SYSTEM DEVELOPHI'.NI CORP SANTA MONICA CALIF
SOFTWARE ACQUISITION MANAGEMENT GUIDEBOOK: SOFTWARE MAINTENANCE-—ETC(U)
OCT 77 J R STANFIELDrs A M SKRUKRUD F19628-76-C-0236
UNCLASSIFIED SDC=-TM=5772/004/02 ESD=TR=77=327

_AD=AUSS 0%0

DATE
FILMED

S=78

DDA

has (128 m“ 2.5

JLio i &
—
T

.
.

i< e

N
O

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963%

b

ESD-TR-77-327

qq SOFTWARE ACQUISITION MANAGEMENT
" c GUIDEBOOK: SOFTWARE MAINTENANCE
A~
AU J. R. Stanfield
c A. M, Skrukrud
=T
g October 1977
:' .
g Approved for Public Release;
.’ e Distribution Unlimited.
S
it
co
e Y e |
3=

Prepared for

DEPUTY FOR COMMAND AND MANAGEMENT SYSTEMS
ELECTRONIC SYSTEMS DIVISION
HANSCOM AIR FORCE BASE, MA 0I173I

———

LEGAL NOTICE

When U.S. Government drawings, specifications or other data are used for « -
purpose other than a definitely related government procurement operation, the
government thereby incurs no responsibility nor any obligation whatsoever; and
the fact that the government may have formulated, furnished, or in any way sup-
plied the said drawings, specifications, or other data is not to be regarded by
implication or otherwise as in any manner licensing the holder or any other person

or conveying any rights or permission to manufacture, use, or sell any patented
invention that may in any way be related thereto.

OTHER NOTICES

Do not return this copy. Retain or destroy.

This Technical Report has been reviewed and is approved for publication.

e\ L4 CltrS o

WILLIAM J. WHITE, Capt, USAF JOHN C. MOTT-SMITH
Project Engineer Project Manager

~LBM¢H— »‘oum

JOHN T. HOLLAND, Lt Col, USAF
Chief, Techniques Engineering Division

FOR THE COMMANDER

-

STANLEY P.”DERESKA, Colonel, USAF .
Deputy Director, Computer Systems
Engineering

UNCLASSIFIED

* SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
) 2. GOVY ACCESSION NO.i 3. RECIPIENT'S CA
E R-77-327 , & (" !
4. TITLE (end Scubtitle) P OVERED
SOFTWARE ACQUISITION MANAGEMENT GUIDEBOOK: | (74 Comtract W June i76afo
SOFTWARE MAINTENANCE &~ [~ ek
= : . . ORT BER
/%) SDE -M-5772/684/
- v v NUMBER(s)
. R./Stanfield
@ j,, M. Akrukrud /5] _F19628-76-C58236 j s
. ORMING ORGANIZATION NAME AND ADDRESS 19. ::giaﬁAxOERLKEnSINYT.NZRMOBJEE PopprtS
SYSTEM DEVELOPMENT CORPORATION den @
2500 COLORADO AVENUE PEG474OF, Project
SANTA MONICA, CAL. 90406
11. CONTROLLING OFFICE NAME AND ADDRESS 12 ORT UATE
Deputy for Command & Management Systems /! OCTNER @977
Electronic Systems Division
Hanscom AFB, Mass. 01731 62
4. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Olfice) 15. SECURITY CLASS. (of this report)
UNCLASSIFIED
1Sa. DECLASSIFICATION/DOWNGRADING
SCHEDULE

6. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; Distribution Unlimited

p D&

—nn\ [] !
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report) @jj" m—
1 pem 20 198
10y o
18. SUPPLEMENTARY NOTES RE= A 'i‘:
19. KEY WORDS (Continue on reverse side if necessary and identify by block number)
COMPUTER PROGRAM MAINTAINABILITY SOFTWARE MAINTAINABILITY
COMPUTER PROGRAM MAINTENANCE SOFTWARE MAINTENANCE
MAINTAINABLE SOFTWARE

MAINTENANCE

% ABSTRACT (Continue on reverse side if necessary and Identily by block number)

This report is one of a series of Software Acquisition Management (SAM)

guidebooks which provide information and guidance for ESD Program Office
personnel who are charged with planning and managing the acquisition of

command, control, and communications system software procured under Air

Force 800 series regulations and related software acquisition management

concepts. . e -

-

DD ";2:"" 1473 EOITION OF 1 NOV 65 IS OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGE (When Data Emond)/

337908 -

UNCLASSIFIED

A SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20. ABSTRACT (cont'd)

| AjThe scope of this document is limited to those acquisition and development
activities, occurring throughout the SAM cycle, which impact software mainten-

ance. It includes discussions of system turnover to the using command and the
| / transfer of program management responsibility to the supporting command. The
E | / computer program life cycle is also considered. Most of the information
E | / provided in this report covers the implementing command's responsibilities .
F | [during the SAM cycle. However, software maintenance during the Deployment

| Phase is also discussed to provide the background for proper planning. Current
4 programming concepts are discussed as well as the military regulations, speci-
| fications, and standards. Within these constraints, this report emphasizes
| what the Program Office can do to specify and procure maintainable software,
including procurement of the facilities, support tools, and documentation
necessary to support software maintenance activities.

S
\

dieibes: de ook o i

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

PREFACE

The Software Maintenance guidebook is one of a series of Software Acquisition
Management (SAM) guidebooks designed to help ESD Program Office personnel in
the acquisition of embedded software for command, control and commuriications
systems. The contents of the guidebook will be revised periodically to

reflect changes in software acquisition policies and practices as well as feed-
back from guidebook users.

This report was prepared by System Development Corporation (SDC) under the
direction of the Computer Systems Engineering Directorate (MCI) of the
Electronic Systems Division (ESD), Air Force Systems Command (AFSC). Contri-
butions were made by: Mr. J. Mott-Smith and Captain W. White (ESD/MCI);

Mr. J. Trachtenberg (AFALD/AQE); Mr. M. Landes (RADC/ISI); Mr. M. Mleziva (ESD/
EN); Mr. M. Zymaris (ESD/DRT); Mr. D. Peterson (The MITRE Corporation);

Captain J. Haughney (AFCS/L0O); and Mr. G. Gehlauf (AFLC/LOAK).

The SAM Guidebook series covers the following topics (National Technical Infor-
mation Service accession numbers for those already published are shown in
parentheses): »

Regulations, Specifications and Standards (AD-A016401)

Contracting for Software Acquisition (AD-A020444)

Monitoring and Reporting Software Development Status (AD-A016488)

Statement of Work Preparation (AD-A035924)

Reviews and Audits

Computer Program Configuration Management

Computer Program Development Specification
(Requirements Specification)

Software Documentation Requirements (AD-A027051)
Verification

Validation and Certification

Overview of the SAM Guidebooks

Software Maintenance

Software Quality Assurance

Software Cost Estimation and Measurement

Software Development and Maintenance Facilities (AD-A038234)
Life Cycle Events (AD-A037115)

1
(Page 2 blank)

4 TABLE OF CONTENTS
Page
T R R R L AR N Rt e e Sty -SSR AL VRl R TICI 1
B B A e ety Ll L e i oM i i T o 4
SERTIEN). INPRODNERION ;i v e b e BB W ORI BB s TR w s 5
T RN R PSR Mol e g S LR R 5
o R e g R e SR CE SRR L e s " AUSEIL S I 5
1.3 Software Maintainability 7
130 ‘Definition =S A wel Mg RS LR 7
1.3.2 Factors which Support Software
Maintainabdlaty . . e o LTI L g A 8
B N 0 o A e WO R e b T e SRy R S TR S B 10
g SECTION 2. ACQUIRING MAINTAINABLE SOFTWARE 11
2.1 Defining and SpoCiiping s . - -« « + « o v 5 v o 11
2.1.1 Planning Considerations 1
2.1.2 Development Specifications and the
Full-Scale Development Phase RFP 14
! 2.2 Monitoring and Evaluating 19
| 2.2.1 Preliminary Design Review (PDR) 19
: 2.2.2 Critical Design Review (COR) 21
! 2.2.3 Coding and Debugging 23
i 2.2.4 Formal Qualification Test (FQT) 24
; 2.2.5 Functional Configuration Audit (FCA) 26
2.2.6 Physical Configuration Audit (PCA). 27
2.3 Design Change and Error Correction Control 27
2.3.1 Design Change and Error Correction 27
£.3.1.1 Versjon Comcept « « . - « & 28
2.3.1.2 DesignControl . . .~ oo 0. 0. 29
2.3.1.3 Error Correction Under Internal
Configuration Management 30
2.3.1.4 Updating Process 31
2.4 Transfer and TUYrNOVET . : + « & & &« o » s & & v & s s 32
2.4.1 Configuration Management 33
2.4.2 Change Processing During Transfer and
1 TRNINIR g) I nonend w58 dudid wfie o §Fa 33
] 2.4.3 Software Documentation 34
. 2.5 Maintenance During Deployment Phase 34
3

TABLE OF CONTENTS (cont'd)

Page
SECTION 3. APPLICABLE REGULATIONS, SPECIFICATIONS, AND STANDARDS . . . 37
3.1 RSSs with Direct Impact on Software Maintenance . . . 37
3.2 Topiamentation 6f BSSS . .+ « « » 5. % s sus s oaie & 39 .
3.3 Potential Pitfalls in Applying RSSs 41
APPENDIX A - Designing Maintainable Software 43
BPUENIIE D = GROSaE - o kR e % e e A s 57
RORHDIR €~ BIDMABURMINY v« 5 v it B g n RO RERY . Bl s 61
LIST OF FIGURES
|
4 Figure 1. Summary of System Acquisition, Model CPCI, Computer
' Program Life Cycle, and Command Responsibility o
Figure 2. Milestones for Acquiring Maintainable Software 12
Figure 3. Cost of Approaching Hardware Capacity 16 |
Figure 4. Software Errors Cost More to Fix as Computer Program ’
Life CYcle AaVames T -l "l Mm% e« vne = v v o 22
Figure 5. "Harmonics" Nature of Error Correction 29
Figure 6. Design Approaches to Increase Module Independence 45
Figure 7. Some Approaches for Defining Modules 46 '
Figure 8. Top Down Development . . . v .« ¢ ¢ ¢« « & o o « o« s s & o 49
Flgure 9. Summary of Coding Techutques « + v s v o o o v o & & « « o 51
i
Figure 10. Checklist for Commenting Computer Program Code 52 .
Figure 11. Structured Programming Basic Control Structures 54
<

TR =T

SECTION 1 - INTRODUCTION

1.1 . PURPOSE

The Software Maintenance guidebook is designed to assist Air Force Electronics
Systems Division Program Office personnel in the acquisition of maintainable
command, control, and communications system software procured under Air Force
800-series regulations and related software acquistion management concepts.
Many of the items and procedures discussed are applicable to smaller, less
complex systems; but, in all cases, the guidance herein should be tailored

to the needs of individual projects. The information provided in this guide-
book is directed towards Program Office management personnel and a member

of the Engineering Division, referred to as the Software Director, who is
generally responsible for managing software acquisition.

1.2 SCOPE

The scope of this document is limited to those acquisition and development
activities which impact software maintenance and which occur prior to the end
of Full-Scale Development. It includes discussions of system turnover to the
using command and the transfer of program management responsibility to the
supporting command. The computer program life cycle is also considered. Its
relationship to the Software Acquisition Management (SAM) cycle is shown in
Figure 1. Most of the information provided in this guidebook covers the
implementing command's responsibilities during the SAM cycle. However,
software maintenance during the Deployment Phase is also discussed to provide
the background for proper planning. Current programming concepts are
discussed as well as the military regulations, specifications, and standards
(RSSs). Within these constraints, this guidebook emphasizes what the Program
Office (PO) can do to specify and procure maintainable software, including
procurement of the facilities, support tools, and documentation necessary to
support software maintenance activities. Guidance is given by:

o Defining software maintainability and those factors necessary
to achieve maintainability (see 1.3). P
® Locating those points in the acquisition cycle where the maintain-
ability ?spects of software can most appropriately be evaluated
(see 2.2).

e Listing those considerations which should be made to identify "
support requirements, e.g., facilities, support software, and
training (see 2.1).

e Defining the role of testing in the acquisition of maintainable
software (see 2.2 and 2.3).

A3L|LqLsuodsay pueumio) pue 31249 3L weuboud

423ndwo) “13d) L3POW ‘uot3Lsinboy waysAS jo Aueumng - aunblL 4

SUNTWROD 254
ONILY04dNS B ONISN| QNVIMOD SNTININITdMI g u<m%
ALIALLDY/ONYININOD 32404 HIV 324N0S3Y
130ddNS % HOTLY¥IdO
s NOILVYOILNI % 1S3L
\ — .
NOTLVTIVLSHI LNONJ3HD B 300D NOISIC SISATYNY
(1 "I0A ‘v1-008 Y4V 13d) 319AD 3417 WYHI0Ud HILNAWO)
NOTLVINIWNIOQ LY0ddNS % NOILYDI4193dS NOI LYDI4193dS
NOILYII4123dS 1INA0Y¥d ¥0) ¥Gd INIWOTIAI@ ¥AS W¥S WALSAS
storostoon [S3LT]wno] s3SI worsaa| Vo) ner T
B L140ddNns | gxsf 19491 53513000 040 -WI1713¥d
J7IA0 W3LSAS NI 3TIAD 1949 1300W
AN3WA01430 INIWd0T3A3@ 3T¥IS-11N4 NOTLYQITYA VNLdIINOD
119n00¥d

JTIA0 NOLLISINDIY WILSAS

e AN A M U715 L K e s B A A

e Outlining the relationship of the Computer Resources Integrated
Support Plan (CRISP) to the acquisition process, to the Program
Management Responsibility Transfer (PMRT), and to software
turnover (see 2.1, 2.4, and 2.5).

e Describing the various concepts and tools which can aid in the
acquisition of maintainable software (see 2.1 and 2.2).

e Discussing the significance of configuration management concepts
to software maintenance (see 2.1 through 2.5).

e Describing the use of a Program Support Library (PSL), version
releases, and Version Description Document (VDD) (see 2.2 and 2.3).

e Identifying pitfalls and practical approaches to developing
maintainable software and controlling the software maintenance
process (see 2.1, 2.2, 2.3, and 2.5).

® Discussing a strategy for handling software maintenance for
multiple sites (see 2.5).

This guidebook does not elaborate upon the various types of funding citations
or their use. However, the SD should be aware that (1) the implementing com-
mand is responsible for planning the necessary funds for development through
the Full-Scale Development Phase, and (2) that these are normally R&D funds.
After PMRT, the supporting and using commands are responsible for funding
operational support and maintenance (Operations and Maintenance [0&M] funds).
Therefore, the discussion in this guidebook, from Conceptual Phase through
Full-Scale Development Phase, is concerned with activities which the SD can
control. Subsequent to Full-Scale Development, this guidebook is concerned
with activities for which the SD must plan.

1.3 SOFTWARE MAINTAINABILITY

The following discussion defines software maintainability and identifies
the factors necessary to achieve maintainability.

1.3.1 Definition

Computer-based command and control systems characteristically have a Tong
life and usually must be adapted at one time or another to new operational
requirements or to new equipment. In these events the computer program must
be modified, or extended, perhaps drastically. In addition, although thor-
oughly tested prior to transition and turnover, large software systems

inevitably contain undiscovered errors which surface eventually and must be
corrected. In this context, then, the following definition of software
maintainability is adopted:

Software maintainability is the property that, within a given
operational enviromment, software can be corrected, amended,
or modified to meet new requirements in a timely and cost
effective way, and without regression of the parent system.

The word regression in this definition refers to an unfortunate property in
some large software systems that modifications to one portion may provoke
errors in another. Changes therefore may lead to a domino effect requiring
more changes and more testing. Some old, much modified systems or modules
may actually die of regression.

1.3.2 Factors which Support Software Maintainability

Factors affecting software maintainability fall into three categories:
e Personnel, facilities, and tools.
e Documentation and configuration management.
e Inherent dgsign and understandability.

Personnel, facilities, and tools comprise the maintenance environment, part
of the operational environment caveated in the definition of software
maintainability. Although this environment is the responsibility of the
maintenance organization, the acquisition organization must understand it
well enough to account for its essential needs prior to turnover. For
personnel, consideration of the qualifications of the maintenance programmers,
whether entry level, blue suit, intermediate, or system level may influence
the choice of programming language. For instance the automatic test equip-
ment that is part of a large radar early warning system should be programmed
in ATLAS, an application-specific language which allows knowledgeable
hardware people who do not have specific programming experience to construct
new tests. If a more general, procedure-oriented language such as FORTRAN
is used, more expensive training requirements will be generated that will
endure for the 1ife of the system. Issues such as this should be addressed
by the PO in conjunction with the Computer Resources Working Group (CRWG),
and necessary analyses and trade-offs performed and referenced in the CRISP.

Facilities, as opposed to tools, are existing facilities within which

software maintenance will be performed. If they are different from the

(contractor's proposed) development environment, then the Computer Program

Development Plan (CPDP) should address the resultant problems of transporting
v or reacquiring essential tools.

The term tools, refers to software tools including compilers, PSL, event simu-
: lators, language and machine simulators, environment simulators, test generators,
and data reduction processors. The PO must acquire the ownership and documen-
tation of the tools needed for maintenance, must control the contractor's use
of proprietary tools, must negotiate limited rights where appropriate and in
general, assure that needed tools are available and usable for maintenance. The
Request for Proposal (RFP) should require identification of all proprietary tools
and any conditions or rectrictions placed upon their use. The contract should
reflect this and should require delivery, or contain options to purchase all
needed tools. The contract should contain, or at least should not preclude, any
needed licensing agreements.

Documentation and configuration management provide the necessary technical
and status information to support software maintenance. Documentation
includes the specifications and supporting materials, such as positional
handbooks and use*» guides, needed to modify the software. The documentation
must be easy to use, understandable, and, most importantly, must reflect

the current software. Implicit in every software maintenance task is the
requirement to keep the documentation up-to-date. Careful definition and
organization of documentation with consideration of its intended uses and
requirements for update can significantly ease the software maintenance task.

Configuratiocn management includes the identification and statusing of all Con-
figuration Items. Accurate statusing of the software, documentation, and all
changes, both proposed and installed, is a must for effective software main-
tenance (see Configuration Management guidebook).

Design of the software is the key to its maintainability. The top-level of
the design is specified in the Development (Part I) Specification in terms

of Computer Program Configuration Item (CPCI) definition, performance require-
ments, interfaces, growth requirements, and design constraints. Maintainable
software requires adequate design. This leads the PO to place design con-
straints on the developer. In certain critical areas of the software design,
these constraints may limit performance and they may therefore have to be
relaxed. For example, the developers may be required to use a High Order
Language (HOL) for programming which cannot be accommodated in the hardware
specific and time-critical portions of the executive. Most of the design
does not appear in the Development Specification; it is documented in the
Product (Part II) Specification. Proper design includes:

A limited number of interfaces between modules.

Communication between modules 1imited to the defined interfaces.
Well documented, easy to understand design.

Limited equipment interfaces.

A controlled data base.

Limited access to the data base by each module.

Programming style for clarity of function (readability) and

ease of verification.

- Singular functional performance of each module which leads
to small modules (i.e., only one function per module).

Separate modules for input, output, and computation of functions.

1.4 CONTENTS

The subsequent contents of this guidebook are presented in two sections and
three appendixes, as follows:

Section 2 - Acquiring Maintainable Software. Discusses: (1) the
definition and specification of maintainable software; (2) monitoring
the evolving software design and evaluating contractor effectiveness;
(3) design change and error correction during subsystem-development
test and evaluation; (4) transfer and turnover; and (5) mainten-

ance during the Deployment Phase.

Section 3 - Applicable Regulations, Specifications, and Standards.
Discusses those regulations, specifications, and standards that
impact the development of software.

Appendix A - Designing Maintainable Software. Discusses considerations
important to the design of maintainable software. Provides infor-
mation that the PO ‘can use to evaluate the contractor's design as
defined in his proposal and CPDP. Also provides information that

the PO can use in- preparing for PDR, CDR, PCA.

Appendix B - Glossary. Defines specific terms and acronyms used
in this guidebook.

Appendix C - Bibliography. Provides a list of books and papers
that are particularly relevant to the subject of software main-
tenance.

10

i

SECTION 2 - ACQUIRING MAINTAINABLE SOFTWARE

This section discusses how the SD can plan and monitor the computer program

3 life cycle to obtain maintainable software. It provides specific guidance for
the SD during software acquisition and development. Figure 2 relates the
contents of this section to the major milestones of the system acquisition cycle.

2.1 DEFINING AND SPECIFYING

Planning for maintainable software should be started during the Conceptual

and Validation Phases. The SD is responsible for ensuring that planning for
maintainable software and support requirements are considered in the analyses
and tradeoff studies conducted during these phases. Such requirements

include excess computer capacity, support software, and documentation. These
requirements must be reflected in the contractual specification, the Statement-
of-Work (SOW), the Contract Data Requirements List (CDRL), the Data Item
Description (DIDs), and the Computer Resources Integrated Support Plan (CRISP).
The SD should monitor studies and tradeoffs at the System Requirements Review
(SRR) and System Design Review (SDR) to ensure that both software maintenance
and mission performance requirements are being satisfied.

2.1.1 Planning Considerations

Planning for maintainable software is a relatively new concept and currently
available guidance is minimal. During initial planning, the SD in consultation
with the using and supporting commands should determine the scope, content,

and level of maintenance required to satisfy their needs. These needs should
be documented in the CRISP. See the Software Development and Maintenance
Facilities guidebook for more information regarding planning considerations.
The software maintenance needs should be determined by the PO, the user, and
the maintainer, based on tradeoffs, studies, and analyses that evaluate life
cycle cost impacts. The following areas should be evaluated as quantitatively
as possible:

e Contractor vs In-House Support. This decision will impact training, %
documentation, facilities, personnel, housing, computer resources,
and data rights. Even if contractor support is chosen, the SD has
to determine where maintenance will be performed and what deliver-
ables will be required, whenever possible. It is wise to insist
upon unlimited data rights, full documentation, no proprietary soft-
ware, and full delivery of all source and object code and all soft-
ware test tools developed under the contract. Cost is obviously a
major consideration, but initial development costs must be balanced
against overall life cycle cost. This allows the Government the option
of either procuring maintenance support from industry or developing
an in-house capability at a later time. It should also be determined |
at this time what software the using and support commands will be
responsible for maintaining.

B e v e

saadeane oo il oo

1

94P140S 9|qeuLrejuley buraLnboy 404 SBU0JSIILY 2 B4unbL4
(9seud juawho|dag Butang adueusuLey)
G'2 ydeabearq joogspiny _ _
o A |
\! |
I I
| _ |
(42A0UaN] B adjSuRA]) _ _
v°2 ydeabedeq yooqaping |
R e | _
* _ !
| | _
(1043U0) UOL3D3U4U0) |
_ 40443 g abueyy ubLsaq) _
€°2 ydeabearq 3o0qapLny _
4 o : *
r N
| _ |
_
| | |
_ Amc*ac=~c>u_
B m:_;ouwcozv_ _Am:_xm_umam R buLutjaq)
|2°2 ydeubeseq xooamv_sw_ | 1-2 ydeabedeq }o00gapLny
| 5
_W - J\ | B
| | _
_ _ 3198J43U0) |
juawdo|3Aa(
| 3135~ (1N _
104 ¥a@) dad uoLledL41oads uoLledL4Loads
_ 0 d | d
~ h “i Juswdo | aAaq wa sAS
3SYHd 3SYHd 3SYHd ISYHd
IN3IWAOTd3a IN3Wd0T3A3a 37v2S-11n4 NOILYQITYA TYNLd3INOD

12

Computer Resources. An initial estimate of the resources required to
develop and maintain the software is needed for funding considerations,
to guide the contractor, and to evaluate his proposal. The estimate
should be based on a tradeoff among at least the following alternatives
based upon performance and availability requirements: a dedicated
support facility, dedicated time on the operational system, dedicated
time on a backup system, or time sharing in a multiprocessor and/or
multiprogramming environment. Cost of equipment, facilities, trained
support personnel, and special software should be considered along with
the required responsiveness of the maintenance organization.

Special Support Software. Based upon software maintenance requirements
and the class of computers being considered, the SD should evaluate

the need for simulation, recording, and data reduction tools. An
estimate should be made of additional utility/support tools such as
debugging aids, COMPOOL generators, and compilers or assemblers. A

PSL should also be required and any special software needed to support
the PSL should be specified. See RADC-TR-74-300, Volume VI, for a
discussion of the PSL. A1l special support software, if not available
off the shelf, should be scheduled for early development, since the
development of the operational software is dependent upon their avail-
ability. If a compiler is required, it should be developed to a
specified standard and qualified before it is used for program develop-
ment. New compilers can be a high risk area and should be scheduled
early in the development cycle, when staffing is low, so that delays
will not have significant cost impact. Support software, which is
properly planned, developed, and qualified, will enhance both develop-
ment and maintenance of the operational software.

High Order Language. AFR 300-10 requires the use of a standard HOL.
JOVIAL is the one most 1ikely to be required. In general, the compiler
should be acquired and qualified prior to the start of coding. Currently,
ESD can obtain a JOVIAL (J3) compiler in 6-to-9 months, using the Rome
Air Development Center (RADC) JOVIAL Compiler Implementation Tool

(JOCIT). Soon, a J73/1 compiler should be obtainable in the same time
period. Use of the JOCIT tool 1limits the risk and cost of these
compilers. ESD also has a JOVIAL Compiler Validation System (JCVS)

which is used to assure that the compiler meets its specification. Any
J3 or J73/1 compiler should be certified using JCVS.

13

£ AN e DY

e Development Schedules. Most development schedules for large
systems in recent years have been too short. As a result, in the
rush to complete the project, both software development and main-
tenance considerations suffered. Development (Part I) Specifications
. are usually required from 90-120 days after contract award. The
original intent of this time requirement was to update the Part I ;
Specifications developed during the Validation Phase. However, on
many occasions, the Part I Specifications were initiated and
developed during this time. When this occurred, the specifications
were generally incomplete and inconsistent. It is better to spend
the equivalent time on fully determining the performance requirements
(usually a 6- to 9-month effort) before writing the Development
(Part I) Specification. The SD must assure adequate time in the
project schedule for the contractor to design and produce the embedded
software. The SD should require that CDRs and PQTs be held; however,
he should let the contractor propose the schedules in a way that best
supports the contractor's approach. Emphasis should be on the adequacy
| of the overall design before the detailed design is started. Good
design is a major contributor to maintainable software.

o

bot o ded

b e The Computer Resources Integrated Support Plan. The CRISP identifies
responsibilities for the management and technical support of computer
resources, including responsibilities for maintenance. The initial
plan is developed during the Validation Phase. The specific infor-
mation to be supplied in the CRISP is presented in AFR 800-14,

Volume II, Chapter 3. The CRISP evolves as the project evolves and
requires coordination with the using and supporting commands to
assure that their support concepts for computer resources are properly

reflected. The coordinated planning for computer resources which

is documented in the CRISP, must establish the configuration manage-

ment, resources, documentation, funding, scheduling, integration,

training, support software, facilities, and provisions for transfer

and turnover, which will enhance software maintenance.

2.1.2 Development Specifications and the Full-Scale Development Phase RFP

It is important to ensure that software maintenance requirements are specified
in the Development (Part I) Specification and reflected in the contractor's
Full-Scale Development Phase proposal. The Development Specifications and

the SOW should reflect the results of trade-offs and planning done in the
Conceptual and Validation Phases and include requirements in the following
areas:

14

DEVELOPMENT SPECIFICATIONS

e Known software growth requirements should be specified to facilitate
future upgrade. For example, potential growth which impacts design
(e.g., initial capacity of 100 tracks expandable to 150) should be
specified in terms of initial ‘capabilities and requirements for
expansion. In many cases, the resources for the expanded capabilities
need not be purchased with the initial system. However, design of the
initial system to accommodate known expansions can save both time and
money when the expansions are later implemented. The SD should be
aware that too broad a Development Specification will result in higher
design and implementation costs. A trade study, to evaluate
potential growth requirements against design implications and develop-
ment and life cycle costs, should be performed during the Validation
Phase.

e A standard HOL should he required to ennance ease of maintenance
with a minimum use of assembly language allowed in areas where ;
code efficiency or machine dependency (e.g., I1/0) require it. 3
The contractor should identify and justify all areas where]
assembly language is required.

® Requirements for programming standards should be specified.

e A1l necessary support software should be functionally specified.
This should include a requirement for a minimum capability as defined
in RADC-TR-74-300, Volume VI.

e Excess computer capacity should be required to allow software growth
and error correction. Roughly, the initial equipment capacity
should be twice the initial sizing and timing estimates. To improve
system potential over a long life cycle, the computer system should
be expandable to several times its initial capacity (see Figure 3).

e it L it

e The Development (Part I) Specification is the most appropriate contrac-
tual tool for the acquisition of maintainable software. In addition
to the CPCI performance requirements listed in paragraph 2 of the
Development Specification, the Special Requirements paragraph 3.2,
provides a format for specifying the following types of software
maintenance requirements (see MIL-STD-483, section 60.4.3.2.2 for
a description of paragraph 3.2):

- The use of programming standards
- Specific program organization requirements
- Program design considerations which ease modification

- Expandability (growth potential) requirements

15 '

Cost per instruction
~n
.

0 1 1 1 i
0 25 50 75 100

Percent utilization of time and core

A Figure 3. Cost of Approaching Hardware Capacity*

FULL-SCALE DEVELOPMENT PHASE RFP

e The SOW should specify that software maintenance requirements will be
reviewed at Preliminary Design Review (PDR) and Critical Design
Review (CDR). The reviews should allow the contractor to use func- X
tional flow diagrams, structured charts, or other presentation i
techniques to present system and program-level design detail. See »
the Reviews and Audits guidebook for further guidance regarding
PDR and CDR.

*From "Through the Central 'Multiprocessor' Avionics Enters the Computer
Era" (see Appendix C).

i 16

e The SOW should require that a Computer Program Development Plan (CPDP)

be submitted with the Full-Scale Development Phase proposal.* It
should be updated periodically to reflect the evolving software devel-
opment plans. This plan covers the complete software development
efforts. Much of the contractor-development methodology described in
the CPDP can significantly impact software maintainability. For
example:

- Plans to deliver the PSL, including support software, contents,
and procedures.

- Applicability of the contractor's internal configuration manage-
ment plan to include: change status reporting, control procedures
problem reporting, and error correction procedures.

- Plans for updating test plans and procedures to accommodate ECPs
and assure continued applicability during Deployment.

Top-down design and structured programming approach.
- Data naming conventions and data base control procedures.

If in-house software support is selected, then a training program should
be requested. This allows the PO to specify training materials and set
the necessary schedules to assure that support documentation is_available
at System Development Test and Evaluation (DT&E). Since most C° systems
are unique, the development contractor should be required to present a
training course in sufficient time to support System DT&E. This should
allow maintenance programmers to get on-the-job experience before they
take over maintenance responsibility.

The CDRL should specify the software maintenance features of the
deliverable documentation, i.e., commented listings. The standard
DIDs should be modified to meet the individual needs of the program.
For additional guidance see Software Documentation Requirements
guidebook.

*The CPDP may be initially prepared during the Validation Phase. It must be
updated at the start of Full-Scale Development.

e The contract Work Breakdown Structure (WBS) should reflect all
support requirements associated with acquiring maintainable software
including unique identification of all support software, documentation,
training, extra equipment, and facilities related to ma1ntenancg. These .
requirements should be shown down to the de]iverqble contract 1!ne item/
configuration item level (see SOW Preparation guidebook, Appendix A).
This is necessary to properly identify and monitor the cost associated

4 with acquiring maintainable software and to have some opt1ons_for

deleting capabilities if there are schedule or budget constraints.

The Full-Scale Development Phase RFP should require the contractor to state
in his proposal how he will design the software for ease of maintenance.
Requirements for modular design, top-down design, or structured programming
must be defined in detail to be meaningful. Generally this information is
included in the CPDP. Until specific design techniques such as these have
been successfully demonstrated on C3 systems it is better to leave their
definition and implementation to the contractor's discretion.

There is much that the contractor can do to enhance or obstruct the develop-
: ment of maintainable software. His proposed technical approach, management
approach, and CPDP should be evaluated to determine whether he has:

e Tailored his proposed documentation to support software
maintenance.

o Developed design and coding standards to support software
maintenance. *

e Shown how his development support software will be appli- |
cable during the Deployment Phase.

e

e Included software maintenance considerations in all
aspects of his design, code, test, and documentation.

The following pitfalls should be avoided:

e Development plans that do not include time or budgets to rigorously |
design the software to include maintenance considerations.

e Off-the-shelf software that is difficult or impossible to maintain. ?

e Contractor-proprietary tools used during development but unavailable
(although needed) during Deployment.

18 ;

A T T P S T T T e Ny S I IR < 0 =

2.2 MONITORING AND EVALUATING

During the Full-Scale Development PMase, the SD is concerned with monitoring
the evolving software design and development tasks and evaluating how
effectively the contractor is meeting the specified contract requirements.

To do this, he employs the technigues of quality assurance, configuration
management, technical and management reviews, and verification and validation.
These subjects are discussed in other volumes of this guidebook series (see
Preface for list of other guidepooks). The intent of this discussion is to
assist the SD in acquiring maintainable software by providing checklists to
supplement the normal review procé@ss.

2.2.1 Preliminary Design Review (PDR)

The purpose of PDR is to evaluate and monitor the progress and technical
adequacy of the selected design approach for each CPCI. The review should
emphasize design, language usage’, and programming standards. Although the
PDR is a design review, it should also be used to review the contractor's
planned implementation methods, as described in the CPDP. The SD should check
for the following features which facilitate the development of maintainable
software:

e Has the CPCI been designed in a manner that provides for ease of
modification, as planned for in the CPDP?

e Have all needs to deviate from the design approach of the CPDP
been identified and coordinated? (For example, real-time require-
ments may dictate other than a top-down approach.)

e Have CPC and data base interfaces been defined so that independent
detail design can be started at a Tower level? Have interfaces
been defined in a simple and explicit manner?

e Have functions and subfunefions been allocated to CPCs in a way
that enhances modularity and functional independence?

e Has the CPCI data base been. defined in a symbolic manner?

e Is there a centralized data-definition capability, such as a !
COMPOOL? If not, is there a procedure established to define
and control the data base definitions?

e Have all areas where assembly tanguage is required been identi-
fied and justified?

e Are programming standards with coding examples available to the
programming staff? Do the standards cover techniques for
developing a modular and structured CPCI? Have methods for
improving module independence been included? (See Monitoring and
Reporting Software Development Status guidebook, Appendix II,
pages 64-67.) Have procedures been established for enforcing the
standards (e.g., program walkthroughs and code audits)?

e Have programming personnel been trained in the concepts of top-
down implementation, structured programming, operating-system
requirements, library procedures, and modular-coding techniques?
If not, is a training program scheduled for all current and
newly-assigned personnel?

® Is a standard HOL used? If not, is the contractor HOL selection
based on cost or technical considerations?

e Will the compiler be qualified before it is required for coding?
3 e Have all performance requirements been allocated to CPCs?

e Have support tools been defined? Have those tools that require
new development been designed? Have they been designed in a modular
manner? Have debugging tools been defined? Have all modifications
to commercial off-the-shelf and Government-Furnished Equipment (GFE)
debugging aids been identified? (Government ownership of support
and related documentation should have been established in the contract,
but should be reviewed at this time.

o Are the test requirements for maintainable software included in the
updated CPCI test plan?* In general, maintainable software design
features should be reviewed by inspection.

The SD must take sufficient time to prepare and insist upon sufficient tech-
nical resources to adequately review the materials presented at the PDR.

The technical reviewers must be capable of evaluating the material presented
by the contractor and be familiar with the Development (Part I) Specification.

*The original CPCI Test Plan should have been submitted with the Full-Scale
Development Phase proposal.

20

If it is determined that the contractor is not sufficiently prepared then
the PDR should not be conducted until the contractor is ready. Maintenance-
related problems which may be observed at PDR include CPC or data interfaces
which are too complex, modularity which may not be apparent, or data-base
design which may not include considerations for change. The SD should
identify such problems and ask the contractor to resolve them. It is better
to delay the project at this point to get a design that is maintainable and
meets all performance requirements (when contractor staffing is at a lower
level) rather than to wait until CDR or Formal Qualification Test (FQT) when
delays are more expensive. See Figure 4 which illustrates the increasing

. cost of correcting errors as the development progresses; the system becomes
more complex and the number of people delayed increases.

2.2.2 Critical Design Review (CDR)

The purpose of CDR is to provide a formal technical review, or series of
reviews, at completion of the detailed design of each CPCI, or group of
related CPCs in a large, complex CPCI. Successful completion of CDR
signifies verification of the detailed CPCI design and allows initiation of
CPC code and test activities.

From the design detail available at CDR, the individual program modules,
their interfaces, and associated data base requirements can be identified
and coded.

The SD's emphasis during CDR should be on the program structure, modularity,
language usage, programming standards, support tools, data base design,
interfaces, and planned coding techniques. A traceability matrix should be
available that further relates the requirements directly to the implementing
modules (as opposed to CPCs that were reviewed at PDR). In reviewing the
contractor's design at CDR, the SD should check for the following additional
features which facilitate the development of maintainable software:

e Have all software modules been specified? If an incremental CDR,
have all modules for this build been identified? (See Appendix II
of the Monitoring and Reporting Software Development Status guidebook.)

® Are all module interfaces defined and documented in accordance with the
CPDP? Is all control data passed only through the defined interfaces?
Has the amount of interface data been minimized?

LEGEND 9

Upper Limit
} Median
Lower Limit

-
RELATIVE
cosT

! 1
0.1 1 !
T DESIGN CODE DEVELOPMENT ACCEPTANCE OPERATION
REQUIREMENTS o LOP! EE

PHASE IN WHICH ERROR DETECTED

Figure 4. Software Errors Cost More to Fix as Computer
Program Life Cycle Advances*

How well have the modules retained their independence?

Have machine dependencies been isolated and encapsulated in
accordance with the CPDP?

Has the system data base been designed and documented? Has it
been symbolically defined and referenced? For example, was a
COMPOOL used?

Is I/0 centralized and separate from computation functions?

*Figure adapted from Boehm, "Scftware Engineering," see Appendix C.

22

® Are module source-code estimates within the contractor's module-size
limitations?

e Are modules functionally cohesive (i.e., 1imited to a single or
small number of closely related functions)?

e Have all modules requiring assembly language been identified and
Justified?

e Have all support tools needed for coding and debugging (e.g., pre-
and post-processor) been produced? If not, are they scheduled early
enough to meet the needs of the development scheduie?

® Have all modules been designed to have single entry and exit
points (with the exception of certain computer interrupts and
erroneous condition exits)?

® Whenever initialization or housekeeping is required, will those
functions be internal to the module requiring them?

® From a recovery point of view, computational or I/0 modules should
not abort. They should pass an error condition back to the main
control Tevel which is designed to make abort or recovery decisions.
Has this concept been followed?

e Does the PSL reflect the software structure? Have procedures and
libraries been established to control the baselined source and
object files and listings as they are produced?

e Do the test procedures provide for inspection of maintainable software
requirements (e.g., module size, structured code, HOL and assembly
language, and module independence)?

® Will a code auditor be available at compile time to monitor software
characteristics and enforce standards?

2.2.3 Coding and Debugging

During the process of coding and debugging, the contractor is developing and
testing individual modules in accordance with their design. If an incremental
build or top-down implementation approach is used, the modules are tested in
execution order (i.e., integrated in their final structure and tested with
minimal need for test drivers). In most complex systems, a combination of
top-down and bottom-up implementation is used. The reason this must be
permitted is that some existing software may be used or adapted for use in the
new CPCI. In addition, the coding on some modules may start earlier than on
the CPCI as a whole. Considerable savings in time and dollars may accrue from

23

e el e, e e

et
A

(ot g

from a mixed top-down/bottom-up approach. When bottom-up implementation is
used, it is especially important that interfaces be rigidly defined, maintained,
and adhered to. The approach taken should be proposed by the contractor.

The SD may gain visibility into the development process during the contractor's
Computer Program Test and Evaluation (CPT&E) or the SD can use the Preliminary
Qualification Tests (PQTs) to verify if maintainable software requirements are
being met. To facilitate the development of maintainable software, the SD
should check for the following:

e Review PSL content to see if module size and program structure
mé ch the design.

® Review the contractor's planned development methods, procedures,
and standards, as documented in the CPDP, and ensure that they
are being followed.

o Select modules and review their code to see if coding standards
are being enforced, or review code auditor output, if available.
This should be done in conjunction with the contractor's QA
manager and in accordance with the contractor's QA plan.

® Review the current data base to see if it meets its specification i
and is symbolically defined.

e Verify that the necessary development and debugging tools are
available and are being used.

e Verify the language used by each module against its design docu-
mentation and against the coding standards. Ensure that assembly
language is not embedded in the code unless it was explicitly
called for.

e Review the code to ensure that the following difficult-to-maintain
features* have not been included:

- Self-modifying code
- Absolute addressing
- Embedded constants and literals
- Relative addressing

2.2.4 Formal Qualifcation Test (FQT)

During Subsystem DT&E the contractor conducts FQT(s) (see Verification
guidebook) of the CPCI(s) under development.

*Normally these problems are associated with assembly language programming.

24

If standards of modularity, language, and independence of modules, are not

met, it is difficult to take corrective action at this time without significant
cost and schedule impact. Thus, it is important to assure adequate design and
monitor its implementation through formal reviews and PQTs. Corrective action
should be taken prior to FQT because the contractor still has programmers
available and is trying to meet FQT milestones. Again, using PQTs to inspect
the code of selected modules as they are being developed minimizes the risk.

The following items should be inspected primarily at PQT but also at FQT
for maintenance implications:

e Do the test procedures call for adequate inspection of the
specified maintainable software attributes? Check module size,
language, structured code, adherence to programming standards,
and code readability.

e Have design changes, requirement changes, and error corrections
caused major impacts on the software structure?

e Have the traceability matrix [in the Product (Part II) Specification]
and the test procedures been updated to reflect design and require-
ments changes? (See the Verification guidebook.)

e Have those portions of the software that are time-sensitive been
identified and documented? Have those portions of the code
been adequately commented to alert maintenance programmers?

e Are the listings readable and reasonably self-documented?
- Are they adequately commented?

- Can they be easily reviewed?
- Is it clear what each area of code is intended to do?

- Are the data for references symbolic and are they meaningful?
- Are the date and version of the listing compatible with the *
contractor's list of materials to be qualified?

e Have all development and test support tools been found acceptable?
Make sure the contractor qualifies all tools to be delivered.

NOTE

PQT and FQT plans and procedures are directed at testing CPCI
performance against the Development (Part I) Specification.
Comments from review of program listings can be transmitted to
the contractor at PQT and FQT with notice that unless improve-
ments are made, the Product Specifications (source listings)
will not be accepted at PCA. However, official response
should be delayed until data delivery at PCA.

25

LT e

e i RSN, A S WA Nt MBIl 07075

St S

»
e s kN

2.2.5 Functional Configuration Audit (FCA)

The purpose of the FCA is to verify that the CPCI's actual performance meets
Development Specification requirements. Of particular interest to software
maintenance considerations is the contractor's briefing for each CPCI [see
MIL-STD-1521A(USAF), paragraph 50.4.12a]. At the briefing, the contractor
provides a general presentation of the entire development test effort,
delineating problem areas as well as accomplishments. The briefing should
include an account of the ECPs incorporated and proposed and the contractor
should identify any Development Specification requirements that he was unable
to meet, including a proposed solution to resolve any CPCI inadequacies caused
by not meeting the requirements. When using the briefing to promote maintain-
able software, the SD should notify the contractor that the briefing information
will be evaluated for maintenance considerations. In particular, the SD
should:

e Determine the planned disposition of the ECPs not yet incorporated
and evaluate their probable impact on software maintainability.

e Evaluate the causes and solutions of the problems which occurred
and determine whether similar problems are likely to occur as
changes or error corrections are installed during Deployment.
If so:

- Can additional methods or procedures be devised to
alleviate the future problems?

- Should new or modified training courses be required?
- Is any additional support documentation required?

NOTE

The evaluation of software maintenance requirements 18 a continuous
process. Affirmative answers to any of the above questions may
require additional funds. In any case, the command responsible
for software maintenance should be notified of the potential
problems and of the recommended actions.

26

2.2.6 Physical Configuration Audit (PCA)

The PCA is designed to verify that the product baseline and associated material
released for System DT&E is compatible with what was qualified at FQT. This
process verifies that the source and object code listings and documentation
are compatible. The PO and the contractor conduct the audit. At completion
of PCA, the Product (Part I1I) Specification is baselined. A Version Descrip-
tion Document (VDD) is delivered to define the content of the version

released for further System DT&E testing. The availability of a PSL should
help expedite this process since the PSL maintains the integrity of the source
and object code and associated listings. Reports from the PSL and a review

of the program description against the program listings and data base should

be sufficient to verify the integrity of the product. The SD should require
that the contractor provide source materials (a listing of the source code,
supporting documentation, and the object code in machine-readable format)

for all products audited. Software cannot be maintained without program source
materials. If commercial off-the-shelf programs and support tools are used

to develop the programs and are required for operations and maintenance, then
the SD must assure that the items and supporting documentation are available
without restrictive data rights. It might be cheaper in terms of 1ife cycle
cost to develop new support programs if this is a problem.

2.3 DESIGN CHANGE AND ERROR CORRECTION CONTROL

Although maintenance does not officially start until the Deployment Phase (after
Program Management Responsibility Turnover (PMRT), the need to correct and
modify software begins during Subsystem DT&E. Many of the software maintenance
practices, procedures, and tools used during Subsystem DT&E will continue to be
used throughout the life cycle. The contractor places the software under the
control of his configuration management procedures at this time. These
procedures are normally identified in the contractor's configuration manage-
ment plan.

During Subsystem DT&E, design changes, not affecting the Development (Part I)
Specification, and all error corrections are under the contractor's centrol.
Changes affecting the Development Specification require ECP action. However,
the basic approach to making changes to the configuration-controlled software
should be the same, whether contractor-initiated or the result of an ECP (see
Configuration Management guidebook).

2.3.1 Design Change and Error Correction

Design change and error correction is a natural part of the software development
process and is present throughout the Full-Scale Development Phase. They must
be accommodated by the contractor's design control and configuration manage-
ment procedures. All changes must be documented and controlled to assure the
integrity of the software design and performance. It is essential that every
change be evaluated for schedule impact and consideration given to packaging

er

changes for release within a subsequent version of the computer program unless
the change is critical to the continuation of qualification testing.

Design change costs vary, depending on the time of their occurrence during the
computer program life cycle. As the development effort progresses, every
change must be reviewed on the basis of need. This is especially true for
changes to established interfaces or to the data base. All design change
recommendations should continue to be documented, but implementation of some
may have to be deferred until after the CPCI passes FQT.

2.3.1.1 Version Concept

A version is the actual configuration of a CPCI which is introduced into the
system for installation, test, or operation. The version concept allows the
contractor to schedule a CPCI release for his internal testing with a specific
set of capabilities or a specific set of changes. For example, using a top-
down implementation scheme, version releases can be scheduled and tested to
reflect the hierarchical development of the CPCI. After development and
internal test of the CPCI is completed, it can then undergo qualification
testing. The version concept is also used to package modifications asso-
ciated with ECPs. (See Verification guidebook for a more detailed description
of contractor internal testing. See Appendix II of the Monitoring and
Reporting Software Development Status guidebook for more information on version
implementation.)

The version concept allows the contractor to better schedule the development
effort and to assure that the necessary support tools, documentation, and
test procedures are available to support the developing CPCI. This same
approach holds true for modifications (i.e., ECPs). Instead of the baseline
continuously changing, modifications can be scheduled, developed, and

tested as a group. This improves control, allows development to proceed in
-parallel with qualification of the previous version, and provides for
scheduling of the support products and documentation. Figure 5 shows how the
version concept can be used to localize errors within a specific level of the
program. With the design of versions limited to specific software incremental
areas, the errors reported with each new version should be limited to the
scope of that version. The total number of errors should decrease as versions
are implemented.

Since a PSL allows for multiple libraries, it provides a convenient mechanism
for implementing a version concept [i.e., a new version of a program can be
produced in a development library (or libraries) while the baselined version

is tested]. A version identification (for each module), tnat changes when the
code changes, also enhances configuration control. A PSL should allow automatic
changing of the module's version identification when the code is changed.

28

e — e ol %t‘n-ﬁ—_——‘l“

Number of Known Errors Remaining
—

Version 2 Version 3 Version 4 S8 .
{ \ §

Time ——W

Figure 5. "Harmonics" Nature of Error Correction

2.3.1.2 Design Control

A module's code should be placed under the contractor's configuration control
following completion of CPT&E. At this point, it should be moved from the
development library file to a controlled library file, and all additional
changes approved by the contractor's configuration management. In tof-down
development, the code has been executed in the current operational structure
and its stub replaced at this point.

29

When changes to the Development (Part I) Specification are required,

the contractor should use a simplified design change request form to minimize
paperwork, to encourage the programmer to request needed changes, and to
speed his review process. This will facilitate Subsystem DT&E when quick
decisions are needed. Al1l design requests should be numbered and a short
title assigned for identification. The responsible programmer should

provide a design approach as a backup to the request, along with a cost
estimate. If an approach is not available, then the design change request

‘should be assigned to a programmer (or design group) to develop design

approaches and cost estimates so that tradeoffs can be made. A design
control group should be established consisting of management and technical
personnel to provide or disapprove changes. Once a change is approved it
should be scheduled according to its urgency. In addition, as part of the
contractor's configuration management effort, the design change should
provide records for monitoring change implementation and status. The PO
should periodically review the status of all design changes to assess the
effectiveness of the procedures and to evaluate the modifiability of the
software, i.e., how do changes impact the remainder of the CPCI?

2.3.1.3 Error Correction Under Internal Configuration Management

The error-correction process that the contractor uses is the initial imple-
mentation of software maintenance. The contractor's error correction methods
and procedures should be documented in his CPDP and reviewed by the PO.
Undisciplined error correction can make software difficult to maintain, even
though it was initially well designed.

To control error corrections the contractor sets up a discrepancy report (DR)
scheme. A single form should be used to report a variety of discrepancies
(e.g., program errors, documentatior, procedures, interfaces, and data base).
Such a form minimizes confusion, can be used to document design problems,

and can be used as an input to the design change procees.

Once a DR is initiated, it should be evaluated by the contractor's program
management and QA organization, logged for configuration management, and
assigned to the responsible agency for correction as required. If the DR is a
design problem, it should be sent to the design control group for resolution.
If it is a program error, a correction must be prepared and the program module
updated in a development library, and then tested and released for integration
into the controlled Tibrary. The contractor's test director should determine
when this correction will be integrated, based upon test schedules. Once it
has been tested in its operational environment, the DR should be closed and
the status updated. The PSL is of major importance to this process. It
provides for multiple libraries, program identification updating, control
(source code, object code, listings), and utilities to move files from one
library to another, and provides reports on the contents of the library. The
PSL, thus, can provide for strict configuration controi. These same tools and
procedures can be used by the maintenance organization during deployment.

30

2.3.1.4 Updating Process

Future software maintenance requires that an orderly updating and changing
scheme be implemented early in the development cycle. This process must
ensure that every change is documented and that a consistent numbering
scheme is used to relate the source listing, the supporting documentation,
and the status records for each change. The process of correcting or
changing a computer program during test involves a number of considerations
and tradeoffs, including:

e Patching vs Symbolic Updating and Recompiling the Module. In some
systems a patching capability allows the programmer to change
specific instructions without assembling or compiling the module
again. This approach allows a quick change to a localized area of
the module and has been used on many projects. However, it is
hard to control because there is often no direct correspondence
between each computer program statement used in the patch and each
statement used in the recompilation. Further, whenever patching is
used during system test, it must be followed by recompilation and
some repeated testing. Where source code is written in a HOL, it
may not be possible to duplicate the binary patches,
hence, regression may occur. Assembly language computer programs,
although less desirable in other respects, are much safer to patch
than HOL programs. With current computer technology, support/
utility programs, and a PSL, patches should not be allowed. A1l
corrections should result in updating the source code and recompiling
the program. This will assure agreement between all representations
of the program code (source code, object code, and listing), simplify
configuration control, and eliminate a later clean-up program. All
changes (alters) to the source code should have their DR or change
control number inserted so that changes can be easily identified
and cross-referenced back to the problem description.

Alters vs a Complete New Program. In correcting or changing a
program's (or module's) source code, it is possible for the program-
mer to submit a few changes (alters) or to submit completely new

source code. During qualification testing, only alters should be
accepted and, to enhance configuration control, these should be applied
by the librarian against the snurce code. If completely new source
code is provided, the programmer may try to include additional changes
in addition to those fixing the DR. If found, additional testing will
be required. If not found, then aberrations may show up later in a
program that was thought to be thoroughly tested and qualified. If

the change is so extensive that new source code must be released, then
a comparison of the new object code and source code against the old
object and source codes should be run and all changes identified.

This approach may require the use of a utility program. It is desirable
when updating the source code to retain the previous copy for recovery

P —————— e S A

purposes. In some systems, the last two copies are retained, and in
others, all copies are retained. Again, a PSL should allow the con-
tractor to maintain the required level of program archives.

e Document Maintenance. As software corrections are made, it is impor-
tant to update the affected documentation to keep it current. This
includes updating user guides, data base descriptions, and the program
listings. The majority of changes will normally not affect any doc-
uments other than program listings and the data base. If detailed
flow diagrams are included in the Product (Part II) Specification, as
currently required by MIL-STD-483 and MIL-STD-490, then considerable
effort will be required to update them. It is recommended that
detailed flow diagrams not be procured. Instead, the effort should be
spent on keeping the listings updated. This requires that comment
and indentation standards be followed as corrections are made. This
is especially important for comments since a partial or out-of-date
comment may be misleading. As much of the descriptive documentation
as possible should be kept in the PSL (especially if it has a text
editor) to ease the update problem. The contractor should be required
to keep his documentation up to date to prevent a large cleanup effort
after Subsystem DT&E when the contractor may not have enough
knowledgeable programmers assigned to the program. This will
ease the work prior to delivery.

2.4 TRANSFER AND TURNOVER

Transfer and turnover agreements are important to software maintenance activi-
ties because they define responsibilities and methods for controlling error
corrections and changes during the Deployment Phase. The CRISP provides an
ongoing plan leading to the Program3Management Responsibility Transfer (PMRT)
and system/equipment turnover for C” systems. The PMRT transfers responsibi-
lity for engineering support to the supporting command (see AFR 800-4) and
the turnover agreement (see AFR 800-19) transitions the operational system to
the using command for operational use. The Computer Resource Working Group
(CRWG), which is composed of representatives of all three commands, should
assure that agreements incorporated in the CRISP are in the system turnover
and transfer agreements. The contents of the PMRT and turnover agreements
for computer resources are summarized in Chapter 9, Volume II, of AFR 800-14.

32

2.4.1 Configuration Management

After system/equipment turnover and PMRT, the supporting command (normally

an Air Logistics Center) is the system configuration change control authority.
The supporting command while retaining engineering responsibilities may
delegate to the using command control over those computer programs required
for the direct performance of the operational mission (see AFR 102-5, Section
A, 6, for special provisions for Command and Control Systems). In this
situation, the using command will establish a Computer Program Configuration
Sub-Board (CPCSB) to facilitate computer program change processing. The
responsibilities of the CPCSB should be outlined in the CRISP and detailed

in the Operational/Support Configuration Management Procedures (0/SCMP).

The implementing and supporting commands should use the VDD and a Specification
Change Notice (SCN) to describe and distribute the program changes to a base-
Tined CPCI. The VDD and SCN are defined in MIL-STD-483, Appendix VIII. When
the using command has configuration management responsibilities for a computer

program the VDD and SCN, or other methods described in the 0/SCMP, may be used
to distribute CPCI changes.

The 0/SCMP details how the basic configuration management approach, defined
in the CRISP, will be implemented. Configuration management procedures
should be written by the supporting and using commands. These procedures

will be used during the Deployment Phase, but must be written during the

Full Scale Development Phase. At a minimum, they should address the following
items:

e The relationships of all commands involved
e The method for processing changes
e Approval authority for changes

e The status accounting procedures and responsibilities

¢ Handling of emergency changes
e The method for distributing CPCI changes and documentation
e Situations where turnover precedes PMRT

2.4.2 Change Processing During Transfer and Turnover

Between transfer and turnover, and while the implementing command is dgve]op—
: ing the update changes identified in the PMRT agreement document, the imple-
1 menting, using, and supporting commands may have a change control and coord-
ination problem.

During this period:

e The implementing command must schedule time for fixes.

e The DT&E tested version of the proper software baseline is
required (which itselr may be undergoing modification).

e All affected documentation must be updated.

These activities require close coordination between the implementation, using,
and supporting commands. A version release of all changes and modifications
will facilitate change processing during transfer and turnover. The using

and supporting commands should minimize changes until the implementing

command has completed all of its scheduled update changes. The procedures

for handling change processing during transfer and turnover should be

spelled out in the PMRT agreement.

2.4.3 Software Documentation

A11 operations and support documentation needed to operate, modify, maintain
and otherwise support the system after PMRT should be identified in the
CRISP and included in the CDRL. These documents should be approved at

PCA, prior to turnover of the system. The uses of the documentation,
including formats, should be discussed in the CRISP and 0/SCMP.

2.5 MAINTENANCE DURING DEPLOYMENT PHASE

The Operations and Maintenance (0&M) or Deployment Phase follows the
Production Phase and PMRT. As discussed previously, the CRISP forms the
foundation for the transfer and support of the embedded software in major
systems. The CRISP is initiated in the Validation Phase to define computer
resource requirements and is updated during the Full-Scale Development Phase.
The CRISP incorporates using and supporting command requirements. It is
the primary vehicle for identifying responsibilities for technical and
management support of the operational software and computer hardware and
related support tools and facilities. It establishes planning for the con-
figuration management procedures to be followed by the using and supporting
commands.

Before PMRT, the implementing, using, and supporting commands should have
resolved the following transfer questions:

gt

/

34

e MWhat software will the using and supporting commands control
respectively?

e If it is a multiple-site system, where will software be maintained
and how will changes get to the other sites? A general solution
to the multiple-site problem is to have a single overhead facility
produce and validate changes and then ship new tapes with site-
unique adaptation. This approach improves configuration control,
allows knowledgeable programmers to make changes, and minimizes
the programming staff needed at the other sites, all of which
provides for a more efficient and cost-effective operation.

e Who is responsible for programmer training, documentation, mainten-
ance facility operations, upgrades to new operating system (0S)
releases, and to the PSL? The answer to these questions should be
based on the maintenance concept.

e How will the using command's configuration management procedures
interface with those of the supporting command?

If modification is too large or complex for the responsible command's
maintenance staff, or if it involves hardware, the procedures of AFR 57-4
will be followed. Further, software documentation should not be maintained
under the Technical Order system, but can be maintained as system-unique
manuals. Procedures should be established between the supporting and using
commands for releasing new versions of a program or corrections to programs.

During the Deployment Phase, the responsible programming agency will
establish a maintenance organization and provide configuration management
and software modification procedures that satisfy mission requirements. It
is important that the maintainable attributes of the software be retained
throughout the system 1ife cycle.

T

o

i, s ahat i i Miiaianlle e

35 |
(Page 36 blank) §

R

SECTION 3 - APPLICABLE REGULATIONS, SPECIFICATIONS, AND STANDARDS

dards (
operati
activit
softwar
. and AFR
4 ware ma
regulat

3.1 RS

This section discusses those directives, regulations, specifications, and stan-

RSSs) that impact software maintenance. In general, the RSSs refer to
onal support and modification, whereas this guidebook refers to these
ies as software maintenance. Although little is said in the RSSs about
e maintenance, it is specifically addressed in DoD Directive 5000.29
800-14, Volume I. As used in this guidebook, the definition of soft-
intenance includes the ability to modify the software; therefore, the
ions covering configuration management are included in this discussion.

Ss WITH DIRECT IMPACT ON SOFTWARE MAINTENANCE

The fol
of main

~

lowing RSSs directly reference software maintenance and the allocation
tenance responsibilities between the using and supporting commands:

Department of Defense Directive 5000.29, "Management of Computer
Resources in Major Defense Systems." This directive establishes
DoD policy for the management and control of computer resources
during system acquisition. Maintainability of both software and
hardware is called out as a major consideration during initial
design. In addition, DoD 5000.29 directs that support items re-
quired for cost effective maintenance be specified as deliverable
items. It also requires the use of HOLs. Further, DoD 5000.29
establishes software maintainability as one of the prime items to
be tonsidered during system acquisition and directs all DoD com-
ponents to develop and implement a disciplined management approach
to providing effective software at minimum 1ife cycle cost.

Department of Defense Instruction 5000.31 "Interim List of DoD
Approved Higher Order Programming Languages (HOL)."™ Specifies

the HOLs which are approved for use in conjunction with DoDD
5000.29. Although this instruction allows for certain exceptions,
it attempts to reduce proliferation and ensure control of HOLs in
defense systems by 1limiting new development to six approved
languages: CMS-2, SPL-1, TACPOL, JOVIAL, COBOL, and FORTRAN.

Air Force Regulation 300-10, "Computer Programming Languages."
Implements DODI 5000.31. This regulation restricts approved languages
to FORTRAN, COBOL, JOVIAL (J3), and JOVIAL (J73/1), but adds PL/I.
PL/I is not approved by AFSC for 800-series acquisitions, however.

Ajr Force Regulation 800-4, "Transfer of Program Management Respon-
sibility." States Air Force policy and assigns responsibility for the
transfer of program management responsibility from an implementing

to a supporting command.

S —

e Air Force Regulation 800-14, "Management of Computer Resources in
Systems,® This regulation is presented in two volumes as follows:

- Volume I establishes Air Force policy for the acquisition and
support of computer equipment and computer programs that are
. dedicated elements of embedded systems. It establishes responsi-
E | bility for maintenance and modification of computer programs; re- ’
E | quires that organizational responsibility and computer resource
requirements be established early in the acquisition cycle (in-
cluding documentation, training, personnel, support facilities,
and other essential resources); assigns specific management items
(associated with computer resources) to be included in the PMD
and PMP: and assigns responsibilities to both the supporting
and using commands for acquiring facilities to support the main-
tenance, modification, and development of computer programs.

- Volume II provides guidance for the planning and acquisition of
computer resources, including support software and hardware. It
establishes procedures for implementing the policies outlined in
Volume I. This volume includes a definition of the phases of the
system acquisition Tife cycle with special attention given to
the computer program development process. Individual chapters
are devoted to planning, engineering management, testing, con-
figuration management, documentation, identifying contractual
requirements, turnover and transfer, and support. The chgpter
on planning identifies the major planning documents associated
with computer resources as follows:

e Program Management Directive (PMD)

e Program Management Plan (PMP)

e Computer Resources Integrated Support Plan (CRISP)
e Computer Program Development Plan (CPDP)

e Air Force Regulation 800-19, "System or Equipment Turnover,"
Establishes policy and principles for the efficient turnover to
an operating command of systems or equipments developed under
the program management concept established in AFR 800-2. Attach-
ment 1 thereto calls for the timely identification of post turn-
over maintenance requirements and planning for their adequate
implementation. Specific types of requirements cited include:

- Manpower

- Support and training equipment
- Spares

- Documentation

- Facilities

- Budgets

- Information

- Contractor Services

- Computer resource requirements

38 ' i

In addition to the above documents, the following regulations covering config-
uration management are pertinent to the maintenance of software:

e AFR 57-4, "Retrofit Configuration Changes." This regulation
establishes policy and provides guidance for obtaining
approval fur modifications to configuration items after the
item has been put into service by an Air Force agency. It
includes criteria for determining the classification of a
proposed change and discusses the approval authority and pro-
cedures to be followed in submitting a change request for
approval.

e AFR 65-3, "Configuration Management." This regulation estab-
lishes uniform policy and guidance to all DoD components in
implementing configuration management procedures for all con-
figuration items. It has chapters devoted specifically to
cenfiguration identification, control, status accounting, and
audits. Appendix F contains Air Force implementation instruc-
tions which outline specific Air Force policy and assign
responsibilities to various Air Force elements.

e AFSCM/AFLCM 375-7, "Configuration Management for Systems, Equipment,
Munitions, and Computer Programs." This manual is the AFSC imple-
mentation of AFR 65-3.

3.2 IMPLEMENTATION OF RSSs

The regulations and directives identified in 3.1 require that the PO acquire
software that is supportable. For software, ease of modification is as
important as ease of correction (or repair). This characteristic must be
built into the software throughout the acquisition cycle. It includes the
design and coding of the computer program as well as support items, such as
documentation, training, support software, and facilities.

Major considerations incorporated into the regulations include: the require-
ment for acquiring software that supports correction, modification, and growth;
the inclusion of the using and supporting commands in all phases of acquisition
planning; the concept of tailoring the management techniques to the specific
system; and the requirement that support equipment and software be acquired

as a part of the system.

The policy outlined in these regulations calls for an orderly development of |
systems through a series of plans, specifications, and baselines which are j
suppurted by appropriate engineering studies and tradeoffs.

The initial planning for software maintenance should begin with the develop-

ment of initial system requirements. As a part of requirements analysis, a ;
computer program support concept should be developed which considers the |
system mission, number of installations, the operational availability require-

ments, and expected level of change activity. This support concept should be

39

developed by the implementing command in consultation with the using and
supporting commands and is essential to the system engineering efforts.
AFR-800-14, Volume II, Chapter 3, provides special guidance concerning
items to be considered.

The following planning documents must also address operational support and
modifications.

® Program Management Directive. The PMD should address the support
requirements needed to achieve mission objectives. If not included
in the PMD, the implementing command should address these subjects
in the PMP.

® Program Management Plan. Although the PMP has no specific sections
addressing operational support and modifications (see AFSCP 800-3,
Attachments 3 and 4), it requires detailed analysis of these items
to support its sections on: Program Management (Section 3), System
Engineering and Configuration Management (Section 4), Test and
Evaluation (Section 5), Operations (Section 7), Manpower and Organ-
ization (section 10), and Personnel (Section 11).

o Computer Resources Integrated Support Plan. The CRISP identifies
responsibilities and resources required for software maintenance
after transfer and turnover and forms the basic agreement between
the using and supporting commands. A comprehensive CRISP provides
the basis for the smooth transfer and turnover of a system which
has the support facilities and tools necessary for cost effective
maintenance.

e Computer Program Development Plan. The CPDP* is specified as a
Contract Deliverable Requirements List (CDRL) item which is prepared
by the contractor and approved by the PO. This plan gives the PO
visibility into the software development plan and management necessary
to procure adequate support software. The plan should be developed or
reviewed with the objective of providing software which most effectively
accommodates the computer program support concepts developed in the
CRISP. This objective should include the structure of the software,
documentation, and support tools. It should also address standards
and conventions which can be used to enhance maintainability.

These four documents form the planning foundation necessary to acquire a
software maintenance capability but they must in all cases be followed by a
set of baselined contract specifications.

*Defined in AFR 800-14, Volume II, Chapter 3 [see DI-S-30567].

40

3.3 POTENTIAL PITFALLS IN APPLYING RSSs

The RSSs do not provide adequate guidance for acquiring maintainable software.
They do address support and modification and these terms have been included
in the definition of software maintainability presented in Section 1.

The SD must recognize that planning for software maintenance is usually not
given adequate attention by the using command when attempting to get an opera-
tional requirement validated. With long development cycles vor large systems,
software maintenance tends not to be an immediate concern and seems relatively
minor to the user. However, if the PO does not insist on a concept for soft-
ware maintenance it is almost impossible for the SD to develop the requirements
for proper support.

Maintainable software and support capabilities cost money and must be budgeted,
planned, and specified in the contractual specifications. Therefore, the PO
must specify in the contractual specifications those software design and con-
struction techniques which enhance software maintainability. In most cases,
these same techniques also enhance quality, management visibility, and sched-
uling confidence. However, design and construction techniques specified in
contractual specifications may impose design constraints that may not allcw the
contractor to meet all performance requirements. These constraints and support
items may also result in increased total acquisition costs. Tradeoffs con-
cerning the most imporiant requirements with regard to the mission and total
life cycle costs must therefore be considered by the PO.

The SD must exercise care, when specifying a particular hardware configuration,
or when supplying it as GFE, that the hardware does not place undue constraints
(affecting software maintainability) upon the contractor. If, for example, a
lack of computer capacity forces the contractor into complex software design,
the maintainability characteristics of the software will assuredly be jeopar-
dized. The same care must be taken in specifying GFE software. If the charac-
teristics or capabilities of the GFE software force the contractor into unduly
complex interfaces or design, maintainability will suffer.

Ir addition to the acquisition management requirements for documentation, the
PO should tailor documentation requirements to the software maintenance con-
concept. The flow diagram requirements of MIL-STD-483 may be too detailed and
unneccessarily costly for specific programs. For example, a recently acquired
system required detailed flow diagrams which were prepared at great expense
and then discarded immediately following turnover because the user didn't

need them. The format and content of all documentation should be designed

to fit the using and supporting commands' requirements and methods of
updating. A major problem for these commands is the maintenance of software
documentation after turnover. This can be facilitated by tailoring standard
DIDs in the Full-Scale Development Phase RFP.

41

e 4

N S it S L A e e s 2 St e A3 0 b SN e et M e Il W K

The PO should always assume that requirements for C3 systems will change during
the acquisition cycle. Since the acquisition cycle tends to be long, new re-
quirements will assuredly be identified and, in many cases, original require-
ments will be deleted. For this reason alone, the PO should recognize that
software modifiability is a desirable characteristic even though the antici-
pated level of change after turnover is low. It is therefore beneficial to

the PO to stress software maintainability for its modifiability aspects alone.
It is also cost effective from the standpoint of ease of error correction dur-
ing System DT&E.

42

APPENDIX A - DESIGNING MAINTAINABLE SOFTWARE

1. INTRODUCTION

This appendix discusses the design and development of maintainable software.

The information provided should be used by the PO when reviewing the design
philosophy documented in the contractor's proposal and CPDP. It should also

be used to prepare for design reviews (PDR and CDR) when the contractor presents
his overall and detailed design. Finally, it should be referenced when
evaluating contractor compliance with his plans and design at PCA.

2. THE PROPERTIES OF MAINTAINABLE SOFTWARE

Software can be designed to implement either a single specification or a

class of programs which respond to the specification. In general, the broader
the design, ghe easier it is to change, but the more it will cost to design
and operate. The software designer balances flexible design against ease of
implementation or speed of execution. The designer looks for simple comput-
ational structures which will generate the computer program specified and yet
be easily modifiable.

No techniques are known for optimizing design. However, a good flexible
design has properties which can be evaluated by experienced designers at
design reviews, and measured after implementation by an audit of maintenance
costs.

Flexible design includes a coherent conceptual organization of data and opera-
tions, cleanly modularized design with low levels of interconnection, self-
monitoring properties, hooks for easy extension, and a reasonable methodology
to insure a complete and correct design. The following paragraphs define the
properties of flexible design in more detail. Some criteria such as coherent
conceptual organization and a closely modularized design are closely related.
However, these properties differ in intent and even though they tend to come
together it is possible to ‘have one without another. These properties can

be evaluated by a technicallly competent design critic in the same sense that
good writing style can be evaluated by a good literary critic. Unfortunately,
it is hard to find a good serious critic.

43

2.1 Coherent Conceptual drganization

A software design should be developed from a consistent set of design principles

because once these principles are understood, the design becomes predictable
and hence easier to modify.

A coherent conceptual organization allows the prediction of the information
that will be found in data structures and the functions that will operate on
this data. If there are communication conventions between modules then one
would expect to know what the conventions are and why they were chosen. In
general the design philosophy should tell a reader the problems perceived by
the designer and how they were solved.

When a software design for a large system is being developed, several levels
of abstraction should be defined. Each level of abstraction should be defined
in terms of data types and operations on these types. This technique forms

a coherent approach for the total system by collecting related functions at
appropriate levels of abstraction.

Software must be built with consistent philosophy and organization as well as
a clear understanding of the design problems to be solved. Without sucn an
approach, maintenance becomes much more difficult because there are no
principles to follow in determining how modifications were made. Whenever a
coherent design philosophy is not developed or successfully communicated to
the maintenance programmers, modifications become more expensive and are
1ikely to contain residual errors.

2.2 Modular Design

The goal of modular design is to build independent functional pieces of a com-
puter program which can be separately developed, tested, and modified or
replaced. Good modular design minimizes coupling between subroutines and
procedures and allows easy modification. Software which employs modules must
rely only on a limited, well defined set of properties for the modules.
Nothing in the software should depend on the internal method by which the
modules accomplish their job. Proper modularity will reduce code by
collecting similar functions into one module. It increases the program's
clarity by employing a small conceptual set of well defined properties to
construct larger program elements. Figure 6 lists design approaches which
minimize the coupling of modules and Figure 7 provides design approaches which
assist modularization.

| METHOD

IMPACT ON COUPLING

Minimize the sharing of a
comnon environment; i.e.,
common data files and tables.

Two or more modules sharing a common data environment increase
interface complexity and coupling. Every element in the common
environment, whether used by a particular module or not, con-
stitutes a separate path along which errors and changes can propo-
gate. Once the choice is made to communicate via a common environd
ment, all new modules must be plugged into the common environment,
further compounding the total complexity. These disadvantages can
be minimized by 1imiting access to the smallest possible subset of
modules (subset data into groups).

1 Reduce interface complexity.

Reducing complexity of an interface reduces the information needed
to state or understand the connection. Thus, obvious relation-
ships result in lower coupling than obscure or inferred ones.

of a module.

Avoid referring to the contents

Connections that address or refer to a module by its name, rather
than its contents, yield lower couplings than connections refer-
ring to a module's internal elements. Modules that can be used
without knowledge of their contents make for simpler systems.

Minimize control information
passed between modules.

By avoiding the practice of passing an "element of control" such
as a switch, flag, or signal from one module to another, coupling
is reduced. Passing an "element of control" affects the execution
of another module and not merely the data with which it works by
involving one module in the internal processing of another module.

Maximize module cohesiveness.

Coupling is reduced when the relationships among elements not in
the same module are minimized. There are two ways of achieving
this--(1) minimizing the relationship between modules and (2)
maximizing relationships between elements in the same module. An
"element" is any form of a "“piece" of the module, such as a state-
ment, a segment, or a subfunction. Binding is the measure of
cohesiveness of a module. The objective is to reduce coupling by
striving for high binding. Functional binding is the strongest
type of binding. In a functionally-bound module, all elements are
related to the performance of a single function. Examples of
functionally bound modules are "Compute Square Root," "Obtain

Random Number, "Write Record to Output File."

Figure 6.

Design Approaches to Increase Module Independence.

45

M

e e

APPROACH DISCUSSION
Match Program to the class of] One of the most useful techniques for reducing the effect of changes

problem being solved. on the program is to make the structure of the design match the struc-
ture of the class of problem being solved, i.e., form should follow
4 function.
¢ Keep the scope of the effect | The scope of control of a module is that module plus all modules that
of a decision within the are ultimately subordinate to that module. The scope of effect of a
scope of the control of the | decision is the set of all modules that contain some code whose execu-
module effected. tion is based upon the outcome of the decision. The system is simpler

when the scope of effect of a decision is in the scope of control of

the module containing the decision. The scope of effect can be brought

within the scope of control either by moving the decision element up in

the structure or by taking those modules that are in the scope of effect
and moving them so that they fall within the scope of control.

Limit size of module. There is no consensus on an optimum module size. IBM, in their paper on
“Chief Programmer Team Management of Production Programming," suggests
that programmers write modules of approximately 50 PL/I statements. This
can be kept on a single page and is readily comprehensible. Others have
suggested from 100-300 programming statements. In any case, the intent
is not to set absolute maximums but to guide programmers, through the
application of a size standard, to functionally orient their code tc im-
prove readability and to provide modularity.

Other considerations Eliminate duplicate functions but not duplicate code. When a function
changes, it is advantageous to only have to change it in one place.

This does not mean that the module can not be used in more than one place
in the system, (e.g., the use- of MACROs should be encouraged). If a
requirement changes in one part of the system, then a new module should
be developed with a different name to maintain independence. An example
might be a match function used by multiple CPCs. If one CPC needed more
accuracy, a separate routine would be developed to prevent impacting
other CPCs.

Check Modules that have many callers or that call many other modules.
While not always a problem, it may indicate missing levels of modules
(e.g., an erroneous functional boundary of that module).

Isolate all independencies on a particular data-type, record-layout,
index-structure, etc., in one or a minimum number of modules. This
minimizes recoding should the specification change.

Reduce the number of parameters passed between modules. Do not pass
whole records from module to module. Pass only the field or fields
necessary for each module to accomplish its function, otherwise, all
modules will have to change if one field expands, rather than only those
which directly use the field. Passing only the data being processed by
the module with necessary error and End of File (EOF) parameters is the
ultimate objective.

|
i
!
|
|
g

Figure 7. Some Approaches for Defining Modules.

2.3 Self-Monitoring Computer Programs

Active and passive monitoring are two forms of self-monitoring which are
valuable for maintenance and should be considered for inclusion into the design.

Active monitoring goes on continuously and is designed to verify the reliability
of computer program data. Techniques from financial auditing can sometimes

be adapted to perform this kind of checking. For example, if the records

in a file are sequentially numbered, a missing record can be detected. A
checksum of items included as the last data item can be used to detect unwanted
changes to the data. Often this kind of checking can occur with almost zero
operating time costs by making the checks a by-product of normal processing.

Many of these active monitoring techniques will increase the reliability of a
computer program which is being modified by detecting changes to fixed assump-
tions being used by the computer program code. Modifying and extending pro-
grams which include this form of checking is always easier and more secure
because if ar error occurs in one module it is likely to be detected by

other modules in the same program, thus warning maintenance personnel of an
error.

Passive monitoring is activated by maintenance personnel and allows information
to be optionally checked or initiates the processing of trace information to
assist in evaluating program operation after maintenance activity has begun.
Passive monitoring provides diagnostic assistance in locating a module which is
not performing properly and assists in the integration of new modules. Soft-
ware designed for flexibility should include support modules which can provide
the programmer with visual repiesentations of the data structures and detailed
analyses of the computer program's actions.

2.4 Program Hooks for Future Extensions

Software which is designed for future extension will usually include fields in
data structures that can be used for future modifications to the software
without changing existing programs which use the structures. Such fields are
called hooks and save .valuable maintenance time when the original software is
extended. In choosing appropriate hooks, it is prudent to spend some design
time thinking about how a new feature might be integrated into the existing
software design. R

2.5 Design Methodology

A design methodology should be chosen to insure the completeness and quality
of the resulting software design. Most good computer program design method-
ologies begin with functional requirements, which are stated in the Develop-
ment (Part I) Specification, and progress downward at progressively greater
levels of detail until code is produced. This technique is generally referred
to as top-down design.

47

Top-down design is accomplisiicd by successively refining a computer program

atll

J
description to meet Development Specifiratiun requirements. Each time a

refinement is accomplished the substructure inherits an allocated set of
performance requirements. If each substructure can be constructed within the
Development Specification then the whole CPCI will meet its performance
criteria.

Strict top-down design is difficult unless the entire CPCI is constructed

with a similar organization. Otherwise it is hard to establish the appropriate
performance criteria for substructural elements or even insure that some
divisions can be accomplished at all. Top-down design is illustrated in

Figure 8 where successive levels of design provide additional details of the
eventual solution.

To be effective, a design methodology must be easily communicated and under-
stood. In developing a design, it is useful to examine the system from the
following four points of view:

e System Physical Structure. Review all the system components and their
relationships. A description of the physical structure of the system
is usually contained in the System Specification. More detailed
descriptions of the CPCI and all its interfaces should be included in
the Development Specification (see Computer Program Development
Specification guidebook). 1

e Functional Decomposition of the CPCI. Analyse the decomposition to
determine the hierarchy of control and what is to be done by the CPCI.
Normaily, time is not represented in a functional decomposition. 1
Figure 8 shows an example of a top-down functional decomposition. :

e CPCI Data Flow. Examine data flow to identify all inputs and outputs
and ascertain the flow of information as it proceeds through the
functional areas of the CPCI.

e Dynamic Operations of the CPCI. Determine the required sequential and
concurrent operations and identify processing volumes and priorities
to provide a basis for evaluating the throughput and response time
features of the design.

e

48

] juswdo|aaaq umog do] °g aunbL4

NIVOY AYL ONY
1SNCay 0L S3OVAYILNI SNOINVLINWIS ON @
W3190¥d 3V4¥ILNI ¥O DI907 IIdWIS ¥ © 9N199n830
3000 1337 MY a30ay 1SnC 3000 0L G3ZITWI0] ©
$103080 NOILY0T SNLYLS
A04 /STY3W3Hd3 ANIWNOYIAN3 HOSN3S £ 13431
anLs anLs anLs anLs gty
]
R et 2 HoSN3S L ¥OSN3S
[=<k
o
SYOSN3S 130NN ® a31y2011Y INIOd 031394v1 ® <
IYNOILY43d0 $S320NS HINNYT @ NOILYNIW§3L3Q 31DIH3A HIV3 WYY4 HONNY @ L T3
23 leee ILVINKWIS HONNYT @ INIOd “CYdL ONY 404 30IWAL vl 3dAL 310IH3A ©
LIV IS 140 ALITISY80Yd HONNYT 40 ONIWIL an1s “3LY201V
YOSN3S anLs NOILNIIX3 NLS ONIWIL NOILWYINI9D ‘LYYl 8nLS NOILYI0T1Y
{ I

WILSAS i W3LSAS WILSAS anLs Wil

NOILNI3X3 umzw T ANIWNOISSY ¥0LY¥INID 34V S

30404 NOISSIW NOVLLY F VYA

e 1 | |]
= |f
: J3x3ans

B W

3009 J9YNINYT

RELER] 04LNOD
HOIH JAILNI3X3
W3LSAS

ONI1VY3d0

= T PR T e T
ol s i, WMk e a0 0 S T il e 8 Ul T i e S il i -

3. CODING TECHNIQUES THAT FACILITATE SOFTWARE MODIFICATION

The task of developing easily modifiable software requires several coding
techniques which result in a computer program that is easier to modify and
behaves in a more stable way. Subsequent discussion treats four such techni-
ques: legibility of code, parameterized constants, stable code, and structured
programming. Further, Figure 9 provides a summary of common coding techniques
with commentary on the maintenance aspects of the techniques.

3.1 Computer Program Legibility

An important step in the coding process is to make code legible so that it can
be easily understood. Several techniques make code easier to read.

Paragraphing involves grouping statements that perform a single function and
placing blank lines to set off the code visually. Consistent use of indenta-
tion to reflect the block structure of the computer program is another para-
graphing technique for visually indicating computer program structure.
Coupled with good modular design, paragraphing makes code clearer and easier
to modify.

A general comment preceding a module which provides an organizational framework
for the code is a technique which provides legibility similar to the way that

a proper introduction in a well written essay organizes the essay content for

a reader. Coding which relies on non-obvious relationships to flake the
resulting computer program more efficient should be commented expressing the
intent of the code as well as the assumptions which were made by the coder.
Figure 10 provides a checklist for reviewing comments.

3.2 Parametric Organization

In computer program development, design decisions which are characteristic of

a class or family of computer programs that perform similar functions should

be parameterized to allow easy modification within the class. Often these
design decisions involve the size of tables or the offset of particular data

in some data structure. Constants of this type should be coded as symbolic
constants rather than as literal constants. Thus, if a value were to be
divided by the number two, the constant should probably be specified. However,
if a table of ten elements were being used, a symbolic constant should be
written into the program every place that the size of the table is referenced.
This allows the easy extension of the table later by a single parametric change
to the value of the symbolic constant.

50

. y s ot it ottt

o

R AR

Chasadidinoade . meagierSl ol it b

TECHNIQUES

EXAMPLE/COMMENTS

DISADVANTAGES

Code in a single HOL when
possible.

A requirement of DoD Directive No.
5000.29, "DoD Approved Higher Order
Programming Languages (HOLs),
states that HOLs will be used to
develop Defense system software,
unless it is demonstrated that
none of the approved HOLs are cost
effective or technically practical
over the system life cycle." DoDD
5000.31 Tists the approved HOLS.

HOL programs usually take longer
to operate and require more core
storage than assembly language.
Often time-critical portions of
real time systems are coded in
assembly language.

The maintainability of using one
HOL may be outweighed by the
benefit of using several off-the-
shel f packages.

Use symbolic parameters to
lrepresent constants, relative
location within a table, and
size of data structures.

Accomodates changes in constants,
table structure, sizes of tables,
etc., without major changes to
module code. For example, all
software system constants can be
centrally located and symbol-
ically defined (TWOPI=2).

Unless care is taken, can confuse
symbolic constants with variables
in the program.

Sharing variables and temporary
storage. i

Each module (subroutine) should havd

own temporary storage area. Coding
problems resulting from shared
storage are hard to isolate since
they can be coupled through a
timing or interrupt relationship.

Could require additional core
storage or additional processing
time to housekeep temporary
storage.

Subroutine arguments instead of
global common to communication
data.

Cuts down number of modules
affected if global common is
changed. By passing explicit
parameters, module independence
is enhanced.

Requires extra time to operate
module.

Self modifying code.

Besides being hard to debug and
modify, this type of code is
extremely hard to follow.

Advantages far outweigh any
potential core, or execution
time savings.

Named COMMON instead of blank
COMMON .

Items in COMMON should be named
to allow referencing (not COMMON
+ x words). If referenced by
name, changes ta COMMON will have
less impact on modules.

None.

Code which implicitly coupies
one module to another.

Destroys module independence and
is hard to modify. Enforce the
concept of one entry and one
exit point.

Could require additional core.

To the extent possible minimize
hardware dependencies.

For example, (1) use an internal
character set and convert in-
coming data to this set; (2) use
I/0 modules that are separate
from computational modules to
read input data; (3) use a HOL so
that machine-peculiar features
are not used directly by the
programmers, etc.

Could require extra processing
time and additional core storage.

Structured code,

Structured programming encourages
straightforward control logic.

If a >tructured language compiler
is not available, a pre-processor
can be developed fairly economic-
ally or proper coding conventions
should be enforced.

Could require development of pre-
processor and additional core
storage. Pre-processor has in-
herent disadvantages in terms of
portability and maintenance.

Avoid unnecessarily complicated
rrithmetic statements.

Simple, logical coding is easier
to understand, correct, or
modify.

None.

Figure 9.

Summary of Coding Techniques.

Program code should contain sufficient information to determine or verify
the code's objectives, assumptions, constraints, inputs, outputs, components,
and revision status. Comments should meet the following checklist:

d.

Does each computer program module contain a header block of comments
which describe:

Computer Program name?

Effective date (last revision)?

Accuracy requirements?

Purpose?

Limitations and restrictions?

Modification history (a list of changes added)?

Inputs and outputs?

Assumptions?

Error recovery types and procedures for all foreseeable
error exits that exist?

OOooONOOTAWN —

Are decision points and subsequent branching alternatives adequately
commented and is proper indentation used to show the block structure
of the coding logic?

Are the functions of the modules and inputs/outputs sufficiently
described to facilitate module testing?

Are comments provided to support selection of specific input values
to permit performance of specialized program testing?

Is information provided to support assessment of the impact of a
change in other portions of the computer program?

Do all computer program statéments”which have undergone modification
(after baselining) have an identification number included that
associates the change with an ECP or discrepancy report?

lhere there is inter-module communication, is it clearly specified by

comments, computer program documentation, or inherent program structure?

Are variable names descriptive of the physical or functional property
represented? A

Figure 10. Checklist for Commenting Computer Program Code

52

Symbolic constants should be identified by their function in the program and
not by the particular value they currently possess. Thus "TEN" is not a very
useful name for a symbolic constant whereas "TrBLESIZE" is a much better name
because it expresses the meaning within the computer program. One difficulty
with symbolic constants is that they can be confused with variables when a
program is being read. To compensate for this deficiency constants should be
listed in a comment which defines their intended use.

In this way, properly used parametric constants make a program much easier to
read and understand as well as easier to modify. A person reading the code
does not have to guess what meaning is attributed to a parametric constant;
however, a number is just a number and carries no extra information.

3.3 Stable Code

Stable Code performs predictably even when given improper data. Programs should
check for improper data and bypass normal processing whenever improper data is
encountered.

The Development (part I) Specification should include specific requirements for
the processing of improper data inputs received from sources external to the
CPCI. It should also provide for some type of error message when internally-
generated, improper data is encountered. Internal CPCs may erroneously generate
improper data and stable code must prevent the processing of the improper data.
Without error messages, the software might ignore the improper data and the error
could go undetected for some time.

3.4 Development Methodology

To develop understandable computer program code it is best to employ a good
development methodology. A development coding methodology is like a style
sheet: it forces acceptable expression but it cannot make a great writer out
of a poor one.

The most familar methodology is structured programming, a technique initiated
by Dijkstra. The structured-programming, flow-of-control conventions are
summarized in Figure 11. These rules attempt to make a program more linear and
thus easier to read and understand. However complexity in data structures can
usually be traded for complexity in flow-of-control within a program. If a
programmer does not attempt to keep both data structures and flow-of-control
simple the computer program will still be difficult to read and understand.

e e e i B S i

__——i FUNCTION { FUNCTION e
A B

Sequence
This logic structure is the simplest and indicates that function A is to be

performed first, function B is to be performed next, and then processing is
continued.

FALSE ///:\\\ TRUE

[(ELSE) \\\v/// (THEN)
FUNCTION FUNCTION

E D

(IF)

IF-THEN-ELSE
The flow of control is governed by condition C. If condition C is true,
function D is performed. If not, then function E is performed. In both
cases control is returned to a common rode and proceeds from that node.

Figure 11. Structured Programming Basic Control Structures (1 of 3)

54

FUNCTION TRUE
G
;<:::> 5 FALSE

DO-WHILE

The flow of control again is governed by a condition. Function G is perform-
ed while condition F is true. When condition F is no longer true, the flow
of control falls through and processing continues.

Figure 11. Structured Programming Basic Control Structures (2 of 3)

55

i o it

FUNCTION

In this structure, function L is always performed at least once.

will be repeated until condition M is true.

=?

4444 L Jrue
DO-UNTIL
Function L

1 FUNgTION s
2 : %
FUNCTION ~

C

ELSE

FUNCTION i

N

CASE

In the case logic structure, the flow of control is governed by the value of
A. If Ais 1 then function B is performed.

all other values, a function N

is performed.

to a common node and proceeds from that node.

If Ais 2, C is performed. For
In all cases, control returns

Figure 11. Structured Programming Control Structured Extensions (3 of 3)

56

kol Al

APPENDIX B - GLOSSARY

This guidebook consists of (1) definitions of major terms used throughout this
guidebook and (2) a list of acronyms and abbreviations used herein.

DEFINITIONS

Alter. A change to the source language representation of a program.

Assembly Language. A programming language which provides symbolic represen-
tations of machine-operation codes and addresses. In most cases,
assembly language instructions generate computer object code on a
one-to-one basis.

COMPOOL. A description of the components of a programming system. These
components may be programs, common functions, and data shared by more
than one component. The description exists in a symbolic and a
machine representation. A COMPOOL is not a system data base but rather
a description of its structure.

Computer Data. Basic elements of information used by computer equipment in
responding to a computer program.

Computer Program. A series of instructions or statements in a form acceptable
to computer equipment, designed to cause the execution of an operation
or series of operations. Computer programs include such items as
operating systems, assemblers, compilers, interpreters, data management
systems, utility programs, and maintenance/diagriostic programs. They
also include application programs such as payroll, inventory control,
operational flight, strategic, tactical, automatic test, crew simulator,
and engineering analysis programs. Computer programs may be either
machine-dependent or machine-independent, and may be general purpose
in nature or be designed to satisfy the requirements of a specialized
process or particular users.

Computer Software. A combination of associated computer programs and computer
data required to enable the computer equipment to perform computational
or control functions.

Debug. A general term given to the process of finding and correcting the
errors that have been shown to exist in a program by the testing or
execution of a computer program.

Global Data. Global data are data shared by more than one module.

High Order Language (HOL). A machine-independent programming language in
which the characteristics of a particular computer are not apparent.

HIPO (Hierarchical Input Output) Chart. The HIPO chart describes functions
in terms of the inputs to a process, the process, and the outputs
resulting from the process. The inputs, processes, and the outputs are
arranged graphically on a page from left to right with directional
arrows to lead the reader from input to output through the process.

Implementing Command. The command charged with primary responsibility for
developing and acquiring the system or equipment.

Module. Used in this document to describe the smallest computer program unit
that can be compiled or assembled. A CPC has one or more modules.

Qbject Code. Program code that results from the execution of a compiler
or assembler.

Operating Command. The command or agency primarily responsible for the
operational employment of a system, subsystem, or items of equipment.

Patching. Making changes to the machine-code representation of a computer
program.

PMRT. See Transfer.

Program Support Library (PSL). A group of manual or automated procedures
used to control and keep records of the developing software.

Source Code. Programmer-coded input to a program-language compiler or
assembler (e.g., FORTRAN source statement).

Supporting Command. The command charged with primary responsibility for
program management in the Deployment Phase including logistics,
engineering, and procurements.

Top-Down Development. Top-down, also called stepwise refinement, is the
name given to a methodology in which one starts at the level of the
program to be solved and by a sequence of decompositions of the
functional and data specifications finally arrives at the available
machine or programming language.

Transfer. Refers to Program Management Responsibility Transfer (PMRT). The
transfer of program management responsibility for a system (by series),
or equipment (by designation), from the implementing command to the

supporting command. PMRT includes transfer of engineering responsibility.

(AFR 800-4)

Turnover. That point in time when the operating command formally accepts
responsibility and accountability from the implementing command for
the operation and organizational maintenance of the system or equip-
ment acquired. (AFR 800-19)

58

PYSHREEREIRS 1.

e

ACRONYMS AND ABBREVIATIONS

AFR. Air Force Regulation
AFSC. Air Force Systems Command

c3.

Command, Control, and Communications

CDR. Critical Design Review

CDRL. Contract Data Requirements List

CPC. Computer Program Component

CPCI. Computer Program Configuration Item
CPCSB. Computer Program Configuration Sub-Board
CPDP. Computer Program Development Plan

CPU. Central Processing Unit

CRISP. Computer Resources Integrated Support Plan
CRWG. Computer Resource Working Group

DID. Data Item Description

DoD. Department of Defense

DR. Discrepancy Report

DT&E. Development Test and Evaluation

ECP. Engineering Change Proposal

ESD. Electronic Systems Division

FCA. Functional Configuration Audit

FQT. Formal Qualification Test

GFE. Government Furnished Equipment

HOL. High Order Language

59

1/0. Input/Output
MIL-STD. Military Standard
0&M. Operations and Maintenance

0S. Operating System

0/SCMP. Operational/Support Configuration Management Procedures

PCA. Physical Configuration Audit
PDR. Preliminary Design Review
PMD. Program Management Directive

PMP. Program Management Plan

PMRT. Program Management Responsibility Transfer
PO. Program Office

PQT. Preliminary Qualification Test

PSL. Program Support Library

QA. Quality Assurance

RADC. Rome Air Development Center

RFP. Request for Proposal

RSSs. Regulations, Specifications, and Standards
SAM. Software Acquisition Management

SCN. Specification Change Notice

SD. Software Director

SDR. System Design Review

SOW. Statement of Work

SRR. System Requirements Review .

TDSP. Top Down Structured Programming

TR. Technical Report

USAF. United States Air Force

VDD. Version Description Document

WBS. Work Breakdown Structure

APPENDIX C - BIBLIOGRAPHY

"A Design Methodology for Reliable Software Systems;" Liskov, B. H.;
Proceedings of Fall Joint Computer Conference; Vol. 41, Part 1; Pgs. 191-199;
AFIPS; 1972.

"A Discipline of Programming;" Dijkstra, E. W.; Préhtice Hall; Englewood
Cliffe, N. J.; 1976.

"Designing Reliable Software;" Ogdin, J. L.; Datamation; Pgs. 71-78; July
1972.

"Modular Programs: Defining the Module;" Cohen, A.; Datamation; Vol. 18,
No. 13 Pgs. 34-37; 1972.

"On the Criteria to be Used in Decomposing Systems into Modules;" Parnas,
D. L.; Communications of the ACM; Vol. 15, No. 12; Pgs. 1053-1058;
| December 1972.

"Quantitative Analysis of Software Reliability;" Dickson, J. C., Hesse, J. L.,
Kientz, A. C., and Shoomun, M. L.; IEEE Symposium on Software Reliability;
January 1972.

“Research Toward Ways of Improving Software Maintenance: RICASM Final
Report;" Overton, R. K., et al; ESD-TR-73-125; USAF (ESD); January 1973.

"Reliability of Real-Time Systems;" Yourdon, E.; Modern Data; Serialized
(six parts); January - June 1972.

"Scheduled Maintenance of Applications Software;" Lindhorst, W. M.;
Datamation; Pgs. 64-67; May 1973.

"Software Development;" Mills, H. D.; Supplement to Proceedings of 2nd
International Conference on Software Engineering; Pgs. 79-86; ACM/IEEE/
National Bureau of Standards; IEEE Catalog No. 76CH1125-4C; October 1976.

"Software Engineering and Structured Programming;" Wilkes, M. V.; Supplement
to Proceedings of 2nd International Conference on Software Engineering;

Pgs. 132-134; ACM/IEEE/National Bureau of Standards; IEEE Catalog

No. 76CH1125-4C; October 1976.

"Software Engineering;" Boehm, B. W.; IEEE Transaction on Computers;
Vol. C-25, No. 12; Pgs. 1226-1241; December 1976.

"Structured Programming;" Dahl, 0. J., Dijkstra, E. W., and Hoare, C. A. R.;
Academic Press; London and New York; 1972.

T8 e i A =P S P

“Structured Design;" Stevens, W. P., Meyers, G. J.; and Constantine, L. L.;
IBM System Journal, No. 2; 1974.

“Structured Programming Series;" RADC-TR-74-300; Volume VI - Programming b
Support Library Program Specification; USAF.

"Techniques of Program Structure and Design;" Yourdon, E.; Prentice-Hall;
Englewood Cliffs, N. J.; 1975.

"The Elements of Programming Style;" Kreitzberg, C. B., Shneiderman, B.;
Modern Data; Pgs. 40-41; August 1972.

"The Influence of Software Structure on Reliability;" Parnas, D. L.;
Proceedings of the International Conference on Reliable Software; April 1975.

"The Structure of 'The' Multiprogramming System;" Dijkstra, E. W.;
Communications of the ACM, Vol. II, No. 5; Pgs. 341-346, 1968.

“Through the Central 'Multiprocessor' Avionics Enters the Computer Era;"
William, A. 0., 0'Donnell, C.; Astronautics and Aeronautics; July 1970.

"Top-Down, Bottom-Up, and Structured Programming;" McClure, C. L.; IEEE
Transactions on Software Engineering; Pgs. 397-403; December 1975.

"Top Down Programming in Large Systems;" Mills, H. D.; Debugging Techniques
in Large Systems; Rustin, R. (Editor); Pgs. 41-55; Prentice Hall; Englewood
Cliffs, N. J.

o ol e i i

62
(Last Page)

A Sl o R e SIS s - oo b b o i i SRS £ ST

Software Maintenance Guidebook

Reviewer's Name: Reviewer's Organization:

Comments:

Please return to: Hq ESD/MCIT (Stop 36)
Hanscom AFB, MA 01731

63

(FOLD)

Hq ESD/MCIT
Stop 36

Hanscom AFB, MA 01731

64

