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I. INTRODUCTION

For guided missiles targeted against certain classes of targets, underground detonation of the
warhead may be more effective than air burst in achieving a desired level of damage. Also,
underground detonation can reduce the possibility of unacceptable nonmilitary casualties and
collateral damage. The target is assumed to be finite in the sense that the size of the target is
small in relation to the standard deviation of the distribution of miss distances possible. If the
guidance systom is such that no information on the vector miss distance between the weapon and
the finite target is available or can be derived, no target-oriented warhead-detonation logic can
be prescribed. Thus, for this case the warhead-detonation command must be derived from.
environmental information obtained near the target. For example, the fuzing logic for this
application could be to command detonation at a fixed time interval after earth entry. With use
of integrating accelerometers, the fuzing logic could command detonation after a prescribed
travel distance or at a prescribed depth below the surface. None of these techniques define such
{possibly more desirable) detonation points as the point of closest approach (PCA) between
missile and target (for isotropic warheads) or within an accsptable isndamage contour (for
nonisotropic warheads). e

However, if missile guidance parameters with respect to the target are available for the pre-
entry porticn of the trajectory, along with appropriate sensors for measuring trajectory after
earth entry, the problem of fuzing at an app-opriate point defined with respect to the target
becomes deterministic. It is th= purpose of this study to examine the fuzing requirements
analytically, and to derive the necessary relationships and logic for fuzing an earth penetrator
weapon. The weapon is assumed to be deployed against an underground target or against a target
where below-the-surface detonation could result in increased effectiveness or in a reduction in
collateral dumage, while still achieving a desired level of kill. For the purpose of this study we
assume some form of terminal guidance that is target oriented. That is, an estimate of the vector
miss distance E_tween the missile and the designated target is available or can be derived from
data which are also used for terminal guidance. It is also assumed that this information can be
provided for the fuze processor at the time the measurements are made or within a few
milliseconds.

Certain factors affecting the desired performance of the system are assumed either to be

known before faunch and to be stored in the fuze memory, or to be provided to the fuze by a
communications link before earth entry. One such factor affecting the system performance may
be a minimum desired burst depth below the surface, to satisfy some constraints on collateral
damage, that is, damage to possibly nonmilitary facilities near the prescribed target. A second
factor assumed to be known to the fuze is the location of the target with respect to the guidance
aim point. For example, in the case of a target completely below the surface, the guidance miss
vector, for the type of guidance system assumed here, would be measured to some point on the
surface of the earth. The location of the desired target may be at the same earth coordinates
(latitude and longitude) as the guidance aim point, and at a known depth, or it may be offset by a
known distance and direction from the guidance aim point. This information would have to be
made available to the fuze in the form necessary to permit use of the algorithms based on the
intercept geometry logic described below. Another factor assumed to be known to the fuze
beforehand is the information from which the desired burst-point requirements may be
determined and used in the fuze logic. The fuze burst-point logic may also require data from the
fuze sensor to function as desired.

This report will consider several cases, depending on the form' of the underground
trajectory, the type of target, and the form of the available initial data. First the initial
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~ parameters as derived from guidance data are discussed, including the assumptions as to the
form in which they are available and what further parameters can be derived from them. It is
assumed in general that the missile remains underground after impact, and that there are two
k..own depths: a minimum desired burst depth, m, and another depth, d, to the location of the
defined target or to the coordinates of the center of some isovulnerable volume. The time
parameter is defined to be zero on impact, and increasing thereafter. For the purpese of this

analysis, the target is assumed to be at or below the aim point: any other case would require

adding a coordinate translation to the derived relationships.

For all cases considered, a fuzing logic is defined, based on the initial conditions,
underground trajectory, target position, and collateral damage criteria. Two different criteria for
target destruction are assumed. The first is that detonation occurs at the PCA between missile
and target. The second is that detonation occurs within some lethal contour, defined in terms of
warhead directivity, and, if applicable and available, soil characteristics. The effect on the logic
of imperfect data, imperfect measurements, and incomplete information for a deterministic
solution is also studied.

In the analysis that follows, several simplified turgets and underground trajectories are
considered. The intercept geometry is first analyzed for a linear underground path, and then
generalized to a path created by a generalized round acceleration. The target, as a first step, is
considered to be either a point or a line. Each target case is then expanded. The point target is
generalized to an isovulnerable spherical contour; the line target is generalized to an isovulnera-

ble cylindrical contour.

2. INITIAL CONDITIONS

In general, the coordinate system is set up as follows. The origin is on the designated target
for the point target case. The necessary modifications of this choice for linear targets and
isovulnerable spherical and cylindrical contours are noted where relevant. The x, axis is the
surface line from the aim point to the impact point. Fpr this analysis, the surface is considered
flat in a sufficiently large neighborhood of the aim point. The z axis is the surface normal that
passes through the aim point and the target. Next the y, axis is chosen so that x;-¥,-z forms a
mutually perpendicular right-handed triple. In this fashion the x-y, plane defines the surface
plane in a neighborhood of the aim point. Finally, the x, and y, axes, when translated downward
along the z axis to the target origin, become the x and y axes. This construction is diagrammed in

figure 1.

With respect to this system, the necessary parameters for this analysis can be defined more
precisely. The aim point is the point (0,0,d) and the point of imnact is (R,0,d) where R is the miss
distance and d is the depth to the target. The vector miss distance has length R and is directed
from the aim point to the impact point. The further parameters which will be needed for this
analysis are the impact angle with respect to the surface a, the map coordinate system angles o
and v, impact velocity V, deceleration A, and the surface angles € and 6.

2.1 Parameters 0’ and 6

The value of & is required to deiermine whether the impact is early or late. The value of 8 is
needed in the computations of the optimal time for detonation. These two parameters are derived
from the guidance data as follows.

v agi e

e 3. Sl

foy




/l’ RAJECTORY
z

Yo
* AIM POINT R /IMPACT POINT
(0.0.4) 7(n,o.¢) ¢

TARGET

(o.o.o)7/
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Figure 1. Intercept geometry.

The missile is assumed to have sensing mechanisms that can determine the angle, 7. of the
miss distance vectors, 2, with resp.ct to the map coordinate system of the aim point. Angle v is
dofined as the angle measured from north to K counterclockwise, and is assumed to be always
positive. Further, the sensor can detzrmine the angle, o, of the surface component, 3, of the
trajectory with respect to the map coordinate system. Similarly, o is the angle from north to §
counterclockwise: again, @ is always positive. Angle & is defined to be the smaller angle
between R and S. '

Figure 2 shows one possible relationship between o, v, and & (see app A for diagrams
illustrating all such pessible relations). Upon examination of these diagrams, the parameter &' is
calculated as follows. .

¥0s|oc-9y|sn, then & =|o~- 9yl or | 4}
ifr<|o~9y|=2, then & =2z~ |oc- 9yl S - S —

Inallcases 0 < 8 = 7.

Next, the angle 0 is defined from & by

0=0 if 0@ su/2 or 3)
O=w—-0 if 72<@ s, “)
N
AIM POINT
- g _ ’
. :
TMPACT
POINT ’o’ : \ '

Figur= 2. Initial angle parameters. ; /
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2.2 Early and Late Impacts

To define criteria for early and late impacts, the surface projection of the pre-entry
trajectory is first assumed to be lincar. Let L be the line in the surfac» plane through the aim
point and normal to the surface trajectory. The impact is defined to be carly if the surface
trajectory does not cross L before impact. For example, the impact point of path 1 in figure 3 is
carly. The impact is defined to be late if the surface trajectory has crossed L. The impact point of
path 2 in figure 3, for example, is late. If the impact point is on L, the missile impact is defined as
late also. :

If the surface projection of the pre-entry trajectory is not rectilinear, the tangent line to the
curve at the point of impact replaces the linear surface trajectory above. Now, L is the normal
through the aim point to the tangent at the impact point. Early and late impacts are then defined
as for a linear surface trajectory. This situation is illustrated in figure 4 for the case when the

impact is late.

PATH 1

(v)

® '}MM POINT

»~ IMPACT POINT

P . ’
7 PATH2 S
: “IMPACT POINT

AIM POINT

Figure 3. lmpac\t in surface plane: (a) early versus (b) late.

IMPACT POINT

}Am POINT
n

Figure 4. Curved trajectory impact type.
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2.3 Criteria for Impact Form

W8 < g/2, the impact is late: 5
if ' > 7/, the impact is carly. _ 5)

The details of the derivation of 2quations (5) and (6) are given in appendix A, Biiefly, a set of
diagrams similar to figure 2 are analyzed for impact type and the corresponding form of #.

2.4 Derivation of Miss i)islance

In the calculation of the miss distance, R, i is assumed that the impact angle, «. between
the pre-entry tragectory and the surface. as well as the angles 4, 7. and « are known, Then either
h. the current height, or a, the distance along the irajectory to the impact point at any particular
time before entry, is required to determine R, Also required is 8. the angle between the
trajectory and the line to the aim point (see fig. 5). These parameters are determined at some pre-
impact time. But. since determination of 2 also requires information as to whether in-pact is
early or late, the calculation of R must be done afier impact. The two possibilities are depisted in
figures 5 and 6. The segment fis constructed to be normal to the x axis. From these figures, the
parameters a or i satisfy

¢ = hfsin a. (N
In both cases, the lengths b, f. and g are given by
b=acosa R)
J=bsiud W)
g =bhcos b (10)
A
7
7
A
TRAJECTORY -»
-,
V'
IMPACT
POINT
- AIM POINT

y
Figure 5. Late impact gcometry, 66 = ¢,
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TRAJECTORY—;,/
/

AIM POINT

IMPACT POINT

Figure 6. Early impact geometry, 8 = 7 = ',

2.4.1 Derivation for Early Impact

Given
a* = b* + I3,

= h+ et
b =g+ f
e =+ (R+g?* and
R? = g* + ¢* - 2ac cos B.
From equations (12) and (14), 7 ' '
=+ et=h+ 2+ g*+2Rg + R
Using equations (11) and (13) to simplify,
ct =g+ 2Rg + R?
Substituting equation (17) into equation (15) gives
R*= g+ (a* + 2Rg + R*) — 2uccos B, and
accos 8 = (a* + Rg).
By equation (17),
| (@+2Rg+ RV =¢ = _____a’ * Re .
acos B
After both sides are squared, this simplifies to a quadratic in R,
(a®cos® B — gY)R? - (2ga*sin? B)R — a*sin? g = 0.

10
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Solving this quadratic for R and simplifying,
ga*sin? B . atsin Bcos B Va* — g*

R cos’B - &) (d*cos’B - &)

2.4.2 Derivation for Late Impact
G.ven equations (an through (13) as in the early case.

R=g+k

et =f2+ k% and

R? = qa* + ¢* = 2accos 3.
Then from equations (12), (24), and (23), : ‘

=R+ =RR+2+2=P+2+R-g’
Simplifying bv equations (11) and (13), '
=a*+ R* - 2Rg.
Eliminating «* in equation (25),
R* = a® + (a® + R? — 2Rg) - 2ac cos B, and
accos B = a* — Rg.
Squaring and using equation (27),
r’=a’-_—2Rg+R’=£g;—_§£-)-z-.
. Aa*cos* B
Rewriting as a quadratic in R,
(a’cos?B — gH)R? + 24%gsin B R — a'sin? B = 0.
Solving for R as before and simplifying,
a! nip a! :
R= —[(a’ios:l;; —ﬁ?’; ® (a® :::;zﬁ;‘lsfz) at - gz]
Combining the e2 1y and late cases,

. a*sin B(gsin 8 + cos B Vat = g

- (@®*cos’B — &%)

(23)
(24)
25) -
(26)

2%

(23)
(29

30

an

(32)

(33)

where the (+) value of the first () sign corresponds to an early impact and the (-) value to a

late impact.

From figures 5 and 6,
g = bcos 9,
b=acosa.
So in terms of a, 8, anu g,
R= taK[L: cos B VM.

34




where ¢ is known or ¢ = h/sin « if /1 is known,
K = sin Bi(cos* B - cos®a cos? 6),
L = ¢os a vos Osin 8, and
M = { - cos?a cos? 6.
The initial data from the guidance sensors and the necessary parameters subsequently
caleulated are summarized as follows.
1. Necessary logic inputs
a impact angle

oy map system angles

1 4 impact velocity

A deceleration alter enmiry
. . 2) given

R miss dlstanw:( 'e

(b) calculated from equation (34)

Further parameter. to be caiculated

18

@, the smaller positive angle between Rand §
(@) @ =|o—-vy it jo-vy|==x
b & =2r—lo-yl if 2r=lo-yl>n
) 0=@ =7

8, the acute angle defined by
@ 6=¢ if 6 =zu2 _
b)b=qg-0 if 726 =g

3. POINT TARGET

Using the prc-entry data, the information necessary to define the fuzing requirements can be”
derived. A minimum burst depth, m, and the values for a, 0, ¥, o, R, d, and V are assumed to be
known,

3.1 Case I: Linear Undergrovnd Path to Target

For a linear underground path to target, a linear path both above and below ground and a
constant deceleration are assumed (see¢ fig. 7). The parametric equations of the position of the
missile as a function of time are

A
x()=x + Vot + —5’- 2, (35)
yo) =y, + Vyr + %"— £, and (36)
A, ,
() =z + Vot + 3 ¢, (37)
12
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R TR e = 2R e

where A.. A,. A; are the components of the deceleration A, where ¢ is assumed to be zero at

time of impact, where x, = R, v, = 0, and 2, = d, and where

= Vcosacos 8,

< <

= Vcosasin 6, and
V, = Vsina,
and similarly,
+ = A cos a cos 8,
A, =Acosasin @, and

;= Asina (where A <0).

Yo

|

7

/

AIM POINT i A
(0.0.d) (a.o.d)7 IMPACT
POINT

Xo

(38a)
(38b)
(38¢)

(392)
(39b)
(3%)

Figure 7. Linear underground trajectory to isovulnerable spherical volume about point target.

Next the specific parametrizations are defined considering the direction of change in each of
the components of the missile position. Since z{(¢) is always a decreasing function,

z()=d - Vsina ¢ +%sinat’.

The fuaction y(r) is of the form:

A .
¥{t) = =V cos a sin 81 * 3 cos a sin or,

13

(40)

“n

e e o s o




where the upper sign pertains to v increasing, and the lower to v decreasing. The function x(1) is
of the form

Xty = R * gcm weos 0 F Veos a cos i, (42)
where the upper sign pertains to carly impact, and the lower to late impact. As the missile moves
along its underground trajectory. the data processor must determine when the missile will be
closast to the target. Further. the time to reach the minimum burst depth must be determined.
Fer both quantities som= form of distance function must be used. The distance from the target
erigin to a given point on the subsurface trajectory is given by plr) = Va2() + y*(r) + 2*1). To
minintize p(¢) it is sufficient to minimize p(1), by setting the time derivative equal to zero. The
time at which the missile is at the PCA is defined as 7. Computing a3(r), ¥*(1), and z*(1) from
equations (40) through (42) gives the expression for p*(f) in equation (43) below. Consequently,
the expression for p*(£) is not affected by the possible increase or decrease in either the x or v
component, However, the carly and late impact cases do influence the expression. The upper
signs pertain to an carly impact situation: the lower, to a late impact situation. This sign
convention will be followed throughout the discussion unless otherwise noted.

A? ,
P = T fHAVE + (V2 F RAcos 9cos a — Ad sinq)? 43)
+(F2VRcos Ucos a — 2Vdsina)t + R* + d2
dp? _
Then o Oimplies
0=A27 + 3AVE + 2V T RA cos Bcos a = Ad sin a)t ' (44)

+ (=2Vdsina ¥ 2VR cos « cos 6).
Dividing A%, substituting x — V/A for 7, and solving for x in equation (44) gives

x =4
or

!
X=* 1 V'V + 24(£R cos a cos 0+ dsin ). (45)

Then r must be chosen from one of these values:

|
t, =-V/A+ 1 VVE 4+ 2A(£R cos 0 cos ar + d sin a). (45)
t, = -V/A. or (47)
|
t, = —V/A -~ I VVE+ 2A(2 R cos 0¢os a + d sin ). (48)

For cach of these three values, the function p*(r) has an extreme point. The value for 1,
represents the time to reach the first local minimum of p*(r). Neéxt, 1, corresponds to the time
required for the missile to reach its maximum penctration and stop. The value of t; represents
the improbable situation of the missile having negative velocity, retracing the path out of the
carth, and passing through the local minimum again, To determine when to detonate the warhead
so that all necessary conditions are satisfied, the time, 7, to reach the closest achievable point to
the target must first be calculated. Then the minimum burst-depth conditions must be
incorporated to finally arrive at the desired detonation time.

14
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In determining 7, several possible situations arise. First, the PCA may oe reached at or
above the surface. In this case 7 < 0. Once the missile is berieath the surface, it may reach the
PCA before reaching its maximum penetration. In this case r = 7., On the other hand. the missile
might stop at its maximum depth before achicving its PCA. In this case 7 = f,. To determine
which of these two realistic times, £, or t,, is the time to reach the closest achlcvable point, two
critical miss distances, R, and R,, are necessary.

The parameters a, 6, d, A, and V determine a family of parallel trajectories. The miss
distance determines a unique member of a family. A trajectory with miss distance R, will be at
the PCA upon impact. For the PCA to be on the surface, 1, = 0. That is,

1 4
—;-:—%\fV“tZACOSaR,+2Adsina. 49)
Squaring and simplifying,
0= *2AR, cosacos 8 + 2Adsina. (50)
Thus, '
.='7' dsma i (51)
cos a cos @

On the other hand, a trajectory with miss distance R, will reach the PCA at the maximum
penetration depth. Hence R, will de,;end upon the maximum depth as well as the initial
parameters. For the PCA to be at the maximum depth, ¢, = ¢,. Therefore, the radical in equation
(46) must be zero.

V® £ 2AR, cos a cos 0 + 2Adsina = 0 . (52)

Solving for R,,
[V’ + 2Ad sin o.]

2A cos a cos 8. 63)

R, =%

A particular maxin.um penetration depth, M, forces R, = 0. From figure 8,

\ ¥=sina ='2, (54)

where J is as shown in figure 8. So M = d sin .
! V2
The constraint R, = 0 implies sina = — 3Ad = from equation (52). So

1

=
A

Howeve ’ referring to figure 9, for an early impact, any maximum penetration, u, & < M, is
equivalent to g = Oand p > M is equivalent to R, > 0. Referring to figure 10, for a late impact,

(55)

p = M is equivalent to R, > 0, and u = M is equivalent to R, = 0. Thus, M is not necesszry for
the analysis. Only the sign of R, is pertinent to the analysis.

Then, refemng to figure 9, for an early impact, the processor calculates the value of R,
using equation (53) with the upper signs. If R, = 0, then all early impucts will reach maximum
penetration before the PCA. Thus, 7 = 1,. If the miss distance parameter R satisfies 0 < R < R,,

15
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Figure 8. Maximum penetration depth at which R, = 0.

the missile will reach the PCA before stopping. Then 7 = ¢,. If R = R,, the PCA is below the

maximum penetration depth. Hence, 7 = 1,

Referring to figure 10 for a late impact, the data processor computes the values of R, and R,
using equations (51) and (53) with the lower signs. Three cases arise when R, > 0. If0 < R < R;,
7 = t,; the missile reaches its maximum depth before the PCA. If R, = R < R,, the missile

reaches the PCA above the maximum depth, so i,

= 7. If R = R, the PCA is reached before

. TRAJECTORIES
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Figure 9. Critical miss distances for rarly impacts
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Figure 10. Critical miss distances for late impacts with various maximum penetration depths.

impact and 7 < 0. Two cases occur for R, = 0. If R > R, the PCA is again aboveground. But if
0 < R < R,, the PCA is reached below the surface but above the maximum depth. In this case
T = '| .

To illt..ae this behavior, dependent on two critical miss distances, thz HP9810 was
programmed to plot p(1). In figure 11, p*(¢) is plotted for various miss distances (noted above the
curves) using the following values: d =30.5m, a = € =7/3, A = ~3.6 X 10*m/s®and V = 610
m/s. Assuming an early impact, the critical miss distance R, = 8.95 m.
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There is a minimum desired burst depth constraint to be considered also. The time, 7, to v
reach this depth, m, is the solution to : , 7
A
2(7')=m=-?sina7’—VsinaT+d. (56)
Solving for T gives
Vv VVisinla + 2A({d ~ m)sina
T=-—= - . . $7
A (—Asina) ;

The time, T, must be the smaller positive value since the larger corresponds to a negative missile
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P,

velocity. Assuming that d > m. that is, that the target is below the minimum depth, then
RAsina)(d -m) <0 - (58)
since A < 0. Therefore, V sin a is greater than the radical. So
Vsina + VVisinfa + 2A(d ~ m)sina

T=- . 59
Asina -9

The minimum burst-depth criterion forces the logic (see fig. 12) to state that detonation occurs at
7 when 7 = T. Otherwise dectonation occurs at 7.,

START
[TNPUT l
y.u.a.m Al COMRUTE
v.d. R ¢.0

COMPUTE |yeg [[€OMPUTE |
Ry. Ry T. R2.T. 44
t1. 12 ' MaX

T 2
DETONATE | MO 7 > ;5\ YES _| DETONATE
ATT ; AT T
1 - J

( STOP ’

Figure 12. Logic diagram for linear underground path to point target.
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3.2 Case Il; Linear Underground Path to Isovulncrable Sphere

In this case, we consider a lir2ar underground trajectory where a detonation is desired at the
PCA to an isovulnerable sphere. The target is assumed to be inside an isovulnerable sphere of
known radius r. The depth to the center of the sphere is now d. The valuesof A, V, R, a, 6, v, o,
and d are known. The procedure is essentially the same as in Case I with the new objective being
detonation as close as possible to the isovulnerable sphere. The distance function p(f) and the
position functions x(¢), ¥(f), and z{¢) now are with respect to the center of the sphere. In addition
to the logic of Case I, the fuze can detonate at any time  for which p(t) =< r, The times 7, and 7,
are the times when p{#) = r, that is, when the missile pierces the isovulnerable sphere. These
values are the two real minimal positive roots of p*(f) = 2 = 0. But the solution of the fourth-
degree equation in time is quite involved. The procedure is outlined in appendix B and can be
programmed with impact parameters, if so desired. The result is a time interval [7,., T;]in which
to detonate. A second method is for the fuze data processor to continually compute p(f) and
detonate shortly after the time T,, at which p(7}) = r.

However, for both Cases I and 11, a third method for finding the PCA is to continuously
compute and compare siccessive values of p(f). When the p(f) values stop decreasing and start
increasing, the missile is at a PCA. If the missile is below the minimum burst depth, m,
detonation can occur at this time. But there are two problems: (1) how many values arz enough
to ascertain that p(r) has begun to increase, ruling out random error fluctuations, and (2) how to
proceed if p(t) is initially increasing. The former problem requires experimental data before an
answer can be made. The latter problem could occur if « is so small that the missile reaches the
PCA before the data processor can compute 7 and 7 This difficulty could be avoided by
providing an additional condition tv use the third method if p(f) is initially decreasing. If not,
detonation should occur at 7.

The following is a summary of the logic for a linear underground path to a point target.

1. Input initial parameters m, y, o, A, V, a, and R. If R will not be available, input a or 4 and
calculate R. ‘

2. Compute
(a) ¢, 0,
(b) form of impact,
(c) appropriate critical mis- distances, and
A 7,4,

3. Detonate
(@ att=7rifr>T,or
Matet=Tifr=<T.
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4. First alternative to PCA fuzing
() Proceed as in sieps 1 through 2(b).
(b) Monitor pt.).
(¢) When p(r) reaches a local minimum, detonate, if =(¢) = m.
() If at this minimum z(1) = m. delay detonation until z(¢) = m.

3

Scecond alternative, for fethal sphere constderations
(a) Monitor pi1) until pir) = r.
(b) L2tonate when z(1) = it

3.3 Case III: Nonlinear Underground Path

In this case, the initially linear trajectory after entry becomes a curve because of missile
accelerations. As in the lincar underground trajectory cases, it is assumed that the values of a, v,
o, 8, R, V., m,and d ar¢ knovn before entry. If the target is within an isovulnerable sphere, the
depth, d, becomes he depth to the center of the sphiere. By hypothesis, the missile has
accelerometers to measure the components of the acceleration A with respect to the .arget
oricnted coordinate system  For this discussion it will also be assumed that the missile remains
underground after impact. Figure 13 illustrates the geometry for this case. The parametric
cquations of position wirth respect to time are »

Figure 13.

t "
x(t) = f f A(S)dsdu ¥ Vot + x,, (60)
(1] 0
t n
y) = f f As)ds du = Vit + y,,8nd (61)
[1] [1]
4 u
) = f f A ) dsdu+ Vi + 2z, 62)
0 [1]
z
4 TR JECTORY—

AIM POINT
{0.0.d)

£d] xo
*‘——RW7IMPACT POINT

Nonlinear underground trajectory to point target at center of isovulnerable sphere.
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where (%, ¥, %) = (R. 0, d), and the velocity components are

V, = Vcosacos 8,
V, = Vsin 0cos «, and
V,=Vsina.

Using 2(¢) for depth, the missile will reach minimum burst depth, m, when

T pru
m=2zT) = f f A,(s)dsdu - (Vsina) T + d. (63)
0 0

The data processor must compute this function continuously to determine when the missile is
below the minimum depth.

Next, the distance between a point on the trajectory and the target is given by

p(0) = Vx3(1) + y2(1) + 23(1). 64)

After substitution this becomes

p() = [([ [ A (s)dsdu = Vcoé a cos 0t + R)z

4

* (]: J;. A(s)ds du ¥ Vcos a sin 0:)
+([";.A,(s)dsdu-— Vsinar+d):Jm, 65)

A first approach to the problem of minimizing p(f) is to assume that the path has only one
minimum. Then the data processor should calculate p(r) values continually, as in the linear case,
to determine when p(f) is a minimum. If the missile is below the minimum depth at this point,
then the warhead should be detonated. Otherwise, detonation should occur as soon as z(r) = m.

- However, the trajectory may have several local minima. If t. e above procedure is used, the

resultant minimum may not be the closest point achievable. One aliernative would be to detonate
at the first such minimum once below the minimum burst depth. Another alternative, which is
useful if there is a isovulnerable sphere of known radius, 7, would be to detonate when p(f) < r.
A third method, a combination of the above, would be to detonate when p(f) = r or when the
path reaches a local minimum, whichever comes first after passing the minimum depth.

4. LINEAR TARGET WITH CYLINDRICAL ISOVULNERABLE VOLUME

As in the previous analysis, it is assumed that the values of a, 8, R, ¥, ¢, V, and m are
known. If the target is a line, the analysis considers a cylindrical isovulnerable contour of length
! and radius r, with hemispheres of radius 7 on the ends of the cylinder. Such a configuration is
shown in figure 14. The total axial length is / + 2r. The depth to the top of this volume is d. The
origin of the coordinate system is at the bottom of the volume so that the aim point on the
surface has coordinates (0, 0, D), where D = 2r + | + d. The objective is to detonate at the PCA
to this volume. Assuming the missilc is below the minimum depth, there are three possible points
on the trajectory for detonation, depending on the depth of the missile. These possible
detonation points are
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Figure 14. Lincar underground trajectory to isovulnerabie volume about linear target.

() the PCAto( 0.1+ »n,

(2) the PCA to the z-axis if the z coordinate of the missile position satisfies r <z </{ + r,
and

(3) the PCA to (0, 0, n if the 2z coordinate of position is less than r.

For simplicity, it is assumed that detonation is to occur-at the first such PCA reached below the
minimum depth.

The parameterizations of the position of the missile are similar to those for the point target.
First, assume the underground path is linear. Then,

x(1) is given by equation (42),
¥(?) is given by equation (41), and (66)

-A
2(0) = Tsin at? = Vsinat + D.
Again, the time to reach the .ninimum burst depth, 7, is obtained by solving z(7) = m, Thus

r —V+ VVisinta + 2A(D — m)sina
2 .

67
Asina - (67
To find the time to reach each of the three possible PCA’s, three distance functions are required.
P(2) is defined to be the distance from any point (x, y. z) to (0, 0, I + 1. M(1) is defined as the
distance from any point to the portion of the z-axis between (0, 0, / + r) and (0, 0, r), B(1) is
defined as the distance from any point to the point (0, 0, r),
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The time to reach the point on the trajectory-closest to (0, 0, r + 1), 7, , is a solution to

d
;17 Pr) =0,

where
PAt) = x*(0) + yX0) + [2() - (r + DP.
After substituting for x(¢), y(#), z(t), and simplifying,
Pt) = '—:—t‘ + AVP + (V23 ARcos fcos a — A(d + r)sin a)1?
+ 2V(¥Rcosacos @ — (d+ Nsina)t + R* + (d + rP.

(68)

(68)

(69)

After setting the derivative equal to zero, eguation (69) is in the same form as equation (44). So

its solution is given by

_%/-qp VVE+24[d+ rsina Réos 6cos a]

=
or
, = 14
1 A »
The time to reach the point on the path closest to the z axis, 7, is a solution to

d
— M3(t) = 0,
dt @

where M%(t) = x*(7) + y*(1). That is,
4
M1 = %—cos’at‘ + AV(cos?a)® + (V*cos®a ¥ RA cos a cos §)1?

F 2VR(cos a cos O)t + R®.

__After setting the derivative equal to zero and simplifying,

V* _ Rcos 0] _2VRcos 0
-—_F -+ R
A* Acosa A cos a

The same solution technique as for equation'(44) gives the solntions:

|
= +_’
0=0r 3At+2

: v 1 Rcos @
=-7 =—2asdfyragReosO
T arorn A A cosa

(70)

@

(72)

(73)

The time to reach the point on the trajectory closest to the point (0, 0, r), 73, is a solution

to ‘%B’(t) = (0, where »
B(0) = 22(0) + y2(r) + (2(¢) = r.

In teims of initial parameters B? becomes
AS
B 1) = T“ + AVE + (V* T RAcos a cos 8 — A(D ~ r)sin a)f?

+ 2V(—Dsina ¥ Rcos a cos 6)¢t + D + R2,

24

(74)




W ot e

This expression for B*(f) is of the same form as equation (44) where d is (D — r) here. The
solutions are given by

fV‘+"A(D-r)s.na: Rmsacosll)

)ul-—

Ty =~

>v<

or

14

T - z . {75)

The objective is to detonate at the point of closest approach that the missile can achieve
below the surface. The times 7,. 7,, and 7, are the times to the PCA’s along an infinitely long
trajectory. They w''l always occur in this order. However, the missile may rexcn these points
before impact. Further, the missile may aot reach any of these points at all if they are below the
maximum attainable depth. Again t+ — —V/A is the umc at which the missile reaches the
maximum depth. As ir the poin. target case, there are certain critical miss distance values
necessary to determine which of these times is optimal for detonation.

K, and R, zre the miss distances for which the PCA’s to (0,0,/+7) and to (0.0.r) respectively,
oecur at the maximum penetration depth. R, and R, are the miss distances for which th: PCA’s
to (0,0./+r and (0,0,r}, respactively, cccur upon impact. These four critical miss distances are
computed i the same way as their counterparts of the point target case. Thus,

_[V?+24(D - ) sin a] (76)
L 2Acosacos @

3
i
pY

|
o
¥ ‘.‘L.’M.] (17
L cos 0cus «a

FV2 + 2A(d+ r) Sln(v

=F ——— 78
R, M 24cos Bcosa J and (78)
-

(d + r)sin (1] (79)

R, =< .
! [ cos Acos a.

3

if the impact is early, R, and R, will both be negativc. These critical miss distances also
satisfy .
R, 2 R, (otherwise d > D which contradicts the hypothesis),

R, = R, (otherwise V2 < 0), and
R, > Ry (otherwise V2 < 0).

Figures 15. 16, and 17 diagram the various relationships for an eariy impact. The procedure to
determine ti.c detonation time for an early impact is surnmarized as follows.

1. If R, =0, then R > R, for any early impact and the missile stops before reaching a trajectory
PCA. Therefore, detonation occurs at «,.
2. IfR, >0,R, >0, and R satisfies
(a) 0 < R < R,, the missile reaches all trajectory PCA's in order, Detonatxon occurs at the
first 7 = T. If there is no 7 = T, detonation occurs at T.
(b) R, < R < R,, the missile reaches the trajectory PCA to the top of the target first and
then to the middle of the target. Detonation occurs at whichever 7 = T. Otherwise
detonation occurs at #,.
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Figure 18,

(¢) R, = R, the missile passes through all the PCA's of the path on or before impact.

Dectonation occurs at T,

3. If R, > 0. R, =0.and R satisfies

(1) 0 < R < R,, the missile reaches the PCA with respect to the top first and to the = axis
last. Detonation occurs at whichever 7 = T, Otherwise detonation occurs at ¢,.

(b) R, = R, the missile reaches its maximum penetration depth before any trajectory PCA.

Detonation occurs at ¢,

MAXIMUM
PENETRATION

Early impact PCA relationships when R, = 0.
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Figure 16,

Early impact PCA relationships when R, > 0and R, > 0.
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Figure 17. Early impact PCA relationships when R, > 0and R, = 0,

On the other hand, if the missile is late, R, and R, are both positive. Further, these miss
distances satisfy

R, = R, (otherwise d > D, contradicting the hypothesis)
R, > R, (otherwise V* < 0), and
R; = R, (ctherwise V? < ().

Figures 18, 19, and 20 diagram the various relationships for a late impact. The procedure to “ 7/
determine the detonation time for a late impact is summarized as follows.

1. If R, = 0and R satisfies

(@ 0 < R < R,, the missile reaches all the trajectory PCA's. Detonation occurs at
whichever = T occurs first, Otherwise detonation cccurs at T.

(b) R, = R < R,, the missile reaches the PCA to the top before impact. After impact it
reaches the PCA to the z axis first and to the bottom last. Detonation occurs at T, OF T3,
whichever is greater than T. Otherwise detonation occurs at T, \

(c) R, <R, all the PCA's of the path occur before impact. Detonation occurs at T,

2. IfR,>0,R, <0,and R satisfies !

(a) R < R,, the missile reaches first the PCA to the top, then to the z axis. Detonation :
occurs at 7, or 7,, whichever is greater than 7. If neither is greater than T, detonation |
occurs at /, . ¢

(b) R, = R <R,, the PCA to the top occurs before impact. After entry, only the PCA to the i
z axis occurs befcre the missile stops. Detonation occurs at n if , =2 T. If not, !
detonation occurs at 1,

(¢) R, = R =< R,, the missilc after entry reaches the PCA to the z axis, followed by the PCA
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to the bottom. Detonation occurs at 7, or 7;, whichever is greater than T. Otherwise,

detonation occurs at £,.
(d) R; <R, all the PCA's of the path occur before impact. Hence detonation occurs at T.

3. IfR, >0, R, >0, and R satisfies
(a) 0 < R = R,, the missile reaches its maximum depth before any PCA. Detonation cccurs

then at 1. )
(b) R, s R = R,, the situation is the same as 2(a) for a late impact. \

At this point, this case becomes identical to (2). Steps 3(c), (d), and (e) correspomi to 2(5). (<),
and (d). The complete logic flow chart for a linear path to a linear target is shown in figure 2!

With all other assumptions holding, now the underground path is taken to be some curve
determined by the independent interaction of nonuniform component accelerations in the t‘grget
coordinate system as shown in figure 22. Then the x(¢), y(f), and z(¢) functions are found by
integration of these accelerations. So x(r), y(¢), and z(¢) are as defined in equations (60), (61),|and
(62), where

V,=Vcosacos 6, and x =R,
V, = Vcosa sin 6, ¥ =0,
V. = Vsina, =D=1+2r+d.

To determine th-: depth of the missile, the data processor must evaiuate z(r). The minimum depth
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is attained when

T pw
AN -m= f f AS)dsdu = Visina) T+ D —m=0. (80)
0 0
The distance functions M2(1), PXt), and B%(1) are defined as before. but they are now expressed
with the new forms of x(¢), v(t), and z(1). For example,

] L] 2
M(t) = U f AL (s) ds du ¥ V(cos a cos O)r + R]
(L] '

t rn 2
+ [j f A, (s) ds du F V(cos « sin 0)1] . (81)
¢ "0

There are two possible methods of determining the point for detonation but both entail
monitoring the distance functions and z(t), as outlined below.

1. Method A.
(@) If PA(1), M%(1), and B%(t) are all increasing initially, detonate at 7.
(b) If r + 1 < z(t) < mand M?(t) is increasing, detonate when P%(r) = P or PXr) changes from
a decreasing to an increasing function, whichever occurs first below the minimum depth.
(¢) If r=z(1) = i + r, detonate when M?(1) = r* or when M?(r) changes from a decreasiug to
an increasing function, whichever occurs first below the minimum depth. '

Yo
AIM POINT /

0
(0.0, 2rt+i+d) / IMPACT POINT
/ (R,0.2r+i+d)

-

/
/
713 /
7 nyd
3/
TARGET— v
T
l— 'r y
—7/
(000) x

Figure 22. Nonlinear underground trajectory to isovulnerable volumc-about linear target.

31




(d) If 2(¢) < r, detonate when B*(1) <  or when B*(t) changes from a decreasing to an
increasing function, whichever occurs first below the minimum depth.
(e) Otherwise detonate when (1) = m.
Mecthod B.
(a) If M2(1). B:(t), and P2(¢) are all initially increasing, detonate at T. :
(b) If one of these three distance functions is initially decreasing, detonate when that
function starts increasing, provided 2(1) = m.
(c) If more than one of these distance functions is decreasmg initially, detonate once below
the minimum depth at the first time for a function to change from decreasing to increasing.

[ad

5. CONCLUSIONS

The assumed objective of the fuzing algorithm is to detonate the warhead at the closest
achievable point to the target when beneath the minimum burst depth. In the analysis it is
assumed that the missile remains underground after entry. In most of the discussion all the
‘necessary parameters are assumed to be known precisely. Terms that appear to be undefined as
a parameter approaches zero are well defined if they are expanded as a series. The fuze
algorithm results obtained for the assumption of only a known distribution of miss distance are
briefly discussed in appendix B.

The general logic for the fuze in all cases is

(a) receive the impact data (a. v, o, V, A, R, and d),

(b) determine which distance functions are appropriate,

(¢) compute and choose the applicable time 7 to reach a PCA,
(d) compute the time, T, to reach minimum depth,

(e) compare the values of T and 7, and then

(D detonate at whichever time is the greater.

The logic for the linear path to a target can be analytically calculated for a deterministic answer.
For the nonlinear case, the fuze must repetitively calculate various distance functions,
comparing successive values with previous values to determine when the missile reaches a PCA
or the minimum depth, or when the missilc pierces the lethal volume.

For a complete model, much more must be incorporated into it. The fuzing logic should

- include atlowances for (1) the prediction of a subsurface path from known soil characteristics, (2)

a trajectory that oscillates above and below the ground, (3) nonsymmetric targets, and (4)

inaccurate impact data. Further, the fuzing program must be flexible enough to be applicable to
any form of target under the varied conditions of impact, soil, and data availability.
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APPENDIX A
DIAGRAMS OF PARAMETER ANGLE RELATIONSHIPS

In the computations for the fuzing logic. the surface plane angle 8 is required. Upon impact,
though, only available are_the map ccordinate angles y. measured counte.clockwise from north
to vector miss distance R, and o, measured counterclockwise from north to S, the surface
component of the trajectory. To formulate an expression for 8 using y and 0. as intermediate
parameter & is required. The angle @ is defined to be the smaller angle between R and S.
Further, ¢ determines whether the impact is early or late.

Figure A-l(a) through (x) represents the surface map coordinate system at the point of
impact. In each diagram a possible location of the aim point is plotted together with a vector
representing a possible surface component of the trajectory. The map angles v and o are shown,
as is the desired parameter &. Hence, figure A-1(a) through (x) represents all possible relations
between a, ¥, and 6. In each section of this illustration, & is obtained numerically in one of two

ways.
IfO0s|o-y|=<m then & =|oc-1v]|
fr<|o-y|s2m then & =27r-|o-1|
In all cases, 0 < ¢ < 1.

Each of these fighres, when analyzed as to the type of impact, early or late, yields criteria
dependent on €' for the type of impact. The results are shown in tables A-1 and A-II.

TABLE A-1
Dependence of Impact Form on & when S and R are in Nonadjacent Quadrants
<|r <
- Figure A-1  Early/Late 1= (= Figure A-1  Early/Late = & 1= T
> |2 L
a L = j L =
b E > k L =
c L = 1 L =
d E > m-t See table A-l1
e L = u E >
f E > v E >
g L = w E >
h E > X E >
i L =
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TABLE A-ll :
Dependence of Impact Form on € when § and R are in Adjacent Quadraats » ~
< , <
Y AP, Early/Late &\= T S, AP, Early/Late @&1%= Z
> |2 > 2
0 0 L = 2 3 L <
1 L < ' 4 L <
2 L <
3 L < 3 0 - E >
4 L < 1 E >
2 E >
1 0 E > 3 L =
I L = 4 L <
2 L <
3 L < 4 0 E >
4 L < l E >
. 2 E >
2 0 E > 3 E >
i E bR 4 L =
2 L =
Figure A-2, a composite_generalization of figure A-1(m) through (t), shows the possible N

relationships between S and R when in acjacent quadrants. R, is the vector miss distance from
the ith aim point, AP, to the impact point. S, is the surface component of the ith trajectory. Any ‘
relationship shown in figure A-1{m) through (t) is represented by a pair (S;, R)) for some (. j} pair N
where i,j=10,1,2,3, 4.
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Figure A-2.

Relations of R and S when in adjacent quadrants.
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APPENDIX B
CALCULATION OF EXPECTATION FOR MISS DISTANCE

If the miss distance R is 1not known precisely, the values for R are assumed to be Rayleigh
dictributed with standard deviation o and distribution function F(R) given by

R 2y 2A 3
FR) = et (B-1)

The analysis seeks the time 1,, to reach the point of closest abproach. Since 1, depends on R.if R
is not known precisely, the expected value of R, E(R). is used instead to calculate f,. Using the
variables V for the impact velocity, d for the depth to the target, A for the acceleration, a for the
impact angle, and # for the surface plane angle,
’ - V l £ . ) . .
E(R) = vy + -/-‘-j [V? + 2A(xRcos Bcos a + dsina)'’* F(R) dR, (B-2)
0 ' )

where (for = and = signs) the upger sign corresponds to an early impact and the lower to a late
impact. Let x = R and consider the integral

x X r 4
f VV? = 2xAcos a cos 6 + 2Ad sina [;; e"J’”"] dx. (B-3)
(]

The data processor can estimate this integral by numerical methods. An alternative is to estimate
(B-3) by '

g _x_ -2t | | .
fo 1% =€ dx. (B-4)

Since the order of magnitude of V?is 10°, while the other terms in the radicand contribute 10%,
the radical is approximated by V. But

* Vx ~ 3ot = .
j; pr ¢ dx=V, ' (B-5)

-V Vv .
So E(R) is approximately v + 1= 0. The other times computed for the various cases all have

this form. Therefore the expectation of each time will be zero, suggesting that this is too simple

an approximation to equation (B-3). Numerical approximation, say by Simpson's Rule, appears
to be a better method. '
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APPENDIX C
SOLUTION OF A FOURTH-DEGREE EQUATION

For a lincar underground path to a lethal sphere of radius r, the object is to ascertain
when the missile is within the lethal sphere. Heace the times, f, for which p*(1) = P are
necessary where pte) is the distance to the center of the sphere as a function of time. To find
such values of 7, the equation pi) ~ /# = 0 must be solved for t. Using the variables V for
impact velocity, d for depth to the target. A for acceleration, « for impact angle, and 6 for the
surtace plane angle, p*(7) = 1 = 0 becomes as follows,

0=q+ [-_1_‘_’],;‘ . 4[§_ - R cos #cos o * dsin u]’,_,
A A A

v 4 .
s X[ e (Rcos fcos a + dsin u)] + e (R*+ & — r), (C-1)
Az
where (for = and = signs) the upper sign corresponds to an carly impact. and the lower to a late
impact. This cquation then is of the form
O=r+a*+ b2+ ct+f {C-2)

where a. b ¢ and fare arbitrary constants. To solve this equation, first the following cubic
equation is solved

vi— byt +lac — Ay — &*F + 4bf - * =0 where  a. b. e, fare as in equation (C-2)  (C-3)

To solve (C-4), let

p=-h
g = ac ~ 4f (C-4)
r=—d*f + 4bhf - %
Define
1
C= :; g = p
>l (C-5)
; B = 7 2p* — 9Ipg +27r)
Then a solution to (C-4) is v = K + L - p/3 where
BT
K = ‘—E'F ?+ﬁ and L (C-6)
Using this solution for ¥, determine R by evaiuating
R=y )
=Vgy T hHy (C-7)
If R # 0, then
3a* dab — 8¢ —
1-'=\/ —I"—2b+(——-————) -
3 iR (C-8a)
and
Ra* dab - 8¢ — ot
E= -——1(~—z/—(—-———) -
V3 ’ an (C-80)
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APPENDIX C
If R = 0, then

; .
F= -37‘:——2b+2\/,\7——4f (C-9a)
and ‘
3a?
E = T-—Zb—Z\/y"’—f (C-9b)
Then the solutions of p*(t) — r* = 0 are given by
t = :‘i + E * l_:
4 2 2
(C-10)
-a R E
t=—-Z%=
4 2 2

* The two real minimal positive values resulting. call them T, . T,, represent the times at which the
missile trajectory enters and exits the isovulnerable volume. Thus, there is a time inter al [T,,
T.]in which to detonate effectively.
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