
-
u v - -

-
,

AD AOS3 013 SPERRY UNIVAC ST PAUL MINN DEFENSE SYSTEMS DIV FIG 9/2
RECONFIGURABLE COMPUTER SYSTEM DESIGN FACILITY INITIAL DESIGN S——ETCCW
,JAN 78 D R ANDERSON, L D ANDERSON. K V WEN F30602—76—C—0355

UNCLASSIFIED RA DC— TR—75—6—VO L—2 NL

_ I NHUI

_ _

U

___ _ __ _ _ _

—
— .

‘*~fl~ ~~~~~~ ~

~~~~~~~~~ 
~~~~~~~~~~~ f~~

P148-S. Vot~e fl (of two)•
~.chnicat Me9ort V ~~~~

Jsfluary -~I*
:0 •

~~~ ~E~ NFIG~ MLE cCNPUTER SYSTEI ~~~~ FACILITY
IkiliAL OESIGN STL~)Y, Tech,dól Pisutts

L T

r _ _ _ _ _ _ _ _

~~provsd for public • tel.... ; dietributton im11i~tid.

~ 
•

V
• •

V
•
~4_  ~~~~~ 

~~
V
~ :~~

V V 
~~ r~~~

‘ V 
V •

~~~~~• :,;~~~
• VV ;

~~~ •~~~~:~~~~ 4 V ,~!~~~
V • • ‘t V.

~~~ ~~4•• ~~~~~ • 
V

- ~~~~~~~~~~ ~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

•

~
- t •

~- .,—

-
~~~

...‘ ‘.-, 
- .

.

~ ~~~~~~~~~~

yr 

_ _  
_

~~PR~~1D 7)~4~4~ ~PU~~*$L A. ~~~~~~~~ 2Lt, USA?
Proj set ~~tsssr -

. 
-

~~~ °“~ ~~~~~~~~~~~~~~~~
MLII C. Id~~, ColosLs4 USA?

~ 1sf , ~~~~~~~~~ 1c1 s Dtwts~tø~

3 P.IUSs
Actiii C1d.f , Piass OU

.‘

~~, -

r

~
;r ~~~~~

- ‘
--
~~~~~~~

- - .

I
- 

6

:~~~



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~- - — - - ~.--,-~~——~~~~~--.- 
-
~~~~~~

,----—-

- ~~~~~~~‘2 ‘7~/~~ 
- ¶

UNCLASSIFIED — - 
~~~ 

-

SECURITY CLASSIFICATION OF THIS PAGE (I~I.n 5.1. tnS.r.d)

• (i ~ ,) REPORT DOCUMENTATION PAGE

V~~’ /~ I. REPO ~• “ 2. GOVT ACCESSION NO CIPIENT’S CATALOG NUMSER(~ ~i ~~~~~78—61,.~~~~~~~~~of two)
~~~~

•

~~~~~ ~~XLIL&4 ~ 
— 5. TYPE OF REPORT & PERIOO COVERED

(~ J~CONFIGURABLE 1PUTER 4YSTEM~~ESIGN !ACILITY / Final T~chnic4 ~ ep~~
’t T.~

- ,~j
~~

INITIAL DESIGN~~TUDY, Technical Resulfi , ~~~~~~~~~ 30 JwI 76 — ~~~~ 1 T7 /

~~~~~~ 

. 

‘
— 

d .-t u4Ybi~*sso O~~5. SIR

~~~AUTH ~ S. CONTRACT ORGRANT NUM•ER(a)

~~I

_ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _

S. PERW Ii1IING0*OAN IZAT IO H NAM E AND ADD RESS IC. PROG~~AM ELEMCNT, PROJ~~CT . TASK

Sperry Univac Defense Systems
Univac Park, P.O. Box 3525 ~~~~~~~~~~ j~~O2F /7 /
St. Paul MN 55165 5597 408

II. CONTROLLING OPPICE NAME AND ADDRESS ~~~~~~~~~~~~~~ r
~ AT.L~1

-
-

j Jan _
- 7 8J

Rome Air Development Center (ISCA) / I IS. NUMSER O~~ FA ~~ES

Griffiss AFB NY 13441 261
IA. MONITORING AGENCY NAME A ADOR ES dáil .i.n l f rom Con f rolIin 4 OHIo.) IS. SECURITY CLASS. (of lbS. t.por t)

Same /)
~~~ / UNCLASSIFIED

I I IS.. DECLASSI FICAT ION/ DOWNGRADING
I / SCHEDULE

___________________________________ N/A
IS. DISTRISUTION STATEMENT (of ISiS. R.po.tl)

Approved for public release; distribution unlimited.

,.. \ .~~~~~
‘

.
•. ._ •r..-~ 

~:s$~
17. DISTRISUTION STATEMENT (of lb. .b.lr.cl .nf tr.d hi Block 20, II dIff.r.nt fro~. R.poil)

Same \‘:.. 
~~

IS. SUPPL EMENTARY NOTES

RADC Project Engineer: 2Lt Michael A. TroutmanhlSCA

IS. CIV WORDS (C nhInu. on ,.v.,.. .Id. II n.c..om, aid ld.n ’I f y  b~. block nua,b.r)

Reconfigurable Computer System Design Facility, Total System Design Concept,
System, Architecture, Total System Design Facility, Emulation, Networks,
Performance Measurement, Design Languages

20. ASSYRACT (Conllou. on rO~~r•• old. If n.c...a~ aid ld .nI lf y  b~. block numb.r)

~ As a method of reducing design and development costs for data processing systems
(hardware and software) a total system design concept is proposed. The concept
includes a Reconfigutable System Design Facility (RCSDF) where total system
design alternatives can be emulated for the purpose of evaluating and proving
designs prior to actual development.

DO I ~~~~~~~ 
1473 EDITION OF I NOV Il lS OS$OLE1 E UNCLASSIFIED

SEC RItY CLASSIFICAtION OF THIS PAGE (bmi Dos. Enlomd)V ~~~
4~~~Ai.~~~ ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ ,. -

- -  - - ~~~~~~~~~~ _ ._ .. S•~~~~ _ _ ~~~~~~~
_ -.-- _____________



~~~-—-~~~~--—— 
.- .

~~

I L ~~ ~I L~~ ~~~ ~
- - —

~~~~~~~~CONTENTS

ParaQraph .

1 Introduction 1.
1.1 Project Scope 1
1.2 Recommendations 4
1 3  Document Scope 5
1.4 Definitions 6

2 TSDF 8
2.1 TSDC/TSDF Evaluation 8
2.2 Evaluation of the Total System Design

Concept 9
2.2.1 TSDC as a Part of the System Develop-

ment Cycle 9
2 .2 . 2  As a Complete Concept 14
2.2.3 TSDF Functional Capabilities 18
2.3 TSDF Functional Design Issues 31
2.3.1 TSDF Global Issues 32
2.3.2 TSDF Functional Model 35
2.4 A Viable TSDF Overview 39
2.4.1 Procedural Scenario 40
2.5 TSDF Advantages and Risk Assessments 57
2.5.1 TSDF Advantages 57
2.5.2 Risk Assessments of TSDF Functional

Capabilities 62
2.6 Additional TSDF Issues and Recommen-

datioris 74
2.6.1’ One TSDF vs. Many 74
2.6.2 Emulation as an Aspiration 75 j
2.6.3 Hosted Capabilities 76
2.6.4 Users 76
2.6.5 System vs. Machine Architecture 77
2.6.6 Performance 77
2.6.7 User Insiaht into the TSDF 78

3 Reconfigurable Computer System Design
Fac il i ty (RCSDF) 79

3.1 Fundamental RCSDF Doctrines 79
3.1.1 Emulation vs. Architecture Development 79
3.1.2 Research Vehicle 80
3.1.3 Usc~r Accessibility to Equipment 

9’)
3.1.4 System vs. Data Processing 80
3.1.5 Hosting 80

iii



FIT ~~~~~~~~~~~~~~~~~~~~~~~~~~ 
—

~~ 

— —- — ,- ----—. -

* 1-~
•

CONTENTS 
-

•

Paragraph Page

3.1.6 RCSDF Operating Environment 81
3.2 Fmulation Operating Philosophy 81
3.2.1 System Formulation 83
3.2.2 Scenario/Test Environment ; System

Testinq 92
3.3 RCSDF Facility Capabilities 97
3.3.1 System Design 98
3.3.2 System Testing 106
3.4 RCSDF Emulation Procedures 119

4 RCSDF Development Plan 125
4.1 Definitive Study Tasks 125
4.1.1 Emulation System Architecture 125
4.1.2 Emulation Control Structure 130
4.1.3 Emulation Documentation Structure 132
4.1.4 Requirements/Design Language

Procedure 133
4.1.5 Uniform Emulation Method 136
4.1.6 Emulation Analysis Structure 137
4.2 Developmental Paths 140
4.2.1 RCSDF Hardware 140
4.2.2 RCSDF Software 140
4.2.3 Emulation Procedures 141
4.2.4 Host System Software 141
4.2.5 Design Languages 142
4.2.6 Case Study/Training 142
4.3 Description of RCSDF Development

Tasks 143
4.3.1 Emulation System Architecture Study 143
4.3.2 Emulation Control Structure Study 143
4.3.3 Emulation Documentation Structure

Study 144
4.3.4 Requirements/Design Lanquage Pro-

cedural Study 144
4.3.5 Uniform Emulation Study 144
4.3.6 Emulation Analysis Structure Study 144
4.3.7 Additional Hardware Specifications 145
4.3.8 Additional Hardware Procurement!

Modification and Testing 145
4.3.9 Hardware Facility Control Specif 1- -

cations 145’
4.3.10 Facility Con~~ol Hardware Procurement

and Testiny 145

iv 

——-~~~~~ -~~~~~~~~~



—--F -—-..
~~ 
—- -— —-- - - . - - —--- .‘- - - - -. -

-~~ - - .-~~_ _~-.----.- -

CONTENTS

Paragra_ph Page

4.3.11 Interface Standardization Study 146
4.3.12 Communication Protocol Development 146
4.3.13 Facility Component Interface

Specifications 146
4.3.14 Facility Component Interface

Developments 146
4.3.15 Facility—Host Interface Specification

and Development 147
4.3.16 Peripheral Interface Specification

and Development 147
4.3.17 Deployable Component Interface

Specification 147
4.3.18 Peripheral Hardware Procurement 147
4.3.19 Performance Monitoring Hardware

Specifications 147
4.3.20 Performance Monitoring Hardware

Procurement 148
4.3.21 RCSDF Hardware Integration Testing 148
4.3.22 

. Procurement Procedures Study 148
4.3.23 Responsibility Delineation

Description Study 148
4.3.24 RCSDF Structural Description 148
4.3.25 Application Selections for Case

Studies 149 
- 

-

4.3.26 Requirement Specifications Case Studies 149
4.3.27 Functional Decomposition Case Studies 149
4.3.28 Hardware Implementation Case Studies 150
4.3.29 Software Implementation Case Studies 150
4.3 .30 Emulation Driver/Procedures Case

Studies 150
4.3.31 User Manual Preparation 150
4.3.32 Facility Control Software

Specifications 150
4.3.33 Facility Control Software Procure-

ment and Testing 151
4.3.34 Support Software Specifications 151
4.3.35 Support Software Procurement and

Testing 151
4.3.36 Emulation Performance Measurement

Software Specification 151
4.3.37 Emulation Performance Measurement

Procurement and Testing 152
4.3.38 Support Library Specifications 152
4.3.39 Simulation Software Specification 152
4.3.40 Simulation Software Procurement

and Testing 153

V

_ _ _ _  _ _ _  --- - -~~ ~~- - ~~~~--

•—-



- —-- - -—-
~~~~~~~~~~~~

— - - -•

CONTENTS

Paragraph , Page

4.3.41 RCSDF Software Integration Testing 153
4.3.42 Facility Data Base Management System

(DBMS) Specifications 153
4.3.43 Facility DBMS Procurement and Testing 154
4.3.44 Host Data Base Tool Specification 154
4.3.45 Host DB Tools Procurement and Testing 154
4.3.46 Static Initialization Software

Specification 154
4.3.47 Static Initialization Software

Procurement and Testing 155
4.3.48 Language Translators Procurement

and Testing 155
4.3.49 Host Related Design Language

Specifications 155
4.3.50 RCSDF Related Design Language

Specifications 156
4.4 RCSDF Work Breakdown Structure 157
4.5 Time Phased RCSDF Development Plan 157

5 RCSDF Baseline Studies 163
5.1 Performance Measurement Technical

Baseline 163
5.1.1 Monitoring Techniques 163
5.1.2 Data Presentation Techniques 168
5.1.3 RCSDF Performance Measurement Require-

ments and Recommendations 169
5.2 Processor Communication Techniques/

Protocol Technical Baseline 171
5.2.1 Intercomputer Processor Communication 173
5.2.2 Networks 177
5.2.3 Arrays and Ensembles . 182
5.2.4 RCSDF Processor Communications

Recommendations 183
5.3 Microprocessor Network Technical

Baseline 187
5.3.1 Microprocessor - Survey and Assessment 188
5.3.2 Interprocessor Connections - Survey

and Assessment 191
5.3.3 RCSDF Microprocessor Network Require-

ments and Recommendations 197
5.4 Microprogramming Technical Baseline 200

vi

-j

~
— -—,~~~-- ~~

-

_

CONTENTS

• Paragraph P~~~

• 5.4.1 Microprogramming Overview 200
5.4.2 Applications of Microprogramming 203
5.4.3 Microprogrammed Architectures 206
5.4.4 Software Aids 208
5.4.5 RCSDF Emulation 209
5.5 Operating System Technical Baseline 213
5.5.1 Trade-Off Evaluations 213
5.5.2 Special RCSDF Operating System

Requirements 222
5.5.3 RCSDF Operating System Recommenda-

tions and Conclusions 223
5.6 Distributed Systems Organization

Technical Basel ine 226
5.6.1 Remote Network Systems (RNS) 227
5.6.2 Local Network Systems (LNS) 229
5.6.3 Multiprocessors 231
5.6.4 Distributed Function Systems (DFS) 233
5.6.5 Distributed Element Systems (DES) 234
5.6.6 RCSDF Requirements in Distributed

Systems 236
5.6.7 RCSDF Distributive Systems Organiza-

‘~~ tion/Recommendations/Conclusions 237
5.7 Design Languages Technical Baseline 239
5.7.1 Language Identification and

Evaluation 239
5.7.2 RCSDF Design Language Requirements 251
5.7.3 RCSDF Desiqn Language Recommendations

and Conclusions 254

6 Conclusions 255

vii

-—--
—

.

~~~~~~~~~~~
-- --— • .- -



LIST OF FIGURES

Figure Page

2-1 Total System Design Concept 15
2-2 Total System Design Concept (Modified) 18
2-3 TSDF Functional Model 36

— 2-4 A TSDF 41
2-5 Example of PDL 45
2-6 An AdaDtation of ISP 46 -

•
— 2-7 An AN/UYK— 20 Instruction Description in ISP 46

2-8 Example of a Hosting Subsystem 48
3-1 Responsibility Delineation 84
3-2 RCSDF Emulation Procedures - 120
4—1 Network 128
4-2 Mainframe 128
4-3 Sequential Emulator 129
4-4 Parallel Processor 129
4-5 Hierarchical System 129
4-6 Relationship of Performance Measurement

Units 139
4-7 Work Breakdown Structure 158
4-8 Time Phased Plan 161
5-1 Distributed Systems Taxonomy 228
6-1 RCSDF Development Plan Time Lines 256

1

0

viii

*
_ _   

- • .- --- --. • ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .~ - - -- ——~~—-——



LIST OF TABLES -

TabLe - . Paae

4—1 Task Index 159



1. INTRODUCTION

The costs of developing software for modern mili tary systems are
increasing at alarming rates. Awareness of this situation has •

motivated an exploration of the causes of this cost increase and
ways to reduce it. One alternative that shows significant prom-

ise for reducing future software costs (and ultimately total sys-
tern costs) is total system design, which requires system design - -

to be completely developed and evaluated within a design host

environment (i.e., a Total System Design Facility - TSDF) espe-

cially created to provide the necessary tools, evaluation tech-

niques. and methods needed for extensive monitoring of the total

development process. The total system design concept envisions a

disciplined system design environment that allows design alter-

natives to be quickly and easily evaluated and the overall system

design to be thoroughly examined to assure conformance with pre-

scribed cost/performance profiles . In addition , having a facili-

ty with the ability to test a total system design concept prior

to the actual development of the system will minimize “fielded-

faults which are a major cause of increased system life cycle

costs in newly deployed systems.

1.1 Project Scope

The Reconfigurable Computer System Design Facility (RCSDF) initial

design study was commissioned to perform technology studies in

support of the development of a facility that would be capable of

supporting research into the concept of total system design. The

objective of the initial RCSDF design study was the preparation
of a development plan describing the necessary studies and devel-

opment tasks that would achieve the required facility capabili-

ties.

1



The RCSDF initial design study was organized into three major

tasks:

Task 1 RCSDF Capabilities , Philosophy , Procedures

o Evaluation of total system design facility

concept

o Definition of capabilities , philosophy, and

procedures for the reconfigu~’able computer
system design facility

Task 2 RCSDF Technical Baseline Development
o State-of-the-art technical baseline studies

in
- Performance measurement
- Processor communications tech—

ni ques/protocol
- Microprocessor network
- Operating system
- Microprogramming
- Distributed systems organizations
- Design languages

Task 3 RCSDF Development Plan

o Development threads
o Time-phased development tasking

o Work breakdown structure

The three tasks of the nine-month RCSDF initial design study were

performed sequentially starting from the TSDF concept and ending

with a four—year development plan defining the paths of develop-

ment and time-phased tasks necessary to achieve a l980s demonstra-

tion of the TSDF concept with available hardware and technology -

2

• --~~~ -~~~ -~~~.-—~ —~~~~~~~~ - • -



the RCSDF.

The initial RCSDF design study was staffed with highly experi- I 
-

enced personnel who have demonstrated prof iciency in advanced
system design:

D. R. Anderson, B.S.E.E., Project Engineer

K. 3. Thurber, Ph.D. Electrical Engineering

L. D. Anderson, M.S. Mathematics

K. Y. Wen, Ph.D. Computer Science

H. A. Freeman , Ph.D. Electrical Engineering

D. 0. Schneider, Senior Programmer

R. A. Eggan, Senior Applications Analyst

The initial RCSDF design study was performed using the philosophy

of an independent appraisal of the TSDF concept, performance of

baseline studies, and preparation of a development plan. Period-

ic technical interchanges with Rome Air Development Center person-

nel were used to guide the study direction and to provide updated

insight into the RCSDF development progress. The formative

nature of the RCSDF development was recognized at the onset of
the study and this necessitated that the study proceed on a

broad basis, examining fundamental technology and computing tech-

niques in preparation for planning the RCSDF technical develop-

ment. It was also recognized that other DoD efforts were also

examining facets of the software cost problem, so that when de-

fining RCSDF development need& an attempt was made to minimize

effort duplication. However, total success in eliminating dupli-

cation was probably not achieved since visibility of the entire

DoD activity in the software development area was limited by the

prescribed time-scope of the contract and the multitude of DoD

efforts to reduce software costs.3



1.2 Recommendations

In general , the Sperry Univac study team has found RADC ’ s concept

of total system design utilizing the reconfigurable computer sys-

tern design facility for system evaluation to be a viable method
with significant potential for reducing future system hardware

and software costs . In order to avoid the potential time-lag
required to master the evaluation capabilities of the RCSDF, the

Sperry Univac study team recommends , via the proposed development
plan, that R.ADC emphasize the fpllowing tasks for RCSDF develop-
ment in the near future (12 to 18 months):

Emulation System Architecture (Paragraph 4.3.1)

Formulation of RCSDF architecture descriptions, their eval-

uation with respect to different user problems, and recom-

mendation of a specific architecture as a research evalua-

tion vehicle.

Emulation Control Structure (Paragraph 4.3.2)

Definition of interface standards to regiment resource con-

trol for the emulation system.

Emulation Analysis Structure (Paragraph 4.3.6 )

Description of how process control philosophy can be

util ized for performance measurement/analysis; functional
specification of the components (processes) required as a

part of the RCSDF configuration.

The Sperry Univac study team further recommends that the tasks

identif led in the proposed development plan (Section 4.0) and

tailored to meet a specific applications case study be implemented4



to provide RADC with the most timely benefits in demonstrating

the total system design concept at lower risk and cost. In

arriving at these recommendations technical risks have been iden-
tified for a general purpose emulation facility (Section 2.5).

Sperry Univac has concluded that to achieve a comprehensive emu-

lation facility, the TSDF fully supported with services would

require many years of development , and the use of such a facility

would not be possible for near-to-mid term programs. However, by

pragmatically limiting the scope of the program and accepting

moderate degrees of inefficiency we can achieve useful results in

the near-to-midterm. The RCSDF case study development plan al-

ternative (Figure 6-ic) is recommended for near-term RCSDF devel-

opment.

1.3 Document Scope

The technical information developed during the initial RCSDF

design study is contained in the following:

Volume I Initial RCSDF Design Study
Technical Summary

Volume II Initial RCSDF Design Study
Technical Results

Volume III Initial RCSDF Design Study

Source Documentation
Volumes I and II comprise the final report of the efforts perform-

ed under the subject contract. Included in these volumes is ma-

terial describing the TSDF concept and its assessment, a descrip—

tiori of the RCSDF and its evaluation procedures, a recommended

RCSDF development plan, and summaries of the technical baseline

studies performed to support the development plan.

5

_ _ _ _  •~~ III1 ~~~



-- --- ~~~~~~~~~~
-

1.4 Definitions

Terms used freely throughout this document which may be unfamil-

iar to the reader are:

RCSDF Reconfigurab]e Computer System Design Facility

The RCSDF is a specific computer facility at Rome
Air Development Center to be used to evaluate the
concept of total system design.

T5D~ Total System Design Concept
The abstract process by which a total system design
is developed and evaluated .

TSDF Total System Design Facility

The facility and procedures supporting the opera-
tion of the facility that implements the TSDC.

liQL Higher Order Language

A programming language that allows “English-like”
constructs, such as FORTRAN, FL/I, COBOL,, and

JOVIAL.

HLHDL High Level Hardware Design Language

A programming language comparable to HOL, used for
the purpose of describing hardware logic designs.

- j
6



- Emulation Design Language
A HLHDL, specifically used for emulation design

analysis.



•~~~~~~~~~~~~~~~~~~~ •

2. TSDF

The TSDF is a conceptual facility incorporating methods for de-
signing and evaluating computer architecture design alternatives.
The conceptual TSDF was evaluated to determine its advantages as
a system design technique and the extent to which it would be use-
ful in the system design process. Risks in achieving a TSDF ca-
pability were also examined.

2.1 TSDC/TSDF Evaluation

After evaluating the TSDC and its implementation , the TSDF, the
following conclusions were reached :

o The TSDC, as presented , has a wider applicability than the
development of hardware and software design specifications.

• Its scope could extend into requirements formulation
phases at the start of development, system tuning, and

software development during the early phases of procure-
ment.

o The TSDC, as presented, lacks an adequate capability for
analytic determination of operating performance. Tools

should be provided for users to guide the direct ion of
their development. Such tools would be used to provide

only approximate answers.

o More emphasis should be placed upon specifying and imple-
menting the digital processing environment under which the
emulated/simulated system is being tested.

o Hosting of the generation process (system emulation/simu-

lation, environment, etc.) is an essential ingredient of

the TSDF. The anticipated complexity of testing. the

possible multiplicity of users, and the desire to minimize

the transit time from conception to specification all point

to the need to centralize system generation using a data8



base.

o The definition of a High Level Performance Measurement

Language (HLPML) ought to be pursued as a part of the TSDF

to provide users with a capability comparable to that in

the HOL. HLHDL.

o The TSDF should be regarded as a parent and siblings, with

the parent assuming broad scale logical capabilities and

the siblings responsible for proving performance.

2.2 Evaluation of the Total System Design Concept

The Total System Design Concept (TSDC) is examined in this sec-

tion from two points of view:

1) as part of the system development cycle

2) as a complete concept

The first point of view, in which the TSD fits into the Air Force

development cycle, reflects what should be the natural boundaries

of the concept. If a TSDF is envisioned, limitations imposed
should occur on “natural ” system development boundaries or dupli-
cation of system development efforts will occur. The second

point of view looks at the TSDC in terms of completeness. Is

there anything missing? Is the TSDC methodology clear? The

functional capabilities of a TSDF are then described to charater-

ize the TSDF scope of operations.

2.2.1 TSDC as a~Part o~~~fl~ System Develg~ment Cycle - Concep-
tually, systems originate from statements of operational needs.

These may be in the form of Required Operational Capability

(ROC) or Technical Directive (TD) statements that concisely

describe the desired capability but do not define how that

9

L -  _________ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

•
~~~



- -  - -

capability is achieved. From capability statements, requirements

are evolved, and these requirements are formulated into systems

designs which proceed through stages of definition and develop-
ment until final procured configurations are arrived at. TSDC

is postulated as starting from “problem ” (interpreted to mean

requirements) and leading directly to software design specifica-

tions. However, we know from experience that requirements are

not always defined and quantified precisely enough to enable

software or hardware specifications to be made immediately.

Research in BMD (Ballistic Missile Defense) technology has at-

tempted to solve some of the problems associated with translating

operational needs to a tested real-time process.1

• The Process Design System is an integrated package of

software development tools accessed through a single

Process Design Language. These tools—--translators,

library/conf iguration management, simulation tools,
data collection report generation programs. process mod-

els, etc.--are invoked to develop an experimental pro-

cess subject to execution in a simulated environment
which is also defined and controlled by the Process

Design Language.

The methodology combines the complementary disciplines
of top-down design, structured programming , and evolu-

tionary development with advanced construction tech-

niques to permit functional and analytic (or a combin-

ation of) process modules to be executed in a simulated

environment, either in real time or interrupted real time.

BMD Advanced Technology Center , “BMDATC Software Development
System - Program Overview “ I (July 1975).

10

• - - • — 



• - - — - - --- --— - - - - - -

Based on a requirements analysis, processing tasks are

identified and grouped into functional units with com-

mon input/output, timing/scheduling, and logic process-

ing characteristics. Using the Process Design Language,

the designer describes a top-level process design by

assigning functional units to appropriate computer

resources, establishing communication requirements.
and defining scheduling rules for real time control and

synchronization . The resulting functional model of the

process is exercised against a functional simulation of.
the operational environment.

Further decomposition establishes the control structure

or sequencing logic. As the actual code modules become

available, they are inserted into the control structure,

replacing their functional counterparts. The hybrid of

functional and analytic modules remains executable against

suitable representations of the environment at each stage.

The deferral of this major coding task assures minimum

software breakage due to any control, structure, and

interface redesigns. In general , the integration of

the analytic algorithms follows a logical “forward in-

tegration” sequence, so that analytic data provided by

the initial processing steps is available for subsequent

use by other analytic algorithms. Iteration of this

implementation , test, and evaluation cycle results in the

completed real-time process.

Definition of operational parameters such that a system is plausi-

bly achievable with known technique is not included within the

current definition of the TSDC. It is possible that the TSDF

could be used to help define requirements parameters (tracking

11 

- -- - -

-i - - - — — —- - — 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


- -- --—~~~~~~~~~~~~~~~~~~~~~~~~~~~
- •-

~~~~~~~~~~~
-—-

~ ~
-----

capacity bounds, for example) ; symbolically this can be repre—
sented as:

[~~~ tu1ated ____________r TSDF 
________

[ Finalized

Requirements [ 1Eva
~~
ation ~~Requirements

The attractiveness of this function is that feedback is provided

to the system acquisition process that could impact procurement
decisions; for example, how many systems to procure based upon

known performance factors. Maybe in some instances one system

would provide adequate performance, where originally two systems

were thought to be necessary.

In a slightly different vein, consider an existing system whose

requirements are modified to extend the original requirements set

forth, as depicted below:

Existing
System

In this case, as before, the goal of TSDF is to determine if the

modif ied system requirement is plausibly achievable. In some
cases this could demonstrate the ability of existing equipment to —

meet extended requirements. In others it would indicate what the

new system design should be (hopefully requiring only a subsystem

replacement or addition).

12

... ~w ~~~~~~ - _____________ -____________ - - -



_ _ _ _

The use of TSDF during system formulation (starting at defined
requirements and ending with specifications) is obvious. However,

since the TSDF hardware is not the real system hardware, TSDF

involvement with system hardware seems naturally to end with the

generation of the system hardware specification . Not so with

software. If the TSDF hardware faithfully emulates (performance

not considered), it seems that the TSDF could aid in the develop-

ment of software during early stages of software procurement. •

Extension of the TSDF to certification may not be possible

because of performance but logical operation of the software

system (or subsystem) should be possible.

Summarizing , for cases where it is necessary to translate into
systems designs. it is felt that the TSDF has wider applicability

than originally portrayed. Its function could begin in the earli-

er systems requirements definition phases and extend to actual

software development stages. TSDF also applies to the modifica-

tion of existing systems, as well as systems being conceptualized

and defined.

Apart from the above , the TSDF as a research instrument would
support independent digital system design research that would be
applied to systems whose requirements have not yet become visible.

In this instance, the output of the TSDF activity would be evalu-

ation data that provides insight into the effectiveness of alter-

nate system architectural techniques. In the production of this

evaluation data it can be expected that exploratory work would be -
•

performed to develop new techniques. Problems, or requirements

in this instance, would be synthesized to provide a framework for

technique evaluation. The importance of this role is not to be

discounted , in that it provides a framework for postulating new

approaches to meeting systems requirements.

13

~ 

: : - - i- - -- - - - - -- -- - - - -—- -— - _ - • .



“-~~~~~ -
•. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- - - -

2 . 2 . 2 As a Complete Concept - The TSDC (and ultimately the us-
age of the TSDF) has been presented as shown in Figure 2-1. A

problem is entered into the system and is reflected in a software

design specification which leads to HOL-compiled target software.

In parallel with this, an analogous path is followed to develop

hardware architecture using High Level Hardware Design Language
(H LHDL) . The separate hardware and software paths become related

at the point of code generation where hardware architecture is

incorporated into the compiled code installed in the TSDF. In

the performance analysis that follows both hardware and software
are iterated until a satisfactory solution is reached.

Comments on concept completeness are as follows :

1. System Specification - since this is a system design con-

cept perhaps the problem should lead to a system speci- - •
fication which would then lead to separate software/

hardware design specifications .

Software

Problem

In addition , an environment specification should be tied

to the PROBLEM to provide a basis for judging performance:

j System ~
)

~_-~~~ _~
Spec Performance

L — - ~~~ —~~~~~~~~~-- —-~~

r1~~~~~~~
i 1 :

(~~~~~~~~~~)

I
I L_ _ _ ~~~~..1
U

UIu o. w
‘u s.

—.4 <
~~

~~~U)

15

— 



Performance is j udged in relation to the operating envi-
ronment , and the environment specification delineates the
“driving ” factors that cause performance to be observed.

2. Analytic (Simulation or other) aids - in the preparation

of specifications (hardware, software, system) problem

solution alternatives may exist (computing a solution

associatively rather than sequentially, for example, or

using hardware functions as opposed to software), but
nothing is being proposed to allow an abstract evaluation

so that hardware and software specifications can be ini-

tially formulated with reasonable confidence. Complex

logical relationships’ in a problem solution may preclude

paper and pencil analysis, especially when performance
may be linked to real-time control. Maybe:

Problem ‘~Evaluation
J - 

‘~Specificatloz~ IIIIII
3. The environment, target software, and apparent architec—

ture contribute to performance analysis:

lEnvironment

Target 
______________  

Performance_________
Software Analysis

Apparent
Architecture

4. The performance analysis output supposedly leads to modi-

f led hardware/software. In cases where an architectural

change (hardware/software form) appears to be needed , no
assistance is provided to determine what these changes

16

IL  _______ -



~~~•- - -_--, - 
~~~~~
-_ _ • - - - _

~~~~~~~
-

~~~~ 
-—- 

should be. Again complex internal system interaction
between parts may preclude determining the effect of
changes made.

5. The output. of the HLHDL translator to the apparent archi-
tecture impacts the environment - especially if environ-

ment must create a different form of input data to the

system in response to an architectural change, if parallel

data channels replaced serial channels, for example.

6. If a system specification phase is included in TSDC then
performance analysis should lead back to the system spec-

ification and thence onto modified hardware/software

specs.

The overall effect of comments 1 through 6 are depicted in Figure
2—2.

2.2.3 TSDF Functiona~],...~~ p~hilities - Ideally , the TSDF should be

perceived by the “user ” as the target architecture with the inter-

nal emulation details totally masked. This ideal perception will
be compromised with some users; namely, those whose interests lie
with creating experimental or high performance architecture for

which there are no standard components . For users who can rely

on standard components, the ideal perception could be realized

provided they have confidence in the transformation tools pro-
vided. To all appearances, the TSDF should be observed to logic-

ally behave as the target architecture. System performance (the

observed performance modified by some transformation that factors

out emulation overhead and performance differentials between

components used and components intended to be used) is determined

in nonsystem time (after the emulation has been performed) as an

17

I 
T - ~~ -----~--~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



~ _- .-~
_- - -

~
- - --_ - -- ---- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

---- -

~~~~~~~~ 

_-

U U)

0)

r 
4.4

‘0 

_ _  _ _

_____

9~~~~~ ~df 
,. 

~~~~~~~~~

I 4’
I ~~v,u.

o~~~ — I I L3 .~
C/~ u L~ I ~. ~~ _ _ _ _ _ _ _ _ _ _ _ _ _r

U) I ‘I)

-I t 2 .

S

~
- --- --

analysis function. A user should be able to logically interact

with the TSDF as he would expect to with the emulated system but

not in a device-specific manner. (He should not be required to

interface with the TSDF through the specific interface devices of

the planned system but may do so if it is relevant.)

2.2.3.1 System Environment - It seems logical to assume that a

TSDF would be comprised of mu ltiple computing elements. The sys-

tem environment of the TSDF is the collection of features and
characteristics presented to the user as a total facility package.

Features, characteristics and capabilities of the TSDF environ-

ment are discussed below.

2.2.3.1.1 Simultaneous Hosting of Separate Users - The TSDF

should have the functional capability of hosting only one user

at a time. This means that users who have distinctly different

architectures are not present on the TSDF simultaneously. A

user who is emulating or simulating a multiprogramming environ-

ment, however , should be provided with the capability for doing
so. If the single-user restriction is not invoked , then the TSDF

operating system must support both program and system configura-

tion state saving; performance measuring must also be multipro—

grammed and be able to track program activation and deactivation.

Multi—user, simultaneous usage of the TSDF creates unnecessary

complications for the TSDF operating systems.

2.2.3.1.2 Realtime/Non-Real-time Operations - The TSDC does not

appear to require that the TSDF operate at the expected perform—

ance level of the target system. The target system performance

level is defined as being “real-time.” Environments that drive

the TSDF need only to simulate real-time inputs to the degree

19

_____________________________ —

_ _ _ _ _ _ _ _ _

• needed to realistically scale performance to the target system. .

•

Internal TSDF operations should be at performance levels which
can be realistically scaled to target system operations. Defin-

ing this performance level is a definite problem. Operational

performance levels which are vastly different from the desired

target system performance may 1) be difficult to scale and

2) lack credibility and t-hus erode confidence in the developed

specification.

2.2.3.1.3 Virtual Environment - The TSDF should have the func-
tional capability to support two kinds of virtual environment.

It should support a virtual environment that allows a user to
host a process on any of several processing elements. It should

also allow a user to host a virtual memory environment as part
of an emulation/simulation . The first kind of virtual environ-

ment allows a user the freedom to examine different computing

solutions to the same problem. The second kind of virtual envi-

ronment allows the hosting of contemporary architecture and may

or may not be hardware-aided .

2.2.3.1.4 Synthetic/Real System Environment - Simulated real

system environments (synthetic environraents) seem adequate for

TSDF objectives. Duplication of real system inputs/outputs

would require excessive attention , diluting the available

resources needed for the major TSDF objective. Synthetic envi-

ronments also have the advantage that crucial design parameters

can be examined in isolation from unrelated aspects of the sys-

tem design.

20

— - — •~~~~~~~~~~- --- . - -•-- - - _ - •-- -—- -- - -- -

2.2.3.1.5 Dynamic Architecture Alteration - Users should not

be permitted to reconfigure or alter the TSDF architecture as

part of their on-system evaluation . They may elect to select —

a lternative usage of the configured system but may not change
the configured system in real-time, except as required by the

target system emulation. To a large extent, this can be reg-

ulated by the method of generating the hardware configuration

(HLHDL).
•

-

2.2.3.1.6 Existing and New Architecture - The TSDF should have

the capability to host (simulate or emulate) both existing and

new architectures. Architectural development is evolutionary ;

existing architecture forms a baseline from which to evolve.
One may elect, for example, to add system components to an

existing architecture in order to meet extended system require-
ments. In this case the existing architecture would be modified
(by changing the HLHDL) to include the added components hosted

on the TSDF, and its behavior would be analyzed . New , explora—

tory architecture is the subject of development in the TSDF.

2 .2 .3 .1 .7 Hosted System Preservation — The TSDC should have
the capability of preserving all particulars of a hosted system

design, including a capability for restarting the system from
a termination point, should that be desired. The system com-

ponents simulated may be placed in a data bank for recall as

needed . This has advantages, in that aft-er a system has been

created through HLHDLJ, modifications would not seem to require

an entire recompile, making restart of the system evaluation
simpler.

21

L - - — _______ ~aa~~~-- - -

_ _ __ _
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - -_ _- ~~- _ -_ - - -

2.2.3.1.8 Mu1ti~ 1e Machines - The TSDF should have the capa-
bility to simulate the architecture of a multiple-machine sys-

tem of either a homogeneous or heterogeneous nature. This

includes the simulation of interconnection and multiple system

input/output. The mul tiple-machine simulation capability

must include simulating (or emulating) associative , parallel ,

and sequential processing .

2.2.3.1.9 Parallel Operations - Multiple machines of the

TSDF must be capable of operating in parallel should the user

desire it. The study of techniques to resolve concurrency

problems for multiple machines (as a subset of the user problem

set) will require this. Sequential operation of multiple
machines can be treated as a subset of the parallel opera-

tions capability.

2.2.3.1.10 Control Methodology - The TSDF should be capable

of mapping software components to hardware processor elements,

either one-to-one or n-to-one, without redesign. This requires

that the control methodology for the TSDF recognizes each

software component as a stand—alone element. Such recognition

is compatible with a unique application of finite-state

machine theory which recognizes that the output of a software
component (process) depends not only on the correct input

but also on the entire history of inputs as summarized by the

current state of the hardware element. This in turn, demands
that the control methodology for the TSDF make available control

algorithns for manipulating machine state vectors in order to

22

L ~~- - —~~-~~~~~~~ -- -,- - -- - - -- — - - - —---— - — -- - -
~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ 

-



2.2.3.1.10 (continued)

control scheduling, resource assignment, resource sharing, and

the accepted control hierarchy.

2.2.3.2 Processing Capabilities - Without the boundaries of a

defined user class, the TSDF, conceptually speaking. must have

the capabilities of simulating or emulating all known and un-

known architectural techniques. Realistically , this is not

achievable under economic or time constraints. Therefore limits

must be established that will make the TSDF more manageable, i.e.,

configurations or users must be limited or alternatives must be

provided.

The TSDF should have the functional capability of emulating/simu-

lating all of the following processing capabilities~ as a minimum:

1. Array

Parallel
Associative

2. Pipeline

3. Unit

4. Multiprocessor

5. Federated

6. Distributed

7. Functionally distributed

Further , the TSDF should have the functional capability to host
these processing capabilities as either separate distinct machin~~ ,

23

- 
~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~ ——-~

- ——- --——— -

as distinct independent computing elements of a single machine,

or as distinct processing capabilities of a unit machine. To

date PEPE is the only known architecture assimilating all these

alternatives.

The TSDF should have the capability to alter the characteristics

of each of the processing capabilities: stages in a pipeline,

CPUs comprising the multiprocessor , CPU addressing structures,

etc. Emulated/simulated performance measurements should be ex-

tendable (scalable) to the target architecture through simulation.

In addition , the TSDF can work with processing components that

are nearer in design to the components that are intended to be

used in the target architecture. This would allow a more exact

performance simulation.

2.2.3.3 Memory Capabilities - The TSDF memory system should be

1) structurable, 2) sharable, and 3) definable in traditional

forms. Structurability allows the defining of primary, secondary ,

tertiary , and other levels that are commonplace in many existing

system. architectures and which form a cornerstone upon which pro-

cessing concepts are based. Emulation of existing systems would

require this capability. For multiprocessing and some distribu-

ted processing systems sharability of memory is required.

The TSDF memory forms should encompass byte, word, and block

addressability and the capability to define memory operations

and structure alternative to the existing forms to create new

memory architectures. Further, the memory forms should be
replaceable in the TSDF architecture with higher or alternate

performance designs to bring TSDF performance nearer the target

architecture performance.

24

_

—- t f l .~~~tfl~~~~fl

_ _ __ _ _ _ _ _ _ _ _ _ _ _ _ —_ - _ - ~~~~~~~~_ - - _ _ _ - - - - - - -

For new architecture, memory should be constructable (in an emula—
tion/simulatiori sense) with embedded processing functions.

2.2.3.4 Data Entry/Exit Interfaces - TSDF data entry/exit should
be emulated/simulated in direct proportion to its importance in
the target architecture (the architecture which is being emula-

ted). If , for example, the target architecture is oriented

toward an application that is dominated by sensor process ing or
communications processing one might want data channel bandwidths
and logic structure to be exactly like the target architecture.

If, on the other hand, the target architecture is oriented toward

an enhanced CPU repertoire, exact emulation of data channels and

bandwidths is probably of secondary importance. The TSDF should

have the flexibility to emulate data channels to the exactness

required by the user. Known standard channels should be classi-

fied as a part of the TSDF data base. These should include byte,

serial , word, and block transfer channels.

2.2.3.5 System Interconnect - The TSDF should have the capability

of simulating, as a minimum, the system interconnect of the target

architecture. The system interconnect thus simulated includes

all of the channels and methods that transport information between

the target architecture functional units. ~nulation of the tar-
get architecture interconnect may be aspired to, but the diffi-
culties in achieving the emulation must be recognized if one

strives for performance equivalence. The simulated interconnect

must reflect the characteristics of the desired interconnect:

topology, bandwidth, point-to-point parallel bit transfers, link

parallelsim, interconnect logical control, interconnect process-

ing-like operations. Classes of interconnect that typify those

25

I.. — ----—..---—-_ ~~~~~~~~~ ~~~-~
-
~~

-
~~ -——- - •~~~~~ • • • _ • • — -

- - - -~~~~~~~~ -~~~~~~~
- _

~~~~ ~~~~~~~

parameters are :
0 Bus system interconnects at the I/O channel level that are
either serial, byte, word, or block organized , transporting

information in rings, common connection, or star-substar

topologies.

o Shared memory interconnects that commonalize the access to

system memory among the functional system units, these inter—

connects may not have to be throughout the interconnect - 

-

system.

o Bus interconnects that are normally internal to a single
computer which allow transfer of information between process-

ors, between processors and memories, between memories, etc.

2.2.3.6 Performance J~1easurina/Analvsis LPM~1 
- The TSDF PMA

should be capable of capturing predefined , event-associated data

using the appropriate measurement technique (devices or software,

for example). Performance-invariant data of the TSDF should be

user-identifiable. Data collected during operations should be

placed in a common repository for further reduction. Users

should be given the option of collecting and reducing subsets of
the predefined data. Explicit user selection of standard Perf or-

mance Measurements (PMs) is desirable if standard PMs can be

defined (related to HLHDL). Real-time PM data reduction and

analysis is not required, but interactive reduction and analysis
is highly desirable. (The user can request a “display ” of re-
duced PM data immediately after a specified operation point -

termination or a predefined system execution point.) Interactive

operation with TSDF simulation is a problem.

Measurements capability should extend to the micro level but with

tabulation capabilities only. Micro level operations are well

regulated and timed, therefore many micro level operations do not

76



need time-base measurement, but repetition measurements . Measure-

ment parameters should be able to be equivalent to simulation

parameters for extrapolating system performance.

2.2.3.7 TSDF Scenario Verificat,jo~ - The TSDF should have the
capability of verifying the user-defined scenario of TSDF opera-

tions for obvious faults. This is analogous to the verification

performed by compilers of user-generated high level languages.

This capabili ty should embrace the entire scenar io through PMA
and projections of target system performance.

2.2.3.8 ~~QF Transformation Tools - The TSDF should include the

following as functional capabilities for developing a system

design using high level language:

2.2.3.8.1 Process Design Language - A language capable of

providing a phased but detailed design for software components.

2.2.3.8.2 Hardware Design Languaq~ - A language capable of

establishing the desired interface between hardware and soft-

ware components (as opposed to the interface between two or

more software components or two or more hardware components).

27



- - - - - - - - - _- _ _— - - _--.---— -—-_— -~~~~-_ -. - _ -- -.-- --.—~~~~~
_ --. - - _ -_ -- - - - _ - - - -~~~~~~ 

2.2.3.8.3 Requirements Specification Language (RSL) - A language

• capable of establishing the control structure (e.g., the respon-

sibility for allocating resources) between all system components

(hard or soft).

2.2.3.8.4 Provac QuerY Language - A language capable of per-

mitting inquires to be made of the Process Visibility and Control

(PROVAC) functional capability.

2.2.3.8.5 Process Visibility and Control - The logic which

monitors all phases of system design for which tools exist and
restructures the data for purposes of providing management

information .

2.2.3.8.6 Translator Writing System - The logic which enables

the transformation of the lowest level of the PDL into a form
(e.g., IEL) more easily converted to machine language.

2.2.3.8.7 Auto Code Generation - The logic which enables the

IEL to be converted into machine language as defined by the

MDL (possibly a subset of a more general purpose HDL).

2.2.3.8.8 Hardware Design Language (MDL) Translator - The logic

which 1) translates the MDL into firmware capable of emulating

the repertoire defined by the HDL, and 2) produces tables to

drive the auto code generator.

2.2.3.8.9 Performance Requirements - A language capable of

identifying the performance demands required of system compon-

ents operating independently or in concert with other compon-
• - ents.

- i  

.1

28 

~~~~ _-~~~~~ ~~~~~
—=

~~
- ~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ ~~~ • ___________

• 2.2.3.8.10 Performance Parameters - A data structure (or

language) capable of expressing performance measurements
achieved through simulation, measured execution, or theoreti-

cal estimates.

2.2.3.8.11 Requirements Specification Language Translator - The
logic which translates the RSL into directives (primitives)

which drive dynamic system configuration logic (kernels) or

programs (e.g., system generators).

2.2.3.8.12 Process Control Kernel - An extension to the con-

ventional logic of a hardware processor enabling it to enforce

the use of standard interfaces between components and permit

software logic to dynamically change the configuration of com-

ponents making up the system.

2.2.3.8.13 Performance Measurement - The logic which operates

in conjunction with the kernel to provide performance measure-

ment parameters derived during execution of the process struc-

ture (software portion of the system).

2.2.3.8.14 Integrated Hardware/Software Components - A method-

ology and associated functional capability which permits system

configurations to be made with flexible interchange of hardware

and software components. (The degree to which this can be

automated is unknown. Answers to a number of questions will

result from the use of the reconfigurable subsystem.)

In order to support the transformation tools, the TSDF should

have a hosted data base management capability. Data base entries

- -
- -

~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~ - _______ ________



- - - — -—--~~~~~~
- - _ - --- --.-__

~~ ~~~~~~~~~~~~~ 
- 

. 

I

necessary to support the design tools and to provide visibili ty
into the design process are:

2 .2.3.8.15 Process Design Language (PDL) - All data submitted
to the TSDF for purposes of establishing the logic sequence to
be provided by an individual software component. At a minimum

this must be a higher order language. Ideally, it includes

structured logic sequences sometimes referred to as Pidgin
English.

2.2.3.8.16 Hardware Design Logic - All data submitted to the

RCSDF for purposes of defining the hardware architecture visible

to software. As a minimum it must include a formal descritpion

of the machine repertoire, e .g . ,  Instruction Set Processor
(ISP) .2

2.2.3.8.17 Requirements Specification Language - A description

of the required hardware and software c9mponents intended for the
system . As a minimum it must show the control hierarchy.

2.2.3.8.18 Management Information (MI) - All data accumulated
to enhance progress visibility relative to schedule milestones

and financial expenditures.

2.2.3.8.19 performance Requirements (PR) - All data indicating

known performance requirements for individual components sped-

fied for the system.

2 
~~ Bell and A. Newell, Computer Structures: Readings and
Examples (1971).

30



-- — -- - - - 
.- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

2 .2 .3 .8 .20  Performance Parameter s (Pg) - All data showing
measured or hypothetical performance characteristics of or
between specified components of the system. Examples include
execution times , delays &ue to required mutually exclusive
resource requirements, and data flow rates.

2.2.3.8.21 Intermediate Exchange Language (IEL1) - Language used

to aid translation between PDL and executable machine code.

2.2.3.8.22 Generation Tables (GT) - Data structures produced

by MDL translator enabling IEL to be translated into desirable

machine code.

2.2.3.8.23 Object Code (OC) - Data capable of driving associated

hardware processor element.

2.3 TSDF Functional Design Issues

To provide for the detailed synthesis of the TSDF system concepts

for evaluation, the concepts, descriptions, and issues discussed

in the previous sections must be formalized . To do this the

design issues must be posed and then answered . Our procedure is

first to develop the set of global system constraints on the TSDF

and then to construct the TSDF function model and specialize it

based upon issue constraints. Detailed models can then be con-

structed and traded, depending upon user requirements (wants)

and desirable system features (system attributes).

3].

— - - - — -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



—_ - __ _ •—_-__ “— ,_ _,. -_ - ,-~~ — -- - — —----- •—•———• -—--—
~ 

—,— -- — — - .  — .—- __—_;—__ — — — - — - . — ----- - _—---—--- -_-_-- — - _

2.3.1 Global Issues

Issue 1

How does the operational user measure TSDF capability , achieve—

ments, performance , and applicability to solve his system defini-

tion problems?

One of the major system issues involved with TSDF is how a user

can decide if RCSDF is useful to him. It must be made clear to

the user that - TSDF has capabilities to solve certain classes of

problems . Further, the user must see a benefit in using TSDF.

Thus, it seems imperative that the user be able to see that TSDF
will help him achieve a goal and that the performance and appli-

cability of his design be measurable in terms of providing answers

to guide system development.

Issue 2
Who are legitimate TSDF users?

It is not anticipated that a system like TSDF could (or should)

solve every user ’3 problem. The class of legitimate users can

probably be narrowed by asking two questions :

1) Are the facilities of TSDF capable of supporting the

user ’s application?

2) Is the user ’s problem significant enough to warrant use
of TSDF?

Issue 3
What type of applications does the user desire to simulate?

To insure user acceptance of TSDF ( i . e .,  to insure that TSDF is
useful) a catalog of capabilities should be generated. In this

catalog (or handbook) the equipments , configuration , software

32 

~~~~~~~~~~~~~ 
.—__-_- -- —.-•_.

~
- _—~~~~~~~~~~~~~~

.---— -- .— - -.-_ --_
~
--- -

l imitations, use, etc., of TSDF should be described so a user
can evaluate the applicability of TSDF to his job or problem

using a list of possible applications or an applicability check—

list.

Issue 4
What does TSDF do for the user?

TSDF should provide the user with a tool to validate, detail,

and tune his system design. Through the use of TSDF, the user

should be able to hypothesize a design, its parameters, and its

performance and then validate and tune the design to provide a

tradeoff comparison of a series of designs. TSDF should provide

a detailed output of the system performance, any bottlenecks,

any potential bottlenecks, and any potential improvements possi-

ble in the system design.

Issue 5

What facilities does TSDF provide the user?

When attempting to utilize TSDF, the user will most probably

see a software facility . The interface seen by the user should

allow for hardware, system, and software specification, but TSDF

should provide enough fac ilities to make it unnecessary for the
user to deal directly with any particular nonsoftware facility.

Issue 6
Who maintains the facilities?

We assume that a centralized administration will be responsible

for each TSDF system and will maintain the facility to ensure

33

• __— ~
_

~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ :—~~.
——-—--—-------—-- . ---~.—•—- ~~~_~-———.—.-—.—-———--_-———-—— _— -

r ~~

-

~~~~~~~

- - - -- -- - - -

~~~~~~~

-

~~~~

-_-- - - --

~~~ 

-

~~~~~~

that the configuration not only is kept in working condition ,

but that the configuration is properly. documented .

Issue 7

How does the user access and utilize the facilities to perform

a job?

TSDF should be accessible as a resource via standard batch and/or

time sharing facilities. The user will probably see the equiva-

lent of a JCL (Job Control Language) and thus be able to sequence

the capabilities of TSDF on his particular job.

Issue 8

When in the system design process does the user utilize TSDF?

TSDF should be the cornerstone of the design process. Once the

initial system requirements have been generated , TSDF should be

utilized to simulate approaches , refine requirements, and final-

ize the design. -

Issue 9
What constraints does the TSDF place on either user or applica-

tion?

Unfortunately it is expected that TSDF may not be applicable to

all problems. In this context, we expect that the user groups

to which TSDF is applicable can be categorized . Further, this

description may be solely dependent on the performance issue,
i.e., if the user needs high performanôe and can not get along

with a system that is normalized in performance, then TSDF may

not be applicable to that user ’s problem.

4

34

- _~~ .a... ._  _._~ ~~ . . . T h 1  •.fl~ rn ~~~~~~~ -— -- r . .  ._ - . _  •~~~~~ ___.~~_. _ - — - - - . .



--~~~~~~~~ - - ~~~~~~~~~-— - - - - - -~~~~~~~ 
- - 

~~~~~~- - - -

Issue lO -

What facilities can the user add to TSDF? Do such expansions

remain permanent?

A major issue - which we will not attempt to discuss at this

point - is whether or not the user may add facilities or hard-

ware to a TSDF. This includes whether such additions are temp-
orary or permanent, how configuration control is maintained, - a n d
how a user is assured that the TSDF is performing with consistent

results (i.e., there is no impact due to hardware added between
runs of a specific user not involved with the hardware additions).

Issue 11
How are the results produced on TSDF delivered to the user, nor—

malized , interpreted , and fed back into the design procedure?

Once a user has made a run (or set of runs) the results must be

produced and displayed to the user. Other issues are involved ,

since the TSDF may not perform at the rate desired by the user,

for example, the way performance results are normalized to pro-

duce the answers that would be observed in a real system. An

essential issue in this regard is whether or not the user is

allowed to interact dynamically (e.g., from a scope) with the

TSDF. In an interactive mode the user could dynamically adjust

the system parameters to produce optimum throughput.

2.3.2 TSDF Functional Model - A functional model of the TSDF is

diagrammed in Figure 2-3. The sixteen basic functional compon-

ents of the TSDF are:

1) System Definition Mapper - This function provides the

interpretation of the user requirements necessary to

develop configuration information to drive and configure

35

-- - -
—- --.- ~

----- --.-.—~~~~~ -- --—-—
- — — . - -

/~~~~~~~~ L~\®/ W
~~-‘\ i~ ~~~~

!~~ \ (~~ I
I ~ I.—øI ~ N
i , • I

0
11
4.1
C)

3 ~‘i

‘4

U

0~~.

32

36

- - - -

~

- -

_ -

~

.-- -.-- ~~ -~~~
-
~~~~~~

,.-_- — _—-- --
~~~~

- - .•--- -- -


~~~~~~~~~~~ -. - - - - - - -—- -,-~~~~~~
_- .- -

~~~~~~~~~
- .

~~~~~ —-

TSDF. Input to this function will describe major system —

design constraints. The output of this function will

configure the system.

2) Interconnect Box - This is the hardware function that

provides all of the hardware interconnection paths be-

tween TSDF hardware elements.

3) Software Interconnect - This function includes all soft—

ware necessary to make TSDF function properly. It in-

cludes items such as loader s, compilers, and software.
Further, any software certification or development

features specific to an application must be integrated

with this functional package.

4) System Simulators - This function contains any required

simulation or emulation packages which are to be furn-

ished to the TSDF hardware system. Multiple simulators

(some software, firmware, or hardware) may be provided
for a specific device to make hardware/software/firmware

tradeoffs available to the user.

5) Sensor Simulators - This function provides the TSDF sys-

tem with an environment delivery function which simulates

sensor actions.

6) Actuator Simulators - Analogous to ~ensor simulators,
this function accepts system inputs and drives simulated

sensors.

7) Software - This function consists of any system software

provided by TSDF and any user software used to drive TSDF

configurations.

8) Configuration - This function takes the software/f irmware/
hardware user environment information and configures the

detailed TSDF system to be used for an application.
9) User Environment - This function simulates the user t s run

~~~~~~~~~~~~~~~

—-—

~~~~

— 
- 

1



time environment. It is the result of all hardware !

software/f irmware manipulation and definition that has

occurred to this point. Further , this is the main inter-

face to the system that the us-er sees.
10) Analyzer - The analyzer functions to provide analysis

and feedback on system performance. It accepts as input

the normalized performance produced by the performance

monitor and provides directions to both the configurator
and user environment as to detailed performance bottle-
necks, suggested configuration changes, etc.

11) Performance Monitor — The performance monitor function

monitors the system performance and normalizes this
performance based on configuration matching parameters

(which are designed to compensate for basic speed dif-

ferences that may be encountered between the system

being simulated and TSDF).

12) Application Systems - This is the application software

and/or special applications hardware which will be used

to drive TSDF.

13) Virtual Machine Capability - To provide for efficient

implementation of the general purpose system simulators

a virtual machine capability may be required . This in

effect will allow multiple users to run in protected

environments or base hardware, thus providing signifi-

cant speed advantages.

14) Operating System (OS) - This function is the application

oriented OS provided for the user application on TSDF.

This function may have to be user provided.

15) Dynamic Microcode - It is possible that the user will

desire to tailor specific machine features, in which

case this function should be provided .

16) Hardware - This consists of the fundamental hardware

elements provided for TSDF. -
•

38



- - —~~~--- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- ———

~~
---- —-- —

~~ 
---- - 

~
•1

For each of the TSDF functional capabilities , a list of imple-
mentation alternatives can be developed . For example, System

Definition Manager could be implemented with software (however ,

this is quite unlikely at this point) or it could be performed

by a person. Initially, this portion of the system probably can
not be automated and will thus have to be performed by the TSDF

user.

After considering the TSDF system design concepts and the ques-

tions and functional model posed in this section, we postulated

an initial TSDF configuration . It is described in the next

section .

2.4 A Viable TSDF Overview

The success of the initial RCSDF design study will depend upon an

understanding , and ultimately the availability , of tools which

enable an RCSDF to be easily used for system design. To further

the understanding of the role a Reconfigurable System Design

Facility (RCSDF) will have in design , a Total System Design Facil-

ity (TsDF) will be described as a background against which to

describe the recommended RCSDF.

The functional capabilities required of a TSDF have been illus-

trated in an overview that depicts and discusses a reasonable
set of design transformation examples which could potentially be
supplied by such a facility. It is not intended to be an exhaus-

tive set, nor does it necessarily contain the most feasible

elements of an optimal set. However , the overview generally de—

scribes the direction in which system design must go in order to

permit economical system deployment.

39

‘4 

L
- - _ -.p - ~~ - --- - -——-—-.. ________ 

_~~~ ~:
- :~ i•_ ~ ..~= -  I.~~ 

—- -- -~---..~~~ — .- ——— -- -—‘—-—~~~~~~~~~ - — — - — - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



~~~~~~~~~~~~-
.- --.-~ - -- ~

-———- -

The described TSDF can only be partially achieved with the avail-

able technology for sof tware and hardware , design and develop-

ment. As such the TSDF serves as a focal point to help coordi-
nate and integrate the latest and most feasible design/develop-

ment techniques. In addition , several suggested capabilities

have not been adequately researched . Thus the TSDF as described

serves to promote meaningful investigations into potentially use-

ful but as yet unproven methodologies .

2.4.1 Procedural Scenario - Figure 2-4 illustrates a TSDF consist-
ing of five subsystems. In brief, the organized ideas for a

deployable application system enter into system design by means

of the thought processes of man (human subsystem). These

thoughts are formalized and submitted to tools (hosting subsystem)

which aid and simplify the decision-making process. Decisions

for functional implementation by means of hardware or software
must be made here. When the decision is made to implement with

software , the development proceeds in the hosting subsystem.

When a decision is made to implem ent with hardware, implementation

specifications can be submitted by the hosting subsystem to nor-

ma]. industrial process control procedures (system integration

subsystem). The integration subsystem has been depicted in
dotted lines to indicate that this procedure is rapidly moving

from a process requiring human intervention to one which can be

totally automated , thus further reducing hardware costs.

When the human subsystem together with the hos~ ing subsystem has
determined the means for implementation , a critical phase of

system design is entered. If the individual components of the

system (hardware or software) can not function together to meet

identified performance requirements, it makes no sense to enter

I ~~~~~~~~~~~_

- - -
~
‘1

p
_

Z U)
0

C1) (1)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

4] .

-•~~E-
~ ~~~~ • -.~‘n—-— —--- ----  

_____________

_______  ~~f i•S~~~~~~~~~~~~~a - -—~— -  ~~~~~~~~~~ 
- —

- - -  -— - 
- -~~ ~~~~~r~~~~~~z-

~~~~n -a~~~nr - -


into the detailed design and production tooling phase for hard-

ware (the most costly phase of hardware development). Thus a
Reconfigurable Subsystem (RS) with controlled performance

measurement (known performance deficiencies) becomes mandatory.

The RS must be capable of simulating (assuming the characteris-

tics of) the final hardware and software configuration .

The simulation must be capable of mapping intended deployable

hardware to RS hardware ana augmenting RS software with actual

deployable software. It should be noted that the reconfigurable

subsystem together with the design transformation tools available

in the hosting subsystem permit:

1) existing software to be used wherever possible,

2) high risk software to be developed and tested before

entering the costly production phase (of either hardware

or software),

3) low cost software simulation drivers to replace straight

forward , special purpose (hence costly) hardware peripher-
als and sof tware packages.

When a feasible conf iguration of hardware or software can be
verified under controlled performance measurements , specifica-

tions can be produced by the hosting subsystem for hardware

development (integration subsystem) and actual software generated ,

providing the elements which can be joined together to form the

deployable subsystem.

The overall objective for the TSDF summarized in the procedural

scenario above is to gain assurance for the feasibility of the

system design before going to the costly production phase and
ultimately having to discard or correct the deficient system

elements.

42

-~~~~~~~~

2.4.1.1 Human Subsystem - The term “design” refers to the con-

• ceptual or creative process required to achieve an identified

capability, followed by the establishment of a plan for imple-

mentation. As such it can never be totally automated and will

always involve a human factor. This is not to say that the TSDF
can not be used during the initial design phase but rather that

its function during this phase is support rather than decision

making. It is best suited for the retention of information,

feedback of information in requested format (e.g., what capabili-

ties currently exist, what characteristics they display), and

enforcement of a general plan for system implementation . The

enforcement should be based upon successful design principles for

data processing which might include:

Establish structuring standards

Commence evolutionary partitioning

Simulate and test potential system configurations

Util ize simulation results in evolutionary process
Implement high risk software components

Select optimal partitioning

Build remaining deployable components

The human subsystem portion of the TSDF becomes the means whereby

the human factor communicates the potential design to those tools

which can monitor progress, support design decisions, and auto-
mate portions of the development process useful for simulation.

The primary means for communicating concepts between man and
machine is through the use of syntactically structured languages.

While languages vary, they fall primarily into two categories:

those which resemble the natural written language and those which

resemble various forms of mathematical notation. Since the corn-

ponents to be developed for an application system are a part of a
digital and hence mathematically oriented computer system, both

language forms are required, the f irst to communicate ideas

43


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~
—
~~~~~~~~

- ---
~~~~~~~

—
~~

-- -- - - - - -

between people and the second to lay out the sequence of opera-

tions required for a specific component implementation. Frequent-

ly the different language forms are referred to as levels in the 
- 

-

same component design language.

Component design languages will vary. For software the language

is referred to as the Process Design Language (PDL). Ideally the

lowest or last level employed is referred to as a Higher Order

Language (HOL) (e.g., JOVIAL, FORTRAN) and provides the means

for expressing numeric and logical operations. Numerous outer

levels have been suggested . Among the most promising appear to

be those which combine natural languages with the logical block

structures associated with structured programming. Figure 2—5

illustrates the use of this PDL level for the design of a real-

time executive. It is important to note that the natural language

can be replaced with lower language levels (i.e., HOLs). If this

level of PDL is required , progress can be measured by making
design corrections at this level when implementation problems are

encountered .

Hardware Design Languages (HDLs) may require slightly different

lower level language forms, e.g., Boolean algebra. For HDLs the

outer levels have never been adequately examined . Nevertheless,

meaningful interim levels have been defined , including the ISP

notation developed for purposes of formalizing the description of

a machine ’ s repertoire. Figure 2-6 shows an adaptation of this

language used to define a control algorithm (dispatch) which must

be present in a reconfigurable system architecture. Figure 2-7

shows the ISP language used to define an instruction for a Univac

16-bit product line processor.

For a specific time frame, implementation constraints for TSDF

capabilities must be identified . For example, whether or not

current language technology will permit the outer level language

44 

T~



~ -— —--- - - - - - ,- ----
~~~~~~~~~

REGISTER MO DULE ESR

IF PRIORITY IS VALID
• - . ThEN

IF MODULE N AME NOT ALREADY IN MODULE LIST OR TASK LIST
ThEN

IF MODULE TABLE NOT FULL
ThEN

IF IPL INDICATO R IS SET AND A PSEUDO MESSAGE TASK EXISTS
THEN

REPLACE PSEUDO MESSAGE TAS K ENTRY WITH ThIS MODULE IN
MODULE LIST

(NAME , PRIORITY , UN-SCHEDULED , UN-SUSPENDED , DEFAULT TAS K ERROR - - -

MAS K , NON-REGISTERE D INDICATOR , NON-N RM INDICATOR)
ELS E

PLACE ThIS MODULE ENTRY INTO NEXT AVAILABLE SLOT iN MODULE
LIST NAME , PRIORITY

UN-SCHEDULED , UN-SUSPENDED , DEFAULT TASK ERROR
MASK , N (N-REGISTERED INDICATO R, NON-NRM INDICATOR)

ENDIF
*AS SIGN STORAGE * (TO THIS MODULE)
IF ASSIGNMENT WAS SUCCESSFUL

ThEN
SET SUCCESSFUL STATUS
SET REGISTERED INDICATOR FOR ThIS MODULE

• ELSE
SET ADDRESS ERRO R IN STATUS
CLEAR MODULE ENTRY FROM MODULE LIST .

• ENDIF
• ELSE

• . . SET MODULE TABLE OVERFLOR INDICATOR
ENDIF

ELSE
• . IF NRM IND iCATOR is SET FOR THiS MODULE

THEN
IF REQUESTED MODULE BOUN DARIES LIE WITHIN STORAGE ASSI GNED TO

DUPLICATE MODULE
THE N

• . . . ~RELEASE STORAGE * (ASSIGNED TO DUPLICATE)

- . ~ASSIGN STORAGE * (REQUESTED BY ThiS MODULE)
• SET SUCCESSFUL STATUS. . . . SET MODULE REGISTERED INDICATOR

REPLA CE DUPL I CA FE MES SAGE TASK ENTRY W I TH TH I S MODULE
. . . . (NAME , PRIORITY , UN-SCHEDULED , UN-SUSPENDED , DEFAULT TASK

• ERROR MASK , NON-REGISTERED INDICATO R , NCN -NR M IN DICATOR)

• . . . SET MODULE REGISTERED INDICATOR AND NR I4 -IPL INDICATOR
• . . . ELSE

SET INVALID ADDRESS STATUS
END IF

ELSE
• . . SET DUPLICATE NAME STATUS
• . END IF

ENDIF
ELSE

SET INVALID PRIORITY STATUS
END IF
RETURN

END

Figure 2-5. Example of PDL

45

— — —— -- --- _ _
- -

F.— ~~ - --- -- --- _ -- -—-
~~

---- — - _ - _-----
~~~

- - -—

~

—-,----- -----

~~

-

DSPH/DISPATCH PROCESSING :
(ACTIVE PROCESS<SYSTEM>

PROCESS EXECUTION READY LIST [SYSTEM) , NEXT

PROCESS STATE SYSTEM> ÷ ENVIRONMENT

<ACTIVE PROCESS <SYSTEM>> : NEXT

PROCESS ACTIVE <SYSTEM> ÷ 1
DISPATCH ACTIVE <SYSTEM> ÷ 0; CYCLE).

Figure 2-6. An Adaptation of ISP

OP CODE DESCRIPTION

(op O4 f—3)-* ((byte—address;nex t
Byte Load & R[mji-R[m] + 1); next
Index by 1 (m—OU1R[m]<O>)-.(R[a]<7:O>÷M[Z]<15:8>);

(m#O fl R[ni]<O>)-*(R[a]<7:O>+M[Z]<7:O>);
R[a]<l5:8>÷O;
C÷O;
O!#O;next
single#R[a];next
set—CC—single);

Figure 2-7. An AN/UYK-20 Instruction Description in ISP

46

& - I

- l I ~~T~~~~ - -

- — - .--—---—‘~~~ •--~~~~~~ ——----— — U - ~~~~~~~~~~~~~~~~~~~~~~~~ .—~~~~~~- -~-— _ _ -• _ - - —_ -----



• definition for a HDL or, if an ISP level is defined , whether or
not it can be translated into computer aided design controls

which will permit processing chips to be built supporting the

chosen repertoire must be discussed. The second portion of the

RCSDF study identifies the anticipated time frames for which
the technologies will exist and the implementation of the capabil-

ities pursued.

A final capability required of the human subsystem is a means (or

language) for management to interact with the hosting subsystem.

This capability is further discussed as a part of the hosting

subsystem .

2.4.1.2 Hosting Subsystem - The hosting subsystem supplies the

logic which transforms a system design from the form submitted

by the human subsystem into system component specifications, and,
where achievable, process control for automated component devel-

opment. The components may be either hard or soft. The hosting

subsystem is seen as retaining a library of component designs

complete with performance specifications. The design may exist

in multiple stages of design transformations, e.g., higher level
language description , machine object code, register transfer

language description , and hardware logic diagrams/specifications.

There are at least six technologies involved in the transforma-
tions which take place in the hosting subsystem . Each is present

in Figure 2-8, having been illustrated with examples of what is

now available or being advocated by the research community. The

technologies are discussed below.

2.4.1.2.1 Management Enaineer~p2 - For the TSDF, management

engineering is defined to be that logic which enables management

to gain insight into the progress made in system design/develop-

ment and permits management to enforce individual component

47
r 

_ - 
~~~~~~~~~~~~~~~~~~~~~ 

_ _ _ A

4

• I

A
wr.

_ _ _ _ _

~~~~~~~~~ ~ 4)

o 

_____ hI

_ _ _ _  _ _ _ _  

.
~1

z i , I ~~~~w I
/ L ° J 

U)
‘4 1 ——_________ 

I C,! 0’a,

_ _ _  

~~ ~~~
C, 

:~,1 r g~~
•
~~~~

‘4~~~J 0

0

0~

_ _ _ _ _

c4 u} ED ii I

48

p.— - —

~

-

~~

--- —

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

— - -

~~~

----- - ---.--- - — -

~~

- - --• ------- --

quality assurance procedures. For example, each level of the

process (software) design language can be retained in the data
base for comparison with subsequent (i.e., more detailed) lower

level language descriptions. If the contents of the language

levels do not agree, this information can be recorded for manage-

ment reports. This forces outer level descriptions to be updated

and permits management to assess the impact on the remaining sys-

tem components. Testing of an individual system component (e.g.,

program debug) is not considered to be complete until all levels

of system design involving that component have been updated and

all requirements unique to that component have been exercised
and subsequently validated.

In Figure 2-8 the logic for management engineering is labeled

“process visibility enforcement tool (s) .“ It should be noted
that to take full advantage of management engineering technology,

a tremendous improvement in the types and quality of design

languages must be undertaken in the research community .

2.4.1.2.2 $ystem Engine~rjng - system engineering is defined to

be the activities that support design, development , and ultimate-
ly integration of both hardware and software components such that

they are consistent with specific application performance require-

ments. Inherent in this definition is the need for a rigorous

decompositional technology based upon comprehensible theoretical
models and management techniques which insure visibility and
control.

A theoretical basis for decomposition compatible with the RCSDF

study is the application of finite-state machine theory. This

application would functionally decompose an application system

into processes (components) each of whose potential interface

t

49

-— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ fl-.-

with other processes of the system is delimited by the definition

of a hardware state vector. By definition, a functional process
is hard if it is the only process which may impact a machine ’s

state vector.

Once the system is decomposed into functional hardware and/or

software components, the performance requirements can be estab—

lished for each component relative to its interface with other

components. I.t is convenient at this point to organize, the com-
ponents in a hierarchical structure that illustrates which com-
ponents control the use and allocation of system resources, in-
cluding hardware devices , programs, and data.

The system engineering technology , like the other technologies
handled by the hosting subsystem, requires a multilevel design

language which has not been adequately defined. This language

is herein referred to as the Requirements Specifications Language

(RSL) and must be capable of describing system decomposition.

System engineering is represented in Figure 2-8 by the system

requirements language translator. Two outputs are hypothesized .

The first is an object subject code capable of invoking either

resource control algorithms of the reconfigurable subsystem

dynamically or procedure calls to statically drive a system gen-

erator (producing a software configuration). The second output

is a scenario which controls the performance measurement logic

and performance feedback available within the reconfigurable

subsystem.

2.4.1.2.3 Software Enaineerina - Software engineering is defined
as activity which supports the design and development of software

components. The input to this technology from the human subsys-

tern is called the Process Design Language (PDL). Examples of the

50

- À _ I
-- •_ _

~~_~~~,~
,
~•—.•——-..•--..———-—-—~—•~

r -

~~~~~ 

-

contents of two levels of the PDLI were discussed in the human

• subsystem section and the potential impact on the overall design

procedure was discussed under management engineering . A required

outer level of the PDL is a Software Requirements Specifications

Language (SRSL) which describes the attributes unique to this

component and against which system performance measurements can

be taken.

The software engineering logic is represented in Figure 2-8 by

two functional entities entitled Translator Writing System (TWS)

and Auto Code Generation (ACG). While not including all of the

functional requirements for software engineering , they do repre—

sent two important design transformations necessary for total

system design. Translator writing systems have been achieved

using existing software technology which permits a variety of

inner level PDL5 (i.e., HOLs , e.g., JOVIAL and FORTRAN) to be
translated into a common Intermediate Exchange Language (IEL) .

As shown in Figure 2-8, the actual translation process is con—

trolled by describing the language syntax using yet another

language (e.g., Backus Nour Form).

Once the process (component) design has been specified and trans-

lated into an IEL it is technically feasible to translate the IEL

into target machine repertoire sequences. For total system design,

bowever, the repertoire chosen is a part of the design process.

As such, the last translation process (called Automated Code

Generator) would be driven from the hardware language translator

and is discussed as a part of hardware engineering.

2.4.1.2.4 Hardware Enaineerina - Hardware engineering is defined

-to be that activity which supports the design and development of
hardware components. The input to this technology from .tbe human

51



- - -

subsystem is called the Hardware Design Language (HDL) . A dis-
cussion of potential language levels (e.g., ISP) was included in

a discussion of the human subsystem. A required outer level of - 
—

the HDL is a Hardware Requirements Specifications Language (HRSL)

which describes the intended characteristics of the hardware corn-

ponent being defined , e.g., memory access time, machine cycle

time, and tolerable remote access delay times. The requirements

specifications can be utilized as factors to offset the controll—

ed performance measurements returned to the human or hosting sub—
systems from the reconfigurable subsystem.

The logic required to support the hardware engineering technology

is represented in Figure 2-8 by the entity entitled hardware

language translator . The hardware language translator is depicted

as producing at least two outputs. The first is Generation Data

Structures •(GDS5) which supply the ACG with a description of the

repertoire def ined for a “target” machine. From the GDSs it is

hypothesized that the ACG is able to translate the IEL into the

repertoire as defined by a level of the HDL similar to ISP.

The second output supplies (perhaps as firmware) the repertoire

selected by the design to the RS, thus enabling it to simulate

the intended target machine. An alternate path would allow the
repertoire specifications (including requirements specifications)

to be passed on to logic designers , enabling specialized processors
to be developed for the deployable subsystem.

It should be noted that we have just described a means for auto-

mating the first level of interface between hardware and software.

— A second level, that of component sequence control, is super-
ficially discussed in the reconfigurable subsystem.

- -  

52

_____



2.4.1.2.5 Data Base Management - For the TSDF, data base manage-

ment is defined as that logic which exists for storing, retriev-
• • ing, updating, deleting, and otherwise manipulating data which

represents the current state of system design. The concept of

large data bases which can be easily accessed by systems such as

the human subsystem and hosting subsystems are well understood
and documented . However , the techniques for implementat ion are
continually undergoing evaluation . It is recommended that for

the hosting subsystem , the method of implementation undergo ex-

tensive evaluation. This is particularly true if the hosting
subsystem functions are ever to be mapped onto the reconfigur—

able subsystem.

2.4.1.3 Reconfiaurable Subsys tern IRS) - The RS proposed for the

TSDF was conceived to permit desired application functions to be

simulated using a variety of configurations of both hardware and
software. The simulation permits performance measurements to be

taken in order to access system bottlenecks and establish the

feasibility of the overall system design. If bottlenecks are

discovered which would tend to indicate performance failure in

the deployable subsystem, corrective action can be initiated

involving such measures as reconfiguration, hardware/software

tradeoffs, parallel or multiprocessing , centralized data access,

or hardware element usage. In addition, by establishing a facil-

ity which supports the measures discussed above, system capabili-

ties can be developed which will promote the expansion of off-

the-shelf software. The availability of these capabilities in

the R5 will permit software to be developed before hardware de-

velopment is initiated and high risk software elements to be

fully developed and tested. The result in both cases is a reduc-
tion in initial and/or life cycle system cost. •



__________________________________ -

To achieve the desired characteristics , there are at least three

uniquely identifiable capabilities which must be provided by the

RS. They are listed below.

2.4.1.3.1 Tailorable Emulation Capability - The ability to take

on firmware or nanocode to permit changes to the machine reper-

toire emulated by each processing element in the subsystem.

2.4.1.3.2 Performance Measurement Capability - The capability

for monitoring and gathering performance statistics such as

frequency of memory references, shared data domains required by

individual software components, delays caused by mutually exclu-

sive resources accesses, and frequency of component execution.

To achieve this type of performance , measurement will require a

hierarchical control of resource allocation which can be enforced

by hardware but monitored by software as directed by performance

requirement scenarios. A second potential requirement is dedi-

cated hardware elements for data reduction and feedback to either

the human subsystem or hosting subsystem.

2.4.1.3.3 Resource Control Algorithms - The desired characteris-

tics for the RS require an enforced methodology for the control

of system resources. Research projects have shown that a method-
ology can be enfor-ced using control algorithms which standardize

component interfaces in the system. Implementation of the algor- —

ithms, like the implementation of a floating point add instruc-

tion, can take numerous forms, including both hardware and soft-

ware logic but the overall result of their invocation must be

predictable or constant for the system architecture.

The set of resource control algorithms required for the reconfig-

urable architecture must be complete. This permits software mod-

ules to be added to the system configuration without modifying

any portion of the software system already working.

54

- •~ -. — • - — ________



r~~~~~~~~
’- —-& -

~~~~~~~~~~~~~~~ITT 

For this discussion, control algorithms are said to be complete
— if, given a hardware configuration of processing elements, an

• existing stand-alone system of software can be reproduced to

execute concurrently on the hardware without modif ication to the
software and using only the extension to the machine repertoire

furnished by the control algorithms. The reproduction must be

possible either statically or dynamically.

To clarify, recall the function of a system generator program.

Typically, a system generator accepts outputs from language pro-

cessors (compilers) and, based upon directives supplied by system
programmers, binds the software in a form capable of replacing
the existing software in the system. Should a system have con-

trol algorithms demonstrating the property of completeness, a

system generator would be capable of causing the original sof t-

ware plus a reproduction to execute concurrently without software

modification and using only the constant function(s) supplied by

the algorithms. Obviously, if the hardware remains constant,

the throughput of one of the stand-alone systems might be reduced

even though the control algorithms are shown to be complete.

This feature is desirable , however, since theoretically off-the- -

shelf software functions can be added to the system, e.g., a

missile tracking and display function added without change to

the existing software. If the system of control demonstrating

completeness is included as a part of the reconfigured architec-

ture, the throughput of the system can be adjusted with the addi-

tion of hardware elements.

To aid in identifying a set of resource control algorithms which

demonstrate the property of completeness, Univac has chosen the
methodology called process control. The methodology of process

control identifies a hardware system as dynamically decomposable

into virtual machines, each of which can be defined as a concise

~~~
-- ---- 

55 

--

~~~ 

_j

-

~~~



~~~~~~~---——----- -
~~
--- -- - _—- - - - - -- —-,- ~~— - - - —------ ---

~~~~
---

summary of the state of the real machine for a bounded set of

logic , i.e., a finite set of descriptors defining the effect

• that past inputs will have on the real machine ’s response to the
next input. A process is defined as the behavior of a virtual

machine executing a “program” , i.e., the program, the machine
state which the program assumes during a specific invocation,

and the data which is unique to this invocation. Simply stated,

each programmer or uniquely identif iable use of the system sees
the program or module created or invoked as excuting on its own

machine.

2.4.1.4 Deployable Subsvst~rn - The deployable subsystem is the

result of the design process and hence the TSDF facility. It

must be reliable and maintainable and it must meet the needs of
the application including high performance demands. It must be

easy to use in order to reduce training costs and must provide

flexibility for growth resulting from inevitable and evolutionary

system demands. Most important, all of these characteristics

must be achieved in a manner that will enable the life—cycle cost

of the system to be dramatically reduced .

To achieve these characteristics the deployable system must be

configured using both hardware and software functional components:

hardware to increase performance, and software (or firmware) to

permit flexibility without the retooling expense now associated

with hardware development. The TSDF enables designing to proceed

in a manner which provides management visibility at critical

points. The visibility allows corrections to be made on detected

design errors which have in the past gone undetected and later

resulted in costly implementation.

56

L - ~~~~~~~~~~~~ ._ -—



2.5 TSDF Advantages and Risk Assessments

— 

- 2.5.1 TSDF Advantaaes - The advantages of the TSDC methodology

and by implication the TSDF has advantages that fall into three
categories: software, hardware, and the system in general. They

will be listed and explained in the sections below.

2.5.1.1 Software

2.5.1.1.1 Ordered Program Structure - Programs (and their hard-

ware alternatives) can be developed, implemented, and tested to

determine the execution behavior of their control and logic paths

in as simple or complex an environment as is desired at the dif-

ferent system development times. (A system design does not evolve

as a unit step function.) Further, these execution properties

can be performance extrapolated to determine implementation

requirements prior to design committal.

2.5.1.1.2 Transferability of Proarams - The emphasis on HOL

ensures a better transferability of programs between machines.

Better transferability implies that developed program modules

have a much better chance of being used in more than one system

development, diminishing the overall cost of the module, and
hence software, to the Air Force.

2.5.1.1.3 Program Correctness - A major advantage provided by

TSDF is that a program can be viewed in two ways. First, it

produces the expected transformation given prescribed inputs.

Second, it behaves totally as expected in its operating environ-

ment - it interfaces properly with other programs with which it

is merged , it operates concurrently withou t logical problems, and
its performance level is within prescribed system margins. By

hosting a complete system and exercising that system responsively



-

to the expected environment , program correctness can be verified

and the objective of zero fielded faults approached .

2.5.1.1.4 Proaram Generation - HOL programs developed on TSDF

a part of the system design and development process automatic-

ally provide programs for use in deployable systems. Transfer-

ability of the HOL programs to the implemented target architec-

ture from the TSDF could easily be made.

2.5.1.1.5 ~~~aram SizeJExecutjpn Profiles - The TSDF is advan-
tageous in optimizing software size/execution profiles by pro-
viding the means for examining alternative designs and determin-

ing overall system level performance differences. Emphasizing

optimization analyses through TSDF methodologies will definitely

aid in improving performance and limiting cost.

2.5.1.1.6 Su~~~rt Software - The TSDF would be advantageous to
the development of some support software elements for a TSDF-
designed system. Following the principle that the TSDF faithfully

emulates the target system and employs hosted software, it follows
that support software, which usually doesn ’t have real-time re-
quirements, can be developed using the emulation capability.

Advantages are a longer software lead time, allowing necessary
support elements to be present at the time the system is inte-
grated.

2.5.1.2 Hardware

2.5.1.2.1 flexi~ility - By providing designers with a TSDF cape-
bility to examine design and architecture alternatives, the same

logical system structure can be used to achieve flexible system

solutions to meet various cost-performance levels. Using the TSDF,

a designer can investigate configurations of various combinations

of his hardware and software resource modules at a very low

-

, 

____ 
58 

_ _  

L

flu—



design cost. He c~n then afford to choose the best configuration

of his resources without doing the costly rewiring and recompil-

ing. After a system has been built, the effects of adding a
resource module to the system can be easily assessed using the

TSDF. Hence the designer can avoid unnecessary hardware costs.

2.5.1.2.2 Software/Firmware/Hardware Tradeoffs - Because of the

modularity of the system, it will be much cheaper and easier to

investigate the software/firmware/hardware tradeoff problem. A

hardware or firmware piece can first be emulated in the TSDF.

By comparing the results with the original software version, the

final decision can be justified more objectively. The emulation

work can actually alleviate some of the designing and testing

burdens later on, should the designer finally decide on building
the hardware/firmware.

2.5.1.2.3 Hardware Complexity Estimates - The progression of

development on the TSDF will naturally lead to the definition and

specification of a hardware design, possibly of hardware compon-

ents that do not exist. From this development effort the hard-

ware complexity of the eventual system can be more accurately
approximated and examined . Many deficiencies develop due to

unanticipated development of hardware complexity in order to meet

re-defined system functions, growth, or performance.

2.5.1.2.4 Co8t Bounding - The firm definitions of the system

architecture confirmed by confident performance evaluation can be

expected to limit the cost of the system or cost-approximate the

eventual system design.

2.5.1.2.5 Risk ~jnimization - The overall effect of TSDF is to

provide preliminary design proof for a system design. The

successful accomplishment of this results in the minimization of

59

______________ - —‘- —_. ‘—.- 
--_

~



risks in the development of a system design, a significant advan-

tage to a system development program. Tb the extent that risks

can be minimized, or eliminated , the program exposure to time
and cost overrun is reduced. The TSDF -is seen to provide many

advantages in this particular area.

2.5.1.2.6 Maintainability - The delineation of hardware, if

carried sufficiently far in TSDF, can provide insight into main-

tainability requirements which, if they become extensive, can
reflect themselves into high system operating costs.

2.5.1.3 System

2.5.1.3.1 Testing - Programs and systems designs can be more

thoroughly tested and their logical operations validated with

the aim of reducing fielded faults to zero. To the extent that

fielded faults approximate zero, redesign costs will be minimized.

2.5.1.3.2 Reliability - The ability to exercise and evaluate

programs on an emulated architecture prior to specification will
help to increase the reliability of a system design by isolating

software design errors, by allowing system degradation alterna-

tives to be examined , and by allowing the system to be driven

in an environment much like the application environment. In

addition, since through TSDF evaluation the system design is

firmly developed, the system hardware reliability can be more
accurately approximated and parametrically analyzed so the system

components can be chosen to achieve the greatest reliability for

a specific cost.

2.5.1.3.3 dularity - A key to more cost-effective systems

designs seems to be modularity , both hard and-soft, that allows

systems to be expanded and modified without an avalanche of 

60

A 

_ _ _ _ _ _ _ _ _
-



design changes. Modularity, for example, stresses isolation of

design decisions to independent modules, thus allowing correction

without affecting modules. Systems can be altered more easily

if a module design is developed on independent module prin-
ciples. A TSDF allows function movements between alternate hard-
ware or alternate software modules or between hardware and sof t-

ware modules. Through modular design a module interface standard

will evolve that supports independence, a characteristic lacking

in current designs.

2.5.1.3.4 Modifications - The use of the TSDF to develop a sys-

tem using HOL5 and the proposed evaluation technique will allow

modifications to be made more easily and less expensively since
the system behavior has been observed and the system is better
documented . Further, with data basing techniques the system can

easily be recreated , modified , and tested in considerably shorter

time frames.

2.5.1.3.5 Local Optimization - Although modularity stresses as

much uniform handling as possible, the user is still allowed to

investigate any local optimization within a module according to

his needs. This is achieved by allowing users to generate their

own emulated microcode sections, if they wish. A similar allow-

ance can be done to the HOL compiler. In this way intramodule

optimization can be ensured , if desired .

2.5.1.3.6 Partitioning - The alternative architecture evaluations

possible on a TSDF will allow a user to develop significant in-

sight into the logical and physical partitioning of his problem

on the system. This insight can allow natural fault tolerance

to be incorporated into the design to provide positive graceful

degradation modes. Given further fault tolerance , proof of per—

formance in a degraded mode can be developed .

61 

- -~ -,~~
--,

~
.—•——•——-- --



_ _ _ _ _

2.5.1.3.7 Growth Approximation - Through development of system
algorithms and their performance evaluation on different TSDF

hosted architectures, system growth possibilities (or margins)

can be more easily determined. This is an important determina-

tion since systems are seldom static. System functions, during

system life, are modified or added resulting in system design

changes. Growth margins have never been easily and precisely

determined , either from an added hardware , added software, or

performance standpoint.

2.5.1.3.8 Documentation - The use of HOL, EDL, and in general,

more English-like algorithmic languages at the onset of a design,

and the enforced use of HOLs in modifications during the design

process cannot but help ease documentation of systems design
simply because the languages are self-documenting . Modifications

or the resolution of errors are often expensive because programs

are poorly documented and written in assembly languages. Soft-

ware is a creative art, with programs representing creative solu-

tions to processing problems : one person ’s creativity may be

another ’s nemesis.

2.5.2 Risk Assessments of TSDF Functional Capabilities - An ini-

tial evaluation on the technical risk levels for each of the TSDF

functional capabilities described earlier in paragraphs 2.2, 2.3,

and 2.4 is presented in this section , under the assumption the

TSDF implementation will be completed by 1985. For each function-

al capability , this report will assign a risk level and the con-

fidence level on this initial assessment.

The risk levels are listed below, along with an explanation of
each level.

-i Level 1: Exce~tiona11v Low

The technical risk is minimal . The risk subject will probably be

1 
62

-~~~~~
-

- - - - -- - 

___
~~._~

i___ ---••--



-

produced as a natural technical development well before the anti-
cipated need and several versions of the subject will probably —

be available for usage. It would generally require no industry

encouragement to realize. —

Level 2: Low

The technical risk is slightly greater than level 1 but presents

no serious technical challenges should development be desired.

Practical realization of the subject would probably occur near

the anticipated need and would be supported by several experiment-

al versions. It would require industry encouragement to accomp—

11 sh.

Level 3: Medium

Technical risk in this area is moderate and represents a techni—

cal challenge to recognized practices. Subject realization in

the needed form probably would not occur at the time of antici-

pated need unless encouraged and funded.

Level 4: Hiah

This represents a serious challenge to the current technology.

Subject realization will not occur unless heavily encouraged and

funded. Research and development are required in order to make

this function available at the required time.

Level 5: Exceøtionallv Hiah

Technical developments in this category would require filling

gaps in technical knowledge to be realized in the specified time

frame. They would require many years of heavily funded research

and development to realize. It would be necessary to rely on

funding by both government and industry to realize this develop—
ment.

63



For risk levels assigned as 4 (high) or 5 (exceptionally high),

a post-1985 time frame at a reduced risk level will be projected,

where possible.

If the risk level is dependent on alternative implementation of

the subject, it will be described as a range, i.e., low to medium

with subject alternatives described at either end of the range.

In the case by case assessment below, a confidence level of 1

means that not enough information is gathered about the subject,

and the risk level assigned is an educated guess. A confidence

level of 2 implies that we have more knowledge on the subject and

are fairly confident about the risk level assessment. If a con-

fidence level of 3 is indicated , it means that we are quite cer-

tain of the risk level assignment.

2.5.2.1 SimultaneOUs_Hosting (on Reconfiaurpble Subsystem)

2.5.2.1.1 Single User

Risk Level: 2-4 Confidence Level: 2

This implies that the TSDF hosts only one emulation-user at any

particular moment. This single user hosting is currently being

performed in several places with existing general purpose emula-

tion equipment. Risk level 2 represents an emulation of a known

unit machine operating in a single synthetic measurement environ-
ment (instruction mix benchmark, for example). Risk level 4 

-•

represents an emulation of perhaps a parallel machine operating

in response to an external stimulus with a reasonably competent

measurement capability. The risk level may drop from 4 to 3 by

1990.

64

1k- 
------ ~~~- - - - ---  - 4

- ~~~~~~~~~~~~ 
- - - ——

~~~
- - - ----— _________________________ --

2.5.2.1.2 Multiple User

Risk Level: 5 Confidence Level: 2

Multiple user emulation is interpreted to mean the capability to

multiprogram more than one user with the implication that the
user-emulated machine varies from user to user. Multiprogramming

on a single conventional machine is at this time still not with-

out problem , and the multiple system emulation would only create

a heavier burden. Moreover, it is doubtful if hardware technology

will be advanced enough to handle this multiprogramming effort by
-

1985. The risk level will probably be lowered to 3 in 1995.

2.5.2.2 User System Timing

2.5.2.2.1 Real Time Operations

Risk Level: 2-5 Confidence Level: 2

Real time operations mean the ability of the emulated system to

equal or better the performance of the user—designed system, so

that all user system operations can be done in real time. Risk

level 2 represents emulation of low performance existing machines.

Risk level 5 represents the emulation of high performance —

machines. No reasonable time frame projection can be given to

reduce the level 5 risk.

2.5.2.2.2 Simulated Timing

Risk Level : 3 Conf idence Level: 3
It seems readily possible to simulate timing at the instruction

level by incrementing a register . It would be necessary to devel-

op this as a part of microcode development but would be intrinsic

to the TSDF.

2.5.2.3 SYstem Environment (De~lovable System)

2.5.2.3.1 Synthetic

Risk Level: 2-3 Confidence Level: 2

65

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ 

— ~~~~~~~~~~~ — ~~~~~~~~~~ 
- —

~~~~~~~~~~~~~ -—— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- ___

Risk level 2 represents essentially state-of-the-art today, syn-
thetic benchmarking, in which a prescribed code segment is execu-
ted n times and measured using internal system clock sources
(real—time clock, for example). Risk level 3 represents the use

of devices peripheral to the emulation system to interact with

the emulation as an external stimulus.

2.5.2.3.2 Real.

Risk Level : 3-4 Confidence Level: 2

Risk level 3 represents a simple , but realistic real environment
with duplication of the system per ipherals , and the abi l i ty to
duplicate the behavior of the environment into which the emula-
tion system is merged . Risk level 4 represents what would be a

large system environment .~hen complex stimulus is required and
the emulating system is capable of operat ing in rea l time . The
nearest known e f fo r t to this capability is the work being per-
formed at the Ballistic Missile Defense Advanced Technology
Center in Huntsville. Risk level 4 capability may be achievable
at a risk level 3 during 1990 depending on the extent of software

development tools.

2.5.2.4 Virtual Environment

2.5.2.4.1 TSDF

Risk Level : 3 Confidence Level: 2

The virtual environment on TSDF allows the user to assume any

kind of machine. A risk level of 3 is assessed because of some

uncertainty on the different kinds of user-designed systems that

are allowed .

2.5.2.4.2 User-Designed System

Risk Level: 2-3 Confidence Level : 2

This implies that a user is allowed to host a virtual environment

as pert of an emulation. Several virtual resource techniques

66

-—~
,
~~~~~~

--- - - -  - -



‘ W ~~- , -. ‘ 
- -

~~ 
-- -

exist today and are in use, so the risk level is not high.

2.5.2.5 Architecture Emulation

2.5.2.5.1 Existing

Risk Level: 2-4 Confidence Level: 3

Existing architecture is defined as pre-1985 architecture. Most

of these will have adequate descriptions upon which to base emu-

lation. It will be a readily attainable capability for normal
machines that has already been demonstrated in a number of places.

However, the risk level will rise with deviance from normal

machine architectures.

2.5.2.5.2 ~~~
Risk Level: 3-5 Confidence Level: 2

This is defined as the emulation of post-1985 architecture. The

risk level can be as low as 3 for new machines developed in tra-
ditional manner ; it can be as high as 5 for revolutionary mach-

ine designs. No reasonable time frame projection can be given

to reduce the level 5 risk.

2.5.2.5.3 Modification

Risk Level : 3 Confidence Level: 3

This is defined as the ability to modify existing components or

their arrangement without reconstructing the complete system

emulation. The problem lies in constructing an adequate descrip-

tion of components and the relationship between them. Emphasizing

system modularization will tend to keep the risk level as low as

3.

2.5.2.6 Dynamic Architecture Alterations

2.5.2.6.1 Hardware Replacement

Risk Level: 3 Confidence Level: 2

67 

— - -~~~
.------- - -.— — — — — - — — -- - - - -— --



This is defined as the dynamic selection of a present TSDF

hardware capability by the user.

2.5.2.6.2 Hardware Addition

Risk Level: 3 Confidence Level: 2

This is defined as a piece of hardware added to help the user to

achieve a more realistic result. A risk level of 3 is assessed

on the assumption that an adequate interfacing method has been
established .

2.5.2.6.3 Software/Hardware Interchange

Risk Level: 3 Confidence Level: 2 —

The TSDF should be capable of mapping software components to

hardware process ing elements without redesign. This means that

a certain function can be performed via either software or hard-

ware, with no major redesign. This requires a standard inter-

facing methodology to control various components.

2.5.2.7 Multiple-Machine System Emulation

Risk Level: 3-5 Confidence Level: 2

Risk level 3 represents the emulation of a homogeneous set of
machines of moderate dimensions , complexity, and simple perform—
ance. Risk level 5 represents the emulation of heterogeneous

machines, possible based on distinctly different computing prin-

ciples, and is not seen to be reducible to level 4 or 3 before

1995.

2.5.2.8 Memory Configuration Emulation

2.5.2.8.1 Hierarchical

Risk Level: 3 Confidence Level: 2

— Techniques already exist now for hierarchical storage; the prob-

lems appear to be translating these techniques to local configura—

tions.

68

LIP~~ 
- - 

- 
-.--- - -~~~~~~~~ - - 



2.5.2.8.2 Shared

2.5.2.8.2.1 Centralized Sharina

Risk Level: 3 Confidence Level: 2

Examples exist and are being used quite widely.

2.5.2.8.2.2 Network Sharing (Software Intervention)

Risk Level: 4 Confidence Level: 2

This implies the use of software (for example, protocols) to help

move data pac~kets to desired locations. It is not likely that

the risk level will be reduced to 3 until 1990.

2.5.2.8.2.3 Distributed Sharing (Hardware Defined)

-Risk Level: 3 Confidence Level: 2

This implies a closely coupled system, in which information trans-
fers are controlled more by hardware than by software.

2.5.2.9 Data Path Emulation

2.5.2.9.1 Direct Access

Risk Level: 3 Conf idence Level: 2

The TSDF should have the capability of simulating the direct

access system interconnect of the user-designed architecture.

The risk level depends on the degree of exactness or complexity

of the data paths.

2.5.2.9.2 
~~LQ

Risk Level: 3-4 Confidence Level: 2

The risk level of 3 is assigned for standardized data channels.

The risk level of 4 refers to nonstandard connection methods.

Risk level could be reduced to 3 by suitably restructing the

4 
topologies.

69

—
~~~ 1• - - - -: ~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- -— - - —

C - _ -_____~ _.- r_~~.~~~~_naL - n- zt. -~-_e —a —
~~~~~~ - 



_- - -- ~~~~~~~~~--—~~~~~~~~~~~~~~~~~~~~~ - —------. ~~--  - - ---- ~~--—-~~-- - - - - - -- - ---- -
~~~~~ ~~

--- ~~~~~
--

2.5.2.10 Hosted System Preservation (Reconfigurp ble Subsystem)

Risk Level : 3-5 Confidence Level : 2
The TSDC should have the capability of preserving all particulars

of a hosted system design including a capability for restarting —

the system from a termination point, should that be desired . If

H the termination point is arbitrary , then the risk level is 5

(very high). If enough checkpoints are established in the

system, and the restriction relaxed to restarting from the check-

points only, then the risk level will be reduced to 3.

2.5.2.11 Scenario Verification (Hosting Subsystem)

2.5.2.11.1 Requirement Specification Validation
Risk Level: 4 Confidence Level: 1

The hosting system should have the capability to systematically

verify the validity of the user ’s system. No adequate require-

ment specification language currently exists. Development of a

formalized requirLments specification language will require time

and would be a level 3 risk by 1995.

2.5.2.11.2 Execution Scenario Generation/Translation
Risk Level: 3 Confidence Level: 2

This implies the translation of a user-defined scenario into
emulation driving functions. The risk level is medium, assuming

we have high level language representation and approximately 85

to 90% accuracy for verifications .

2.5.2.11.3 Report Generation

Risk Level: 2 Conf idence Level: 3
Many report generation techniques exist, so the risk level is
low.

- -
~~~ ~~~~~~~~~~~~~ ~ 

_
~i _

70 

- 

—

~~



iIiii-~

_

~ 
- -_ _ _  —

~~~~

----_

~~~~~~~~~~~~ 

- _ _ _ _ _ _

2.5.2 . 12 Performance MonitorinQ (Reconfigurable Subsystem)

2.5. 2.12.1 Configuration Requirement Specification Translation

Risk Level: 4 Conf idence Level: 1

For performance monitoring , we need information on user system

configuration. This translation intends to produce a form of

specification acceptable for monitoring. The uncertainty in an
acceptable specif ication language is the main reason for the
high risk level. It will be reduced to 3 by 1990.

2.5.2.12.2 Performance Scenario and Requirement Specification

Risk Level: 3 Confidence Level : 2
In the scenario, the user describes what performance measures

are desired . He also specifies his performance requirements,

i.e., acceptable bounds for certain performance measures. A

risk level of 3 is given, on the assumption that the specifica-

tions can be represented in terms of high level languages.

2.5.2.12.3 Simulation Performance Measurements

Risk Level: 3 Confidence Level: 3

Performanc e measurement and evaluation techniques have been
developed for many years. However, until more research has
been done to incorporate performance measurements into emula-

tion techniques, the risk level will be 3.

2.5.2.12.4 Adjusted Simulation Performance Report Generation

Risk Level: 3 Conf idence Level: 2

This is the capability to extrapolate measured performance to

the target architecture, i.e., being able to substitute expected

performance parameters for measured performance parameters.

71

____________ - -- -_ _ _ _ _ _ _ _ _

—--— - -- - -~~ -~ - — — -~~~— -- - -- — _ _ _~Js___.



_ _ _ _  —--~~~~~~~~~~~ --~~~~~~ -—-~~-——~~~~~~~~~~~ —- —-- --—--

2.5.2.13 system Definition Languages

2.5.2.13.1 Process Design Languages (HOLs) ~

‘ - 
-

Risk Level: 2 Conf idence Level: 2

Many such languages exist and ma ny more will be developed . Thu s
the risk level is rather low.

2.5.2.13.2 Emulation Design Languages

Risk Level: 4 Confidence Level: 2

Most known hardware languages are on the logic level. Others do

not have enough features to accommodate some of the new arch-
‘ itecture features. It should be reduced to level 3 in 1990.

2.5.2.13.3 Requirements Specification Language

Risk Level: 4-5 Confidence Level: 1

The requirements specification language represents the combined

problems of specifying 1) system function and performance require-
ments, 2) component function and performance requirements , and

3) control structure and resource requirements. Only 2) has
been achieved with any degree of acceptance but even there,

problems still exist.

2.5.2.14 Adjusted Design/Implementation Tools

2.5.2.14.1 Automated Software Design Translation
Risk Level: 4 Confidence Level: 1 1 -

This is interpreted as correlating the process design language - -

programs with a requirements specifications language description.

The high risk level is due to the uncertainty in requirements

specification languages.

2.5.2.14.2 Automated Design/Machine Code Transformation

Risk Level: 3 Conf idence Level: 2

This is closely related to compilation of high level languages.

H 72 

— - 

~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~



F- —-----———-——--- ‘-- -‘~ — --—~~~~~~~ --:= ::--~-::-- 
-.--—- P-- — -  

~~~~~~~~~~~ 
—

~~~,———-.--.=--—.- -- --- - --~~~ - ~~——  — -—-- 
— . . . - - ---

Because of the advances in compiler design , the risk is low.
However , to make the emulating facility a generalized one, the

risk level is increased to 3.

2 . 5 . 2 . 1 4 . 3  Automated Machine Code Implementation
Risk Level : 3 Confidenr e Level : 2

T~:is is the implementation of the user designed machine code
into RCSDF firmware or software . The risk is low , but, to make
the emulations fac i l i ty  a generalized one , the risk level is
increased to 3.

2 .5 .2 .14 .4  Automated Hardware Logic Implementation
Risk Level : 5 Confidence Level : 1

This is the automatic generation of hardware logic design details

from the emulation design language. Too l i t t le is known on this
subject to predict with any certainty. The risk level might be
reduced to 3 by 1995.

2 .5 .2 .15  Requirement Specification Language Translation

2.5.2.15.1 Configuration Specification
Risk Level : 4 Confidence Level : 1

Here it is assumed tha t in addition to those requirement speci-
fications discussed in 2.5.2.13.3, the user also has to specify

which components are to be implemented in hardware and which in

software. The translation of such specifications into some

process design languages is considered high risk. The risk

level should be reduced to level 3 in 1990.

2 .5 .2 .15 .2  Implementation Selection
Risk Level: 5 Confidence Level: 1

The translation will be even tougher if the hosting subsystem has
to make an intelligent selection of implementations from a

73

~~~~~ -- - -  —

—- —- —--- -----_ -

~

—-

~

—
—

~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- —



specification library to build up the user designed system. No

reasonable time frame can be given to reduce the high risk.

2.6 Additional TSDF Issues and Recommendations

The initial investigation of TSDF functional capabilities leaves —

questions concerning a recommended course of action for the de—

velopment program . These issues are related to one another but

are described separately .

2.6.1 One TSDF vs. Many - Differences between system architec-

tures can be great: networks vs. a single machine, for example.

It is not clear that a single general purpose TSDF is adequate —

for development of a wide range of architectures. Associated

with this is the concern about the accuracy associated with this

emulation capability , especially when procurement may be based

on projected performance. Perhaps more tha n one TSDF is needed
to ensure the emulation accuracy needed by the user : it is fel t
that the greater the amount of performance is projected , the

greater the chance that the implemented performance will not

be as needed .

In the current state of the art in emulation/simulation , develop-
ment apparently proceeds on the actual hardware (or functional

development models of such) that will be used in the f inal  system
when performance is the major objective.3 This is not expected

to change and points to many TSDFs. The prospect of a multiple
TSDF approach is also strengthened by the peculiarity and vari-

ability of the system periphery (peripheral devices and their

usage). The recommended approach is to evolve from a parent TSDF

sz~w Advanced Technology Center , ~~~~. cit.

_ 
_ _  

_ _  

I
—,.—,, 

-=-_—-~
-— —---~-~~~~~~~~~~~ ._~~~ 

.
~~~- ... 

—

—----——.-—- -
- - - — ---— - - - - - - - ,

~~~
-----

~~
- - --

employing virtual memory concepts to sibling TSDF5 whose char-

acteristics resemble the parent, but whose actual performance

(through designed and built components) is near the target

architecture. Logically, parent software would perform on the

sibling . Configuration documentation is an important implication

in the multiple-TSDF approach.

2.6.2 Emulation as an Aspiration — Traditionally, emulation has

been applied to mean performance-equivalent execution of object

code (machine instructions). One machine, however , could emulate
another at a lower level of performance. In the TSDF, what is

emulation and what is simulation is unclear because of the dif—

ferent levels that are present. At higher system levels emula-

tion is present in the TSDC, but in practice the TSDF may have
to simulate a large part of the architecture for economic reasons.

The best results would seem to be obtained if the TSDF were a

system emulator rather than a system simulator . One concern here

is the system interconnect problem and the difficulties of emula-
ting the operations of a complex interconnect.

Current emulation technology centers on a one—to—one correspon-

dence between the emulated and emulator even though general

purpose emulation is professed . Recognizing that system emula-

tion (as in the case of a distributed system architecture) is

not well advanced , general purpose system emulation is even less
advanced . Better general purpose emulators will be available in
the future, perhay~ sometime in the 

1980 ’s, for single machines but

not for heterogeneous systems of machines. It is recommended that

the present TSDF concentrate on a single machine general purpose

emulator with the capability for utilizing other processing logic

as needed. System emulation should be a function of sibling

TSDF5, which would use hardware more like that of the target

architectures.

— -s-—.— -~~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~ -~~~~~ —~~~ a—---



2.6.3 Hosted Capabilities - Hosting of generation capabilities

has been described as a part of the TSDF. It has been assumed

that this would be accomplished on facilities separate from TSDF

hardware. Could the TSDF itself host these capabilities? In

instances where the TSDF hardware has the capabilities of general

purpose machines, the TSDF itself could host these capabilities,

otherwise, it could not. The extent to which hosting should be

carried in the TSDF design procedure is unknown. One could

propose a completely hosted TSDF, but hardware experience would :~ 
-

not be gained . —

Hosting is ~efinitely an attained capability well within the

current state of the art. Large scale computer systems come with

with data busing , full operating systems 1 compilers for many

languages, and many other capabilities. Transference of soft-

ware from machine to machine can be accomplished readily with

considerably less effort than in the past. Usage of a modern

commercial data processing system in TSDF would certainly pro-

vide hosting capabilities. (Alternatively, a large scale data
processor capable of emulating a modern commercial machine could

also provide this capability.) Joint use of the TSDF by hosted

generation and target architecture emulation proposed to limit

costs and seems reasonable.

2.6.4 Users — The user class is still undefined . In thinking

about TSDF functional capabilities the question of who the TSDF

user is continually arises. Current commercial data processing

systems support many different users through the software and

environment they provide. However , few, if any, of these users

emulate a new system architecture and none measure the perfor-

mance of the emulation (more often simulation). Handling of

many different users in itself is within the bounds of current

technology but not for system emulation: the current technology

76

_ _-
- -~ -.~~-•~--— - - ~~~~~~~ 

- 

- --

~~~~—


provides the same machine capabilities for all users. It Is

recommended , however , that the user class be made to evolve as
the capabilities of the TSDF evolve, that the initial user class

be defined as system researchers who are interested in studying

subsets of single machine technique. Evolution in more complete
single machine operation and in different users should follow

as capabilities are built and Lormed into a data base.

2.6.5 5~stem vs. Machine Architecture - It is unclear whether
the TSDF should b~ projected for developing a system of computers,

a system comprised of any single computer, or a new system archi-

tecture for a new computer. It is also unclear whether any TSDF

functional capability can uniformly apply to all three instances.

The current state—of-the-art supports the development of both
unit machines and system architecture through emulation and sim-

ulation. Digital Avionics Information System (DAIS), for exam-

ple, emulates a class of aircraft systems with one architectural

concept. (Any specific aircraft system would probably be a sub-

set of the entire DAIS.) It is recommended that the parent TSDF

embrace the wide scope of development and the sibling TSDF em-
brace the more narrow developments. It is felt that the technical

capability to support the developments mentioned earlier to a

deep level of detail is de~initely far away and may never exist

at all. However, it is fe-lt that a development decomposition

can be adequately supported in the 1980 time frame.

2.6.6 Performance — The objective of the TSDC is to develop

performance-oriented systems. It is unclear whether the objective

means the best possible , the best for a specified cost, or no
more than what is required for a specified application. Cost,

for example, has never been discussed , nor has technology devel-

opment in the sense of high performance circuit designs.

- --~~~~~~ ,. -- -- -

77

- - - -

~

--
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _.,_____ — - --.-~~~~~-—--—--  -



--

~ 

- - - - - - ------ - - -  

Minimization of hardware to achieve a specified level of per-

formance is different than the open—ended approach of obtaining

the best possible performance without hardware constraint.

The crux of the performance issue seems as centered on logical

performance as it is on execution speed, i.e., f ielded systems
do not perform well enough because they are fielded with faults

that must be corrected . This, in turn creates a more costly

-development through additional software, which lowers perfor-
mance through additional use of processing facilities. It is

recommended that in the parent TSDF logical performance to be

emphasized and in the sibling , execution performance be empha—

sized. By stressing logical performance the goal will be to

develop a logically faultless system thus eliminating the costly

redesign phase. (Note the word “goal.”) Execution performance
in the sibling provides “proof” that the system thus designed

will meet projected performance goals.

2.6.7 User Insiaiht into the TSDF - User insight depends on

designing the target architecture with HLHDL and HOL concurrently
-: with specifying detailed performance measurements, for example,

which require int imate knowledge of internal TSDF details. It

appears desirable that the user be given the capability of

specifying at a uniform level all aspects of his TSDF scenario.

This implies a High Level Performance Measurement Language

(HLPML). The current technology in HLHDL is primitive; in

HLPML it is nonexistent. A definite desire for an HLHDL capabil-

ity has been present for some time, but little has emerged that
can be labeled successful. It is recommended that an HLHPL and
HLPML be defined at a level comparable to the HOLS. It is
recognized that this is not yet supported by the current state

of the art.

r 
78

- t  

fl -—- ~ - 

— S —~ -tt’t ~~~~~~~~~~ _______



— ---- —--.---- --- -- - -- --—- - - —.-- 

3. Reconfigurable Computer System Desigr~ Facility (RCSDF)

In this section, an evaluation of the RCSDF and attendant tech-

nical issues is presented, along with a discussion of operating
philosophy, capabilities, and procedures. The RCSDF mirrors the

TSDF for researching the technical feasibility of the TSDF con-

cept.

3.1 Fundamental RCSDF Doctrines

Premises for the RCSDF which are felt relevant to scoping RCSDF

activities are discussed in this section and represent a prelim-

inary outline of the activities for the RCSDF evolving at RADC.

These premises are stated as a framework for orderly growth in

the development of the capability for the design facility and to

provide insight into the direction of RCSDF development. A

distinction is made between the user of the provided capabilities,

the host that supports the user, and the RCSDF itself.

3.1.1 Emulation vs. Architecture Development - The Independent

development of a new computer architecture shall be subservient

to the objective of emulating/simulating/testing a user—postulated

new architecture. The formulation of a computer (or system)

architecture is regarded as the responsibility of the user who

describes his system to the RCSDF through high level languages.

If the RCSDF developer Is its own user (meaning that the personnel

who staff RCSDF as developers act both in user and developer

roles) and the distinction between user and RCSDF is not made,

then the separation of user and developer becomes unclear , con-

fusing user responsibilities with RCSDF responsibilities. Arch—

itecture in the TSDF concept through RCSDF research requires that

a clear delineation of user responsibilities and developer respon-

sibilities be maintained.

- -  

\ 

— 

~~~~

—.--

79

-. ,~~~~~~~~~~~~~~
- - .~~~~~~~~~~ -~~~~----- - --------~

-

3.1.2 Research Vehicle - The intent of the RCSDF is to perform

research in support of TSDC. The attainment of research objec-

tives will not be limited by the practicalities of militarized

equipment or its software equivalent, mu -spec software. Sensible

requirements that reflect the research nature of the facility

should be imposed for reliability , maintenance, repair, and

documentation. Attention to support maintenance should enable

research to be effectively performed in a timely manner. Exist—

.~ng equipments and software will be used whenever they are

adequate.

3.1.3 User Accessibility to Equipment - Users shall have total

access to RCSDF capabilities. This access shall allow modifica-

tion of any item such as software, microcode, nanocode, configur—

ation options, and performance measurements. Total access is

needed in order to thoroughly understand cause-and-effects

associated with the research performed.

3.1.4 System vs. Data Processin~ - In the near future, RCSDF

will support data processor emulation/simulation research before

doing either application systems research or general data pro-

cessing systems research. Longer term support of the latter two

items can be considered on a case-by-case basis as needs warrant

it. Initially, it is important to limit the directions of devel-

opment, since too much diversity would tend to dilute the effec-

tiveriess of the research. Allowing the scope of activities to

broaden as comprehension develops permits orderly development.

3.1.5 Hostina - - Development of software to operate on the RCSDF

shall employ a host computer in preference “to developing support
— software on the RCSDF’ emulation/simulation hardware itself.

Support software functions are generally avail-able as commercial

software elements, eliminating the need for developing RCSDF-

specific software.

80

- — —-— -- _ _

--

—
~

-— ---
~

-—-—-“
~ -- ~~~

—- —- —---- --- - - ---
~~~~~

-- - - . - - -
~~~

.--
~~~

--—-—---- 
-‘U’

3.1.6 RCSDF Operating Environment - Initially,.users of the

RCSDF shall operate under the control structure defined for the

RCSDF. Operating systems which are intrinsic to specific pro-

cessing elements of the RCSDF shall be made available to users

under the defined control structure. Since it is the control

structure which provides the reconfigurability, the efficiency
of existing operating systems will be affected. However, users
are free to create their own operating system(s) and architec—
ture, which can be hosted on the RCSDF.

3.2 ~mulation Operating Philosophy

The key to describing an emulation operating p~.ilosophy is to

maintain a distinction between the facility (i.e., the RCSDF),

the user , and his generation tools (host). With this distinc-

tion emulation development responsibilities can be assigned to

either of these three entities in terms of the architecture
evaluation process. This distinction applies to both the TSDF

and the RCSDF, and therefore emulation studied in RCSDF would be

extendable to the TSDF. This distinction is used to homograph-

ically map the RCSDF to the TSDF and does not preclude the RCSDF
(and its developers) from being users.

The user (human subsystem), host (hosting subsystem), and the
fac ility (reconf igurable subsystem) have baen generally described
previously in paragraph 2,4, and those descriptions and ideas

are pertinent to the discussions presented in this section.

The emulation operating philosophy is based on the fact that the
facility provides services analogous to those provided by a

computer center. However , RCSDF service is different in that it

concentrates on architectural evaluation and development rather

than on the normal program production. Programming and software

are assuredly involved, but the end objective appears not to

81

-- 

~~ ~~~~~~~ - -~~ -~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ _______ - - - - - - 4



~~~~

-- - - -

emphasize the program execution services but the evaluation of
the system described and operation as specified by the user.
If the RCSDF is thought of as a service facility, the services

it provides can be described and itr ‘~~sponsibilities delineated.
Likewise, if a user wishes to solve ~~iS system design problem
and wishes to use the RCSDF, his responsibilities can also be

described and delineated. It is understood that user responsi-
bilities cannot always be fully described for each and every

user in the user class because that class is undefined and users

can be expected to vary. However, some responsibilities can be

described with sufficient detail to indicate generally what users —

will need to do in order to perform their architectural evalua-

tions on the RCSDF.

First we will outline a generalized emulation procedure. An

RCSDF user who wants to solve a class of problems must first

specify his problems in very precise forms using some sort of

requirements specification languages. He then has to translate

his software requirements into HOL description, and his hard-

ware requirements Into EDL . He also needs to specifically
define the user environment that his system will be encountering,

for example, the number of users that will be on his system,
the maximum (and average) data rate for the I/O channels, and

the minimum response time.

Using this information, the hosting system will generate an

emulated version of the hardware architecture defined by the

user and the software package of his application for the computer

system he defined. Moreover, the scenario and test environment

specified by the user will be produced.

All of this information will be passed on to the RCSDF system.

The execution will be emulated, and various performance measures

be monitored. The performance measurement results will be the ç

82

- -- - - - -__ —--— -

— ——--
--

~~
--- ---- — - -——-- --.--- - - - - --

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-

--
~

-

I- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - --v- - -
~- - 

- -~
- - - -- - - - --- - -

output given to the user after certain data reduction. After
careful analysis of these performance data, he can modify the
HOL and EDL descriptions of his requirements and repeat the
procedure. This entire procedure can be repeated until the
user has an optimum system design for his application problems.

Since the EDL is mostly relevant to the module level (a module.

may be composed of small individual operations which can be

optimized), some of the low level optimization must be lost due

to the translation. The user can generate his own emulation

code sections for certain parts of the system. By doing this,

he preserves the modularity of the system while maintaining the

freedom to optimize locally as he desires.

The user, the host, and the facility are each responsible in
some way to another party. A simplified synopsis of these

responsibilities is shown in Figure 3-1.

The following paragraphs describe the development responsibili-

ties of the user , the host, and the facility, respectively.
The responsibilities are divided into two main categories:

system formulation, and scenario and test environment generation.
It should be noted that the following responsibility formulations

are preliminary and probably not complete.

3.2.1 System Formulation - The system formulation phase is

performed predominantly by the user and the host. The facility

indirectly supports this phase by providing consulting services

(the fadility is assumed to have staff properties ) to the user

to aid him in the formulation of his design. This is especially

true when the user needs hardware not currently present in the

facility and requires information on how to incorporate the

desired hardware into the facility.

83

‘ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

--
-:

- -

- - - — - -j—~~~~~
_
~~~~~

_
~

_
~~~~  - - - - - --- — --— — — - -- - --~~

-- -


~~~~~~~~~~~~~~~~~~ 

- _ _ _ _ _ _ _ _

~ u.~~~ • EXECUTUON STAFLJ$
~~ ~~ 

-

PERF. MON. DATA
I-w w 0 0— w —

Ou . ( (  ~~~~~~~~~~ 8w w

__________________  - 0
3aoo P4ou.n39xa

~~~~~~~~ •..~~ __________________ ~~O

• AN 3 ~O NOI-.LV1AV IS
w 8

I- ~~ ~~~ —-(0 -(<0
~~ O w0 Q Z (f l~1~~
~ E

~~~0 W
g

O .( 
U ) -- (~~~~~~ Z

EXECUTION
~~~

OE

~ W W

z CONFIGURATION CODE
Iii

U.

‘3w

I
I
I-

;~ 8 k.. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

~ a.~.vo ~OJJNOYI ~~~~

•(1w
>1- I -lw,-

W W W W
1 - 1- 1 - S I- U)

_ _ _ _

/

-~--—~-~~~ - —
———-— --

~~~~~~~~~~~~~~~~~~~~~~~~~~ — 

~~~~~~~~

______________________ _____________
_ _ _ _ _ _ _—

_ _

-

-(z EXECUTION STATUS
w Z 9t ~~

0 PERF. MON. DATA
~~ 0 ,~~ I

~~

~~ ~~~~~~~~-(~~~~~~-(—I3003

3003N0u.n33x3

— ~ uâ ,.- ~~~
-

~AN3 ~0 N0IjV1fl~~IS I

<0 iar
_J~~~ 1(31 —

~~~< uwl i
I)

~~oo~~ ‘3 ’31<I
~~~( ~~~~~~~ acz 

~ x’~’z w
~~ w I j

~~~S .J~~ I~~I
U~~~zo  i j~~In e c~ ~~

i—•
~
-- U)

UI
Z 

~~~ — 1.1

3 EXECUTION CODE 41

§ CONFIGURATION CODE
0 I- —5 0Z z I-

U. U) ~~
UI).

w~~.v.)-ozo~5o). _ o.
~~~ w — o  w~~ ~~~I - W

~~~U.

w

~~
_ _

a.Lvo
~

IoiINo.
~~~~

3d

>- u’. U ) w~~3 x~~ ~~~~~~

~~ ~~~I-~~~ ~~
( 

~2 w O

Figure 3-1. Responsibility
Delineation

84

p - _ _ _  

— - -— - -- -~~ —~~~~~~~~



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

3.2.1.1 User Responsibilities

3.2.1.1.1 Description of System Functional and Performance

Requirements - The user is responsible for generating

a literal description of the initial concepts of what the system

must do. A requirement specification language is a good example
-

- of a formulation used to describe the system functional and per-
formance requirements. This description will provide a struc-- -

-

tural definition of the system which is decomposable into func-

tional modules. The level of description is equivalent to that

normally provided in a system performance specification .

3.2.1.1.2 Decomposition of System Requirements into Functional

Modules - The user should identify, isolate, and

describe his system functional modules. He should consider such

interrelationships of co—existing modules as:

potential of parallel execution

shared memory
data dependency

mutual resource demands
intermodule interface standards

3.2.1.1.3 Allocation of Functional Modules to Hardware or Sof t-

ware Implementation - For each functional module, the

user should tentatively decide whether to implement it in hard-

ware -or software.

3.2.1.1.4 Formulation of SYstem Control Methodoloav - The user

must determine the system structure and establish the control
hierarchy by describing the interconnectivity of the defined

functional modules. He must also define the rules for scheduling,

sequencing, and control synchronization of the interconnected

functional modules.

85

--S - - - -

- . — -r - - -~~ - -_ - —---——--—— —- —
—

-

AD AO5S 013 SPERRY UNIVAC ST PAUL MINN DEFENSE SYSTEMS DIV F/s 9/2
RECONFIGURADLE COMPUTER SYSTEM DESIGN FACILITY INITIAL DESIGN S——ETC (U)•
JAN 78 0 R ANDERSON. L D ANDERSON. IC Y WEN F30602—76—C—0355

UNCLASSIFIED RADC—T R—78—6— vOL —2 NL

0530 I 3

S

—~~~~~~~~~~~~~~ -~~~~~~~~~— — ~~~~~~~~~~
-—

3.2.1.1.4.1 Hardware-Hardware Interface - The user should

describe how each hardware module is going to interface with

other hardware modules. The communication links between hard-

ware modules should be well defined .

3.2.1.1.4.2 Software-Software Interface - The user should

describe the control hierarchy and the data parameters used

in control transfers among various software modules.

3.2.1.1.4.3 Hardware-Software Interface - The user should also

specify the data parameters used in all hardware—software inter-

faces.

3.2.1.1.5 Allocation of Resources to Functional Modules - The

user must def ine resource requirements for each of the defined
functional modules. Consideration must be given to common or

shared resources and the frequency of potential conflict with

mutually defined resources.

3.2.1.1.6 Identification of High Risk Functional Modules - The

user is responsible for identifying all high risk (or least

understood) functional modules, both hard and soft. This will

include prototype development (see paragraph 3.2.1.1.7 and veri-

fication through repetitive isolated testing utilizing the emu-

lation facility.

3.2.1.1.7 Translation of Modules to System Description Lanauaae~

3.2.1.1.7.1 jj~rdware Mo~u1es into EDL - The hardware modules

should be described in an Emulation Design Language (EDL). The

EDL should contain structural and functional descriptions of
each hardware module.

86

4

— -— --- .-~~-~~~~~~~~~ --~--- --- - - - -. —~~ ___

3.2.1.1.7.2 Software Modules into HOL - The software modules

should similarly be described in some High Order Language (HOL).

The description may be given in parametric form to test out the

intermodular structure or in algorithmic details for algorithmic

verification.

3.2.1.1.8 Utilization of Existing Module Designs - The user is

responsible for utilizing previously constructed functional mod-

ules and creating the environment that is equivalent to or sim-

ilar to the deployable system. The units that can be used are:

o Modules that are compatible with the functional requirements,

provide performance capabilities as identified during the

decomposition process, and currently exist in a maintained

library .

o Modules that were defined and constructed during the decompo-

sition process.

o High risk modules that were previously constructed and tested.

o Units that are designed to provide system simulation func-

tions.

3.2.1.1.9 Specification of User-Required Hardware Attachments -

The user is responsible for specifying special hardware attach-

ments to the deployable system, including necessary tailoring to

meet the standardized hardware attachment interfaces. The use

of special hardware is implemented through an EDL description

and HOL function references. Finally, the user has to verify

the correctness of the data that are being transferred in and

out of the hardware attachment. This allows him to test the

validity of a previously untested hardware module.

3.2.1.1.10 Functional Module Optimization

3.2.1.1.10.1 Hardware Module Optimization - The user is respon-

sible for optimizing emulation code beyond the optimization1 k _ _ _

87

~~~~~~~~~~~ !! .~ &tI~~ tfl~-.~. ~~~~ 
-

- - - - -



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~,- -- - -
~~

- . - -

provided by the host. In doing this the user also assumes
responsibility for verifying that the optimization he has per-

formed is logically correct within the framework of operations

he intends to perform. These optimized emulation codes will

have to be input into the host together with the rest of EDL
description.

3.2.1.1.10.2 Software Module Optimization - In an analogous

manner , the user is also responsible for the optimization of

his HOT.. language compilation . He should be prepared to modify

his software modules at the (deployable) machine instruction

level, if necessary.

3.2.1.1.11 Analysis of Performance Results and System Redesign -

The user is responsible for the analysis of performance data

collected during emulation . From this, he should determine the

potential system bottlenecks and the major design deficiencies.
He should then redesign identified functional modules to improve

individual efficiency . and modify the system control and resource

sharing structure to improve his system performance. Finally,

he should reconstruct the system with these improvements, retest,

and reevaluate.

3.2.1.1.12 Measurement Parameter Specification - Measurement

parameters are the performance measurements to be made dur ing
the test. The specification of these parameters is used to

guide the use of performance monitoring equipment.

3.2.1.1.13 Taraet Architecture Performance Prolectign Methodploczy -

Proj ection of measured performance to predict the performance of
the target architecture may require modification of the measure-

ment parameters to reflect the dif ferences in performance between
the postulated architecture and the system upon which the postu-

lated architecture is emulated . This requires target architecture

88

t

~~~-? ~ %--~- - - 
~

- 

- . - - - 



‘-- . - . -—- -—— -

parameters, predictive algorithms, and a method by which project-

ed performance can be derived. Performance projection includes

both factorization (deleting from measured performance genera l
purpose emulation efficiencies) and enhancement (i.e., modifying

measured parameters to account for faster hardware).

3.2.1.1.14 Specifying Required Reference Data Base Input Items -

The user has to specify what historical reference data items

(paragraph 3.2.1.2.2) he jntends to store, conforming to certain

guidelines given by the host.

3.2.1.2 Host Responsibilities

3.2.1.2.1 Providing Automated System Design Visibility Aid -

The host is responsible for providing tocis and automated aids

to assist the user in the production and maintenance of system

(subsystem) and functional module requirements, performance

descriptions generated during the decomposition process, and the

decision for hardware or software implementation.

Examples of these aids are:

Management information relating to system design and develop-

ment (such as progress and current status).

Editing help for HOL and EDL descriptions.

Simple simulation support for verification.

3.2.1.2.2 Providina Historical Reference Data — The host is

responsible for providing and maintaining the historical refer-

ence data on performance requirements and measurement results,

user-design (deployable) configurations, and available facility

components. This implies that the host has to provide basic

guidelines for the user who intends to store his reference data.

This information will either be used to support emulation or

to report test results to the user.

89



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

3.2.1.2.3 Providina HOL Debugging Facility - The host should

provide some HOL debugging facility. It should allow the user

to compile and execute some test data on his HOL program. The

debugged HOL program will eliminate a lot of confusion and

facility time that will arise if an untested HOL program is

being run on an emulated system.

3.2.1.2.4 Compilation of HOL Input - The host is responsible

for compiling HOL inputs into machine level code. This requires

a description of the machine configuration and repertoire ,

possibly as an intermediate product of the EDL translator. The

host should be able to integrate the HOL source with all the

library components referenced and also with user-optimized

machine code modules. Finally, it is necessary to provide

the proper linkage for various software modules.

3.2.1.2.5 Data Base Maintenance for HOL Compiler - It is the

responsibility of the host to store all the intermediate tables

and codes during the HOL compilation.

Since one set of application algorithms (written in HOL) may have

to be test-run in many different machine architectures and since

the compiler is generally architecturally dependent, the HOL

compiler should probably be designed in two parts. The first

part is architecture—independent and include such items

as a scanner and a parallelism recognizer. The second part is

architecture-dependent and will involve the actual code gener-

ation and resource allocation . If the host stores all the

phase 1 results in a data base, it will not be necessary to go

through the two compiler phases every time the application algor-

ithm is test-run. Instead , the phase 1 results can be retrieved

and the compilation can proceed directly to phase 2.

-

90

3.2.1.2.6 EDL Translation - The host is responsible for trans-

].ating user hardware requirements (described in EDL) into

appropriate codes for establishing the deployable system config-

uration and repertoire. It should also be able to integrate

these codes with user-optimized emulation code sections.

Necessary architecture information for phase 2 of HOL compila-

tion will also be generated. The host is also responsible for

storing system descriptions at various steps of development in

its data base.

3.2.1.2.7 Syntactic Checks for System Design Functions - Both

the HOL compiler and the EDL translator should provide syntax

correctness checks for the s~rstem design language (i.e., HOL
and EDL) constructs. It should be noted that since the HOL

compiler is architecture-dependent , it should be responsible

for detecting any discrepancy in the EDL and HOL descriptions.

Any errors detected should be reported to. the user in order to

avoid erroneous emulation .

3.2.1.2.8 Performance Estimates - The host is responsible for

providing rough estimates for target architecture , as required.

These may come either as estimates based on past experience

(stored in host data base) or as analytical extrapolation of
test data of a comparable architecture.

3.2.1.3 Facility Responsibilities

3.2.1.3.1 Providing Hardware System Emulation/Evaluation

Expertise - During system formulation phase, the

facility is responsible for providing consulting services to

the user. The consulting may be in areas such as:

Efficient EDL coding for faster emulation

Incorporation of new hardware into the facility

Available system evaluation techniques

91

--

3.2.1.3.2 Providing Software Support - This responsibility

includes a full operating system to support user evaluations of

a minor nature plus special software to provide non-normal

capabilities. Examples of such software supports are:

Test system loading and emulated environment initialization

Transparent process control

Peripheral control

Memory control

Intermachine communication

3.2.2 Scenario/Test Environment; System Testing - In order to

observe performance, the emulated - system must be tested while

in operation. The construction of the test environment and

subsequent testing of the emulated system, the second phase of

the interactive system design process, is described below.

3.2.2.1 User Responsibilities

3.2.2.1.1 Test Environment Specification - The test environment

specification is a high level, overall description of the tests

to be performed on the emulated system, requirements for the

system configuration , and subsystem tests required for system

configuration components. Requiring the user to generate a

specification (actually nothing more than a concise description

of testing requirements) formalizes and disciplines the testing

of the emulated system. Test environments may range from very

simple to very complex. As complexity increases, formalization

becomes more important because of the logical intricacies invol-

ved. The test environment specification is the governing docu-

ment used to define testing to host and facility functions.

3.2.2.1.2 Test Methodoloav Specification and Development - The

test methodology is essentially the test algorithms, procedures,

measurements, and possibly validation used to meet the

92

__________________________ —

• - .

requirements of the test environment specification . It also

includes the sequencing of tests and the delineation of require-

ments for post-test data reduction and reporting. The test

methodology further refines the testing phase to the extent

that specific test functions can be developed .

3.2.2.1.3 Test Data Set Specification and Development - Test

data sets support the basic test algorithms of paragraph 3.2.2.1.2

above. These data sets are used by the algorithms to cause

specified system behavior expressly structured for test and to

determine data dependent performance. Sequences of data sets

may be used for time—flow scenario.

3.2.2.1.4 Performance Measurement Reduction Algorithms Specif i-

cation - The raw performance measurement data will

generally require reduction in order to facilitate report gener-
ation, understanding, and analysis. Reduction algorithms are

applied to the raw data to produce statistical, summarized ,

tabulated, or graphical reports of the observed performance.

Reduction may be performed in either host or facility.

3.2.2.1.5 Specification of Measurement Analysis Report Format —

Reduced and analyzed performance data is presented in prescribed -

formats that succinctly portray the desired parameters.

3.2.2.1.6 Directing and/or Performing System Tests - This is

essentially performing the required tests and collecting per-

formance data as specified in the test environment specification .

3.2.2.2 Host Responsibilities

3.2.2.2.1 Test Alaorithm Compilation - This is the translation

of user-defined test algorithms into a facility driving function

- —~ - - . —- —- -— ~~~ - - - -
~~~~~~~~~~~~~~~~ 

- -. 
~~

-- - 



code (the code which causes the emulated system to be stimulated
for the purposes of test) and facility driving function sequences.

3.2.2.2.2 Driving Function SYstem Im~lemcntation - This is the

mergence of compiled driving functions into an operating stimu-
lus environment that causes test data sets to stimulate the

emulated system for testing.

3.2.2.2.3 Test Data Set Preparation - Stimulation of the emu-

lated system requires data that the emulated system processes

as input information . Data sets are generated to simulate sys-

tem inputs that the emulated system would encounter in usage.

3.2.2.2.4 Performance Measurement Interfaces - The host is

responsible for the establishment of performance measurement

traps in generated emulation code to allow the capture of
performance measurement data.

3.2.2.2.5 Compilation of Performance Measurement Reduction

Algorithms - The host is responsible for compiling

data reduction algorithms for the performance measurements

specified by the user.

3.2.2.2.6 Test Scenario Verification - Separate and independent

development of emulation system structure, test algorithms, test
driving functions, test data sets, etc. introduces the possibil-

ity of logical and procedural errors that would create erroneous

behavior in the emulated system . Test scenario verification

brings together the system emulation and testing at the logical

level to verify that errors are not present and to flag poten-

tial difficulties due to timing. The scenario verification

process is analogous to the verifications currently performed as

a part of high level language compilation.

94

_ _ _ _ _ _ _ _ _



- -~~ -~~~~~ ~~ - . .

3.2.2.2.7 Test Data Reduction/Reporting - The host is responsi-

ble for receiving test and performance measurement data from

the facility and then compacting them. It is also responsible
for generating the report to the user, and storing all inter-
mediate test data in the data base for future references.

3.2.2.2.8 Test Scenario Data Basing - Once generated , a test
scenario should be reusable for evaluating a modification of

the original system emulation or a completely alternative arch-
itecture. To do this easily, the test scenario should be re-

creatable from a data base (preferably an automated one) and
modifiable to suit the new architecture.

3.2.2.3 Facility Responsibi1it~~~

3.2.2.3.1 Providing SYstem Emulation Hardware - The facility is

responsible for providing the hardware system required for gen-

eralized system emulation. The design as needed, procurement

if necessary , and integration of any additional hardware needed

for system evaluation are also the responsibility of the facility.

System architectural alternatives for testing will include single

machines, multiple machines, and machines with special hardware

- 
added.. Any particular system architecture desired by the user

may be either a subset or superset of existing equipment. The

configuring of hardware includes any necessary design to develop

the configuration , interfacing of components, and actually imple-

menting the desired system emulation .

3.2.2.3.2 Subsystem Tests - This validates the operability of

the separate system components and the intercommunication between

the interconnected components and includes the generation of
special tests as required.

95 

—- — - - . - -- — -~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
. . —. - - - 

.



— . -- -~~

3.2.2.3.3 Provision of Facility Interface Standards - The facil-

ity is responsible for providing the interface standards between

the host and the facility , between the facility and all its - - 
-

peripherals, between standard facility components, and between

standard components and user-designated hardware additions.

Facility interface standards do not restrict the user to sped -
fied interprocess communications techniques.

3.2.2.3.4 Host System Interfacing - The facility should estab-

lish the necessary connections with the host system for the

acceptance of stimulation functions. It should also verify the

compliance of the host-generated driving functions with the
test environment specifications .

3.2.2.3.5 Providing Performance Data Measurement ana Collection

Tools - The facility should provide hardware and

software tools for performance data measurements and collection.

Hardware tools may include sensing probes and data recording

media. The facility is responsible for the installation , check-

out, and validation of these equipments when connected to the

emulated system. It is also responsible for verifying the

recording facility compatibility with the data reduction facility

verification.

Software tools include:

A data base management function that will enforce efficient

use of mass storage for interim storage of performance data
collected during system and subsystem tests.

Processes that provide RCSDF operator interface functions

and that interpret and respond to command language which

provides control and monitoring functions entered at the

start of or during the execution time of a system or sub-

system under test.

Efficient performance measurement packages.

96 

~~ - . - - .~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 



3.2.2.3.6 Supplying Performance Data Reduction Tools - Although

performance data reduction is the responsibility of the host,

the fa~ility should also attempt to reduce the high volume of

performance data wherever possible to help simplify the process.

3.2.2.3.7 Data Logging - The facility is responsible for a data

log on all data items transferring between various facility hard-

ware components, including special user hardware. It also has to

record the system clock time at which the data transfer takes

place. This data log should be available to the user as an emu-

lation trace whenever the user suspects an error in emulation.

3.2.2.3.8 Test Support - Assisting users to the extent required

in the performance of system testing is a facility responsibil-

ity. The assistance should include such items as consulting

analyses, test conduction , and other coordination aspects deemed
necessary.

3.3 RCSDF Facility Capabilities

The responsibilities of user, host, and facility were outlined

in preliminary fashion in the preceding paragraphs to illustrate

the partitioning of the Total System Design Process (TSDP) over

the three major elements (user subsystem , host subsystem , recon—

figurable system) identif led in paragraph 2.4. The fourth ele-

ment, the deployable subsystem , is essentially the product and
has not been addressed in detail because it is essentially depen-

dent on application. This following paragraphs expand on the

facility responsibilities described in paragraphs 3.2.1.3 and

3.2.2.3, specifying and further describing the necessary techni-

cal elements of the RCSDF. Capabilities” as used in this

section are those things necessary to adequately support the
responsibilities set forth previously (paragraphs 3.2.1.2,

3.2.2.3). It should be noted here that the capabilities listed

97 

- ———--- - — - -- - -

-



below are only preliminary and by no means complete. - However,

they should provide a good framework to which additional required

capabilities may be added. ‘

3.3.1 System Desiq~ - System design is prominently a user and

host activity. The facility is used to confirm, analyze, develop,

or improve a system designed by the user with support from the

host element. Nevertheless, because the user class can be

expected to be quite broad, extensive capabilities must be in-

corporated into the facility in order to adequately support the

user class. Simplification of these capabilities is possible

by restricting the user class, but not advisable at this time

because an important capability might be omitted.

3.3.1.1 Emulation Expertise - The facility responsibilities

described in this section must provide the hardware system ex-

pertise for system emulation and evaluation. The general capa-

bilities needed to fulfill this responsibility are:

o Standard methodology f or emulating sequential, para-

llel, and associative processing architecture for
unit machines

o Emulation packages for a reasonable number of standard

computers

o Standard interconnection methodology, hardware, and
control

o Peripheral emulation technique

o Standard methodology for emulating multiple machine

architecture - multiprocessors, federated systems,

and network systems

98 

-~



3.3.1.1.1 Unit Machine Emulation Methodology (UMEM) - UMEM is

the general technique by which the system emulation package is

developed . The system emulation package converts the general

purpose emulation system to the desired target system architec—

ture, which then accepts the execution software. The methodol-

ogy (UMEM) does not itself develop the architecture that a

specific user may want but provides guidelines and methods to

the user which enable him to produce his intended emulation with
greater ease. UMEM is supported by examples of how specific

kinds of architecture may be implemented using an EDL (Emulation

Design Language). The examples supportive of UMEM would also

illustrate the use of performance monitoring as part of the

architecture formulation. It is important to point out that

UMEM supports the division of responsibility between the user

and facility in the design process, in that UMEM does not por-

tray to the user the specifics of how the user architecture ’ is

emulated on the general purpose emulator. UMEM gives the user

only the emulation constructs i.e., EDL constructs. The emula-

tion specifics bnicrocode, interconnect patterns, etc.) are pro-

duced as a function of -the EDL compilation process. These emula-

tion specifics map the user architecture to the general purpose

emulator architecture.

A user is not expected to have a deep familiarity with the pro-

cess by which an emulation package is developed , hence the need

for a emulation development pattern , a UMEM. As user expertise

is developed variants of the standard methodology can be pursued

to expand upon UMEM. As a minimum, the methodology should be
supported by examples of how a sequential unit machine, (e.g.,

PDP-ll, IBM 360, SPECTRA 70, etc.),- an associative machine (e.g.,

STAR.AN), and a parallel machine (e.g., ILLIAC) were emulated

using the EDL.

99 

—--  —~~~~~~ ‘-~~~ — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~



3.3.1.1.2 Standard Computer Emulation Packa~~s (SCEP) - 
- Stan-

dardization pervades systems designs because of economics. It

can be expected that some users will want to pursue their sys-
tems designs using standard computers and will require (and

expect) standard emulations to be available for their usage,
e.g., Standard Computer Emulation Packages (SCEPs). A SCEP

converts the general purpose emulation system to operate as a

specific “standard” computer to some defined level of detail.

(Many standard machines are configurable, therefore it may not
be practical to emulate all possible configurations.) The

building of a number of SCEPs contributes to defining of UMEM

as described in 3.3.1.1.1. SCEPs should be made available to

users in two forms: 1) a high level construct and 2) a compiled

emulation package cataloged in the host. The high level con-

struct allows the user to modify the SCEP to the configuration

desired (memory size, I/O channels, etc). Modifications at

this level would be accomplished by changing the EDL (this man-

dates an easily understandable EDL) and recompiling the EDL

constructs. The second form, a library emulation package, frees

the user from constructing an EDL description of the standard

component and compilation thereof.

3.3.1.1.3 Standard Interconnection Methodology (SIM) - The gen-

eral purpose emulation system should be highly alterable for
emulating many different system architectures, both existing and
proposed. Multiple machines may be used for the general purpose

emulation hardware necessitating a methodology for interconnec-

tion that allows the emulation system to have the desired proper-

ties of the emulated architecture. This methodology (SIM) would

govern how an EDL description is developed that 1) accurately

describes the interconnect of the desired architecture and
2) minimizes the interconnect relationships. The latter is

desirable if observed performance is to be extrapolated or inter—
polated or factored (see 3.2.1.1.13) using estimated architecture

100



parameters , since interconnect simplicity will be required to
minimize the complexity of the extrapolation procedure. Exam-
pies to support the SIM are a necessary part of this capability

and, to the extent pursued, may be usabLe per se by some users.

SIM would be based upon interconnection capabilities in the

facility and would include the use of available interconnection
hardware and interconnection control and handling packages. EDL

constructs would link to these standard interconnect capabilities

and the SIM would guide the user in formulating the EDt1 con-

structs.

3.3.1.1.4 Peripheral Emulation Technique - Certain classes of

systems are dominated by interactions with peripheral devices,

typically displays, mass storage devices , communications, and
card/printer input/ouput media. Emulating these systems on a

general purpose emulator requires expertise and a methodology

by which the particular peripherals, peripheral interfaces, and

peripheral handlers can be accurately portrayed. Included in

this methodology are examples of techniques for simulating
peripheral loading, making one particular kind of peripheral

mirror another, and modifying the information passed to/from
peripherals such that it emulates the desired peripheral.

3.3.1.1.5 Multiple Machine Architecture Emulation - Increasingly,

multiple machine architecture is being employed to achieve high-

er performance levels, as in distributed processing systems,

federated systems, networks, and parallel processors. Repre-

sentation of these system architectures on a general purpose

emulation system that may be a unit machine is a distinct prob-
lem that requires methodology for handling inherent parallelism
and intermachine interaction, as well as emulation of the instruc—

• tion repertoire. The parallelism problem coupled with the need

to translate observed performance to expected target architecture

101

_________________________________________ -.4



requires expertise that a user could not be expected to have.
A user is expected to be expert within his system architecture ,

while the facility is the e1pert on the methodology of repre-

senting that architecture on the general purpose emulator. To

some extent this methodology overlaps UMEM, for example, parallel
processors.

3.3.1.2 Su~~ort Software - The facility responsibility described

in this section must provide the support software necessary to

allow execution of a system designed to be tested on the RCSDF.

The general capabilities needed to fulfill this responsibility

are: -

o Test system/subsystem loading and environment

initial iz at ion

o Transparent process control

Periphe±al control

Memory control
Intermachine communication

It is anticipated that the processes described in this section

would be developed- and tested on the host. They can be hardware

or software functional modules. Source data versions of the

processes should be maintained in a library on the host. Object

or code versions of the processes can be constructed on the host

and maintained in a library. These versions are processor

architecture dependent and could be developed at the same time

each of the SCEP are developed.

3.3.1.2.1 Test System/Subsystem Load and Initialization - Hard-

ware and software functional modules of the system that were

designed and developed on host facilities must be collected with

their defined interconnectivity characteristics into a single

102

L — - — -- — -_______ 
_______ 4



- - -

system or subsystem. This process produces a system/subsystem

recorded on a mass storage medium that is transportable to the

RCSDF. Processes are required to establish the system archi-

tecture by loading micro-instruction functional modules, standard

computer emulation packages, etc. into control memory of the

microprogrammable processor elements of the RCSDF. Functional

modules recorded with the system will be transferred into the

configured processor element or elements by the load process.

Subsequent execution of some initialization functional modules

will perform, initialization functions, such as enabling I/O data

paths with configured standard/nonstandard peripheral devices,

establishing rules and limits for memory and mass storage man-
agement algorithms, and establishing communication with the
facility operation control center. The load processes will

transfer the functional modules that constitute the system
being tested , thus establishing an execution environment for
the testing of an emulated deployable system.

3.3.1.2.2 Transparent Process Control - There will be processes

within the RCSDF that will provide facility resources control.

A methodology will be developed that will standardize interfaces

for components requiring RCSDF provided resources. This will

allow for the development of resource control processes that are
compatible with and optimize the use of the hardware architec-

ture selected for a specific system being developed. Rigidly

enforced interfaces and utilization of the standard resource con-
trol algorithm provided in these processes will allow the user

to alter the configuration , i.e., add/subtract memory modules,

increase speed/size of mass storage, or add/subtract processors
without impacting the structure of the functional modules that

make up the system/subsystem being emulated and tested on the
RCSDF.

103

—a—~~~~~~~~~~~—



Peripheral control, memory control , and intermachine communica-
tions have been Identified as candidates for facility-provided

processes, and capabilities included in each are defined in the
following paragraphs.

3.3.1.2.2.1 Peripheral Control - A standard peripheral inter-

face will be developed to allow many types of systems to be
constructed on the host using one interface protocol. It is

anticipated that this capability will allow simulation of

peripherals during the system development stages on the host,

as well as provide for a consistent method of establishing

guidelines for the development of emulated peripherals or
interfacing directly with those provided at the facility. Pro-

cesses will be required to translate the information handled by

the standard peripheral interface into the actual formats
required by the configured or emulated peripherals. Processes

will also be required to functionally simulate the capabilities

of emulated peripherals. They will interpret the standard

peripheral interface requirements and simulate the effects of

the expected peripheral on another device provided at the

facility. Data volume, data transfer rates, and control functions
will be simulated to effectively provide a functional simulation

of the actual device that is to be employed in the deployable
system.

In addition to the peripherals used by the system/subsystem

being tested, there will be sets of peripherals - possibly

consisting of processors, magnetic tapes, disks, communication
devices, and standard input/output devices, that will be used
principally for the presentation , extraction, collection, and

production of performance data. These devices will also be used

via the standard peripheral interface introduced by the system

test scenario. Processes will also be required to translate

104 

-- -~- • - -

__________ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



~~~~~~~~~~~~~~~~ 
_ _ _ _ -

this type of standard interface to the actual hardware require-

ments.
-

3.3.1.2.2.2 Memory Control - The demands for memory space

expected for potential systems designed and configured to ex-

ecute on the RCSDF cannot be established and correspondingly,

it is therefore assumed that adequate directly addressable

memory space cannot be provided for all cases. This creates

a need to provide memory management processes that will effec-
tively extend the memory space as seen by the user, i.e.,

virtual memory. When a standard interface methodology is

implemented, the system can be developed without being aware

of the memory limitations, and the performance data generated

during subsequent executions on the RCSDF will provide inf or-
mation that can be evaluated. Results of the performance data

evaluation can lead to decisions to alter the memory or backup
storage size and/or speed, rebuild, and retest. Thus the

testing, evaluating and redesigning provides a means of

optimizing memory utilization .

In order to provide the virtual memory capability to users,

processes must be provided that will manage memory utilization
(paging techniques and relocatable segmentation , for example)
and maintain control of the interface with backing storage

(disk , bulk memory, etc.). These processes are transparent to

the user but the impact of their intervention during execution

on the RCSDF must be accounted for and provided for in perform-

ance analysis.

3.3.1.2.2.3 Intermachine Communication - The communication

between two deployable modules should not be hampered by the

types of emulation hardware components that they are executing

on during emulation. In other words, the facility should

provide the software process to transform the communication

105

~

__ ._- ••

~

-.

~

. ~~~~~~~ _ _ ::jz ~~ ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ -

message from one deployable module to another into the form
transportable between the two physical emulation hardware com-

ponents, and then back to the form receivable by the receiving

deployable module. All these transformations should be trans-

parent to the user, i.e., the user need not know about such
activities going on.

3.3.2 System Testing - The most important phase of the facility

activity is during the system testing. Providing and maintain-

ing the evaluation hardware , interface standards, performance

measurement, and collection tools are some of the more important
responsibilities of the facility. Extensive capabilities are

essential to provide meaningful RCSDF services.

3.3.2.1 Generalized Emulation Hardware System - The RCSDF is

intended as a research vehicle capable of general system emula-

tion. To achieve that purpose, it needs certain intrinsic

hardware capabilities:

o Easy operation on embedded state images of emulated
machines

o Generalized decoding structure
o Simplified configuration of emulated environment
o Memory management
o Multiple-machine emulation

o Data path emulation

3.3.2.1.1 State Imaae Operations - The data and control state

images of a computer system include the set of working registers

(e.g., accumulator, general purpose registers, program counter,
and other status registers) and the memory system where the data
and program are held. The first job of an emulation facility

is to map the data and control state images of the emulatGd

machine into the existing state images of the emulating machine.

106

I - - - --—-- - - • - — - ________ - —~~~~~-~~~ --~ -- ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~
-

I

Then it has to operate on the embedded state images of the emula-
ted machine in the same way that the emulated instruction does

on its state images. To perform these two. jobs efficiently ,

the facility should be able to provide easy image mapping.

Image mapping for a small class of machines may be simple, but

for a generalized system emulation , where the systems to be

emulated can vary greatly, great systems flexibility is required.

For example, the data word length of the emulating system should

be wide enough so that each reference to state image to be emula-

ted can be emulated with one or two references to the embedded

state image. However, embedding a short emulated machine word

into a long emulating machine word would be inefficient and
would require excessive memory. How best to handle the resulting

situation is the kind of decision that continually faces a

generalized emulation system developer . One useful feature

that would help an efficient emulation is the multidata word

size addressibility, i.e., the emulating machine is able to
address different size data images (e.g., byte, half word, word,
double word). In some cases, some shift and mask capabilities

will be necessary to access unusual size state images.

3.3.2.1.2 Generalized Decoding Structure — To emulate general-

ized system architecture efficiently, the facility needs a gen-

eralized decoding structure. The emulated program output from

the HOL compiler need not contain the same type of instructions

as the emulated machine. Instead the instruction may contain

fixed-size fields. For example, instead of allowing different

emulated machines to have different sizes for the op code field ,

the facility should use only one fixed size for op codes. How-

ever, if the facility is allowed to run genuine emulated machine

programs (not produced by the HOL compiler), this fixed field

idea is not feasible. Then some flexible bit extraction and

manipulation capabilities are required for generalized decoding.

107

_ _ _L . ~~~~~~~~~

Features like the barrel shifter , the masking function, and

data insertion in arbitrary fields are good examples of such

capabilities. An associative memory will also be very helpful

for the decoding function.

For efficient system emulation, the emulation code produced by

the EDL translator (in the host) should be in the form of para-

meterized templates. The facility should then proviie a means
of dynamically modifying the emulation code semantics based on

parametric information extracted from the emulated instruction.

Examples of such parameters are the shift count, ALU functions,

and indirect addresses of general registers. For efficient use

of such templates, providing a case statement type of emulation

instruction will be very helpful . This instruction will provide

the ability to test several conditions and branch to any of

several sections of code which service them.

3.3.2.1.3 Emulated Machine Environment Configuration - A machine

environment consists of (1) the data and control state images,

(2) a set of primitive actions used to modify and test the state

images, (3) a set of control rules which decides the sequence

of primitive actions to execute on the basis of the current

status of the control state image. The emulation system operates

on two machine environments: emulated and executing. The

facility should be capable of statically reconfiguring the

executing machine environment for the duration of an emulation,

so that it matches the emulated machine environment. Examples

of such reconfigurations are:

o Setting up gating patterns between registers and buses

o Setting up arithmetic modes, i.e., ls complement , BCD,

etc.

o Setting up data word lengths for arithmetic and memory

operations
o Specifying the number of general registers.

108

___________ - __________

-. • •- • - -- --•- - -- - — -— -- •-—--
~~~ 

3.3.2.1.4 Memory Management — The problems of memory management

of generalized emulation system are twofold . Because of the
• large number of control programs that are needed, the emulation

facility should have a large control store system. In cases

where very large control stores are needed, a feasible solution
may be the conventional hierarchical memory system coupled with
virtual addressing capabilities. The second problem occurs
when the emulated machine has a hierarchical memory system.

The facility should then have the capability of mapping each

emulated memory level into the emulation facility memory system.

Hence, multilevel memory system ani complex address mapping

functions are needed.

3.3.2.1.5 Multiple-Processor Emulation - To efficiently emulate

a multiple-processor system, such as a distributed or SIMD-type

system. the facility should provide at least a subsystem con-

sisting of some fully interconnected processors. Larger multiple-

processor systems will have to be emulated by replication , and

systems with limited interconnections will have to be emulated

with certain interconnection path disabled . Multiple memory

modules will also be needed for efficient multiple-processor

emulation.

3.3.2.1.6 Data Path Emulation - To emulate all the Jata paths

in the emulated system, the facility should have full connections

among all its system components. Only selected connections

would be activated during any specific emulation . The data path

emulation capability should be able to represent explicit and

implicit architectural paths both explicitly and implicitly in

order to provide the full range of emulation levels that may
be needed by users. Examples of explicit paths are input/output

channels, communication networks, busing system , and matrix

interconnects. Examples of implicit paths are internal processor

buses and memory buses. Explicit representation of a data path

109



— . — - .- —- . —‘.—,-—-..—•- -_••__-_—•—-••---•—_,r.—.~
_____ -

requires physical path; implicit representation implies a
physical path. Data traversing an explicit path actually moves

through the data path. With implicit paths, time delay is

ascribed to the traversal without the data actually moving

through a physical data path.

3.3.2.2 Subs~stem .Testing - The facility responsibility described

in this section must perform facility subsystem tests to assure

operability for testing. General capabilities needed to fulfill
this responsibility are

- 

o basic hardware tests

o emulation tests
o interface tests
o facility-supplied software tests

3.3.2.2.1 Basic Hardware Tests (BHT) - Basic hardware tests are

performed to validate and diagnose the operability of the

emulation hardware independent of emulation constraints. BHTs

apply to both standard hardware (normal facility hardware) and

hardware created by the user for inclusion within the facility

(exclusive of emulation described hardware). In the latter case

BHT5 may be created by the facility as a function of the user

problem (created when the user attempts to emulate his system),

in the former case BHTs are created or obtained when hardware

is included in the facility and becomes universal to the user
class. When hardware is a recognized commercial product (display,

tape unit, commercial general purpose machine, etc.), BHTs are

either part of the product and or obtainable with the product.

For developed hardware (hardware created by the facility that

is not generally obtainable as a commercial product), BHTs are

developed during or after the design phase and become a part of
the facility BHT set.

110

• •-~~~~~~~~~~ -- - -
~~~~~~~~~~~~~~~~

-—

-•~
- - - - -~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

BHTs that are developed for special user hardware are created in

the same manner as for facility developed hardware except that

they are unique to the specific user emulation. The facility

develops the special hardware BHT as a~ part of integrating the

user specified hardware with the general facility hardware.

This familiarizes the facility with the nonstandard hardware

and its behavior, as well as developing a hardware checkout tool.

3.3.2.2.2 Emulation Tests (ET) - ETs are component-level tests

used to check the general purpose emulation system components

after being configured to perform the intended emulation. These

tests emphasize emulation operability and as such apply only

to components that are altered (by microcode, for example) from

emulation to emulation. (Unalterable components can be tested

with BHTs). ET5 are created as an emulation function by the

facility each time the user decides to create a new architecture.

If the user selects a standard computer emulation package (see

paragraph 3.3.1.2) then a ET will probably exist and not be

generated.

The principle of an emulation test can be described in the

following way: given a general purpose emulation that can

implement various repertoires and architectures through the

installation of instruction/configuration code, the ET verifies

that the installed code causes the base hardware to operate in

accordance with the emulation functional specifications . In

effect, the ET verifies that the generated emulation code is

operable.

3.3.2.2.3 Interface Tests (IT) - ITs are standard tests that

are used to verify data transfer between emulation system com-

ponents (interface-to-interface). ITs can and should be sep-

arated into unit—to—unit interface tests and path interface

ill



tests. Path interface tests are used to validate data trans-

ferability from one interface through several intermediate in-
terfaces to a destination interface. Unit—to-unit ITs, which

• are a subset or lower level of path interface tests, validate

a path segment only. ITs are used when the general purpose emu-

lation system is ki~ought up or when a suspected error occurs
that is traceable to a data path. A separate IT should exist

for every distinct path. However, a test program may combine
the separate ITS to provide an Integrated Interface Test (lIT)

which is unique for each user configuration.

ITs range from simple (I/O channel checks) to complex depending

on the path architecture and embedded path processing function.

However, ITs are limited to validating only correct bit transfer.

This excludes validating the interfacing of the transferred

bits to resident destination processes, which is a function of
the system tests.

3.3.2.2.4 Faáility-Supplied Software Tests (FST) - The user

emulation experiments can be expected to vary from simple to
complex. In• those cases where simple experiments are performed

the user may opt to use a standard facility software capability

(an OS, an I/O handler, etc.). FSTs are used to verify the
operational correctness of the standard facility software. Each

standard software has a separate FST. In the case of configur-

able standard software, each configuration has a separate FST.

Like ITs , FSTs can be combined into an Integrated FST, an IFST.
FSTs are not responsible for verifying correct usage of standard

software by the user; they are only responsible for validating

the integrity of the standard software.

3.3.2.3 Facility Interface Standards - The capabilities described

in this section must provide the interface standards between

host and facility , between facility and all its peripherals,

112



between standard facility components, and between standard

components and user-designated hardware additions. The general

• capabilities needed to fulfill this responsibility are:
o Standardized interface with host (driving function)
o Standardized peripheral interfaces

o Standardized facility intercomponent interconnections

o Standardized interface for user-designated hardware

3.3.2.3.1 Standardized Host Interface (SHI) - Host as used here

means essentially the element that provides the driving function

for the system emulation. This element may be different than

the host which, for example, compiles the HOL/EDL into execution

and system definition codes. The interface with the host includes

both hardware and software connections, as well as the funda—

mental methodology used to cause the emulation system and host

system to interact in synchronism. The SHI consists of compat-

ible channel connections (I/O channels), the software channel

handlers at either end, and the linkage methodology for emulation

software to emulate the channel desired connection. The emula-

tion software to cause -the channel to appear as it appears in

the target architecture is the user responsibility, and it is

generated to operate in the framework of the facility provided

linkage methodology. Compatible channel connections are the

hardware interconnections that allow unmodified move without
error between the driving and emulation system. The software

handlers provide the error control, linkages, etc. that are

needed to transfer information on real digital channels. These

handlers investigate status, perform actions dependent upon

status codes, and handle both normal and abnormal conditions.

3.3.2.3.2 Standardized Peripheral Interfaces (SPI) - The facil-

ity will utilize peripheral equipments that are probably unlike

the peripherals desired by the user for his system. The real

113

- . . - - -  

-
- -a- - - .- - • - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~•~~-

channels used to connect the emulating hardware to these pen -

• pheral equipments will need to be transformed so that they oper-
ate as the peripherals of the user architecture. This is done
with SPIs, which may be software, microcode, or a combination

of both. It is improbable that SPIs will be hardware because of

the expense and difficulty of modifying/adding additional inter-
faces to the emulating system. SPIs are emulation components

for standard channel interfaces that are available in much the

same way as SCEPs (3.3.1.1.2), typically, Mil—Std—188, RS—232,

and Mil—Std—l397.

3.3.2.3.3 Standardized Facility Intercomponent Interconnections

(~FII) - The facility is assumed to be composed of

multiple computing machines that are connected in a specified

number of ways to allow different architectures to be emulated.

The interconnect pattern is defined by a SF11, which establishes
the real interconnect paths used to implement the target archi-

tecture information transfer paths (target architecture external

and internal interconnection paths). It is composed of the

control codes and software packages that create, regulate, and

monitor the interconnect paths needed in the emulating system

to implement the user architecture. The monitoring capability

of SF11 is used as necessary to factor or modify data movement
times to determine target architecture performance. SFIIs apply

primarily to the representation of standard architectures,

although once an SF11 has been created it can be contended, with
respect to emulation, that it is a standard architecture compon-

ent. -

3.3.2.3.4 Standardized User-designated Hardware Interface (SUHI)

The attachment of user equipments to the emulation facility is

not expected to be common in the near term. However, provision

must be made for standardizing the attachment of user hardware

to forestall the impact of nonstandard methods of attachment on

_

; 114 j

--- - - - - - ~~~~- -

_ _ _ _ _ _
_ _ _ _ _ -

I

the generation of emulation code. The SUHI is a combination
of hardware and software that permits the user hardware to be

attached to the emulation system. There may be several distinct

SUHI that allow, for example, attachment at the memory interface

(through DMA channels), the I/O interface, or as a special pro-
cessor channel attachment (control register).

- 3.3.2.4 Performance Measurement and Collection - As final pro-

ducts, RCSDF produces computation results together with perform-
ance measures. Perf rmance measurements have two main categories

in our context. One category refers to the user designed system

(the system that is being emulated), the other refers to the

RCSDF itself (the emulation hardware). The performance measures

that a user could be interested in are:

1) accuracy of computation results
2) response time and feedback control

3) throughput rate

4) utilization of various emulated resources
5) system bottlenecks

6) software trace

7) instruction trace
8) memory address trace

9) instruction mix description

10) branching (forward and backward branches, number of
instructions executed between branches)

11) page swapping frequencies

12) main memory lockout frequency (conflict frequency)

13) register utilization (back referencing , indexing)

14) I/O traffic trace (sensor, peripheral, analog, digital,

etc.)

15) total time spent in task entrances, etc.

16) number of task entrances

115

r-~
--
~~~

----—-• 
~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-

~~

17) longest time in task

18) time spent in last task entrance

These user performance measures will be sent to the hosting sub-
system, where the user—specified data reduction algorithms

(tabulation , graphical representation , etc.) are applied .

The performance measures that an RCSDF developer could be inter-
ested in are:

1) maximum and minimum number of users in multiprogramm-
ing environment

2) average system down time (e.g., MTBF, MTTR)

3) utilization of various RCSDF resources

The facility is responsible for gathering sufficient data to

compute the above mentioned performance measures when desired .

To fulfill this responsibility the facility needs to have these

capabilities:

o provision of hardware tools and their standard checkout

procedure

o independent monitoring techniques

o computation packages for various performance measures
o performance data base management

3.3.2.4.1 Hardware Tools Provision and Verification - The facil-

ity should provide all the hardware tools and techniques necessary
for performance measurement and recording. It should also be

able to verify these equipments through the use of standard

checkout procedures. Examples of such hardware tools are sensing

probes, amplifiers, and data recording media. The sensors are

used to extract software data, such as instruction counter con-

tents, op code, memory addresses, procedure names, and I/O

types. Another important tool is an interval timer used for

116

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - --4

• generating measurement interrupts. The measurement intervals

—
should be short enough to minimize distortion , but long enough

for the measurement data to be computed.

3.3.2.4.2 Independent Monitoring Techniques - The facility

should be able to monitor performance without requiring modif i-

cations to the user program. It should also be able to install

the monitoring devices without detailed knowledge on the oper-

ating system of the deployable system. Since the facility is

required to emulate many different machines, table-driven

operating systems seem to be very desirable.

3.3.2.4.3 Performance Measurement Packages - The performance

measures mentioned in the beginning of 3.3.2.4 need to be corn—

puted from raw data trapped by the hardware monitoring tools.

The facility should provide efficient computation packages
for various performance measures, and these computed performance

measures should be as concise as possible to reduce the perform-

ance data reduction responsibility of the host can be eased.

3.3.2.4.4 Performance Data Base Management - The facility should

be able to temporarily store the raw data trapped by the monitor-

ing tools until they are processed (computed) by the computation

packages. The computed measures will then have to be stored in

large secondary storage (disk or tape) before being accessed for

data reduction by the hosting subsystem. The facility will have

to be able to format the performance measures to the requirements

of the host.

3.3.2.5 Data Loaaina - The facility is responsible for a data],og

on all data transfers between various facility hardware compon-

ents (including special user hardware). To achieve this, the

facility should be able to record the data transferred at every

117

_
_
~~~~~~ -~~~~~~~~~ --~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ - ~~~~~~~~~~~~ 

-



component interface together with the system clock time at

which the data transfer takes place. This data log should be

available to the user as an emulation trace whenever the user

suspects an error in emulation. A feasible way of providing

this data log is to tap all component interface lines into data 
—

recording equipment, time multiplexing if necessary. Then the

interface transfer- signal is used to activate the actual data
logging procedures. This technique will allow the data logging

to be done without degradation to the emulation system perform—

ance. Data transfers between modules residing on the same corn—

ponent are initiated by emulated “hooks” generated by the host.

The facility should, however, also be able to recognize these
“hooks” and initiate the actual data logging procedure.

3.3.2.6 Test Suppor — The facility responsibility discussed

in this section must assist users to the extent required in the
performance of system testing. In order to fulfill this respon-

sibility, the facility requires a staff of personnel with a wide

range of skills. Included in these skills are system architec—

ture (resolution of architectural faults discovered during

testing), system integration (to provide assistance in resolving

interface problems and integration-related software problems),

emulation (to resolve problem& in generated emulation microcode),

performance monitoring (to set up, operate, and resolve problems

with performance monitoring equipment), equipment operation

and maintenance. Through these provided skills the emulation -:

system is installed, verified, operated, and the performance
data collected. The extent of support is dependent on the par-

ticular user and the problem he is emulating. However , across

the entire user class these skill levels will be required

118



-—

3.4 RCSDF Emulation Procedures

Considering the operating philosophy and capabilities presented

in the previous two sections, a high level synopsis of an over-

all procedure for emulating on the RCSDF is described in this
section. The procedure is described in general to provide an

abstraction of what is needed to Consummate a system emulation.

The procedure specifics may not apply to all users due to the

differences in the user emulation problems. Figure 3—2 provides
a diagram of the RCSDF emulation procedures. Each procedural

step is labeled U (User), H (Host), or F (Facility ) for the party
responsible for that procedural step. The readers are assumed

to be familiar with the materials discussed in paragraphs 3.2

and 3.3. From the diagram , we can see that many iterative
steps may occur as a result of changed user interests, unforseen

errors, and so on. The symbols used in Figure 3-2 are: 

database 
of f line data storage

( 
start or finish 

procedural step 

- - - nth continuation symbol

The evaluation procedural steps are described below.

1) System Requirement Description - The document which

describes the detail requirements of the user appli-

cation system. -
2) Requirement Feasibility - An automated process that

verifies the feasibility of the requirements imposed

by the user.

3) Functional Decomposition - The decomposition of the

application system into functional units or modules.

119

_______ 
_z••_ - t~Th.~~r ,~~~~~r -- — — - —--—-—



_ - -•~~~~~•- - - - - •.
~~~~ 

- -
~~~~~
--~

- -—- -- I

u METHODOLOGY ALGOM
SPECIFICATION COMPI(4

TEST

TESYDATA TEST O~SETS C 
PREPA NA

~~~ 
STARIj

U H U

H 9
L i~~ ~~~~~~ REQUIREMENT I ~~~~~~~~~~~ AUTOMA TED I I SELECTION 01 .1 I HARD WARE

-n___
IPTION 1~~ AUTOMATED) ~~~ LEMENTAT ION OF EXAMPLES

_~T 1 ~

‘°°
~~~~~ r ~i 

DESCRIPTION

[S ~~~~M 
F (~) 

U 
_ _ _-

MOO4JLE HOL HOL TEST
- DESCRIPTION & DESUG

U

HAR D WARE
ARCHIT ECTURE ______________________________

MODIFICATION

f

~~~~~ AL~~~~~~~~
f 9

~~aAL

SYSTEM
cON TROL

MOOIFI CATION

U

o.—LII}——
PE RFORMANCE I

.J MEASURE MENT I

1 PARAMETERS]

MODIFICATI ON

REDESIGN .
REF ORMULATION _____________________________________

SATISFACTORY ANALYSIS ME ASURE~~PERFORMA NCE REPORT FORMAT REOUCTIO

(
FINISHE
J ~~~~~~~~~~

GE ON

I

I.. ~~~~~~~~~~~~~~~~~~~ •- -= - --—---•-=
•- —

-,

TEST TEST

H

ME THODOLOGY AL ODR IT H M
~~EC IFIC ATIO N COMPILATIO N H

TEST
U H SCEN AR IO

VERIFICATION

TEST DATA TE ST DATA

ASE~~~~~~~~OP PR EP ARATION

U

H HARDWARE
MODULE

~

H OL

H

F~~~
~~EIET~~

/ -

U COMPONENTS
AESEMELAGE

OPTIMIZATION

U
-

SUSSYSTEM

SPECIAL I I SPE CIAL
HARDWARE HAR DW ARE - ______________________

SPE CIFICATI ON INTEGRATION

H P

EMULATION
PERFORMANCE SYSTEM

ESTIMATION OPERATIO NAL
TES TING

ME ASU REMENT
EQ UIP MENTS

SETUP
U

___ PE RFO R MANCE
F

ANALYSIS PE RFORMANCE
ME ASURES

U U COMPUTATION

ANALYSIS MEASUREMEN T
REPOR T FORMAT REDUCT ION

SPEC

H OR P HOR P

REPO RT PERPORMANCS
GENE RATION MEASUREMENT S

Figure 3-2. RCSDF Emulation
Procedures

120

______________ ..-‘. •~~~
. _ • .•, • •— - —_ - _

~~~~~~~ ~~~ ~~~~~~~~~~~~~ - —  — — —--- — ---



F- ~~~~~ ~~~ 
-•••- _ -•-- - - •_

~~~~~~~~~~~~~~~~

-•—---—- -

~

4) Implementation Decision - The decision to use either
hardware or software implementation for each functional

• unit.

5) System Control - The description of the control
synchronization and interface among identified func-

tional units.

6) Automated Library of Examples - The host library

collection of implementation examples; helps the user
in finalizing his decomposition process.

7) Test Environment Specification - The document-which

specifies the scenario and test algorithm under which
the emulation test is to be performed .

8) Selection of Existing Modules - Choosing implemented

modules from the automated library. (The user should

select as many as possible of his modules from among
the existing modules available in the library.)

9) Emulation Design Consultation - The expertise and
consulting service offered by the facility to improve

user emulation design.

10) Performance Measurement Parameters Specification — The
document which specifies the performance parameters

which the user intends to measure and examine.

11) Test Methodology Specification - The document which

specifies the test methods, test sequencing , and post-

test data reduction methods for the testing phase.

12) Test Data Set Specification - The document which

specifies the test data sets that are used by the

test algorithms to cause specified system behaviors.

13) Test Algorithm Compilation - Translation of user-

defined test algorithms into facility driving function

code and facility driving function sequences.

14) Test Data Set Preparation - Use of the user specified

test data set to simulate system inputs for the emula-

tion process.

121

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~-~~~~~- —--~~~~~~~~~~~ 
—



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

15) Test Scenario Verification - Verification of the timing

between test algorithms and test data sets at the

system level.

16) Hardware Module EDL Description - The document which

describes each identified module in EDL (Emulation
Design Language).

17) Software Module HOL Description - The document which
describes each identified software module in HOL

(High Order Language).

18) HOL Test and Debug - Debugging of the HOL programs on

the host system before emulating on the facility.

19) EDL Verification/Translation - Automated verification

of the EDL descriptions of the hardware modules and

the translation into facility emulation code.

20) Hardware Module Optimization - Tailoring certain

hardware modules into facility emulation code for

optimization purposes.

21) HOL Verification/Compilation - Automated verification

of the HOL descriptions of the software modules and

the compilation into deployable machine code.

22) Software Module Optimization - Tailoring certain

-
software modules into deployable machine code for

optimization purpose. -

23) Special Hardware Specification - The document which

specifies the special hardware attachments to the

deployable system including necessary tailoring to

meet interface standards.

24) Special Hardware Integration - The integration of

user specified hardware into existing facility hard-

ware and the subsequent operational testing.

25) Emulating Compon•nts Assemblage - The total integration

of all facility modules (both hard-and soft) and all

user designed modules (both hard and soft).

122

~

L Y - -

-
-
~

-

26) Subsystem Test - Validation of the operability of

the separate system components and intercommunication
between interconnected components.

27) Emulation System Operational Testing - The integration

testing of the entire emulation system, including

interface testings.

28) Performance Estimation - Rough estimation of perform-

ance for target architecture according to test data

set and functional description of the modules.

29) Measurement Equipments Setup - Provision of the per-
formance measurement equipments as required by the
user specification .

30) Performance Measurement Computation - Computation of

first level performance measurements, e.g., time

spent in certain tasks, or frequency of certain

instructions.
•

31) Performance Analysis - Analysis of the performance

results either from estimation or from emulation

testing.

32) Analysis Report Format Specification - The document

which specifies what the analysis report (generated

by the host) should look like.

33) Measurement Reduction Algorithm Specification - The
document which specifies the reduction algorithms

for the performance data obtained during emulation.

34) Performance Measurements Reduction - Reduction of

test and performance data according to the user

specification and requirement.

35’ Report Generation - Generation of performance report

according to the user specification .

36) Performance Projection - Projection of measured per-

formance to predict the performance of the target

architecture by modification of measured parameters.

123

• ~~~~ -• - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
•

37) System Redesign and Reformulation - Redesign of the
target system architecture using results from perform-

ance analysis.

38) Hardware Architecture Modification - Modification and
improvement of unsatisfactory hardware modules.

39) Software Program Modification - Modification and

improvement of unsatisfactory software programs.
40) System Control Modification - Improvement of the

system control and resource sharing structures.
41) Test Scenario Modification - Modification of the

test algorithms and the test data set, if required .
42) Satisfactory Performance - Satisfactory performance

of the target system, as demonstrated by the test
results.

J

---•- .
• . - • - - ••_ •-

4. RCSDF Development Plan

This section of the document defines the tasks identified during

the Initial RCSDF design study, the results of which are required

to meet the overall objectives of the Reconfigurable System De-

sign Facility (RCSDF) . To aid in the task selection process,

the study team first identified a series of additional concept

formulation studies listed in paragraph 4.1 that would enable

more definitive objectives to be established for the emulation

facility, i.e., the RCSDF portion of the Total System Design Fa-

cility (TSDF). This was followed by the establishment of six
—

development paths (relatively independent categories of develop-

ment effort) documented in paragraph 4.2, for which smaller work
and study tasks were independently defined. Finally, the sets

of tasks resulting from concept formulation or from the develop—

mental paths were combined into single-task sets, covered in

paragraph 4.3, but only after entries which were redundant or

ambiguous with respect to RCSDF objectives were removed or clar-

ified, respectively.

4.1 Definitive Study Tasks

The tasks described in this section are intended to support the
-

~ development of hardware and software operating system specif i-

- j cations for a 1981-1982 RCSDF by providing necessary definitions

for procurement of tnose specifications. The tasks outlined

herein will, if pursued , develop source material to be included

within procurement documents to define system architecture,

control structure, the design language process, and the specif i-

cation hierarchy to be used.

4.1.1 Emulation System Architecture - The STARAL QM-l, Data

Manipulator Unit, l09-bit mass memory, and microprocessor array

are system components which can be configured in several or more

125

• ——— ~~~~~~~~~~ ~~~~~ - _ •_ - -
~~~

:- ‘ ~~~~~~~~~~~~ -~
•-
~~~

- - •
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



system architectures.  As yet, no architectural definition exists

for these components as a system. One will be needed to develop

specifications for hardware and software.

4.1.1.1 Task Description — The objective of this task is to

prepare preliminary architectural descriptions for the RCSDF,

assuming components with the capabilities as represented in the

above devices; evaluate these architectures in terms of their

use in different classes of user problems; and rank the different
architectures in terms of their usefulness for emulating the
different problem classes.

4.1.1.2 Examples - A user may visualize the solution to his

processing problem in any number of system structure forms. His

visualization may or may not be influenced by his knowledge of

what exists in the RCSDF (may is more probable than may not).
The users visualization could be for example, any of the follow-

ing:

Network - A set of processing units, logically equal

with one another, loosely coupled , operating autonomously,

controlled through mutual arbitration between processing

units.

Mainframe - A set of processing capabilities organized

as a mainframe design operated, perhaps, sequentially.

Sequential Emulator - A general purpose unit computer

employing sequential computatior principles.

126 

-



Parallel Processor - A special purpose parallel processor

with identical processing uni ts  slaved to a common in-

struction stream.

Hierarchical System - A general purpose processor con-

trolling special purpose processors that provide unique

processing capabilities.

The above visualizations could conceivably be realized as in

Figures 4-1 through 4-5 utilizing the planned RCSDF hardware:

Figure 4-1 Network - Each device in the system is loose’y

coupled to other devices through I/O channels. Devices,

where programmable , communicate with each other through

high level protocol and regulate their own resources.

Fiaure 4-2 Mainframe - Each device in the system is

tightly coupled with other devices operating in sequential

fashion to perform the processing problem.

Figure 4-3 Sequential Emulator - Emulation is centered

on the QM-l. The STARAN and other devices support the

emulation by providing services, such as data management.

Figure 4-4 Parallel Processor - Emulation is centered

on the microprocessor array with the QM-l acting as the

control unit.

Figure 4_5 Hierarchical Sv~stem - Emulation is centered on
the QM-1 microprocessor array combination with the elements

of the microprocessor array acting as special purpose

controllers.

127



- -~~~~~~~~~~~~~~----~~~~~~~~~~~~~~~ -~~~~~~

DISK /0STORAG E

I/O QM- 1 MICROPROCESSOR

MASS ARRAY

MEMORY

1 I I
STARAN I/O

DMU

Figure 4-1. Network

MICROPROCESSOR
STARAN QM-1 

ARRAY

DMA DMA DMA

J 

I I _ ]
I I

MASS
MEMORY

Figure 4-2. Mainframe

128 

H

~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -


- •

-

~~

--—- ----- _ _ _• _ _ _ _

1 M ~
0
~1 1 1

STARAN I/O

PERIPHERALS

Figure 4-3. Sequential Emulator

aM-i MICROPROCESSOR
(CONTROL) ARRAV

I/O ~~DMA
—

DMA

• (L I

PERIPHERALS

Figure 4-4. Parallel Processor

GM-i MICROPROCESSOR

DMA

A:::Y

Figure 4-5. Hierarchical System

129

/
,

- - - - - - -

~

---—

~~~~.:
)-



4.1.2 Emulation Control Structure - The RCSDF is intended to be

a system analysis tool to verify the feasibility of a specific

deployable system design. The objective of the RCSDF is to ex- • 
-

tract system performance data while emulating the deployable
system, including the ability to execute actual software con-

structs intended for the deployable system. The expected

diversity of potential system architectures and system appli-
cation(s) imposes unique RCSDF resource control requirements ,

which must be incorporated in the base RCSDF operating system

design. It is the intent of this proposed task study to define

an appropriate control structure, compatible with the selected

RCSDF architecture, which will satisfy the resource control

requirements for a variety of application system architectures.

4.1.2.1 Task Description - The general ccntrol structure recom-’

mended for the RCSDF requires that a system be viewed as a set

of functional units. It is important that the interface of

these units be standardized and enforced. The enforcement logic

for the standard interface is referred to as a system nucleus or

kernel. The kernel operating system permits traditional operat-

ing systems to be constructed from a set of functionally complete

units or it permits existing operating systems to execute as a

single unit concurrently with other units making up the appli-

cation system.

The kernel permits standard interface requests to be made by the

units (hence unit designers) in the form of prir~itive instruc-

tions. These primitives can be invoked explicitly by the de-

signers or implicitly by the hosting subsystem as it translates

designs into executable machine code. The purpose of this

task is to define what and how these standards can be imple— .

mented to regiment resource control.

130

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- • - -•-

~~~~~~~~ 
- 

••

( _ • 
_ • -~~~~ - - _ _

~•-~
-, 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -;•


_ _

4.1.2.2 Example of Control Structure Enforcement - The example

given here, while superficial, serves to illustrate what is
—

meant by an enforced emulation control structure. Again, assume

that access to all RCSDF system resources must be described to a

kernel operating system physically executing on the RCSDF hard-

ware. The actual description may come from the hosting subsystem

or from units executing on the RCSDF.

If the mainframe architecture (Figure 4-2) is chosen, a kernel - -

supplying identical functions could be implemented in each

processing element, i.e., the STARAN, the QM-1, arid the micro-

processor array. Thus a SHARE MEM instruction , executed on the 4

QM-l on behalf of a unit executing on the STARAN , would cause

the respective kernels to cooperate so that impacted units could

access the same mass memory space

-S -

If the network architecture (Figure 4-1) is chosen, the STARAN

could be dedicated to the function of virtual memory management

with the SHARE MEN primitive the responsibility of only that -
•

portion of the system kernel located in the STARAN (i.e., the

QM-l and microprocess array kernels would forward this primitive

to the STARAN for subsequent execution and memory sharing en-

ableme~t).

A slight variation in the latter functional mapping would place

the responsibility for all primitives except those dealing with

memory management in the QM—l , thus dedicating the microproces-

sor array for unit emulation. Resource requests (primitives)

executed by the units operating in the array would be forwarded

to either the STARAN or QM-l. depending upon whether they were a

request for memory or other resources, respect-ively. This would

permit effective performance measurements to be recorded by

these processing elements.

131

_ --

4.1.3 Emulation Documentation Structure - Specifications for

RCSDF hardware and software form a subset of the overall set of
documentation required for a user emulation event, an instance

of usage of the RCSDF. Initial design studies indicate a need

for documentation to coordinate the emulation procedure. Be-

cause the use of an emulation facility (i.e., the RCSDF) as an

integral part of design is new, an overall documentation struc-

ture has not yet been defined .

4.1.3.1 Task Description - The objective for this task is to

develop an overall documentation structure for the RCSDF identi-

fying needed documents and their relationship to one another.

The task should include the preparation of an overall governing

document for the emulation procedure. It should consider that

RCSDF operations may eventually image TSDF operations. Insight

into the documentation required will aid in evaluating the total

system design strategy.

4.1.3.2 Documentation Examp1e~ - The following are examples of

documents that could conceivably be required to document an

emulation in a TSDF, and a subset of which could be required in

the RCSDF:

System Requirement Description
Emulation Design Specification
System Description
Test Environment Specification
Hardware Requirements Specification
Performance Measurement Specification
Facility Interface Standards
Performance Measurement Specification
Facility Interface Standards
Performance Analysis Specification
System Integration Specification
System Test Procedure

132

- - - — - - ___________ ~~~-r”

4.1.4 Requirements/Design Language Procedure -

Earlier in the initial RCSDF design study work the process of

system design was identified as one of conception and specifica-

tion (human subsystem), implementation (hosting subsystem), and

feasibility testing (reconfigurable subsystem, i.e., the RCSDF).

These fundamentally distinct processes are not, however , inde-

pendent. It is apparent that for the system design process to

run its course smoothly, human beings must be able to communi-

cate; automation tools must be developed to translate human

operations into functional components; and finally, modular ,

off-the-shelf (when possible) components must be configured and

tested to determine if application requirements can be met in a

cost/performance competitive manner. Central to each of these

distinct processes is the requirement for unambiguous specifi-

cations, i.e., well—defined design languages and usage pro-

cedures.

4.1.4.1 Task Description - The purpose for this task is to iden-

tify those languages which are required for system specification,

design, and development. Specifically, this includes hardware !

software requirement specification and design languages. Common

characteristics of each will be identified and a composite or

hybrid language defined . The term “hybrid” refers to a standard

format or common syntactical base around which several “levels”

or language “dialects ” can be defined . Each level is intended

to bring the top level (requirements) closer to an ultimate

implementation . Lower levels are expected to identify the

various methods of implementation .

4.1.4.2 Task Example - To illustrate the various language levels

which can exist for a specific system “unit” during system

design, an example has been taken from the Univac DSD Distributed

Processing System Development Laboratory. Selection of the

133

~~~~~~~~~~~~~~~~~~~~~ — ———



- ~~--——-—--~~.-—~~ . - - -~~~~~~~~~~~~~~~ - - -•~~~~~~~~~~~-— ~~~-- -——-~ ~~~~-~~~~- ---- - - - • - -• ~~~ - _ -~~• . - • • • -

sample unit was done for convenience in producing this document.

The function of the unit probably has no application within the

RCSDF. fl

The system from which the unit is taken provides a multi-user

program generation capability . The function is defined - using

three language dialects. The first defines the requirement for

the function and hence its role in the system. The second pro-

vides functional detail but is still implementation independent .

The third describes a primitive operation (block semaphore) with

sufficient detail (register transfer level) that it could be

implemented in firmware should the data types be carefully

defined . For example:

1) Requirement Specification

BEGIN Time Slice Scheduler

Paragraph X.5 Scheduling Philosophy

W~ene~~r more than one us~~- exists for this system,

he shall be given access to the LEVEL 2 Operating

System executing on a 16-bit virtual machine, (VMP).

The system is expected to permit each user ’s pro- 
- 

-4

gram(s) to progress at the same rate as other users.

END

2) Functional Detail (Structured Narra-•ive)

BEGIN Time Slice Scheduler

BEGIN variable: VMPMAX = number of users in system

WHILE more than one user (VMPMAX>l)

134 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • ~~~~~~~~_ _ _  - - -


DO J 1 TO VMPMAX

Priority VMPj = 7

Priority for LEVEL 2 of VMPJ = 8

END

1 = 1

WHILE number of users remain constant J

Priority of VMP i = 7

Priority of LEVEL 2 of VMPi = 8
IF 1 = VMPMAX

THEN I 1

E L S E I = I + 1

ENDIF
Priority of VMPi = 5

Priority of LEVEL 2 of FMPi = 6

BLOCK ON SEMAPHORE (Clock)

Release clock unit

ENDWHILE —

ENDWHILE

END

END

3) Register Transfer Level

(The following description is for the BLOCK ON SEMA-
P!ORE primitive, an extension to the machine reper-

Jtoire made available by the kernel operating system

implemented in Univac DSD’s distributed processing

Systems Development Laboratory (SDL). The language

used is an adaptation of ISP defined by C. G. Bell

and A. Newell. The description covers only one
function needed by the Time Slice Scheduler defined
in the previous “language” examples.)

135

- - --I - - - • I
/

_ _ _

SOS/Block on Semaphore: =

(SEM c semaphores owned [AP*]+

(interrupts [system] ~
- Illegal Primitive; next cycle);

next value <SEM> ~- value <SEM> +1; next value <SEM>

>0-’~ (blocked processes (SEMI 1- AP task active ~systeriV

1-0; dispatch active <system> ~] .))

* A? - Active Process

4.1.5 Uniform Emulation Method - A major objective of the RCSDF

is to demonstrate the feasibility of the general purpose emu-

lation concept. Essent:Lally this is a many-to-one mapping of

one architecture upon another (the RCSDF). Previous emulation

efforts have striven for an efficient one-to-one mapping and

have not attempted to define a uniform representation structure

f or many-to-one emulations. If a common representation structure

can be defined , then the development of an emulation would be

made easier as well as the testing required to validate a

specific emulation design.

4.1.5.1 Task Description - The objective of this task is to

analyze existing emulation techniques constructed on the QM-l

to determine if common emulation procedures were used to emulate

the different machines on the QM-l. The task should examine how
other known machines could be represented on the QM-l. This

would permit commonality to be detected arid projections to be

made on the feasibility of a common emulation technique for the

RCSDF.

4,1.5.2 Emulation Examples — QM-l emulations have at least been

studied for the computers listed below. At least one of these

(S/360) has been implemented, and two others probably are imple-

mented (PD? 11/45, AN/UYK-.20).

136

- • — —

I

S/360

PD? 11/45

AN/UYK-20

H—6l80

Additional machines that would serve as emulation studies would

be: •

Univac 1100/80 AN/UYK-7

Burroughs B-1700 AN/GYK-l2

Burroughs D-Machine Interdata 8/32

SKC-200 Rolm/Nova 1664

SEL 32

4.1.6 Emulation Analysis Structure - An objective of the RCSDF

is the emulation of deployable systems. The emulation must be

capable of permitting actual deployable system components (soft-

ware and selected special purpose hardware) to execute in an

environment where its performance can be measured arid analyzed

with respect to the application ’s requirements. An important

aspect of the RCSDF configuration is the availability of tools

permitting measurement and analysis to take place.

4.1.6.1 Task Description - The availability of tools to permit

mea surement and analysis to take place requires a carefully

defined philosophy for RCSDF structure and resource control.

Sperry Univac believes the recommended facility control operat-

ing system is compatible with the required philosophy. The

objective of this task should be two-fold: first, to describe

how the resource control philosophy recommended as the baseline
operating system (kernel) can be utilized for performance

measurement/analysis; and second, to functionally specify the

137

-

~~~~ 

- 
_{ i•_1•_ _

_

~_ _ 



~~~~~~~~~~~~~~~~ ~~—- - -——------ _ •
~~~ 

—
~~~~~~~~~~~~~

—----•--- -- --

• components (units) required as a part of the RCSDF configur-

ration.

4.1.6.2 Task Example - The example shown in Figure 4-6 assumes

that the units executing in the RCSDF are structured in the form

of a tree such that “parent” units control use of system re—

sources such as instructions, interrupts, memory, and processors,

arid that this control is enforced by the kernel operating system.

The units circled represent deployable system functions, which

could be a single unit. The operating system units are op-

tional capabilities collected by the RCSDF developers for common

application requirements, e.g., file managers and data base

managers. The remainder of the units are performance/analysis

functions which must be supplied by the RCSDF developers.

The performance measurement unit interfaces with the user to

permit measurement requests. For example, if a user requests a

count of the number of times a specific system unit (function)

executes, the performance measurement unit traps (exercising

its control over resources) function calls and records the ap-

propriate data.

If a user does not wish to develop a particular system unit but

• rather simulate its system response, this fact is described to

a scenario generator operating on the host subsystem, fed to the

scenario interface unit, and ultimately supplied to the user ’s

system. Whenever this unit would normally execute, the perfor-

mance measurement unit must trap the dispatch and substitute the

simulation data, thus permitting the system to continue.

138

_ _ _ _ _ •

I TI1itI~I
I

I /

~~~1~~~~

I W.( W 0 
/ a)

~~~~~~ ,

1

I wc~~ o ~
(1)

U
/• —

-I a)
-w~~

- -
- S

I ~~~~‘-
-Fr ufl,, I- a)~ i ~~~~~~~~~~~

,

0 --••--

~~~~~~~~ 
F

~~~~~~~~~ I 
/ 1

/
/

j / D

I W I— .

I
I / S

O~~~~~ i— >-w ~~I,

I z 2
0

r

I _ =~~~~~
I ~I ui —

‘
I- WU)

U

I u’ U.
I’ I
0

~~~ 1 W
~~ I 

z

139

I__  

/ 
- _

— -- --~~~~~~~•~~~~ •~~- ~
_• - _- ~~~~~~~~~~~~~~~~~~~~~ 

•—
~~~~~~~~~~ - • - —— ~~~~~~~~~~~~~~~~~~~~~~~ . 

-~~~ ~ -- _~

~~~~~~~ 

-

~~~~~~

••

~~~~~~~

-

4.2 Developmental Paths

4.2.1 RCSDF Hardware - RCSDF hardware includes all the hardware

elements that are necessary for system emulation. This includes

the hardware necessary to interface both RCSDF hardware elements
and special purpose deployable system elements. The initial

technical studies show that existing hardware elements are in-

sufficient for general system emulation. Existing hardware must

be modified and additional hardware procured . In summary, RCSDF

hardware includes: emulation hardware, facility control hard-

ware, RCSDF component interface hardware, peripheral hardware,

and performance monitoring hardware. Emulation hardware is the 
—

set of processing elements that are actually used to emulate the
user ’s deployable system functions. The microprocessor array is

one example from this hardware category. Facility control hard-

ware is the set of hardware elements needed to support RCSDF
resource control functions. Associative memory and virtual

memory hardware are examples from this category. The interface

hardware includes processing element interface (e.g., QM-1 -

STARAN), facility-host interface, peripheral interface, a~id

deployable component interface. Bus structures are examples

from this category.

4.2.2 RCSDF Software- This includes the software necessary to

insure the proper control of the emulation hardware. The general

control structure recommended for the RCSDF requires that a sys-

tem be viewed as a set of functional units. It is important

that the interface of these units be standardized and enforced .

The enformcement logic for the standard interface is referred
to as a system nucleus or kernel. The system nucleus is the

most essential portion of the facility control software. In

addition to the system nucleus, support sof tware is needed for
proper system operation. Support software examples include the

user interface handlers, facility diagnostic routines, and

140

__________
- stsr - — -



application initialization software. Additional facility soft-
ware required includes performance measurement software, data-
base management software, and application component simulation
software.

4.2.3 Emulation Procedures - Emulation procedures and related

descriptions must be carefully developed so that the RCSDF users
(system designers) will benefit from the system emulation pro-

cedure. This requires that the descriptions establish standard

RCSDF utilization procedures, thus enabling a better understand-

ing of the RCSDF system structure. This will permit emulation

to be achieved more efficiently.

The user ’s responsibilities during the emulation phase must be

identified. This includes a detailed explanation of the various

steps that a user must invoke, starting with the application re-

quirements and analysis and proceeding through functional decom-

position. The resulting processes are then described using both

hardware and software design languages (as outlined in paragraph
3.4).

A final requirement is a precise description of the RCSDF system

architecture so that the user software architecture can be

mapped onto the RCSDF hardware components.

4.2.4 Host SYstem Software - The host system is intended to aid

the user in the preparation of both selected deployable system

elements and the emulation packages necessarily created for the

RCSDF. This requires a considerable amount of support software.

This includes design language translators and application design

database management tools. The latter includes design visibility

report generators and the design verification procedures. Host

Li



software also includes initialization software, which collects

various deployable components (both hardware descriptions and

software logic) for inclusion in the RCSDF system.

4.2.5 Design Languages — Design languages are the tools that

the designer utilizes to formulate his application sjstem design.

During the initial RCSDF design studies contract, six different

language types were identified . The language types include

Process Design Languages (PDLS),, Requirement Specification

Languages (RSLs), Emulation Design Languages (EDLS), Scenario

Generation Languages (SGLs), Configuration Definition Dialects,

and Performance Monitoring Dialects. Only PDLs, and to a lesser

degree RSLs, are well represented , with defined languages; the

latter four types are still in the conceptual state. To achieve

RCSDF objectives a language or a language subset or dialect

needs to be selected or specified for each of these types so

that the language translators can be developed.

4.2.6 Case Study/Training - To develop system design expertise

utilizing the RCSDF, significant case studies should be
initiated . The objective of the case studies is to provide the

RCSDF designers with sufficient experience to expose deficien-

cies of the facility and provide insight into corrective activ-

ities.

Representative, but nontrivial, applications should be chosen as

case studies. For each of the case studies selected , the system
functional and performance requirements must be carefully spec-

ified. Each functional module or component would then be de-

signed, followed by the actual software (and high risk functional

hardware) implementation of the modules using applicable process

design languages. Finally,the application system would be

emulated.

142



— •
!-, -~~~- .-~.- .  ~- - • _ —-— .—. —_ _  .•

r~~— 
-

The experiences obtained from the recommended case studies should

be incorporated into a RCSDF user manual , and later used for

training purposes.

4.3 Description of RCSDF Development Tasks

• This section of the document lists and briefly describes the

tasks necessary to implement a general purpose reconfigurable

system design facility (an emulation facility) as a part of

RADC ’s total system design methodology.

4.3.1 Emulation System Architecture Study - The STARAN , QM-1,

Data Manipulator Unit, 109-bit Mass Memory, and microprocessor

array are system components which can be configured in several

or more system architectures. As yet, no architectural def ini-
tion exists for these components as a system. One will be needed

to develop specifications for hardware and software. This task

should prepare preliminary architecture descriptions for the RCSDF.

assuming components with the capabilities as represented in the

above devices; evaluate these architectures in terms of their —

use in different classes of user problems; and rank the different

architectures in terms of their usefulness for emulating the

different problem classes. An evaluation report will be prepared

to document the results of this task that will serve as a source

document for hardware/software procurement.

4.3.2 Ex~u1ation Control Structure Study - The general control

structure recommended for the RCSDF requires enforcement logic

for the standard interface which is referred to as a system

nucleus or kernel. A kernel operating system permits traditional

operating systems to be constructed from a set of functionally

complete units or it permits existing operating systems to execute

as a single unit concurrently with other units making up the

application system. The purpose of this task is to define what

143

-
- -~~~~~~~ _—- •



and how the kernel can be implemented to regiment resource
control.

L 4.3.3 Emulation Documentation Structure Study - The objective
of this task is to develop an overall documentation structure
for the RCSDF identifying needed documents, their general contents , - :
and their relationship to one another. This will result in the

preparation of an overall governing document enabling RCSDF

operations to eventually mirror TSDF operations. Insight into

the documentation required will aid evaluating the Total System

Design strategy.

4.3.4 Requirements/Design Language Procedural Study - The

objective of this task is to identify those languages which are

required for system specification , design, and development .

Specifically this includes hardware/software requirement speci-

fication and design languages. Common characteristics of each

will be identified so that a composite or. hybrid language can be
defined.

4.3.5 Uniform Emulation Study - The objective of this task is to

determine if a common representation structure can be defined and

developed for many-to-one emulations.

Previous emulation efforts have strived for an efficient one-to-

one mapping and have not attempted to define such a uniform repre-

sentation structure . Since a major objective of the RCSDF is to

demonstrate the feasibility of the general purpose emulation
concept it is essential that a many-to-one mapping of one archi-

tecture using the RCSDF architecture be developed.

4.3.6 Emulation Analysis Structu~e Study - The objective of this

task is two-fold. First to describe how the process control phil-

osophy can be utilized for performance measurement/analysis; and

second, to specify functionally the components (processes) to

144



permit actual system component measurement arid analysi.s required
as a part of the RCSDF configuration .

4.3.7 Additional Hardware Specificatjons - This is a task re- - -

sulting from the emulation system architecture study. The objec-
tive is to establish specifications for additional hardware that

needs to be procured . Examples of possible candidates are the

lO~ mass memory and the microprocessor array. Required functional

capabilities of each additional component will be detailed. This
includes the component capacity, operational speeds, physical

constraints, and desired architectures. Existing components may

also need performance improvements. The specifics for areas that

need improvement will be described .

4.3.8 Additional Hardware Procurement/Modification and Testing -

This is the task of procuring new hardware components and improv-

ing existing ones. The task includes the preparation of a bid,
the actual building of the hardware, and some supportive software,

and the on-site checkout procedures.

4.3.9 Hardware Facility Control Specification - This task follows

the emulation control structure study , which identifies a list of

desirable executive functions to be implemented in hardware.

Hardware logic performing virtual address translation is one exam-

ple. This task examines how such functions can be implemented in

hardware, describes in detail the functional specifications of

such hardware un its, and establishes the method for integration
with software control functions (RCSDF kernel or system nucleus).

4.3.10 Facility Control Hardware Procurement and Testing — The

objective of this task is to procure the previously identified

hardware functions. Checkout and testing procedures are to be

included using either software diagnostics or self-test hardware

logic.

145



- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

4.3.11 Interface Standardization Study - The objective of this

task is to standardize interface technologies and methodologies.

This includes facility component interfaces, facility—host inter-

face, and peripheral interfaces. Suff~.cient flexibility shall be

defined to enable data path widths and the data transfer rates to

be varied for each interface. The interface characteristics (e.g.,

I/O structures) of each existing or proposed component should also

be considered when establishing such standards. This task shall

develop an architectural definition for an interconnect system

to accommodate foreseeable system expansion.

4.3.12 Communication Protocol Development - This task includes

the development ~f all three levels of communication protocols:
the component interface level, the external or I/O level, and
the process (software controlled) level. Generally recognized

standards shall be used where applicable. In other cases, for-

mats and conventions shall be specified to provide developers

with applicable guidelines. This task covers the selection and

documentation of protocols identified as RCSDF standards.

4.3.13 Facil;ty Component Interface Specifications - This task

follows the emulation system architecture study and the interface

standardization study. Interfaces between every pair of facility

components are considered . Some such interfaces are not direct

connections; instead they are implemented indirectly through

another component (e.g., STARAN and the MPA probably interface

through the data manipulator, another component). Direct inter-

faces will be carefully specified , taking expected data flow

volume and component I/O structures into consideration. The

specifications will follow the standards established in the in-

terface standardization study.

4.3.14 Facility Component Interface Deyelppments - The component

interface hardware specified by the task described in paragraph

146 

~~~~~~~~~~~~~~~~~~~~~~~~ 
— - — • — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ fl~~~ - -~~~~

_ _ _ _ _ _ _ _ ~~---- •,• -.. ~~~- - - - ----

~~

—--- -- - - -— --‘

~ I

I ,

4.3.13 shall be procured (or developed). This task includes

tests for operability of specified interfaces.

4.3.15 Facility-Host Interface S~ecification and Development -

The interface of the facility-to-host interface will be defined.

This interface potentially carries the emulation definitions,

scenario translations, test data, and performance measurement

requests. However, the actual implementation has not been de-

cided; it may be direct connection, dial-up lines, or data sup—

plied by means of magnetic tape. In the possible (but not rec-

ommended) case that the facility actually serves as the host, the
interface may simply be some storage space in the mass memory.

4.3.16 Peripheral Interface Specification and Development - The

interface of facility peripherals shall be specified. This
could potentially include enabling peripherals to be connected to

a single component or distributed to several components. This

task includes the actual development and testing of peripheral

interface hardware.

4.3.17 Deployable ComPonent Interface Specification - The recom-
mended RCSDF philosophy permits the user to build his own hard-

ware components and interface them with the facility hardware

system. The objective of this task is to specify the interface

irethodology to be used when interconnecting deployable components

into the emulation facility (RCSDF).

4.3.18 Perioheral Hardware Procurement - The objective of this

task is to procure the necessary peripheral equipments, such as

displays, mass memory, and printers.

4.3.19 Performance Mpnitori~g Hardware Specifications - This task

establishes the required facility hardware components for perform-

ance monitoring. Identified hardware equipments shall be

147

— _____ _-___ _
~

~
__.g_

carefully specified , e.g., the kind of signal detectors required,

special timers/counters , and data recording devices.

4.3.20 Performance Monitorinct Hardware Procurement - The hard- •
1

ware specified by the task described in paragraph 4.3.19 shall

be procured through standard procedures. Procurement includes

integrating the equipment with the rest of the facility hardware

enabling performance monitoring. Tests of operability are

included.

4.3.21 RCSDF Hardware Integration Testing - Individual hardware

components should be completely checked out by February 1981.

The objective of this task is to integrate all newly procured

hardware with the existing system components. Intensive testing

for operability of the entire RCSDF hardware system is to be in-

cluded under this task. The hardware integration testing shall

be accomplished using the hardware case studies.

4.3.22 Procurement Procedures Study - This study task establishes

the general procedures an application system designer should in-
voke to procure the hardware and software components for his

application. Completion shall result in guidelines for timing

the procurement of system modules, both hardware and software.

4.3.23 Respqnsibjlity Delineation Descriptio~n Study - The objec-

tive of this study is to identify user ’s responsibilities during

the emulation phase of application system development. Completion

of the study will result in preliminary guidel ines for total sys-
tem design utilizing the RCSDF. After completion of case studies,

applicable descriptions will be incorporated into the RCS’)F user-

manual.
-

4.3.24 RCSDF Structural Description - The intent for the RCSDF

is to enable deployable system software and high risk hardware

148

_ _
- -_

r

components to be configured and actual execution emulated. This
must be achieved without software modification. However, because
the RCSDF will be constrained by physical limitations, it will be

necessary for the deployable sof tware architecture to be mapped
onto the selected RCSDF architecture , i.e., unmodified software

processes assigned to hardware components for execution. The

objective of this task is to establish guidelines to assist the
user in this mapping process.

4.3.25 Application Selections for Case Studies - The objective

of this task is to select at least four case studies that will

provide the RCSDF staff with sufficient experience to expose

deficiencies of the facility and provide insight into corrective

action. The case studies chosen should be representative of

applications for which the RCSDF will be used.

4.3.26 Requirement Specifications Case Studies - For each of
the applications selected by the task described in paragraph

4.3.25, the system functional and performance requirements will

be carefully specified (potentially using a requirement specif i—

cation language). This description shall provide a functional

definition of the system which can then be mapped onto functional

modules and appropr iate control structures , described in para-
graph 4.3.27.

4.3.27 Functional Decomposition Case Studies - For each applica-

tion selected by the task described in paragraph 4.3.25, system
functional modules will be identified , isolated , and described.

Interfaces between different modules will be defined. Impacts
resulting from scheduling and control synchronization shall be

specified .

—

149

_ _ _ _ _ _ _

4.3.28 Hardware Implementation Case Studies - For each function-
al module that has been identified for hardware implementation

by the task described in paragraph 4.3.27, an Emulation Descrip-
tion Language (EDL) description shall }?e prepared. The descrip-

tion shall contain structural and functional aspects of each
hardware module.

4.3.29 Software Implern~entation Case Studies - For ea~~ functional

module that has been identified for software implementation by
the task described in paragraph 4.3.27, High Order Language (HOL)

and associated EDL description shall be prepared .

4.3.30 Emulation Driver/Procedures Case Studies - The objective
of this task is to prepare the test procedures, test environment ,

test data set, performance measures required , and data reduction

algorithms necessary for each test case emulation exercise.

4.3.31 Use~~Manual Preparation - The experiences obtained from

the recommended case studies shall be incorporated into a facil-

ity user manual or manuals. Examples shall be given wherever

appropriate. Careful documentation of previous tasks shall sim-
plify this task.

4.3.32 Facility Control Software Specification - The RCSDF re-

quires that applications be viewed as a set of interacting , con-

currently executing and cooperating processes designed to serve

the needs of each other and of the total system. Making

resources available to executing processes is the responsibility

of the facility control baseline system. The baseline system

must permit this construction of processes (satisfying the appli-

cation requirements) by providing the basic operational control
— functions (algorithms) required . The implementation of this type

of operating system is referred to as a kernel or system nucleus.

150

L

A-.

- - -

The objective of this task is to specify that software be required

to perform facility control.

4.3.33 Facility Control Software Procurement and Testing - The

procurement phase of the sof tware facility control item shall
include the generation and forma l approval of program design
specifications. Testing shall be performed to the extent that it

can asE;ure that all functions defined in the specification are

provided in the delivered software packages. Final testing shall

be performed during integration testing.

4.3.34 Support Software Specifications - Support software re-

quired of the RCSDF consists of utility routines for the loading

and testing of software application components. Utilities are

also required to alter execution paths, introduce and extract

control data, invoke system diagnostics, and provide low level

debugging facilities. It is anticipated that many of these util-

ities shall be provided as software packages delivered with the

equipment, thus part of this task shall be to identify those

applicable utilities. New and/or modified utility functions

compatible with application requirements and the RCSDF operating

philosophy must be included in the specifications.

4.3.35 Su~~ort Software Procurement and Testing - The procure-

ment phase of the support software procurement and testing item

shall include the generation and formal approval of program

design specifications. Testing shall be performed to the extent

that it can be assured that all functions defined in the specifi-

cation are provided in the delivered software packages.

4.3.36 Emulation Performance Measurement Software Specification -

The primary objective of the RCSDF is to provide an environment

capable of emulating deployable systems. It must be capable of

permitting actual deployable system components to execute in an

151

_

environment where its performance can be measured and analyzed
with respect to the application ’s requirements. The structure

of the proposed facility control operating system (PX 11868-06)

and the level of interface provided to the user ’s systems suggest

that critical performance data must be extracted while executing
operating system provided control functions. This specification

shall identify the software required to extract performance data

and the software required to process this data during and after

the emulation process. -

4.3.37 Emulation Performance Measurement Procurement and Testing -

The procurement phase of the emulation performance measurement

item shall include generation and formal approval of program de—
sign specifications. Testing shall be performed to the extent

that it can be assured that all functions defined in the specif i-

cation are provided in the delivered software packages.

4.3.38 Support Library Specifications - As application systems

are developed by RCSDF users, it is expected that many common

hardware and/or software functional units shall be identified

and produced. A library shall be developed that will provide an

orderly collection of these units and will allow for selection

and use by new applications. The methods used to create, update,

and maintain this library shall be defined in this specification .

4.3.39 Simulation Software Specification - The objective of this

task is to specify the sof tware required to simulate low risk
application software modules (processes) during system emulation.

Typically, this software translates or reduces data received from

the sensors the application ’s external environment. Since during

system emulation only selected data would be used to drive the

system , simulation is thought to be most cost effective.

-
__ i~

The simulation routines required operate in conjunction with the

host subsystem scenario translator to supply test data to the

application system components.

4.3.40 Simulation Software Procurement and Testing - The pro-

cureinent phase of the simulation software item shall include the

generation and formal approval of program design specifications.

Testing shall be performed to the extent that it can be assured

that all functions defined in the specification are provided in

the delivered software packages.
-

4.3.41 RCSDF Software Integration Testing - The objective of

this task is to integrate the facility control software, support

software, and performance measurement software on the integrated

facility hardware. The software integration testing shall be

accomplished using the software case studies.

4.3.42 Facility Data Base Management System (DBMS) Specifications -

Performance data must be extracted , and simulated data provided

during system emulation . Methods are required to process this

data as it is generated and entered . It is expected that the

amounts of data introduced or extracted and the intervals of

activity will vary. Thus, the utilization of hardware components

may differ with each application system configuration. The ob-

jective of this task is to specify the data base management and

lower level mass storage interface functions necessarily installed

in the RCSDF. This specification shall include the data base

management interface requirements resulting from application and!

or operating system data extraction functions. It shall include

the anticipated data rate requirements. Modification to existing

data base management capabilities can be specified if compatible

with RCSDF requirements.

153

~~~~~~~ _—_—-- ---- —-—~— -—~_-—.~~~~- - _-~~ ---_,- -.-‘,__~~—— - ‘ - -



— —1~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- - -
~~
-
~~~ L~~~

- - ’--T-~~ ~- -

4.3.43 Facility DBMS Procurement and Testing - The procurement
phase of the facility DBMS item shall include the generation and
formal approval of program design specifications . Testing shall

be performed to the extent that it assures that all functions

defined in the specification are provided in the delivered soft-

ware packages.

4.3.44 Host Data Base Tool Specification - Performance data

extracted during system emulation and recorded on the facility

DBMS mass storage devices must undergo subsequent data reduction

and report generation. The objective of this task is to specify

the host software functional requirements and establish the po-

tential types and formats of generated reports. Utilization of

available data reduction or report generator software packages

shall be specified if applicable. The specification shall include

tools capable of providing management visibility relative to the

current state of completion of system design. This could be

achieved by monitoring the Requirement Specification Language

(RSL) as the requirements are translated into Process Design and

Emulation Design Languages (PDL and EDL).

4.3.45 Host DB Tools Procurement and Testing - The procurement

phase of the host DB tools item shall include the generation and

formal approval of program design specifications. Testing shall

be performed to the extent that it can be assured that all func—

tions defined in the specification are provided in the delivered

software packages.

4.3.46 Static Initialization Software Specification - Deployable

system hardware and software components, designed and developed

on host facilities, must be collected and bound into a single

system or subsystem. The objective of this task is to identify

the functional requirements of host software capable of generat-

ing a complete system to be loaded into the RCSDF, using RCSDF

154



—_~~~~~~~~~- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

utility programs. Host system library interfaces, library

• selection procedure, applicable RCSDF module mapping procedures

and structural configuration dependencies shall be defined in

this specification.

4.3.47 Static Initialization Software Procurement and Testing -

The procurement phase of the static initialization software item

shall include the generation and formal approval of program de- —

sign specifications. Testing shall be performed to the extent

that it can be assured that all functions def ined in the speci-
fication are provided in the delivered software packages.

4.3.48 Language Translators Procurement and Testing - The pro-

curement phase for the language translators shall include the
generation and formal approval of program design specifications.

Testing shall be performed to the extent that it can be assured

that all functions defined in the specification are provided in

the delivered software packages.

-‘ 4.3.49 Host Related Desian Language Specifications - The objec-

tive of this task is to select or specify three unique language

types: the Requirements Specification Language (RSL), the

Emulation Design Language (EDL)., and the Process Design Language

(PDL). Each is identified as a requirement for the total system

design concept supporting the RCSDF. An evaluation analysis is

required to select or specify each of the three languages.

The RSL is a formal language used to describe the functions and

performance characteristics of decomposition units of a system.

It does not generate object code , but it is expected that it can

be used to correlate unit interface and to verify interconnected

data paths. This language is not required to generate systems

for execution on the RCSDF, but provides a formal method to de-

scribe systems. Further , it is anticipated that it could provide 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~


the means for insuring design completeness by correlating func-

tional descriptions (maintained in a data base) with actual

program modules generated using the programming languages, i.e.,

EDLs and PDLs. The EDL is a dialect of a higher order language

that shall be used to program the firmware microprogrammed units.

The PDL is a higher order language diate~~~~iied for programming
software units. It is expected that several existing PDL5 could

be recommended from the analysis associated with this task. The

m~~hodology employed to establish a standard Intermediate

.-fxchange Language (IEL) to allow for the collection and execution

of units generated by :he different dialects of higher order

languages should also be specified in this document.

4.3.50 RCSDF Related Design Lan~uaae Specifications - This set

of three user languages is unique to the definition , control,
-

-

and utilization of the RCSDF. They are expected to operate on a

host system. The uniqueness of the dialects suggests that they

be defined during the definition phase of the facility control

and emulation performance measurement software. The specification

of the language capabilities for each dialect is the objective of

this task. The Scenario Generation Language (SGL) is a dialect

used to formally describe the test environment and testing pro-

cedure for a deployable application system. The methods of in-

tegrating the output of this language with the outputs of the

EDL and PDL languages to produce an input compatible for the

static initialization software package must be a part of this

task. The configuration definition dialect is used to select

and configure units of hardware and software. The performance

monitoring dialect is an interactive query -language used to for—

mally define critical data introduction and extraction points and

to provide for performance data requests.

- ~~~~~~ 156

_ _ _ _ _ _ _ _

~~~~~~~~~~~~~~



—~~~~~~~~
- - - - -

4.4 RCSDF Work Breakdown Structure

Figure 4-7 shows the RCSDF Work Breakdown Structure (WBS). The
format agrees with MIL-STD-881A, 25 April 1975. This standard
establishes the criteria governing the preparation of work break-

down structures for use dur ing the acquisition of defense mater-
ial items. The structure adheres to the definitions associated
with electronic systems. The second level definitions applicable
to the RCSDF development are :

o Prime mission equipment

o System/program management
o System test and evaluation

o Data
o Training

The least significant two digits in the alphanumeric identifiers
of Figure 4-7 correspond to the tasks described in paragraph 4 3
and summarized by the Task Index Table 4.1.

4.5 Time Phased RCSDF Development Plan

A time-phased RCSDF development plan showing the dependency of

development tasks on each other is illustrated in Figure 4•- B.

A total of fifty tasks are identified ; their descriptions can be

found in paragraph 4.3 by using the number and corresponding in-

dex found in Table 4.1.

In Figure 4-8 each circle (o) represents the beginning of a task;

a tr iangle ( A ) at the end of the time line represents the com-
pletion (C) of a task , or the delivery CD) of the product under

procurement; tasks which are prerequisites to the start of other

157

/ 
- ~~~~~~ ~~~~~ ~~ ‘~~ ‘- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — 

— 

_ s__a___ .__



~

--—
~

_

~
.

_ .  

— - -_---- - -_-- -_-- - _ _ - -~~~~~~~~~~ --- - —---

~~~~~~~~~

- - - - . - - - -

~~

_ _ _

t~~~~1
_I I

___________________ I I ______________

•~IAN — FACILITY r SYSTE M WA., I SYSTEM lAST I OTS~TS
flOG MONT

____________ ____________ ____________ I- ~~~
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ I _ _ _ _ _ I _ _ _ _ _

C WIR INTEGN AUTO DATA OJECT -
~

0(VCA TEST,(VAI_
floG AMONSLY •.oc fONT MONT S (SOS SSPPOST —

AAa A c*~~ E*~~~~

F
-

_ _ _ I _ _ _ ~~~~~~~~ I _ _ _ I
I ~~~~ 1 I ~~~ T I I C IJT SE INTEG & I~~~~~ao.AL I SYSTEM I ST5T 1 I ovs-o€ s -
I I I M~~~YST~~ TONT USSISSLY I ~ f c ANA LYSIS IL ~~~~~ 1 L ~~1 L ACIMO

_____ E~~~IIJ
ci~~~ L7~~ L ~~~J

—! ACS~ TT H ODAT H AOluTA$IAI -1 ~ I J YA(O *AAE SO(TWAN(
{

~~~‘ H ‘~~~~~~~ I
_______________ L__ C.IT~~

I M~~~~MT 
~~ I ITSIYI A LJ/ FACI LITY PA IFIPAISAL _______________ _______________ I PSOTOCOL I 15501 CT~ L

1 I 1 MASO.T 1 :010 -I ACASSO 

~j 
A M ~~~ 

I 
~~~~~~~~ -i :~ I_____CI 0 Ca nT

I PSI. n I tao I FACILITY F ontov ______________ ______________ I PSOCSJSE (Slut (Ac
IS TMA1C _~ COW ST INTE RFACE I FAG CYI L I 0 0*T ~1_

— STSIJCTUII

~~~~~ AAISV AA30.I ACIOIA 1 •ISVEC 1 c~ ,n cs(A3
______ 

CN 0I Ca STE

I 555-ILATIOFI rYSEIPAifRAL I REPOSES I ~I 1 OCTETS 

t~~3Ti H ~~~ ~ 
I ~ 1 Z~I EACItIT ~ I TIF~~~ 5 _______________ _______________ I SCOOT (TEIot ASIF 155511

~~~~ ] 1 
~ H ~ H ~ I I Z 1

_________________ I MW LII I (NUt ANAL
fACILITY -.

~
~~~~ STRIXTUI(

4 ‘
~
‘
~
:] c o a  

_ _ _ _ _

CS 741

I 405T OS
TOGLD VAC

CaI1SS

I INITIALIZ
STE W(C

GSI$S

I ITESTOOS
LAMO INC

I FAC ot~~~~~J
—~ NSG WRC

I
- 

~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~ - Y~ 1 ~~ JG*~AAA -~ 
- _________________ —

~~~~~~~~~

- —____ 
— -



- ~~~~~~~~~~~~~ -- -

] 

- A

Y~~ T E L ~ L 

~ 
_ _ _  

_ _ _

_____________ EMIJI
~
{I

~~~~~~~~~~~ 

_ _

H C ~2T I

~~
-L

~~~ 
{~~

SG 1 
~~

1

C*US

~~~~Y I

55 (MIlL DOC _4 CAST STIj~~

~J SYEG11T5~EE I
12 [CI~~~

_ _

H~~~~~ Y 1

~~ 1 I (NUL A~~~~]

Figure 4-7. Work Breakdown
Structure

158

- ~~~~~

— -—

~~~~~~~~~~~~~~~~~~~~~

- 

— 

-—



— ~~~~
-
~~~~~

-- - — -
~
- --- ~~~~~~~~~~~~~~~

—
~~~ 

- -

1. Emulation system architecture

2. Emulation control s tructure
3. Emulation documentation structure

4 . Requirements/design language procedure
5. Uniform emulation method

6. Emulation analysis

7. Additional hardware specifications

8. Additional hardware procurement and testing

9. Facility control hardware specification

10. Facility control hardware procurement and testing

11. Interface standardization study

12. Communication protocol development

13. Facility component interface specifications

14. Facility component interface development

15. Facility-host interface specification and development

16. Peripheral interface specification and development

17. Deployable component interface specification

18. Per iphera l hardware procurement
19. Performance monitoring hardware specification

20. Performance monitoring hardware procurement

21. RCSDF hardware integration testing

22. Procurement procedures study
23. Responsibility delineation description study

24. RCSDF structural description study

25. Application selections for case studies

26. Requirement specifications case studies

27. Functional decomposition case studies

28. Hardware implementation case studies

29. Software implementation case studies -

30. Emulation driver case studies

31. User manual preparation -

32. Facility control software specifications

33. Facility control software procurement and testing

Table 4~1 - Task Index 

~~ - ~~~~~~~~~~



. - - 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-

34. Support software specification

35. support software procurement and testing

36. Emulation performance measurement software specification

37. Emulation performance measurement software procurement and
testing

38. Support library specification

39. Simulation software specification

40. Simulation software procurement and testing

41. RCSDF software integration testing

42. Facility DBMS specification

43. Facility DBMS procurement and testing

44. Host DE tools specification

45. Host DB tools procurement and testing

46. Static initialization software specification

47. Static initialization software procurement and testing

48. Language translators procurement and testing

49. Host related design language specification

50. RCSDF related design language specifications

-

Y ’ Table 4-1 (cont ’d)

160

~
‘

~
-

- - ___________

77 78 79 80 81
jA~5IQ1NJJ~ IIFIMEAII&IJIJ IAISIO NII I&FiI~IAi U~JiJIAiSiDiMiU I1FIMiAd~iJIJi AiSiOiNID IlFlI~!AfMIJ lJ!AISfO1NICI

—

_ _ _ _

~ o——-- ~ ~~~ ®—
0—

::a~®- ~~ ~~~j—

~~~~~®—~~~ 
s®— -

~~~~

Ac :: ~O—

&&—~~ ~~®—

3’

0—

33-~~2~Y _______________

3X~~~~
— €~

-

~~~~~®— —®

_ _ _  _ _ _  _ _ _ _ _ _

Figure 4-8. Time Phased Plan

161 

--- _ _~~~~~_ I _ _  ~~~~~~~~-~~~~~~~~~~~~~~ - -~~~~~~~~~~ -- - -----



_ _ _

tasks are identified by numbers bracketed by the arrow (.) . To

simplify the diagram, completion of tasks having only one sue-

cessor is implied by the start symbol (o) of the successor task.

(See tasks 42 and 43 in Figure 4-8). 
4

162

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _____________


_ _ _ -

5. RCSDF Baseline Studies

Technical baseline studies in performance measurement, processor

communication techniques/protocol, microprocessor networks,

operating systems, microprogramming, distributed systems organi-

zation, and design languages are summarized in this section.

Complete baseline study documentation is contained in Volume III,
Initial RCSDF Design Study, Source Documentation.

5.1 Performance Measurement Technical Baseline

Performance measurement has two distinctive phases: monitoring
and data presentation . In the monitoring phase, essential per-

formance data are collected from the system whose performance
is to be measured . The general consensus is to store these data

in a data base and then process them off line in the data pre-
sentation phase. In this phase, the vast 9olume of performance

data is digested to produce an easily readable output for the

performance analyst.

5.1.1 Monitorina Techniques - In order to measure the perfor-

mance of a computer system, a great deal of information has to

be collected from the system on a regular basis. This data

collection is termed monitoring. Computer systems can be moni-

tored by 1) hardware, 2) software, or 3) hybrid techniques.

Hardware monitoring techniques generally -examine the monitored

system using an independent set of hardware instruments which

can sense, decode, count, and record the signals generated by
the monitored system. Typically, only effects can be observed.

The main advantage of this method is that it does not interfere

with the actual operations of the monitored system.

I.
163

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ -~~
--  —



With the software techniques, the system i s  usually examined by
software programs that are embedded in the normal program flow

of the monitored system. These software data gathering programs

selectively monitor given events at the macro level. The major
- - disadvantage of software monitoring is that each of the measure-

ment programs uses a certain amount of the monitored system re—

sources, hence the performance measured will be somewhat cor-

rupted. The major advantages of this technique are its flexi-

k bility and its ability to locate data that cannot be sensed, by

hardware probes.

The hybrid monitoring method uses a combination of both hardware

and software approaches. It employs a physical set of hardware

components that is activated by the software of the monitored

system. This arrangement potentially of fe rs both measurement
flexibility and minimized overhead. Since it is most practical,

most measurement systems are this type.

5.1.1.1 Hardware Monitoring Techniques - There are four func-

tional stages of a hardware monitor: signal detection and

amplification, concentration and selection, timing and counting,

and output devices.

5.1.1.1.1 Sianal Detection and Ampljficatj~n - The first stage

of a hardware monitor is the collection of system signals that

are needed for the performance measurements. System state sig-

nals are observed by high impedance probes that are attached

directly to the monitored system circuitry. These signals will

then be converted and amplified.

5.1.1.1.2 Concentration and Selection - In many hardware moni-

toring systems, concentrators are used to reduce the number of

164 

-~~~~~ ;- ~ - - _~~~~~~~~~~~~~~~~

, ----_______

-- - - _ - _n_=_~~_ __ -- - 
—~~~~~~~~~~~~~~~ —- —_ -— — — — - - — - —  ________— --

~~~

--

~~

— -~~--
_.-

___________ —-- _ - -_ - -
~~~~~~~~~~~~~~~~~~~~~~~~~~~~

lines leading from the sensing probes to the monitoring devices.

After the concentrator stage, there is usually a selector stage.
Logic elements are required to set up the conditions under which

certain signals will be sampled. In the simple cases, only HAND

or NOR gates will be used. More advanced monitors will include
logic elements such as data comparators, sequencers, event
distribution analyzers, random access memor~.es, and associative

memories. The comparators may either be set by panel switches

or be programmable if the monitoring system contains a separate

small computer.

5.1.1.1.3 Timing and Counting - After the required signals have
- been selected or the right conditions have been met, certain

counters will have to be activated to provide a summary of the

event counts and durations. A clock must be used with the hard-

ware monitor to provide the timing.

5.1.1.1.4 Out~~t Devices - The counter and timing results,

together with certain sensed data values (such as memory ad- - 
-

dresses), will have to be output to the analyst. The most

common form of output device is the magnetic tape recording unit.

It records the required performance data values. From this raw

data, performance measures that are required by the user will

be computed of fline at a later time.

Hardware monitoring techniques can be utilized effectively in

measurements such as CPU utilization, and I/O channel activities.

In some other measurement of interest, they may not be very effi-
cient , and software or hybrid techniques will have to be used.

165

- - 

- - ---- - — —  - 

_ _J•
~

_ 
-_____



5.1.1.2 Software Monitoring Techniques - Although hardware

monitoring techniques are very flexible and can be used to
measure most electr ical signal s, they cannot be used to measure
signals inside ~ component. This is particularly true with LSI

chips, where it is impossible to get at some of the local

signals (e.g., the ALU inputs), and hardware monitoring thus

becomes very difficult. Software techniques will be needed to
gate the necessary information to the external pins of LSI chip,

and performance monitoring can then be carried on.

Information can be gathered in a software monitoring environ—

ment either by the interrupt method or the sampliag method. For

interrupt methods, certain traps in the user programs will be

recognized. Control will then be transferred to corresponding

monitoring routines, where necessary measurement information

associated with the particular type of trap will be recorded .

For sampling methods, the transference of control to monitoring

routines occurs at a regular interval determined by a user

specified parameter, the sampling rate. The set of data col-

lected is usually referred to as the system ’s snapshot. The

sampling method has the advantage of generally requiring less

system ovEirhead than the interrupt method. Since the interrupt

method is event-driven, the user can key on a certain event(s)

which may occur at random intervals. The amount of data col-

lected using the interrupt method will thus be m,.nimal. To

obtain a comparable amount of useful information with the

sampling rethod , a higher sampling rate is required . As a

result, there will be more data collected, taking more time for

collecting and processing. Usually the sampling method is used

in situations where only statistical information is required

(e.g., instruction mix and percentage of CPU busy time). In

such situations, a high sampling rate is not needed. On the

other hand, interrupt method is normally used in situations

166



- - - - -~~~~ ----------- —--- - - - - -,-- --_-_-_--_ - --- -~~~~~-

where a program trace is required , or where particular events

are of interest, e.g., the number of times and length of time

spent in dif ferent  tasks .

Most operating systems available on commercial large scale

computer systems provide some sort of measurement and evaluat~.on

routines, e.g., UNIVAC 1108 ’s Software Instrumentation Package,

IBM S/360 ’s Qs/VS, and GECOS on HIS 6000. There are also other

vendors who produce standard measurement packages, e.g., Boole

and Babbage ’s Configuration Utilization Evaluator and Problem

Program Eva luator , and Tesdata ’s SUPERMON. These software

measurement methods aim primarily at finding the frequency

distributions of execution addresses, thus determining which

routines have the grea~ e3t need for optimization . They can also

be used to determine and improve job throughput in the system by

recording various equipment utilizations and queue sizes.

5.1.1.3 ifybrid Monitoring Techniques - Performance monitoring

has a natural tendency to integrate the pure hardware and the

pure software techniques to produce feasible hybrid monitoring

methods. A hybrid monitor may be using software methods to

gather the data and passing them to external hardware (like

another minicomputer). The software traps may be embedded in

the host software streams or may be generated as intermachine

interrupts coming from the monitoring minicomputer. Another

possible hybrid monitor may use hardware probes to collect

performance data and software inside the monitoring minicomputer

to do the selection and counting processes. However, the former

method seems to be more practical, because the latter method is

still incapable of capturing signals within a component.

167

_________ __________ - - ~~~~~~~~~~~~ - j - -~~~~~~~- I - - - - - - - -   ________-



5.1.2 Data Presentation Techniques - After the performance data

have been collected by the monitoring system, they need to be

• processed before an acceptable form can be presented to the ana-

lyst. The output from the monitoring system will contain the

data required to calculate the performance measures. The first

step in data presentation is the calculation of the actual

perform ince parameters. The next step is the data reduction

procedure. The actual reduction method has to be specified by

the analyst. It may be plotting a separate histogram, or it may

be finding average performance values. Data presentation will

reduce the enormous amount of data available to just the data

of interest to the analyst and present it to him in an easily

understood format.

The performance measurement system has to provide the compu-

tation packages required to do the performance parameter calcu-

lations. If the sampling rate from the monitoring system is not

too fast, these computations may be done online, thus eliminating

some temporary storage problems (for outputs from the monitoring

system). However, they can normally be expected to be done

off line.

The three main classes of data reduction techniques are dis-

cussed below.

5.1.2.1 Graphic - Graphic results are easy to understand at

a glance, but the precision of the measurements tends to be lost.

• Examples of graphic presentation are charts, point plots, point-

to-point curves, and histograms.

5.1.2.2 Tabular - Using tables to present performance data pre-

serves measurement precision , but readability is diminished.

168



- - -_ _~~~ - - 
-
~~~~~~~~~~ 

5.1.2.3 Statistical — Providing statistical measures, such as

mean, standard deviation, median, expected value, correlation
coefficient, and weighted average, can give the analyst greater

insight into the correlation of his performance data.

The analyst should be able to specify any one or several of
these data reduction techniques. Because of the large volume

of data and computations involved , these techniques are usually
done off line. The data will be stored in a -data base on a

secondary storage subsystem, such as disk or tape. It is also
common in performance measurement systems to allow the analyst

to make interactive queries (using a high level query language)
on the performance data base. This allows the analyst to focus
on the unsatisfactory areas quickly.

5.1.3 RCSDF Performance Measurement Requirements and Recom-

mendations — The performance measurement techniques
described in earlier paragraphs apply to generalized digital

system measurements. Some important points that make the RCSDF

performance measurement distinct from other systems are:

o RCSDF will be one of the few systems in which per-

formance is measured for a system that is being

emulated (or simulated) on another system.

o RCSDF will be the only known system that allows gener-

al ized emulation , i.e., is capable of emulating a wide

variety of architectures.

0 Some RCSDF hardware components (such as the micro-

processor array and the data manipulator) use L~SI
packaging, and it will be impossible to use hardware

probes to get at some of the internal signals.

-

~

-

—

o The software written for the emulated hardware system
is written in HOL (High Order Language) and requires a

compilation process. Instruction timing information can —

be inserted at the code generation phase without much
difficulty. This favors the use of an emulated clock(s)

for performance timing.

o The general responsibilities of the hosting subsystem

are enormous; however, the facility has little pro-
cessing to do.

o Data logging on all data transfers between all emulated

modules is a desired feature.

Because of these distinctive properties, there are several

special recommendations for measuring performance on the RCSDF:

o Software (or firmware, since microcode can be used)
and hybrid monitoring techniques will be necessary

to obtain most performance data.

o Hardware probes may be useful to monitor performance
data at the component levels, e.g., channel utilization
and CPU utilization.

o An emulated clock system should be used to monitor the

timing of the emulated system.

o The instruction time associated with each instruction

may be calculated at the code generation phase and

- - carried as a field in the instruction .

170

~~~~~~~~~~~~ iL - - 

-



o To provide data logging between all emulated modules,

hardware probes can be used to tap all RCSDF facility

component interface lines into the monitoring equip-

ment, using the interface transfer signal to activate

the actual data logging procedure. Data transfers

between emulated modules residing on the same corn-
ponent are initiated by emulated “hooks” generated by —

- ‘ the hosting subsystem. The facility should be able

to recognize these “hooks ” and initiate the actual data
logging procedure using software monitoring techniques.

o Since the hosting subsystem has the relatively heavier

load , the performance measures computation should be
done in the facility.

The recommendations discussed above should be regarded as sup-

plementary to many of the common and relatively well received
techniques discussed in paragraphs 5.1.1 and 5.1.2. For example,

all of the data presentation techniques apply to RCSDF also.

Although the area of performance measurement has been continually
explored in recent years. a generalized emulation facility is a

new concept. This generalized emulation concept creates a great

challenge to existing performance measurement techniques. New

performance measurement ideas will have to be developed to

satisfy the RCSDF requirements.

5.2 Processor Communication Techniques/Protocol Technical

Baseline

In the RCSDF emulation concept it is felt that in order to
— 

• emulate a wide range of system architectures and to pursue

171



architectural research, it is desirable to develop techniques to

utilize and control a multiple machine emulating system. In

order for the multiple machine emulating system to operate
efficiently methods must be conceived and utilized to allow

information to be transferred and shared between machines ef—

ficiently with a minimum of logical aberrations and interference

with overall emulating system operations.

Specific RCSDF requirements in this area have as yet to be

clearly specified. Only general needs are known due to the

formative nature of the RCSDF.

Topoloav and Interconnect Implementation - The most effective

RCSDF topology to implement is a star topology, one in which

every device can communicate with every other device. This kind

of topology can be implemented in several ways. A large cen-

tralized switch could provide direct paths between any two

devices, for example. A ring bus could also be used, but per-

formance would be radically different because the ring bus

capacity would be shared between devices. Both implementations

when viewed from a process level can provide a flexible topology.

Protocol HierarcM - Any two devices that communicate with one

another use a protocol, In a distributed RCSDF, there appears to
be a need for two general kinds of communication etiquette ~ that

which governs the transmission of information between devices

without specific regard to content, and that which processes the

contents of the transmitted message without regard to the details

of moving the information from source to destination in the

system. This leads to a protocol hierarchy, one in which the

latter kind of etiquette is based upon the former.

172

- 
---

~~~~~~ 
j iJ

~~~~~



Error Control - The processor communications and protocol tech-

nique must provide for error control to assure rel iable oper-
ations. Retransmission is a more desirable technique than error

correction for error control. However, retransmission affects

performance, performance analysis, and performance monitoring

since every retransmission may have to be accounted for in re-

- i
’ creating system behavior for extrapolating system performance.

Processor Communications Logging - Essentially, this function

records al l information moved using the processor communications
method and also records scenario particulars about the communi-

cation. Such logging assists in the checkout of the emulation ,

verifying the processes are communicating properly. It is also

valuable for recreating system behavior.

Processor communications techniques and protocol will be examined

as three distinct system structure types: intercomputer, net-

work, and array. Each of these will be described in the follow-

ing paragraphs.

5.2.1 Intercomputer Processor Communication - This is the

interconnection of colocated machines primarily with I/O chan-

nels but can include exper imental cases of memory sharing and
interprocessor technique.

5.2.1.1 I/O Channel Communication~....- Intercomputer methods for

processor intercommunications are dominantly I/O channel inter—

connections. Data transfer is usually accomplished on a word

or byte basis with request/acknowledge signals causing the

• 

~~~

.

transfer.

I

- -

Topologically, the I/o channel intercomputer connection support
of point-to-point connections is limited only by the number of
channels available as standard hardware. This limit can often

be extended through multiplexers attached to a channel. Star

topology in which every computer element directly connected to
every other computer element, and substar topology which is a

partially connected star, can be implemented with this I/O

-k channel connection scheme. Ring topology can also be implemented

with the I/O channel interconnect by providing software to inter-

pret and control the passage of information aror ‘~~~ the ring.

There are three distinct levels of protocol associated with the

intercomputer connection: the interface level convention , the

control structure used to regulate I/o buffer transfers , and

the process that provides interpretation of the I/O buffer

contents. The first level of protocol is specified by the

interface standard used in the computer ’s design. Users have

no options to alter specific interface functions or electrical

interface characteristics at this level, but may have the option

to select from a limited set of alternative interfaces. This -

level of protocol usually does not provide for the detection of

transmission errors.

The second level of protocol is implemented in the design of the

computer ’ s I/O control structure. Here the user has some

flexibility because the set of options and alternatives is

greater and sequences of operation can be partially implemented

with software. This level of protocol is usually moderately

difficult to implement provided the first level of protocol is

successfully accomplished . Sophisticated I/o handlers are

174

- - - _ _ _ _ _ _-- • - - _ _ _

___________________________ -

-- - -—

-- ---- __--

usually required on both ends of the communications path . Some
of the items included in this second level of protocol include:

o Size limitations on I/O buffers

o Buffer format and chain address conventions

o Interrupt and channel monitor conventions

o I/O transfer modes

o Multiplexing

The third level of protocol (message structure/interpretation)

is usually completely software. This level constructs, manipu-

lates, sequences, and interprets information to be exchanged
between processes. Here the user has the most flexibility. At

this level, the greatest possibility for transference between

systems occurs because of the decoupling of the protocol process

from hardware. General techniques that can be used at this

level of protocol are discussed below.

Mailboxina - With this technique processes communicate through
pre—assigned memory locations known as mailboxes. Processes

check their mail boxes periodically for information that indi-
cates a request for communication. This technique is very
practical for systems which contain many processes communicating
at different rates.

~irect Reaistration - When this technique is used the name of
the process to be communicated with is located within the

175

-

_ _ _ _ _

—- ___

1_ _ _
-~~-~~~~~- _~~-~~~~ - — - -~~~~~~~ - -~~—

information transferred, and the process is immediately placed -
-

into the host task queue to be serviced.

Listing - Using this technique process communications are put
into a list which is scanned periodically as a task in the task
queue. Process communications are assigned priorities, and
processes are activated on the basis of that priority.

5.2.1.2 Interprocessor Communcations — Interprocessor communi-
cations dif fe r from I/O channel communications in that they occur
directly between processor system elements; information is ex-

changed as a direct action of the processor, not the I/O con-
troller or as an I/O control function. Interrupts associated
with the exchange of information may be handled within the

processing elements as a part of the normal processor interrupt
structure. Protocols in the interprocessor communications are

similar to those used with I/O communications , both in the levels
of protocol used and the functions performed. The mechanics of
implementation may vary due to different machines used.

One example of interprocessor communications hardware is the

interprocessor buffer of the Univac EPIC (Experimental Processor

with Interprocessor Communications). The PDP— li. UNIBUS window

is another .

5.2.1.3 Memory Connected lntercomputina - Interprocess communi-
cation through memory has been a fundamental technique in multi-

processing for many years, especially for distributed processing

systems that are physically colocated. With this type of corn-

munication the source of information is a processor ’s memory,
the destination another memory cell. Multiprocessor architecture
mechanizes this concept by sharing memory among processors

_ _ _ _ _

-

176

1
through a parallel interconnect. Distributed systems can em-

ploy a shared bus structure. When this technique is used, the

system processors are memory-con~ected. Protocols used in these

situations can be derived from both multiprocessing and distri-

buted system techniques. Dijkstra ’s semaphore technique, for

example, supports the access regulation of shared memory seg-

ments which are used for the exchange of information.3 In order
to support this type of intercomputing technique, the conununicat-

ing processors must have a DMA (Direct Memory Access) feature.

With this type of system connection , protocol at the link is

specified by the memory interface specification, protocol at the

next highest level by the design of the processor addressing
— convention, and protocol at the message interpretation level by

how the software treats the message data. With memory sharing,

the highest level of protocol can employ multiprocessing tech-

niques such as semaphores or test and- set capabilities to

synchronize accesses and sequences.

Examples of this class of interconnections are the Sperry Univac

Memory Multiplex Data Link (MMDL) , the Air Force Distributed

Processor/Memory (DP/M) bus, and the PDP—ll Unibus Link.

5.2.2 Networks - Computer networks have become a significant

system structure during the last decade. The term “network~’
as applied to computer system structure, has generally been

4E. W. Dijkstra, “Cooperating Sequential Processing,” in
Prop-ramming Languages, Genuys, ed. (1968), pp. 43-110.

177


~~~~- - ~~~~~~~~~~
-
~~~~~ 

- -
~~~

referred to as a common—carrier based system design. In a more

general sense, however, it also means a collection of computers

operating in network fashion. This may mean that each computer

has an operating system and that each computer communicates with

other computers using the same conventions or protocol esta-

blished for this particular computer collection. The three

types of networks discussed in this section are categorized on
the basis of the communications technique used to support inf or—

mation movement: common—carrier based network, dedicated bus

network, and parallel interconnected network.

5.2.2.1 Common-Carrier Based Networks — The use of a common—

carrier network to connect for computer systems has been in—
trinsic to the development of ~~mmunications system structures.

Communications networks can be classified as one of three types:

RAN (Remote Access Network) - Terminals feed through
communications lines to a central host where processing

occurs .

VAN (Value Added Network) - A network of autonomous hosts
whose operating capability is enhanced through the addition

of a communications subnetwork and protocols.

MON (Mission Oriented Network) - A network technologically

equivalent to the VAN type, but under control of a single
administration. This implies dedication of resources

toward prescribed mission functions.

IBM ’s SNA (Systems Network Architecture) is an example of a RAN

network. The VAN type of network is exemplified by the ARPANET.

ARPANET employs the IMP (Interface Message Processor) subnet to

178

_ - _ ---—- - —~- tr~~zrrt,-.- —- - ,- - —— ~~~~~ -- — _



provide the communications capabilities needed. Routing, error

control , and prescribed interfaces with the host machine were
- 

- built into this subnet. A separate IMP-IMP protocol exists for

reliable transmission of packets from IMP to IMP. Also in-

eluded are higher level protocols such as TELNET, remote job

entry, and file transfer protocol.

The MON type-of network, based upon common carrier communi-
catigns is less prevalent. The philosophy of the MON network

is that the administration of the entire network as a whole

allows priorities and dedication of network resources to be

performed, thus making the network more efficient for per-
forming mission functions. The MON philosophy seems to be more

aligned with military application networks that are implemented

with dedicated bus and parallel interconnect structures.

There are three general communications techniques used in
networks: circuit switching, message switching, and packet
switching.

Circuit Switching - This establishes dedicated channels or
circuits in support of communications between users and
host or between hosts. Channel utilization is limited to

traffic between sender and receiver systems. CYBERNET,

INFONET, and DATRAN are examples of circuit-switched

networks.

Messaae Switching - Using this technique messages are

routed through circuits between sender and receiver to

increase circuit utilization. Increased circuit uti-

lization is achieved at the expense of more switching

overhead.

179



AD AOS3 013 SPERRY UNIVAC ST PAUL MINN DEFENSE SYSTEMS DIV FIG 9/2
RECONFIGURABLE COMPUTER SYSTEM DESIGN FACILITY INITIAL DESIGN 5——ETC (U)
,JAN 78 D R ANDERSON. L 0 ANDERSON. K Y WEN F30602 76 C—0355 F

UNCLASSIFIED RADC—TR—78—6—V0L 2 NL

3 3
AD~

U-~~ Q 3 ___________



Packet Switching - When this technique is used messages

are broken into packets, and packets are routed throu h
the network to shorten the transmission delay. Packet

switching allows simultaneous transmission of several
message packets through different circuits to circumvent

delay. ARPANET and MERIT are examples of packet-switched

networks.

In normal network process communications sources and destinations

of the communicators are explicitly delineated within messages

or packets. The explicit destination numbers (and source

numbers) are used to route the message. It is also possible to

communicate using process name rather than destination where

the physical location of the destination process is known only

by deduction. The process technique has functional advantages:

processes can migrate among the network components without

creating a bookkeeping problem, and redundant process struc—

tures can be created for fault tolerance.

5.2.2.2 Dedicated Bus Networks - The dedicated bus network

differs from the networks previously discussed in two major ways.

First, the dedicated bus system is under the control of the

system designer. In the common carrier systems, the communi-
cations lines were independently administered . Second, the

application is mission—oriented, implying limited function sets

and the ability to analytically determine process intercommuni-

cation pararieters (rates, queues, delays, etc.) as a result of
the limited function set properties. The dedicated bus network

shares some of the problems and difficulties of the common
carrier network, such as the sharing of resources through a

limited communications media, the difficulty of exchanging

180



_____ - --  
~
,--‘———--

~~
--

information between processing elements, communications faults

and recovery, and process synchronization .

Examples of the dedicated bus networks are: MIL-STD—1553A,

Shipboard Data Multiplex System (SDMS) , Sperry Univac Data Bus

Controller (DBc), and Memory Multiplex Data Link (MMDL) .

5.2.2.3 Parallel Interconflected Network - An alternative to

busing systems is the parallel interconnect system, typically a

matrix switch. The matrix switch provides the capability to

switch any input to any output and the capability of simultaneous

data transfer through multiple channels. Advances in solid

state technology make it possible to use large matrix switches

with reasonable reliability at reasonable switching speeds and

data rates for digital signals.

The Navy AN/USQ-67 Centrally Controlled Interconnection System

(ccIS) is an example of matrix switching. Parallel information

is converted at the peripheral, or computer to a serial format

which is then routed through the matrix switch. Paths through

the matrix switch are computer controlled. Dynamic reconfigu-

ration of the switch from an external point (communications)

has not been implemented, because it has not been needed, but
the CCIS hardware would support the implementation of this capa-

bility.

The Data Manipulator Unit (DMU) allows switching to be dynam-
ically controlled from the attached computers instead of being

predefined and controlled by a separate independent computer ,

providing a better dynamic switching capability. The DMU

creates a control problem when it is used to allow communications

• between separate computers simultaneously . The DMU switching,

181

L_ _ _ _ _ _  _ _ _ _  _ _  _ _ _ __ _ _ _



routing, and masking is controlled by the attached machines.

Each machine must sense states (masks, activity, etc.) before it

commands a change to the DMU state to prevent interference with
other machine activities. Static switching will present no

problems in this area.

5.2.3 Arrays and Ensembles - Arrays and ensembles (hereafter

referred to as arrays) are another architectural form that

utilizes interprocessor communications. Because of their SIMD

(Single Instruction Stream, Multiple Data Stream) nature, these

architectures generally restrict processor intercommunications
to direct transfer of information between Processor Elements

(PEs). Koczela has presented a PE-PE intercommunications

technique in a conceptual design ;4 Illiac-IV implements nearest

neighbor communications between PEs (limited to four nearest

neighbors as in Koczela).5 PE5 are coupled through registers

to other PEs, which are programmed to accept information from

their neighbors. Other arrays and ensembles (STARAN , for ex-

ample) also have some flexibility in PE intercommunication. The

SIMD nature of these machines embeds the protocol of inter—

processor communications into problem structure. The PE-PE

transfers and protocol that regulate those transfers are more

closely associated with individual program instructions than

with individual processes.

L. J. Koczela, “The Distributed Processor Organization ,”
Advance in Computers (1968).

6 K. J. Thurber, “Associative and Parallel Processors,”
Com~utina Surveys (December 1975).

t

182

L ‘ ~~~~~~~~ ‘ ‘~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~  
________



5.2.4 RCSDF Processor Communications RecQmmendatiofls - All the
processor communications techniques and protocol discussed so

far are relevant to the RCSDF development in different ways.
Intercomputer techniques appear to be most relevant to the
RCSDF emulation hardware design. General assessments of the

processor com munication s techniques and protocol discussed in

the previous section are summarized below.

5.2.4.1 Intercomputer Communication

5.2.4.1.1 IJO Channel - Techniques based upon this connection

category are fundamental to operations involving multiple com-

puters. Network systems normally use I/O channels and pro-

grammed high level protocol. Our research shows that I/O

channels will probably remain the dominant method of intercon-

necting computers in future systems architectures.

5.2.4.1.2 Interprocessor - This technique is available on very

few computers and appears to be seldom used. It is limited in

the number of processors than can intercommunicate , hence it
does not appear too helpful. Interprocessor technique does
have the advantage, however, of directness for control operations;
the passing of control information or alerting another processor
requires no overt action by the receiving processor. The inter—
processor technique is not expected to be a dominant method of
processor communication in the future because the majority of
computers do not include features for this type of communica-
t ion.

5.2.4.1.3 Memory Connected intercomoutina - Generally, tech-
niques for communications between processes using this structure
are well known because of the use of multiprocessing in several
military and commercial computer systems. However, dis-

• tributed systems must modify multiprocessing techniques to

183

- 
r —



— - - -

account for distributed system resource control , physical dis-

tance, and other parameters (access protection, for example).
Memory-connected intercomputirig has the advantage of sending

information directly from processor to processor, avoiding the

receiving processor interrupt structure. The disadvantage is that
the receiving processor must be programmed to sense a communi-

cation. Processor communications through memory will remain

fundamental to multiprocessor operations in the future. Wide-
spread practical use of memory-connected intercomputing for

distributed architecture is expected in the next five to ten

years.

The intercomputer processor communication technique seems

fundamental to developing initial RCSDF hardware operational

capabilities and is the recommended approach for obtaining a

multiple computer system operating capability because of its

low risk. I/O channel connections are a conservative method
of implementing an intercomputer capability minimizing the

effect on existing machine designs (STAR AN and QM-l). Inter—

processor connections should form a part of some RCSDF hardware

unit architecture, or should be of interest as an architecture

to be emulated rather than the dominant interconnect form.
Memory—connected intercomputing should also be considered,

recognizing the difficulties of heterogeneous machines and data
structures.

5.2.4.2 Networks

5.2.4.2.1 Common Carrier - Common carrier networks and their

usage will increase in the ~ Ature with the value—added network
assuming dominance for commercial systems and usage, and the
mission—oriented network being frequently used for military ’

184 

~•



applications. High level protocols will probably become both
more efficient and more specialized. Protocol techniques for
interprocess communications will become more sophisticated and
able to automatically perform complex operations.

5.2.4.2.2 Dedicated Bus Systems - DedIcated bus systems will be

increasingly used in military systems. The establishment of
Mil—standar~s will tend to provide standardized protocol at basic
interface levels. The distinct possibility exists that higher
level common carrier network protocol logic will be adapted to
dedicated bus systems.

5.2 .4 .2 .3  Parallel Interconnects - Usage of parallel inter-
connects will probably be restricted to those applications where
higher performance is needed and high costs can be tolerated.
Rapid dynamic switching of the parallel Interconnect and its
control is still a problem. The parallel interconnect technology
may appear in the future as an internal design feature of a
single computer design.

The RCSDF hardware should probably be considered in the near
future as a multicomputer system for emulation rather than a
network. The number of envisioned machines is small, hence,
the need in the near future for a shared interconnect or a
switched parallel interconnect as the major interconnect form
is not demanding. The architecture forms of common-carrier-
based networks, dedicated bus systems, and parallel interconnects
need to be understood as objects to be emulated. Protocol at
the two lowest levels (interface and I/o structure) need not
be incorporated into the RCSDF emulating system. However, it is
reconmiended that some of the higher level network protocol
(process-to-process) be studied further as a potential method of

185

_ _ _ _ _ _ _ _

S ~~~ ‘ - .S
~~ ‘~~~~

_
~‘ 

.- . ‘
~ 

- 
~~~~~

.— ‘..

________________________________ -~~ — --- -5--,

process coordination for the RCSDF hardware. It is also recom-
mended that the architecture of a dedicated bus system be ex-
amined and studied for medium term usage of the RCSDF facility
when expansion may be encountered and point-to—point intercon—
nects restrictive

5.2.4.3 Arrays and Ensembles - The array and ensemble archi-
tecture is still of limited use in the field of computers.
When these communications techniques are used, they seem most
appropriate for the class of problems that are well suited to
SIMD architectures.

The protocols and processor communications techniques for arrays
and ensembles can be seen to have limited application to the

RCSDF hardware system and remain primarily an emulation object.

Two possible areas of application seem to be in the use of the
STARAN and in the design of a microprocessor array, but this has
to be determined in future studies.

Given the above technology assessment and the relevance of the

different processor communications techniques and protocol re-

viewed, RCSDF needs in this area seem to be as outlined below.

5.2.4.4 T~pol~~y

o The development of point-to-point intercommunications
between existing and planned devices for the near term
including such items as interface adaptation, multi-
plexing, and interrupt handling.

_ _ _

186

-

-

o The development of the architectural definition of a

busing system to accommodate expansion in the medium

term, which could provide a first try at a higher per-

performance technology (e.g.. fiber optics).

5.2.4.5 Protocol

o The development of a process—to—process communication

method, perhaps based *~ on communications network high
level protocol logic, which is the total scope of the
RCSDF control structure.

o The evolution of emulation methods to reflect the

performance of ccznmunications protocols and communi-

cations network behavior into the emulation of network

systems on the RCSDF hardware.

5.2.4.6 Array Technique

o The examination of the techniques (processor communi-
cations) used in known array machines for inclusion in
the definition of the microprocessor array.

5.3 Microprocessor Network Technical Baseline

The main goal of the RCSDF is to provide an emulation facility
and support for all users, including the user intending to

put a microprocessor network in his system. To efficiently
emulate different types of microprocessor networks, the

187

~

-S -
--. -- --S . - ~~

RCSDF should provide a generalized microprocessor network. This

technical study presents ideas relevant to:

1) how to construct an architecturally flexible micro-
processor network. —

2) the scope of microprocessor network designs.

3) emulation strategies when a microprocessor network

design is submitted to the RCSDF facility.

Below is a discussion of the general state of the art for micro-
processors and multiprocessor networking.

5.3.1 Microprocessor - Survey and Msessment - In general,

there are essentially two families of microprocessors: the bit-

slice family and the one chip CPU family. The bit—slice family

includes Intel 3002 (a 2-bit ALU slice), Motorola 10800 (a 4—bit
ALU slice), and AMD 2901 (a 4-bit RALU slice). Examples of the

one chip CPUs are Intel 8080, Motorola 6800, Fairchild F8, and

RCA COSMAC. All of these are 8-bit CPUs. However, 16-bit CPUs

are beginning to gain popularity . Texas Instrument ’s TMS 9900
and National ’s PACE are good examples of the single chip 16-bit

CPUs.

Each of these microprocessors has its own particular advantages
and disadvantages , according to what application measures it is

subjected to. In this report, no general assessment will be

made. Rather, the discussion will emphasize the applicability

of these microprocessors in a microprocessor network.

Normally the bit-slice processors are adequately supplied with

other supporting parts, such as a microprogram control unit, a

microprogram memory , a look—ahead carry generator, and an inter-
rupt control unit. Their main disadvantage is that several chips

188

I

and other logic devices will have to be used to form a processor.

However, bit slices offer flexibility wherein the user can de-

sign as wide a CPU as he wants and as unique an architecture as

he wishes. Moreover, bit slice processors are currently about

ten times as fast as the single chip processors. For normal

8-bit operations where speed is not essential, the single chip

CPUs probably provide more advantages. For 16-bit or longer

operations, the bit-slice approach is currently more widely
accepted. Since one of the most interesting microprocessor

applications is to use a network of microprocessors as high-
speed main frame replacements, 40 (or even 64) bit operations
can be anticipated. Hence, for the flexibility required by

RCSDF , bit-slice architectures seem to be more applicable.

Most of the single chip 8—bit CPUs and the 4-bit slice ALUs
have 40 pins in a package. Generally, for a 8-bit CPU chip, 8

pins are used for data and 16 are used for address. This gives

an address space of 32K to 64K. For bit-slice CPUs, there is no

F: real limit to the address capacity. Hence, for general purposes,

the bit-slice CPUS will be more advantageous.

One common feature for all third generation computers is the
abundance of general purpose registers in the CPU. This feature

is necessary for efficient programming, providing easy address-

ibility and eliminating a lot of the ALU register congestion and
unnecessary memory references. A survey of the currently avail-

able microprocessors shows that bit-slice RALUS generally provide

more general purpose registers than the single chip (~PUs, e.g.,

10 for Intel 3002 and 16 for AND 2901. In compari 4on , 1~~~e1
8080 has 6 and Motorola 6800 has no general purp’~ise register on

the CPU chip. Thus, from this point of view, it is more prefer-
able to use bit-slice CPUs..

189

-

Most single chip CPUs are not user-microprogrammable, in the

sense that the user cannot microprogram his own sequences of

hardwired operations. Yet most RALU chip families contain RON

and microinstruction controller chips that allow the user to

develop his own microprogrammable processor. For flexibility

required by the RCSDF microprogrammable multichip processors

seem to be the more logical choice.

There are two main approaches to performing I/O operations in

microprocessor systems, as there are in minicomputer systems.

The first approach is typified by the PDP-11 and Motorola 6800.

There are no special I/O instructions; I/o devices are con-
sidered part of the memory address space and are connected onto

‘the memory bus. Another approach is exemplified by the Nova

minicomputers and the Intel 8080 which have specific I/O in-

structions that do not use up address space for addressing the

devices.

For single chip microprocessors, the I/O approach is fixed by

the chip manufacturer. In multichip processors , the user can

choose his own. To use microprocessors in a network, a special

network adaptor may be required to interf ace each processor with

the interprocessor connection (bus, crossbar switch, multistage
networks, etc.). This may require special I/O handling capa-

bility.

To be effectively used in a multiprocessing environment, the

microprocessor should use an asynchronous method when communi-

cating outside the microprocessor. A handshaking procedure and

some additional control lines will be needed. The processor

should also be interruptible and be able to quickly find out the

• interrupt condition(s). Many bit-slice families include

190

- .--.-.
- . . - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~-


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~-.-,— -- - •- . — -•-—-- --5-. . —-~~~~~~~~~~~~ - -- --

inteLrupt register and control unit chips, which provide easy

masking and bit extraction operations, making the bit-slice

processors capable of handling interrupts very efficiently.

As mentioned before, the main disadvantage of a bit—slice

processor is that it uses many more LSI chips than the 8- or
16-bit unit.  This implies more space is required and more cost
for the processor. A bit-slice processor of 16 bits equipped

with the sequencer, the carry look-ahead unit, 1K of 40—bit con-

trol ROM (or RAM), and the interrupt control unit now costs

about $200. A single chip CPU with a control ROM will cost

only about $50. So the trade—off between bit—slice processor

and the single chip processor is one of cost vs. flexibility.

It is projected that in 1980, a 40—pin chip or a 1K byte memory

will cost only about $5 each. Therefore, ,at that time processor

hardware cost will become only an insignificant part of the

whole system, and the system that gives the better performance

will thus prevail.

5.3 .2  Interprocessor Connections - Survey and Assessment — All

multiple—processor systems require data communication capability

between various processors. The interprocessor connection is

one of the most crucial factors affecting multiprocessor system

performance. The factors governing the selection of a certain

connection include communication techniques, data transfer

methods, connection bandwidth (amount of data that can be

transferred by the connection per second), required bandwidth

(total amount of data that is required to be transferred between

various processors per second), and expected connection con-

tention (the performance degradation caused by two processors
trying to get on the same data path at the same time). In

general there are three main categories of interconnections:

191

_______ —~~~.••‘ 



1) bus structures, 2) crossbar structures, and 3) multistage
networks. Each of these categories will be discussed in the
following paragraphs.

5.3.2.1 Bus Structures - Buses have been essential elements in
most third generation computers .6 In general , buses are either
dedicated or nondedicated. A dedicated bus is permanently

assigned to a pair of devices . The principal advantages of
dedicated buses are their high throughput and ease of control.

A major disadvantage of dedicated buses is the high cost of all
the cables, connectors, and drivers. Moreover, adding a new

device frequently involves adding new cables and interfaces.

Thus a Dedicated Bus Network (DBN) is not expandable nor’ flexi-
ble. A more practical connection system will use only partial

DBN by omitting some dedicated buses between certain devices,

thus reducing the number of buses required greatly. However, a

lot of time may be consumed in going through a large number of
node—devices when the two communicating nodes are not ‘adjacent ’

(i .e .,  not connected by a direct bus) . Examples of partial
DBNs are the Illiac IV Network and IMS Associates ’ Hypercube

of Microprocessors .7

K. J. Thurber et al, “A Systematic Approach to the Design
of Digital Bussing Structures,” Proc. Fall Joint Computer
Conf. (1972) , pp. 719— 740 .

8 “Hyperdimensional Microprocessor Collection Seen Functioning
as Mainframe,” Digital Design (November 1975), p. 20.

192

- • ‘ ‘ — .. ~~~~~~~~~ ~~ - - ‘ ~~~~~~~~~~~~=
- ~~~~~~~~~~~~~~~~~~ — — ~~~~~~~~~~~~~~~~~~~~~



A nondedicated bus is shared by many devices (processor , memory
module, input—output device, etc.). Each device can transfer

data to another device, but only on a time-shared basis. The

main disadvantages of this single bus approach are 1) the obvious
bus contention for too much data tryinq to transfer between the

devices, and 2) the total system failure due to a single com-

ponent failure in the bus. When the number of devices is small

and the expected amount of data transfer among various devices

is small, the single bus structure is the most economical one.

Most unit machInes are structured around this concept, e.g.,

PDP-ll ’s UNIBUS. An example of a multiprocessor system is based

on the same concept is the Minerva Multi-Microprocessor.8

The most logical extension to the single bus approach uses

multiple buses. This scheme requires that active devices have

the capability of selecting a bus for its data transfers and

that passive devices be capable of resolving simultaneous re-

quests. Using this approach, the bus bandwidth is increased ,

and the redundancy allows the bus system to have a fail-soft

capability.

There are three classes of nondedicated bus control methods:

daisy chaining, polling, and independent requests. Daisy chain-

ing has the simplest structure, and additional devices can be
added easily. However, a failure in one of the devices could

prevent succeeding devices from getting on the bus. Furthermore,

because of the fixed priority structure, devices at the farther

9 L. C. Widdoes, “The Minerva Multi-Microprocessor ,” Proc.
Third Annual Svmo. on Computer Arch. (1976), pp. 34-39.

193



_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  ____ - -

end of the chain could conceivably be blocked from the bus.

Polling requires more lines, but it can be made to eliminate
both of the daisy chain problems mentioned above. However, both

of these methods suffer from long time delays, especially when

the number of devices is large. Independent requests solve the

long delay problem at the expense of more hardware and a more

complex bus allocation algorithm. For multiple nondedicated

buses , each bus should have a separate bus controller, and in
some’ cases there should be a master bus controller that monitors

the status of various bus controllers.

5.3.2.2 Crossbar Structures — To allow for simultaneous data

transfers from many devices, a multiport system can be used.

The connection allows multiple simultaneous transfers between
two exclusive sets of devices, in this case, the memory modules
and the processors. Any data transfers required within a set of

devices will have to be done in a mail-drop fashion (using

common memory locations for delivery and pickup). Each device

will have multiple ports to handle devices from the other set.

The access control is contained within each device, and dedi-

cated buses are required to connect each pair of devices from

the different sets. Since the control logic and the ports are

contained within each device, each device has to be designed
to accommodate the maximum system configuration. This, however,

is in turn limited by the number of ports allowed in each device.

As a result , this multiport approach is usually employed where
the number of devices in each set is small. Because of the high

connection throughput, modified versions of this scheme are used
in many third generation computer systems, e.g., UNIVAC 1100
series, IBM S/360 and S/370, HIS 635 and 645, and AN/UYK—7.

194

-



To offset the port number limitation of the ‘multiport system,

the access control logic and the dedicated buses can be removed

from each device and placed in a separate module called the
crossbar switch. Each device will now have only one port and

the device interface design is thus much cleaner. The main

advantages of this arrangement are that the crossbar (and also

the multiport) allow simultaneous data path transfers and that
the control is relatively easier than for the multibus. How-

ever, the biggest disadvantage is its high cost since the gate

complexity of the crossbar switch is proportional to the product

of the number of devices in each set. To reduce the cost of the
switch , partial words can be transmitted serially at a frequency
higher than that of the processors . Considering current micro-
processor technology , the slow instruction cycle time seems to

make this serial transmission feasible. Nevertheless, when the
number of devices is large, the switch complexity increases

greatly and the crossbar switch represents an expensive way of

providing high throughput. Examples of multiprocessing systems

that use crossbar switches are Hughes H4400, C.mmp, Burroughs

D825, and CDC 6600.

5.3.2.3 Multistage Networks - To offset the high cost of the

crossbar network, many permutation networks are suggested since

simultaneous data transfers from N inputs to N outputs can be

regarded as a permutation of N elements (assuming there is no
conflict at the output). The one common characteristic of these

networks is that they all have multiple stages of switching

elements. Batcher ’s sorting network has been proven to be a

near-optimal solution to the worst case permutation network delay

problem.9 Yet the cost of such a network is still high.

10K. E. Batcher , “Sorting Networks and Their Application ,” Proc.
SJCC (1968), pp. 307—314.

195



_  
-5- 

-

Current researchers intend tu find networks that would minimize

the network delay for most permutations (while penalizing some),

hoping to cut down the average network delay. An interesting

group of the second class comes from the perfect shuffle con-
nection. Independent researches resulted in Stone’s shuffle
exchange network10, Lawrie’s Omega network11, Pease’s indirect

n-cube microprocessor array12, and STARAN ’s flip network13,
which all turn out to be topologically the same. Unlike the

crossbar switch or the Batcher network, this shuffle exchange

network does not permute all n~ permutations. However, it

can perform most of the permutations required of a tightly
coupled parallel processor system. Moreover, it can also be

modified to be used in a Multiple Instruction Stream Multiple

Data Stream (MIND) environment. The main attractions of this

network are its ease of control and its low network complexity

0(N Log2N) gates compared to 0(N
2) for crossbar and 0(N log2N)

for Batcher ’s sorting network. However, much research still
needs to be done to improve the feasibility of this network.

H. S. Stone, “Parallel Processing with the Perfect Shuffle,”
IEEE Trans. on Computers (February 1971), pp. 153-161.

12 D. H. Lawrie, “Access and Alignment of Data in an Array
Processor ,” IEEE Trans. on Computers (December 1974),
pp. 1145—1155.

13 N. C. Pease, “The Indirect Binary n-Cube Microprocessor Array,”
IEEE Computer Society Repository, 75-100 (1975).

14 K. E. Batcher, “The Flip Network in STARAN,” Proc. 1~76International Conf. on Parallel Processina (August 1976),
pp. 65—71.

196 

~~~~~~~~~
, .

5.3.3 RCSDF Microprocessor Network Requirements and

Recommendations — To specify a microprocessor network for

RCSDF, we must first outline certain properties and requirements

of the RCSDF. It is understood that as an RCSDF equipment, the

microprocessor network is used to emulate the multiprocessor

network portion of the user-designed system. We will first

categorize different multiprocessor networks that the RCSDF

should be capable of emulating.

Bus-Oriented Multiprocessor_Le.a.. Minerva Multimicroprocessor) -

The easiest way to emulate this type of system is to use a bus.

However, we can also emulate this system using a crossbar switch

if we visualize the crossbar switch in a slightly different way.

MultiDort Multiprocessor (e.g., Univac 1108) - Because of the

topological similarity with the crossbar switch, this type of
multiprocessor organization can be fairly easily emulated. The

switch will have to perform all selection procedures and memory

port conflict resolutions.

Hv~ercube Multiprocessor (e.a.,~ Illiac IV) - Since the crossbar

can allow any set of simultaneous data transfers, all data
transfers on a hypercube type network can be emulated with no

trouble. When the number of processors is large, the repli-

cation method (emulating more than one user—design processor on

each facility processor) will have to be used to reduce the high

cost and yet retain the versatility.

Multistaae Multiprocessor Network (e.g., SThRAN’s Flip Network) -

All permutations performed on a multistage network can be per-

formed on a crossbar, and a crossbar-oriented network can thus

emulate any multistage network.

L .~~~~~ . . .~~~~~~ • _ _ _ _ _ _ _

_ _ _ _ _ _ _ _

Intercom~uter Network (e.g., ARPANETI — Each microprocessor can

emulate a host computer at each node of the computer network.

But communication procedures will have to be implemented on each

microprocessor , and network delay time will have to be compiled

and added on by each microprocessor . Moreover, emulating a

complex host computer (e.g., IBM 370) on a microprocessor is just

not feasible. So although the RCSDF microprocessor network can

be made to emulate an intercomputer network, it is not recom-
mended.

It should be noted that each of the user-designed processors

can be a wide word processor , can be a pipelined processor, or
can even be a special purpose processor. The intent to emulate
each of these processors with a single microprocessor places a
large burden on the microprocessor, and its flexibility is
heavily challenged. Several points regarding the microprocessor

selection in the RCSDF are discussed below.

Word Width - The word size of the microprocessor should be

sufficiently wide, since emulating a wide word operation on a

small word processor will require extra emulation time and

emulation code space.

Microproarammina - The microprocessor chosen should be micro-

programmable, or should at least have a rich instruction set.

Emulating a complex processor on a capability-limited micro-

processor may be unnecessarily difficult.

ALU Functions - There should be sufficient ALU functional capa-
bilities in the microprocessor. A variety of arithmetic modes

and various bit manipulation functions would be very helpful to

general purpose emulation.

198

L . - . - . ~~~~~~~~~~~~~~~~~~ ~• ,
~~~~ , .~~~~~~ , •~

—
~~~~

- -
~~~~~~~~~~~~~~~~~~~~~~ - ‘ — - — ---~~~~ .-.~~~~ -~~~~ . - .  ~~

, , —



Addressable Reaisters - In general purpose emulation, to keep
track of all the timing information in the target processor,

many internal registers will be used as emulated clocks.

Emulating a wide word operation would also require a lot of

internal registers to hold intermediate results. Hence the

microprocessor chosen should have sufficient addressable regis-

ters.

Control Store - The control stores for most microprocessors

are ROMs. However, RCSDF is a general purpose emulation facility
and requires dynamic microprogramming capability. Microcodes

will have to be loaded into the control store every time a

different emulation is in progress. ROMs are, therefore, not

suitable for control stores. Writable control memory (such .as

RAMs) will be needed.

To specify the number of microprocessors required in the RCSDF

network, we have to determine the average number of processors
in the user-designed systems. Currently existing or proposed

systems consist of anywhere from 4 to 256 processors. There-

fore, 16 to 32 microprocessors would probably be adequate to

handle most emulations. Depending on whether the QM-l can

handle all the bookkeeping of the microprocessor network, a
separate microprocessor array controller may be needed to super-

vise the array of microprocessors.

As we have seen earlier in this section, a crossbar—type switch

is capable of efficiently emulating most of the other inter-

connection networks. So for easy reconfiguration , crossbar

appears to be the switch to use. RCSDF has a Data Manipulator

Unit (DMU) available which is similar to a crossbar in

199 

— ‘. 
~~~~~~~~~~~~~~~~~~~~~~ 

:- ~~~~~~~~ —~~~ -— ‘~-~~ — • — ~~~~~~~~~
‘—— — ~~~~~~~~~~~~~~~~ —

5 — —

functional capabilities. If each microprocessor is paired with

a local memory module, the microprocessor array can be connected

to (and through) the DMU. Hence, by careful design, RCSDF can

avoid procuring an expensive network for the microprocessor ar-

ray.

5.4 Microprograrnming Technical Baseline

Microprogramming and microprogrammed devices play an important
role in RCSDF development since the fundamental concepts of
emulation are based on the use of microprograinining. This report
puts microprogramming in perspective and serves as a technical

baseline for RCSDF developments.

5.4.1 Microprogramming Overview - A microprogrammed design

results in the replacement of a significant portion of the logic

of the computer control section by stored program logic con-
tam ed in a high speed ROM or RAM. The main advantages of the
microprogramrning approach are the cost savings and the design
flexibility allowed . Two general approaches to microprogrammed
design are vertical microprogramming and horizontal micro-
programming . In a vertically microprogrammed system the instruc-
tion word is relatively narrow (i.e., 16 bits), and each field is

encoded in a manner similar to a normal computer instruction word

format. The discrete control present in horizontal microprogram-

ming is relinquished for compactness in representation; hence it
typically requires several instructions to perform a given func-

tion with vertical microprogramming. In horizontally micropro-

granuned machines the instruction word is extremely wide (up to

360 bits). In this architecture, functions are bit encoded;
each bit in the instruction has a unique meaning. It is

200

- -
~~~~~~ - :-~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



- ,

possible to enable many functions in parallel with one hori-

zontal microinstruction. In cases where it is possible to take

advantage of the parallelism, extremely good performance can
result.

Microprogrammed machines can operate at extremely fast micro-
instruction execution times. Speeds of 100 nanoseconds are
typical with .ECL machines operating at 50 nanoseconds. This is

possible not only due to the overlap incorporated into the

design, but also because of high speed control memories and

limited instruction complexity .

Some advantages of microprogrammed implementation of control
logic are described briefly.

Flexibility - Critical design decisions can either be deferred

until late in the design phase or once implemented can be changed
by writing a new microprogram.

Chanaeabilitv - It is possible to reconfigure a machine, once
installed, by changing the control memory contents.

Ease of~Desian.. Maintenance, and Checkout - The design of the

control section can be shared with the microprogrammer who im-
plements the instruction repertoire and much of the interrupt

handling work of the machine. A cleaner, more logical design
usually results in a machine that is also easier to debug and
maintain.

Extension of Machine’s Useful Life - The ability to enhance and

change machine functions via microcode extends its useful life.

201 

--~~~~~~~~~~~~~ -.- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- -

~~~~~~~ 
—‘=~~~

—
~
-..-——-

~~

Economy - The bulk of the logic used is standard ROMs and/or
RAMs and therefore less expensive than random logic.

There are also a few disadvantages of microprogrammed design .
They are:

Performance Loss - A decrease in performance can result if a
general pu rpose micr oprogrammed machine is used to emulate a
specific machine without special hardware support.

Cost - Selecting the wrong microprogrammed machine for an
application will result in a cost penalty. Using an extremely

powerful microprogrammed machine to emulate a simple architec-

ture is not cost effective.

A further use of a microprogr~ mmed architecture is to allow the
tailoring of a machine to a sp’~cif ic application via customized
microcode : a user may procure a basic machine capability, and
by modifying and adding microcode , he may adapt it to a special
application. This approach is especially attractive if the
machine has a writable micrornemory. If the application requires

such a large amount of specialized firmware that the micro-
memory capacity is exceeded and if the performance require-

ments allow time for swapping segments, microcode may be read

in from back—up storage as demand for its use occurs. This

capability is called dynamic microprogramming. The advantages

of dynamic microprogramming include cost tailoring, storage

requirement reduction , and increased functional capability.

202

However, there are also many pitfalls in providing a dynamic
programming environment. Issues to be considered include:

o Conflicts between flexibility of customer micro-

programming and compatibility

o What microprogramming is best

o What debugging aids should be extended to the user

o What are multiprogramming and multiprocessing

environment ramifications

o How should engineering changes be handled

o What loading procedures are best

5.4.2 Applications of Micro~rogramminq - The potential of

microprogramming as a means for altering system architectures
to allow efficient implementation of a specific application has
been known for years. In its infancy microprogrammed design

was considered primarily a means for implementing the control

section of a computer. It is now considered to have a vastly

broader application than this. In this section the applications

of microprogrammed design will be discussed. The traditional

emulation application will be reviewed as well as more advanced

applications.

5.4.2.1 Emulati,gn — Emulation is defined as the process of

executing the object code of one computer on a different com-
puter and obtaining the same logical results without changing

203

___ - -. -5-- , --5---- --- .- -

the object code . This often results in a degradation in per-
formance . Microprogramming is the common technique for imple-
menting emulation machines. Read—only control memories can be

reconfigured by inserting preprogrammed modules. Read—write

control can, of course, be easily changed dynamically under

machine control. Two approaches can be taken in designing a
microprogrammed emulating machine. One is the general purpose

machine . Its architecture allows relatively easy emulation of
many architectures, but usually results in poorer performance

than the emulated machine. The other approach is to design a
special purpose emulator. It is initially aimed at emulating a

specific computer. It includes special purpose hardware
(emulation adapter) and results in high performance.

5.4.2.2 Data Base Management Processor - One way of handling
the task of database management is to place a processing

capability at the interface between the mass storage device and

the central processor. Being a specialized processor, it would

accept commands from the central processor and perform relatively

powerful or time consuming functions on the database that would

relieve processing load from the central processor. The special-

ized DBM processor can be implemented relatively easily with a

microprogrammable processor .

5.4.2.3 Virtual Address Translator (VAT) - The Experimental

Processor for Intermodular Communication (EPIC) microprogrammed

Virtual Address Translator (VAT) deveLoped at Univac is an

independent address translating device which provides a virtual

address environment by mapping virtual address into extended

real addresses. VAT microsequences perform the operations

204

- —-5’—-———

necessary for implementing and managing the virtual addressing

capability supplied by the device. The flexibility provided by

a microprogrammed VAT allows VAT opera~tions of differing com-

plexity to be easily designed.

5.4.2.4 ~erforniance Monitoring - The microprogram level is an

excellent point within the computer ’s structure for capturing

valuable information for use in both debugging and system per-

formance measurement. Measurements taken at this level are

transparent to the user. They do require some machine time,

but do not require a modification to the user program such as

software hooks do. It is relatively inexpensive to implement

measurements at this point because it is basically a micro-

routine that is inserted in line at the point monitoring is to

occur. Finally, when the measurement programs are no longer

needed they can be removed from the system with no impact.

5.4.2.5 Microdjagnostjcs - There has always been an inherent

difficulty in using software to diagnose hardware failures

because it typically requires a large percentage of the hardware

base to execute even basic instructions of the repertoire. If

the microdiagnostic program was carefully constructed, it could

be used to diagnose certain failures using only a small per-

centage of the hardware. It is, of course, necessary to have

enough hardware functions to allow fetching of microinstructions
from micromemory, keeping track of current program counter value,

and operating from the basic register set. Beyond that, the

hardware can be exercised to search for failures by carefully

building up the functional capability of the machine as function
after function is checked and verified by the microdiagnostic

program.

205

. ,-. -- — .—~~—- — ,- - - , ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~
... —

5.4.3 Microprogrammed Architectures - Some typical micro-

programmed architectures are examined here to determine their

characteristics ~nd to gain an understanding of some of the
design tradeoffs involved. Three basic machine architectures

will be discussed briefly. These are the Univac MPC , Nanodata
QM-l, and IBM 360 line.

5.4.3.1 ~~C - Univac ’s approach to microprogrammed machine
design utilizes the MPC (Microprogrammed Computer) architecture.

The primary function of MPC is to emululate the AN/UYK-20
repertoire. MPC was specifically designed to provide a high

performance emulation of the UYK—20 repertoire. Some functions

within the emulator are done by hardware. Functions performed

by the emulation adaptor include format decomposition, status

setting, control and interpretation , and operand fetching.

The MPC-l has a 16—bit wide microinstruction word format,

utilizing a vertically encoded , register oriented format. It

has three primary hardware features to provide high performance.

These features are:

o Microinstruction overlap

o Microinstruction repeat

o Emulation adaptor

MPC-2 and MPC-3 are quite similar to each other in structure.

MPC-2 has a 36—bit microinstruction word length, while MPC—3

has-a 40—bit microinstruction word length. The impetus for

their development was a recognition for enhancement in five

areas of the MPC—l architecture. These areas were increased

register addressing , increased accumulator selection, additional

conditional branch capability, more convenient introduction, of

206

- - - - ~~~~~~~~~~~~~~ --_ -~~~—“~--~-
,_

~~~~~~~~~
‘ — - ~~~~~ ~~~~~ 

‘. ‘-



constants, and more parallel control capability. These improve-

ments were all accomplished in MPC-2 and MPC-3 by introducing

the wider word and associated hardware.

5.4.3.2 QM-l - QM—l operates under two levels of microprogram

control; this offers the advantages of both horizontal and

vertical control. Machine instructions in main storage are

executed by microprogramà contained in control memory. This is

vertical control. Microinstructions are executed by nano-

instructions contained in nanostore. This is horizontal control.

The level of programmable control closest to the hardware is

the nano level. Nanoprogramming defines a set of control

sequences that supports the microinstruction of the next higher

level. Typically the nano level code is supplied by the vendor.

- - The next level is the microprogramrning level and is supported

by a fully readable/writable control store. Microroutines are

written to match the requirements of each application.

5.4.3.3 I~BM 360 - When IBM introduced the 360 line of computers

in 1964, they hoped to provide upward and downward architectural

compatibility to commercial data processing users. They wished

to provide efficient, cost effective, timely tools for conversion
of user application programs from one system to another. These

requirements resulted in a fundamental design decision to imple-

ment the control section in microcode whenever possible.

The primary beneficiary of the microprogrammed implementation of

IBM 360 ’s control section was the small and medium scale user
who was given a rich and comprehensive instruction set without

the high development cost of hardwired implementation.

207



— -5--—
~

- . .-

5.4.4 Software Aids - Software aids to microprogramming fall

into three categories:

0 Assemblers

o Compilers

o Simulators

Assemblers are fairly well known to most users of computer sys-

tems. An approach taken at Univac for many machines, including
microprogrammed ones , is the use of a General Purpose Assembler
(GPA). The GPA is an assembler that utilizes the capabilities

of the 1108 assembler and allows specific computer descriptions

to influence generation of instructions and data. With GPA, a

user has essentially all the power of the 1108 assembler at his

disposal at a fraction of the typical cost for developing an

assembler.

The use of compilers for converting high level program descrip-

tions into microcode is uncommon because compilers typically do

not generate the most efficient version of the machine code, but

degrade the high speed implementation advantage of microcode.

For a system targeted for an application requiring a sizable

amount of custom microcoding at the site, a compiler capability
with its accompanying high level language is an attractive

feature.

Simulators are another software aid used to support microprogram-

ming. Simulators can be used to interpret microprograms of one

computer and perform the functions (at the instruction level) of

the simulated t~omputer. Simulation allows a user to test and

debug microprograms before the object hardware becomes available.

Another advantage of a simulator during program debug is that

208

A 
U



_  -- .--

~~

- . -

~~~~~

-—
--— -

it offers more powerful debugging aids than would be available

on the object machine, at least initially. A major difficulty

with simulation is verifying that the simulator is an accurate
representation of the hardware of interest.

5.4.5 RC5DF Emulation — The RCSDF is intended as a research

facility capable of general system emulation. To do this, it

needs the ability to efficiently emulate a wide variety of

target machine organizations, whether they are obsolete, exist-

ing, or innovative. To accomplish this, there must be a soft
architecture for the emulating machine. This is in sharp

contrast to the hard emulating machines (such as the IBM 360
models) which are designed to interpret only a small set of

architectures with great efficiency. Machines such as the

Nanodata QM-l and the Burroughs Bl700 are built with such soft

emulation architecture in mind. The Stanford Emulation Labo-

ratory ’s EMMY System is an emulation facility which is intended
to be a universal host machine. The main difference between the

EMMY System and the RCSDF is that the EMMY System is concerned
with only conventionally structural target machines; multiple

processor systems are not considered.

The range of computer architectures that can be expected to be

emulated on the RCSDF is much wider than those of the emulating

machines mentioned above. As a result, more supporting hardware
features are needed than for the others. There are six main

RCSDF related capabilities:

o Easy operation on embedded state images of emulated

machine

o Memory management

. 209

o Efficient instruction decoding structure

o Simplified configuration of emulated environment

o Multiple-machine emulation

o Data path emulation

To achieve each of these capabilities, certain hardware or

architectural features are required. They will be discussed

in the following paragraphs.

5.4.5.1 State Imaae Operations - An emulation facility has to

map the data and control state images of the target machine into
the existing state images of the emulating machine. It then

has to operate on the embedded state images of the target machine

in the sante way that the target instruction does on its state

images. To perform these two tasks efficiently, the facility
should be able to provide easy image mapping. One useful feature

that would further efficient emulation is the multidata word
size addressability (e.g., byte , half word, word , double word) .
In some cases , high speed shift and mask capabilities will be
very helpful to access unusual size state images.

It would be most advantageous for the emulating machine to have

many general purpose registers. Target working registers can be

mapped onto them, and slow main memory access is not necessary

for target register operations.

210

5.

-55- ~~~~~~~~~~~~
--

5.4.5.2 Memory Management - The problems of memory management
in a generalized emulation system are twofold. The first is

the handling of the emulation program storage: the second is

the handling of a target machine memory hierarchy .

To solve the first problem, dynamic microprogramming techniques

can be used. Emulation code segments will be rolled in from
the secondary memory to the writable control store by demand
paging techniques. This allows different emulators to be loaded

and replaced ’ in the emulating machine very quickly. It also

allows larger control programs to be run on a relatively smaller

control memory.

The second problem occurs when the target machine has a hier-

archical memory system. The facility should then have the

capability of mapping each target memory level into the emulation

facility memory system. Hence, multilevel memory system and

complex address mapping functions are needed in the facility to

handle the memory management emulation.

5.4.5.3 Efficient Decoding - To increase the speed of the

emulation process, the emulating machine should be able to have

microthatruction look-ahead, fetching possible microinstructions

for the next step. A separate microinstruction unit will enable

the simultaneous operation of the function units and the instruc-

tion unit.

5.4.5.4 Tarast Environment Confiauration - A machine environ-

ment consists of 1) the data and control state images, 2) a set
of primitives to modify and test the state images, and 3) a set

of control rules which decides the sequence of primitives to

execute.. The facility should be capable of statically

211

- - -_--~~~~~~~~~~- __

- I-

-

I

reconfiguring the executing machine environment so that it

matches the emulated machine environment. Examples of such

reconfigurat ions are:

o Setting up gating paths between registers and buses.

o Setting up data word lengths for arithmetic and

memory operations.

o Specifying the number of general registers.

The residual control method, which utilizes control bit vectors
to specify each of the above-mentioned reconfiguration patterns,

will be a reasonable solution for efficient environment re-
configuration. This control method is used in machines such as

the QM-l and the Bl700.

5.4.5.5 Multiple—Processor Emuj~~tion - To efficiently emulate

a multiple-processor system, the facility should provide at

least a subsystem consisting of some fully interconnected
processors. Larger multiple-processor systems will have to be

emulated by replication. Multiple memory modules will also be

needed for efficient multiple-processor emulation.

5.4.5.6 flata Path Emulation - To emulate all the data paths in

the emulated system , RCSDF should have full connections among

all its system components. Only selected connections would be

activated during any specific emulation. The data path emulation

capability should be able to represent explicit and implicit

architecture paths in order to provide the full range of emu-

lation levels anticipated to be needed by users.

212

;_: =.-=-— - - — ‘~~~-~.- 5-’ — — - , .
~~~~—-- ---5.- ~~~~~ - . A



5.5 Operating System Technical Baseline

This document describes research and design efforts related to

the operating system and control functions required for the
RCSDF. The host facility requirements were described in sections
2 and 3. This paragraph concentrates on a concise identif i—

cation of the specific RCSDF facility operating system require-
ments.

The RCSDF operating system is defined as the logic provided in

hardware or software necessary to maintain control’ of and provide

user interface with the RCSDF resources. Two different operat—

ing system architectural structures are described in paragraph

5.5.1 with suggested modifications and features that should be

considered for the RCSDF operating system. The two differ in

the methodology used in controlling facility resources. The

first assumes that the operating system controls the resources.

The second assumes resource control is provided by user processes

or processes supplied by an RCSDF staff, the interface of which
is made possible through standards enforced by a baseline operat-

ing system.

Included in the discussion are brief descriptions of some of the

requirements necessary for the RCSDF environment followed by

recommendations that should be considered before choosing an

RCSDF operating system.

5.5.1 Trade-Off Evaluations — The number and scope of capa-

bilities that have been identified in previous RCSDF design

studies suggests that the RCSDF control requirements could assume

the proportions of a comprehensive operating system when fully

implemented. The descriptions in subsequent paragraphs define

two different approaches that should be considered. It is felt

that either technique could be used to develop an adequate RCSDF

213



“--5- -- ---_- - . --_---——--—

operating system. They differ essentially in the implementation

methodology and overall capabilities. Considerations for sug-

gesting the processing element control method are based primarily

on the economics of being able to utilize existing resource con-

trol capabilities . provided by the support software packages

normally delivered with the processing elements to be installed
at the RCSDF. The facility control method is typical of current

R&D control developments. It is recognized as having a greater

risk factor, but the gains which can be realized from system

flexibility and adaptability to various configurations are antici-

pated to be significant and are expected to pay larger dividends

in the long run. The descriptions are brief but detailed enough

to convey the different concepts invo1ved .~

5.5.1.1 P~rocessjng Element Control - Thi s method of RCSDF
operating system control can be thought of as resource control
functions performed by independent operating systems contained

in each processing element. Each is dedicated to maintaining

control of the resources assigned to or configured with the

individual processing element. It is assumed that most of the

hardware elements installed at the facility would be provided

with operating systems containing resource control capabilities

designed specifically for the processing element. These oper-

ating systems would then need to be modified and enhanced to
provide the adaptability necessary to allow for system test and

emulation in the RCSDF. Some of the modifications that would

be required are listed below.

o Provide interelement commun~ication software for those
cases where more than one element is required in the

configuration and/or when additional elements are used

to provide the environment simulation needed to drive

the system being tested.

214



_______ 

____________ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - - - -

o Incorporate processes correctly interfaced with the

operating system being modified that will interface
with nonstandard peripherals ‘in the manner specified

by the facility user.

o Enhance or add to the operating system ’s resource
control logic for the performance data extraction tools.

These tools would have to be accumulating data

sufficiently accurate to enable realistic ‘performance

analysis.

o Provide for low-level interface With operating system

handlers of peripheral devices that would allow for the

execution of systems that themselves assume the char-

acteristics of operating systems , i.e., real time

control.

o Provide translation logic that would transform operat-

ing system function requests (standardized and pro-

duced by an HOL or EDL on the host) into formats
required by the associated operating system.

o Establish and maintain control and release discipline

for shared resources when more than one processing

element requires the configuration resource.

Complete operating systems containing capabilities compatible

with existing operating systems would need to be developed for

those processing elements installed at the facility but not

supplied with operating system software, e.g., the suggested.

microprocessor array.

215

‘ -~ _ ~~~~~~~~~~~~~~~~~~~~~~~ __4

5.5.1.2 Facility Control - This method of operating system
control can be thought of as a supervising executive that is

responsible for monitoring the control of all resources con-

figured with the system. It is constructed of resource control

functions that are basic to all operating systems. This con-

cept calls for the concurrent execution of many “units,” each
interfacing with specific system resources. Some of the units

themselves may be unmodified versions of complete operating

systems.

5.5.1.2.1 Decomoosition Unit Description - In the TSDC evalu-

ation (Section 2), the concept of system decomposition was

introduced as the methodology that should be employed by RCSDF
users when they define systems or subsystems to be emulated on

the facility. This methodology of decomposition , used as a

means of reducing complex computer systems to an understandable

and describable level, has been recognized and addressed by
14 15 .. 16 17Horning, Hansen, Dijkstra and Parnas. Further work in

software system development is being pursued by the Ballistic

Advanced Technology Center,1’8 Huntsville, Alabama. BMDATC is

involved in establishing guidelines for a decomposition method-

ology by attempting to formalize a language (RSL) that will aid

- users during the decomposition process.

15 J.J. Horning and B. Randell, “Process Structuring,”
C~jn.~~ Surveys V:1 (March 1973), pp. 5-30.

16 P. B. Hansen , “The Nucleus of a Multiprogramming System,”
Comm. of ACM XIII:4 (April 1970), pp. 238—242 .

17 E. W. Dijkstra, “The Structure of the Multiprogramming System,.”
Conan. of ACM XI:5 (May 1.968), pp. 341—346.

18 D. Parnas, “On the Criteria To Be Used in Decomposing Systems
into Modules “ Conan. of ACM XV:12 (December 1972).

19
BMD, ~~~~. ~~~~~~~~~~~

216

1

- -~~=- _~~~ __5 ‘-- --55’.-—- 5- — 5 -

I

In general , the process of decomposition must be performed by
system designers aided by requirements specifications, software
process design (HOLs) and/or emulation design languages that
are available to the designer on a host facility. A more com-

plete discussion of the capabilities of the languages, their
uses, and generated outputs is the topic of paragraph 5.7. The

result of the decomposition process will produce a system speci-

fied by a set of interrelated decomposition units.

The decomposition unit is the smallest part of the system that
can be designed to execute independently of other parts of the

same system. The unit can be defined as the nature of a

processor executing a program, i.e., 1) the program, 2) the

machine states which that program might assume during execution,

and 3) the data that is associated with the program. This

definition is essentially the same as that attached to the

motion of a process given by Horning and Randell1’9 and used
also by Hansen2° and Dijkstra.21 For the remainder of this

document the term “process” will be used as an equivalent for

decompositional unit, element, and processes (in Section 3).
The term “program” is used to define the action taken by a
processor on a specific set of data. It can be performed by

sequences of instructions or actual logic embedded in the

processor.

20 J.J. Horning and B. Randell, go. cit.

21 P.B. Hansen, go. cit.

22 E.W. Dijkstra, go. cit.

-5-
- -

5.5.1.2.2 RCSDF Environment Description - Systems or subsystems

to be tested on the RCSDF are represented by a configuration of
processes. The system is thus viewed as a set of interacting,

concurrently executing and cooperating processes designed to

serve the needs of each other and of the total system. The

static combination of the set of processes can be accomplished

in the host facility. The dynamic combination, i.e., making
resources available to executing processes, is the responsi-
bility of the facility control baseline operating system. The

baseline operating system itself must permit this construction

of processes (satisfying the user system requirements) by pro-
viding the basic operational control functions (algorithms)

required. The implementation of this type of operating system
is referred to as a kernel or system nucleus. Techniques for

the design and implementation of such systems have been de-

scribed by Bayer,22 Hansen ,23 Wulf,24 and Wilhelm.25

The memory requirements for individual user processes and/or the

set of all user processes is expected to exceed the total memory
- : available from the individual processing elements of the facility.

This necessitates implementation of a memory management function
in the kernel. Many techniques of memory management are

23 D.L . Bayer and H. Lycklama , “ME RT - A Multi-Environment
Real-Time Operating System,” ACM Proc. of Fifth Syinp .,
.Q.S. Princ. (1975) , pp. 33—42.

24 P.8. Hansen , op. cit.

25 w. Wulf et al, “HYDRA: The Kernel of a Multiprocessor Oper-
ating System,” Comm. of ACM XVII (June 1974), pp. 337—345.

26 N. Wilhelm, D. Pessel and C. Merriam, “The CERF Computer
System,” Proc. of the NCC (1976), pp. 765—768.

218

- t

described in current literature. Most resolve the memory avail-

ability problem by implementation of the concepts of virtual

memory as discussed by Denning.26 A complete description of the

functional requirements of a memory manager for an experimental
kernel operating system is provided by Kinney and Christiansen.27

However, the impact and unique characteristics of associative
memories (if included as a part of a system being tested) must
be understood. before virtual memory management for the RCSDF

facil i ty control operating system can be defined .

The algorithms or capabilities required to control the use of
the processor configured in the RCSDF include process schedul-

ing and dispatching. These are invoked by user processes or

operating system processes when 1) stimulated by external sources

such as peripheral interrupts, 2) stimulated by demands for

memory, and 3) responding to interprocess communication requests.

Unique characteristics of process control imposed by the need to

synchronize process execution in a multiprocess environment are
discussed by Horning28 and Hansen.29’3° A promising methodology

27 P.J. Denning, “Virtual Memory,” Computing Surveys (September
1970) , pp. 153—189.

28 L.L. Kinney and B.P. Christiansen , “Functional Requirements of
a Memory Manager ,” Univac PX 1174 (May 1976).

29 j~~j~ Horning and B. Randell, op. cit.

30 P.B. Hansen, oo. cit.

31 P.B. Hansen, Ooeratina System Principles (1973).

219

‘—‘-—--————-~~~~--—. -- ‘ --.—‘—--‘-- -—- - .- ‘ -

-
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - ~~~~- . ~~~~-



for the synchronization of simultaneously or concurrently -
‘

executing logic sequences is provided by the semaphore mechanism

introduced by Dijkstra31 and expanded by Hansen. 32 “1

The philosophy of a. kernel operating system suggests that the

algorithms that provide the above described capabilities do not

impose strategies or policies concerning the use of system re-

sources. This becomes the responsibility of the user processes.

From the user ’s standpoint, the algorithms can essentially be

viewed as instructions that allow user processes access to the

facil i ty resources , such as memory space and processors . Ex-
amples of such instructions (called primitives) include the

capability to:

1) request or release resources

2) send or receive messages tfl/from other processes

3) create or delete processes

4) activate/deactivate processes

5) create and/or test semaphores

6) acquire peripheral device state information.

32 E. W. Dijkstra, op. cit.

p. B. Hansen , Operating Sv~tem Principles, (1973) .

- 

.- 

~~~~~~~~~~~~~

. ,

The processing elements installed for the RCSDF might also be

required to emulate different elements of a distributed processor

system. Peripherals involved in this type of configuration

should be considered global and available to any or all execut-

ing processes, regardless of the processing element that is
performing the execution.

In summary, the RCSDF environment requires that the RCSDF
operating system assume the responsibility for providing basic

control mechanisms for all the resources in the facility. The

mechanisms that provide these capabilities are collected into a

hardware/software set of processes identified as a kernel.

5.5.1.2.3 Facility Control R&D Programs — Sperry Univac is

currently involved in a several year research and development pro-
gram aimed at identifying a set of mechanisms that should be em-

bedded in a kernel operating system. Parallel efforts have

resulted in the establishment of disciplined software and con-
figuration control procedures. Using this methodology , the

project has developed a prototype kernel operating system capable

of providing resource control for one or more processors inter-

facing with a variable set of peripherals and has demonstrated

the capability by maintaining control of two concurrently

executing operating system-type processes. The project has

progressed to the point where it is felt that the kernel operat-

ing system concept is a viable and highly feasible approach to
be taken when implementing global resource control in a dis-

tributed processor environment.

Similar kernel development effort.s are currently being investi-

gated in both the academic and industrial communities. Typical

examples include HYDRA, the kernel of a multiprocessor operating

221

— , 5- —~----~~ ,, ~ __s_
~___._.,.~

system being developed at Carnegie-Mellon University ; MERT, a

multi-environment real-time operating system de veloped at Bell
Laboratories; and Distributed Computer Network (DCN) being

developed at the University of Maryland. The identification

of a universal set of functions to be provided in the kernel is

currently recognized as a problem since the algorithms are

closely related to the characteristics of the resources being
controlled and the philosophy used. It is felt that for the

RCSDF, a complete set , adaptable to the different resources

and user requirements, should be developed.

5.5.2 Special RCSDF Operatina SYstem Reauirements - The RCSDF

facility will consist of a number of processing elements sup-
ported by peripheral devices, some standard and some unique.
Further , the processing elements are expected to have different
basic architectures, with at least one element capable of emulat-
ing multiple architecture definitions. The term “reconfigurable”
suggests that the RCSDF should provide rules governing the inter-

connection of various configurations of processing elements and
peripherals. This would permit users to build a configuration

that closely resembles the construct anticipated for their

specific deployable system during testing and emulation on the
RCSDF. This requires that the RCSDF operating system provide

control capabilities for a potentially large number of different

configurations of processing elements and which are capable of

emulating a variety of processor architectures.

It is expected that in some cases fully constructed test versions

of deployable software systems or subsystems destined for per-

formance analysis runs on the RCSDF will assume control of the

facility resources, e.g., a real-time command and control system..

222

. _ _n~~~~
._tn~~’-.— —— - - ‘ --.

___________________________________ - - - .- -.- - _____

In other cases, the system to be designed will assume these
capabilities normally provided by an operating system. In

either case the RCSDF operating system will be required to per-

form the direct interface with the real RCSDF peripheral device

components and provide memory management capabilities. For
those configurations that require deployable processor elements
to be added to the facility, provisions must be made to allow

for data and control logic interface.

An extensive emulation/simulation capability will be required

if a realistic representation of the deployable system environ-

ment is to be made available during RCSDF system emulation and

test. The RCSDF operating system must be capable of collecting

simulation data as actual data while various transfer rates are
demanded and produced by the emulated system. This implies a

need for mass storage data management, capable of providing
high speed access and of supporting large data bases. The topic

of data base management has been examined and the results are
being published in another document. The extent of the operat-

ing systems involvement will be limited to the interface re-

quired .with the mass storage media.

5.5.3 RCSDF Ooeratina System Recommendations and Conclusions -

The RCSDF is to be used as a system analysis tool. The in-

tended purpose of the tool is to permit the testing and extrac-

tion of system performance data while emulating target deployable

système. The expected diversity of both the resources and user

applications to be emulated on the RCSDF imposes unique facility

control requirements that must be incorporated in the design of

an RCSDF operating system.

223

~~~~~~~~ ~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ ‘ ‘



The current concept of the RCSDF suggests that deployable systems

will be developed on a host facility and subsequently tested on

the RCSDF. Interface logic, i.e., a description of the resources

as assigned to the deployable system, is emulated in the RCSDF.

Only in the RCSDF will the required hardware (system resource)

interconnection occur. The resource interconnection , while de-

fined during development on the host , must not require the users

to be concerned with the controlling philosophy of the resources.

It is important, then, to be able to minimize the number and

complexities of the interfaces and also clearly specify their

characteristics. Implementation of this can be done by es-

tablishing a higher level interf ace between users and the RCSDF

operating system. The methodology currently being adopted to

address these requirements will allow the flexibility desired

for RCSDF and is inherent in the kernel operating system. It

is therefore recommended that the project consider the develop-

ment of a total facility control type of operating system for

RCSDF. Some of the primary reasons for recommending this oper-

ating system architecture are listed below.

o It will provide for clearly defined points of inter—

section between the system development tools (host)

and the test tool (RCSDF) . This will allow users to

establish policies of resource utilization without

having to be concerned with the characteristics and/or

control requirements of the facility resources.

o Resource control algorithms for memory management and

virtuat storage control, contained within the kernel,

can be optimized for the resources provided at the

facility.

224

~~~


. -‘ . —— .

-
~~~~~~ 1~~~Ir

—- - _ _ _ _ _

o The impacts of adding new devices to the facility

complex for performance analysis would be isolated in
the kernel.

o The kernel can provide global control capabilities of

all or a subset of the configured resources, i.e.,

processing elements, memory, mass storage devices, etc.

o Since the control algorithms would be localized in the

kernel Instead of being distributed in the test system
or embedded in various pi- cces of support software,

critical performance data extraction points can be

established either in the hardware or software. In

addition , the performance data related to resource
control would be simpler to isolate ; once traps are

defined they would remain constant for all systems

being tested.

o Once the kernel operating system has been established ,

other support software and operating systems designed

for and delivered with the processing elements at the

RCSDF can be adapted to interface with the kernel.

o As RCSDF utilization evolves, additional support

processes such as facility initialization , control,

and file control can be provided by developing a

second level, user available interface with the kernel.

Pursuit of investigations leading to the development of a

facility control operating system for RCSDF is recommended .

_- _ _  . .

~~~~~~~~~~~~~~~~~~

— - -5-—-- . — - . _____s_~~_

-—- -- -5-- ,----- - . — - -

There are several assumptions made throughout the document as to
the type of environment expected for the RCSDF. From these as-

sumptions and the associated studies we have concluded that a

basic requirement is to provide control or, perhaps more

explicitly, to provide the means for users to control use of

the resources available in the RCSDF. Information published by

others concerned with operating system design philosophy indi-

cates that similar studies have been accomplished and implemen-

tation efforts currently are under way. The techniques involved

are not new; however, the adaptation of the8e techniques to

an RCSDF environment might in some cases be unique.

In order to provide a more explicit operating system capability

definition or to better understand the effects of unique char-

acteristics which might be imposed by the RCSDF, additional
information must be garnered. This required information can best

be summarized as 1) the characteristics or architecture of the

RCSDF hardware and 2) the nature of user requirements. (The

latter necessitates a user profile.)

5.6 Distributed Systems Organization Technical Baseline

The presence of distributed systems as a usable and practical
architecture is of interest to RCSDF as:

o Potential architectures to be emulated on the RCSDF

emulation hardware.

o Potentially applicable techniques for controlling

RCSDF emulation hardware elements.

o A potential defining system organization for the RCSDF

emulation hardware. -

226

5--

Unfortunately, the popularity of the phrase “distributed process-

ing” has become so great that now almost any computing complex

containing more than one processing element capable of simul-

taneous operation is being called a distributed processing

system. The spectrum of distributed processing architectures

can be divided into five categories, as shown in Figure 5—1.

Distinguishing characteristics are identif ied for each of the

categories and some of the more prominent or advanced mechan-

izations are identified and discussed in subsequent paragraphs.

5.6.1 Remote Network Systems (RNSI - The term “distributed
processing” first found its way into accepted usage in the
industry as a description of the affiliations of geographically

separated , large, central computing facilities of which ARPANET,

TYMNET, MERIT , CYBERNET, and the Lawrence Livermore OCTOPUS are

typical examples. The advantages afforded include access to

resources which might not otherwise be available such as various

language translators, data files built by others, use of pro-
cedures, access to storage space, access to specialized process-

ing hardware, and processing time.

Communications in these networks is an extension of the hier-

archical message-switching trees which serve timeshare terminals.

Communication devices include the lines, customarily common

carrier, as well as the communication processors provided by

the network and the circuit switching elements provided by the

common carrier. Communication processors are used to concen— —

trate messages from terminals, to message switch, and to provide
front-end processing for the hosts. Communication protocols

accommodate the several terminal protocols, host to host proto-
cols, and network protocols. Store—forward and packet switching

communication strategies are employed.

227

_ _ 5 - -

MOST DISTRIBUTED REMOTE NETWORK SYSTEMS ARPANET
TYMNET

MERIT
- OC~OPUS

CYBERNET

LOCAL NETWORK SYSTEMS -~~~~~~~~~ DCS
‘\

~
<EPIC_DPS

C.m mp

MULTIPROCESSORS AN/UYK -7
ARTS—Ill
S-3A
1100
86700
370—NP

DISTRIBUTED FUNCTION SYSTEMS SYMBOL

______ DISTRIBUTED ELEMENT SYSTEMS ILLIAC
\
~STARAN

PEPE

MOST CENTRALIZED

1

I
Figure 5-1. Distributed Systems Taxonomy

228

_t

-. -.-
- - . - - -

~~

- -- -. - - -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- -- 

Control in these coalitions of systems is exercised autonomously
by each host. Each host treats t ra f f i c  from other hosts approxi-
mately the same as terminal traffic. There is no interaction

between tasks executing on separate hosts, and there is no

sharing of resources between hosts. Incoming requests from a

terminal for service on a remote host are simply passed along to

the communication network. Tasks in execution on any given host

simply do not interact with tasks on another -host.

5.6.1.1 ARPANET - ARPANET is a loose federation of totally

independent computing centers. The reason for its existence

is the sharing of procedures, data, and computing machinery
among the users who might be located anywhere in the network.

Each host is connected to an Interface Message Processor (IMP )
Honeywell 516, and these IMPs are themselves connected to each

other through a nation—wide interconnection of private telephone

circuits. Each IMP ~as a specially designed interface which
adapts it to the circuitry and protocols of the local host. All

traffic throughout the network is composed of 1000-bit packets,

which are composed , routed, received, and decoded by the IMPS.
Totally heterogeneous and autonomous modules are, nevertheless,

connected and communicate compatibly through the services pro-

vided by a network of standardization modules, the IMPs, which
employ hardware and software devices to provide adaptation.

5.6.2 Local Network Systems (LN~I - This class of distributed

systems is somewhat similar to the RNS. r;he class of L~NS also
has a separately identifiable operating system for each processor,

even though the whole collection of operating systems may be re-

garded as a single operating system. The key characteristic of

the RNS and LNS that distinguishes them from the rest of the

distributed systems is the term “network.” In each RNS 0r LNS

there exists a network through which the processors (or computers)

229

_____________________ — I
- -—---~~---~---- 

__
~
____l



--- -~~~~~~ -- - -  -~~~~-— --- - -- - ---.~~~~~~ . - -  ---

communicate with each other, utilizing a two—party, cooperative ,

-~~ communications-type protocol. Intelligent terminal systems are

excluded from the RNS and LNS classes because different nodes do
not have the same demanding power (in terms of master/slave re-

lation). The key difference between the RNS and LNS is the
distances between nodes. RNS applies to geographically remote
systems, while LNS applies to more local connections. Another

major difference is that each node in the RNS is a self-contained
processing center including computer, memory, and a suite of
peripherals, while LNS units may be shared by the network.

5.6.2.1 Distributed ComDuter System (OCS) - The DCS consists of

a number of minicomputers connected by proprietary circuits

using Tl carrier technology .33 The communication circuitry is
connected in the shape of a ring, and fixed length messages flow 

- -

in one direction around the ring until they arrive at the origi-

nator, who is responsible for their removal. The actual con—

nections to the ring are communications oriented devices called

ring interfaces. Each processor provides its own adaptation to

the standardized ring interface. DCS addresses messages not to

locations or computer but to other programs. Each ring inter—

face contains a list of programs that are resident at that site,

and when a message to one of these programs is recognized, the

message is interpreted and executed. This allows programs to

migrate throughout the network without affecting software format.

5.6.2.2 EPIC-DPS - The EPIC-DPS is a distributed processing

system that is being developed as part of Sperry Univac ’s

D.J. Farber, et al, “The Distributed Computer System,”
Proceedinas IEEE Computer Soc iety International Con-
ference (March 1973), pp. 31—34.

I l  
230

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ _ _ _ _


5- —5-- - -- - --~~~5----5-~~~~~~~~~~~~~~ - - - ------

distributed systems research efforts.34 The important design

features and objectives of this system include incremental

expandability of the network with no degradation to the existing

resources, resource sharing throughout the network, computational
processing at the local level, system—wide synchronization of

processes, network virtual addressing, software transparent
hardware distribution , communication at the intermodule level,

and data security.

5.6.2.3 C.mIIP A Multi-Mini-Processor - The C.mmp at Carnegie-

Mellon connects as many as 16 processors to a common memory
system by using a cross—bar switch.35 Except for this cross-bar

switch and the particular method of distributed system-wide

interrupts, there is l~.ttle to differentiate the C.mmp architec-
ture from that of a multiprocessor. While the cross-bar switch

network put it in the LNS class, the presence of the singly

existing operating system, HYDRA,36 makes the C.mmp also fit the

class of multiprocessor. Actually, the C.mmp is a crossbreed

between the LNS and the multiprocessor.

5.6.3 Multiprocessors — The most generally accepted definition

of a multiprocessor is a system with more than one central
processor , sharing a common system memory , and operated under
the control of a single set of executive software. Any of the

processors is interchangeable with any other and capable of

DR. Anderson, “The EPIC-DPS -- A Distributed Network
Experiment,” EASCON ‘75 Record (September 1975),
pp. 121—A — l2 l—G .

36 w.A. Wulf and C.G. Bell, “C.mmp - A Multi-Mini Processor,”
AFIPS FJCC, XLI, Part 2 (1972), pp. 765-778.

W.A. Wulf et al, “HYDRA: The Kernel of a Multiprocessor
Operating System ,” CACM, XVII:6 (June 1974), pp. 337-345.

231

executing either task or executive programs. Any central
processor can access any part of the common memory shared by
all the central processors. Multiple central processors provide

for increased reliability and fail—soft capabilities at the

expense of additional hardware.

Multiprocessing is a well known, well used technique in the
computer industry, compared with other categories of distributed

systems. (This is borne out by the presence of ample software

support for the multiprocessing systems.) Current multiprocessor

systems are available in both military and commercial forms and

are supported by operating systems and operational software.

5.6.3.1 Military Multiprocessors - Multiprocessing systems

currently present in government inventory are used in avionics,

air traffic control, and shipboard applications. In production

from three to five years, the systems listed be-low are typical.

AN/UYK-7 - A general purpose multiprocessor system design for

shipboard use. Uses a maximum of 262,144 words memory, 32 bits

each. The maximum configuration of the AN/UYK-7 is a 3X4 (3 CPU,

4 bC) .

ARTS-Ill - A general purpose, 30-bit, multiprocessor system

currently being used for air traffic control. The maximum

configuration is eight processors and sixteen 16K memory modules.

S-3A - The Sperry Univac 1832 Multiprocessor system is being

used in the S-3A Viking ASW aircraft. This system is a fixed

configuration machine (2CPU, 210C), mechanically designed for
use in the Viking aircraft.

232

5.6.3.2 Commercipl Multiprocessors - Numerous multiprocessor

systems are available commercially. These systems offer a full

range of performance within the medium to large ranges and are
supported with comprehensive operating system capabilities and

systems program libraries that include compilers, assemblers,

development tools, and data base management. Sperry Univac is

the manufacturer perhaps most committed to multiprocessor

products. IBM, Burroughs, and Digital Equipment Corporation

are much less committed, but have developed multiprocessor
products.

As mentioned previously, the software available for commercial

multiprocessor products is extensive. As a typical example,

consider what is available for the Univac 1100 Series:

o Operating system

o Language processors - assemblers, COBOL, FORTRAN,
ALGOL, etc.

o Data base/data communication software

o Other utility programs

5.6.4 Distributed Function Systems (DFS1 — In this fourth

category of distributed systems, the processing capabilities of

the system are distributed on a functional basis. Autonomous

processing units can operate simultaneously while sharing a

common virtual memory . These autonomous units should have

sufficient logic, registers, control, and other features to
perform tasks without being under the control of a conventional

CPU.

/

233

- . - ---—-—.~ ~~~~~~~~~~~~~~~~~
5- 5-


~~~~~~~~~~~~~~~ -— ~~~~~~~~~ ,-- — -5-- - ---- -—- 5---

5.6.4.1 SYMBOL - The SYMBOL system has eight different, special—

ized processors, each of which operates as an autonomous unit.

Each unit is linked to the system by the main bus and communi-
cates with other units through shared storage space, enabled by
a paging virtual address scheme. Translation of virtual ad-

dresses to absolute is handled by the memory controller, which
also handles storage management. All of the processors take

jobs from individual job queues, which are maintained by the
job controller. The overall philosophy of SYMBOL was to re-

examine the traditional stages of software reduction and execu-
tion, and where possible, dedicate hardware processors to these

functions.

5.6.5 Distributed Element Systems (DES) - Any computer with a
single global control unit that drives multiple processing units,

all of which either execute or ignore the current instruction ,

falls into the category of distributed element systems. This

category can be further divided into associative processors,

parallel processors, and ensembles. Any DES machine in which

the processing units (or processing memory) are addressed by a

property of the data contents rather than by address are classi-

fied as associative processors. Parallel processors are those

F in which the processing elements have the same order of complexity

as current small computers and which typically have a high level

of interconnection between processing elements. Parallel

processors in which the interconnection level between processing

elements is very low or nonexistent are ensembles.

Distributed element systems have many advantages. They offer

reliable configurations with the ability to degrade gracefully.

They are most effective for problems with large amounts of

parallelism. Duplicate structures result in lower costs.

234 

-. - - - - -—-~~~~~~~~ ~~~~~~~~--—~~~—- -, -



-- - - - , .  -

Finally, software for large systems is easier to construct, and

therefore less executive function is required. The deficiencies

include a lack of flexibility, the possibility for I/O bottle-

necks , and limitations in the types of problems that can be
processed on these systems.

5.6.5.1 STARAN - The STARAN processor is an associative proces-

sor DES machine. Its distinguishing features are a multi-

dimensional access array memory, a content addressable memory, a

simple processing unit at each memory word , and a unique permu-
tation network for shifting and rearranging data in memory.

STARAN is most effective when used in applications requiring

very fast processing, highly dynamic data, large numbers of

data items requiring similar processing and an immediate response

to certain inquiries. On the other hand, STARAN has the dis-

advantage of not being compatible with peripherals designed for F
sequential machines.

5.6.5.2 ILLIAC IV - ILLIAC IV has a four-nearest-neighbor inter-

connection structure. In order to sustain the rate of instruc-

tion flow to the processing elements, each control unit is
capable of parallel indexing, instruction fetch , and local

arithmetic. Each processing element has a 2048 word memory.

ILLIIAC IV is especially efficient in applications which require

a great quantity of data to be exchanged among neighboring

processing elements, weather forecasting , for example. Unlike

associative processors, ILLIAC is amenable to implementation out
of microprocessors . A disadvantage of the ILLIAC IV architecture

is that the close association of each piece of memory with its
own processing element means that all memory is not equally

accessible from every processing element.

_

235 

_ _ _ _ _ _

- — .  -.- —.-, -5- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-



‘~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
5-5- 5 -

~~~~~~ 
-

5.6.5.3 PEPE - PEPE (Parallel Element Processing Ensemble) is
-;

an ensemble designed for the ballistic missile radar defense
processing. Operated under the control of a CDC 7600 host,

it is associatively organized, highly parallel, and capable of
executing three instruction streams simultaneously: correlation,

arithmetic, and associative output. PEPE ’s processing elements
were designed for applications that do not require direct inter-
connection, thereby providing a reliable structure in that any
processing element can substitute for any other processing
element.

5.6.6 RCSDF Reauirements in Distributed Sv~tems - Each of the
RCSDF hardware elements has different processing capabilities

(e.g., general emulation for the QM-l) and processing speeds.

To facilitate communications between various elements, techniques

for controlling these hardware elements are needed for the emu—
lation procedures on the RCSDF.

RCSDF is thought to have the capability of emulating existing

systems. This includes the distributed systems organization.

To provide the promised emulation efficiency and expertise,
RCSDF will need to anticipate the user ’s system requirements
and to reconfigure the RCSDF hardware elements into a configu-

ration that resembles the users ’ target system. The RCSDF re-

lationships with distributed systems organization translate

into many areas that require further understanding.

RCSDF Hardware Element& Characteristics - The functional char-

acteristics of each existing RCSDF component and each RCSDF

component to be procured have to be fully understood. The

mechanism by which these RCSDF components will be connected

should also be fully understood. Another important consider—

ation is the data transfer rate of each data path. For

236

- - .J

. a,
.

~—

~- -- ,——-,
~~~~~~~~-- - j --- -~~~



components with large processing bandwidths like STARAN and the

microprocessor array, enormous data transfer rates are required

for accessing data in mass storage, and matching the transfer —

bandwidth with processing bandwidth becomes a major problem.

User SYstem Design Spectr~~ - RCSDF needs to anticipate the sys-

tem architectures that are likely to be designed by the users,

then specify a set of representative architectures that would

cover the entire spectrum of user systems designs, and finally
determine the role of each RCSDF hardware element in the emu-
lation of each representative architecture.

jjser Aoolication Spectrum - To specify the set of representative

architectures, the user applications would also play a very
important role. When the spectrum of the user applications is

determined , then the required processing capability (e.g.,

associative processing and list search/merge), processing

bandwidth, and data transfer bandwidth can be assessed. Sub-

sequently, the necessity of hardware additions to RCSDF can be
evaluated.

Emulation Control Structure - Although each RCSDF component

should have its own operating system, the collection of com-
ponents also needs a centralized operating system, coordinating

communications among various components. To achieve this, we
have to be able to define the system building blocks, the func-

tional units. In addition standards need to be set to inter-

face various functional units to coordinate concurrent processes

and to facilitate resource sharing.

5.6.7 RCSDF Distributive Systems Craanization/Reccmmendations/

Conclusions - RCSDF components are most suitable for
system architectures in which components are loosely coupled,

237



“ ‘ ‘~~~~~~~~ ‘~~~~~~~~‘ 
-

distributed system network architectures, for example. Properly

decomposed, the facility emulation content could be adaptable to

representing different distributed architecture forms. However,

doing this requires a deep understanding of control 8tructure

and architecture, areas which need further study. Paragraph 5.6 • 6

discussed knowledge which needs to be established soon.

Looking further into the future, the problems of interconnecting

the facility components and of controlling the interconnected

elements should be resolved so that timing is not interlocked

between components yet concurrency is maintained. The emulating

system will inherently be a distributed system of computers but

must be made to appear to the user as a different architecture

through emulation. In some cases, features or capabilities of

the emulating system may be explicit (available to the user) or

implicit (embedded within the control software and masked from

the user), depending on the architecture to be emulated.

The key to providing the explicit/implicit capabilities is the

proper decomposition of the emulating system so the explicit/

implicit boundary can be easily constructed as a function of user
emulation event. The initial step toward this goal is to de-
fine the emulating system architecture and the emulation control

structure. It is recommended that this proceed immediately to

provide a foundation for developing further emulation and

measuring skills.

The degree of autonomous intelligence within the facility soft-

ware for resource management, process regulation, and, in gener-

al, control of the emulation process is a subject that should

be addressed in detail. Self control should be incorporated

into the network in order to free the user from explicit control

‘

~~1 

238



of network operations. Analogously, support of implicit capa-

bilities will require a larger degree of intelligence within the

facility software, hardware, or firmware than support of the

explicit approach.

The efficiency of a multicomputer distributed architecture for

supporting multiprocessor architecture with tight synchronization F
will be considered ultimately and should not be a concern in the

near term. Current objectives should emphasize technical feasi-

bility and the development of techniques. Emulating system

hardware features can be developed to improve emulating system

efficiency should improved operations be desired later. Ef-

ficiency should not be considered in the near future.

5.7 Design Languages Technical Baseline -

The purpose for t1~-is baseline study Is to 1) identify those —

languages which have been defined for system specification,

design, and development, and 2) evaluate their applicability
for the RCSDF environment and their usefulness in aiding system

design and development.

5.7.1 Lanauaae Identification and Evaluation - The languages

are categorized as three basic types: 1) requirement specifi-

cation languages, 2) high order languages (software design

languages), and 3) emulation design languages (hardware design

languages). Each of them is discussed below.

5.7.1.1 Reauirement S~ecificatLon Lanauaaes - A cost effective

development of systems necessitates a carefully controlled

system requirements specification phase. What is needed is a

language which enforces a discipline on the human requirements

239 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 


engineer and additionally provides a specification that is

machine—processable. Automated language techniques should be

judged on such criteria as 1) the ability of management to see

the progress of the system development through its life cycle

(traceability); 2) the ability to detect errors, ambiguity, in-
consistencies, and incompleteness in system description (vali-

dation); 3) the ease of modifying parts of the system descrip-

tion without introducing errors (conf iguration control) ; and
4) the degree to which a system specification may be translated
into a detailed design (implementation) .

5.7.1.1.1 Existing Languages — Numerous methodologies have

recently been touted as a potential solution to the problems and

resulting high cost of software engineering. Among the systems

which- have been devised to implement these methodologies are

the Hierarchy and Input/Output Process System (HIPO) developed

by IBM,37 LOGOS developed by Case Western Research,38 Inf or-
mation System Design and Optimization System (ISDOS) developed

at the University of Michigan,39 and the Software Requirements
Engineering Program (SREP) developed for the Ballistic Missile

Defense Advanced Technology Center (BMDATC) by TRW.4°

38 IBM , “HIPO: Design Aid and Documentation Tool ,” SR2O-9413-O
(1973).

C.W. Rose, “LOGOS and the Software Engineering,”
AFIPS Proceedings. FJCC XLI (1972), pp. 311-323.

40 D. Teichroew and M. Bastarache, “PSL User’s Manual ,”
ISDOS Working Paper No. 98 (1975).

41 c.G. Davis and C.R. Vick.”The Software Development System.”
Proc. Second International Sofware Eng. Conf. (October 1976).

240

~

The heart of any requirement/design language which is machine-

processable is a competent data base manager and tools for
design retention. As a result, we have chosen to describe two

of the systems and the associated languages we feel have come

closest to this ideal.

5.7.1.1.1.1 ISDOS/Problem Statement Lancuaae - The ISDOS model

divides each application into three parts: 1) the environment
in which the application occurs, 2) the proposed or “target”
system to ac omplish the application , and 3) the project respon-

sible for the application throughout its life cycle. The target

system receives inputs from an interface with the environment,

maintains or updates internally used data (entities), and gener-
ates outputs to an interface with the environment. The Problem

Statement Language (PSL) objects are interconnected by PSL

relationships. Relationships between objects may be decomposed

into smaller, more detailed pieces until the application require-
ments are completely specified. The objects may have properties

and each property may have a property value. All of this infor-

mation is stored in a relational data base.

A set of software tools, called the Problem Statement Analyzer
(PSA), is used to enter the system requirements into the data

base. PSA is composed of three main parts: a command language

for entering new data and modifying existing data in the data

base, an analyzer to syntactically check each PSL statement, and

a report generation facility to produce reports on various

aspects of the data base.

5.7.1.1.1.2 R.EVS/Reauirements Statement Lanauaae - BMDATC’ s SREP
has developed REVS, Requirements Engineering Validation System.
The REVS system model expresses functional requirements in terms
of stimulus—response requirements networks. A flow oriented

241

,-

~

~~~~~~~~~~~~~~~~

--- 

~~~~~~~~~~~~
- -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
---~~~~

-

approach is used to state requirements, and performance can be

checked for required timing and information accuracy.

The requirements networks (R—NET5) are developed in a top down

fashion. The basic structure is the ALPHA which has one input
and one output. An ALPHA can be decomposed into a SUBNET of

lower level ALPHAs. The flow structure of a net contains se-
quencing information. ALPHA5 may be executed in series or in

parallel , as indicated in the type of node connection. A SUBNET

or ALPHA can be executed a given number of times. The ALPHA5

are the bottom level of description and contain executable

descriptions (in PASCAL).

A Requirement Statement Language (RSL) is based upon four
primitive objects:

1) elements

2) relationships

3) attributes

4) structures

Elements are the “nouns ” of RSL. Relationships are the RSL

“verbs” and are the links between the RSL elements. Attributes

are the RSL “adjectives”. Each element has exactly one value
for each of its attributes. Structures are the RSt. representa-
tion of the nodes described in the preceding paragraph.

RSL is extensible in the sense that new elements, relationships,

and attributes may be created in terms of previously defined RSL

~~ objects. The RSL statements that comprise a requirements speci-
fication are stored in a relational data base.

242

~~ - ,~~‘
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

— , , _.- :,=,,. 2:Zrr ~~~~~~~~~~~~~~~~~ ~~~~~‘ .— — -.- —‘—-— --———— — ~~~~~~~~~~~~
-2. . & , ——.—— -~~.——

- --- ,,- .- ,, - ,5--—-- - ,,,, - ..“-‘,,--,,- ,,-,-.. -‘-- - ---- — - ,

5.7.1.1.2 Traceability - Traceability allows project management

to monitor system development through the system life cycle.

Such monitoring is essential to insure that the user or customer
needs are accomplished by the system under development. In

general, there is no one-to—one correspondence between the

statement of user requirements and the physical design. Of the

two design methodologies represented here, only the SREP method-

ology claims traceability in design. However, this claim has

not been substantiated . -

5.7.1.1.3 ~a1idatj~~ - A requirements language should contain a

data base management system which lends itself to the static

and dynamic analysis of requirements specifications. Static

analysis refers to techniques for verifying the completeness,
consistency, and correctness. Dynamic analysis refers to

techniques for verifying the dynamic performance by simulation.

Both PSL and RSL satisfy this second criteria to some extent.

5.7.1.1.4 Configuration Control - Configuration control data

enables management to take a “snapshot” of the requirements
description at each stage of its development. Thus, management

can see how the description evolves. In order to accomplish
this, each object in the description must have a descriptor

associated with it. The descriptor might indicate when the

object was entered into the data base as well as subsequent

alterations to it. Both PSL and RSL associate the name of a

person with each object in the requirements specification.

5.7.1.1.5 Implementation - The final criterion for a requirements

language is that it aids the process of translating requirements —

into greater design detail. If the initial system requirements

specification can not be met by the detailed design, the re-
quirements specification should be revised, implying the need

243

_ _ ..~~ _ I’
~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _ _



:-“ ~~~
- , ,  

for interpretation of the requirements language as the detailed

design is submitted to the machine process. RSL does provide

a 
the framework for this interpretation by allowing detailed

design information in the form of PASCAL statements with ALPHA5.

5.7.1.2 Higher Order Lanauapes (HOW,, — A HOL is a software
design language that assumes the proportions similar or equivalent

to that represented by a COBOL, JOVIAL, or FORTRAN programming

language. The discussions contained in the following paragraphs

H summarize the results of a recent survey of currently available

HOLs.

5.7.1.2.1 Standardized HOL,s - In January 1975, a DoD High Order
Language Working Group (HOLWG) was chartered to investigate pro—

gramming language requirements. The HOLWG identified a need to

evaluate existing approaches and to recommend adoption or imple-
mentation of the desirable characteristics as a common language.

The selected HOL is to be used for the development of software
for what are called embedded computer applications (i.e., command
and control , communications, avionics, shipboards test equipment).

The general requirements are summarized as follows:

Simplicity Implementability

Reliability Machine Independence
Readability Portability

Maintainability Definition
Efficiency

A sample of the languages selected for analys&s by the HOLWG are

categorized and described in the following paragraphs, together
with a summary of the findings and recommendations made by the
evaluators and comments relating to the RCSDF.

1~ ‘ 
~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


- t -
-

I

PL/l This language adopts its expression syntax from FORTRAN,

its block structure from ALGOL 60, and its data description
facilities from COBOL. It is rich in data types, data at-
tributes, control structures, and input—output features. How-
ever, it is not strongly typed and lacks extensibility, parallel
processing, synchronization, and real—time features. Evaluation
indicates that the language should be considered as a potential
base language.

PASCAL — This language provides richer declarative facilities
than ALGOL 60. It is also strongly typed, well designed language
with extensibility and control structure facilities. It can be

used as a starting point for designing new languages. However,

it does not support parallel processing, real—time, error
handling, and precision facilities. The results of the language

evaluation suggest that PASCAL could serve as the common language
because relatively few features need to be added.

ALGOL 68 - This language is extensible, providing great user
flexibility. It Is a block-structured language providing a rich
collection of data types and facilities. In addition, it allows
for the, definition, control, and synchronization of parallel
processes. It is a clearly designed language that can be
modified easily. The language was most consistently recommended
by its evaluators as the best candidate for the base language.

FORTRAN — Essentially the first higher level language, FORTRAN
lacks data description facilities, control ftructures, pointer
variables, and recursive procedures. Evaluation results m di-
cate that FORTRAN is not suitable as a base language because its
design does not reflect advances in language design.

COBOL - Its data description facilities and its concept of
environment. data,and procedure divisions are still important

245

___________________ - ---

—

1
”

today but the algorithm specification part of COBOL is behind the
current state of the art. Evaluation results indicate that
COBOL is not suitable as a base language for embedded computer

applications, both because it was not designed for this class
of applications and because it is dominated as a base language
by more recently designed languages.

CMS-2 - This language now contains most of the structured pro-
gramming features common to modern HOLs as well as features con-
sidered necessary for embedded military systems. The results

of the evaluation indicate that the language is not acceptable

as a base language because it lacks too many of the required
features.

The languages discussed below are more specific than the preced—
ing six.

HAL/S - This language is designed especially for use on airborne
computers and other embedded systems in connection with the
space shuttle program. It has a real-time processing facility
with a flexible facility for scheduled processes in a process
queue. Execution and storage allocation for scheduled processes

are left to the operating system. Evaluation results suggest that
the language could be considered as the base language.

SPLJ1 - Originally designed for application to acoustical signal
processing embedded computer, SPL-l is a block structured
language that allows users to express functions and control in
a structured form. It provides facilities that permit users to
create, define, delete, and synchronize control of parallel
processes. Like HAL/S it has the capability of establishing the
generation of processes with the resources dynamically allocated
at execution time by the operating system. It was recommended as
a base language candidate.

246

-

~~~~

, .- ,,
_ _--,,~‘



5.7.1.2 .2 Multiple Hiah Order Lanczuaaes - The availability of
a single HOL that will be accepted by all users of the RCSDF is

ideal but probably unrealizable. A current system developed at

Sperry Univac. called the Translator Wtiting System (TWS) , was
designed to facilitate the construction of high-level compilers
by supplying the nucleus of a compiler translator, called the
compiler skeleton. It consists of a general purpose lexical

analyzer and a table driven parser. The parse tables are con-
structed by a grammar analyzer when supplied with a BNF de-
scription of the source language. The semantic routines are

provided by TWS users for each HOL. The routines produce the

intermediate language code that becomes the input to the machine

code generator.

A common Intermediate Exchange Language (IEL) will need to be
developed to serve as input to the machine code generator.
Theoretically, once a code generator has been developed for a

target machine, it can compile for any HOL source accepted by
the TWS.

Future efforts will use the automation concepts found in the TWS
to simplify the development of code generators. Hypothetically,

a machine description (e.g., ISP and SMITE) would be processed
and tables constructed to control a code generator driven by IEL
input. This concept was introduced in Section 2 and called Auto

Code Generation (ACG). Similar efforts are being pursued

throughout the industry. The TWS and ASG techniques should be
defined for the unique requirements of RCSDF. Examples include
the ability to generate code for parallel processors, enforce
structured processes, and permit dynamic resource allocation.

5.7.1.2.3 HOL Summary - The HOLWG concluded that no single
existing standard language satisfied all the language require-
ments even though all the capabilities were available in

247 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



existing languages. The group recommended that work toward the
production of a single HOL should start with an existing base

language. PL/l, PASCAL, and ALGOL 68 were recommended as
suitable base languages . Current trends in HOL development

indicate that additional capabilities are being included that

provide users with high level interface to operating systems

for resource and task control facilities. The RCSDF development

project must consider the characteristics and intended function-

al capabilities of these interfaces and evaluate them on the

basis of the requirements for emulation on the RCSDF.

5.7.1.3 Emulation Design Lanauages - A truly high level language

whose sole purpose is emulation implementation does not exist.

Nevertheless, Emulation Design Language (EDL) requirements can

be sati~ f ied by some of the Computer Hardware Description
Languages (CHDLs) .

5.7.1.3.1 CHDL Description Levels - Computer hardware systems
can be described in four levels of abstraction. Each level of

description carries an added amount of implementation detail

than the level preceding it. Conversely, a broader view of the

architecture can be obtained more readily from a higher level
description. The four levels are described below.

~Ehe Circuit Level - The components used here are Rs , Ls , Cs ,
voltage sources, and nonlinear devices. Normally, groups of

components are used repetitively, and each group of components
becomes a good candidate for a primitive component for the next

higher description level.

The Loaic Level - The logic level description applies only to

digital devices. Components such as AND, OR, and NOT gates are

used at this level. Description in the logic level eliminates

248

L - ______ ________



much unnecessary detail and allows behavior to be traced on
circuits that could be extremely complex at the circuit level

description.

The Reaister Transfer Level - The next higher level has been
identified as the Register-Transfer (RT) level. The components

are the registers, data operators, and transfer operations.
Data operations are defined by groups of logic level components.

Clocks and some conditional rules are used to transfer data
from register to register. It is at this level that most digit

components are described. The RT level is closely related to

microprogramming , in that each RT statement could conceivably be
transformed into a microcode or a set of microcodes.

The PMS Level - This extra level of description is ~~ed for
an ensemble of computing devices (e.g., processors , memories,
I/O devices, communication lines). At this level, internal
details are omitted, leaving only overall information about each

device, for example, cost and performance criteria.

5.7.1.3.2 CHDL Survey - In 1973, a Consensus Language (CONLAN)
working group was set up to specify and develop a universal

consensus language for all phases of hardware design. So far,
they have defined CONLAN as an application oriented family of
sublanguages (SUBCONLANs) and have identified a universal base
language (BASE CONLAN ) from which all SUBCONLANs can be derived
in a formal and consistent way. The working group is expected

to complete the specification of CONLAN in the near future.

Until this is completed, we can only survey some of the existing
CHDLs.

249



~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ 
-—----,,-,,,- ------ ,,, - --_

~~~
-.

~~

AEPLI - A hardware description language, AHPL is based on
the notational conventions of APL.43 Bit array operations are
allowed , and most of the rich operator set of APL is retained.
A few extensions were also added. AHPLI is most suitable for the
logic level descriptions , although it may be quite easily ex-
tended to include RT level descriptions. An AHPL compiler

exists at the University of Arizona, where AHPL descriptions
of a combinational logic unit can be translated into a wiring

list and a fan—in list.

CDL - Structured like ALGOL, CDL is normally used for RT level
descriptions. Like most RT level languages, it identifies both
control and data carrier description capabilities, but allows
subcarriers of such carriers to be declared. In the control
portion , CDL also allows concurrent activities in each step.
It uses special control variables to form a label describing

the conditions for execution of a control step. A CDL simu].ator/

translator, available since 1967, translates CDL programs into
Boolean equations for each input device.

ISP - Instruction Set Processor (ISP) is an ALGOL-like language,
which uses block structures to describe various subsystems of

the system being discussed. It has the capability to handle
concurrency and activity sequencing in a simple fashion; it
also provides an adequate set of data and control operators. An
ISP description consists of a list of declarations followed by
the processes and action sequences. In the declarations,
hierarchy of register arrays, registers, and subregisters can
be defined. ISP is a procedural language, as opposed to CDL and
AHPL. Parallel actions are grouped into time blocks, and

42 F.J. Hill and G.R. Peterson , Diaital Systems: Hardware
Oroanization and Desian (1973).

250

k 

_ _ _ _

I,, . — - . - .----— , ,— - -  .-..-- --,,
~~
--- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _______



~ ‘ _____

~~~‘- ~~~~~~~~~~~~~~~~~~~~~~ 
,
~

sequential actions are described as lists of time blocks. This
definition can be used recursively to build very complex time
blocks. Conditional statements are used by ISP to select

actions under a condition described by a Boolean expression.

The ISP compiler at Carnegie-Mellon University can produce a
symbol table, a statement table, and a set of subroutine calls
from the ISP program. The information produced can be used in

a simulator or a design verifier and also in a design automation
program.

PMS - PMS (Processor Memory Switch) is used to describe the
physical structures of various subsystems of a computer and how

they are connected with each other. In the PMS level, the f ine
structure of information processing is ignored and the transfer
of information among the system components is considered. It

is most suitable for descriptions at the PMS level.

Because of the compactness of information offered by the PMS
descriptions of systems, the comparison of various systems can
be simplified. However, PMS cannot be easily used as a language
form, one of its main disadvantages.

5.7.2 RCSDF Desian LanL~1age Requirements - An RCSDF implemen-
tation should require that the system requirement specification

also be expressed in a language compatible with both software
and hardware design languages. This will permit host subsystem
validation tools to be developed to monitor the design process.

Capabilities found in software design languages establish a
number of requirements for the RCSDF architecture, assuming the

251

I
- - - - - ~~~~~~~~~~~—

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~ ‘~~~~~~~~~~~~ ‘“~~~~~~~~ ‘ -



- -

languages are used to define the application software., A sample
list is shown below:

o Parallel control structures

o Parallel control path implementation

o Process mutual exclusion

H o Separately compiled segments

o Minimal built-in control structures

o Data type specification - shared/non-shared

o Dynamic allocation

While the above language capabilities are compatible with the
RCSDF usage methodology, other capabilities are less compatible
and will force special requirements on the RCSDF development
cycle. Examples of such capabilities are:

o Machine configuration constants declaration

o Built—in I/O facilities

o Resource status interrogation (and control) facilities

The HOLs utilized in the TSDF must permit structured System
development and integration of CHDL produced functions. Specif i-
cally, they must permit clearly defined interfaces to be es-
tablished between HOL produced functional modules (processes)
and EDL produced functional modules, and between the code

.1. 

~~~~~~~~~ ~~~~~
, .j

‘~~~~~~~
,

-

~~~~~~~~~~



- . - - - - - - 
, ,

(micro- or macro—) and the operating system. It must not place

restrictions on the management of resources.

Since deployable systems designed for testing1 on the RCSDF are
expected to consist of processes of macrocode sequences gener-

ated by a HOL compiler and microcode sequences generated by an
EDL compiler, it is desirable that the language used to construct

either type of process be consistent, possibly one a subset of
the other.

The complexity of the RCSDF system and its usage requires that

an organized system definition exist to describe the structure
and capabilities of the deployable system to be emulated. Be-
cause of the autonomous nature of the RCSDF components required

for emulation, a hardware description language with the abstrac-.
tion level of PMS appears necessary to describe the deployable
systems operational characteristics . For intercomponent corn-

munications protocol, a capability for describing asynchronous,

parallel, operations is also needed. The RT languages appear

sufficient to describe those communication sequences. The RT
language is also seen as the language level required to describe
the deployable system’s computer functional architecture (reper-

• toire). However, since most RT languages are currently used only
for describing mainframe computers, some extensions are antici-
pated .

Ultimately, performance measurement is the chief requirement of

the RCSDF. It is desirable, during emulation, not to have to
change the application software to facilitate performance data
extraction. Thus a dialect of the general Emulation Design

• Language (EDL) must be available to describe the data extraction

process. By utilizing the EDL, it is possible to extract



1

the performance data required in parallel with the actual emu-
lation and minimize system overhead.

5.7.3 RCSDF Desian Lanauaae Recommendations and Conclusions -
It is important that a system model be developed for RCSDF.

The model must be reflected in the requirement language utilized

to specify application requirements and be compatible with

capabilities available in the hardware/software design languages.

To achieve this, the requirements language must be translated

into a data base which will support various validation tools,
including management tools to chart progress through the life
cycle by means of traceability and configuration control.

The efforts of the HOLWG and other groups shall continue to
affect the HOL5 which can be used for software development. If

- 

- 

in the future all DoD systems are to be programmed using a
common HOL, then RCSDF users will be using this language cx-
clusively at some time in the future. Thus it becomes imperative
that the RCSDF project maintain close rapport with this program
so that when unique requirements are identified from new system
architecture., they can be proposed for inclusion in the common
DoD HOL.

From the discussions in paragraph 5.7.2, it can be seen that a
CHDL with description levels of RT and PMS is desirable for
I~~SDF. However, because of the immaturity of this technology,
use of CHDLS should be restricted to emulation code design, i.e.,

the use of an EDL. An EDL translator or compiler will probably
not be available until later. However, an EDL should be used to

formulate the deployable system architecture and where possible,

CHDLs used to describe the existing RCSDF hardware components.

254

, 

-.—-——-- 

-•.
~~

/ 
_ _ _

- . 
• 

~~~~~~~~~~~~ 
_ _ _ _


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

• ‘ á ~’,ly~tnvP t’tytnnrj nflrlflr --- .-r. ___________________________________________________

6. Conclusions

In general the Sperry Univac study team has found R.ADC’S concept
of Total System Design (TSD), utilizing a Reconfigurable Computer
System Design Facility (RCSDF) for system emulation, to be a vi-
able method for reducing total system hardware and software costs.
Two primary reasons can be cited that lead us to this conclusion.
First, technology is supporting the availability of low cost,
specialized hardware elements, thus permitting selection of hard-
ware elements tailored to a particular military application re-
quirement thereby reducing software costs. Such selection of

hardware elements, however, must be delayed until the system de-
sign requirements are fully known and shown to be reliable and
viable. In addition, the fact that these specialized hardware

elements are available will reduce hardware design procurement
expenditures. Secondly, one of the results of the TSD concept
will be the establishment of system component interface standards,
design and documentation standards, and system performance and
validation procedures, which will increase the availability of

viable hardware and software system elements and increase corn-
petition during system procurements. Development of the RCSDF
emulation facility as an integral part of a total system design
methodology would promote both inter- and intra-system stan-
dardization as well as more reliable procurement procedures.

The study team recognizes the technical risks involved in attempt-
ing to provide a facility capable of emulating a variety of sys-

tem architectures (see paragraph 2.5.2). To reduce the risks,
while promoting the benefits, Sperry Univac suggests two alter-
natives to the four year development plan described in Section 4.
The alternatives (Figures 6.lb and 6.lc) would proceed under a

phased development approach permitting risks to be re-evaluated
and benefits identified before starting the next phase. (Recall

255



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- I U . Z

I t_, w • lu
I . . o l-

=

- o~~ 0.
— 0~~~

0 I •..i
• — 2 — A 14

I
•

‘

~~
,

I- U. r.i IL - .
U.

~~~ to
- U I’) (0
- ,- • to

— p  
~~I — —p ~4 to

• I

IL IL 0 I a to
I- w

— — —

• r

U. IL IL

11/ - 

-_



1’~~~~~ 
- 

- — - - -
~~~
•—

_____________________ — ~~~~~~~~~~~~~~~~~ T~~~~~
t-- - —

~. - —

that the tasks described in paragraph 4.3 were designed . for a

plan to achieve a general purpose emulation capability which was
a contractual objective.)

The first alternative completes all TSD concept formulation
studies before initiating implementation/specification tasks.
The primary objective would remain to develop a general purpose
emulation facility, i.e., RCSDF. The advantage would be a re-

duction in technical uncertainty and hence unforeseen cost fac- -

tors. The disadvantage would be a longer unit of time before
total system design benefits and feasibility could be demonstrated.

The second alternative would narrow the scope of the initial
RCSDF development by reducing its dependency upon the evolving
total system design methodology. This could be achieved by iden-
tifying a single case study and developing the facility to meet

the emulation needs associated with the required system or sub-
system. Existing tools (e.g., languages and language transla-
tors) would be used even though they might not be able to provide
the ultimately achievable benefits. New languages and tools re-

quired (e.g., scenario generators and performance query languages)

would be developed to meet just the requirements of the selected

case study. The advantages of this alternative are less time
to demonstrate benefits and a working knowledge of the problems

which remain. The disadvantage is the potential higher program
cost associated with hardware and software development efforts
which fail to meet objectives of other case studies/applications
and hence must be discarded. It should be noted that similar

military system development costs could be removed/reduced should
the RCSDF become a proven tool for total system design.

_ _ _ _ _ _ _ _ _ _ _ _ _ - -

257

Figures 6.]a through 6.lc summarize the contracted d.v.lopm.nt

plan and the two suggested alternatives. The Sperry Univac study

teem has concluded that the tasks identified in th. contracted

development plan (Section 4),tailored to meet specific case
study objectives (alternative 2 - Figure 6.lc), would ultimat•ly
provide RADC with the most timely benefits at a lower risk and

cost.

258

1/ ~~~~~~~~~
— 1

-
I — —

REFERENCES

Anderson, D. R. “The EPIC-DPS -- A Distributed Network Exper-
iment.” EASCON ‘75 Record (September 1975), pp. 121-A -

12l—G.

Batcher, K. E. “The Flip Network in STARAN.” Proc. 1976
International Conf. on Parallel Processing (August 1976),
pp. 65—71. -

Batcher, K. E. “Sorting Networks and Their Application.” Proc.
SJcC (1968). pp. 307—314.

Batcher , K. E. “STARAN Parallel Processor System Hardware.”
APIPS ~jCC XLIII (1974), pp. 405—410

Bayer, D. LI., and Lycklama, H. “MERT - A Multi-Environment Real-
Time Operating System.” A~M Proc. of Fifth SYTUP., 0. S.
Princ. (1975), pp. 33—42.

Bell, G., and Newell, A. Computer Structures: Readings and
Examples. New York: McGraw-Hill, 1971.

BMD Advanced Technology Center. “BMDATC Software Development
System - Program Overview.” I (July 1975).

Davis, C. G., and Vick, C. R. “The Software Development System.’
Proc. Second International. Software Ena. Conf. (October
1976).

Denning, P. J. “Virtual Memory.” Com~utina Surveys (September
1970). pp. 153—189.

Dijkstra, E. W. “Cooperating Sequential Processing” in
Proaramming Languages, Genuys. ed. New York: Academic
Press, 1968. pp. 43—110.

259

• • .~ •- ~~~~- .
-~~-•_ _

-

~

•~

~
— -

~ .

Dijkstra, E. W. “The Structure of the Multiprogramming System.”

Comm. of ACM XI:5 (May 1968), pp. 341—346.

Farber, D. J. et al, “The Distributed Computer System.” ~~~~~~~~~
-

ceedinas IEEE Comouter Society .Internptipnal Conference

(March 1973). pp. 31—34.

Hansen, P. B. “The Nucleus of a Multiprogramming System.”

Comm. of A~M XIII:4 (April 1970), pp. 238—242.

Hansen, P. B. Operating System Principles (1973).

Hill, F.. J., and Peterson, G. R. Digital Systems: Hardware
Oraanization and Design. New York: Wiley, 1973.

Horning, J. J., and Randell, B. “Process Structuring.” Comp.
Surveys V:l (March 1973), pp. 5-30.

“Hyperdimensional Microporcessor Collection Seen Functioning
as Mainframe.” Diaital Design (November 1975).

IBM. “HIPO: Design Aid and Documentation Tool.” SR2O-94l3-0
(1973).

Kinney, LI. LI., and Christiansen, B. P. “Functional Requirements
of a Memory Manager.” Univac PX 1174 (May 1976).

Koczela, LI. J. “The Distribution Processor Organization” in
Advances in Computers. New York: Associated Press, 1968.

Lawrie, D. H. “Access and Alignment of Data in an Array
Processor.” IEEE Trans. on Computers (December 1974),
pp. 1145—1155.

~

~~~~ ~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- -—-- - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .__—

p

Parnas, D. “On the Criteria To Be Used in Decomposing Systems
into Modules .” Comm. of ACM XV:l2 (December 1972) . 1’

Pease, M. C. “The Indirect Binary n-Cube Microprocessor.’
IEEE ComPuter Society Reposit~~y 75-100 (1975).

Rose, C. W. “LOGOS and the Software Engineering .” AFIPS
Proceedings, FJCC XLI (1972), pp. 311-323.

Stone, H. S. “Parallel Processing with the Perfect Shuffle.”

IEEE Trans. on Computers (February 1971), pp. 153-161.

Thurber, K. J. “Associative and Parallel Processors.’ Computing
SurveYs (December 1975).

Thurber , K. J. et a].. “A Systematic Approach to the Design of

Digital Bussing Structures.” Proc. Fall Joint Computer

Coaf. (1972), pp. 719—740.

Teichroew, D., and Bastasache, M. “PSL User ’s Manual.” ISDOS
Working Paper No. 98 (1975).

Widdoes, LI. C. “The Minerva Multi-Microprocessor.” Proc. Third
Annual Svmo. on Comouter Arch. (1976), pp. 34-39.

Wilhelm, N., Pessel, D., and Merriam, C. “The CERF Computer
System.” Proc. of the NCC (1976), pp. 765-768.

Wulf , W. A. and Bell, C. G. “C.mmp - A Multi—Mini Processor ,”
AFIPS FJCC, XLI, Part 2 (1972), pp. 765-778.

Wulf, W. et al. “HYDRA : The Kernel of a Multiprocessor Op-
erating System.” Comm. of ACM XVII (June 1974), pp. 337-

~~

- ~~

:‘
L~~~~~

r~~-~
-- --• -

~
- -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-

~~~ ~~~~~~~~~

- ,: • •
~~ . i:t- ~

;~~~ *~ -
- -

,

~~~~~~~~~~~~~ 
•

• •-
.
‘~~~ ,

::~ ~~~
• 

-
- ~~~ -

I •

•~- 
-‘ 

t — ~ 
— *-

*- ~~

- •~~
- ~~~ • - - - 

~*
• _ 

-
•~~ - - •,4 . ~

~~~ •~~ \
- - -: ~I • • I

• •• ~ •
- • •

• M~~1•
F.~ ~~*- -~-• - - -

*
_ _ •‘

~
•
‘~~

•-

- , I~
~~~~~~ 

•
~~~~

•
~:•

~~~

s~ ~~~ 
MISSION

qi *~ ~ ~ 
_,~~~~~~ *

,

—• ~ 
- 

Air -,,‘ ~~~~~~~~ *~r

~~~~ ~ e *

~
_ _

~~~
_
~•_*- ~

•‘ 
~
-

•
1~~ I I~~$ ’~ •~~~ -~ 

- I  - •
•~

~
,;‘- 

,•

~~~~wta ~~~~~~~
•- •

•

- .~~~~. : E
.~~~~S m t~~ C~ •

-

•

. t~._~~• ,I~ .

•

,

—
•
~~~

-
•- 

- .•~~_, S • 

• - -5- :‘ ~ - 

• 

~. _
~o,~~o~~~aa~ 

• 

- 

-S 

~~• 
andMi~Uøt. 

- ‘ - S • 
I~~~~ 

~~~~~

• —

S

~~ 4d ata~~
• ~

. • -

~~

~: - ~

*
* zIM~b1U*g, -*

~~~ ~ • S •
:~~~~~~~ ~~~~~ ~~~— • -

• • * • -:~
• • 

• 
S ~~~ ~~~~ ~~ 

- - • 
• •

- ~~~~~ ~~~~~ - ,-• - ‘*. I~ ;-:~ ,~•:- - 
• •~ •

, 
- 

•‘)~k~~~~~~ • - •
. :t

~ •~~~• • I ~~• S~~• ~.:• • ~~• •- ‘ ~~~- - - • .~

~~ 

~~ *

S~~ ~~~~ ~~~~~~~~~~ • S• •
i ~. :~~ -r ~•* 

~S- ~ •~4~~~~- -~~**- ~~~~~• 4 r • 5
’ 4~ç~~~-~ : -

~~~ 
- ‘,

_ _ _ _ _ _ _ _ • — _ ~~__ - •~~ -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -‘4

