. These needs should
be documented in the CRISP. See the Sofb,are Development and Maintenance
Facilities guidebook for more information regarding planning considerations.
The software maintenance needs should be determined by the P0, the -user , and
the maintainer , based on tradeoffs , studies , and analyses that evaluate life
cycle cost impacts. The following areas should be evaluated as quantitatively
as possible:

• Contractor vs In-House Support. This decision will impact training ,
documentation , facilities , personnel , housing , computer resources ,
and data rights . Even if contractor support is chosen , the SD has
to determine where maintenance will be performed and what deliver-
ables will be required , whenever possible. It is wise to insist
upon unl imited data rights , ful l documen tation , no proprietary soft-
ware , and full delivery of all source and object code and all soft-
ware test tools developed under the contract. Cost is obviously a
major consideration , but initial development costs must be balanced
against overall life cycle cost. This allows the Government the option
of either procuring maintenance support from industry or develop ing
an in-house capability at a later time . It should also be determined
at this time what software the using and support commands will be
responsible for maintaining.

11

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


_

- ____

a.)
Cd)
i0
0.

4-’
U) C

>5

0.- a)
‘ - 0) s_ —

I- to
z C0 +.~

- - LU

00.
~~
.-

0.0. a, 00 0)
LU .C~~> 0 s—
0 0 .0 . 0 0) .0s a C to‘ C C

.5- la

~~~ ‘0 1— ~~ C
I C.~ (~~~Q) CO
I sa~~~ 4.’ .4.)
1 0 -  C 0 

- __ (., __ __ ._ _\ __~~~~~~~_ _ _ _ .,_ .,—

I- so
(‘-1 0 I 0~~/~LU I .00.‘ a i s a  Cs

0. 0. ‘O LiJ O 0
0 ,,~~I- ~ C.. . .  I—
.4 0’ S. 0.0 4-’ ‘—~ %..LU Li. 0~ ‘0 0

Ca C . 0 j 0
LU C 0 0 ~L)
O W  0. 0 C.

U) ~~ 0 .0) - ‘ 0 0  U
LU < 0 C 0) .~~ .0 0...j~~~~ C.) C OL) —<0. 0 L - - -  0 4-~C.) 0 04 -’ _ 0 0 0  0‘7 ~~~~~~~~~~~ 

4-
.4 ‘~~~0. ‘ C C .—

~~ a ,0  Cd)
0)

~~~~ 

~~~~r;

;- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

0_ ..- 00 - u
0 ’4- U) 0 s a

~~~ 
5— ..- s~~~~~S..0 0 ) 0  ,— W 4-’

— >0 )  > C  C’-.)
I- -LU 0 ) 0 .  ~~~W 0

0 U) U. 0 C.) 0)
0<
.40 .

~~
. -I-

U-

—4 - -- - - - - . d - —  - —

C
0 5 0 )

~J C
4.5

‘a . 0 >,
o 0-1+~-5- ‘a ..-

S - U
0) -.- 0 0)

.4 4.1 ( )  ‘0 0 .
< (1) 0) 5.- U) -
~~ >, 0. to
1- - L U  ( / ) U )  0 . 0 0
0 - U )

0 0
0~~~0 .00

C..)
‘C ‘4-

0)
‘

12

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


• Computer Resources. An initial estimate of the resources required to
develop and maintain the software is needed for funding considerations ,
to guide the contractor , and to evaluate his proposal . The estimate
should be based on a tradeoff among at least the following alternatives
b~tsed upon performance and availability requirements : a dedicated
support facility , dedicated time on the operational system, dedicated
time on a backup system, or time sharing in a multiprocessor and/or
multiprogramming environment . Cost of equipment , facilities , trained
support personnel , and special software should be considered along with
the required responsiveness of the maintenance organization.

• ~pecial Support Software. Based upon software ma i ntenance requirements
and the class of computers being considered , the SD should evaluate
the need for simulation , recording, and data reduction tools. An
estimate should be made of additional utility/support tool s such as
debugging aids , COMPOOL genera tors , an d compile rs or assem blers . A
PSL should al so be required and any special software needed to support
the PSL should be specified . See RADC-TR-74-300, Vo l ume VI , for a
discussion of the PSL . All special support software, if not available
off the shelf , should be scheduled for early development , since the
development of the operational software is dependent upon their avail-
ability . If a compiler is required , it should be developed to a
specified standard and qualified before it is used for program develop-
ment. New compilers can be a high risk area and should be scheduled
early in the development cycle , when staffing is low , so that delays
will not have significant cost impact. Support software, which is
properly planned , develo ped , and qualified , will enhance both develop-
men t an d ma intenance of the opera t iona l software .

• High Order Language. AFR 300-10 requires the use of a standard HOL .
JOVIAL is the one most likely to be required . In general , the compiler
should be acquired and qualified prior to the start of coding . Currently,
ESD can obtain a JOVIAL (J3) compiler in 6-to-9 months , using the Rome
Air Development Center (RADC) JOVIAL Compiler Implementation Tool
(JOC~r). Soon , a J73/l compiler should be obtainable in the same time
period . Use of the JOCIT tool limit s the risk and cost of these
compilers. ESD also has a JOVIAL Compiler Validation System (JCVS)
which is used to assure that.the compiler meets its specification. Any
J3 or J73/l compi ler should be cer tifi ed us in g JCVS .

13

~

-- ~~~~~~ —-~~~ _~~~~~~ - -- — ~~~~~~~~~~ —- — -- --

rr ~~

-

• Development Schedules. Most development schedules for large
systems in recent years have been too short. As a result , in the
rush to complete the project , both software development and main-
tenance cons idera tions suffered . Develo pment (Par t I) Specifi ca ti on s
are usually required from 90-120 days after contract award . The
original intent of this time requirement was to update the Part I
Specifications developed during the Validation Phase. However , on
many occas ions , the Part I Specifications were i n i t i a t e d and
devel oped during this time . When this occurred , the specifications
were generally incomplete and inconsistent. It is better to spend
the equivalent time on fully determining the performance requirements
(usually a 6- to 9-month effort) before writing the Development
(Part I) Specification . The SD must assure adequate time in the
project schedule for the contractor to design and produce the embedded
software. The SD should require that CDRs and PQTs be held; however,
he should let the contractor propose the schedules in a way that best
supports the contractor ’s approach. Emphasis should be on the adequacy
of the overall desi gn before the detailed design is started . Good
~iesign is a major contributor to ;naintainabl e software.

• The Computer Resources Integrated Support Plan. The CRISP identifies
responsibilities for the management and technical support of computer
resources , including responsibilities for maintenance. The initial
plan is developed during the Validation Phase. The specific infor-
mation to be supplied in the CRISP is presented in AFR 800-14,
Vo l ume II , Chapter 3. The CRISP evolves as the project evolves and
requires coordination with the using and supporting commands to
assure that their support concepts for computer resources are properly
reflected . The coordinated planning for computer resources which
is documented in the CRISP , must establish the configuration manage-
ment , resources , documentation , funding, scheduling, integration ,

— training , support software, facilities , and provisions for transfer
and turnover , which will enhance software maintenance.

2.1.2 Development Specifications and the Full-Scale Development Phase REP

It is important to ensure that software maintenance requirements are specified
in the Development (Part I) Specification and reflected in the contractor ’s
Full-Scale Development Phase proposal . The Development Specifications and
the SOW should reflect the results of trade-offs and planning done in the
Conceptual and Validation Phases and include requirements in the following
areas :

_ _ _ _ _ _

DEVELOPMENT SPECIFICATIONS

• Known software growth requirements should be specified to facilitate
future upgrade . For example, potential growth which impacts design
(e.g., initial capacity of 100 tracks expandabl e to 150) should be
specified in terms of initial ~capabi 1ities and requirements for
expansion. In many cases , the resources for the expanded capabilities
need not bc purchased with the initial system. However, design of the
initial system to accommodate known expansions can save both time and
money when the expansions are later implemented . The SD should be
aware that too broad a Development Specification will result in higher
design and implementation costs. A trade study , to evaluate
potential growth requirements against design implications and develop-
ment and l ife cycle costs, should be performed during the Validation
Phase.

• A standard HOL should be required to enhance ease of maintenance
with a minimum use of assembly language allowed in areas where
code efficiency or machine dependency (e.g., I/O) require it.
The contractor should identify and justify all areas where
assembl y lan guage i s requ i red .

• Requirements for programmi ng standards should be specified .

• All necessary support software should be functionally specified .
This should include a requirement for a minimum capability as defined
in RADC-TR-74-300, Vol ume VI.

• Excess computer capacity should be required to allow software growth
and error correction . Roughly, the initial equipment capacity
should be twice the initial sizing and timing estimates . To improve
system potential over a long life cycle , the computer system should
be expandabl e to several times its initial capacity (see Figure 3).

• The Development (Part I) Specification is the most appropriate contrac-
tual tool for the acquisition of maintainable software. In addition
to the CPCI performance requirements listed in paragraph 2 of the
Development Specification , the Spec ial Requ i rements para gra ph 3.2 ,
provides a format for specifying the fol l owing types of software
maintenance requirements (see MIL-STD-483, section 60.4.3.2.2 for
a description of paragraph 3.2):

- The use of programm ing standar ds

— - Specific program organization requirements

- Program design considerations which ease modification

- Expandability (growth potential) requirements

15

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

0 - ’ . ”

Percent utilization of time and core

Figure 3. Cost of Approaching Hardware Capacity*

FULL-SCALE DEVELOPMENT PHASE RFP

• The SOW should spec i fy that software maintenance requirements will be
reviewed at Preliminary Design Review (PDR) and Critical Design
Rev iew (CDR). The rev iews should allow the contractor to use func-
tional flow diagrams , structured charts , or other presentation
techniques to present system and program-level design detail. See
the Reviews and Audits guidebook for further guidance regarding
PDR and

*From “Through the Central ‘Multiprocessor ’ Av ionics Enters the Computer
Era ” (see Appendix C).

16

—

_ _ _ ~~ TT~~~
—

~~~~~

• The SOW should require that a Computer Program Development Plan (CPDP )
be submitted with the Full-Scale Development Phase proposal .* It
should be updated periodically to reflect the evolving software devel-
opment plans. This plan covers the complete software development
efforts. Much of the contractor-development methodology described in
the CPDP can significantly impe~ct software maintainability . For
example:

- Plans to deliver the PSL, incl uding support software, contents ,
and procedures .

- App licability of the contractor ’s internal configuration manage-
ment plan to inclu de: change status reporting, control procedures
probl em reporting, and error correction procedures .

- Plans for updating test plans and procedures to accommodate ECPs
and assure continued applicability during Deployment.

- Top-down design and structured programming approach.
- Data naming conventions and data base control procedures .

• If in—house software support is selected , then a training program should
be requested. This allows the P0 to specify training materials and set
the necessary schedules to assure that support documentation is available
at System Development Test and Evaluation (DT&E). Since most C3 systems
are uniq ue , the development contractor should be required to present a
trainin g course in sufficient time to support System OT&E. This should
allow maintenance programmers to get on-the-job experience before they
take over maintenance responsibility .

• The CDRL should specify the software maintenance features of the
deliverab le documentation , i.e., commented listings . The standard
DIDs should be modified to meet the individual needs of the program.
For additional guidance see Software Documentation Requirements
guidebook.

*The CPDP may be initially prepared during the Validatibn Phase . It must be
updated at the start of Full-Scale Development.

1/

—- - -~~~~~~~~~~ —-~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -~~~ _ i
_ 

~~~~~~~~~~~~~~~~ ~~~~~=_ ___ =;~~~


—— —.-.— - ---.-— ,.
~~~~~~ 

~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ 
- - - ‘———. — - -----.-— ,-. - -i-__ _

~
_ — ——

• The contract Work Breakdown Structure (WBS) should reflect all
support requirements associated with acquiring maintainabl e software
including unique identification of all support software, documentation ,
training , extra equ ipment, and facilities related to maintenance . These
requirements should be shown down to the del i verabl e contract line item/
configuration item l evel (see SOW Preparation guidebook , Appendix A).
This is necessary to properly identify and monitor the cost associated
with acquiring mainta inable software and to have some options for
deleting capabilities if there are schedul e or budget constraints .

The Full-Scale Development Phase RFP should require the contractor to state
in his proposal how he will design the software for ease of maintenance.
Requirements for modular design , top—down design , or structured prograr~iningmust be defined in detail to be meaningful . Generally this information is
included in the CPDP . Until specific desi gn techniques such as these have
been succ ess ful ly demonstrated on C3 systems it is better to leave their
definition and impl ementation to the contractor ’s discretion.

There is much that the contractor can do to enhance or obstruct the develop-
ment of maintainabl e software . His proposed technical approach , management
approach , and CPDP should be evaluated to determine whether he has :

• Tailored his proposed documentation to support software
maintenance .

• Developed design and coding standards to support software
maintenance.

• Shown how his development support software wi ll be appli-
cable during the Deployment Phase .

• Inclu ded software maintenance considerations in all
aspects of his design , code , test, and documentation.

The following pitfalls should be avoided :

• Development plans that do not include time or budgets to rigorously
design the software to include maintenance considerations.

• Off-the-shelf software that is difficul t or impossible to maintain.

• Contractor-proprietary tools used during development but unavailable
(although needed) during Deployment .

18

“---—--- - ---~~~ - ~~~ - ----

_ _ _ _ _ ~~~
--“-‘--—

~~~ . — ----—J’——

2.2 MONITORING AND EVALUATING

During the Full-Scale Development P~~se , the SD is concerned with monitoring
the evolving software des ign and development tasks and evaluating how
effectively the contractor is meeting the specified contract requirements.
To do this, he employs the techn~~ues of quality assurance , configuration
management, technical and management reviews , and verification and validation.
These subjects are discussed in other volumes of this guidebook series (see
Preface for list of other guide~,ooks). The intent of this discussion is to
assist the SD in acquiring main’tainable software by providing checklists to
supplement the normal review proc~~s.

2.2.1 Preliminary Design Revi~w (PDR)

The purpose of PDR is to evaluate and monitor the progress and technical
adequacy of the selected design approach for each CPCI. The review should
emphasize design , language usage’, and programming standards. Although the— PDR is a design review , it should also be used to review the contractor ’ s
planned implementation methods, as described in the CPDP. The SD should check
for the following features which facilitate the development of maintainable
software:

• Has the CPCI been designed in a manner that provides for ease of
modification , as planned for in the CPDP?

• Have all needs to deviate from the design approach of the CPDP
been identified and coordinated? (For example , real -time require-
ments may dictate other than a top-down approach.)

• Have CPC and data base int~erfaces been defined so that i ndependent
detail design can be started at a l ower level? Have interfaces
been defined in a simple and explicit manner?

• Have functions and subfun~~ions been allocated to CPCs in a way
that enhances modularity and functional independence?

• Has the CPCI data base been. defined in a symbolic manner?

• Is there a centralized data-definition capability , suc h as a
COMPOOL ? If not) is there a procedure established to define
and control the data base definitions?

• Have all areas where assembly 1-anguage is required been identi-
fied and justified?

19

—-

~

- -

~

--.--. 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-- --- .
- - — ----—--I-—---—-—-— — - -- -

I - - -

• Are programming standards with coding examples available to the
programming staff? Do the standards cover techniques for
deve lopi ng a modular an d struc tur ed CPC I ? Have methods for
improving modul e independence been included? (See Monitoring and
Reporting Software Development Status guidebook , Appendix II ,
pages 64-67.) Have procedures been established for enforcing the
standards (e.g., program wal kthroughs and code audits)?

• Have programming personnel been trained in the concepts of top-
down implementation , structured programming, operating—system
requirements , library procedures , and modular -coding techniques?
If not, is a training program scheduled for all current and
newly—assigned personnel?

• Is a standard HOL used? If not , is the contractor HOL selection
based on cost or technical considerations?

• Will the compiler be qualified before it is required for coding?

• Have all performance requirements been allocated to CPCs? —

• Have support tools been defined? Have those tools that require
new development been designed? Have they been designed in a modular

C manner? Have debugging tool s been defined? Have all modifications
to commercial off-the-shelf and Government-Furnished Equipment (GFE)
debugging aids been identified? (Government ownership of support
and related documentation should have been established in the contract ,
but should be reviewed at this time .

• Are the test requirements for mainta inabl e software included in the
updated CPCI test plan?* In general , maintainable software design
features should be reviewed by inspection .

The SD must take sufficient time to prepare and insist upon sufficient tech-
nical resources to adequately review the materials presented at the PDR .
The technical reviewers must be capable of eva l uating the material presented
by the contractor and be familiar with the Development (Part I) Specification .

*The origina l CPCI Test Plan should have been submitted with the Ful l -Scale
Development Phase proposal .

20

--~~~
--~~~ —,~~~~- ~~~~~~~~~~ ~~~~~~

-—
~~~~



-5-- -
- -- . —V--- - -- r.’.-- -~-- ’—-—~- - - .~~~~- - ~— - - -  --- ,- - - - ~~ —-—-—--~~~~— 

If it is determined that the contractor is not sufficiently prepared then
the PDR should not be conducted until the contractor is ready . Maintenance -
related problems which may be observed at PDR include CPC or data interfaces
which are too complex , modularity which may not be apparent , or data-base
design which may not include considerations for change . The SD should
identify such probl ems and ask the contractor to resolve them . It is better
to delay the project at this point to get a design that is maintainable and
meets all performance requirements (when contractor staffing is at a lower
level) rather than to wait unti l CDR or Formal Qualification Test (FQT) when
delays are more expensive. See Figure 4 which illustrates the increasing
cost of correcting errors as the development progresses ; the system becomes
more complex and the number of people delayed increases.

2.2.2 Critical Design Review (CDR)

The purpose of CDR is to provide a formal technical review , or series of
reviews , at completion of the detailed design of each CPCI , or group of
related CPCs in a large , complex CPCI. Successful completion of CDR
signifies verification of the detailed CPCI design and al l ows initiation of
CPC code and test activities .

From the design detail available at CDR , the individual program modules ,
their interfaces , and associated data base requirements can be identified
and coded .

The SD’ s emphasis during CDR shoul d be on the program structure , modularity ,
language usage , programming standards , support tools , data base design ,
interfaces , and planned coding techniques. A traceability matrix should be
available that further relates the requirements directly to the implementing
modules (as opposed to CPCs that were reviewed at PDR). In reviewing the
contrac tor ’s design at CDR , the SD should check for the following additional
features which facilitate the development of maintainable software :

• Have all software modules been specified? If an incremental COR ,
have all modules for this build been identified? (See Appendix II
of the Monitoring and Reporting Software Development Status guidebook.)

• Are all module interfaces defined and documented in accordance with the
CPDP? Is all control data passed only through the defined interfaces?
Has the amount of interface data been minimized?

21

- —~~~~~~~~ - --
~~~~~~~~~~~~~~

-
~~~ - -~~~~~~~~~ - ---~~~- - ~~~~~~-~~~— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



_____ — —,.- ~~ ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
___ _

..-—w~~~~ ~~~~~ 
— - 

~~
—‘u----- 

~~~~~~~~~~~~~~~

rr~-

100

50 - -

LEGEND

20 -

T
Upper Limit

-
V

Median
5 0 - .

-

Lower Lim i t

RELATIVE
COS I
TO -

F I X
ERROR 2 - -

0 5 - -

0.2 -

, I I I I

~~
-

REOU IREMENTS DESIGN CODE DEVELOPME NT ACCEPTANCE OPERATION
TEST TEST

PHA SE IN WHICH ERROR DETECTED

Figure 4. Software Errors Cost More to Fix as Computer
Program Life Cycle Advances*

• How well have the modules retained their independence?

• Have machine dependencies been isolated and encapsulated in
accordance with the CPDP?

• Has the system data base been designed and documented? Has it
been symbolically defined and referenced? For exampl e, was a
COMPOOL used?

• Is I/O centralized and separate from computation functions?

*Figure adapted from Boe hm, “Software Engineering, ” see Appendix C.

22

~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-- - -  

~~~~~~~~~~~~~ ~~~- -~~—-


_ _ _ _

• Are modul e source—code estimates within the contractor ’s module—size
limitations?

• Are modules functionally cohesive (i.e., limited to a single or
small number of closely related functions)?

• Have all modules requiring assembly language been identified and
justified ?

• Have all support tools needed for coding and debugging (e.g., pre-
and post-processor) been produced? If not, are they schedul ed early
enough to meet the needs of the development schedule?

• Have all modules been designed to have single entry and exit
points (with the exception of certain computer interrupts and
erroneous condition exi ts)?

• Whenever initialization or housekeeping is required , w i l l those
functions be internal to the module requiring them?

• From a recovery point of view , computational or I/O modules should
not abort . They should pass an error condition back to the main
control level which is designed to make abort or recovery decisions .
Has this concept been followed?

• Does the PSL refl ect the software structure? Have procedures and
libraries been established to control the basel ined sourc e and
object files and listings as they are produced?

• Do the test procedures provide for inspection of maintainable software
requirements (e.g., module size , s t ructured code , HOL and assembly
language , and module independence)?

• Will a code auditor be available at compile time to monitor software
characteristics and enforce standards?

2.2.3 Coding and Debugging

During the process of coding and debugging, the contractor is developing and
testing individual modules in accordan ce with their design . If an incrementa l
build or top-down implementation approach is used , the modules are tested in
execution order (i.e., integrated in their final structure and tested with
minima l need for test drivers). In most complex systems, a combination of
top-down and bottom-up imp l ementation is used . The reason this must be
permitted is that some existing software may be used or adapted for use in the
new CPCI. In addition , the coding on some modules may start earlier than on
the CPCI as a whole. Considerabl e savings in time and dollars may accrue from

23

- ~~~~~~~~~~~~~~~ ~~~~~~~~~ - - —- -—
~~~~~~

- -~~ ~~—— —



- 

- - -  —.- .-- - —-.-..-- -

from a mixed top-down/bottom-up approach. When bottom-up implementation is
used , it is especially important that interfaces be ri gidly defined , maintained ,
and adhered to. The approach taken should be proposed by the contractor.
The SD may gain visibility into the development process during the contractor ’s
Computer Program Test and Evaluation (CPT&E) or the SD can use the Preliminary
Qualification Tests (PQTs) to verify if maintainable software requirements are
being met. To facilitate the development of maintainable software, the SD
should check for the following:

• Review PSL content to see if module size and program structure
m~ ch the design .

• Review the contractor ’s planned development methods , procedures ,
and standards , as documented in the CPDP , and ensure that they
are being followed .

• Select modules and review their code to see if coding standards
are being enforced , or review code auditor output , if available.
This should be done in conjunction with the contractor ’s QA
manager and in accordance with the contractor ’s QA plan.

• Review the current data base to see if it meets its specification
and is symbolically defined .

• Verify that the necessary development and debugging tools are
available and are being used .

• Verify the language used by each module against its design docu-
mentation and against the coding standards . Ensure that assembly

~ language is not embedded in the code unless it was explicitl y
calle d for.

• Review the code to ensure that the following difficult-to-maintain
features* have not been included :
- Self-modifying code
- Absolute addressing
- Embedded constants and literal s
- Relative addressing

C 2.2.4 Formal Qualifcation Test (f~]J
During Subsystem DT&E the contractor conducts FQT(s) (see Verification
guidebook) of the CPCI(s) under development.

*Normally these problems are associated with assembly l anguage programing.

24 —

~~~~~~ - _ _ _


- ~~~~~~
----- ----

~~-—
~-~~~~~

- - --_--
-

If standards of modularity , language, and i ndependenc e of modu l es , are not
met , it is difficul t to take corrective action at this time wi thout significant
cost and schedule impact. Thus , it is important to assure adequate design and
monitor its implementation through forma l reviews and PQTs. Corrective action
should be taken pr ior to FQT because the contractor sti l l has programmers
available and is trying to meet FQT milestones . Again , ~.sing PQT5 to inspectthe code of selected modules as they are being developed minimizes the risk.

The following items should be inspected primaril y at PQT but also at FQT
for ma intenance impl ica tions :

• Do the test procedures call for adequate inspection of the
specified maintainabl e software attributes? Check module size,
language , structured code, adherence to programm ing standards,
and code readability .

• Have design changes, requ i rement chan ges , and error correc tions
caused major impacts on the software structure?

• Have the traceability matrix [in the Product (Part II) Specification j
and the test procedures been updated to reflect design and require-
ments changes? (See the Verification guidebook.)

• Have those portions of the software that are time-sensitive been
identified and documented? Have those portions of the code
been adequa tely commen ted to a l ert ma i ntenance programmers?

• Are the listings readable and reasonably self—documented?
- Are they adequately commented?

- Can they be easily reviewed?

- Is it clear what each area of code is intended to do?

- Are the data for references symbolic and are they meaningful?

- Are the date and version of the listing compatible wi th the ~contractor ’s list of materials to be qualified?

• Have al l development and test support tools been found acceptable?
Make sure the contractor qualifies all tool s to be delivered .

NOTE

• PQT and FQT plans and procedures are directed at testing CPCI
performance against the Development (Part I) Specification.
Comments from review of program listings can be transmitted to

• the contractor at PQT and FQT with notice tha t unless improve-
ments are made, the Product Specifications (source liBtlMgB)
will not be accepted at PCA . However, offi cial response
should be delayed until data delivery at PCA .

25

-
- — —. ~~~~~~ -- -~~~~~~ ~~~~~ -~~~~~~~~ —- - - - - — - - - --


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-

~~ I

2.2.5 Functional Configuration Audit (FCA)

The purpose of the FCA is to verify that the CPCI’ s actua l performance meets
Development Specification requirements. Of particular interest to software
maintenance considerations is the contractor ’ s briefing for each CPC I [see
MIL-STD-l52lA(USAF), paragraph 50.4.l2a]. At the bri efing, the contractor
provides a genera l presentation of the entire development test effort ,
delineating problem areas as wel l as accomplishments . The briefing should
include an account of the ECPs incorporated and proposed and the contractor
should i dentify any Development Specification requirements that he was unabl e
to meet , including a proposed solution to resolve any CPCI inadequacies caused
by not meeting the requirements. When using the briefing to promote maintain-
able software , the SD should notify the contractor that the briefing information
will be evaluated for maintenance considerations. In particular , the SD
should:

• Determine the planned disposition of the ECPs not yet incorporated
and evaluate their probable i mpact on software maintainability .

• Evaluate the causes and solutions of the problems which occurred
and determine whether similar problems are likely to occur as
changes or error corrections are installed during Deployment.
If so:

- Can additional methods or procedures be devised to
alleviate the future problems?

- Shoul d new or modified training courses be required?

- Is any additional support documentation required?

N~ TE

The evaluation of softwar e r r l t C H C i ~ iCC !~E ? j ~oi i E~S ~e a c~~~~~~~o~ s
process . Affirmative answers to any of ti-ic aL~~L’~- es c1~c ~~~
require additiona l funds . In an~1 case , the & - “iria n i  rre ~-~~~s~~ ~e
for  software maintenance should !~~ t ’-~oJ o - ~ th c po~~~~~~o.
problems and of the recommended actions .

26

~

- - -

~ 

~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~


2.2.6 Physical Configuration Audit (PCA)

The PCA is designed to verify that the product baseline and associated material
released for System DT&E is compatible with what was qualified at FQT. This
process verifies that the source and object code listings and documenta t ion
are compatible. The P0 and the contractor conduct the audit. At completion
of PCA , the Product (Part II) Specification is baselined . A Version Descrip-
tion Document (VDD) is delivered to define the content of the version
released for further System DT&E testing. The availabilit y of a PSL should
help expedite this process since the PSL maintains the integrity of the source
and object code and associated listings. Reports from the PSL and a review
of the program description against the program listings and data base should
be sufficient to verify the integrity of the product. The SD should require
that the contractor provide source materials (a listing of the source code ,
supporting documentation , and the object code in machine-readable format)
for all products audited. Software cannot be maintained without program source
materials. If commercial off-the-shelf programs and support tools are used
to develop the programs and are required for operations and maintenance , then
the SD must assure that the items and supporting documentation are available
without restrictive data rights. It might be cheaper in terms of life cycle
cost to develop new support programs if this is a problem .

2.3 DESIGN CHANGE AND ERROR CORRECTION CONTROL

Although maintenance does not officially start until the Deployment Phase (after
Program Management Responsibility Turnover (PMRT), the need to correct and
modify software begins during Subsystem DT&E . Many of the software maintenance
practices , procedures , and tools used during Subsystem DT&E will continue to be
used throughout the life cycle. The contractor places the software under the
control of his configuration management procedures at this time . These
procedures are normally identified in the contractor ’s configuration manage-
ment plan.

During Subsystem DT&E , design changes , not affecting the Development (Part I)
Specification , and all error corrections are under the contractor ’s control .
Changes affecting the Development Specification require ECP action . However ,
the basic approach to making changes to the configuration-controlled software
should be the same , whether contractor-ini tiated or the result of an ECP (see
Configuration Management guidebook).

2.3.1 Design Change and Error Correction

Design change and error correction is a natural part of the software development
process and is present throughout the Full-Scale Development Phase . They must
be accommodated by the contractor ’ s design control and configuration manage-
ment procedures . All changes must be documented and controlled to assure the
integrity of the software design and performance . It is essential that every
change be evaluated for schedule impact and consideration given to packaging

27

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - —- -- - -
~
-- ---

~~ - — - -- -------— - - - —

‘.
— - —-.—-- ---.---• --

~~~
.—- -, -

~~

-

~~~~

- - • ----- - - .- - -- - —

~~~

--- - - - - - --•— ---- - - - —--•- ----- ------ —- 
—---- -- -

~~~~

F —

changes for release within a subsequent version of the computer program unless
the change is critical to the continuation of qualification testing.

Design change costs vary , depending on the time of their occurrence during the
computer program life cycle. As the development effort progresses , every
change must be reviewed on the basis of need . This is especially true for
changes to established interfaces or to the data base. All design change
recommendations should continue to be documented , but implementation of some
may have to be deferred until after the CPCI passes FQT.

2.3.1.1 Version Concept

A versi on is the actual configurati on of a CPCI which is introduced into the
system for ins tallation, test, or operation . The version concept allows the
contractor to schedule a CPCI release for his internal testing with a specifi c
set of capabilities or a specifi c set of changes. For example , using ~ top-
d~~n implementation scheme , version releases can be scheduled and tested to
reflect the hierarchical development of the CPCI. After development and
Internal test of the CPCI is completed , it can then undergo qualifi cation
testing. The vers ion concept is also used to package modifications asso-
ciated with ECPs. (See Verification guidebook for a more detailed description
of contractor internal testing . See Appendix II of the Monitoring and
Reporting Softw are Development Status guidebook for more information on vers ion
Implementation.)

The version concept al lows the contractor to better schedul e the development
effort and to assure that the necessary support tools , documentation , and
test procedures are available to support the developing CPCI. T hi s same
approach holds true for modifications (i.e., ECPs) . Instead of the baseline
continuously changing, modifications can be scheduled , developed , and
tested as a group . This improves control , allows devel opment to proceed in
-parallel with qualification of the previous version , and provides for
scheduling of the support products an d docume ntation. F igure 5 shows how the
version concept can be used to localize errors within a specific level of the
program. With the design of versions limited to specifi c software incremental
areas , the errors reported with each new version should be limited to the
scope of that version. The total number of errors should decrease as versions
are implemented.

Since a PSL allows for multi ple libraries , it prov ides a conven i ent mechan i sm
for implementing a version concept [i.e. , a new version of a program can be
produced in a development library (or libraries) while the baselined version
is tested]. A version identification (fo r each module), tnat changes when the
code changes , also enhances configuration control . A PSL should allow automatic
changing of the module ’ s version identification when the code is changed .

28

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - ~~~~~~~~~~

Version 2 Version 3 Version 4

Time — *

Figure 5. “Harmonics ” Nature of Error Correction

2.3.1.2 Design Control

A module ’ s code shoul d be placed under the contractor ’ s configuration control
following completion of CPT&E . At this point , it should be moved from the
development library file to a controlled library file , and all additional
changes approved by the con tractor ’s configuration management. In top-down
developmen t, the code has been executed in the current operational structure
and its stub replaced at this point.

29

~~~~ 
- - - ~~~~~~~~~~ — - -~~~~~~~~~~~~~ — -“ —--- -~~~~~~

—- - -~~~-~~~~



When changes to the Development (Part I) Specification are required ,
the contractor should use a simplified design change request form to minimize
paperwork , to encourage the programmer to request needed changes , and to
speed his review process. This will facilitate Subsystem DT&E when quick
decisions are needed. All desi gn requests should be numbered and a short
title assigned for identification . The responsible programmer should
provide a design approach as a backup to the request , along with a cost
estimate . If an approach is not available , then the design change request
should be assigned to a programmer (or design group) to develop design
approaches and cost estimates so that tradeoffs can be made . A design
control group should be established consisting of management and technical
personnel to provide or disapprove changes . Once a change is approved it
should be scheduled according to its urgency . In addition , as part of the
contractor ’ s confi guration management effort , the design change should
provide records for monitoring change implementation and status. ihe P0
should periodically review the status of all design changes to assess the
effectiveness of the procedures and to evaluate the modifiability of the
software , i.e., how do changes impact the remainder of the CPCI?

2.3.1.3 Error Correction Under Internal Configuration Management
The error-correction process that the contractor uses is the initial imple-
mentation of software maintenance. The contractor ’s error correction methods
and procedures should be documented in his CPDP and reviewe d by the P0.
Undisciplined error correction can make software difficult to maintain , even
though it was initially well designed.

To contro l error corrections the contractor sets up a discrepancy report (OR)
scheme . A single form should be used to report a variety of discrepancies
(e.g., program errors , documentatio n., procedures , interfaces , and data base).
Such a form minimizes confusion , can be used to document design problems ,
and can be used as an input to the design change procees.

Once a DR is initiated , it should be eva l uated by the contractor ’s program
management arid QA organization , logged for configuration management , and
assigned to the responsible agency for correction as required . If the DR is a
design problem , it should be sent to the design control group for resolution .
If it is a program error , a correction must be prepared and the program module
updated in a development libra ry , and then tested and rel eased for integration
into the controlled library . The contractor ’s test director should determine
when this correction will be integrated , based upon test schedules. Once it
has been tested in its operational environment , the DR should be closed and
the status updated . The PSL is of major importance to this process. It
provides for multiple libraries , program identification updating, con tro l
(source code , object code , listings), and utilities to move files from one
library to another , and provides reports on the contents of the library . The
PSL , thus , can provide for strict configuration control . These same tools and
procedures can be used by the maintenance organizati on during deployment.

30 

---~~~~~~ -~~~~ ~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~:

_

~~ -



- ‘~~I~~ ~~~~~~~~~~~~~~~~~ 
—-

~~~~~~

-

~~~~

-

~~~~

-

~

•-- - —

H 2.3 . 1.4 Updating Process

Future software maintenance requires that an orderly updating and changing
scheme be implemented early in the development cycle. This process must
ensure that every change is documented and tha t a consistent numbering

F, scheme is used to relate the source listing, the supporting documentation ,
and the status record s for each change. The process of correcting or
changing a computer program during test involves a number of considerations
and tradeoffs , inLl ud ing:

• Patching vs Symbolic Updating and Recompi lin~ the Module. In some
systems a patching capability ~Tiows the programer to changespecific instructions without assembling or compiling the module
again. This approach allows a quick change to a localized area of
the module and has been used on many projects. However , it is
hard to control because there is often no direc t correspondence
between each computer program statement used in the patc h and each
statement used in the recompilati on . Further , whenever patching is
used during systeni test , it must be followed by recompilation and
some repeated testing. Where source code is written in a HOL , i t
may not be possible to duplicate the binary patches ,
hence , regression may occur . Assembly language computer programs ,
although less desirable in other respects , are much safer to patch
than HOL programs. With current computer technology , support!
utility programs , and a PSL , patches should not be allowed . All
corrections should result in updating the source code and recompiling
the program . This will assure agreement between all representations
of the program code (source code , object code , and listing), simplif y
configuration control , and eliminate a later clean -up program. All
changes (alters) to the source code should have their DR or change
control number inserted so tha t changes can be easily identified
and cross-referenced back to the probl em descri ption .

• Al ters vs a Con~pjete New Pro~ram. In curn tiny or changing a
program ’s (or module ’s) source code , it is possible for the program-
mer to submit a few changes (alters) or to submit completely new
source code. During qualification testing, only alters should be
accepted and , to enhance configuration contro l , these should be applied
by the librarian against the s’urce code . If completely new source
code is provided , the programmer may try to include additional changes
in addition to those fixing the DR. If found , additional testing will
be required . If not found , then aberrations may show up later in a
program that was thought to be thoroughly tested and qualified . If
the change is so extensive that new source code must be released , then
a comparison of the new object code and source code against the old
object and source codes should be run and all changes identified .
This approach may require the use of a utility program. It is desirable
when updating the source code to retain the previ ous copy for recovery

31

-

~~~~~~~~~~~~~~~~~~~~~~
-

~~~~
--- - :

-
-

-

purposes . In some systems , the last two copies are retained , and in
others , all copies are retained . Again , a PSL should allow the con-
tractor to maintain the required level of program archives .

• Document Maintenance. As software corrections are made, it -is impor-
tant to update the affected documentation to keep it current. This
includes updating user guides , data base descriptions , and the program
listings . The majority of changes will normally not affect any doc-
uments other than program listings and the data base. If detailed
flow diagrams are included in the Product (Part II) Specificati on , as
currently required by MIL-STD-483 and MIL-STD-490, then considerabl e
effort wil l be required to update them. It is recommended that
detailed fl ow diagrams not be procured . Instead , the effort should be
spent on keeping the listings updated . This requires that comment
and i ndentation standards be followed as corrections are made. This
is especially important for comments since a partial or out—of-date
comment may be misleading. As much of the descriptive documentation
as possibl e should be kept in the PSL (especially if it has a text
editor) to ease the update problem . The contractor should be required
to keep his documentation up to date to prevent a large cleanup effort
after Subsystem DT&E when the contractor may not have enough
knowledgeable programmers assigned to the program . This will
ease the work prior to del i very.

2.4 TRANSFER AND TURNOVER

Transfer and turnover agreements are important to software maintenance activi-
ties because they define responsibilities and methods for controlling error
corrections and changes during the Deployment Phase. The CRISP p rov ides an
ongoing plan leading to the Program3Managemen t Responsibility Transfer (PMRT)and system/equipment turnover for C systems. The PMRT transfers responsibi-
lity for engineering support to the supporting command (see AFR 800-4) and
the turnover agreement (see AFR 800-19) transiti ons the operationa l system to
the using command for operational use. The Computer Resource Working Group
(CRWG), which is composed of representatives of all three comands , should
assure that agreements incorporated in the CRISP are in the system turnover
and transfer agreements . The contents of the PMRT and turnover agreemen ts
for computer resources are summa ri zed in Chapte r 9, Vo l ume II , of AFR 800-14.

32

-~~~~~~- - - - —~~~~~~~~~~~~~ - -~ --• - - - - - - - -~~~~~~~~~~~ - - - — - —-
~~~~~~

-
~~~~~~~~

-- --

2.4.1 Configuration Management

After system/equipment turnover and PMRT , the supporting command (normally
an Air Logistics Center) is the system configuration change contro l authority .
The supporting command while retaining engineering responsibiliti es may
delegate to the using command control over those computer programs required
for the di rect performance of the operational mission (see AFR 102-5 , Sec tion
A , 6, for spec ial prov i s ions for Comand an d Con tro l Systems). In thi s
situation , the using command will establish a Computer Program Configuration
Sub-Board (CPCSB) to facilitate computer program change processing. The
responsibilities of the CPCSB should be outlined in the CRISP and detailed
in the Operational /Support Configuration Management Procedures (0/S CMP).

The impl ementing and supporting commands should use the VDD and a Specification
Change Notice (SCN) to describe and distribut e the program changes to a base-
lined CPCI. The VDD and SCN are defined in MIL-STD-483, Appendix VII I. When
the using command has configuration management responsibilities for a computer
program the VDD and SCN , or other methods described in the O/SCMP, may be used
to distribute CPCI changes.

The O/SCMP details how the basic configuration management approach , defined
in the CRISP , will be implemented . Configuration management procedures
should be written by the supporting and using commands. These procedures
will be used during the Deployment Phase, but must be written during the
Full Scale Development Phase. At a minimum , they should address the following
items:

• The relationships of all commands involved

• The method for processing changes

• Approval authority for changes

• The status accounting procedures and responsibilities

• Handling of emergency changes

• The method for distributing CPC I changes and documentation

• Situations where turnover precedes PMRT

2.4.2 Change Processing During Transfer and Turnover

Between transfer and turnover , and while the implementing command is develop-
ing the update changes identified in the PMRT agreement document , the imple-
menting , using , and supporting commands may have a change control and coord-
ination probl em.

33

— — ~~~~~~~~~~~~~~~ >- --

—
‘UI’

During this period:

• The implementing comand must schedule time for fixes.

• The DT&E tested version of the proper software baseline is
required (which itseli may be undergoing modificati on).

• All affected documentation must be updated .

These activit ies require c,lose coordination between the implementation , using ,
and supporting commands . A version release of all changes and modif i cations
will facilitate change processing during transfer and turnover. The using
and supporting commands should minimize changes until the implementing
command has completed all of its scheduled update changes. The procedures
for handling change processing during transfer and turnover should be
spelled out in the PFIRT agreement.

2.4.3 Software Documentation

All operations and support documentation needed to operate , modify , maintain
and otherwise support the system after PMRT should be identified in the
CRISP and included in the CDRL . These documents should be approved at
PCA , prior to turnover of the system . The uses of the documentation ,
including formats , should be discussed in the CRISP and O/SCMP .

2 ,5 MAINTENANCE DURING DEPLOYMENT PHASE

The Operations and Maintenance (O&M) or Deployment Phase follows the
Production Phase and PMRT . As discusse d previously , the CRISP forms the
foundation for the transfer and support of the embedded software in major
systems . The CRISP is initiated in the Validation Phase to define computer
resource requirements and is updated during the Full-Scale Development Phase.
The CRISP incorporates using and supporting command requirements . It is
the primary vehicle for identifying responsibilities for technical and
management support of the operational software and computer hardware and
related support tools and facilities . It establishes planning for the con-
figuration management procedures to be followed by the using and supporting
commands.

Before PMRT , the impl ementing, using, and supporting commands should have
resolved the fol l owing transfer questions:

/

34

L —- -~~~~
—-

~~~~~~~~
-—

~~~~~~~
-

~
-- —~~~~

— —--
~~
—

~~~
-—— ~

—-
~~~~~~



~~~--~~~~ ~~~~
---- - - - -.-

• What software will the using and supporting commands control
respectively?

• If it is a multiple-site system, where will software be maintained
and how will changes get to the other sites? A general solution
to the multiple-site probl em is to have a singl e overhead facility
produce and valida.-te changes and then ship new tapes with site-
unique adaptation . This approach improves configuration control ,
allows knowl edgeable programmers to make changes , and minimizes
the programming staff needed at the other sites , all of which
provides for a more efficient and cost-effective operation.

• Who is responsible for programmer training, documentation , mainten-
ance facility operations , upgrades to new operating system (OS)
re l eases , and to the PSL? The answer to these questions should be
based on the maintenance concept .

• How will the using command ’ s configuration management procedures
interface with those of the supporting command?

If modification is too large or complex for the responsible command ’ s
maintenance staff , or if it invol ves hardware , the procedures of AFR 57-4
will be followed . Further , software documentation should not be maintained
under the Technical Order system, but can be maintained as system-unique
manuals. Procedures should be established between the supporting and using
commands for rel easing new versions of a program or corrections to programs .

During the Depl oyment Phase , the responsibl e programming agency will
establish a maintenance organization and provide configuration management
and software modification procedures that satisfy mission requirements. It
is important that the maintainabl e attributes of the software be retained
throughout the system life cycle.

35
(Page 36 blank)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ ~~~~~~~~~ 
- -—-—

~~~~~-
------  

~~
- -— -—

~~~~~~ 
-- -

~~~~~~~~~~~~~
-

~~~~~~~~~



~~~~~~~~-.--~~-- 
— -——-- —.- - - ~~~~~~~~~~~~~~~~~~~~~~~~~ 

_- :,—- -~~~——-‘-‘•- 

—~~ 
~~~~~~~~~~ !~~~~~~~~~~~~

_ _
~~~~~~~~~~~~~~~~~

_ -

SECTION 3 - APPLICABLE REGULATIONS , SPECIFICATIONS , AND STANDARDS
This section discusses those directives , regulations , specifications , and stan-
dards (RSSs) that impact software maintenance . In general , the RSSs refer t~operati onal support and modification , whereas this guidebook refers to these
activiti es as software maintenance. Although little is said in the RSSs about
software maintenance , it is specifically addressed in DoD Directive 5000.29
and AFR 800-14, Volume I. As used in this guidebook , the definition 0f soft-
ware maintenance includes the ability to modify the software; therefore, the
regulations covering configuration management are included in this discussion.

3.1 RSSs WITH DIRECT IMPACT ON SOFTWARE MAINTENANCE

The fol lowing RSS5 directly reference software maintenance and the allocation
of maintenance responsibilities between the using and supporting commands :

• Department of Defense Di rective 5000.29 , “Management of Coml?uter
Resources in Major Defense Systems .” This di recti ve establishes -

DoD policy for the management and control of computer resources
during system acquisition . Maintainability of both software and
hardware is called out as a major consideration during initial
design . In additi on , DoD 5000.29 directs that support items re-
quired for cost effective maintenance be specifi ed as deliverable
i tems. It also requires the use of HOL5. Further , DoD 5000.29
establishes software maintainability as one of the prime items to
be considered during system acquisition and directs all DoD com-
ponents to develop and implement a disciplined management approach
to providing effecti ve software at minimum life cycl e cost.

• Department of Defense Instruction 5000.31 “Interim List of DoD
Approved Hi 9her Order Programming Languages (HOL). ” Specifies
the HOLs wh ich are approved for use in conjunction with DoDD
5000 .29 . Al though this instruction allows for certain exceptions ,
it attempts to reduce proliferation and ensure control of HOLs in
defense systems by limiting new development to six approved
languages : CMS-2, SPL-l , TACPOL , JOV IAL , COBOL , and FORTRAN .

• Air Force Regulation 300-10 , “Computer Programming Languages.”
Implements DODI 5000.31. This regulation restricts approved languages
to FORTRAN , COBOL , JOVIAL (J3), and JOVIAL (J73 / I), but adds P1/ I.PL/ I is not approved by AFSC for 800-series acquisitions , however.

• Air Force Regulation 800-4, “Transfer of Program Management Respon-
sib ili ty .” States Air Force policy and assigns responsibility for the
transfer of program management responsibility from an implementing
to a supporting command.

37 

—--~~~ -—~~-



- 

~
_ 7

~~~~~~~~ J
_
~~~~~ 

- 
-- 

• Air Force Regulation 800-14, “Manaiement of Computer Resources in
Systems ,,” This regulation is presented in two volumes as follows :

Volume I establishes Air Force policy for the acquisition and
support of computer equipment and computer programs that are
dedicated elements of embedded systems. It establishes responsi-
bility for maintenance and modification of computer programs ; re-
quires that organizati onal responsibility and computer resource
requirements be established early in the acquisition cycle (in-
cluding documentation , training, personnel , support facilities ,
and other essential resources); assigns specifi c management i tems
(associated with computer resources) to be included in the PMD
and PMP: and assigns responsibilities to both the supporting
and using commands for acquiring facilities to support the main-
tenance , modification , and development of computer programs .

- Vol ume II provides guidance for the planning and acquisition of
computer resources , including support software and hardwa re. It
establishes procedures for implementing the policies outlined in
Volume I. This volume includes a definition of the phases of the
system acquisiti on life cycle wi th special attention given to
the computer program development process. Individual chapters
are devoted to planning, engi neering management, testing, con-
fi guration management , documentation , identifying contractual
requirements , turnover and transfer , and support . The chapter
On planning identifies the major planning documents associated
wi th computer resources as follows :

• Program Management Directive (PMD)

• Program Management Plan (PMP)

• Computer Resources Integrated Support Plan (CRISP)

• Computer Program Development Plan (CPDP)

• Air Force Regulation 800-19, “System or Equipment Turnover s”Establishes policy and principl es for the efficient turnover to
an operat ing command of systems or equipments developed under
the program management concept established in AFR 800-2. Attach-
men t 1 thereto calls for the timely identification of post turn-
over maintenance requirements and planning for their adequate
implementation . Specific types of requirements cited include :
- Manpower
- Support and training equipment
- Spares
- Docume ntation
- Facilities
- Budge ts
- Info rmati on
- Contra ctor Serv ices
- Computer resource requirements

38

_ _  —- —--- -~~~~--~~~~~--_ _

— —- 
-. -- — - -— — - ._-____~~ —————— ~~~ -- -~-“~~~~~~~ --



—--~~~~~~~~- - - --—-~~--- -—~~
----

~~ :~~~
-
~~~~

- -‘
~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ TT~ 

-

In addition to the above documents , the following regulations covering confi g-
urati on management are perti nent tn the maintenance of software :

• AFR 57-4, “Retrofit Configuration Changes .” This regulation
establishe s policy and provides guidance for obtaining
approval ~ur modi fications to configuration i tems after the
i tem has been put into service by an Air Force agency . It
includes criteri a for determining the classification of a
proposed change and discusses the approval authority and pro-
cedures to be followed in submi ttinq a change request for
approval

• AFR 65-3, “Confi~~ration Management. ” This regulation estab-
lishes uniform policy and guidance to all DoD components in
implementing confi guration management procedures for all con-
figuration i tems . It has chapters devoted specifi cally to
configuration identifi cation , control , status accounting, and
audits . Appendi x F contain s Air Force implementation instruc-
tions which outline specific Air Force policy and assign
responsibilities to various Air Force elements .

• AF5CM/AFLCM 375—7, “Configuration Management for Systems, Equipment ,
Munitions , and Computer Programs .” This manual is the AFSC imple-
mentati on of AFR 65-3.

3.2 IMPLEMENTATION OF RSSs

The regulations and directives identified in 3.1 require that the P0 acquire
software that is supportable. For software, ease of modi fication is as
important as ease of correction (or repair). This characte risti c must be
built into the software throughout the acquisition cycle. It includes the
desi gn and coding of the computer program as well as support items , such as
documentation , training , support software, and facilities .

Major considerations incorporated into the regulations include : the require -
ment for acquiring software that supports correction , modifi cation , and growth ;
the inclusion of the using and supporting commands in all phases of acquisition
planning; the concept of tailoring the management techniques to the specifi c
system; and the requirement that support equipment and software be acquire d
as a part of the system.

The policy outlined in these regulations calls for an orderly development of
systeis through a series of plans , specifications , and baselines which are
suppurted by appropriate engi neering studies and tradeoffs.

• The initial planning for software maintenance should begin wi th the develop-
ment of initial system requirements . As a part of requiremen ts analysis , a
computer program support concept should be developed which considers the
system mission , number of installations , the operational availability require-
ments , and expected level of change activity . This support concept should be

39

-



- -

developed by the implementing command in consu ltation with the using and
supporting commands and is essential to the system engineering efforts.
AFR-800.-l4, Volume II , Chapter 3, provides special guidance concerning —

items to be considered .

The fol lowing planning documents must also address operational support and
modifications.

• Program Management Directive. The PMD should address the support
requirements needed to achieve mission objectives . If not included
in the PMD, the implementing command should address these subjects
in the PMP .

• Program Management Plan. Although the PMP has no specific sections
addressing operational support and modifications (see AFSCP 800-3,
Attachments 3 and 4), it requires detailed analysis of these items
to support its sections on: Program Management (Section 3), System
Engineering and Configuration Management (Section 4), Test and
Evaluation (Section 5), Operations (Section 7), Manpower and Organ-
ization (section 10), an d Personne l (Sec ti on 1 1) .

• Computer Resources Integrated Support Plan. The CRISP identifies
responsibilities and resources required for software maintenance
after transfer and turnover and forms the basic agreement between
the using and supporting commands. A comprehensive CRISP provides
the basis for the smooth transfer and turnover of a system which
has the support facilities and tools necessary for cost effective
ma intenance.

• ~p~puter Program Development Plan. The CPDP* is specified as a
Contract Deliverable Requirements List (CDRL) item which is prepared
by the contractor and approved by the P0. This plan gives the P0
visibility into the software development plan and management necessary
to procure adequate support software. The plan should be developed or
reviewed with the objective of providing software which most effectively
accommodates the computer program support concepts developed in the
CRISP . This objective should include the structure of the software,
documentation , and support tools. It should also address standards
and conventions which can be used to enhance mainta inability .

These four documents form the planning foundation necessary to acquire a
software maintenance capability but they must in all cases be followed by a
set of baselined contract specifications.

~~~~~~ in AFR 800-14, Vo l ume II, Chapter 3 [see DI-S-3O567].

40

~

—--- - — ---- --~‘-——--- ~
--- -

~-~~-
-- -~~

-
~~~~~~~~~~ 

-V----- - -
~~~~~ 

- ---


~~~- ——— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

3.3 POTENTIAL PITFALLS IN APPLYING RSSs

- The RSSs do not provide adequate guidance for acquiring maintainabl e software.
They do address support and ~~~~~~~~~~ and these terms have been included
in the definition of software maintainabilit y presented in Section 1.

The SD must recognize that planning for softwa re maintenance is usually not
- 

given adequate attention by the using command when attempting to get an opera-
-- tional requirement validated . Wi th long deve lopment cycles ~or large systems,software ma in tenance ten ds no t to be an immedi ate con cern and seems rela ti vely

minor to the user. However , if the P0 does not insist on a concept for soft-
- ware maintenance it is almost impossible for the SD to develop the requirements

for proper support .

-
- Maintainable software and support capabilities cost money and must be budgeted ,

planned , and specifi ed in the contractual speci fications . Therefore , the P0
must specify in the contractual specifi cations those software design and con-

- struction techniques which enhance software maintainability . In most cases ,
these same techniques also enhance quality , management visibility , and sched~uling confidence. However , design and construction techniques specified in
contractual specifications may i mpose design constraints that may not allcw the
contractor to meet all performance requirements . These constraints and support
i tems may also result in increased total acquisition costs . Tradeoffs con-
cerning the most important requirements wi th regard to the mission and total
life cycle costs must therefore be considered by the P0.

- The SD must exercise care , when specify ing a particular hardware configuration ,
- or when supplying it as GFE , that the hardware does not place undue constraints
- (affecting software maintainability) upon the contractor. If, for example , a

lack of computer capacity forces the contracto r into compl ex software design ,
-~ the mainta i nability characteristics of the software will assuredly be jeopar-
H dized . The same care must be taken in specifying GFE software . If the charac-

- teristics or capabilities of the GFE software force the contractor into unduly
complex interfaces or design , maintainability will suffer.

Ir addition to the acquisition management requirements for documentation , the
P0 should tailor documentation requirements to the software maintenance con-

- 
concept. The flow diagram requirements of MIL-STD-483 may be too detailed and
unneccessarily costly for specific programs . For example , a recently acquired
system required detailed fl ow diagrams which were prepared at great expense
and then discarded immediately following turnover because the user didn ’t
need them . The format and content of all documentation should be designed

- 
to fit the using and supporting commands ’ requirements and methods of
updating. A major problem for these commands is the ma i ntenance of software
documentation after turnover. This can be facilitated by tailoring standard
DIDs in the Full-Scale Development Phase RFP.

41



I 
~~~~~~~~~

-

~~~~ _ _ _  

_

~~~~~~~~

_

~~~~~

_

~~~~~~ 

-

The P0 should always assume that requirements for C3 systems will change during
the acquisition cycle. Since the acquisition cycle tends to be long, new re-
quirements will assuredly be identif ied and , i n many cases , original require-
ments will be deleted. For this reason alone , the P0 should recognize that
software modifiability is a desirable characteristi c even though the antici-
pated level of change after turnover is low . It is therefore beneficial to
the P0 to stress software maintai nability for its modifi ability aspects alone.
It is also cost effective from the standpoint of ease of error correction dur-
ing System DT&E.

42

________________ -- -
-- ~~~~~~~~~~~~~~~~~~~~~ -- --

APPENDIX A - DESIGN I NG MAINTAINABLE SOFTWARE

-
- 1. INTRODUCTION

This appendix discusses the design and development of mainta i nabl e software.
The information provided should be used by the P0 when reviewing the design
philosophy documented in the contractor ’s proposal and CPDP . It should also

— be used to prepare for design reviews (PDR and CDR) when the contractor presents
his overall and detailed design. Finally, it should be referenced when
evaluating contractor compliance with his plans ~nd design at PCA .

2. THE PROPERTIES OF MAINTAINABLE SOFTWARE

Software can be designed to implement either a sing le specification or a
class of programs which respond to the specification. In general , the broader
the design , the easier it is to change , but the more it will cost to design
and operate . The software designer balances flexible design against ease of
implementation or speed of execution. The designer looks for simple comput-
ational structures which will generate the computer program specified and yet
be easily modifi able.

No techniqu es are known for optimizing design. However , a good fl exible
design has properties which can be evaluated by experienced designers at
desi gn reviews , and measured after implementation by an audit of maintenance
costs.

Flexible design includes a coherent conceptual organization of data and opera-
tions , cleanly modularized design with low level s of interconnection , self-
monitoring properties , hooks for easy extension , and a reasonable methodology
to insure a complete and correct design. The following paragraphs define the
properties of fl exible design in more detail. Some criteria such as coherent
conceptual organization and a closely modularized design are closely related .
However , these properties differ in intent and even though they tend to come
together it is possible to shave one without another. These properties can
be evaluated by a technical lly competent design critic in the same sense that
good writing style can be evaluated by a good literary critic. Unfortunately,
it is hard to find a good serious critic.

43

--
~~

--
~~~~~~~~~~~~~

- -
~~~~~

-
~~~~~~~

- - - .-  
~~~~

-.-
~~~~~~~

- - .
~~~

- --— ----- - -

_
- - -

2.1 Coherent Conceptual Organization

A software design should be developed from a consistent set of design principles
because once these principles are understood , the design becomes predictable
and hence easier to modify .

A coherent conceptual organization allows the prediction of the information
that will be found in data structures and the functions that will operate on
this data. If there are communication conventions between modules then one
wou ld expect to know what the conventions are and why they were chosen . In
general the design philosophy should tel l a reader the problems perceived by
the designer and how they were solved .

When a software design for a large system is being developed , several level s
of abstraction should be defined . Each level of abstraction should be defined
in terms of data types and operations on these types. This technique forms
a coherent approach for the total system by collecting related functions at
appropriate level s of abstraction .

Software must be built with consistent philosophy and organization as well as
a clear understanding of the design probl ems to be solved . Without sucn an
approach , maintenance becomes much more difficult because there are no
principles to follow in determining how modifications were made. Whenever a
coherent design philosophy is not developed or successfully comunicated to
the maintenanc e programmers , modifications become more expensive and are
likely to contain residual errors .

2.2 Modular Design

The goal of modular design is to build independent functional pieces of a com-
puter program wh ich can be separa tel y develo ped , tested , and modified or
replaced . Good modular design minimizes coupling between subroutines and
procedures and allows easy modification . Software which employs modules must
rely only on a l imited , wel l defined set of properties for the modules.
Nothing in the software should depend on the internal method by which the
modul es accomplish their j ob. Proper modularity will reduce code by
col l ecting similar functions into one module. It increases the program ’s
clarity by employing a small conceptual set of wel l defined properties to
construct larger program elements. Figure 6 lists design approaches which
minimize the coupling of modules and Figure 7 provides design approaches which
assist modularization.

44

- -— --- - - - -

~

-- -- - ---

~

- -

~

-

~

- -

- — ~~~—- —---- - - - -

METHOO IMPACT ON COUPLING
Minimi ze the sharing of a Two or more modu les sharing a c omo n data envi ronment increase
corno n environment; i .e . , interface co mplexi ty and coupling. Every element in the co~nnon
conmion da ta f l ies and tab les . environment , whether used by a particular module or not , con-

st itutes a separate path along which errors and changes can propo-
gate . Once the choice is ma de to conununicate via a conum n environ
ment , all new modules must be plugged Into the coninon environment .
further compounding the tota l complexity . These disadvantages can
be minimized by limiting access to the smallest possible subset of
modules (subset data i nto groups).

Reduce interface comp lexity . Reducing complexity of an interface reduces the information needed
to state or unde rstand the connection . Thus , obvious relation-
ships result in lower coupling tha n obscure or inferred ones .

Avoid referring to the conten ts Connections that address or refer to a modu le by its name , rather
of a module. than its contents , yield l ower couplings than connections refer-

ring to a module ’s inte rnal elements . Modules that can be used
wi thout knowledge of thei r contents make for simpler sys tems.

Minimi ze control Info rmation By avoiding the practice of passing an ‘ element of control ’ suc h
passed between modules . as a switch , flag, or s i gnal from one module to another , coupl i ng

is reduced . Passing an “ element of cont rol ” affects the execution
of another module and not merely the data with which it works by
Involv ing one module In the internal processing of another module.

Maximize module cohesiveness Coupling Is reduced when the relationships among elements not in
the same module are minimized. There are two ways of achieving
thi s-- (l) minimizing the relationship between modules and (2)
maximizing relationshi ps between elemen ts in the same module . An
“element ” Is any form of a “piece ” of the module , such as a state-
ment , a se~nent , or a sub functlon. Bi nding is the measure of
cohesiveness of a module. The objective Is to reduce coupling by
striving for hi gh bindi ng . Functi onal binding is the strongest
type of binding. In a functionally-bound module, a l l elements are
related to the performance of a single function . Examples of
func tiona lly bound modules are “Compute square Root, ” “Ob tain

Rand om M i,uber, “Wri te Record to Outpu t File. ”

Figure 6. Design Approaches to Increase Module Independence.

45

_ _ _ - - - - --- -—- -- --
~~~~~

- - - - -
~~~~~~~

- - - - — - --- .- • -- -- ---—-

APPROACH DISCUSSI ON

Match Program to the class o One of the most useful techniques for reducing the effect of change s
problem being solved , on the progra m is to make the structure of the desi gn ma tch the struc-

ture of the class of problem being solved , i.e., form shou ld follow
_ function.

Keep the scope of the effect The scope of contro l of a module is that module plus all modules that
of a decision wi thin the are ultimately subordinate to that nodule. The scope of effect of a
scope of the control of the decision Is the set of all modules that conta in some code whose execu-
module effected . tion is based upon the outcome of the decision . The system is simpler

when the scope of effect of a decision is in the scope of control of
the module containing the decision . The scope of effec t can be brought
within the scope of control either by moving the decision element up in
the structure or by taking those modules that are in the scope of effect

_ and moving them so that they fall within the scope of control.

Lim it size of module. There is no consensus on an optimum module size. IBM , in their paper on
“Ch ief Progranuner Team Management of Production Programing, s ugges ts
that prograrwners wr i te modules of approximately 50 PL/I statements . This
ca n be kept on a s i ngle page and i s read il y comprehensible. Others have
suggested from 100—300 programing statements . In any case , the intent
is not to set absolute maximdms but to guide prograimners , th rough the
appl i cat i on of a s i ze standa rd , to functionally orient their code to im-

_
prove readability and to provide modularity .

Other considerations Elim ina~te duplicate functions but not duplicate code. When a function
changes , it is advantageous to only have to change it in one place.
This does not mean that the module can not be used in more than one place
i n the system , (e~g., the use. of MACROs should be encouraged). If a
requi rement changes in one part of the system , then a new module shoulj
be develo ped with a different name to maintain independence. An example
mi g h t be a match function used by multiple CPC5 . If one CPC needed more
accuracy, a separate routine would be developed to prevent impacting
ot her CPCs.

Check Modules that have many callers or that call many other modules.
While not always a problem, it may indicate mi ss in g levels of modules
(e.g., an erroneous functional bounda ry of that module).

Isolate all inde pendencies on a particular data-type , record-la yout ,
index-structure , etc., in one or a minimum numbe r of modules. This
minimi zes recoding should the specification change .

Reduce the number of parameters passed between modules. Do not pass
whole records from module to module. Pass only the field or fields
necessary for each module to accomplish Its function , otherwise , all
modules will have to chang e i f one field expands , rather than onl y those
which directly use the fie ld. Passing only the data being processed by
the module with necessary error and End of File (EOF) parameters is the

_
ultimate objective.

Figure 7. Some Approaches for Defining Modules.

46

- - ..~~~~~ --- -~~~-
- -

.-. -.-... --
,- - - - , -.~~~~~ - ,.,

2.3 Sel f-Monitoring Computer Programs

Active and passive monitoring are two forms of self-monitoring which are
valuable for maintenance and should be considered for inclusion into the design .

Active mon itor i ng goes on con ti nuous ly and is designed to verify the re l i ab i l i t y
of computer program data . Techniques from financial auditing can sometimes
be adapted to perform this kind of checking. For example , if the records —

in a file are sequentially numbered , a missing record can ~e detected . A
checksum of items included as the last data item can be used to detect unwanted
changes to the data. Often this kind of checking can occur with almost zero
operating time costs by making the checks a by-product of normal processing.

Many of these active monitoring techniques will increase the reliability of a
computer program which is being modified by detecting changes to fixed assump-
tions being used by the computer program code. Modifying and extending pro-
grams which include this form of checking is always easier and more secure
because if ar. error occurs in one modul e it is likely to be detected by
other modules in the same program , thus warning maintenance personnel of an
e rror .

Passive monitoring is activated by maintenance personnel and allows information
to be optionally checked or initiates the processing of trace information to
assist in eval uating program operation after maintenance activity has begun.
Passive monitoring provides diagnostic assistance in l ocating a module which is
not performing properl y and assists in the integration of new modules. Soft-
ware designed for flexibility should include support modules which can provide
the progranii~er with visual representations of the data structures and detailed
analyses of the computer program ’s ac tions.

2.4 ~~g~ram Hoo ks for Fu ture Ex tens ions

Software which is designed for future extension will usually include fields in
data structures that can be used for future modifications to the software
without changing existing programs which use the structures . Such fields are
called hooks and save .valuabl e maintenance time when the original software is
extended . In choosing appropriate hooks , it is prudent to spend some design
time thinking about how a new feature might be integrated into the existing
software design.

2.5 Design Methodology

A design methodology should be chosen to insure the completeness and qual ity
of the resulting software design. Most good computer program design method-
ologies begin with functional requirements , which are stated in the Develop-
ment (Part I) Specification , and progress downward at progressively greater
level s of detail until code is produced . This technique is generally referred
to as top-down design .

1~~

Top-down d~si ~n s acc rw~ is~~~ by .u c c es s i ~ Oi~ refi ci~~ a computer pr .~. ‘am
descri r H ~‘r to ~lee Deve lo , ‘ - -~‘ r Spec if i ~n -‘q~i r~i u i e r t s . Eac h t i m e a
refi ne~er~ is accor i-ipl ished the substructure inherits an a~ 1 ocated set of
perfor-~~nce requirements . If each substructure can be constructed within the
Development Specification then the whole CPCI w ill meet its performance
criteria.

Strict top—down design is difficult unless the entire CPC I is constructed
with a similar organization . Otherwise it is hard to establish the appropriate
performance criteria for substructural elements or even insure that some
divisions can be accomplished at all. Top-down design is illustrat ed in
Figure 8 where successive l evel s of design provide additional details of the
eventual solution .

To be effective, a design methodology must be easily communicated and under-
stood. In developing a design , it is useful to examine the system from the
fol lowing four points of view :

• System Physical Structure. Review all the system components and their
relationships. A description of the physical structure of the system
is usually conta i ned in the System Specification . More detailed
descriptions of the CPCI and all its interfaces should be included in
the Development Specification (see Computer Program Development
Specification guidebook).

• Functional Decomposition of the CPCI. Analyse the decomposition to
determine the hierarc hy of control and what is to be done by the CPCI.
Normally, time is not represented in a functional decomposition.
Figure 8 shows an example of a top-down functional decomposition.

• CPCI Data Flow. Examine data flow to identify all inputs and outputs
and ascertain the flow of information as it proceeds through the
functional areas of the CPCI.

• Dynamic Operations of the CPCI . Determine the required sequential and
concurrent operations and identify processing volumes and priorities
to provide a basis for evaluating the throughput and response time
features of the design.

48

_ _

-L!1

•
~~1QI- 1- -.~.~v,.~ ~~~~~~~~z_, .j ~~~oLU 0 0 ~~

—2 ~‘ ~~~~~~~~

LU0
0

* 0 ,c >- 0 LUU_ ut , — U — a0
_ _ _ _ LU

lo u. LU _I
~,) U

_____ _______

—L!I

I —
a)

~~~~ 
,_, 

‘-. 
~ . 0

_ _ _ _  ~ ‘- a)
______ ______ ______ ,n j- 

______ LU ,fl

rb H’~~H ~ ~~~ 1~:~ ~~~~~~~~~~~~~~~~~~~~ H_
~~

~~ F41i~ Hi~i H I
.ft

~~~~~] ~;~i 
_ _ _

LU’, .
- _ _ _ _

~~

LU

C”

-J

-1

49

—- - .~~~ ,, ~- .-.,. -.. ‘.__ . - ~~~~~~~~~~~~~~~~~~~~~~
_41

—

~~~~~~

‘-
~~
---—--- .‘-— - 

~~~~~~~~~~~~~~~~~~~~~~ 

3. CODING TECHNI QUES THAT FACILITATE SOFTWARE MODIFICATIO N

The task of developing easily modifiabl e software requires several coding
techniques which resul t in a computer program that is easier to modify and

• behaves in a more stable way . Subsequent discussion treats four such techni-
ques: legibility of code , parameterized constants , stabl e code, and structured
programming . Further , Fi-gure 9 provides a sumary of commo n coding techn iques
with commentary on the maintenance aspects of the techniques .

3.1 ç~~puter Program Legibility

An important step in the coding process is to make code legible so that it can
be easily understood . Several techniques make code easier to read .

Paragraphing invol ves grouping statements that perfo rm a single function and
placing blank lines to set off the code visually. Consistent use of indenta-
tion to reflect the bl ock structure of the computer program is another para-
graphing technique for visually indicating computer program structure .
Coupl ed with good modular design , paragraphing makes code clearer and easier
to modify .

A general comment preceding a module which provides an organizational framework
for the code is a technique which provides legibility similar to the way that
a proper introduction in a well written essay organizes the essay content for
a reader. Coding which relies on non-obvious relationships to l1~ake the

*

resulting computer program more efficient should be commented expressing the
intent of the code as well as the assumptions which were made by the coder .
Figure 10 provides a checklist for reviewing comments .

3.2 Parametric Organization

In computer program developm ent, design decisions which are characteristic of
a class or family of computer programs that perform similar functions should
be parameterized to allow easy modification within the class. Often these
design decisions involve the size of tables or the offset of particular data
in some data structure. Constants of this type should be coded as symbolic
constants rather than as literal constants. Thus , if a value were to be
divided by the number two, the constant should probably be specified . However,
if a tabl e of ten elements were being used , a symbolic constant should be
written into the program every place that the size of the tabl e is referenced .
This allows the easy extension of the tabl e later by a single parametric change
to the val ue of the symbolic constant.

50

_ _ _ _

TECHNIQUES EXAMPLE/COt*IENTS DISADVANTAGES
Code in a single HOL when A requirement of DoD Direct ive No. HOL programs usually take longer
possible. 5000.29. DoD Approved Higher Orde r to operate and require more core

C Progranini ng Languages (HOL5), storage than assembly language .
states that MOLt will be used to Ofte n time-critical port ions of
develo p Defe nse sys tem so ftware , real time sy stems are coded In
unless it is demonstrated that assembly language.

• none of the approved HOL5 are Cost
effect ive or technically practical
over the system life cycle. DoDD
5000.31 lists the approved HOLS.

The maintainability of using one
HOL may be outweighed by the
benefit of using several off-the-
shelf packages.

Use symbolic parameters to Accomodates changes in constants . Unless care is taken, can confuse
represent constants, relative table structure , sizes of tables , symbol ic constants with variables

— location within a table , and etc., without major changes to in the program.
size of data structures, module code. For example , all

software system constants can be
centrall y located and symbol—
ica lly defined (TWOPI=2).

Shari ng variables and temporary Each mo dule (subroutine) should hay Could require additiona l core
storage. own temporary storage area . Coding storage or additional processing

problems resulting from shared time to housekeep temporary
storage are hard to isolate since storage.
they can be coupled through a
timing or interrupt relationship.

Subroutine arguments tnstead of Cuts down iumber of modules Requires extra time to operate
global coxnnon to comunication affected if global connnon is module.
data , changed . By passing explici t

parameters , module independence
is enhanced.

Self modifying code. Besides being hard to debug and Advantages far outwei gh any
modi f y, this type of code is potential core , or execution
extremely hard to follow , time savings.

Named COMtION instead of blank I tems in COMIION should be named None.
CO~~~N. to allow referencing (not COMMON

+ x words). If referenced by
- name , chsnqes to CQMIf~H wi l l liesm

* less impact on modules .

Code which implicit ly couples Destroys module independence and Could require additional core .
one module to another, is hard to modify. Enforce the

concept of one entry and one
exit point.

‘To the extent possible min im l7e For example. (I) use an internal Could require extra processing
hardware dependencies . character set and convert in- time and additional core storage.

coming data to this set; (2) use
I/O modules that are separate
from computational modules to
read input data ; (3) use a 1101 SO
that machine-pecul iar features
are not used directly by the
progralmiers, etc .

• tructured code. Structured programing encourages Could require development of pre—
utra i ghtforward control logic, processor and additional core
If a ,tructured language compiler storage . Pre-processor has in-
Is not ava i la b le , a pre-processor herent disadvantag es In terms of
can be developed fairl y economic- portability and maintenanc e.
all y or proper Coding conventions
should be enforced.

void unnecessarily complicated Simple, logical coding in easier None .
rlthmetic statements , to understand , correct, or

_ _ _

mothfy.
_

Figure 9. Sumary of Coding Techniques.

51

r_,..

~

,~~~,.. s~~_... .si_, - - Zr -rr ~~~” !s.-~~~~~s .~~*z-_._Z* ’t. ,.__..,

Program code should contain sufficient information to determine or verify
the code ’s objectives , assumptions , constraints , inputs , outputs , components ,
and revision status. Comments should meet the following checklist:

a. Does each compu ter program module contain a header block of comments
which describe :
1. Compu te” Program name?
2. Effective date (last revision)?
3. Accuracy requirements?
4. Purpose?
5. Limi tations and restrictions?
6. l’-lodification history (a list of changes added)?
7. Inputs and outputs?
3 . Assump tions ?
9. Error recovery types and procedures for all foreseeable

error exits that exist?

b. Are decision points and subsequent branching alternatives adequately
commented and is proper indentation used to show the block structure
of the coding logic?

-c. Are the functions of the modules and inputs/outputs sufficiently
described to facilita te module testing?

d. Are comments provided to support sel ectiorl of specific input values
to permit performance of specialized program testing?

e. Is information provided to support assessment of the impact of ‘a
change ’ in other portions of the computer program?

‘f. Do all computer program statements which have undergone modification
(after baselining) have an identification number included that
associates the change with an ECP or discrepancy report?

g. Where there is inter—module communication , is it clearly specified by
commen ts , computer program documentation , or inherent program structure?

Ii. Are variable names descriptive of the physical or functional property
represen ted?

Figure 10. Checklist for Commenting Computer Program Code

52

~~~~~~~~~ ,~~~~ ‘-~~~~~~~~ --‘ ‘ -- - -‘..—‘* — 
~~~~~~~~~~~~~~~~~~~~~~~~~ 

- “ ‘ “ “,“~~~ ‘ ~~~~~~~~~~~~~~~~~
-=.~~~

_.

Symbolic constants should be identified by their function in the program and *

not by the particular value they currently possess. Thus “TEN” is not a very
useful name for a symbolic constant whereas “T -BLESIZE” is a much better name
because it expresses the meaning wi thin the computer program. One difficulty
wi th symbolic constants is that they can be confused with variables when a
program is being read. To compensate for this deficiency constants should be
listed in a comment wh ich defi nes their intended use .

In this way, properly used parametric constants make a program much easier to
read and understand as well as easier to modify. A person reading the code
does not have to guess what meaning is attributed to a parametric constant;
however , a number is just a number and carries no extra information.

3.3 Stable Code

Stabl e Code performs predictably even when given improper data . Programs should
check for improper data and bypass normal processing whenever improper data is
encountered .

The Development (part I) Specification should include specific requi rements for
the processing of improper data inputs received from sources external to the
CPCI. It should also provide for some type of error message when internally—
generated , improper data is encountered . Internal CPCs may erroneously generate
improper data and stabl e code must prevent the processing of the improper data .
Without error messages , the software might ignore the improper data and the error
could go undetected for some time .

3.4 Development Methodology

To develop understandable computer program code it is best to employ a good
development methodology . A development coding methodology is like a style
sheet: it forces acceptabl e expression but it cannot ma ke a great writer out
of a poor one .

The most familar methodology is structured programming, a technique initiated
by Dij kstra . The structured-programing, flow-of-control conventions are
summarized in Figure 11. These rules attempt to make a program more linear and
thus easier to read and understand . However compl exity in data structures can
usually be traded for complexity in flow-of-control wi thin a program. If a
programmer does not attempt to keep both data structures and flow-of-control
simple the computer program will still be difficult to read and understand .

53

- — - — — —-- — s__&_._.._.__,__.,___
- -. p -. ~~~~~~~~~~~~~~~~ — — ___ .— — —

- - -~~~ .w~~~~~~~~~~
’.

~~~~~~~~~~
-- - - - -

— .- .
~~~~~~~ ,

.. .— —‘-‘--‘ *--.-- .— ---. -, -.—.
-‘--- — ___ 1

_
~~ ‘~ii ‘--.- . -

I FUNCTION I- FUNCTI ON
A B

Sequence
This logic structure is the simplest and indicates that function A is to be
performed fi rst, function B is to be perfo rmed next, and then processing is
conti nued .

~
,

(IF)

FALSE C TRUE

r ~ (ELSE) (THEN) .j,

FUNCTION FUNCTION

IF—THEN—ELSE
The flow of control is governed by condition C. If condition C is true ,
function D is performed . If not , then function E is performed. In both
cases control is returned to a comon r’ode and proceeds from that node .

Figure 11. Structured Programing Basic Control Structures (1 of 3)

54

-
p..

pN. —
~
— ‘—— —, _

—.~~~~~~~
*___ ______ =i__,

— ~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~ —, -- ——

— 1-~~~~

~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~1

___________________ FUNCTION TRUE

DO-WHILE

The flow 0f control again is governed by a condition . Function G is perform-
ed while condition F is true. When condition F is no longer true , the fl ow
of control falls through and processing continues .

Figure 11. Structured Programmi ng Bas ic Control Structures (2 of 3)

55

- -

False

FUNCTION

1
~~~~~~~

rue k

DO-UNTIL
In th is structure , func ti on L i s a lways performed at leas t once . Func ti on L
will be repeated unti l conditi on M is true.

1 FUNCTION 
__________

B

2 FUNCTION
C

ELSE 
______________

CASE 

~ FUNCTION

In the case logic structure , the flow of control is governed by the value of
A. If A is 1 then function B is performed . If A is 2, C is performed . For
all other values , a func tion N is performed . In all cases , con trol returns
to a common node and proceeds from that node .

Figure 11. Structured Programmi ng Control Structured Extensions (3 of 3)

56

r ~~~-- -~~~~~~
-
~~~~--.-~~~~~~~ 


-‘ -- --——---- ---- ----- - -.-- ,---- —- -- - —-- --‘. -- ----- ---.- ‘- - ‘- - - - -. - - —- ------ *---~—~~—.- —- - - - -

APPENDIX B - GLOSSARY

This guidebook consists of (1) definitions of major terms used throughout this
guidebook and (2) a list of acronyms and abbreviations used herein.

DEFINITIONS

Al ter. A change to the source language representation of a program.

Assembly Language. A programing language which provides symbolic represen—
tations of machine—operation codes an d addresses. In most cases,
assembly language instructions generate computer object code on a
one-to-one basis.

COMPOOL. A description of the components of a programming system. These
— components may be programs , common func tions , and data shared by more

than one component. The description exists in a symbolic and a
machine representation. A COMPOOL is not a system data base but rather
a description of its structure .

Computer Data. Basic elements of information used by computer equipment in
responding to a computer program .

Com;uter Program. A series of instructions or statements in a form acceptabl e
to computer equipment , designed to cause the execution of an operation
or series of operations. Computer programs include such items as
operating systems, assem bl ers , comp i l ers , interpreters , data management
systems, utility programs , and maintenance/diagnostic programs . They
al so include application programs such as payroll , inventory control ,
operational flight , strategic , tactical , automatic test, crew simulator ,
and engineering analysis programs . Computer programs may be either
machine-dependent or machine-independent , and may be general purpose
in nature or be designed to satisfy the requirements of a specialized
process or particular users .

Computer Software. A combination of associated computer programs and computer
data required to enabl e the computer equipment to perform computational
or control functions.

De~~,g. A general term given to the process of finding and correcting the
errors that have been shown to exist in a program by the testing or
execution of a computer program .

Global Data. Global data are data shared by more than one module.

57

- - - -~~~~~~~ . ~~~ “

High Order Language (HOL). A machine-independent programming lan gua ge in
wh ich the character istics of a par ticular computer are not apparent.

HIPO (Hierarchica l Input Output) Chart. The HIPO chart describes functions
in terms of the inputs to a process, the process , and the outputs
resulting from the process. The inputs , processes , and the outputs are
arranged graphically on a page from left to right with directional
arrows to lead the reader from input to output through the process.

Implementing Command. The command charged with primary responsibility for
devel oping and acquiring the system or equipment.

Module. Used in this document to describe the smallest computer program unit
that can be compiled or assembl ed. A CPC has one or more modules.

Object Code. Program code that results from the execution of a compiler
or assem bler.

Qpera ti n~ Command. The command or agency primarily responsibl e for the
opera tional empl oyment of a system , subsystem, or items of equipment.

Patching. Making changes to the machine-code representation of a computer
program .

PMRT. See Transfer.

Program Support Library (PSL). A group of manual or automated procedures
used to control and keep records of the devel oping software.

Source Code. Programer-coded input to a program-language compiler or
assembler (e.g., FORTRAN source statement).

Supporting Command. The command charged with primary responsibility for
program management in the Deployment Phase including log istics ,
engineering, and procurements.

Top-Down Development. Top-down , also calle d stepwi se refineme nt, is the
name given to a methodology in which one starts at the l evel of the
program to be solved and by a sequence of decompositions of the
functional and data specifications finally arrives at the availabl e
machine or programing language .

Transfer. Refers to Program Management Responsibility Transfer (PMRT). The
transfer of program management responsibility for a system (by series),
or equipment (by designation), from the impl ementing conunand to the
supporting command . PMRT includes transfer of engineering responsibility .
(AFR 800-4)

Turnover. That point in time when the operating command formally accepts
responsibility and accountability from the imp l ementing command for
the operation and organizational maintenance of the system or equi p-
ment acquired . (AFR 800-19)

58

—-

~

---- --- ~~~~~~~~~~~~~ —~~~~~~‘-.—~~~~- - - - ‘-—p - - . -- .— -.—.

ACRONYMS AND ABBREVIATI ON S

AFR . Air Force Regulation

AFSC. Air Force Systems Command

C3. Coman d, Con trol , and Communications

CDR. Critical Design Review

CDRL. Contract Data Requirements List

CPC. Computer Program Component

CPCI. Computer Program Configuration Item

CPCSB. Computer Program Confi guration Sub-Board

CPDP. Computer Program Development Plan

CPU. Central Processing Uni t

CRISP. Computer Resources Integrated Support Plan

CRWG. Computer Resource Working Group

DID. Data Item Descr ipti on

DoD. Depar tmen t of Defense

DR. Discrepancy Report

DT&E. Development Test and Eval uation

ECP. Engineering Change Proposal

ESD. Electronic Systems Division

FCA. Functional Configuration Audit

~
]. Forma l Qual ifi ca tion Tes t

GFE. Government Furnished EquIpment

HOL. High Order Language

59

-rn.- -.-. —

LIP.. Inpu t/Outpu t

MIL-STD. Military Standard

O&M. Operations and Maintenance

OS. Operating System

0/SCMP. Operational /Support Confi guration Management Procedures

PCA. Physical Confi guration Audit

PDR . Prel iminary Des ig n Rev iew

PMD . Program Managemen t Di rective

PMP . Program Mana gement Pl an

PMRT. Program Management Responsibility Transfer

PP.. Program Office

~~
[. Preliminary Qualification Test

PSI. Program Support Library

~~~~. Qual ity Assurance

RADC. Rome Air Development Center

RFP. Request for Proposal

RSS5. Regulations, Specifi cations , and Standards

SAM. Software Acqu isiti on Mana gement

SCN. Specification Change Notice

SD. Software Director

SDR. System Design Review

SOW. Statement of Work

SRR . System Requi rements Review

TDSP. Top Down Structured Programing

TR. Technical Report

USAF. United States Air Force

VDD. Version DescriptIon Document

WBS. Work Breakdown Structure

60



- -~~~-—‘-‘-—--- ~~~~~~
—‘ -‘

,-- ‘-“,-.- , --
‘--—- - -,-.. ~~~~~ -~ ‘.—-— — —,-.-.- *

APPENDIX C - BIBLIOGRAPHY

“A Design Methodology for Reliable Software Systems ;” Liskov , B. H.;
Proceedings of Fal l Joint Computer Conference; Vol . 41 , Part 1; Pgs. 191-199 ;
AFIPS ; 1972.

“A Discipline of Programing ;” Dijkstra, E. W.; Prentice Hall; Englewood
Cliffs , N. J.; 1976.

“Designing Reliable Software;” Ogdin , J. L.; Datamation; Pgs. 71—78; July
1972.

“Modular Programs: Defining the Module; ” Cohen , A.; Datamati on; Vol . 18,
No. 1; Pgs. 34—37; 1972.

“On the Criteri a to be Used in Decomposi ng Systems into Modules ;” Parnas ,
D. L.; Commun ications of the ACM; Vol . 15, No. 12; Pgs. 1053-1058;
December 1972.

“Quantitative Analysis of Software Reliability ;” Di ckson , J. C,., Hess e, J. L.,
Kientz , A. C. , an d Shoomun , H. L.; IEEE Symposium on Software Reliability ;
January 1972.

“Research Toward Ways of Improving Software Maintenance: RICASM Final
Report;” Overton , R. K., et al; ESD-TR—73-125; USAF (ESD); January 1973.

“Reliability of Real-Time Systems ;” Yourdon , E.; Modern Data; Serialized
(six parts); January — June 1972.

“Scheduled Maintenance of Applications Software;” Li ndhors t, W. H.;
Datamation; Pgs. 64—67; May 1973.

“Software Deve l opmen t;” Mills , H. D.; Supplement to Proceedings of 2nd
International Conference on Software Engineeri ng; Pgs. 79-86; ACM/IEEE !
Nati onal Bureau of Standards ; IEEE Catalog No. 76CH1125-4C; October 1976.

“Software Engineering and Structured Programming ;” Wilkes , M. V.; Supplement
to Procee di ngs of 2nd In terna tiona l Con ference on Software En gi neer i ng;
Pgs. 132—134; ACM/IEEE/National Bureau of Standards ; IEEE Catalog
No. 76CH1125—4C; October 1976.

“Sof tware Eng i neer ing ;” Boehm, B. W.; IEEE Transaction on Computers;
Vol. C—25, No. 12; Pgs. 1226—1241 ; December 1976.

• “Structured Programing ;” Da h l , 0. J., Dijkstra , E. W ., and Hoare , C. A. R.;
Academic Press; London and New York ; 1972.

61

IF.. .~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ‘ ~ —~~——— .. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ :_T_’
~~~~~


_ _ _ _ _

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ TT~~ — -
~~~~~~~~~~

“Structured Design ;” Stevens , W. P., Meyers , G. J.; and Constantine , L. L.;
IBM System Journal, No. 2; 1974.

“Structured Programming Series;” RADC-TR-74-300; Volume VI - Programing
Support Li brary Program Specification ; USAF.

- ‘

“Techniques of Program Structure and Design;” Yourdon , E.; Prentice-Hall;
Englewood Cliffs, N. J.; 1975. - -

“The Elements of Programing Style;” Kreitzberg, C. B., Shne iderman , B.;
Modern Data; Pgs. 40-41; August 1972.

“The Infl uence of Software Structure on Reliability ;” Parnas, D. L.;
Proceedings of the International Conference on Rel i able Software; Apri l 1975.

“The Structure of ‘The’ Mul tiprogrammi ng System;” Dijkstra, E. W.;
Communications of the ACM, Vol . II, No. 5; Pgs. 341-346, 1968.

“Through the Central ‘Multi processor’ Av ion ics En ters the Computer Era ;”
Wi ll i am, A. 0., O’Donnel l , C.; Astronautics and Aeronautics; July 1970.

“Top-Down, Bottom-Up, and Structured Pro gramm ing ;” McClure , C. L.; IEEE
Transactions on Software Engineeri ng; Pgs. 397-403; December 1975.

“Top Down Programming in Large Systems;” M i l ls , H. D.; Debugging Techniques
in Large Systems; Rustin , R. (Editor); Pgs. 41-55; Prentice Hall; Englewood
Cliffs , N. J.

62
(Last Page)

~ 2 _ ~:_ ~~~~~~~~~~~~~~~~~~~~~~~~~
,
~~~~~~~~ 

- - ‘.- - - -



C (I4MENT SHEET

Software ~~.intenanc e Guidebook

Reviewer ’ a Name: Reviewer’s Organization :

Conunents :

Please return to: Hq ESD/}CIT (Stop 36)
Hanscom AFB, MA 01731

63

1 - -~~~~~~~~~~ ~~~~~~~~~~~~~~~~ -- ..i ~~ - - - --5~L ~~~~~ .



-. ~~~———- —-.. __ 

_.
~~~ 

-.-.- . ‘—
~~~~~~~~~~~~~~~~~~~~~ 

—“. - .~~—~ “.-—
-—-- —

~

-

~

-—.— -‘—r’-~ 
- — ‘

~ ~~~~ 

“iI 

— 

~~~~~~ 

i.,-.

-

(FOLD)

(FOLD)

FROM:

Hq ESD/MCIT

Stop 36

Hanscom AFB , MA 01731

-- —— -—a!—-— _~~~~~~~~~ _ ,. -r~~t,t~~~~~t,t ~~ — - - -r --

