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Abstract

An overview is presented of the authors ’ recent theoretical and

experimental results on reliable and coniputationally efficient a-posteriori

error bounds for finite element solutions. These estimates are composed

from error indicators evaluated on the individual elements , and these

indicators in turn allow for a very effective approach to the effective

construction of optimal meshes . Finally , some views are presented about

possible future trends in the development of finite element software and

an outline is given of the design of an experimental finite element system

currently under development which incorporates many of these ideas and

results .
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1. Introduction

In recent years considerable progress has been made in the theoretical

analysis and the variety and depth of applications of the finite element

method (see, e.g., [11). The pace of these developments does not appear

to be diminishing (see, e.g., [2 ]).  It is surprising, however, that a

subject of considerable practical importance, namely, the assessment of the

reliability of the results of the finite element computations , has not

been studied more intensively.

Many of the current reliability studies consist of various comparisons

for different benchmark problems. Theoretical error estimations are almost

always of an a-priori type and , as important as such estimates are for the

theory of the method, they are rarely of much use for practical error

determinations. In particular , since in practical applications an accuracy

of 5-10% may be entirely acceptable, any error bound that typically repre-

sents an overestimate by a factor of five is clearly worthless.

It appears that for any effective computation of reliable error bounds

for finite element solutions we should use a-posteriori estimates that are

based on information obtained during the solution process itself. ?vbreover,

such estimates may also provide a tool for the adaptive design of optimal

finite element meshes.

This is the topic of this paper. 1~bre specifically , we present here

an overview of recent theoretical and experimental results ([31 , [4] , [5] , [6J)

on reliable and computationally efficient a-posteriori error bounds for the

finite element method. These estimates are composed from “error-indicators”

~ 
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evaluated on the elements used in the solution, and these error indicators

in turn allow for a very effective approach to the adaptive construction

of optimal meshes. After a brief discussion in Section 2 of typical a-

priori estimates and their shortcomings for practical purposes , we present

in Section 3 some of the principal results about the a-posteriori estimates .

This includes also a few illustrative numerical experiments . Then Section 4

addresses the design of optimal finite element meshes using these estimates.

Finally, in Section 5 we sketch some views about possible future trends in

the development of finite element software and outline an experimental

finite element system currently under development which incorporates many

of these ideas and results .

- - - — —--- — ~1 
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2. Rates of Convergence

In this section we present some typical examples of theorems about the

rate of convergence of the finite element solutions to the exact solution.

For reasons of simplicity we restrict the discussion to the simple model
2problem in R

-~u + u = f , on 2 C R2

(2.1)

= 0, on ~2

where 2 is an L-shaped domain as shown Figure 1

in Figure 1, n represents the outward

normal of a2, and f is a suitable given function on

On ~ we consider a family P of quasi-uniform triangular meshes t~;

that is , the ratio of the largest triangle-side to the smallest triangle-

side occurring in t~ is bounded by a constant depending only on P. For

any 1~ E P let .S(~) be the set of all continuous functions on ~ which are

linear on each triangle of t~. The dimension of the space .S(A) shall be

denoted by N(~). In addition , let Q~ be the set of all polynomials of

degree at most p on ~2 and N~ the dimension of Q~.
For an~ t~ K P the finite element solution of (2. 1) is now the function

u = u(~) E S(~) such that for all v E S( A) 

~~~~~ ..~,.., ,..-
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(2.2) Il- ~~~~~~~~~~~~~~~~~~ f fvdx
2 L~i ax1 ax2 ax2 J 2

Correspondingly u = u(p) E is the function for which (2.2) holds for all

v K Q~. The exact solution of (2.1) is denoted by u0, and we measure the

errors e(~) = u0 
- u(s) and e(p) = u0 

- u(p) in the energy norm

(2.3) IeII~ 
= / 
[
~~ae~ ? + )2 + e2] ~~

The rate of convergence depends on the smoothness of the exact solution

u0. Mathematically, it is advantageous to introduce the so-called Besov

space B~~~(2) (see, e.g., [ 7]) and for u0 E B~~~(2) to express the error

in terms of the norm of that space. We shall not enter into details here,

but note that Ha(2) c B~~00 
C H~~

&(2) where Ha (2) is the usual Sobolev

space of fractional order a on 2. We mention also that the function

i213cos 20/3- -representing the natural singularity of our problem on the L-

shaped domain 2--belongs to B~”~ (2) but not to U5”3(2).

For the following rate of convergence result we consider sequences of

meshes K P for which .S(~.) c S(~ i~1) and N(
~~
) + ~~~ as j . -+ ~. We call

this a sequence of proper refinements.

Theorem 2.1: Suppose that the exact solution u0 of (2.1) belongs to

B~~0~(Q) , then

(2.4) IIe(p) “E ~ C N~~~ llU0 Il~~ , as N
2,oo

— 
‘-. ---- .. —.

- 
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where the constant C is independent of p and u0 but depends on a

and 2 , etc. If 1 < a < 2, then for any sequence of proper refinements

(2.5) Ie(~
) ‘E ~ C N(~)~~ 1pu 011 , as N(~)

where C is independent of u0 and the meshes used, but once again depends

on a, 2, etc.

For the finite element solution the case a = 2 requires special atten-

tion . But we note that when linear finite elements are used, the rate cannot

be better than N~~
’2.

It is important that conversely the rate of convergence completely

characterizes the regularity of the solution u0:

Theorem 2.2: Suppose that either

(2.6) p I e~~)Il E S K ~~~~~ , as N

or for 1 < a < 3/2 and for any sequence of proper refinements,

(2.7) lI e( ~) ‘1 E S K N(~)~~~ , as N(~) ~~,

then u0 K B~~00
(2) and

(2.8) ll1~
boll a ~~ C[K + (1 u~dx)~~

’2 ]
B2 ,~

In particular , since r2”~ cos 20/3 K B~”~ (2) , the natural singularity

slows down the convergence rate to N 113 [*] as compared to the value

Usually only the value N ‘ is proved

.A
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N 112 for smooth solutions. In [8 ]--and , with more details in [ 9 ]

- - it was shown that for properly refined sequences of meshes the rate

N~~’
12 can be obtained even in the presence of the natural singularity.

In that case it is natural to use weighted Besov spaces with weights that

depend on the refinement. This type of result reflects the importance of

the use of properly refined meshes.

The comparison between the behavior of the polynomial approximations

and the finite element solutions u(~) shows that for the same

degree of freedom N = N~ = N( A ) the polynomials give the same rate of con-

vergence if the solution is badly behaved. Of course, for smooth

the convergence rate for the polynomial solutions will be better or at least

never worse than that of the u(s). This is the basis of the p-convergence

approach developed in [l0],[ll].

For practical purposes the estimates of Theorem 2.1 are not useful.

The constants are coniputationally unavailable, and so is the norm of the

exact solution. The estimates (2.4),(2.5) are asymptotic in nature and

hence characterize the convergence rate for large N. For smaller N, the

decrease of the error-norm with growing dimension is often faster than the

asymptotic rate. This effect has been observed in many practical situations.

It is intuitively understandable since changes of u0 have to be compared to

the mesh size.

As stated at the outset, the discussion in this section is only meant to

illustrate a typical situation. Theorems of the form given here apply also in

many more general cases (see , e.g.,  [12]).

*_,1

~

p

~
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3. A-Posteriori Error Estimates

The discussion of the previous section shows that a-priori estimates,

such as (2.4),(2.5), are not directly usable for practical error assess-

ments. In order to obtain computable and reliable bounds, we need to go

to a-posteriori estimates which use information obtained during the solu-

tion process itself. The theory of these estimates differs somewhat for

problems in R1 and those in R’1 with d> 1, and accordingly we discuss

these cases separately.

3.1 One-Dimensional Problems

Once again- - for simplicity- -we restrict the presentation to a simple

model problem. The results also extend to more general cases, as , for

instance, the beam equation. Consider the two-point boundary problem

- a (x) + b (x) u = f (x), 0 < x < 1

(3.1)

u(0) u(1) = 0

with sufficiently smooth coefficients a,b,f on [0 ,1] such that a(x) ~ a > 0,

and b(x)~~~O for~O s x 5 l .

Let P be a family of partitions

(3.2) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ m = m ( ~) ? l ,

on the interval [0 ,1], and introduce the notations 

-- . .
~~_:-..- —-
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~~~~~~~~~~~~~~~ j l, . . . ,m

(3.3)

h(s) = max h.(~),  h(~) = mm h.(~)
j=l,. . .,m j=l ,. .. ,m

The family P will be called K-regular if there are constants X > 0, K ~ 1

such that

(3.4)

For this presentation we shall use linear elements on the intervals

= [x~~1,x~], j  = l,...,in, to solve (3.1). As before, we denote by

u(s) the resulting finite element solution and by u0 the true solution

of our problem. On every separate interval I~ (~) the function u(t~) is

linear and hence the residuals

(3.5) r . (x) = -
~~~~~~ a (x) u(A) (x) + b (x)u(~) (x)-f(x) , Xj l  S x S

j  = 1,...

and their integrals

(3.6) = 

x~

3

1 
r~ (x) 2dx. j  =

are easily computable. We introduce the error indicators
2 2.v. (~)

(3.7) ~~(A) 2 
= , j  =

a(~ (x.~~+x .) )

and the error estimator 

~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~



- 9 -

-, m
(3.8) &(~) =

j  =1

Then the following result holds; see

Theorem 3.1: Let u0 be the true solution of (3.1) and u(~) the

finite element solution for any t~ E P. Then without any regularity assump-

tion about P the error e(A) = u0 
- u(s) satisfies

(3.9) Ie(~)II E s ~~~ ~(~)(l+O(h(~) ) ) ,  as i~~~) 0

The bound of the 0-term depends on a,b but not on u0. If P is K-regular

with 1 s K < 2 and u3(x) has only simple roots in [0,1], then

(3.10) Ie(~) II E = c(~)(l+0(h(~~~) ) ,  as ~~~ ) 0

where K = 1 - K/2 .

In the present case the energy norm used in (3.9) and (3.10), of

course, has the form

(3.11) II e II ~ = (a (x) (~~) 2 
+ b(x)e2)dx .

Note that in the case of (3.10) the error indicator (3.8) provides the

exact error for i~ -+ 0. In other words, the effectivity constant

Je ()
~ “B(3.12) 8(s) = —

tends to one for h -~~ 0. Even the general estimate (3.9) ensures that

asymptotically we have 8(a ) s vT~/ii < 1.103.

— i- --- - ., 
~~~~~~~~~~~~~ ~~~~ . —. .. V V —_~ - .

3. ‘-~P~~’ ~- ~
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In applications we may readily accept, say, 1/2 s 8(a) s 2, that is

a 100% error in 0(a) with respect to the limiting value 8(t~) = 1. On

the other hand, a corresponding error in the solution relative to u0, that

is, 1/2 s IJe (
~

)JI E/JIu O IJB s 2, would be completely unacceptable. This points

out once again the essential difference in the estimates in this section and

those of Section 2.

As an illustration of the effectivity of Theorem 3.1, we consider the

following example:

- 

~~ 
(x+a)~ ~~ 

+ (x+a)% = f, 0 ~ x < 1, a > 0,

(3.12)

u(0) = u(1) = 0

Here f was chosen such that the exact solution of (3.12) is

(3.13) u0(x) = (x+a)’ -

Note that for small a and negative r severe near singularities may be

created. In the numerical examples given below we chose

(3.14) p = 0 , q = l , r =  - i . , ~~~~~~~~

in which case IIUO IIE = 6.09811. Two different types of meshes are used,

namely, uniform meshes with h~ = 1/rn and asymptotically optimal meshes in

the sense of Section 4 below. Table 1 below shows the coordinates of the

nodal points of the asymptotically optimal mesh with in = 10.

~ ~~~~~ ~~ _______

~
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Table 1

Asymptotically Optimal Mesh for m = 10

j  X~ j  x~ j

0 0 4 .01443 8 .11781
1 .00207 5 .02398 9 .26831
2 .00487 6 .03732 10 1
3 .00877 7 .06318

In Table 2 we show the relative error B = 100 JIeJIE/IluO ll E in percent

of the energy norm of the exact solution and the effectivity constant 0

of (3.12) for the two types of meshes. In addition, two quantities

c~ and E0 are included which relate to the optimality of the mesh as

discussed in Section 4 below. Mere specifically, ~ is the ratio of the

maximal and minimal error indicators. As we shall see in Section 4, a

mesh is asymptotically optimal if all its error indicators are equal.

Thus c~ is a measure of optimality. The value E0 is the value of E

for the asymptotically optimal partition.

The reliability and effectivity of the estimates are evident. A 26%

error relative to the norm of the exact solution corresponds only to a

15% error in estimating the actual error by means of the estimator (3.12).

V For the “more optimal” meshes the results are even better.

-— V 
~~~~~~ ~~ V~~~~~~~V ,, ~~~~~~~~ ~~~ 

3
~~~. ~~~~~~~~~~~ ~~~~~ 

~~~~~~~~~~~~~~~~~~ ~~~ . ~~~~~
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Table 2

Uniform mesh

m E E0 0

5 85.301 22.613 .1706 8.84(+6)

10 73.768 11.306 .2950 2.34(+7)

20 58.784 5.653 .4702 5.31(+7)

40 41.933 2.827 .6708 1.11(48)

80 26.316 1.413 .8419 2.19(+8)

Asymptotically optimal mesh

m B E0 0

5 22.243 22.613 .6524 5.854
16 11.289 11.306 .9025 2.274

20 5.652 5.653 .9757 1.372

40 2.826 2.827 .9940 1.111

80 1.413 1.413 .9984 1.031

-L
~~~~ =- _ _ _ _



- 13 -

3.2 Higher-Dimensional Problems

Once more we restrict ourselves to a special model problem, namely,

the two-dimensional boundary value problem

~i~~~l ~
j - a~~ ~~~~~~~ - + bu = f(x) , V x E 2

(3.15)

u (x) = g (x) , V x E ô2

Here the coefficients a
13,b are constants with

~ j= l ~~~~~~ ~ a(x~+x~) ,  V x E R2, a12 = a21
(3.16)

b~~~0

f is continuous on ~ and continuously differentiable on 2, and g is

continuous and piecewise continuously differentiable on a~�.
We restrict the domain 2 to sets of R2 bounded by lines that are

parallel to the coordinate axis. For example,

2 may be the L-shaped domain of Figure 1 in ____ ____ ____

Section 2. 
____ 1 II IEThe admissible meshes A on 2 shall 

I
be sets A = {q~ } of squares q

~ 
of the form ____ _____

Figure 2

(3.17) q
~ 

= {x E R 2 a < x ~~< a + h , i =  l,2}, h=h (q~) >0 ,

such that

— . .. • . .V
~~

. — V .—

-4 ~ -, - ~~~~~~~~~~~~~~~~ ~~~~~~~~~ -
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(i) for any q
3 K t~ the closure cI~ belongs to S ;

(3.18) (ii) U E~. =

q~EA ~

(iii ) 
~~ 

fl q~ = 0 for any K A , i / j; that is, E1~ n

consists only of boundary points of and ~~

A typical mesh on a square 2 is given in Figure 2. The corner points of

the squares q
~ 

K i~ are the nodal points of the mesh. A nodal point v K 2

is regular if it is a cornerpoint of all the squares q~ K A for which

v K q~; otherwise v is irregular. Note that then any nodal point on

82 is necessarily regular. In Figure 1 the regular and irregular nodes

are marked by black dots and open squares , respectively .

A collection P of admissible meshes A on 2 is N-regular if for

any A K P the number of irregular nodes on any side of a square q~ E A

is at most equal to N.

For a given admissible mesh A on 2 let S(A) be the set of all

continuous func t ions u = u(x1,x2) on ~ which are bilinear in x1,x2 on 
V

every q~ K A. Obviously, any u K S(A) is then uniquely determined by its

values in the regular nodes of A. By S(A) we denote the subset of all

functions of S (A) which are equal to zero on 82.

In order to facilitate the error estimation on the boundary we add the

technical condition for g that for any q~ K A which has a side a on 82

we have with a suitable constant c >  0

V ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~ V
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(3.19) f (g ’ -u(~) ’) 2dx ~ a = aqj fl 82

This holds, for instance, for quadratic polynomials g.

For a given admissible mesh, the finite element solution of (3.15) is

now the (unique) func tion u(A) K S (A) for which

(3.20) f ( ~ a.. au ~~~ + b~~)dx = f ~ dx, V v E S(A)
2 i,31 ‘~ 

ax1 ax~ 2

and u( A ) = g holds at all nodal points of A on 89. As before u0 denotes

the exact solution of (3.15) and we are interested in estimating the error

e = u0 
- u(A) in the energy norm

ll e l I~ = 

L 
(
~J=1

aij 
~~~ 

+ b~~)dX

As in the one-dimensional case we may compute on each q~ 
K A the residual

(3.21) r~ (x) = - 

~~ 

~~~~~
— a.~ ~~

_ u(A) + bu(A) - f(x), V x E

If , for instance, a11 = a22 = 1, a12 = 0, b = 0 then it is easily seen

that r~ (x) 0 in any q. for which f(x) 0, x E cj
3
. This prevents us

from proceeding analogously to the one-dimensional case. Instead we use an
V 

approach which is equivalent to that presented in [3].

V 
Let q

~ 
K A be any square of the mesh

and as indicated in Figure 3 let

be the four sides of q~• For a square q~
in the interior of the domain, we denote by

and J; the jumps of ~~~~~~
- u(A ) on

and 
~
,
l’ respectively, and correspondingly, Figure 3 

~~~~~~~~~~~~~~~~ = V 
. —.

~~iV  ~ ., -~~~~~~~ •‘~~~~ Vtq.V ~~~~~~~~ . ~~
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by J and J- those of -f- u(A) on 02 and a2, respectively. Now02 02 2
we compute the following quantities:

If q
~ 

C 2 then

2
2 1 h(q .) 2(i) 1 (q~) = ~ r~ (x) dx

3

~~ a11h(q.) / ~~~~~~~~~~ a =

(3.22) (ii)

.
~~~~

- a22h(q~) I ~~~~~~~~~~~~~~~~ a =

and the error indicator of q~ is defined by

(3.23) ~ (q•)
2 = 1) (q.)2 + p (q . 

~ 
2 

+ 
2 

+ P4C1j  ~ 
2 + P~~:~j  ~ 

2

On the other hand, if has sides in coimw n with 89 then for any

such side a K fl 82 the corresponding p-term in (3.23) is replaced by

(3.24) 
~~

(q
~) 

= p~(q~) + h(q~j 
J (g-u(A))2dx

Here and in (3.22) (i) , & and a are the constants of (3.16).
V 

As in the one-dimensional case we introduce now the error estimator

(3.25) e(A)
2 

~q~EA ~

Then the following result holds [3]:

i
• ~~~~~~~ 

V —V---- - 
. ~~~ 3~

, , ~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ ~~
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Theorem 3.2: The error e U
0 

- u(A) between the exact solution and

the finite element solution of (3.15) satisfies

(3.26) ~(A) s JI eJ I E ~ K e(A)

with some K ~ 1 which is independent of A but depends on a, N, etc.

In contrast to Theorem 3.1 we cannot claim here that K -+ 1 when

h(A) -. 0. But all experimental experience so far indicates that K never

exceeds a value of two for a large class of problems.

Theorem 3.2 holds no matter which constant factors are used in the

definition of the quantities (3.22),(3.24). But the powers of h(q~)

occurring in these quantities are, of course, essential. The particular

constants chosen in (3.22),(3.24) arose from an asymptotic analysis of the

case of a uniform mesh A.

We illustrate Theorem 3.2 on the following numerical example:

~~~~4. a~ x
a

a~ + L~ 0, x E Q  = (0 ,1) (0 ,1) C R 2

(3.27)

u = g ,  x K Q

The boundary condition is chosen to provide for a specific exact solution

U0. In particular , we consider the following two cases :

(I) a = 0, u0 = Re(z-z0)
1’12, z = x1 + 1X2, z0 1.03,

(II) a = 1, U
0 

Re(w_w0)
h/’2, w y1 + iy2, w0 

= y~ + iy~

where

-
~~~~~ - - . - V — V

~

V 
V 

‘ ~~~~~~~~~~~~~~~ ..*.V V •
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(Yl \ (
xl

\
\ (Y \ (L03

\~
y2J \X2/  \~~2 /

and

-1/2 -1/2
( l + ~~~) ( l + ~~~)

T= _L

-1/2 -1/2
, a a
i~1 

. . .
~~ ) -(1 - .

~~ )

Five different meshes are used, denoted by (a), (b), (c), (d), (e). The
meshes (a) , (b) , (c) are regular partitions of the unit square with step-
size h = , , , respectively. The other two meshes (d) and (e) are

shown in Figure 4.

Mesh (d) Mesh (e)
Figure 4

Conforming bilinear elements were used. Table 3 gives the corresponding

results. Here “active nodes” means the number of degrees of freedom, that
is, the size of the corresponding system of linear equations; the other
notation is the same as that used in Table 2 for the one-dimensional case.
Once again, the a-posteriori estimates are clearly very accurate and reliable.

- . 

- -
i

- 

~~~~~ 
- 

- .‘
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Table 3

Number of Energy error Effect. Ratio of
Case active irreg. elem abs. in % Const. error md.

nodes nodes . 
JJ e JJ~ 

- E e

1(a) 9 0 16 .0867 13.51 .917 1.17(3)

I (b) 49 0 64 .0492 7.68 .914 2. 54(4)

1(c) 225 0 256 .0253 3.95 .921 3.43(5)

1(d) 21 4 28 .0534 8.35 .922 1.31(3)

1(e) 33 8 40 .0271 5.79 .952 6.22(3)

11(a) 9 0 16 .0677 11.28 .683 7.09(2)

11(b) 49 0 64 .0384 6.40 .711 3.98(3)

11(c) 225 0 256 .0201 3.35 .736 1.57(4)

11(d) 21 4 28 .0418 6.97 .731 3.03(2)

11(e) 33 8 40 .0294 4.90 .805 2.14(2)

- 
• V~~~~~~~~~ ; V , V~~~~~~~~~~~~~~ V~~~~ ~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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4. Optimal Meshes

4.1 One-Dimensional Problems

Once again we consider the model problem (3.1) . The theory of a-

posteriori estimates sketched in Section 3.1 provides a basis for the

construction of optimal meshes (3.2) in this case.

For this, we call a partition (3.2) a (~,in)-partition if there exists

a continuous, increasing function ~ on [0,1] which satisfies

(4 .1) ~(x~) = , j = 0,1,... ,m(A)

and is twice cont inuously differentiable on each subinterval (x~~1,x~),

j 1,... ,m. Any partition A is a (~,m)-partition for the piecewise linear

function

(4. 2) ?~(x) = + j~~
_ (x-x. 1), x~~1 ~ x ~ x~, j = l,...,m

The error corresponding to the (~,m)-partition A shall be denoted by

e(~,m).

It now turns out that the (~0,m)-partition A 0 defined by

(4.3) ~0 (x) = y0 f [a(t)u ~ (t) 2]1
~
’3dt , y~~ = f [a(t)u~3(t)

2]1”3dt

is asymptotically optimal in the following sense ([6]):

Theorem 4.1: Suppose that u~3(x) has only simple roots in [0,1],

then the following statements hold:

(a) The (~0,m) -partition A 0 of (4.3) satisfies the K-regularity

condition (3.4) with K = 5/3 for all m.

~~~~~~~~~~~ , ~~ ~~~~~~~~~ ~~
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(b) The error for the partition A0 is given by

(4.4) IIe(~O,m) “E = 
3 (l+0(F~(A 0)), as Fi(A0) 

-
~~ 0,

12m

where the constant in the bound of the 0-term depends on but not on in.

(c) Let P be a family of 5/3-regular (~,m) -partitions . Then

JJ e(~ ,m)JJ
(4.5) him sup ~ 

0 11_ E < 1
~~~~~~~

for any partition in P with ~ ~
Part (c) of this theorem shows that the partition A0 of (4.3) is

asymptotically optimal in the sense that for any other partition in P the

error is larger for sufficiently large in. Accordingly, we call A0 the

asymptotically optimal mesh.

The error indicators e.(A) of (3.7) constitute a simple tool for the

construction of meshes with errors that are asymptotically equal to JJe(~O,m)JjE. —

This is the content of the following result (see again [6]): V

Theorem 4.2: Suppose that u’6(x) has only simple roots in [0,1].

Let A be any partition (3.2) for which there is a constant ~ such that

V (4.6) e~(A) = ~(l+O(h(A)
’
~) ) ,  ~ = 1/12, as 11(A) -~~ 0

Then A satisfies (3.4) with K = 5/3 and

(4.7) JJe(A) JI E 5 IIe(AO)IJE(1+O(f1(A))
K), as 11(A) -

~ 0

~.• •
~-~- - 

-
. 
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The condition (4.6) means that the error indicators should be asympto-

tically equal. This provides the basis for the construction of partitions

A satisfying (4.7). A natural approach is here the adaptive mesh-refinement

algorithm discussed in the next section.

It can also be shown (see [6]) that the error for the (~0,m)-partition

is very stable. Mere precisely, if A is any (~,m)-partition with

= + Xr~ then

(4.8) IIe(
~
,m)JJ E = J~e(~~,m)IJ~ (l+O(X

2)) as A -
~ 0

On the other hand, the distribution of the nodal points of the optimal

partition is not particularly stable. In other words, we should concentrate

on making the error indicators nearly equal and not concern ourselves

with an accurate computation of A0 itself.

Numerical results illustrating these results were already included in

Tables I and 2 of Section 3.1. In particular, in the second part of Table 2

the ce-values are nearing one and as expected the values of E and B0 are

very close.

4.2 Higher-Dimensional Problems

V For problems in two- or higher dimensions there exists as yet no

theory of the extent sketched in Section 4.1 for the one-dimensional case.

In [3] it is shown that here again asymptotic optimality of the mesh calls

for the (asymptotic) equality of the error indicators. This provides the

basis for the following type of adaptive mesh-refinement algorithm.

- ~~~~~~~~~ -
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Suppose that the error indicators have an asymptotic behavior

of the form

A(4.9) &1 = c h
~
, ash

~
-+0.

If any element ‘r.j with corresponding value was generated by sub-

dividing an element in a previous mesh with value 6?ld then (4.9)

suggests that the (worst) indicator after dividing i~~ will be approximately

(4.10) 6new = (~~)
2/€ Old

Practical experience has shown that, in general, this prediction is very

satisfactory.

Clearly, we should refine only those elements which have an indicator

above the largest predicted new indicator in the new mesh. In order to

start this process, all elements in the basic mesh are refined in the first

step. Hence we have the following refinement algorithm:

1. cut := 0

2. If “current mesh A is the basic mesh” then go to 4

3. For “each element ‘r in A” do

3.1 Compute error indicator e of element r
new 2 old3.2 ~

3.3 If new cut then cut : - anew

4. For “each element ~r in A” do

4.1 If & > cut then “subdivide ~r and for each new

element set old :=

Implementation details will be discussed elsewhere.

- - V~ 
— —
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5. Future Trends

5.1 Computationai Goals

In the development of typical mathematical library programs, the aim

is to achieve--whenever possible--a prescribed and typically high accuracy.

Here “accuracy” refers usually to the size of the errors introduced by the

particular numerical method, and the program is reliable if its overall

failure rate is low.

For the general-purpose, finite-element software used, say, in struc-

tural engineering the requirements are rather different. The user needs to

obtain results which predict, with an acceptable degree of reliability and

accuracy , the actunl behavior of the mechanical structure at hand . In other

words, the terms “accuracy” and “reliability” are used in a much broader

context than before. It is clearly inadequate to assess the results solely

on the basis of the errors introduced by the numerical calculations . For

example, an earlier decision to use a plate model rather than a ful l three-

dimensional formulation may result in final stress values that differ by

10-20% from each other. In contrast to this, the numerical errors are

entirely negligible. In other words, the accuracy of the numerical results

should be a measure of their deviation from the solution of a “higher”

mathematical model. Mereover, these results can only be considered reliable

if changes in the reference model and, more generally, in the entire sequence

of steps from the problem formulation to the final results have relatively

small effects.

V -
~~ 

- 
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Generally, the computations involved in finite-element applications are

very extensive and highly demanding on the available computer resources, not

to mention the corresponding demands on the user personnel . In most cases

the user is forced to set a maximum allowable cost for any one computational

analysis. Ideally then the goal is to achieve optimal , acceptable accuracy

(in the above sense) within the prescribed cost range. Here it is essential

that often relatively low accuracies- -often in the range of 5-lO%--are

entirely satisfactory .

Without doubt the design goal of producing reliable results of optimal

accuracy within some prescribed cost range represents a serious challenge

and is not realized in today’s finite-element software. However, our own

experience has shown that this is not an unrealistic goal (see, e.g., ~ 3 J ,
[4], [13], and it appears also that it corresponds well with the trends

that are now beginning to emerge in the design of the next generation of

such software.

The principal tool for the realization of this design goal is the

availability of relatively easily computable error estimates. On some simple

model problems we have illustrated in the previous two sections that a-

posteriori error estimates are feasible and not very costly to compute.

Mereover, these estimates are very reliable. The approaches presented

here extend readily to much more general cases including, for instance,

the typical elasticity problems in structural analysis

and even nonlinear problems. Mereover, the estimates can also be developed

for norms other than the energy norm. Of course, the formulas for the error

V 
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indicators are then different, but the structure of the estimates remains

the same.

The a-posteriori estimates are developed on the basis of a general

definition of the finite element method in terms of a weak mathematical

formulation involving bivariate forms on suitable function spaces (see,

e.g., [13]). This suggests that finite element software should no longer

be designed for specific classes of applications but instead should consti-

tute more general “finite element solvers” based on entire classes of such

weak formulations. This will provide the needed closer interaction with

the theoretical foundations and, at the same time, it will open up a much

wider applicability of the software.

In order to simplify the use of the software, the user should not

have to understand the internal operation or to make difficult a-priori

decisions about the desired computations. For this the user interfaces

should be strictly separated into flexible pre- and post-processors which

adapt the system to various classes of applications.

The need for reducing the range of decisions asked of the user in

today ’s finite element software requires the introduction of extensive

adaptive techniques into the computational process. These techniques are

V also needed to meet the goal of achieving an optimal solution within a

prescribed cost range. The adaptive control of the computation in turn

requires the availability of reliable error estimates at all stages of the

calculation. In other words , here is a further reason for the introduction

of the a-posteriori estimates discussed in the previous sections.

-~~~ 
-- 
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In connection with the optimality requirement we have to distinguish

between the design of a (nearly) optimal mesh and the achievement of a

(nearly) optimal a-posteriori error estimate for the solution. As we saw

before, the optimal error (for a given degree of freedom) is rather stable

while this is not. true for the optimal mesh. Thus we should certainly

concentrate on achieving a (nearly) optimal error within our given cost

range and not overplay the search for the optimal mesh. The discussions of

Section 4 show that we have a rather simple criterion for the (near) opti-

mality of the error in the near-equality of the error indicators. It

provides the basis of simple and yet highly effective adaptive mesh-refine-

ment algorithms (see, e.g., [3},[13]). Since these algorithms aim to keep all

error indicators as close together as possible, all resulting meshes--after

some initial phase- -have a fairly optimal error for the degrees of freedom

they incorporate. Thus we may stop the process whenever either a prescribed

error tolerance has been achieved or the given computational cost range has

been exceeded (see [3],[4}).

5.2 A Prototype Adaptive Finite Element Solver

As stated before, the general design goals for future finite element

software still represent serious challenges and are not yet incorporated

into any operational programs. However, as we said, they are within the

realm of practicality.

In substantiation of this claim an experimental finite element system

is being designed by several of us at the University of Meryland that meets

T? ~~~~~~~~~~~~~~~ ~~~~~~~ - 
~~~ ~~
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the following four design criteria:

(a) The system constitutes an applications-independent finite element

solver for a certain class of two-dimensional, linear, elliptic

problems based on a weak mathematical formulation;

(b) it incorporates extensive adaptive approaches to minimize the

critical decisions demanded of the user;

(c) it uses a-posteriori error estimates of the type discussed above

to control the adaptive approach and to provide a solution with

a (near) optimal error within a prescribed cost range;

Cd) it takes advantage of modern advances in the design of data

structures and software systems, and, in particular, it is designed

to use the natural parallelism and modularity of the finite element

method to increase the size of the practically solvable problems.

The general design of the system has been described in [13]. It is

being implemented not as a production system but as an experimental system

for the evaluation of the various new ideas in it. Accordingly, extensive

provisions for evaluating the performance are incorporated in it.

Beyond the new approaches reflected in the criteria (a) , (b) and (c)

already discussed in the previous section, the introduction of parallelism

appears to be a particularly novel aspect of the design . This parallelism

is on the procedural level rather than the instructional level because there

the expected payoff is much greater. Thus, parallelism is specified in terms

of processes which are autonomous units with their own programs and data.

- ~~~~~~~~~~~ - •V - --__ - V -- — V V
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The processes run in parallel and coninunicate asynchronously in a limited

and highly structured manner.

The natural parallel process structure for the finite element system

derives from the familiar substructure analysis in engineering design.

In principle the substructure segmentation of the data and processing is

the same as that used in large industrial applications except that ours

is essentially automatic and more flexible, while current finite element

systems demand that their users create a rigid segmentation at the manual

or even managerial level.

In the design the local data of a process contain almost all the in-

formation needed for the computations of that process. Thus the process

structure induces on the finite element data a segmentation which is natural

to the problem and provides a basis for intelligent storage management in

the environment of a single large computer. At the same time the use of

parallel processes makes it possible to apply multiple processors effec-

tively- -hopefully for significant gains in speed.

- ~~~~~~ V ~~~~~~~~~~~~~~~~~~~ ,.. 
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