1.	AD-AO	53 025 SSIFIE	COL A L MAR	ORADO IGAND 78 J TR-	STATE FIELD D WEB	UNIV F THEORY B, E R	ORT CO AN/LYS BERNST	LLINS (IS OF T EIN	DEPT OF		STRY F THE T N00014	263 LE -75-C-	F/6 7/2 VELE 1179 NL	2
	AD	OF 53025			E		Mill American Street		A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR A CONTRAC		A second			A second
			An and a second			Attimps of								
and the second se					Estatute and	V R	en Entreta esta entreta Transcenter Transcenter	X-W	NUMBER OF STREET	and a state of the	END DATE FILMED 6 -78			
:						and the set					•			
•														
* .x+														
1														/

12

APR 24 1978

B

OFFICE OF NAVAL RESEARCH Contract NO0014-75-C-1179 Task No. NR 056-607 TECHNICAL REPORT NO. 21

"A LIGAND FIELD THEORY ANALYSIS OF THE SPECTRA OF THE t_{2g}^3 LEVELS OF IrF₆"

by

J. D. WEBB AND E. R. BERNSTEIN

Prepared for Publication in

Molecular Physics

Department of Chemistry Colorado State University Fort Collins, Colorado 80523

March 1978

Reproduction in whole or in part is permitted for any purpose of the United States Government.

Approved for Public Release; Distribution Unlimited.

DEPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT WIRDER 2. GOVT ACCESSIO	DN NO. 3. RECIPIENT'S CATALOG NUMBER
LING	
4. (PITLE (and Subilile)	S. TYPE OF REPORT & PERIOD COVERE
"A Ligand Field Theory Analysis of the Spectr	a of (9) Technical Report
the t _{2g} Levels of IrF6	4. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(e)	S. CONTRACT OR GRANT NUMBER(.)
10 J. D./Webb and E. R./Bernstein	NØØ014-75-C-1179
PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK
Department of Chemistry	
Colorado State University Fort Collins, Colorado 80523	NR 056-607
1. CONTROLLING OFFICE NAME AND ADDRESS	· PEPORT DATE
Office of Naval Research	March 1978
Arlington, VA 22217	12 36 P
4. MONITORING AGENCY NAME & ADDRESS(II different from Controlling O	(IIce) 15. SECURITY CLASS. (of this report)
	Unclassified
	SCHEDULE
6. DISTRIBUTION STATEMENT (of this Report) Approved for Public Release; Distribution U 7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if differ	nlimited.
Approved for Public Release; Distribution U 47. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 differ	nlimited.
6. DISTRIBUTION STATEMENT (of this Report) Approved for Public Release; Distribution U 7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if differ 8. SUPPLEMENTARY NOTES	nlimited.
 DISTRIBUTION STATEMENT (of this Report) Approved for Public Release; Distribution U DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 differ SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse eide II necessary and identify by block n Crystal Field Theory 	umber)
 6. DISTRIBUTION STATEMENT (of this Report) Approved for Public Release; Distribution U 7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 differ 8. SUPPLEMENTARY NOTES 9. KEY WORDS (Continue on reverse elde II necessary and identify by block n Crystal Field Theory Configuration In: 	umber) teraction
 6. DISTRIBUTION STATEMENT (of this Report) Approved for Public Release; Distribution U 7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 differ 8. SUPPLEMENTARY NOTES 9. KEY WORDS (Continue on reverse elde II necessary and identify by block in Crystal Field Theory Configuration In: 5d(t_{2g}³) States Charge Transfer S 	umber) teraction States
 Approved for Public Release; Distribution U Approved for Public Release; Distribution U DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 differ SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse elde II necessary and identify by block in Crystal Field Theory Configuration In: 5d(t_{2g}³) States Charge Transfer S ABSTRACT (Continue on reverse elde II necessary and identify by block in Charge Transfer S 	umber) teraction States
6. DISTRIBUTION STATEMENT (of this Report) Approved for Public Release; Distribution U 7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if differ 8. SUPPLEMENTARY NOTES 9. KEY WORDS (Continue on reverse eide II necessary and Identify by block in Crystal Field Theory Configuration In: 5d(t_{2g}^{3}) States Charge Transfer S 0. ABSTRACT (Continue on reverse eide II necessary and Identify by block in Calculations are presented for the t_{2g}^{3} in	umber) teraction States molecular levels of IrF ₆ which
6. DISTRIBUTION STATEMENT (of this Report) Approved for Public Release; Distribution U 7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If differ 8. SUPPLEMENTARY NOTES 9. KEY WORDS (Continue on reverse elde If necessary and identify by block in Crystal Field Theory Configuration In: 5d(t_{2g}^{3}) States Charge Transfer S 0. ABSTRACT (Continue on reverse elde if necessary and identify by block in Calculations are presented for the t_{2g}^{3} indicate a substantial interaction with charge	nlimited. mit from Report) umber) teraction States mber) nolecular levels of IrF ₆ which ge transfer levels at <u>ca</u> . 20,000
Approved for Public Release; Distribution U Approved for Public Release; Distribution U DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if differ U. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if differ U. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if differ U. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if differ U. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if differ U. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if differ U. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if differ U. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if differ U. DISTRIBUTION STATEMENT (of the abstract of the transfer states) ABSTRACT (Continue on reverse elde If necessary and Identify by block me Calculations are presented for the t_{2g}^{3} , mindicate a substantial interaction with charge Interaction between charge transfer and t_{2g}^{3} .	nlimited. Tent from Report) umber) teraction States amber) nolecular levels of IrF ₆ which ge transfer levels at <u>ca</u> . 20,000 states is so extensive that the
Approved for Public Release; Distribution U Approved for Public Release; Distribution U DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If differ Supplementary notes . KEY WORDS (Continue on reverse elde If necessary and Identify by block in Crystal Field Theory Configuration In: $5d(t_{2g}^{3})$ States Charge Transfer S ABSTRACT (Continue on reverse elde If necessary and Identify by block in Calculations are presented for the t_{2g}^{43} in indicate a substantial interaction with charge Interaction between charge transfer and t_{2g}^{4} s	nlimited. minit

UNCLASSIFIED

LUNHITY CLASSIFICATION OF THIS PAGE(When Date Entered)

20. (continued...)

five t_{2g}^{3} levels cannot be fit with physically reasonable Racah, spin orbit, and crystal field parameters. Parameter values presented are dervied from a fit of the lowest three levels only: $B = 297 \text{ cm}^{-1}$; $C = 1167 \text{ cm}^{-1}$; $\zeta_{5d} =$ 4182 cm^{-1} and 10 Dq = 35,000 cm^{-1}. Gas-to-crystal shifts and site splittings are then calculated that further indicate strong influence of charge transfer states on the nature of the t_{2g}^{3} manifold. Finally, new data for the r_{8g} ($^{2}E_{g}$) and r_{6g} ($^{2}T_{1g}$) states at 1.2 µm are given. Small Jahn-Teller interactions are observed in the r_{8} ($^{2}E_{g}$) state at this wavelength and a substantial site splitting is assigned for it. Both of these effects further demonstrate the importance of charge transfer admixture in the t_{2g} manifold.

ACCESSI	ON for				-
NTIS		Whit	e Sec	tion	
000		Buff	Secti	01	
UNANNO	NINCED				
JUSTIFI	CATION				
DISTR	BUILON	AVAIL	DILIT	SPE	CIAL
Diet	54211	2.14	1/01		, vire
Dist.	AVAI	L. 6.1	1		Ulra

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

I. INTRODUCTION

 IrF_6 has played an important role in the ligand field theory of 5dⁿ transition metal compounds.¹⁻⁸ It is well established that the sharp, detailed spectra observed in the visible and near IR can be described approximately as transitions within a t_{2g}^{3} manifold.^{2,9} However, a rigorous attempt to match observed and calculated^{6,10a,b} electronic energies has not been made. Present availability of definitive assignments of electronic origins in both vapor⁹ and mixed crystals of $IrF_6/MoF_6^{11,12}$ makes a detailed ligand field theory study feasible. Additional mixed crystal data for the r_{8g} (2E_g) and r_{6g} ($^2T_{1g}$) levels of IrF_6 are presented here to facilitate further comparison and complete the requisite data set.

There are several reasons why such a study might be useful. First, the most obvious benefit would be determination of reliable electrostatic (B, C) and spin-orbit (ζ_{5d}) parameters. Comparison with other members of the series (ReF_6 , OsF_6 , PtF_6) might then allow insight into the nature of ligand-metal interactions in these high oxidation state (VI) compounds. Second, the extent to which charge-transfer (CT) states interact with $t_{2\alpha}^n$ ligand field states is still an open question. In the case of $CrBr_3$ (3d³), it has been speculated that such an interaction accounts for the inability to fit observed t_{2q}^{3} levels with a ligand field calculation.¹³ If interaction with CT states is important, IrF₆ is a good candidate for study because an even CT state (Γ_{6g} or Γ_{7g}) has recently been identified only ~1,000 cm⁻¹ above the r_{8g} ($^{2}T_{2g}$) origin¹¹ at -14,900 cm⁻¹ (the more intense odd CT bands begin at ~18,500 cm⁻¹). Third, since both vapor and mixed crystal data are available, gas-to-crystal shifts and site splittings can also be studied. These small electrostatic perturbations can be effectively employed to generate detailed information about the nature of the (nominally) t_{2q}^{3}

levels of IrF_6 . The magnitude, direction, and nature of the response of the electronic and vibronic states to crystal interactions will be a sensitive function of the actual state descriptions.

In Section IIIA, results of an attempt to fit observed t_{2g}^{3} levels of IrF₆ with a parametric ligand field calculation are discussed. Gas-tocrystal shift data and low symmetry crystal field splitting of the Γ_{8g} levels are examined in Section IIIB and IIIC, respectively. Mixed crystal data for the Γ_{8g} ($^{2}E_{g}$) and Γ_{6g} ($^{2}T_{1g}$) levels of IrF₆/MoF₆ are discussed in detail in Section IIID.

-2-

II. METHODS AND RESULTS

A. Experimental

A summary of data and assignments for the Γ_{8g} ($^{2}E_{g}$) and Γ_{6g} ($^{2}T_{1g}$) levels of IrF_{6}/MoF_{6} are given in Table 1. This table completes the IrF_{6}/MoF_{6} mixed crystal data for t_{2g}^{3} levels of IrF_{6} .^{11,12} These spectra are also presented in Figures 1 and 2. Experimental methods employed are identical to those presented in reference 11.

B. Calculational

Results of an attempt to fit observed t_{2g}^{3} ligand field levels of IrF_6 with a parametric calculation are given in Tables 2 and 3. The energy levels were calculated using Eisenstein's^{10a,b} d³ energy matrices; however, due to the large ligand field splitting (10 Dq ~35,000 cm⁻¹), only one set of Racah and spin-orbit parameters (B, C, ζ_{5d}) were used. A linear least squares routine was employed in parameter variation for an optimum fit. The results given in Table 2 were obtained by optimizing the fit of all five excited t_{2g}^{3} levels while those in Table 3 were obtained by optimizing the fit of only the lowest three levels.

An attempt to calculate gas-to-crystal shifts for IrF_6 and ReF_6 (Tables 4 and 5) by varying the ligand field parameter Dq is summarized in Table 6. The IrF_6 B, C, and ς_{5d} parameters employed were those obtained for the calculation reported in Table 3. A spin-orbit parameter value of 3,200 cm⁻¹ was used for the ReF_6 gas-to-crystal shift calculations. A tetragonal crystal field calculation for a d³ system was also carried out in order to evaluate site splitting mechanisms. Since appropriate matrix elements for a strong field-double group basis set are not available, these are given in Table 7. Tetragonal field matrix elements were generated by the appropriate basis transformation of Rahman's¹⁴ d³ tetragonal matrix elements for a strong fieldsingle group basis. Transformed tetragonal matrix elements may then be combined with Runciman and Schroeder's⁶ octahedral d³ matrices, since Tanabe and Sugano's phase is used throughout.¹⁵ An example of this calculation is given in Table 8. The appropriate one-electron tetragonal parameters ρ and μ are as follows:

$$\left< t_{2g} \zeta |\hat{0}(\mathbf{e}_{g}, \theta)| t_{2g} \zeta \right> = -\frac{2}{3} \rho$$

$$\left< t_{2g} \zeta |\hat{0}(\mathbf{e}_{g}, \theta)| t_{2g} \zeta \right> = \left< t_{2g} \eta |\hat{0}(\mathbf{e}_{g}, \theta)| t_{2g} \eta \right> = \frac{1}{3} \rho$$

$$\left< \mathbf{e}_{g} \theta |\hat{0}(\mathbf{e}_{g}, \theta)| \mathbf{e}_{g} \theta \right> = - \left< \mathbf{e}_{g} \varepsilon |\hat{0}(\mathbf{e}_{g}, \theta)| \mathbf{e}_{g} \varepsilon \right> = -\frac{1}{2} \mu$$

$$(1)$$

-4-

III. DISCUSSION

A. Calculations of t_{2g}^3 electronic levels of IrF₆

Results of IrF_6 calculations (Table 2) indicate several difficulties with the parametric fit of all the t_{2g}^{3} levels. The main problem seems to be with the Racah parameters (e.g., $B(IrF_6)<0$), although the low spin-orbit value ($z_{5d}(IrF_6) = 3012 \text{ cm}^{-1}$) compared with that of ReF_6^{4} ($z_{5d} - 3200 \text{ cm}^{-1}$) and the large average absolute standard deviation ($\sigma - 250 \text{ cm}^{-1}$) are also disturbing. Note, however, that values obtained for the Racah parameters are not quite as poor as might appear at first glance since only 3B + C is determined directly within the t_{2g}^{3} block. The unphysical negative value for B and the resulting high value for C do, however, indicate that the t_{2g}^{3} levels are perturbed.

A possible cause of the above difficulties might be thought to be neglect of the Trees' correction, which is important for 3d transition metal ions¹³. The calculation for ReF_6^{-2} in Table 2, however, demonstrates that such is not the case for these 5d systems.

The most plausible explanation for the above perturbation is a substantial interaction between the charge-transfer (CT) and ligand field electronic states. If this is the case, one expects that ligand field calculations for ReF_6^{-2} t_{2g}^3 states will be more accurate than those for ReCl_6^{-2} and IrF_6 (see Table 2) due to the proximity of the CT and upper t_{2g}^3 states in the latter two systems (see Table 9). Since only the mixing of even CT states into the 5d- t_{2g}^3 manifold is expected to be important in this context, this correlation requires that a rough equality exists between the onset energies of even and odd CT states in the two ionic systems. This is found to be the case for IrF_6 .¹¹

Another calculation can be done which indicates more directly that CT states do indeed perturb and mix with the t_{2g}^3 manifold. Ligand field para-

-5-

meters in this calculation are optimized to fit only the lowest three excited levels (Table 3), as it is expected that these levels are less perturbed by CT bands. This type of calculation for IrF_6 (Table 3) supports the CT hypothesis in that the resulting parameters (z_{5d} -4000 cm⁻¹, $\frac{C}{B}$ -4), are more reasonable than those obtained for the fit of all five IrF_6 levels (z_{5d} -3000 cm⁻¹, $\frac{C}{B}$ -15). Of course, calculated energies for the r_{7g} ($^2T_{2g}$) and r_{8g} ($^2T_{2g}$) levels are much higher than those observed. The analogous calculations for ReF_6^{-2} and $ReCl_6^{-2}$ yield results expected in this theory: the r_7 ($^2T_{2g}$) and r_8 ($^2T_{2g}$) calculated levels for $ReCl_6^{-2}$ are far from the observed, while those for ReF_6^{-2} are substantially closer.

These considerations all lead to the conclusion that there is a substantial interaction between even CT and t_{2g}^{3} ligand field electronic levels of an isolated gas phase (0^{*}_h) IrF₆ molecule. It is expected that similar interactions exist in other hexahalides with low-lying CT bands (i.e., ReCl₆⁻², ReBr₆⁻², PtF₆, and OsF₆).

In view of the magnitude of the shifts of the Γ_{7g} ($^{2}T_{2g}$) and Γ_{8g} ($^{2}T_{2g}$) levels of IrF_{6} , it is reasonable to assume that the lower levels are also significantly shifted, and thus that the parameter values obtained for IrF_{6} in Table 3 are only approximate. It may be said, however, that the present spin-orbit parameter value ($\zeta_{5d} = 4182 \text{ cm}^{-1}$) is more realistic than that derived by Jorgensen⁸ ($\zeta_{5d} = 3100 \text{ cm}^{-1}$) who based his estimate on the energies of the Γ_{7g} ($^{2}T_{2g}$) and Γ_{8g} ($^{2}T_{2g}$) levels of IrF_{6} .

B. Gas-to-crystal shifts of the t_{2g}^3 levels of IrF6

The gas-to-crystal (GC) shift data for mixed crystals of IrF_6 in UF_6 , WF_6 , and MoF_6 are presented in Tables 4a and 5a; analogous data for ReF_6 are given in Tables 4b and 5b. The IrF_6 mixed crystal data have two notable features:

-6-

GC shifts of the lowest three electronic levels are virtually equal in each host (Table 4a), and the normalized (to the smallest shift in each host) sets of shifts are nearly equal in the three hosts (see Table 5). The shifts themselves appear to be linearly dependent on a single quantity which is varying from host to host. Note that the ReF_6 GC shifts are nearly two orders of magnitude smaller than those found for IrF_6 .

The crystal field (to be distinguished from ligand field) which acts on an IrF_6 molecule at a crystal site is a reasonable candidate for the cause of GC shifts. Thus, the form of the crystal field operator and its effect on various approximate IrF_6 wavefunctions will be examined. Site symmetry of all hexafluoride crystals (except 295 K neat IrF_6) employed in this study is $C_s (\sigma_d)$.¹¹ Since IrF_6 is octahedral in the gas phase, the crystal field operator which acts on the t_{2g} electrons of IrF_6 may be expressed in terms of O_h^* tensor operators¹⁶ as follows:

 $\hat{0}(CF) = \hat{0}(\text{octahedral}) + \hat{0}(\text{tetragonal}) + \hat{0}(\text{trigonal}) + \hat{0}'(t_{2g}, \zeta) + \\ \hat{0}(t_{1g}, x) - \hat{0}(t_{1g}, y) + \hat{0}(\text{ungerade terms})$ (3)

in which

$$\hat{O}(\text{octahedral}) = \hat{O}(a_{lg})$$
$$\hat{O}(\text{tetragonal}) = \hat{O}(e_g, \theta)$$
$$\hat{O}(\text{trigonal}) = \{\hat{O}(t_{2g}, \xi) + \hat{O}(t_{2g}, \eta) + \hat{O}(t_{2g}, \zeta)\}$$

and $\hat{O}'(t_{2g},\zeta)$ is needed to maintain rigorous C_{S}^{*} site symmetry. Gerade terms are given in detail since they are typically the more important; ungerade terms are usually important only in intensity considerations.¹⁶

The 295 K neat IrF_6 crystal GC shift data (Table 5) provide evidence necessary for the determination of the relative importance of each of the terms in Equation 3. Above ~273 K all second and third row transition metal hexa-

-7-

fluoride crystals exhibit a body-centered cubic modification.¹⁷ More detailed crystal structure data on MoF_6^{18} imply that in the cubic modification, hexa-fluoride molecules are undistorted from an octahedral configuration. This argues that non-totally symmetric terms in the crystal field are not of major importance in the cubic crystal. Nonetheless the GC shifts observed in 295 K neat IrF_6 crystals are substantial, about 50% of the shift observed at 2 K.

The conclusion which may be drawn from the above physical arguments is that the totally-symmetric crystal field operator $\hat{O}(a_{1g})$ is probably the dominant one for these considerations. Moreover, it may be shown that none of the nontotally symmetric terms may lead to diagonal matrix elements which could cause an overall GC shift. Non-totally symmetric operators will thereby cause a GC shift only through off-diagonal matrix elements involving sizeable energy denominators. Consequently, subsequent discussion will consider only the effect of $\hat{O}(a_{1g})$.

The GC shifts calculated with the $\hat{O}(a_{1g})$ operator depend critically on the functions chosen to represent the ligand field states. The first approximate wavefunctions of IrF_6 which will be considered are those involving only t_{2g}^3 functions (i.e., all configuration interaction is neglected). If the secular matrix for the octahedral crystal field operator is formed with these functions, it is found to be diagonal with each diagonal element equal to -4Dq'; thus, at this level of approximation no GC shift occurs.

If complete ligand field wavefunctions are considered (i.e., e_g configuration interaction included) then, as illustrated in Table 6, GC shifts are predicted. However, this mechanism can be rejected for three reasons: the increase in the octahedral field necessary to produce shifts of the magnitude

-8-

observed is larger than what is reasonable (10 Dq' ~15,000 cm⁻¹); calculated shifts do not match the observed GC shifts well; and concomitant GC shifts in ReF₆ are not observed.

Considerations in Section IIA led to the conclusion that in gas phase IrF_6 , t_{2g}^{3} levels are perturbed by nearby even charge-transfer (CT) bands; CT character is thereby mixed into these ligand field free molecule wavefunctions. The final approximate wavefunctions considered are these ligand field-CT functions. The GC shift data may be explained if sufficient CT character is present in the above functions to cause diagonal $\hat{O}(a_{1g})$ matrix elements to deviate substantially from the -4 Dq' value mentioned above. However, since there is not an adequate theory which would allow a quantitative assessment of this mechanism, only qualitative remarks are possible. Three points favoring this interpretation are:

- 1) The highest two t_{2g}^{3} levels of IrF_{6} have been strongly repelled by CT bands (~1900 and ~600 cm⁻¹, Table 3). Presumably, the lower three levels are also repelled, both by CT bands and by perturbed Γ_{7g} ($^{2}T_{2g}$) and Γ_{8g} ($^{2}T_{2g}$) levels. The magnitudes of level repulsions imply substantial mixing of t_{2g}^{3} and CT wavefunctions.
- 2) The magnitude of the GC shifts is largest for the Γ_{8g} $(^{2}T_{2g})$ and Γ_{7g} $(^{2}T_{2g})$ levels which are energitically closest to the CT bands.
- 3) The linear behavior of GC shifts with host-to-host variation noted above (see Table 5) agrees with the simple energy expressions implied by this mechanism. These energy expressions depend linearly on an octahedral crystal field parameter which is expected to evidence small variations as a function of host.

-9-

On the other hand, the proposed CT-t_{2g}^n mixing mechanism for GC shifts does not appear to be supported by ReF_6 GC shift data (Table 5b). The ReF_6 GC shifts are not as large as might be expected based on standard second-order perturbation theory and comparison with the GC shift for the $\text{IrF}_6 r_{8g} (^2 T_{1g})$ level considering the energies of the respective CT bands (Table 9). It is however, difficult to comment on this apparent lack of agreement; there are too many unknown quantities involved. Little is known about the detailed nature of the interaction between CT and ligand field states and how the interaction might change from IrF_6 to ReF_6 . Thus, in spite of this point, the CT-admixture mechanism constitutes a reasonable interpretation of the GC shift data.

C. Low symmetry crystal field splitting of the $t_{2g}^3 r_{8g}$ levels of IrF_6

Site splittings of the electronic origins of $t_{2g}^{3} r_{8g}$ levels of IrF_6 in various host crystals are given in Table 10. In contrast to the situation outlined in Section IIIB, non-totally symmetric crystal field operators in Equation 3 are important for this effect. Calculations of site splitting associated with a general low symmetry crystal field (Equation 3) are prohibitively difficult because of the large number of parameters involved. However, it has been demonstrated by crystal structure $(UF_6)^{19}$ and spectroscopic $(MoF_6)^{11}$ data that the (e_g, θ) tetragonal component of the field is probably a reasonable approximation to the field experienced by IrF_6 at host sites. The tetragonal crystal field matrix elements for a complete ligand field basis given in Table 7 were employed in this analysis. Results of this calculation are given in Table 8 and may be compared with experimental data in Table 10. The observed and calculated splitting of the r_{8g} $\langle^2 E_g \rangle$ level are found to be not even in qualitative agreement. In light of preceeding discussion, this discrepancy may be interpreted in terms of CT-admixture

-10-

into the t_{2g}^{3} levels. Clearly both t_{2g}^{3} and charge-transfer states contribute to the observed splittings throughout the manifold. A detailed decomposition of the effects of CT-admixture, tetragonal crystal field, and their interplay with the Jahn-Teller interaction is not apparent at present. However, this subject is treated to some extent in reference 20.

D. Absorption spectra of the Γ_{8g} (²E_g) and Γ_{6g} (²T_{1g}) levels of IrF_6/MoF_6

Existence of a substantial site splitting of the Γ_{8g} ($^{2}E_{g}$) level at 8200 cm⁻¹ was important for the assessment of crystal field charge-transfer effects on IrF₆ Γ_{8g} states (Section IIIC). Since assignment of a 30.6 cm⁻¹ site splitting of this level is not entirely obvious from the origin spectrum presented in Figure 1, it is necessary to indicate how this determination is made. Such an assignment becomes evident from an examination of the bending region (Figure 2 and Table 1) in which v_6 and v_4 are seen to have equally intense components separated by roughly 30 cm⁻¹. It should be noted that observation of crystal field splitting of the level at -8200 cm⁻¹ provides the first strong evidence that the assignment of the level as Γ_{8g} ($^{2}E_{g}$) is correct. Previous arguments were based on the observation of one component of the supposition that its change in energy from that observed in the ground state is due to a Jahn-Teller interaction.⁹

The linewidths, especially of the origins and v_6 , are larger than is typical for the rest of the t_{2g}^3 manifold. This may be due to the proximity of r_{8g} (2E_g) and r_{6g} ($^2T_{1g}$) levels to the r_{8g} ($^2T_{1g}$) level at 1.6 µm. Vibronic coupling between these states could lead to fast relaxation which would broaden the transitions.

Broad lines and overlap of the Γ_{8g} ($^{2}E_{g}$) and Γ_{6g} ($^{2}T_{1g}$) manifolds have inhibited interpretation of the vibronic portion of the spectrum. Nonetheless, a weak Jahn-Teller interaction (D₅ = 0.03)¹¹ may be identified for the v_{5} (t_{2g}) vibration in the Γ_{8g} ($^{2}E_{g}$) electronic manifold (see Figure 2 and Table 1).

IV. CONCLUSIONS

The main conclusion which may be drawn from this investigation is that the interaction of even charge-transfer (CT) bands with the t_{2g}^{3} levels of free molecule IrF_6 is sufficiently strong to effect their detailed behavior. The following appear to be manifestations of the admixture of CT character into the t_{2g}^{3} levels:

- 1) Failure of ligand field theory to give a reasonable parametric fit to all of the observed gas-phase t_{2g}^{3} energies.
- 2) Substantial gas-to-crystal shifts for the t_{2q}^{3} levels.
- 3) Tetragonal crystal field splitting of the Γ_{8q} ($^{2}E_{q}$) level.

In spite of the CT interaction, rough ligand field theory parameters (B, C, c_{5d}) have been determined based on the lower three excited t_{2g}^3 levels (Table 3). It is found that the spin-orbit parameter is larger than pre-viously believed.

Conclusive evidencé for the assignment of the r_{8g} ($^{2}E_{g}$) level of IrF_{6} is found, based on site splitting of the origin. A small linear JT interaction has been identified in this state for the v_{5} mode ($D_{5} \sim 0.03$).

REFERENCES

1.	C.	κ.	Jorgensen,	Acta	Chem.	Scand.	12,	1539	(1958).	
----	----	----	------------	------	-------	--------	-----	------	---------	--

- W. Moffitt, G. L. Goodman, M. Fred, B. Weinstock, Mol. Phys. 2, 109 (1959).
- 3. C. K. Jorgensen, Mol. Phys. 3, 201 (1960).
- 4. J. C. Eisenstein, J. Chem. Phys. <u>33</u>, 1530 (1960).
- 5. B. N. Figgis, J. Lewis, F. E. Mabbs, J. Chem. Soc. 1961, 3138 (1961).
- W. A. Runciman, K. A. Schroeder, Proc. Roy. Soc. (London) <u>A265</u>, 489 (1962).
- 7. C. K. Jorgensen, Adv. Chem. Phys. V, 33 (1963).
- 8. C. K. Jorgensen, Z. Naturforschg. 20a, 65 (1965).
- 9. J. C. D. Brand, G. L. Goodman, B. Weinstock, J. Mol. Spec. 37, 464 (1971).
- a) J. C. Eisenstein, J. Chem. Phys. <u>34</u>, 1628 (1960).
 b) J. C. Eisenstein, J. Chem. Phys. <u>35</u>, 2246 (1961).
- 11. E. R. Bernstein, J. D. Webb, Mol. Phys., in press.
- 12. E. R. Bernstein, J. D. Webb, Mol. Phys., in press.
- 13. J. Ferguson, D. L. Wood, Austral. J. Chem. 23, 861 (1970).
- 14. H. U. Rahman, Physica 53, 256 (1971).
- 15. Y. Tanabe, S. Sugano, J. Phys. Soc. Japan 9, 753 (1954).
- S. Sugano, Y. Tanabe, H. Kamimura, "Multiplets of Transition-Metal Ions in Crystals," (Academic Press, NY, 1970).
- 17. S. Siegel, D. A. Northrop, Inorg. Chem. 5, 2187 (1966).
- J. H. Levy, D. L. Sanger, J. C. Taylor, P. W. Wilson, Acta Cryst. <u>B31</u>, 1065 (1974).
- 19. J. C. Taylor, P. W. Wilson, J. W. Kelly, Acta Cryst. <u>B29</u>, 7 (1973).
- 20. G. R. Meredith, J. D. Webb, E. R. Bernstein, Mol. Phys. 34, 995 (1977).

Table 1. Th	le absorption spectr	ra of the I	$^{8g}_{8g}$ $(^{2}E_{g})$ an	d ₇ 6g (² T ₁ g) lev	els of IrF ₆ /MoF	6 at 1.6 K with 1 cm ⁻¹
slitwidths.	The accuracy is ap	oproximatel	y ± 0.5 cm			
Air (Å)	σ _{Vacuum} (cm ⁻¹)	I (a)	FWHH ^(b)	Δσ1(cm ⁻¹)(c)	$\Delta \sigma_2(cm^{-1})(d)$	Assignments
12218.9	8181.8	Σ	10	0		0rigin(a) $\{\Gamma_{8g}(^{2}E_{g})\}$
12173.3	8212.4	з	7	30.6		Origin(b) { $\Gamma_{8q}(^{2}E_{g})$ }
11908.2	8395.3	Σ	16	213.5		v ₆ (a) {r _{8g} (² E _g)}
11869.5	8422.6	 -	81	240.8		$v_{5}(J_{5}=3/2)\{\Gamma_{8g}(^{2}E_{g})\}$
11862.5	8427.6	Σ	<u>o</u>	245.8		v ₆ (b) {r _{8g} (² E _g)}
11814.5	8461.9	ہ س	16	280.1		$v_{5}(J_{5}=1/2)\{\Gamma_{8q}(^{2}E_{q})\}$
11808.9	8465.9	×	2	284.1		$v_4(a) \{\Gamma_{8q}(^2 E_q)\}$
11767.3	8495.8	Σ	13	314.0		$v_{4}(b) \{\Gamma_{8q}(^{2}E_{q})\}$
11460.9	8722.9	Σ	12	541.1	0	Origin{r _{6q} (² T _{1q})}
11394.4	8773.8	3		592.1	51.0	Phonons{T _{6q} (² T _{1q})}
11295.7	8850.5	3	7	668.7	127.6	$v_{2}\{\Gamma_{Bq}({}^{2}_{E_{j}})\}$ (?)
11206.5	8920.9	з		739.2	198.1	D 1
11182.7	8939.9	s	21	758.1	217.0	v ₆ {r _{6q} (² T _{1q})}
11164.5	8954.5	¥		7.2.77	231.6	
11121.3	8989.3	Σ		807.5	266.4	vs{F6q(² T1q)}
11105.8	9001.8	s		820.0	278.9	v4{r6g(² T1g)}
11081.3	9021.7	я		839.9	298.8	2
11039.3	9056.1	з		874.3	333.2	$(v_2 + v_6)(a)\{\Gamma_{gg}(^2E_g)\}$ (?)

continued...

Table 1. (continued)

평

57.49123.8W941.9400.8 $(v_2 + v_4)(a)\{\Gamma_{Bg}(^2F_{1g})$ 59.39206.2W1024.4483.3 $(v_5 + v_6)(\Gamma_{Fg}(^2T_{1g})$ 89.99265.4W1083.6542.5 $(v_5 + v_4)(\Gamma_{6g}(^2T_{1g})$ 812.19420.6W1238.8697.7 $v_3(\Gamma_{6d}(^2T_{1g}))$	r (Å)	^a Vacuum (cm ⁻¹)	I (a)	FWHH ^(b)	Δσ1(cm ⁻¹)(c)	Δσ ₂ (cm ⁻¹)(d)	Assignments
9.3 9206.2 W 1024.4 483.3 $(v_5 + v_6)$ { $\Gamma_{6g}({}^{2}T_{1g})^{2}$ 9.9 9265.4 W 1083.6 542.5 $(v_5 + v_4)$ { $\Gamma_{6g}({}^{2}T_{1g})^{2}$ 2.1 9420.6 W 1238.8 697.7 v_3 { $\Gamma_{6g}({}^{2}T_{1g})^{3}$	7.4	9123.8	3		941.9	400.8	$(v_2 + v_4)(a)\{\Gamma_{Bq}(^2E_q)\}$ (?)
9.9 9265.4 W 1083.6 542.5 $(v_5 + v_4) \{\Gamma_{6g}^{2}(^{2}\Gamma_{1g}^{1})$ 2.1 9420.6 W 1238.8 697.7 $v_3 \{\Gamma_{6g}^{2}(^{2}\Gamma_{1g}^{1})\}$	9.3	9206.2	з		1024.4	483.3	$\{v_5 + v_6\} \{\Gamma_{6q}(^2T_{1q})\}$
2.1 9420.6 W 1238.8 $697.7 v_3 \{\Gamma_{6q}(^2 T_{1q})\}$	9.9	9265.4	3		1083.6	542.5	$\{v_5 + v_4\} \{\Gamma_{60}(^2 T_{10})\}$
	2.1	9420.6	з		1238.8	697.7	va {r _{6g} (² T _{1g})}

- Intensity: S = strong, M = medium, W = weak. a)
- FWHH = full width at half-height. 9

· -- ·

•

c) Energy (cm⁻¹) relative to the
$$r_{8g}$$
 (² E_{g}) origin (a).

d) Energy (cm⁻¹) relative to the
$$r_{6g}$$
 (² T_{1g}) origin.

Table 2. Comparison of ligand field calculations of the t_{2a}^{3} levels of some 5d³ systems (IrF₆, ReF₆⁻², ReC1₆⁻²). Eisenstein's^(a) energy matrix for d^3 was used along with a linear least squares fitting routine which optimized the fit for all five levels. B and C are Racah's electrostatic parameters, ζ_{5d} is the spinorbit coupling parameter, and 10 Dq is the ligand field parameter. Only B, C, $^{\zeta}_{5d}$ were varied. The various r_{ig} label the t_{2g}^{3} levels. All the values are given in wavenumbers a) IrF₆ (Vapor) $\Gamma_{8g}(^{2}T_{1g}) \Gamma_{8g}(^{2}E_{g}) \Gamma_{6g}(^{2}T_{1g}) \Gamma_{7g}(^{2}T_{2g}) \Gamma_{8g}(^{2}T_{2g})$ Observed: (b) 6261 8333 8858 12328 15156 Calculated: 6561 8397 8180 12345 15344 Parameters: B = -221, C = 3188, $\zeta_{5d} = 3012$, 10 Dq = $35000^{(C)}$, 3B + C = 2525. Avg. Abs. Deviation^(g): 250. b) $\operatorname{ReF}_{c}^{-2}$ 9080^(b) 10130^(b) 11160^(b) 17390^(d) 18670^(d) Observed: 11197 17329 Calculated: 9033 10278 18641 Parameters: B = 665, C = 1504, ζ_{5d} = 3019, 10 Dq = 33100⁽⁾, 3B + C = 3499. Avg. Abs. Deviation: 64. c) ReCl₆⁻² Observed: (f) 7600(b) 8906 9344 13840 15298 Calculated: 7748 8839 8844 13952 15443 Parameters: B = 4, C = 2820, $\zeta_{5d} = 2254$, 10 Dq = $30347^{(f)}$, 3B + C = 2832. Avg. Abs. Deviation: 194. a) References 10a, b. Reference 9. b) The 10 Dq value of 35000 cm⁻¹ was chosen on the basis of ReF_6^2 data^(d), ReF_6 data⁽²⁾, and expected trends. The results are not very sensitive to the value of this parameter. d) J. A. LoMenzo, S. Strobridge, H. H. Patterson, J. Mol. Spec. <u>00</u>, 100 (1977).
 e) The 10 Dq value used is taken from ref. d. The parameter values for B, C, ζ found here are probably less realistic than those in ref. d since their data on the ⁴T₂g levels was utilized. However, this calculation is for comparison purposes with the IrF₆ calculation only. g) Average Absolute Deviation of the calculated energies from the observed energies. Table 3. Comparison of the ligand field calculations of the t_{2g}^{3} levels of come 5d³ systems (IrF₆, ReF₆⁻², ReCl₆⁻²). This table is similar to Table 2 except that the linear least square fit was optimized for only the lowest three t_{2g}^{3} levels. The predicted energies of the highest two levels are given in parentheses. Note that the highest two levels are calculated as being much higher than observed for IrF₆ and to a lesser extent for ReCl₆⁻² and ReF₆⁻² (see text).

a)	IrF ₆	r _{8g} (² T _{1g})	г _{8g} (² Е _g)	r _{6g} (² т _{1g})	r _{7g} (² T _{2g})	r _{8g} (² T _{2g})
	(a) Observed:	6261	8333	8858	12328	15156
Par	ameters: B =	6275 297, C = 116	8322 7, 5 _{5d} = 4	8793 182, 10 Dq =	(12922) 35000, 3B +	(17084) - C = 2058.

b) $\operatorname{ReF}_{6}^{-2}$

Observed: $9080^{(b)}$ $10130^{(b)}$ $11160^{(b)}$ $17390^{(c)}$ $18670^{(c)}$ Calculated:90801013011160(17102)(18046)Parameters:B = 792, C = 1179, ζ_{5d} = 2745, 10 Dq = 33000, 3B + C = 3555.

c) ReC1_6^{-2}

o (d)
Observed:7600 (b)890693441384015298Calculated:760089069344(14704)(16349)Parameters:B = 333, C = 1873, ζ_{5d} = 2792, 10 Dq = 31000, 3B + C = 2872.

a) Reference 9.

b) Reference 8.

c) Reference d, Table 2.

d) Reference f, Table 2.

Table 4. a) Energies of the t_{2g}^{3} levels of IrF_{6} in the gas phase and in various crystals. For the Γ_{8g} levels, which are slightly split by a lowsymmetry crystal field, the center of gravity is given. b) Energies of the t_{2g} levels of ReF_6 in the gas phase and in various crystals. The split ${\rm F}_{\rm 8g}$ levels are treated as above.

a) IrF ₆		•	0	•	•	0
	$r_{8g}(^{4}A_{2})$	r _{8g} (² T _{1g})	Γ _{8g} (² E _g)	^r 6g ⁽² T _{1g})	Γ _{7g} (² T _{2g})	Γ _{8g} (² Τ _{2g})
(a) IrF ₆ (Vapor)	0	6261	8333	8858	12328	15156
Neat IrF_6 (~2.2 K) ^(a)	0	6114	8177	8701	12060	14878
Neat IrF (295 K) 6	0	6188	8256	8779	12177	14947
IrF ₆ /UF ^(b)	0	6111	8185	8708	12082	14883
$IrF_{6}/WF_{6}^{(b)}$	0	6135	8206	8730	12118	14926
IrF ₆ /MoF ₆	0	6123 ^(c)	8194 ^(d)	8720 ^(d)	12093 ^(e)	14901 ^(e)

ReF₆ b)

	г _{8g} (² т _{2g})	r _{7g} (² τ _{2g})
ReF ₆ (Vapor)(f)	0	5001
ReF ₆ /UF ₆ (g)	0	5003
$\text{ReF}_{6}/\text{WF}_{6}^{(g)}$	0	5001
ReF ₆ /MoF ₆ (g)	0	4997

Reference 9. a)

E. R. Bernstein, J. D. Webb, unpublished results. b)

- c) Reference 11.
- d) Table 1.
- Reference 12. e)
- J.C.D. Brand, G. L. Goodman, B. Weinstock, J. Mol. Spec. <u>38</u>, 449 (1971). E. R. Bernstein, G. R. Meredith, J. Chem. Phys. <u>64</u>, 375 (1976). f
- **q**)

Table 5. a) Gas-to-crystal shifts in cm⁻¹ ($\Delta\Gamma = \Gamma$ (crystal) - Γ (gas)) for mixed and neat crystals of IrF₆ (see Table 4a). The parenthetical numbers represent the shifts as normalized to the smallest shift for a given host.

a) IrF₆

	⁴⁷ 8g ⁽² T _{1g})	лг _{8g} (² E _g)	ΔΓ _{8g} (² τ _{1g})	ΔΓ _{7g} (² Τ _{2g})	۵۲ _{8g} (² ۲ _{2g})
MIXED CRYSTALS					
IrF ₆ /UF ₆	-150	-148	-150	-246	-272
	(1.01)	(1.00)	(1.01)	(1.66)	(1.84)
IrF ₆ /WF ₆	-126	-127	-128	-210	-230
	(1.00)	(1.01)	(1.02)	(1.67)	(1.82)
IrF ₆ /MoF ₆	-138	-139	-138	-235	-255
	(1.00)	(1.01)	(1.00)	(1.70)	(1.85)
NEAT CRYSTALS					
IrF ₆ (~2.2 K)	-147	-156	-157	-268	-278
	(1.00)	(1.06)	(1.07)	(1.82)	(1.89)
IrF ₆ (295 K)	- 73	- 77	- 79	-151	-209
	(1.00)	(1.05)	(1.08)	(2.07)	(2.86)

b) Gas-to-crystal shifts for mixed crystals of ReF₆ (see Table 4b).

	ΔΓ _{7g} (² τ _{2g})
ReF ₆ /UF ₆	2
ReF ₆ /WF ₆	0
ReF ₆ /MoF ₆	3

Table 6. Calculated energies (cm^{-1}) of the upper t_{2g}^{3} levels of IrF_6 and the higher t_{2g} level of ReF₆ as a function of 10 Dq. Full $5d^3 e_g - t_{2g}$ wave functions and configuration interaction are used. The electrostatic and spinorbit parameters (all in wavenumbers) used for IrF_6 are the following: B = 297, C = 1167, ζ_{5d} = 4182. The spin-orbit parameter used for ReF₆ is ζ_{5d} = 3200. The parenthetical numbers represent a gas-to-crystal shift if 10 Dq = 35,000 cm⁻¹ represents the gas phase value, while the 10 Dq values across the top of the table are taken to represent those in the crystal.

10 Dq	25000	30000	35000	40000	45000	50000
Irf ₆						
^г 8g ⁽² т _{1g})	6390	6324	6275	6238	6209	6185
	(115)	(49)	(0)	(-37)	(-66)	(-90)
г _{8g} (² E _g)	8438	8370	8322	8285	8275	8234
	(116)	(48)	(0)	(-37)	(-47)	(-88)
r _{6g} (² τ _{1g})	9028	8895	8793	8712	8646	8592
	(235)	(102)	(0)	(-81)	(-147)	(-201)
r _{7g} (² T _{2g})	13096	13006	12922	12849	12786	12733
	(174)	(84)	(0)	(-73)	(-136)	(-189)
r _{8g} (² T _{2g})	17341	17205	17084	16983	1 6899	16829
	(257)	(121)	(0)	(-101)	(-185)	(-255)

ReF₆

r _{7g} (² T _{1g})	5365	5278	5215	5166	5127	5096
	(150)	(63)	(0)	(-49)	(-88)	(-119)

1 of 3 pages

is that of Runciman and Schroeder^(b) since these matrix elements are combined with theirs to obtain the full double group basis. ρ and μ are defined by Rahman^(a) and in the text. The ordering of the basis functions Table 7. Tetragonal d 3 crystal field matrix elements in a strong field-double group $0^{\star}_{\rm h}$ basis. The matrix d^3 matrices. The Γ_6 (0^*_h) and Γ_7 (0^*_h) basis functions are numbered from 22-30, while Γ_8 (0^*_h) are numbered from 1-21. The D_4^* matrix elements are obtained in 2 blocks, Γ_{6g} (D_4^*) and Γ_{7g} (D_4^*). The correlation elements were obtained by transforming Rahman's^(a) tetragonal matrix elements from a single group to a between 0_h^* and $D_{4}_h^*$ is such that: $\Gamma_{6g} + \Gamma_{6g}$, $\Gamma_{7g} + \Gamma_{7g}$, and $\Gamma_{8g} + \Gamma_{6g} + \Gamma_{7g}$.

 Γ_{6g} ($D_{4}^{*}h$): Γ_{8g} (D_{h}^{*}) - Γ_{8g} (D_{h}^{*}) Sub-block

$E6(3,4) = -\sqrt{\frac{3}{3}}p$	$E6(6,8) = -\frac{1}{5}\mu$	$E6(12,12) = \frac{1}{3} p + \frac{1}{4} p$	$E6(17,17) = -\frac{1}{3}p$
$E6(5,5) = -\frac{4}{15}\rho + \frac{1}{5}\mu$	$E6(7,7) = \frac{4}{15} p + \frac{1}{5} \mu$	$E6(12,14) = \frac{1}{4} u$	$E6(18,18) = -\frac{1}{3}p$
$E6(5,6) = \frac{1}{5}\rho - \frac{3}{20}\mu$	$E6(7,8) = -\frac{1}{5}\rho - \frac{3}{20}\mu$	$E6(13,13) = -\frac{1}{3}n - \frac{1}{4}n$	$E6(18,19) = \frac{1}{2} \mu$
$E6(5,7) = \frac{1}{5} \mu$	$E6(8,8) = -\frac{4}{15}p - \frac{1}{5}\mu$	E6(14,14) = $-\frac{1}{3}p + \frac{1}{4}p$	$E6(19,19) = \frac{1}{3} p$
$E6(5,8) = -\frac{3}{20} \mu$	$E6(9,10) = \frac{2}{3}p$	$E6(15,15) = \frac{4}{15} p$	$E6(19,20) = -\frac{1}{2}\mu$
$E6(6,6) = \frac{4}{15} \rho - \frac{1}{5} \mu$	$E6(11,11) = \frac{1}{3}p - \frac{1}{4}u$	$E6(15,16) = -\frac{1}{5} p$	$E6(20,20) = \frac{1}{3} p$
$E6(6,7) = -\frac{3}{20} \mu$	$E6(11,13) = -\frac{1}{4} \mu$	$E6(16,16) = -\frac{4}{15}p$	$E6(21,21) = \frac{1}{5} \mu$

2 of 3 pages "

Table 7. (continued)

 r_{6g} (0_4 ⁺): r_{8g} (0_h ⁺) - r_{6g} (0_h ⁺) Sub-block

$$E6(4,22) = -\frac{16}{3} \rho$$

$$E6(7,23) = -\frac{5}{20} \mu$$

$$E6(7,23) = -\frac{5}{20} \mu$$

$$E6(7,24) = \frac{\sqrt{5}}{5} \rho + \frac{375}{2} \mu$$

$$E6(11,26) = \frac{2}{3} \rho + \frac{1}{2} \mu$$

$$E6(16,28) = \sqrt{5} \rho$$

$$E6(12,23) = -\frac{\sqrt{5}}{20} \mu$$

$$E6(8,23) = -\frac{315}{20} \mu$$

$$E6(8,23) = -\frac{315}{20} \mu$$

$$E6(12,23) = \sqrt{\frac{2}{5}} \rho + \frac{\sqrt{2}}{4} \mu$$

$$E6(12,23) = \sqrt{\frac{2}{5}} \rho + \frac{\sqrt{2}}{4} \mu$$

$$E6(13,26) = \sqrt{\frac{2}{5}} \rho + \frac{\sqrt{2}}{4} \mu$$

$$E6(13,26) = -\sqrt{\frac{2}{5}} \rho$$

$$E6(14,27) = -\sqrt{\frac{2}{4}} \mu$$

$$E6(14,27) = -\sqrt{\frac{2}{4}} \mu$$

$$E6(14,27) = -\sqrt{\frac{2}{4}} \mu$$

$$E6(19,30) = -\sqrt{\frac{2}{3}} \rho$$

 Γ_{7g} (D_4h): Γ_{8g} (0_h) - Γ_{8g} (0^*) Sub-block E7 (i,j) = - E6(i,j) i, j ≤ 21 3 of 3 pages

Table 7. (continued)

 $E7(20,30) = -\frac{\sqrt{2}}{3}\rho$ $E7(19,29) = -\frac{\sqrt{2}}{3}\rho$ $E7(20,29) = \sqrt{\frac{2}{2}} \mu$ $E7(19,30) = \sqrt{\frac{2}{2}}$ $E7(14,27) = \frac{\sqrt{2}}{3}\rho - \frac{\sqrt{2}}{4}\mu$ $E7(13,26) = \frac{\sqrt{2}}{3}\rho + \frac{\sqrt{2}}{4}\mu$ $E7(16,28) = -\frac{\sqrt{5}}{15}\rho$ $E7(15,28) = \sqrt{\frac{5}{5}} \rho$ $E7(12,27) = \frac{\sqrt{2}}{4} \mu$ $E7(18,29) = \sqrt{\frac{2}{2}} \mu$ $E7(7,24) = -\sqrt{\frac{5}{15}}\rho - \sqrt{\frac{5}{20}}\mu$ $E7(8,24) = -\sqrt{\frac{5}{5}}\rho - \frac{375}{20}\mu$ $E7(10,25) = \frac{2}{3}\rho + \frac{1}{2}\mu$ $E7(11,26) = -\frac{\sqrt{2}}{4}\mu$ $E7(8,23) = \frac{\sqrt{5}}{20} \mu$ $E7(9,25) = -\frac{2}{3}\rho$ Γ_{7g} (D₄h): Γ_{8g} (0*) - Γ_{7g} (0*) Sub-block $E7(5,23) = -\frac{\sqrt{5}}{5}\rho + \frac{3\sqrt{5}}{20}\mu$ $E7(6,23) = \sqrt{5}{15}\rho - \frac{\sqrt{5}}{20}\mu$ $E7(7,23) = -\frac{3\sqrt{5}}{20}\mu$ $E7(6,24) = \frac{3\sqrt{5}}{20}\mu$ $E7(3,22) = -\frac{\sqrt{6}}{3}p$ $E7(5,24) = \frac{\sqrt{5}}{20} \mu$ a) Reference 14.

b) Reference 6.

Table 8. Site splitting of r_{8g} levels of IrF_6 - results of a tetragonal crystal field calculation for the t_{2g}^{3} levels with the parameters: B = 340, C = 1117, ζ_5 = 3987, 10 Dq = 35000 cm⁻¹ (a), and tetragonal parameters ρ and μ . These latter parameters are defined in Equations 1 and 2 and are given here in cm⁻¹ (see text). The splittings of the r_8 states as a function of these parameters is given in cm⁻¹.

ρ	μ	Γ ₈ (⁴ A ₂)	г ₈ (² т _{1g})	г _{8g} (² Е _g)	г ₈ (² т _{2g})
52	0	10	28	0.1	38
52	100	8.7	27	0.1	38
52	500	2.6	25	0.1	37

a) These parameter values were chosen to match the IrF_6/MoF_6 data with a Jahn-Teller correction of 100 cm⁻¹ added to the r_{8g} ($^2T_{1g}$) experimental energy. However, the results, especially the splitting of the r_{8g} (2E_g) level, are not sensitive to the choice of parameters.

Table 9. Onset frequencies (cm^{-1}) of the intense charge-transfer bands in various hexahalides.

	IrF ₆ (a)	ReF ₆ (a)	$\operatorname{ReF}_{6}^{-2}(b)$	ReC1 ₆ -2 ^(b)	UF ₆ (c)	$WF_6^{(d)}$	MoF ₆ (d)
σct	18500	24000	>35000	21000	24500	60000	50000
			Ş				

- a) Reference 2.
- b) Reference 8. It is stated in reference e that the near UV bands in ReCl_6^{-2} are ligand field bands rather than charge transfer bands; however, recent work(f) has shown that the original charge transfer assignment(8) is correct.
- c) R. S. McDowell, S. W. Rabideau, A. H. Zeltmann, R. T. Paine, J. Chem. Phys. <u>65</u>, 2707 (1976).
- d) R. McDiarmid, J. Mol. Spec. 39, 332 (1971); J. Chem. Phys. 61, 3333 (1974).
- e) P. B. Dorain, R. G. Wheeler, J. Chem. Phys. 45, 1172 (1966).
- f) J. C. Collingwood, S. B. Piepho, R. W. Schwartz, P. A. Dobosh, J. R. Dickinson, P. N. Schatz, Mol. Phys. <u>29</u>, 793 (1975).

a row symmetry	crystar rieru,	given in wavenum	bers. compare w	ath lable 8.
	г _{8g} (⁴ А ₂)	r _{8g} (² T _{1g})	г _{8g} (² Е _g)	г _{8g} (² т _{2g})
(a) IrF ₆ /UF ₆	10.0	61.9	53.0	66.4
IrF ₆ /WF ₆ ^(a)	5.7	38.6	34.8	46.3
IrF ₆ /MoF ₆	5.2 ^(b)	34.7 ^(c)	30.6 ^(d)	42.1 ^(b)

Table 10. Splittings of r_{8g} levels of IrF_6 in various mixed crystals by a low symmetry crystal field, given in wavenumbers. Compare with Table 8

a) E. R. Bernstein and J. D. Webb, unpublished results.

- b) Reference 12.
- c) Reference 12.
- d) Table 1.

Figure 1.

Origin of the Γ_{8g} ($^{2}E_{g}$) electronic state of IrF_{6}/MoF_{6} . The origin is split by a low symmetry crystal field; see Figure 2 for verification of this assignment.

Figure 2.

Vibrational bending region of the r_{8g} ($^{2}E_{g}$) electronic state of IrF_{6}/MoF_{6} . Note that the -30 cm⁻¹ spacing of the $v_{6}(t_{2u})$ and $v_{4}(t_{1u})$ components matches the origin splitting, verifying that the observed lines are due to a low symmetry crystal field splitting. A small linear Jahn-Teller splitting of $v_{5}(t_{2g})$ is also apparent.

TECHNICAL REPORT DISTRIBUTION LIST

•

. ...

No. C	optes	No. (Copies
Office of Naval Research Arlington, Virginia 22217 Attn: Code 472	2	Defense Documentation Center Building 5, Cameron Station Alexandria, Virginia 22314	12
Office of Naval Research Arlington, Virginia 22217 Attn: Code 102IP 1	6	U.S. Army Research Office P.O. Box 12211 Research Triangle Park, N.C. 27709 Attn: CRD-AA-IP	1
ONR Branch Office 536 S. Clark Street Chicago, Illinois 60605 Attn: Dr. Jerry Smith	1	Naval Ocean Systems Center San Diego, California 92152 Attn: Mr. Joe McCartney	1
ONR Branch Office 715 Broadway New York, New York 10003 Attn: Scientific Dept.	1	Naval Weapons Center China Lake, California 93555 Attn: Head, Chemistry Division	1
ONR Branch Office 1030 East Green Street Pasadena, California 91106 Attn: Dr. R. J. Marcus	1	Naval Civil Engineering Laboratory Port Hueneme, California 93041 Attn: Mr. W. S. Haynes	1
ONR Branch Office 760 Market Street, Rm. 447 San Francisco, California 94102 Attn: Dr. P. A. Miller	1	Professor O. Heinz Department of Physics & Chemistry Naval Postgraduate School Monterey, California 93940	1
ONR Branch Office 495 Summer Street Boston, Massachusetts 02210 Attn: Dr. L. H. Peebles	1	Dr. A. L. Slafkosky Scientific Advisor Commandant of the Marine Corps (Code Washington, D.C. 20380	RD-1) 1
Director, Naval Research Laborato Washington, D.C. 20390 Attn: Code 6100	nry 1	Office of Naval Research Arlington, Virginia 22217 Attn: Dr. Richard S. Miller	1
The Asst. Secretary of the Navy (Department of the Navy Room 4E736, Pentagon Washington, D.C. 20350	R&D) 1		
Commander, Naval Air Systems Comm Department of the Navy Washington, D.C. 20360 Attn: Code 310C (H. Rosenwasser)	nand 1		

TECHNICAL REPORT DISTRIBUTION LIST

No. Copies

1

1

Dr. M. A. El-Sayed Dr. G. B. Schuster University of California University of Illinois Department of Chemistry Chemistry Department Los Angeles, California 90024 1 Urbana, Illinois 61801 Dr. M. W. Windsor Dr. E. M. Eyring Washington State University University of Utah Department of Chemistry Department of Chemistry 1 Pullman, Washington 99163 Salt Lake City, Utah Dr. E. R. Bernstein Dr. A. Adamson Colorado State University Department of Chemistry Department of Chemistry Fort Collins, Colorado 80521 1 Dr. C. A. Heller Dr. M. S. Wrighton Naval Weapons Center Department of Chemistry China Lake, California 93555 1 Dr. M. H. Chisholm Dr. M. Rauhut

Princeton University Department of Chemistry Princeton, New Jersey 08540 Dr. J. R. MacDonald

Naval Research Laboratory **Chemistry Division** Code 6110 Washington, D.C. 20375

....

Code 6059

University of Southern California Los Angeles, California 90007

Massachusetts Institute of Technology Cambridge, Massachusetts 02139 1

American Cyanamid Company Chemical Research Division Bound Brook, New Jersey 08805

No. Copies

1

1

1

1