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PREFACE

This document is the final technical report and computer program

documentation (CDRL Item s A002 and A003) for the project entitled Functional
PrOgramming , Contract F30602—76—C—0315. It presents the results of a

thirteen month study of a new methodology f~r software development. The
new techniques, collectively called Functional Programming (FP), are
descr ibed in the repor t as are the results of varied applications of the
methods in both the rewriting of existing programs and the development of

hew programs. The purposes of the report .are. to:

• describe the F? methodology in sufficient detail to permit an
average progra er to understand and employ FP practices and
succeed in developing computer programs embodying FP principles,

• provide detailed documentation of the sample programs as necessary
to illustrate the contrast between conventional programs and
functional programs including functional descriptions, source
listings and logic diagrams, and

• present findings of the study of the potential benefits to be
der ived from using FP, especially with regard to improved test-
ability, reliability and maintainability of computer programs.

The report was prepared by J. R. Brown and E. C. Nelson, incorporating

valuable support, constructive criticism and suggestions from M. W. Alford ,

E. K. Blum , B. W. Boehm , R. H. Hoffman, J. T. Lawson, H. Lipow, and

F. G. Spadaro . The authors also acknowledge the positive encouragement

and guidance rece ived from the RADC Projec t Engineer , D. Roberts.
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EVALUATI ON

An objective of RADC TPO-R5A , Software Cost Reduction , is the

e-~p1oration and development of novel software tools and procedures

which enhance the USAF software development process. Tools are

hardware/software devices which enable a human to bring greater

leverage upon software production and quality assurance processes.

Procedures are uniform guidelines which assist in the unambiguous

specification and deve lopment of desired software products.

This effort has resulted in the development of a new procedure

for wri ting computer programs that are consistent with the func tional

specification of the program . The procedure directly supports

requirements traceability and test case data gene-ration. The

resul ting programs contain no functional redundancies (non-executable

statements) , and are easy to read and comprehend . The concepts can

also he applied to existing software to eliminate non-executable

statements and improve execution performance .

The Functional Programming methodology was developed and

demonstrated using isolated computer programs. Application

ü~~ a large software system development will he required in order to

nrove the actual effectiveness of the methodology.

J ) ON ALIJ ROBER TS
P r o j e c t  Eng inee r
Software Sciences Section
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1.0 INTRODUCTION AND SU~~ARY

Functional Programming (FP) is both a theory of progra ing and a

method of programming derived from the theory. The theory provides a

conceptual framework for thinking about programs and analytical tools

usable in analyzing programs and in writing programs, what ever programm ing

method is used . The theory does , however , suggest a method of programm ing

described in this document and called the “PP method”. Both the theory and

the method are evolving as they are used and problems encountered are

solved. PP has potential for improving the reliability, maintainability,
and performance of programs.

1.1 Overview

PP theory is based on the formal model of programs in the SEMANOL1

system . It is concerned with questions , such as: Wha t is a program?

What is execution of a program? How are programs structured? What are

the relations among the structural elements of a program? What is a

functional requirement on a program ? Wha t is a formal specification of a
program? What is a functional capability of a program? What is a correct

program? What inference concerning correctness of a program can be made

from correct execution of a test case? The theory provides precise answers

to these questions.

The PP method involves viewing (and partitioning) the total set of

inputs (i.e., the input domain) to a program as a number of distinct subsets

associated with program logical structures and with functional requirements.

The partitioning and association:

• provide traceability of functional requirements to structural
elements of the program ,

• simplify the control  structure of a program to eliminate non—
executable (phantom) paths , functional redundancies , and
unnecessary executions,

• support development of test cases to demonstrate satisfaction
of requirements,

• provide a description of the program usable in solving proble~s
encountered in maintenance ,

• provide a method of constructing a program from the spec~ ficac ion
of its functional requirements , and
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• provide a method for performance improvement by eliminating
unnecessary processing.

A program written using PP is called a “functional program”.

Because its structure is simpler, more visible, and more directly traceable

to functional requirements than is the structure of conventional programs,

a functional program is easier to read and understand . The increased struc-

tural visibility also enables the programmer to detect, analyze, and

correct many errors as he is writing the program, resulting in fewer errors

in the developed program. Because test cases to demonstrate satisfaction

of a functional requirement can be constructed by merely selecting inputs

from the input domain partition associated with that requirement, testing

becomes substantially simpler.

1.2 Summary

Studies have shown that much of the apparent complexity of programs
is due to the presence of phantom paths and functional redundancies (log ic

paths that compute the same function). By eliminating them, PP produces

programs having simpler structure — fewer paths and executable statements.

The presence of loops, usually regarded as the source of much complexity,

is treated in terms of sets of execution sequences, and association of each

such. set with an input domain partition and functional requirement. The

partitioning of the input domain also aids in the analysis of program

usage problems and suggests ways to eliminate some of them .

The simpler structure and resulting fewer executable statements in a

functional program may reduce the program ’s use of computing resources —

storage and execution time. Additionally , the association of input domain

partitions with program logical structures can identify statements executed

for inputs from a given partition but not needed to compute the output for

that partition. Rearrangement of the statements so that processing is

performed for each partition only if needed can reduce processing time for

the affected partitions.

PP can also be used to analyze existing programs. It derives from

the program text a complete description of the program — what it does ,

t~ow it executes, and its response to any input — in terms of the input

domaIn partItions arid their associated logical structures and functional

—2—



requirements. F? analysis can identify problems in a program and indicate

how to correct them, thereby improving the reliability of a program . I

also provides data enabling the rewriting of the program , with little

effort, as a much simpler functional program having no phantom paths and in

some cases, fewer executable statements.

The PP description of a program, derived from PP analysis of the

program or from the process of writing a functional program, can be used

by a ~maintenarcc programmer to solve problems occurring in the operational

use of the program. It enables him to relate the problem to specific

structural elements, functional requirement , and input domain partition.

He can then more easily determine the source of the problem and how to

change the program in a way that ensures that the change satisfies the

functional requirement.

Many functional programs are structured programs; however, PP analysis

of existing programs has shown that some structured programs have unnecess-

arily complicated structures. It shows how to simplify those ~tructures and,

in many cases, obtain a structured functional program. It has also shown

that, in some cases, a structured program does riot have the simplest
structure.

FP theory does not depend on the programming language used , but
details of the PP method can be language dependent. PP is applicable to

both high level language programs and assembly language programs.

In this report we have provided a detailed definition and description

of F? and have incorporated numerous examples wherever necessary to clarify

important F? principles and demonstrate the intended application of PP

techniques.

F? theory is described in section 2, PP analysis in section 3,

writing of functional programs in section 4, and testing functional

program s in section 5. Studies performed on the impact of functional pro—

gramming on programming language requirements, software reliability, and

rnaintenance are reported in section 6. Section 7 discusues system level

functional programming and section 8 cofltains preliminary specifications on

two tools to support functional programming . Section 9 presents

conclusions and reco endatjons and section 10 list3 references and related
publications.
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2.0 PUN~TIONAL PRO GR.ANMIN G DEFINITION A~ D DESCRIPTION

PP theory is based on the formal model of a program given in the

SENANOL systeu (section 2.1). The theoretical concepts in the SEMANOL

system are extended to the structural elements of a program (section 2.2).

The distinction between functional program requirements and functional

program capabilities is discussed (section 2.3). Notation for describing

program structure is developed (section 2.4); the concept of phantom paths

is discussed (sec tion 2.5); input domain partitIons are defined (section
2. ~5);  and functional programs are defined (section 2.7). The exampl~z

used here and in subsequent sections (i.e., Routines A, B, and C) are

actual routines that were developed for a very large scale real—time sys-

t em.

2.1 The SE!ANOL Nodel of a Program

The semantic theory of the S~~tANOL system
2 provides the following

~~finition of a program:

• A progr~m p specifies a computable function F on the set E of

inputs specified by the input expressions in the program.

The set E, the input domain of the program, is composed of members ~~~ each
member being a set of input values for an execution of p.

E — 
~
E
i
: i—1 ,2 , . . .,  N}

The input values composing each Ei include all the values necessary to

cause execution of p, including those saved, if any, from a previous
execution of p. E identifies all the computations program p can make :

• Each E. in E corresponds to a possible execution of p.

• Each actual execut ion of p is initiated by an input E
~ 

from E.

Thc number N of members in the set E is finite,although perhaps very large ,

for all programs in which the number of input variables and their ranges

are fInIte. TFe function F is a rule which assigns to each E~ in E a

value, called the “function value” and denoted by F(E4), chosen from a

s~c called the “range” of F.
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The definition of a program is formalized through a semantic operator

~ which, applied to a program p and an input E1, prescribes the execut~ ii

of p to produce as its output the function value

~(p,E
1
) — F(E

1
)

E is the domain of F — i.e., the set on which F is defined.

The correct output of an execution of p with input E~ is F(E
1
), the

desired function value. An execution of p which does not produce as its

output F(E~) is called an “execution failure”. It can result in:

• incorrect output: ~~p,E1
) F(E1) # F(E1)

• premature termination of execution,

• failure to terminate as in an endless loop.

Since an endless loop does not compute a function value, code containing

one is not only incorrec t, it is an “illegal” program. Some programs

include apparent endless ioops used to use up time until an interrupt is

initiated by art operator or some external signal. In PP theory, such an
interrupt is an input to the program and should be included in the analysis

of th-~ program.

A “:orrect ” program is one for which all executions produce correct

output:

• For all E
i 
in E, $(p,E~ ) — F(E~)

This definition of a correct program can be extended to allow a tolerance

in execution output:

• For all E~ in E , k (p ,E1) — F(E
1)I 

< C

2.2 Extension to Program Structural Elements

When program p executes with input E1, the execution proceeds through

a specific coce sequence , called an executable logic path, L~. The same code

sequence — i.e., the executable logic path L~ — nay be caused to execute by

other inputs. The set of all inputs which cause L~ to be executed is denoted

by G~ . G~ is a subset of E such that :

—5—
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• execution of p with E~ in G
3 

executes L3, and

• if E~ causes execution of L3,  it is in G3
.

Execution of p with an Ei a member of E but not a member of causes

execution of another logic path, say Lk with k#j.

Al]. inputs E1 in E cause execution of some logic path; therefore

each E1 is a member of some and is associated with a logic path L
i
.

(There can be code sequences in a program which cannot be executed by

any input.) Thus the union of all the subsets C
1 
is the set E:

tiC — E
j i

The subsets C
3 
are disjoint, for no E4 can cause execution of more than one

logic path.

G
jflGk 

— ~ for 3 ~ k (~ : null set)

The C
3 

therefore partition E.

Since the code sequence L~ is itself a program , it may , in accordance

with the formal definition of a program , be interpreted as specifying a

computable function F
3 
on C

3
:

Q(L
3 
,E
1
) F~ (Ei) for E~ in 03

The “total”function F, specified by p, may therefore be represented

by the collection of functions F~, each F~ being defined on its domain G
3
.

In terms of the C
3 

and F3, a program may be represented as:

• For all 3 in l~~ <n (If E~ is in C3, Compute F
3

(E~ ))

In actual programs, determination of the of which E~ is a member
is accomplished by evaluation of a sequence of branch expressions. EvaluatIon

of the sequence may include transforming some of the values in Ei to
a form such that the branch expressions are simpler; e.g., the variables

Xl and X2 may be transformed into polar coordinates before a particular

branch expression is evaluated.

—6—
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2.3 Functional Reouirements and Functional Ca~ abilit ies

Partitioning of F, the function p is intended to compute , and its
domain E into the set of pairs (C

3 
F
3
) defines a set of “functional require-

ments ” on p. (In addition to functional requirements , a program may have
performance requirements, reliability requirements, maintenance requirements,
etc.) The partitioning of F, the function p actually computes, and its
domain E into the set of pairs (C

3 
F
3
) defines the “functional capabilities”

of p.

The objective of reliable software development generally is to produce

the program such that its functional capabilities are the same as its func-
tional requirements. Similarly, the objective of software verification is to

verify that the functional capabilities are the same as its functional re—
quirements — i.e., to verify that, for all 3 :  -

• C — C . andI

• F — F.3 3

Problems arise when ~ C3 
and/or the F

3 ~ 
F
3
. In addition to the

obvious problem of an execution failure , F
3

(E~ ) # F
3

(E1), there are other
problems analyzable in terms of the (G~~F3

) and (G
3 

F
3
). One common

problem is that a program may have functional capabilities not specified

in its functional requirements; e.g., in addition to functional capabilitIes

(G1, F1), (G2, F2)~ ~ n’ F~) corresponding to functional requirements

~ ~~), (G2, F2), ‘ ~~n’ ~n~’ 
a program may have functional capabili-

tIes (C
~+1 F~+1

), (G
~+2, 

F +2), ~~~~~~ 
(Ga, Fm) not corresponding to any

stated functional requirements. These “hidden capabilities” are the source

of many usage problems. This commonly arises when the G . do not collect—

Ivelv cover all of the variable ranges defined by the computer word size.

A user not understanding the limitations of a program may then select an

—7—
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input E1 from one of the G~+j
’s and obtain as output a function value

not interpretable in terms of what he expected the program to compute.

Another type of usage problem arises when the required functions

F
3 
are not clearly associated with the 0

3 
on which they are defined. A

user wanting to perform a function F
3 

may select an. input from Gk, with

k~j ,  and when he obtains the output Fk (Ej) instead of the expected

tie ascribes the problem to an error in the program.

PP methodology for writing programs (section 4) involves explicit

definition of the functional requirements (Ga .  F
3

) and provides a method

for designing the program so that it contains only the functional capabili-
ties (G~~ F3

) corresponding to the (G3, F3
) and no others.

2.4 PP Notation

Functional analysis of programs is aided by introducing a notation for

representing program structure in more detail. The structural elec~ents

at the level below the logic path are:

• branch expression — an expression which when evaluated determines

the execution sequence, such as a boolean expression in a logical

IF statement or an arithmetic expression in an arithmetic IF

statement.

• in—line code segment — a sequence of executable expressions not

containing any branch expressions, such that, if one of the

executable expressions is executed , all of them will be executed.

In—line code segments will be denoted by the symbol S~ , with the value of

the subscript i denoting the numerical order of a segment in the program.

Branch expressions are denoted by S~ , with the subscript 3 taking on
numerical values denoting the numerical, order of the branch expression in

the program. The superscript k identifies S~ as representing a branch ex—

pression, and is also a variable denoting the value resultir,, from an

evaluation of the branch expression. If S~ is a. boolean expression , such
as F~~.EQ.0 , it may be evaluated TRUE, denoted by t , or FALSE , denoted by f;
e.g., S~ denotes branch expression S~ evaluated TRUE. If S~ is art expression

—8—



in a FORTRAN arithmetic IF statement , it may be evaluated to be less than

0, denoted by — ;  it may be evaluated to be-equal to 0, denoted by 0; or
it may be evaluated to be greater than 0, denoted by +; i.e., S’~

’ denotes
k kbranch expression S
3 
evaluated to be greater than 0. If S

3 
is an

arithmetic expression in a FORTRAN computed GOTO statement, k denotes the
integer result of its evaluation; i.e., S~ denotes branch expression S~
evaluated to be 3.

As art example of the use of the notation, consider the following
FORTRAN program , called Routine A:

S~ IP(GN.NE.O) GOTO 10

S~ IF(cN.LT.CT) GOTO 5

S1 IE— l

GOTO 25

S2 5 1 E 0

GOTO 25

10 IP(CN.LT.TR) GOTO 20

S3 1 E 1

GOTO 25

S, 20 I E — O

S~ 25 IP(IE.NE.l) GOTO 40

J E — J E + l

KI - JD
Id — 2

KR — 3

1(3 - JA

KE — JB
JV - JV + 1(1 + 3.
KG — 1

S6 
40 RETURN

END

FIGURE 2—1 . FORTRAN Subroutine A

—9—
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Routine A has 20 executable statements, 6 segments, and 4 branch expressions.
The branch expressions S~ are defined to be the expressions evaluated

within the IF statements and the segments S~, are defined not including

any GOTO statements at their termination; thus, for Routine A, the branch

expressions and segments are:

Branch Expressions Segments

S~~~: GN.NE.0 S
1: IE— l  S5: JE :JE+1

CN.LT.CT S : IE — 0 a 2
2 2

CN.LT.TR S : IE - 1 a

3 3 
~~~— JB

IE.NE.l S : I E— O4 4 K G 1

S6: RETURN

In terms of this notation, Routine A can be written as shown in Fig. 2—2.

IF 4 GOTO 4
IF 4 GOTO S2
Si

GOTO S~

S,

GOTO S~

IF 4 GOTO
S3

-
, GOT O S~

S4

IF S~ GOTO S
6

S5

S6

Figure 2—2 . Routine A in F? Notation

_ _ _ _ _ _ _  - -  
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Routine A in PP notation is more compact than the original program and
its structure is shown more vividly. In this notation, “IF” denotes th;~
the branch expression following it is to be evaluated , with the results

of the evaluation used to determine the branch to be taken. “GOTO” denotes

a transfer of the execution sequence to the branch expression or segment

named following the GOTO. From the PP notation form of a program, a

diagram showing the logical structure of the program can be prepared

directly. Such a diagram for Routine A is presented in Fig. 2—3.

k kS
2 S

3

SI. S
2 S3 S4

kS4

S5

S
6

FIgure 2—3. Structure of Routine A
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In the diagram, the left hand branch from the lower side of a circle

surrounding a branch expression sk denotes a FALSE evaluation S~ and the -

right hand branch denotes a TRUE evaluation S
3
. By convention, the flow of

execution is downward , so arrows denoting execution flow direction are not

used.

n terms of the PP notation , the 8 potential execution sequences are:

S1 2 1 4 5 6

f f
S
1 

S2 S1 
S4 

S6

f t
S
1 

S2 
S
2 S4 5 S6

f t
S
1 
S2 S9 S4 6

t f 
~ s sS1 S3 S3 S4 5 6

t f
S
1 

S3 S3 S4 6
t t  fS~ S3 S4 S4 S5 

S6

t t t
S1 S3 S4 S4 S6

2. 5 Phantom Paths

Although there are S apparent logic paths through Routine A, 4 of
them are not executable. They arise because the evaluation of branch

expression S~ is dependent on prior assignments of value to the

variable IE in segments S1, S2, S3. and S4~ S~ branches on whether IE has

the value 0 or 1. Since S , S , S , and S4 set IE to 1, 0, 1, 0 respectively,
tne sequence S1 S2 ~1 

must result in S4, the sequence S~ S2 
must result

in S~ , the sequence S~ S S3 must result in S~ , and the sequence S~ S~ S4
must result in S4. Only the following logic paths are executable:

• s f s f
1 2 ~l ~4 ~S ~6 

:

• S~~S~~S2 S~~S, :

t if if
• S1 S

3 S3 S~ 55 
S
6 : L

3

• S~~s~~ S4~~~~
g
6 : L.4

—12—
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T~~~~~ remaining 4 code sequences are not executable. They are therefore
“phantom paths”.

In the case of Routine A , one—half of the potential logic paths are

executable and one—half are phantom paths. Some programs have more phantom

paths than executable paths. The actual structure of a program can be

concealed in a web of phantom paths obscuring the executable logic paths

so that they cannot be readily seen by reading the program text.

Because of the existence of phantom paths, the text of a program

does riot continually cue the programmer on the actual structure of the

program as he writes it. He has to keep a picture of the structure entire-

ly in his mind . If the program is mc-re than a few statements long , this may

be quite difficult. The resulting structural confusion may lead to pro-

grammer errors. Such errors, when made, cannot be easily detected by

scanning the program text; they are found only through extensive and costly

debugging and testing.

2.6 Input Domain Partitions

2.6.1 Determination of Input Domain Partitions

Partitioning of the input domain into subsets, G3 is determined by

constraints on the values of the input variables imposed by the branch cx—

orassion evaluations selecting the logic path L3. Each input variable ran—

ges over a set of values specified explicitly in p by a data declaration or

implicitly by a convention in the programming language. A branch expression

partitions the range set of a variable into two or more subsets. As a

logic path is executed each successive evaluation of a branch expression

constrains the range of one or more input variables. The net effect of all

of the branch expression evaluations for logic path L
3 
is to constrain the

values of the input variables to lie within Cj. Some of the input variables

nay not have their ranges constrained by the branch expression evaluations.
Also, some of the input variables may not enter into the calculations in Lj.

Thus the number of variables to which values must be assigned may differ

from logic path to logic path.

Deter~ination of the C3 may be illustrated by constructing the input

domaIn partitions for Routine A. Routine A has 9 input variables — G~~, C~ ,

CT , TR , JE , JD, JA , JB , JV — to which values are assigned prior to entering

th~ rcutine . It has no data declarations , so the range sets of the input

—13—
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variables are determined by the convention in FORTRAN that variables
beginning with the letters, I, J, K, L, M, or N are integer variables
and variables beginning with any other letter are real variables .
Thus:

• GN, CN, CT, and TR are real variables.

• JE, JD, JA, JB , and JV are integer variables.

The ranges of these variables are determined by the computer word length .

The partitioning of the ranges of these variables is determined by
- k k kthe branch expressions S1, S2, and S3:

• 4 partitions the range set of GN into the value 0 and all other
possible values.

• 4 partitions the range set of CN into values less than the value
of CT and values greater than or equal to the value of CT.

• 4 
partitions the range set of CN into values less than the

value of TR and values greater than or equal to the value of TR.

S1’• acts on the internal variable IE and has no partitioning effect  on the

input variables. S1. S~, and S3 act only on the 
variables GN, CN, CT, and

TR. They have no partitioning ef fect  on JE , JD , JA , JE , and JV.

2.~~.2 Specification of Input Domain ParUtions

The input domain partitions may be specified by listing the branch

expression evaluations and any variables whose range sets are not

partitioned:

• C
1 :GN — 0, CN>CT , JE, JD, JA, JB, JV

• C2 : GN — 0, CN<CT

• G3 : GN ~ 0, CN>TR, JE, JD, JA, JB, JV
• C4 : GN ~ 0, CN<TR

Note that although there are 9 input variables, only 8 are included in
C1, 3 in C2, 8 in G3, and 3 in C4. Thus each Ei in C1 is a set of 8 values;
each E

1 
in C

2 is a set of 3 values; each Li 
in C

3 
is a set of 8 value!;

and each E.~ in C4 Is a set of 3 values. The complete input domain may be
constructed by forming the unIon of its partit ions :

E — C U C U C U C,1 2 3 ~

The functlor .s  corresponding to each of the C
3 

are:

— 14—



• F
1
: S

5 
S
6 : JE = JE + 1

KI — JD
= 2

KR 3
KB - JA

a J3
JV = JV + 1(1 + 1
KG = 1
RETURN

i.e . ,  F1 updates certain values in a data base.

Each computed val ue of F1 is a combination of the values assi gned to

the variables JE, KI, ~Ci, KR, KB, ICE, JV , and KG at the end of execution of

Routine A. It is,therefore , an 8—tuple having as its elements the values

assigned to these variables . Three of these elements — viz . ,  the elements

associated with K~I, KR , and KG — are restricted to a single value. The re-

maining 5 elements can individually range over the set of Integers fitting

within one word length . The range set of F
1 

is the set of these 8— tuples .

The mapping from C1 to this output set of 8—tup les is defined by the equations

corresponding to the assignment statements in S
5
.

• F2 : S6 : RETURN : ~.omputas no output values;

i.e., F
2 
does not update the data base.

Since F., computes no value , the range set of F2 
is a set containing no

— v i z . ,  the null set S. F2 then maps the set C2 
in to 8.

• F : ~~ S :  JE a JE + 1
KI JD

a 2
a 3

KB — JA
- JB

JTJ a JV + 1(1 + 1
KG = 1
RETURN

~~~ 
up d at e s  the data  base .

• F4 : S6 : RETUP.N: no update.

~cte t:~at F , and F,, F4. Routine A contains functional redundancies

of t~~o kind treated in the next section.
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An alternative technique for specifying the input domain partitions is
via a graphical representation (Figure 2—4). This type of illustration

supports the analyst in assuring that all significant values of branch

variables have been considered. It also helps in the derivation of input

values for test cases. This technique has proven to be a valuable tool in
the functional design (or redesign) of large programs. If desired, the

functions (Fj) may also be included as shown in Sections 4.3 and 4.4, thus

providing a concise illustration of the desired functional capabilities.

G N — 0  GN~~~0

CN � CT CN < CT CN � TR CN < TR

C1 G~ C3 C4

F igure 2—4 . Graphical Representation of Input Domain Partitions

2.7 Functional Programs

Can programs be wri t ten so they contain no phantom paths? Can the

functional redundancies be eliminated? Based on the preceding analysis

into the C
3 

and F3, Routine A can be rewritten without functional

redundancies and with no phantom paths. First combine the partitions of

the redundant functions :

—16—



• G~~~ — G
1

U G
3

G’ — G U C2 2 4
Then construct the branch expressions correspond ing to the new partitions:

• G~ : (GN.EQ.0).AND.(CN.GE.CT).OR. : 4
(GN.NE.O) .AND. (CN.GE.TR)

• G.~, : (GN .EQ.0).AND.(CN.LT.CT).OR. : 4
(GN .NE.0) .~ND. (cN.Lr.rR)

Since G~ and C.!, are disjoint sets and are complements of each other

relative to E, only one of the new branch expressions is needed. Routine A

may therefore be written, in F? notation:

IF 4 GOTO S
6

S
5

0

This new form of the program has only 2 paths , both executable, correspond-
ing to the 2 distinct functions. Substituting the FORTRAN expressions for

3~~ , S5, and S6 provides FORTRAN code for the revised version of the Routine A

as shown in Figure 2—5.

IF((GN.EQ.O) .AND.(CN.LT.CT) .OR.

(GN.NE.0).AND.(CN.LT.TR)) GOTO 10

JE — JE + 1
KI - JD

= 2
KR — 3
KB = JA
KB —

JV - JV + KI + 1
KG - 1

10 RETURN
E~ D

FIgure 2—5. Revised RoutIne A
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The original version of Routine A had 8 apparent paths , 4 of which were

executable , and 20 executable statements.  The revised version has 2 logic
paths , both executable, and 10 executable statements.  It therefore has a
simpler structure and less code; however, it has introduced a complication

in that it contains a compound Boolean expression .

The f inal version is called a “functional program”, because its
structure is explicitly related to the functions F

3 
performed by the pro-

gram and their input domain partitions G ., . More generally, a functional

program has no phantom paths and the functions F~ and input domain parti-

tions G~ corresponding to each of its logic paths L
3 
have been explicitly

def ined ; i.e., specifications for them have been written down, so they are

explicitly known and not merely intuitive concepts in the programmer ’s mind.

Routines A and the othe r routines , Routine B and Routine C, used In

this repo rt as examples exp laining FP concepts , are actual routines from a
real time software project. These routines, written in FORTRAN, were

required to be structured using only certain specified control structures,

modelling the structured programming control structures of IF THEN ELSE,

DO WHILE, etc. in terms of specified groups of FORTRAN IF statements and

GOTO statements.  Both the original and FP version of Routine A are

“structu red” in accordance with this definition .
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3.0 FUNCTIONAL PROGRA~~fING ANALYSIS

Functional programming analysis is the application of the basic

ideas uf functional prOgramming to the analysis of existing programs. It

derives from the program text a complete description of the program —

what the program actually does , how it executes , and its response to any

input. It therefore is a technique for independent analysis of programs.

Since this independent analysis can identify problems in the program, it

can contribute to improving the reliability of the program. The description

of the program can also aid the maintenance progra=er, who generally was
not involved in developing the program , in unders tanding the program,

analyzing problems , and determining the changes needed to solve the problems .

Because it partitions the input domain into subsets associated with function-
al requirements, functional programming analysis can aid the generation of

test cases to demonstrate satisfaction of the functional requirements. The

description also provides data usable in rewriting the program as a

functional program.

3.1 Functional Programming Analysis Methodology

Functional programming analysis closely follows the method used in

Section 2 for analyzing RGutine A to illustrate the concepts of functional

programming. The objective of functional programming analysis of a given

program is to partition the input domain E of that program into subsets

C . associated with executable logic, paths L. and to determine the function

F . each L
3 

computes. This analysis is accomplished by identifying in the
program text the in—line code segments S and the branch expressions S~ ,

analyzing the evaluations of the S~ to determine the L3, and analyzing the

S . composing each L . to dntermine the F
3
.

This analysis can be performed by carr’ring Qut the following steps:
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1. Identify the segments Si and branch expressions S~ in the program text

by marking them on the left hand margin of the program listing.

2. Rewrite the program in FP notation. This provides a more compact

representation of the program, aiding further analysis.
3. Construct a diagram (such as the one in Fig. 2—3) showing the

S~, the S~ , and their interconnections. Although this step is not

absolutely necessary, it aids in visualizing the structure of the

program.

4. Determine the subsets G3, using the 4 evaluations to specify
partitioning of the input variable ranges, by carrying out the

following sub steps:

a) identify the input variables and their range sets.

b) analyze, the first branch expression, 4, to determine its
partitioning effect on input variable ranges.

c) successively analyze execution sequences involving 2, 3,

branch expressions, determining, at each stage the partitioning

effect on input variable ranges.

d) on identifying a phantom (non—executable) sequence , eliminate it

from further analysis.

e) continue the process until all the executable sequences have been

defined. The corresponding partitions on the input variable ranges

are the C
3
.

5. Associate each C~ with a sequence of S
i
’s.

6. Determine F4 from the sequence of S~ associated with C3
.

7. Construct E from the union of the C
3 
and F from the F

3
.

Carrying out this procedure is relatively easy for small program s
(<100 statements). For larger programs, the analysis can be made more

manageable if the program contains subroutines. The subroutines are

analyzed first. The set of inputs for each subroutine are then matched

with the range of values computed for each input variable in the calling

routine.
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~
.2 Examp1~eof Functional Progra ing Analysis

Application of the funct ional p g .j.ng analysis steps , given in
3.1, is explained by using them to analyze a FORTRA . ne , called
“Routine B”. The first step in the FP analysis has been comple

marking the S1 and S~ on the left hand margin of the listing (Figure 3—1

S Kr- ZR1 K - K F + l
131 — —ZT(2)
U2 — _Z T (3 )* Z S (K) + Z T ( 7 )* Z C ( K )

k 
U3 — ZT(3)*ZC(K) + Z T ( 7) * Z S (K )

S
1 

IF (U3.LT.zE(K) ) COTO 100

S1 S2 — Ul**2/(1J1**2 +
- I T— I

S~ IF (S2.LT.ZA) GOTO 20

S~ IF (Ul.LT.O) GOTO 10

53 KF= K F + l
GOTO 50

S4 10 K F— K F + 3
GOTO 50

S~ 20 IF(U2.LT.0) GOTO 30

S5 I T = O
COTO 50

S6 30 KF — K F + 2

s~ ,s7 50 IF (KF .GT.3) KF = KF — A

S~ IF (IT .EQ.O) GOTO 200

S8 TL(1) — 5
TL(2) — KP
GOTO 200

S
9 

100 TL(l) a 5
TL( 2 ) -

S~ IF (ZD.EQ.1) GOTO 200

S10 ZRF— ZRF + 1
ZQ (Z3) — Zr
ZV (Z 3) — ZN
ZB (Z 3) — ZI
ZDQ(Z 3) a 3

Z3 = Z3 + Z Q ( Z 3 )  + 1

ZD — 1

200 ZFC — Z R
- RZTI2N

END
Figure 3—1. FCRTRAN Subrout ine B
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Routine B has 35 executable statements, 7 branch expressions, and 11.
segments.

The second step is to rewrite the routine in FP notation, producing
the following more compact representation sho~m in Figure 3—2.

kIF S
1 

GOTO S
9

S2 kIF S
2 GOTO S

4

IF 4 GOTO

kGOTO S5
s,

GOTO 4
IF S~ GOTO

kCOTO S
5

S6
IF (4) S 7

IF 4 GOTO S11
S8
GOTO S11

kIF S7 GOTO S11
S10
S11

Figure 3—2 . Routine B in F? Notation

A graphical representation of the structure of Routine B (Fig~ire 3—3)

shows 18 apparent logic paths.

I

-
~ 
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k
S2

S
3 

S
4

S3 S4 
S5 ~6 s~

kS5

S7 
S10

S6

S8

S11

Figure 3—3 . Structure of Routine B
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Step 4a applied to Routine B finds all the variables to which values

must be assigned external to the routine in order for it to execute:

ZR
ZT(2), ZT(3), ZT(7)
ZS (K)
ZC(K)
ZE(K)
ZA
ZD
ZRF
Z3
ZF
ZN
ZI

The value of input variable ZR is converted in the first executable

statement to an integer value, denoted by KF. A constraint external to

the subroutine limits values of ZR to O~~ZR�3. Z3 is defined externally

as an integer for use as a subscript.

Step 4b , analysis of 4: U3.LT.ZE(K), shows that two of the variables
in 4, 133 and K, the index of ZE(K), are not themselves input variables but

are computed by code in S
1 from input values of the actual input variables

ZR, ZT( 3), ZT(7), ZC(K) , and ZS(K). 4 partitions the set of values which
can be assigned to U3 in 2 subsets:

• values less than the value of ZE(K)

• values greater than or equal to the value of ZE(K).

TRUE evaluation of 4 transfers execution to S9, followed by evaluation
of S~ , which partitions the set of possible values of ZD into ZD — 1 and

ZD ~ 1. These evaluations define two logic paths:
t t

• L
1
: s1 ~l ~9 ~7 ~1l

• L2. 
~~l 

S
1 

S
9 

S
7 

S10 ~~ll
The Input domain partitions for these paths are:

• C1
: ZR, 133 < ZE(K) , ZD — 1;

U3 — ZT(3)*ZC(K) + ZT(7)*ZS (K), KF — ZR, K — KF + 1

• C2: ZR, 133 < ZE(K), ZD ~ 1, ZRF, Z3 , ZF , ZN, ZI;
ZT(3)*ZC(K) + ZT(7)*ZS(K), KF — ZR , K — KP + 3.
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In the descr iption of the G3, the partitioning relations and any

unpartitioned input variables are listed preceding the semicolon. After

the semicolon, transformations on the input variables that must be made

before applying the partitioning relations are listed.

FALSE evaluation of 4 transfers execution to S
2. Then evaluation

of S~ :S2.LT.ZA, followed by evaluation of 4:Ul.LT.0 or S~ :U2.LT.O ,
selects whether S3. S4, S5, or 

~6 
is executed :

f f
• S2 S3 selects S3

f t
• S2 S3 selects S4

t f
• S2 S4 selects S5

t t
• S2 S4 selects S6

S3, S,, and S
6 
change the value of Kr, while S

5 
does not. Evaluation of

4:KF.CT.3 tests KF to determine whether or not its value is greater than 3.

For initial values of Kr < 3, execution of the sequence S5 4 can only result
in 4 being evaluated FALSE. If an initial value of Kr > 3 (i.e., ZR > 3)

is input, the external constraint on ZR is violated , causing Routine B to

compute something having no physical significance. Thus the sequence S5 S~
will not be executed for all meaningful inputs. Therefore it is a phantom

sequence. This analysis suggests that the routine should include a test for

ZR > 3 with an error message in case it is.

4:IT.EQ.O tests the value of the internal flag IT, which is set to

the value 1 by S2 and to the value 0 by S5. Thus the sequence S
5 
S~ 4 must

result in 4 evaluated TRUE and all sequences not involving S5 must result
in 4 evaluated FALSE. Accordingly, the following are phantom sequences:

• S S 5,
5 5 0

f t
• S3 S5 ~6

t
• S3 

S
5 S7 

S6

f t
• S

4 
S
5 

S
6
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t t
• S4 S5 S7 S6

• s6 s~~S~ 
- ,

• ~;
These 7 phantom sequences plus the two identified earlier — S5 S~ S7 S~ and
S5 S5 S7 S6 

— indicate that 9 of the 18 apparent paths of Routine B are
phantom paths. The remaining 9 paths are executable.

Definitions for two of the input domain partitions, G~ and G2, and

their associated logic paths, L1 
and L2, were given previously. The

sequences for the 7 ocher executable paths and their input domain partitions

are:

f c c  t
• L3: S1 S1 S2 

S2 S4 S6 S5 S7 S6 S8 S3•1 G3: ZR, 133 > ZE(K) , S2 ZA, 132<0, KP>l ;
Kr - ZR, K - K! + 1,

133 — ZT(3)*ZC(K) + ZT(7)*ZS (K) ,
S2 a (Ul) 2/((U3.)2 + (132)2),
131 — —ZT(2) -
U2 ‘._ZT(3)*ZS(K) + ZT(7)*ZC(K)

• 14: S1 S~ S2 S~ S~ 55 S~ S~ S8 S11 G4: ZR , U3 >ZE(K) , S2~~ZA,U2 <0, KF< 1;
K!, K, 133, S2, 131 and 132 as

defined in 03

f t ’  f t
• T..~ : S1 S1 S2 S2 S~ S5 S5 S6 S11 05: ZR, U3>ZE(K), S2<ZA , uz>o,i~~~3;

Kr, K, 133, S2 , 131, and 132 as
defined in 03

• L. S1 S S2 S~ S S4 S~ S7 S~ ~8 
s11 G~: ZR, U3>ZE(K), S2>ZA, U1~fl, KF>0;

K!, K, 133, S2, 131, 132 as
de fined in G3

• T..7 •  S1 S~ S, S~ S~ S4 S~ S6 ~8 
s11 

G~: ZR, 133>ZE (K), S2>ZA, 131~cO, K7 0;

K!, K, 133, S2 , 131, and 132 as
defined in 03
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• L8. S
1 

S~ S
2 

S~ S~ S
3 

S S
7 

S~ S
8 

S11 
G8: ZR, U3>ZE(K), S2>ZA , 131>0, K7’.3 ;

K!, K, 133, S2 , 131, and 132 as
defined in 03

• L
9
: S

1 
S~ S

2 
S~ S~ S

3 
S~ S~ S

3 
S11 G

9
: ZR, U3> ZE(K) , S2>ZA , Ul>0, KF<3;
K!, K, 133, S2 , 131, and 132 as
defined in G3.

The segment sequences for each logic path specify the functions

The range set of each of the F
1

t s is a set of n—tuples, the value of n being

1 for F5, 4 for F1, F3, F4, F6, F7, F8, and P9~ and 11 for F2~ 
The mappings

from the G~ to the range sets are specified by the equations associated

with the assignment statements in the segment sequences listed below:

• S
1 

S
9 
S1, F1: KP—ZR, TL(1)—6,TL(2)—KF, ZFC—ZR

• S
1 

S
9 

S10 S11 F
2
: KF..ZR, TL( 1)”6 , TL(2)—K!, ZRF ZRF+1

ZQ (Z3 )— ZF , zV(z3)—ZN
ZB(Z3)—ZI, zDQ(z3)—3

Z3—z3+ZQ(z3)+1, ZD—1 , ZFC—ZR

• S
1 

S6 57 S8 
S11 F

3
: XF—ZR—2, TL(1) 5 , TL(2) KF , ZFC ZR

• S
1 

S
6 ~8 ~1l 

P4: KF—ZR+2 . TL(1)—5, TL(2)—KF , ZPC ZR

• S
1 

S
5 
S11 F

5
: ZFC—ZR

• S
1 
S4 S~ S

3 
S11 F

6
: KF .ZR— I, TL(l).”5, TL(2) KF , ZFC ZR

• S
1 
54 S8 

S11 F7: KF—3 , TL(1)—5, TL (2)— KF , ZFC — ZR

• S
1 

S
3 

S
7 
S
3 
S11 F

8
: KF ZR— 3, TL( 1) 5, TL(2)—KF , ZFC ZR

• 
~~ 

S3 S8 S~] F
9
: K!ZR+l, TL( 1)5, TL( 2 ) K F , ZFC ZR

Is not listed in the segment sequences because it does not affect the

computation of the output values. (Its value is involved only in branch

expressions.) In the equations for the value of K! in F3, F4, F6,F7, F3,
and F~ the algebra involved in the several executable statements involving

K! has been performed . The description of the F~ given above defines the

values of a l  out~ut variables in terms of functions of values of Lnput

variabI~es.
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3.3 A Functional Version of Routine B

The information developed in the F? analysis of Routine B — viz., the

G , L , and F — can be used to rewrite the routine as a functional program.
Examination of this information shows that S

6: IT.EQ.0 is not needed to parti-

tion the input domain. If 4 is eliminated, the executable statements involv-
ing IT can also be eliminated, for they also do not contribute to the computa-

tion of the F~. IT appears in two segments, S2 and S5. It can be removed

from S2 by derining a new segment S2:

• S.,: S2_Ul**2/(tJl**2 + U2**2)

Since S
5 
is the statement IT — 0, it can be eliminated completely.

To determine the branching sequence for the F? version, it is
convenient to list the branch expressions for the input domain partitions Gj:

• 01
: U3.LT.ZE (K), ZD.EQ.l

• G2
: U3.LT.ZE(K), ZD.NE.1

• 03
: U3.GE.ZE(K), S2.LT.ZA, U2.LT.0, K7.GT.3

• 04: t33.GE.ZE(K), S2.LT.ZA, U2.LT.0, KF.LE.3

• G
5
: 133.GE.ZE (K), S2.LT.ZA, U2.GE.0

• G6: U3.GE.ZE(K), S2.GE.ZA, U1.LT.0, KF.GT.3

• G
7: U3.CE.ZE(K), S2.GE.ZA, U1.LT.0, KF.LE.3

• G8: U3.GE.ZE(K), S2.CE.ZA, IJ1.GE.0, K!.GT.3

• 09
: 133.GE.ZE(K), S2.GE.ZA, 1J1.GE.0, KF.LE.3

To structure Routine B as a functional program, list the execution

sequences for the 9 logic paths, removing S5 and 4 and substituting
S
2 

for S2:

• L1: S] S~ S9 S~ S11

• 12
: S

1 S~ 
S
9 S~ S10 S11

• L3
: S

1 S~ S, S~ S~ S6 
S S7 S8 S11

f * t t  f
• 14: S~ S~ S2 S2 S4 S.. S5 S8 S11

* tI L~~: S
~ ~

j ~2 ~2 ~~ e lI.
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f * f t  t
• 16

: S] S1 S2 S, S3 S4 S5 S7 S8 S11
f * f t f

• 17: S1 S1 S2 S2 S3 S4 S5 S8 S11
f * f f  t

• 18
: S

1 
S1 S2 S2 S3 S3 S5 S7 

S8 S11
f * f f  f

• 1
9
: S

1 S1 S2 S2 S3 
S
3 
S5 S8 

S11

S~ is also removed from since ~t is not necessary.

Examination of the F~ shows there are no functional redundancies;

however , it shows that F3, F4, F6, F7~ and P
3 differ only in their handling

of KF. K! is defined initially in S
1 
as K! — ZR, for all F~. The K!

computation sequences for these F~ ’s are:

• F3: S6 S7: K!- KF+2, K! KF—4

• F4: S6 : K P — K 1 + 2

• F
6
: S4 S7 : K? = K!+3, K! — KP—4

• F
7
: S4 : KP — K!+3

• !3: S
3S7 

: K! — K!+1, K? KP4

• P
9
: S3 : KF Kr+1.

Since the K! computation sequences involve incrementing K! by 1, 2, or 3
and since the variable K is defined in s

1 
as K! + 1, the computation

sequences can be simplified by redefining K to be ZR + 1 and replacing

KP by K. The incrementing sequences then become:

• F
3
: K— K+l, K — K—4

• 14: K— K +1

• F
6: K— K+2, K — K—4

• F_ : K—  K+2

• F
3
: K K—4

• 19
:

This can be done by eliminating segment S~ , since it does not change the

value of K and redefining segments S1. S4. S6, S7. and S~ .
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• S1 K ZR+1
131 — —ZT(2)

132 — _ Z T ( 3 ) * Z S(K ) +Z T ( 7 ) * Z C (K )

133 — ZT(3) *ZC(K)+ZT(7 ) *Z5 (K)

*
• S,: K— K + 2

4

• S5 
K—K +1

• 57: K K—4

• S5 
: K.GT.3

Since S3 and S9 involve K!, they must be changed:

• S8: 
TL(l) 5

TL(2) — K

• s: TL(l) — 6

TL(2) — K —l

Also note that the FALSE evaluation of S~ branches directly to S11 while
the TRUE evaluation is followed by S6 S~ involving further branching.

Thus the code can be simplified by replacing S~ by its complement:

• S4 : U2.CE.0

With these substitutions, the execution sequences become:

* t *
• ~i

: S1 S1 S9 S7 S11
* t *

• 12: S1 S1 S9 S7 S10 S11
* f * t f* * * *• 13: S1 ~~ S2 S., S4 ~6 ~S 

S~ S3 S11
* f * ~ f* * f* *• L4 : S1 S1 ~2 ~2 S4 S6 S5 S3 S11
* f * t t~• L :  S
1 S1 S2 S2 S4 S11
* f * f t * t~ * *

• L6: S1 S1 S2 ~2 
S3 S4 S~ 57 ~8 

5u.

* f * f * f* *• 17: S
1 S1 S2 

S_ S3 
S4 S.. S3 S11

* f * f f t ’~ 
* *

• L~: ~i ~l 
S2 ~2 

S3 S5 S7 S3 S11

* f * f ; C~~ *
• 19: S1 S1 S2 S., S~ s S8 S1•1
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A program having these logic paths can be written in PP notation:

IF S~ GOTO S
9

S2
kIF S
2 

GOTO S4
k *IF S3, S4

GOTO S5

IF S4 GOTO S11

IF S
5 , S7

*
S8

GOTO S11
*S9

IF S~ GOTO 
~ll

S10
S11

The logic diagram shown in Figure 3—4 for this form of Routine B shows

that it has 9 paths.
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S
1

* S*
S2 9

k
S
2

)4)
//

~ r i (
~~/S

5

S
7

8

Figure 3—4 . Structure of Revised Routine B

This version is not a structured program, for the S4 
branch of S4

creates a cross—link , forbidden by structured programming rules. It can

be converted into a structured FORTRAN program (modelling structured programm-

ing control structures in terms of FORTRAN IF and GOTO statements), while

remaining a functional program , by introducing some logical complications.
k k*One way is to combine S., and S, into a compound branch expression

k k*S2 .AN D.S 4 . This involves replacing the structure :

~ -- .
~~~~~~~~~~~

--

~~~~~



by:
k k* kIF S2 GOTO S

4 IF (s2.AND.s~ ) GOTO S11
k * k *IF 53. S4 IF 

~2 
GOTO

k *GOTO S
5 IF S

3 , S4

I! S
4 

GOTO S11 GOTO S
5

* *S6 S6

which, while having the sane number of lines of code, has the complication

of a compound Boolean expression . Another way of wri t ing a functional

FORTRAN program conforming to structured programming rules (modelling

structured programming control structures in terms of FORTRAN IF and GOTO
* *statements) combines segments S, and S7, combines S5 and S~ , and replacesk

S~ by three branch expressions: one in the FALSE branch of S3, one in the
k k*

TRUE branch of S3, and one in m e  FALSE branch of S
4 

. This version increases

the number of executable statements but involves no compound expressions.

Substituting the definitions of the segments and branch expressions

into the first FP version produces the following code f or Routine B:

K - ZR+1
131 — -ZT(2)
132 ._ZT(3)*ZS (K) + ZT(7)*ZC (K)
133 — ZT(3) *ZC (K) + ZT(7)*ZS(K)
IF (133.LT.zE(K)) GOTO 100
S2 — U1**2/(tJ1**2 + 1J2**2)
IF (S2.LT.ZA) GOTO 10
IF (U1.LT.O) K — K + 2
GOTO 50

10 IF (122 .GE.0) GOTO 200
K - K+1

50 IF (K.GT .3) K = K—4
TL(l) = 5
TL(2) —

GOTO 200
100 TL(1) — 6

TL(2) — K—i

IF (ZD.EQ.1) GOTO 200
ZRF - ZPS+1
ZQ (Z3) — Zr
ZV (Z3) — ZN
23 (Z3 ) — 21
ZDQ (23) — 3
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Z3 — Z3 + ZQ(Z3 ) + 1
ZD — 1

200 ZPC — ZR
RETURN
END

This version of Routine B has 27 executable statements compared to 35 in

the original version.

3.4 Performance ItnDrovetnent

Because the FP version of Routine B reduced the number of executable

statements and did not introduce any complication, it undoubtedly improves

the performance — i.e., reduces primary storage requirement and execution

time. A further small performance improvement, a reduction in execution

time, is possible by investigating whether the execution sequences in any

of the logic paths contain any unnecessary executions — i.e., executable
statements that do not contribute to branching or computing of output

values. It is readily apparent that two statements in. S
1 

— viz., the

statements assigning values to Ui and U2 — are not needed in paths L
i 

and
I although they are needed for the remaining 7 paths. These unnecessary
2 * *executions in L

1 
and L

2 
can be removed by redefining S]~ and S

2
:

**S1 : K — Z R + l

U3 — ZT(3)*ZC(K)+ZT(7)*ZS( K)

S~*: 131 — —ZT(2)

132 — _ZT(3)*ZS(K)+ZT(7)*ZC(K)

S2 — U 1**2/(U1**2+U2**2)

This change does not change the number of executable statements but it

should reduce execution time for Li 
and L2.

Test runs were made on Routine A. It was found that the PP version,

in spi te of its having a compound Boolean expression , comp iled on the
C~C 7600 computer int’, approximately 2/3 the amount of primary storage as

the crig~na1 version and it executed in 2/3 the time. This performance

improvement is, of course , dependent on the compiler.
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3.5 Effect of Subroutines

Although Routine A and Routine B do not contain subroutines, many

programs do. FP analysis of programs containing subroutines proceeds sim-
ilarly to PP analysis of programs hav ing no subroutines, in terms of input
domain partitions, functions and logic paths; however, the analysis of the
input domain partitions must determine, for each input variable, whether
the value is obtained from sources external to the program or as a result
of execution of one of the subroutines. For those input values obtained

from execution of a subroutine, the range of output values produced by the

subroutine must be compared with the allowable input values. The descrip-

tion of the function associated with each input domain partition must in-

clude the effects of execution of the subroutines included in its associated

logic path.

To illustrate PP analysis of such programs, a program called
“Routine C”, containing calls to subroutines is used:

Routine C

S1 CALL TPR

4 IF (ZR) 500 , 500 , 100
S2 100 CALL TED

4 150 IF (Z3) 200, 200, 550
S
3 200 ZG — Z G + l

ZC — 0

CALL TCO
S4 300 CALL IRA

GOTO 2000

S5 
500 CONTINUE

Z3 — 1

GOTO 130

350 CONTINUE
CALL TIC
ZB — Z3 + 1
zC — z c + 1

GOTO 300
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$
7 

2000 RETURN

END

Routine C has 7 segments and two branch expressions. In the assignment of

F? symbols to elements of Routine C, the subroutine calls are treated as

executable statements.

Following the steps in the PP analysis procedure, the second step in

the analysis is to write Routine C in PP notation:

IcIF (S
1
) S5, S5, S2

IcIF (S
2
) S3, S3, S6

S3
S4
COb S7

~ IcGOTO S2
S6
GOTO S4
S7

The logic diagram is then:

~~~lJ~~

Ic

_ IL
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Despite the somewhat confusing placement of S3, S4, and S5 in the program code ,
the logic diagram shows that Routine C has the structure of a structured
program.

The input variables for Routine C are:

• ZR, Z3 , ZG , ZB , and ZC.

Branch expression S~ partitions the set of possible values of ZR
into those specified by ZR.~ O and those specified by ZR,O. Evaluation of
S~ to be less than 0 or to be equal to 0 transfers execution to S5 followed
by evaluation of which partitions the set of possible values of Z3. Since

2 + — 0S5 
sets Z3—l, the only executable sequence is S~ S2. S

3 S2 and S~ S2 are
phantom sequences. Evaluation of S1 to be greater than 0 transfers execution
to S2, followed by evaluation of S~. Since the value of Z3 is not assigned
in any executions in this sequence, all S~ evaluation possibilities are
possible . The logic paths of Routine C are then:

-O +
• L1: S1 S1 S5 S2 S6 

S4 S7
+ -0

• L.,: S
~ 

S1 ~2 ~2 
S3 

S4 S7
+ +

• L3
: S

1 S1 
S2 S~ 

S6 
$
4 

S_

Routine C has one phantom path, the path containing the sequence S5 S~~.

The notation S 0 is used to denote that the < 0 and 0 evaluations of the

arithmetic IF statement transfer to the same segment and therefore do not

produce distinct sequences.

The input domain partitions for these paths are:

• G1: ZR < 0, ZB , ZC.
• C2: ZR > 0, Z3 < 0, ZG.

• C3: ZR > 0, Z3 > 0, ZB, ZC.

The segment sequences for each logic path . specify the functions

• 
s1 S~ 

$
5 S4 S7 F1: TPR, Z3—1 , TIC, ZB—ZB + 1,

ZC— ZC + 1, IRA.

• 
~1 ~2 

S3 
5, S7 F2: TPR, TED , ZC—ZC + 1, ZC — 0, TCO , TEA.

• s 1~ S., S6 S4 s.. F3: TPR, TED , TIC, Z B Z 3 + 1, Z =ZC ~i,

IRA.
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In the description of the functions, ~~~ the effect of each subroutine
is represented by its name. From these function descriptions, it is
apparent that Routine C acts principally to call subroutines TPR, TED,
TEC , TCO, and TEA. It always calls TPR and TEA. Calling of TED, TEC,
and TCO depends on the to which the input E~ belongs.

For the most part, these subroutines when called obtain their input

from a c o o n data base , used by many routines in the large software
system from which these routines were chosen. They record their output in

that data base. Routine TED , alone of these routines , changes a value of
a variable, Z3, used in the explicit calculations of Routine C. TED out-
puts Z3 — 0 or Z3 ~ 1.

Thus for C2 and C3, the values fo r input variable Z3 are obtained as a
consequence of the execution at TED. Thea. values are within the range

specif ications for Z3; therefore, execution of TED is completely compatible
with the execution of Routine C. Input values for ZR, ZB , ZC , and ZG are

obtained from the common data base, where they have been placed as the result
of execution of routines outside of Routine C.

In general , analysis of subroutine interfaces is more complicated
than in this example. It will generally involve:

• determination , f or each subroutine, of the inputs, if any,
it receives from execution of the calling routine.

• comparison of the allowable values for these inputs with the
values computed by the calling routine.

• determination, for each subroutine, of output values , if any,
computed by it and used in execution of the calling routine.

• comparison of these output values with the allowable ranges

of the variables to vh~ch they are assigned in the calling

program.

If any incompatibilIties of ranges are found, they may indicate a problem

and the effect of the incompatibilities must be analyzed further.
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From the PP notation representations of the L~ for Routine C, it is

relatively easy to rewrite the routine as a functional program. In PP

notation , it is:

1 
IcIF (S
1
) s5, s5, S2

IcIF 
~~~ 

S3~ ~~~ ~6
S3
GOTO S

4
55
S6
S4
S7

and in FORTRAN notation:

CALL TPR

IF (ZR) 500, 500 , 100
100 CALL TED

IF (Z3) 200 , 200 , 550
200 ZG = Z G +1

ZC — 0
CALL TCO

GOTO 600
500 Z 3= l

550 CALL TEC
ZB — ZB + 1
ZC — ZC + 1

600 CALL TEA

RETURN
END
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It contains 14 executable statements compared to 16 in the original version.

Althoug h the new version has fewer executable statements and no phantom
paths, it is not a structured program. The branch S~ S6 creates the path

L
3 
by cross—linking L

1 
and L3. To convert it to a program having the

structure of a structured program requires either routing S5 through S~ ,

as is done in the original program , creating a phantom path, or duplicating

the code for S6, as in the following:

IcIF 
~~~ 

S5, S3, S2
S.,
‘
~ Ic *IF (S

2
) S3, S3, S6

S3
GOTO S4
S5
S6
COTO S
*- 
S6
S4
S7

S6 
denotes a block of code identical to the code in S6. It is apparent that

either method produces a program structurally more complicated than the

unstructured functional program.
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3.6 Effect of Assembly Language and Interrupts

Although the initial exploration of F? concepts was perforned by

analyzing higher order language programs, the concepts are also

applicable to assembly language programs. For such programs, the Inputs

include storage addresses, contents of machine registers, and interrupts.

To show how PP analysis can be used t~ analyze assembly language software ,

a collection of routines from a co unications software package ott the

H 316 computer were analyzed. These routines are concerned with interrupt

processing.

The text of these routInes , annotated by writing segment labels in

the left hand margin is:

Segment Storage Location Routine Instruction

S
1 12634 HIØE: INT H21

12635 .JST HISB2

S., 12636 HI1E: INT H21
- 12637 JST HISB2

S
3 12640 HI2E: INT }121

12641 JST HISB2
S4 12642 HI3E: INT H21

12643 JST HISB2
S
5 12644 HISB2 : 0

12645 STA (HIA) I
12646 STX (HIX) I
12647 LDA RISB2
12650 SUB (HI1E)
~l2651 STA 0
12652 LDA HIOEX
12653 STA HISB
12654 LJA. 0
12655 ARS 1
12656 STA 0
12657 J~~ HISBil

S~ 12660 HISE: 0
12661 SIX (HIX) I
12662 5Th (IIIA) I

S 12663 HISB1: DXA
12664 JNP (MIsall)I
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13046 HISB11: STX HIP
13047 - INK
13050 STA }III(
13051 LDA HIM
13052 szfl INTM
13053 INA PRIM
13054 STA HIMS
13055 ENB H21
13056 jNp HILO

Each of these routines consists of a single segment . The structure of this
collection of routines is shown in the diagram in Figure 3....5~

Q~~~~~~~~

Figure 3—5. Structure of Routine Collection

Note that there are no branch expressions in these routines. The routine

collection can be entered from ~~~ ~~~~
‘ 
S3, S4, or S6, which connect to

either S
5 
or S7.

~l’ 
s2~ s3, and S

4 
are entered respectively when one of four possible

interrupts occurs. The H3l6 compute’ responds to an interrupt signal by

interrupting the processing, setting the computer in the extended address

mode , and making a j
~~

p to the routine for processing the interrupt, HIOE,

if interrupt signal 0 occurs , HI1E, if interrupt signal 1 occurs, HI2E ,
If interrupt signal 2 occurs, and HI3E, if interrupt sIgnal 3 occurs.

The addresses of these routines are given in storage locations to which
the respectIve interrupts trap and are loaded into those locations in an
initialization process. The H316 interrupt operates by storing the

address L of the next instruction that would have been processed , had the
Interrupt not occurred , in the first storage location of the interrupt

processing routine.
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Each of the initial interrupt processing routines, and therefore ~
segments S1. S2, S3, and S4. consists of a single instruction JST HISB2 ,

which causes execution to transfer to subroutine HISB2 at storage location

12644. JST stores itt that location the address of the next sequential

location following the JST — viz., 12636 for HIOE, 1264C fo r HUE , 12642

f or HI2E , and 12644 for HI3E. These addresses are used in HISB2 indicating

which interrupt signal occurred .

Thus the inputs to the routines, HIOE, HUE , HI2E , and HI3E , are the

hardwar e signal I , initiating the interrupt that selects the routIne , and
the address L of the instruction that would have been processed had the

interrupt riot occurred. The outputs of these routines are the address L

and the address B, denoting the specific interrupts. The functions performed

by the routines are to:

• save the address L , and

• convert the hardware signal into 3

The hardware signal I can Ofli~ have four possible values and to each of

these values there corresponds a unique value of B.

The inputs to the routine HISB2 are B and the contents A of the A—
register and X of the Index register. Since B can have only 4 possible

values — 12636, 12640, 12642, or 12644 — its range is lImited to the5e

values. From the internal structure of HISB2, the range could be any

possible value that could be stored in the 16 bit word ; however , the

possible values of B are limited by the 4 routines which transfe- to HISB2.

The outputs of HISB2 are A, S. the interrupt number N, and the address L.

The functions of HISB2 are:

• save the values of A and X by storing them in HIA and HIX,

• compute the interrupt number N from B aad store it in the

Index register,

• compute address of I. and store in HISB.

HL332 will compute the correct interrupt number (0,1,2, or 3) if presented

w~.th the correct values of B; however , if presented with any other value

of 3, it will compute and store itt the index regIster a value which is not

the number of any interrupt. HISB2 therefore has capabilities which are riot
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needed for the interrupt processing and which if used could lead to

improper functioning. It does appear that any such trouble is unlikely,
for the software inputs to H1S32 should only produce proper input values

and only hardware errors can lead to improper inputs. Nevertheless, the
routines HIOE, HUE, HI2E , H13E, and HISB2 are examples of “clever” progra —

ing, which is hard to interpret, and which produces hidden capabilities that

frequently are sources of problems.

Routine HISB provides a software entrance to this routine collection.
Its inputs are return addresses stored in the first location of HISB for
later use by the routine RIDONE , X, and A. Its outputs are the return
addresses, K, and A. Its functions are:

• save the return address in RISB.

• save cne contents of the A—register, in HIA,
and the contents of the K register, in HIX.

The input to the routine HISB1 is the address state of the computer
(extended address) . The output is a signal to change the address state to
normal address. The function of the routine is to change the address state

of the computer from extended address mode to normal address mode.

The inputs to routine HISB1i. are the current interrupt number (stored

in the index register), keys (obtained from hardware registers, the new

interrupt mask (stored in HIM), the old priority mask (stored in PIN)).

The outputs are:

• current interrupt number, stored in HIP.

• the keys sto red in HIX.

• new interrupt mask stored in PRIM and output to register INTM.

• the old priority mask stored in HIllS.

• a bit enabling interrupts after exit from the routine.

The functions of the rcutine are:

• save current interrupt number.

• acqui re and store keys .
• set up new interrupt mask.

• save old interrupt mask.

• enable interrupts.
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No computations are performed , onl y the places whe re varIous v-t~~
-
~~-s

stored are changed.

There are 5 logic paths through this collection of routInes:

• L
1 

: S1, S5, S8

• L2 : S2, S5,S8
• L

3 
: S3, S5,S8

• L4 : S4, S5, S8

• L
5 

: S6, S71 S8
The inputs to the routines are:

• I, the interrupt signal which selects the entrance routine.

• L , the return address.

• A, the contents of the A register.

• X, the contents of the index register.

• K, the keys , from hardware registers.

• NM, the new priority mask , obtained from HIM.

• ON, the old priority mask, obtained from PRIM.

The subsets G are:

• A,X,K,NM, and 01 , which are coum~on to all G~ ’s.

• The set of addresses, L, of the portions of the I~~ sof tware
which are interruptable are co~~on to G1,G2,G3, and G4.

• 
~l 

: The value of I which selects routine HIQE.

• G2 : The value of I which selects routine Hu E.

• C
3 
: The value of I which selects routine HI2E.

• C4 : The value of I which selects routine HI3E.

The outputs of the routines are:

• N, the current interr~ipt number, stored in HIP.

• L, the return address for use when the interrupt processing

is completed , stored in HISB.

• A, the contents of the A register before the interrup t , stored

in HIA.
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• X, the contents of the index register before the interrupt ,

stored in HIX .

• K , the keys , set into a hardware register and stored in HIK.

• ON , stored in HIMS.

• MN, stored in PRIM.

• mode change to extended addressing and enable interrupts.

The functions of the routine collection are:

• Compute current interrupt number.

• Save the contents of A and K registers .

• Save the return address.

• Set keys in hardware.

• Save old priority mask.

• Store new priority mask in PRIM.

• Enable interrupts af ter  completion of the processing.

• Change address mode from extended address to normal address after

current interrupt number computation is complete.

Although this collection of routines is structurally and functionally

simple , the analysis of the routine collection by FPA demonstrates the
applicability of the technique to assembly language software, shows that
application of the technique is relatively straightforward , and shows the
level of detail to which the analysis can be carried in obtaining a clear
understanding of both intended and unintended functional capabilities of

software.
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4.0 COMPOSITION OF FUNCTIONAL PROGRAMS

FP theory can be used to guide the writing of programs. The

basic FP association of input data partitions, logic paths , and functional
requirements is used but is applied in the inverse order. That is, function-

al requIrements are defined first, then the input domain partitions, next

the logic paths, and finally the program. This approach assures traceability

of the functional requirements to the code structures. It also assures that

the requirements on the program are defined first rather than plunging into

writing code based on a vague concept of what the program is intended to do.
The F? method tells how to write the requirements and how to translate them

into a formal specification of the program. The result is more explicit,

complete, and precise requirements, ensuring that the program written is the
one desired .

The EP method is described in section 4.1. In following sections, i.t

is explained by showing how to use it in writing programs. Section 4.8

further discusses the writing of functional programs containing loops.

4.1 ~lethod for Writing Functional Programs

The method for writing functional programs is a step—by—step applica—

tion of the FP basic association , beginning with the functional requirements.

The steps are:

1. write an informal requirements specification — i.e., a set of state-

ments defining the functions the program is required to perform .

2. Translate these functional requIrements into a formal specification

defining the G~ and F~ in mathematIcal and/or logical terms.

3. Identify any functional redundancIes — I.e., t~o or more G
a
’s

associated with the same F..
3

4. 2.emove the functional redundancies by forming the union of the

G . ’s associated with the same F
3 i

. ~7ritu , in the programming language to be used for the progr am, the

branch expressions defin ing the partition constraints for aach G
k

Assign FP symbols S~ to the branch expressions.

-

_-



6. Write the code segment sequences specifying the F~.

Assign F? symbols S~ to the segments.

7. Design program by:

a) determining sequencing for execution of branch expressions ,
b) defining program logical structure in PP notation.

8. Write program in programming language by substituting code

definitions for the S~ and S~ .

4.2 Informal Requirements S~ecifIcation

The F? method will be explained by applying it to desijning and

writing a program tc create and maintain a stack data structure. The

first step is to decide what the program, named “STACK”, is to do. This

Is done by writing an informal requirements specification, def ining the
functions STACK is required to perform.

Since the purpose of STACK is to create and maintain a stack data

structure, that da-ta structure must be defined. A stack data structure is

an ordered finite list of data elements accessible from its top ; i.e.,

elements of the stack can be added to the top or removed from its top.

For the purpose of this example, the data elements will be chosen to be

integers in the range O<I<IN, the variable I denoting an arbitrary integer

and IN denoting the maximum integer value allowed in the stack.

The informal requirements specification of STACK is:

• STACK is required to perform the following functIons, as selected

by the user:

• Accept an ir.tege~ input value I and

• test the value of I for being within the acceptable

range , O<t<flI and

• create stack data structure JS, or

• push value of I onto top of stack, unless stack is
maximum size, J JM.
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• User options not involving integer input:

• Pop stack, removing top value, unless stack is
empty , .1 0. -

‘

• Determine value of top element of STACK, JS(J) ,

unless stack is empty, J 0.

• Determine number of elements in stack, the value of J.

• Save after each execution,

• the stack JS, and

• the number J of elements in the stack.

4.3 Formal S~ecification

The next step is to translate the informal statement of the require-
ments into a formal specification defining the and F

1 
precisely and

completely. First the stack data structure JS is defined as an ordered

J—tuple, 
~
1i, I2~ 

..., Ii
). Each I~ in the J—tuple is an integer in the

range O<I.<IN and .1, the number of elements in the tuple (stack), is an
integer in the range O<J~JM , the value J — 0 denoting an empty stack; i.e:

• JS — (Ii, I2~ I)

•

• 1<j<J, unless .1 0,

• O<J<JM,

• J 0 denotes an em~ty stack.

• JS(J) IJ, top element in stack. -

To completely define the inputs, a design decision on how to represent

the user option choices must be made. For simplicity, the user option choice

will be represented by an integer value assigned to an input variable K.

The G
1 

and F
1 

may now be defined :

G1: K—i , O<I<fl! F1 : J l , JS(1) I,
Pr int: STACK CREATED

G.~: K—i , 1<0 or I> IN F
2
: Print : RANG E ERROR
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C3: K—2 , O<I<IM , JS, F
3
: 3’ — 3+1, JS(J’) — I ,

0<J<JM Print : VALUE ADDED

C4
. K—2 , 0<I<I1~!, 3—3M F4: Prin t: STACK FULL

G
5
: K—2 . 1<0 or I> IM F

5
: Print: RANGE ERROR

C
6
: K.3, O<J<JM F

6
: 3’ — 3 — 1,

Print: VALUE REMOVED

G
7
: K—3, 3—0 F7

: Print: STACK EMPTY

C8
: K—4, 0<J<JN , JS F8: Print: Value of 35(3)

G
9
: K—4, 3—0 F9

: Print : STACK EMPTY

C10: K—5, 0<3<JM F10: Print: Value of 3

G11: K<1 or K> 5 F11: Print: OPTION ERROR -

This set of G~ and P~ definitions may be graphically represen ted
(Figure 4—1) to clarify the relationships of the input branch variables.

K—l K—2 K—3 K—4 K— 5 Kcl or
_____ ____ _____ _____ _____ _____ 

K> 5
I I I I I Stack Stack Stack Stack 3 K
Valid Not Valid Valid Not Not Empty Not Empty Valid Not

Valid and And Valid Full Full Valid
O<I<I~ 1<0 Stack Stack And And

— Not Full Stack Staclt
or Full Not Not
I>IM Empty Empty

C
1 

C
2 

C
3 

C
4 

C
5 

G
6 

G7 G
8 

C
9 

C10 C11
F
1 

F
2 

F
3 

F
4 

F
5 

F
6 

F
7 

F
8 

F
9 

F10 F11

Create Print Add Print Print Remove Print Print Print Print Print
Stack Range Value Stack Range Value Stack Value Stack Value Option

Error Full Error Empty JS(J) Empty 3 Error

Figure 4—1. Graphical Representation of STACK Functions
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Note that the function F11 is not defined in the informal specification.
Its inclusion in the formal specification came from noting that the user
option input variable was defined for the values 1, 2, 3, 4, and 5 but was

undefined for other values. Unless a response is defined for these other

values of K, the program could be made to execute by inputting other values

of K, providing it with functional capabilities not specified in its require-
ments; i.e., explicit specification of the C~ shoved that the C1 

were not

defined for possible values of the input K. Although a similar question

could be raised for values of 3 outside the range 0c3<JH, provision for
handling them is not specified, for the values of 3 are obtained from a

prior execution of STACK and are not subject to arbitrary input by the

user.

The formal specifications are in a mathematical notation in order to

precisely define what they mean. The C
1
’s are specified by listing the

variables involved and any constraints on their ranges; e.g., C3 
is specified

by specifying the single value 2 for the variable K, limiting the range of

the variable I to the integer values in the interval 0 through IN, 1ist~ng
the variable JS denoting a stack of size 3, and limiting J to integer values
in the interval 0 to 3M. The functions F

1 
are defined in terms of their

allowed values and the rule by which one of the allowed values is assigned

to each allowed input value; e.g., F3 is a collection of three output

values: 3’ an integer value denoting the number of items in the stack

at the end of the computation of F3 
and constrained to values in the range

O<J~J~I, JS (J ’) the value of the top item in the stack, and a message to
the user stating a value has been added to the stack. The assignment rule

is: 3’ is one plus the input value 3, the value assigned to JS(J’) is the

input value 1, and the message “VALUE ADDED” is printed for all computations

initiated by an input from C3.

Before writing the program, the input domain partition specificatIons

should be examined to ensure that they completely specify all possible

inputs. This is done by listing all variables, noting the maximum range

of each one allowed by the computer (usually limited by the word length),

and noting whether the G 4 cover all possible values within those ranges.
For STACK , the input variables are K, I, JS , and 3. Values of K in the

interval 1 through 5 are covered by G1 
— G10 and C11 covers all values of
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K less than 1 or greater than 5 up to the limits of one computer word length

(no multiple precision computation is involved in STACK). Values of I in

the interval 0 through IN are covered by C1, C3, and C4. Values of I less
than 0 and greater than IN are covered by C

2 and C5. Both K and I are
defined as integer values. Any non—integer values supplied as inputs
should be truncated to integer values, if the compiler enforces the type

specification. JS, the stack data structure, is specified for all sizes

3 of the stack from 0 through 3M by C
3 

and G8. Since it is not specified

by any C
1 

fo r 3 greater than 3M or 3 less than 0, a potential incomplete
situation exists; however, since JS and 3 are both products of prior
executions of STACK and are not supplied externally, this potential
incompleteness should cause no problems.

In other studies relating to verifiable software, investigators have

developed formal specifications in terms of assertions written in modified

predicate calculus or in a record—like format called Parnas specifications.
These approaches to formal specifications have tended to be more abstract

- than the specification of STACK given here and the question of completeness

of the specif ications generally has been ignored. There is a need for a

language for writing formal specifications. Such a language should have

a precisely defined syntax and semantics in order that users of it can
know exactly what the statements in the language are specifying and it

should be computer processable to permit the use of automated tools in
working with the specificatIons.

4.4 Functional Redundanei~~

Examination of the 11 F~ ’s shows that:

• F —2 ~
• F

7 
—

hence there are functional redundancies present in the formal specifica-
tion as it is derived from the informal requirements specification. They
can be removed by defining:

C, — C
2 

U G
5 : K — 1 or 2 , I < 0 or I > IN

C; C
7 U C

9 : K 3 or 4, 3 — 0

—52—



This reduces the number of input data partitions and their associated

functions to 9; hence the program STACK can be constructed so as to hav 2

9 executable logic paths.

4.5 Branch Expressions Specifying Partition Constraints

The next step is to write the branch expressions specifying the

partition constraints in the progra ing language chosen for the program,

in this case FORTRAN. The preceding steps are independent of the prograz —

ing language used .

G1: (K.EQ.1) .AND.(I .CE.0) .AND . (I.LE .IM)

G2 : ((K.EQ.l) .OR. (K.EQ .2)) .AND. ((I .LT.0) .OR. (t .GT.IM) )

C
3
: (K.EQ.2).AND.(I.CE.O).AND.(I.LE.IN).AND.(3.LT.3M)

G
4
: (K.EQ.2) .AND.(I.GE.0).AND.(I.LE.fll).AND.(J.EQ.JN)

C6 : (K.EQ.3) .AND.(J .~ T.O)

C;: ((K.EQ.3).OR.(K.EQ.4)).AND.(J.EQ.0)

C
8: (K.EQ.4).AND.(J.GT.0)

C10: (K.EQ.5)

C11: (K.LT.1) .OR. (K.GT.5)

Branch expressiono constraining 3 within its range, 0 — IN, are not listed,
for tn accordance with the assumption stated in the preceding section that 3

is assigned values ouly by execution of STACK. Values of 3 will be adequately

constrained by C , and G7, which recognize 3 having a value at a range bound-
ary , and by F

4 
and F

7~ which do not allow its value to go outside the range.

—53—

. -~~~~• V V ~~-
-~ V ~~~~~~~~~ , - ~~ ~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~



Design of the program is aided by representing the branch expressions
in F? notation :

S~ : K.EQ.k

S~ : I.GE.O

S~ : I.LE.IM

J.LT.JN

3.GT.0
)

In terms of these symbols , the branch expression constraints for the
C. can be written:

.3

i t t
l~ 

S
1 
S
2 
S
3

C~ : (S~ .OR.S~ ) (S~ .OR.S~)

G
3
: S~ S~ S~ S

Z t t fG4. S
1 
S
2 
S3 S4

3 t
6~ 

S1
S
5

k< 1
C11: S

1 ~.0R.S1

In this example, all of the branch expressions are tests made directly
on input variables. If transformations on these variables had been necessary

before applying a test, segments defining those transformations would need

to be constructed .
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4.6 Segment Seq~uences S~~~~~ying Functions

The next step is to develop algorithms for computing the functions F .

and code these algorithms. In this example, the algorithms are simple and

are given in the definitions of the F
1
. Therefore this step involves

defining the segment sequences specifying each F
1
.

The program will be designed for batch execution , with tape input

and output , on the Cyber 174 at TRW. The input tape is assigned device

number 5; the stack iS and number of elements 3 are stored on a tape

assigned device number 7; the output tape is assigned device number 6.

Since the first action of tile program is to read the input values,

the first code segment Is:

.S
1
: READ(5 , INPUT)

The remainder of the segments are developed by examining the formal

specification of the F.’s in order and developing the code necessary

to compute them.

.S2: J~•~1

JS(J )=I

REWIND 7

WRITE (7)j,Js

.S r : PRINT(99 0)

990 FORI-IA T (1111, 13STACk( CREATED)

.S6 :

991 FORr-IAT (liii , 11RANGE ERROR)

.S7: REWIND 7

READ (7) .J~. JS
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.S
8: 3—3+1

.S
9: PRINT (992)

992 FORM&T(1H1, 11RVALt.TE ADDED)

PRINT (99 3)
993 FORMAT (1111, lOHSTA~~ FL”LL)

J—J—].

PRINT (994)

994 FORNAT(1HI , 13HVAL UE RE~~VED)
PRINT (995)

995 FORMAT (iRl , I1HSTACK E~~TY)

.S14 : PRINT (996)
996 FORMAT(lHl ,SX ,6HJS(J)— ,L5) -

.S15: PRINT( 997)
997 FORMAl (lHl ,5x,2a1— ,13)

.S16: PRINT (998)
998 FORMAT (lal,12H0PTION ERROR)

.S17 : STOP

The F
1 
are then expressed in terms of sequences of the S1:

.F1. S1S2S3S4S5

.F 2 : S1S6

.F
3: S

1S7S8
S3S4S9

.F
4 : S

1
S

7S10

.F
6
: 
~~~~~~~~~~~~

.F
7
: S

1
S
7
S
1~

.F
8
: S~S7

S1,

.F10: S1S7S15

.F11: 51S16

V - V ~~~~~~~~~~~~~~~ 
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4.7 Designing the Program

k
From the list of the S~ sequences for the branch 

expression constraints

of the C
1 

and the list of the segment sequences specifying the F1, a functional

program can be designed. It is apparent that a functional program can be

wri t ten  by using the compound branch expressions associated with each

G . as the subjects of IF statements with a TRUE evaluation branching to the
.3
segment sequence specifying the corresponding F

1
. Such a program , however ,

has a lengthy text and poor performance.

A program having economical text and good performance can be designed by
analyz ing the branch expression sequences and segment sequences. First note

that segment S1 appears in all segment sequences; therefore the program begins
execution with 5

~
. Next the branch expression for C11 and the segment seq-

uences for F11 have no connnon elements with the other branch expression
sequences ; so it simplif ies matters to make that partitioning next:

IF(S~~
41

.OR.S~
>5
) COTO S16

A similar argument suggests that the bran ching for  G2 shoul d be p erformed

next :

IF(S~ .OR.S~ ) GOTO (S~ .oR~s~)
S 7

The term “GOTO (S~ .oa.s~y’ in the above expressions mean a transfer is
made to a statement later in the code sequence containing
Segment S7 follows the FALSE evaluation of (S~ .OR.S~) since it is the next
segment in the sequences for F5, F7, F8, and F10. C10 and F10 have no
common elements with G5, C7, C8 and F6, F7, F8 so they are partititioc.ed5next: i.e., IF S1 GOTO S15
The first branch expression for C7

—viz. S~ .OR.S~~— is accommodated as the

FALSE evaluation of S~ , for K— i and 2 were separated by an earlier test on K.

Thus: IF S GOTO S13

IF 4 GOTO

S11
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S4

S12
GOTO S17
S13
GOTO S17
S14
GOTO S17
S15
GOTO S17

The processing for F6, F7, F8 and F10 having been accomplished , the next
step is to begin processing for F2, F1, F3, and 14:

IF (S~.0R.s~ ) GOTO

IF S1 COTO S7

S2

S3

S4

S5

COTO S17
S6

GOTO S17

* *
S.. is the same as 57, the * denoting that the GOTO is forward to 5 not
backward to be previous occurrence of S7. The final processing for F3, F4
and F11 is:

I~ S~ GOTO S10
S8
r

S F.4

S9
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GOTO S17

S10
GOTO S17

~16
S17

The program desi gn having been created in 12 notation, writing the

actual code involves only substituting the definitions of the S~ and S.

and adding the non—executable statements . The maximum allowed values of

3 and I — i.e., JM and IM , are input in a data statement and are chosen,
arbitrarily , for this example as 7 and 99,999. Accordingly , the pro gram

text is:

P ROGR.AN STA~~ ( INPUT , OUTPUT , TAPE5—INPtIT ,TAPE6—OUTPUT, TAP E 7)
DI~~NS ION JS (7)
DATA .]M,IM/ 7,99999 /
NAMELIST/INP U’T/K , I

READ(5 ,INPUT )
IF((K.LT.l) .OR.(K.GT.5))GOTO 80

IF(K.LE.2) GOTO 40

REWIND 7
READ (7) J,JS
IF(K.EQ.5)GOTO 30

IF(J.EQ.0)GOTO 10

IF(K.EQ.4) COTO 20

J J—1

REWIND 7
WRITE (7) J ,JS 

V

PRINT (990)
990 FOR T(lH1,l3HV~LUE REMOVED)

GOTO 90

10 PRINT (991)

991 FORMAT (1H1,11HSTA~ Z EMPTY )
GOTO SO
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20 PRINT (992) .TS(3)
992 FORMAT (1R1,5X,6HJS (J)— ,15)

GOTO 90

30 PRINT (993) j
993 FORMAT (lEl,5X,2H3— ,15)

GOTO 90
40 IF ((I.LT.0).OR.(I.GT.IN)) COTO 50

IF (K.EQ.2) GOTO 60

3—1

JS ( 3) — I

REWIND 7
WR ITE (7) .J,JS
PRINT (994)

994 FORMAT (1H1, 13RSTACK CREATED)
GOTO 90

50 PRINT (995)
995 FORMAT (IH1, 11HRANGE ERROR)

GOTO 90
60 REWIND 7

READ (7) .J,JS
IF (J.EQ.3M) GOTO 70

3—3+1

JS(J)—I

REWIND 7
WRIT E (7) J,JS
PRINT (996)

996 FORMAT ( lHl ,11HVALtJE ADDED )
GOTO 90

70 PRINT (997)

997 FORMAT (LH1,1OHSTACK FULL)

GOTO 90
80 PRINT (998) 

V

998 FORMAT (1H1, 12HOPTI0N ERROR)
90 STOP

END

In the substitutions for S5, S6. S9, S10, S12, S13, S14, S15, and S16,
the last digit of the 99X label of the FORMAT statements was reassigned

to allow an orderly increase In the label numbers .
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4.8 Writing a Functional Program Containing Looos

The programs analyzed in Section 3 and the one written using FP
techniques in 4.1 — 4.6 contain no loops. How PP concepts are extended to

deal with loops is illustrated by developing a sor t routine called “INSORT”.
Two versions of INSORT are developed , one containing ordinary loops and the

other containing a DO loop. Whereas the STACK program described in the

preceding section was developed as an independently running batch program,

INSORT is developed as a subroutine; i.e., it obtains its inputs from the

calling program and its outputs are made available to the calling program.

The informal requirements specification for this subroutine is:

• INSORT is requared to sort the first N values of a sequence of

integer values into descending order .

The formal specification for INSORT begins with definition of the

input variables, their types and their ranges:

• IN denotes an arbitrary M—tuple of integer values. Repetitions

of integer values are permitted in the ~—tuple.

• IN (3) denotes the Jth element of the M—tuple.

• M denotes an integer value representing the maximum

number of integer values sorted by INSORT.

• 3 denotes an integer value in the range 1~J<M .

• The values assi~tied to IN (3) can range over the set of

integer values fitting within one computer word length.

• N denotes an integer value representing the number of values in

IN to be sorted .

The G . and F
1 

tnay then be specified :

• G
1
: N<l or ~

j
~$~1 F

1
: Range: L—O , deno ting an admissible

value of N.

Assignment Rule: For all values of

V~ in G,, L0 .
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• C
2
: N—i F

2: Range: L—1, denoting an admissible

value of N.

Assignment Rule: For all values of

N in C2 , L—l. No
sort required , only
1 value to be sorted.

• C
3
: 1<N<M, ~~ 1

3
: Range: L 1 , IN

5, and N— tuple of

integer values 1N5 (J) such
that 1<N<M and for all J in
l<J<N— 1, IN3 (J)> 1N 3 (3+1).

Assignment Rule: Each pair (N,IN)
in C3 is assigned to
the IN~ from the range
of F3 such that for all
K in i<K<N , there exists

a 3 in 1cJ<N, such that
I.N
5(J)—-IN (K).

The specification of F
3 
given above defines the integer sort function

sufficiently well for a programmer to develop the routine from it; however, 13
has internal structure analyzable using F? concepts. Since the 1

3 
range

specification applies to adjacent members of the N—tuple — i.e., to 1N 5 (3)

and 1N
5
(J+l) and since the assignment rule involves only rearranging the

positions of the integers and not changing their values, it is of interest

to partition the N—tuple elements in accordance with application of the 13

range specification. Because this is a partitioning of C
3 

and F3, the
notation C

31 
and F

31 
is used. The 1

31
’s in this analysis do not compute

the final output of the routir.e; they compute the result of applying the

F3 range specification to the C31 inputs. In the F
31 

specif ications , IN ’(J)

denotes the value of the Jth element of the N—tuple after the F
31 

computation

has been performed . The C31 and F
31 

are specified as:

• Cli: 3—1 , IVN(l)<IN(2) F31: Range: IN’(1)>IN’(2)

Assignment Rule: IN’(l)—IN (2)

IN’ (2)—IN(l)
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• 032: lcJ<N—l, F32: Range: IN’(J)>IN’(J+l)

IN (3) <IN(J+i) Assignment Rule : IN ’ (J)— IN (J+l)
IN’ (3+1) — IN(J)

• 033: 1<J<N—l F33: Range: IN’ (J)>IN ’ (3+1)

IN (3)>IN Ci+1)
Assignment Rule: EN’(J)—IN (J)

IN’ (3+1)—IN (3+1)

• G34: 3—N F34: Range: IN
S

Assignment Rule: IN 1N
S

From this analysis of (G3, F3) ,  an algorithm for computing values of
F
3 
can be constructed by setting 3 1 initially and applying the F3 range

specification to IN(l) and IN(2). If the values of IN(1) and IN(2) do not

meet the specification, the input is in 031 and F31 applied to it inter-

changes the values of IN(1) and IN(2) so that IN(1) and IN(2) now meet the

specification. The value assigned to 3 is then increased by 1. If the

values of IN(l) arid IN(2) meet the specification, the input is iri G33.
F33 applied to this input leaves the values of IN(J) and IN(J+l) unchanged.
The value of 3 is then increased by 1. In either case the value of 3 has

become 2, so the next input is either in C32 or C33. If it is in G32,
F32 interchanges the values of IN(2) and IN(3). The value of 3 must then

be decreased by 1, because the new value of IN(2) can change its re1at~on
to IN(l). If the input is in 033. the values IN(2) and IN(3) are not

changed and the value of 3 is increased by 1. Therefore, depending upon the
value of the input inC31 the appropr iate assignment rule is applied and

3 is subsequ entl7 increased or decreased until J N , placing the input in G34
and completing the sort1

Translation of the formal specification into a program design begins

by writing the constraints on the input values for each C (and 034) in

terns of branch expressions • Here again , the example is 
1
illustrated using

FORT RAN , but any progra ing language could be just as easily used.
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• G
1
: (N.LT.1).OR.(N.GT.M)

• G
2
: N.EQ.1

• 03
: N.GT.1 , IN

• 031: (J.EQ.l) .AND . (IN(J) .LT.IN(3+1))

• p32 (3.GT.1).A D.(J.LTJ).AND.(IN(J).LT.IN(J+1))

• 033: (J.LT.N) .AND. (IN(J) .GE.IN(J+1) )

• 034: J.EQ.N

In the branch expressions defining the constraints on G33~ the constraint
J.CE.1 is not given explicitly, since 3 is set equal to 1 initially and

successive applications of the F
31

’s will not reult in 3 becoming less

than 1.

F? symbols are next assigned to the branch expressions.

• S~: (N.LT.1).OR.(N.GT.M)

• S~: N.EQ.1

• S~: J.EQ.1

• S~ : J.EQ.N

• S~ : IN(J).LT.IN(J+l)

In terms of these symbols , the branch expressions for each are:

t
• C : S

f t
• 02 : S

1 ~2

f f
• 03

: S
1 S,

t t
• 031: S3 S5

f f t
• G32 : S

3 
$
4 S5
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f f
• G33: S4 55

t
• 034 : S4

The segments for computing the F
1
’s (and F

31
’s) are:

• S1
: 3—1

• S2: K—IN(J)

IN(J )—IN(J+l)

IN (3 + l) —K

• S
3
: 3—3+1

• S4: 3—3—1

• S5
: L l

• S6: L 0

• S~ : RETURN

In terms of these segments , the segment sequences for the F
1
’s (and F

31
’s)

are:

• F1: S6 S7

• F2: S5 S7

• F
3
: S

1 S
5

• F31: ~2 
S3

• F32 : S
2

S 4

• F33: S3

• F34 : S
5

The program design can now be written in PP notation:

IF S~ GOTO

IF S~ GOTO S
5

Si

IF S~ GOTO S2
S3

_ _  _  
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IF S~ GOTO S
5

GOTO S~

S2

IF S~ GOTO S3

S4

GOTO S~

S
5

GOTO S
7

S
6

S
7

The program text Is obtained by substituting the definitions of the

V 
FP symbols as shown in Figure 4—2 .

SUBROUTINE INSORT (IN,N,M)
DIMENSION IN (H)
IF(N.LT.1.OR. N.GT.M) GOTO 100
IF(N.EQ.1) COTO 80
J— l

30 IF(IN(J) .LT .IN(J+l)) GOTO 50
40 J—J+1

IF(J.EQ.N) GOTO 80
GOTO 30

50 K— LN(J)
IN(J) —IN (3+1)
IN(J +1)—K

V IF(J.EQ.l) GOTO 40
J—J—1
GOTO 30

80 L=1
GOTO 200

100 L=0
200 RETURN

END

Figure 4—2. INSORT without DO Loop

I
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Figure 4—3 presents the logical structure of INSOET.

Ic
S
i

Ic
S
2

S
1

Ic
S
5

S2

Ic$3
V 

S3 
S4

Ic$4

S5

S7

Figure 4_3. INSORT Structure
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In the diagram of Figure 4-3., S~ has been replaced by its complement

J.NE.1 to avoid crossing of lines. The lines looping back from S
4 and

S~ to S~ have an arrow at their S~ end to indicate the direction of the
transfer , all other transfers being , by convention , downward.

The paths :
t

• L :  S S S

• L
2
: S~ S~ S5 S7

executed for N<l and N—i, respectively, are non—looping paths. For N—2,

there are two paths that go directly through the program without looping:

• L
3
: S~ S~ S1 S~ S3 S~ S5 $7

• L4
: S~ S~ S1 S~ S2 S~ S3 S~ S5 $7

In L3, S~ constrains the inputs to those values such that IN(1)>IN(2); in L4,
constrains the inputs to those values such that IN(l)<IN(2).

All other execution sequences, occurring for N>2, Involve at least

one of the loop sequences:

s~ ~~ ~f S~ , S; S2 s~ s3 S~ s~ , s~ s2 S~ 54 s~.

The possible execution sequences for N>2 can be analyzed into 3 cases:

• The input IN(3) is already sorted into order , defining
execution sequences, one for each value of N , in which

is always evaluated FALSE.

• L..: S~ S~ S-1 S~ S3 S~ S~ S3 S~ S5 S7 : N 3

S~ S~ S1 S~ S3 S~ S~ S3 S4 S5 
S
3 S4 S5 5 : N 4

S~ S~ S1 
S~ S3 S~ s! .... s~ s~ S3 S~ S5 S7 ; N M

These sequences involve only the first loop.
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• The input value IN(l) is greater than or equal to the value

of IN(J) for all J in 1<J<N, but those values of IN(J) are
not in descending order.

• L
6
: S~ S~ S1 S~ S3 S~ S S

2 
S~ S4 S5 S3 

S4 S5 S3 
S4 S5 

$
7

S~ S~ S~ S3 S~ S~ S3 S~ S~ S2 S~ 
$4 S5 S3 S4 S5 S3 S4 S5 S7

In this set of execution sequences , the sequence S~ S3 will never

occur, for S~ can never be evaluated TRUE when J~1.

• All other inputs.

• L7: S~ S~ S1 S S3 S~ S~ S2 S~ S4 S~ S2 S~ S3 S~ S~ S3 S~ S5 S7

These sequences contain all 3 loop sequences.

Each of these sets (L5, L6, L7
) of sequences corresponds to a

recursively defined function (F5, F6, F.,, respectively); therefore an
association of a set of inputs , a set of sequences , and a function is
defined for these three cases; i.e., the triples:

• (G , L.~ , F5
)

• (06, L6, F6)

• (G7, L7, F7)

are defined . Because of this association, one nay call. L5, L5, and L
7

“logic patris”, meaning by a logic path L
1 

a set of executable sequences
composed of the same segments and branch expressions and associated wIth

a recursive function F
1 

defined on a domaIn C
1
.

Note that in handling loops the PP concepts were applied at two
levels: first to analyze the structure of F

3 
and second to partItion 03

and F3 into the 5 partitions (G3, L3, F3), (C4, L,,  F4), (G5, L5, F5),

~
0
~
, L6, F6), and (C7, L7, F7). This shows how a function F

1 
defined by

the ra~uirenents on a program may have internal structure.
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4.9 Writing a Functional Pro2ram Containing a DO Looo

Since the looping part of the INSORT Program is entered after setting 3—1
and is exited when 3 N , it may be contained in a DO loop. In FORTRAN, a -

DO loop of the form:

DO 30 3—1, N

30 CONTINUE

executes by setting 3 initially to the value 1 and executing in sequence the
statements following the DO statement until the statement labeled 30 is

reached . Then the value of .1 is increased by 1 and execution continues
with the statement i ediately following the DO statement. This activity

continues until the value of J becomes greater than N, whereupon the loop

is exited with execution continuing with the statement immediately following

the labeled statement 30.

The logic of the FORTRAN DO loop can be expressed in FP notation by
denoting the labeled statement terminating the DO loop by S~ and the DO

k
statement by DO S • Here the superscript Ic denotes the value of the index

of the DO loop (in the case of INSORT, the value of 3). Evaluation of S
1

denotes executing the terminal statement, increasing the value of the index

by 1, comparing the new value of the index with the value of the upper limit
in the DO statement , and transferring to the statement i ediateiy following

DO S~ unless the new value of the index exceeds the upper limit, in which
case execution proceeds with the statement following S

1
.

Thus INSORT can be rewritten to contain a DO loop having an index J.
Execution of the DO loop will cause 3 to be set initially equal to 1 and be
incremented automatically by 1 until J>N111 at which time execution continues
with the statement following the DO loop. Since DO loop semantics do not

allow the value of 3 to be changed within the DO loop, the decrease in the
value of 3 called for in the case 

~~~~ 
cannot take place inside the DO

loop; consequently the sort algorithm must be changed , so that evaluating
S~ b ranches outside the DO loop. The interchange of elements specified by

S2 Is then executed and the DO loop exeuction is started over from the
beginning, 3—1. Denoting the terminal statement of the DO loop by S~ then
leads to the following expression of the sort algorIthm in PP notation:
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kDO S4

S~ GOTO S
2

GOTO S5

GOTO DO S~

and the revised sort program in FP notation is:

IF S~ GOTO S6

IF S~ GOTO S5

DOS~

S~ GOTO S2

GOTO S5

S2

GOTO DO S~

S5

GOTO S
7

S6

S
7

leading to the prog ram text :
SUBROUTINE INSORT (IN ,N,M)
DIMENSION IN (M)
IF((N.LT.1).OR.(NI.GT.M)) GOTO 100
IF (N.EQ.1) GOTO 80
NM1 N—i

30 DO 40 J-1, NM1
IF(IN(J).LT.IN(J+1)) GOTO 50

40 CONTINUE
GOTO 80

50 K=IN(J)
IN(J) — IN(J+i)
IN(J+1) = K
GOTO 30

80 L—l
GOTO 200

100 L 0
200 RETURN

END
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This version of INSORT will run slower than the first version because

it always returns to the beginning (3—i) of the list of integers after an

interchange of two list members has been made.

The first two paths of this version are the same as for the other

version because they do not pass through the DO loop.

• L
1
: ~~ ~~ 

S7
f t

• L
2
: S

1 
S
2 
S
5 
S
7

For N>2, the paths involve the DO ioop sequences. They can be analyzed as
two cases : *

• The input IN(J) is already in descending order , defining e’cecution
sequences in which S~ is always evaluated FALSE.

• L
3
: S~ S~ S~ S~ S~ S~ S7 : N—2

S~~ S~~ S~~ S~~ S~~ S~~ S~~ S5 
S
7 

: N—3

f f 1 f “ f f MS1 S2 S4 S5 S~ S5 S5 S4 S5 S7

• The input IN (J) is not in descending order, defining the following
exeèut ion sequences.

• L
4
: S~ S~ S~ S S2 S~ S S~ S5 S7

f f l t  1 f 2 f 3
S
1 

S
2 

S
4 
S~ 

~2 
S
4 
S
5 

S
4 
S
5 

S
4 

S
5 
S
7

f f l t  l f 2 t  l f 2 f 3S1 S2 S4 S5 S2 S4 S5 S4 S5 S2 S4 S5 S4 S5 S4 S5 S7

S~ S~ ~: ~~ ~~ ~2 ~~ ~~ ~~ ~~ ~5 ~7

Thus with the DO loop, the execution sequences can be partitioned into 2

sets , each set composed of nembers containing the same segments and branch
expression evaluations.

—72—

— ~_ V ~VV_V 
~
_.___ 

V



5.0 TESTING FUNCTIONAL PROGRAMS

The earliest thinking about F? was largely motivated by testing concerns.

In recent years, attempts to apply engineering discipline to software testing

have brought about increased attention to thoioughly testing a program ’s

structural components. Most recently this trend has extended to the desire ,

if not the requirement, to identify and test each and every program logic

path at least once in the resting process. For small and/or simple programs ,

this objective can usually be reached with relative ease. For large and/or

very complex programs, however, the large number of logic paths and the

often complicated conditions associated with executing a specific path

together pose overwhelming difficulty with which the tester must cope. In

appreciation of the need for both reduced cost and increased rigor of test-

ing, much effort has been devoted to research and development of very

sophisticated tools to help the tester identify program logic paths and

develop program inputs (i.e., test cases) to force their execution. The

use of such tools (e.g., the Automated Test Data Generator3’
4’5developed

by TRW for NASA/JSC) in support of testing even small (but relatively

complex) FORTRAN programs has made it clear that a good deal of the testing

effort can be wasted in looking for inputs to force the execution of phan-

tom paths. Moreover, a program containing 8 executable logic paths to do

the “functional” work of two gLnerally requires more analysis and computer

resources for testing than is ~ictually necessary.

FP directly addresses tnese problems in several ways. First , as seen

in the preceding examples of Routine A and B, FP yields programs of reduced

logical complexity, containing only those logic paths needed to supply

unique, explicitly required processing capabilities. Second , application

of FP establishes and maintains the mapping between subsets (C
1
) of the

input domain, functions (F
1
) required to operate on E1 in G1, and the

logic paths (L
1
) which, when coded and exec~ited , perform the intended

f u n c t i o n  on the specifie~i Inputs. Clearly,  the implication of FP, at

least with respect to exercising all program logic paths, is strong and

e~tLouragIng fnr those truly concerned with the cost and rigor of testing

software .
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The following discussion illustrates the primary benefits of FP

with respect to testing. These benefits include:

• reduced difficulty in selecting input values for program test
cases, and

• reduced difficulty in defining a set of test cases to thoroughly

exercise program structure V

They are presented in the context of sample FORTRAN programs, however, as

with other aspects of FP, the concepts and techniques can be readily gen-

eralized to other languages and applications and the above benefits should

be even more pronounced for larger and more complex programs.

5.1 Testing Routine A

We tackle Routine A first to demonstrate that, even for very simple

programs , the question of what it takes to achieve a thorough test may not
be easy to answer. The original version of Routine A listed in Section 2.3

was tested prior to the time that it was rewritten as a functional program .

The progra~~ier was required to devise those tests necessary to execute

each branch at least once and, without much difficulty found four test

cases that satisfied this requirement. They are:

Case 1: GNO
CN=5
CT=4
TR—6

Case 2: GNO
CN=3
CT—4
TR=6

Case 3: G N 1
CN=8
CT—4
TR=6

Case 4: GN=l
CN= 5
CT—4

TR=6

The values assigned to the integer variables JA , JB , JD, JE , and JV were
the same for all 4 test cases and are not listed here.
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These test cases reflect the modus operandi of most testers — viz.,

to const ruct one test case and then construct the rema ining cases by
changing the values of the minimum number of variables. Comparing

these test cases with the input doma in partitions developed in the FT

analysis of Routine A shows that each test case belongs to a different

inpu t domain part i t ion C
1 

and the test case set provides a test for each

of the partitions in the original version of Routine A.

The actual formulation of the required tests involved tracing through

the flow diagram (or the code) and noting the branching actions which

were directly controllable by the assignment of input values. Thus, it

is not surprising that the description of the test cases (above) is much

like that of the input domain part i t ions. Tha t is , if the testing ap-
proach had been to simply select a single test case from each subset.. of

the input domain, then the set of test cases thus derived would have been

equivalent to the actual test cases developed by the programmer. Case

1, an input from G1, makes no use of the value assigned to TR; case 2 ,
C

2 , makes no use of the values assign ed to TR,  JA , JB , 3D, SE , and 311;

case 3, G3, makes no use of the value assigned to CT; and case 4,

makes no use of th~ va...ues assigned to CT, JA, SB , SD , T~~, and JV.

On the o ther hand , the final version of the functional pr ogram (Sec-

tion 2.7) was developed using a compound conditional branch expression

which , upon evaluation, would choose between the two distinct functions

to be performed .

Th is lat ter  version of the program corresponds to the merged input

domain subsets G
1 

— G1UG3 
and C’

2
G2 

TI C4 . Notice that one method of

deriving test cases ( i . e . ,  simply samp ling once from each subset G’ 1 and

C ’2 ) yields two test case sets, as follows :

Set 1: (GN~ O , cN>TR) or (GN—O , CN>CT), SE , 3D , JA , SB , JV

Set 2: (GN~ O , CN <TR ) or (GN O, cN<CT)

~~i con t ras t , if oTie a t tempts to devise test cases that will exhaust

all of the log ical ~~ssib ilities fo r  the evaluated branch expression ,
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i.e.,:

((GN.EQ .o).A D.(~~ .Lr.c~~.oa.(~~ .NE.o). .(cN.LT.TR)) then it is

possible to specif y eight distinct test case sets , as follows:
Set 1: ~~~O , CN~ CT, CN<T R, SE, SD, JA, SB, JV

Set 2: 0, CN~CT, cN~TR, SE , 3D, JA, JB, JV

Set 3: GN~ O , ~N<CT, cN~ TR , JE , 3D, JA, 33, JV

Set 4: CN~ O , CN~ CT, cN~ TR , SE , 3D, JA, JB, JV

Set 5: GN ’O , CN.<CT, ~N<TR

Set 6: G N O , CkCT , CN~TR

Set 7: Q~~O, CN< CT, CN<TR
Set 8: Q~~0, cN~CT , CN<TR

A more careful analysis of the compound boolean expression, however,
shows that the combination (GN’.O, CN > CT) causes the left half of the

expression to be “FALSE” and the right half of the expression to be
“FALSE” (because GN # 0 is “FALSE”) independent of the relationship bet-
ween CN and TR. Thus, Set 1 and Set 2 are logically equivalent and can
be combined and represented as:

Set 1’ : GNO , CN � CT, JE , SD , JA, JB ,

Similar arguments hold for Set 3 and 4, 5 and 6, and 7 and 8:

Set 3’ : G N� 0 , CN � TR , SE , 3D, JA , JB , 311

Set 5’ : G N O , CN < CT
Set 7” : GN� 0 , CN < TR

Finally, looking again at C’ 1 and C’ 2 and at the two test cases sampled ,
the need for a Set la and lb and a Set 2a and 2b is indicated by the
presence of the “or ” in both doma in definitions and test case specif i—
cations. Notice tha t the three separate attempts to derive Routine A

test cases eventually produced sets of four cases, such that:

Case 1 is a member of Set l’ m Set lb

Case 2 is a member of Set S’m Set 2b

Case 3 is a member of Set 3’ m Set  la

Case 4 is a member of Set i’ m Set 2a
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5.2 Testing the Triattzle — Tvne — Determination Prozram

In a prior investigation6 of an approach and a tool (the Product

Assu rance Confidence Evaluator , PACE) used to assure thorough structural
testing of programs, a small program written to “determ ine whether three
integers representing three lengths constitute an equilateral, isosceles ,
or scalene triangle or cannot be the sides of any triangle” was used as an

example. The problem was said by Fred Gruenberger
7 

to be a dand y one for
teaching logic and flowcharting as well as program testing. In particular ,

he repor ted that “even the good students are astonished to find that it

takes more than six cases to make a thorough test. . . . . “.
As part of an investigation of alternative measures of testing

thoroughness, a programmer was given the problem statement and asked to

write a Triangle—Type—Determination program. Figure 5—]. presents a listing

of the FORTRAN source code developed by the programmer. The segments of

the program are identified in the left margin, and the program logic is
illustrated in Figure 5—2, showing the logical branching potential between
the segments. From Figure 5—2 one can quickly identify 88 “appa rent ”
pa ths through the program , but it is not so easy to tell which and how many
paths are actually executable. As it turns out, only 11 of the paths can
be executed, and the remaining 77 are phantom paths. Reference 3 further
demonstrated the need for 5 separate test cases to cause all executable

statements to be exercised and 11 cases to execute every transfer.
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NAMELIST/INPUT/I ,S
S
1 

READ (5 , INPUT)
MATCH=O

S~ ,S2 IF (I.EQ.J) MATCH = MATCH + 1

S~,S3 IF (I.EQ.K) MATCH — MATCH + 2

s~ ,S4 
IF (J.EQ .K) MATCH — MATCH + 3

s~ IF (MATCH.EQ.O) GO TO 500

s~ IF (MATCH.EQ.1) GO TO 400

s~ IF (MATCH .EQ.2) GO TO 300

S~ IF (MATCH.EQ.3) GO TO 100

S
5 

WRITE (6 ,901)
991 FORMAT (lHl, 11HEQUILATERAL)

GO TO 900

S~ 100 IF (J+K.LE.I) GO TO 600

S6 200 WRITE (6,902)

992 FORMAT (lHl, 9HISOSCELES)

GO TO 900

s~ 300 IF (I+K.LE.S) GO TO 600

GO TO 200

S~~0 
400 IF (I-i-J.LE.K) GO TO 600

GO TO 200

S~~1 
500 IF (I+S.LE.K) GO TO 600

IF (J+K.LE.I) GO TO 600

S~ 3 IF (I+K.LE.J) GO TO 600

S7 WRITE (6 ,90 3)

993 FORMAT (lHl , 7HSCALENE)

GO TO 900
S8 600 WRITE (6,904)

994 FORMAT (liii, 14HNOT A TRIANGLE)
S9 700 STOP

END

Figure 5—1 : FORTRAN Listing of Triangle—Type—Determination Program
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lkr~kS2

S3
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S4

V 

kS
4

~ll

s~ 
S~ 0 

S12

S~3

k S
S5 S8 

7

S6 /
S8

S
9

Figure 5—2 : Structure of Triangle Program
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We now consider a more functional version of the triangle—type-.

determination program and investigate the need for test cases to achieve
equivalent testing thoroughness. From case analysis, we can see that
there are two basic outcomes possible: 1) Triangle and 2) Not—a—triangle.
Outcome 2 should be obtained if, for three positive integers 1,3, K it is
determined that the length of one “side” is greater than or equal to the
sum of the other two . Tha t is,

I+J� K or I+K�J or J+K � I— Not—a—triangle

For Outcomel, there are three subcases, namely:

1.1 I — S — K (All sides equal)—Equilateral1.2.1 I — 3�K

1.2.2 I ~ J=K (Exactly 2 sides equal) Isosceles

1.2.3 I — K�J

1.3 I s S and J~~K and I�K (No sides equal) Scalene

The functional program listed in Figure 5—3 differs from the earlier

version in one major respect. That is, the or iginal program contained logic
paths corresponding to three extraneous cases, namely:

• Equilateral Non—triangle

• Isosceles Non—triangle

• Scalene Non—triangle

Although this distinction is neither required by the problem statement nor
immediately obvious, the logic necessary to distinguish is, nevertheless,
embedded in the program. These extra paths may be of little or no importance

to the user of the program, but to someone required to read and understand,

maintain or test the program, the paths require extra analysis and can

(in the case of large and/or complex programs) make the job much more diff i—

cult than it has to be.
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NANELIST/INPUT/I,J,K

S1 
REAl) (5 , INPUT)

S~ 
- IF (I+J.LE.K ) GO TO 400

S~ IF (I+K.LE.J) GO TO 400

S~ IF (J+K.LE.I) GO TO 400

S~ IF (I.EQ.J) GO TO 100

S~ IF (J.EQ.K) GO TO 200

S~ IF (I .EQ.K) GO 70 200

S2 WRITE (6,901)
991 FORMAT (lHl , 7HSCALENE)

GO TO 900
S~ 100 IF (J.EQ.K) GO TO 300

S
3 

200 WRITE (6 ,902)

992 FORMAT (lHl , 9HISOSCELES)
GO TO 900

S
4 

300 WRITE (6 ,903)

993 FORMAT (lHl , 11HEQUILATERAL )
GO TO 900

S5 400 WRITE (6,904)

994 FORMAT (lHl , 14HNOT A TRIANGLE)
S6 700 STOP

END - -

Figure 5—3 : Functional Triangle Program

The logical branching potential of this functional version of the

program is illustrated graphically in Figure 5—4. As expected , there are

eight distinct logic paths (L
i). they are easy to identify, and all are

possible to execute (i.e., there are no phantom paths). It is also fairly

easy to see that it is necessary to execute each path at least once in

order to execute each and every branch in the program. Thus we need eight

test cases to achieve testing thoroughness equivalent to that obtained with

eleven test cases for the non—functio nal version . More important, however,

is the ease with which the appropriate test cases can be specified.

Figure 5—5 lists the segment—to—segment sequence for each path together
with the logical conditions on the inputs which cause the path to be taken

and the composite conditions which comprice the specification of the input

domain partition.
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Figure 5—4 : Structure of Functional Triangle Program

-82-



Code Sequence Logical Conditions

L1 : ~l ~~ 
~~ s~ s~ S~ S~ S2 ~6 

I+J>K, I+K>J, J+K>I,

I ~ J , J ~ K , I ~ K

L2 S1 S~ 4 4 S~ 4 S~ S3 S6 Same as #1 except I—K

L
3 
: S~ 4 4 4 S~ S~ S3 S6 I+J >K , I+K>J , J+K> I,

I # J , J=K

L4 : S1 4 4 4 s~ 4 S3 S6 Same as #3 except I=J and J ~ K

L
5 
: S1 4 4 4 s~ S~ S4 S6 Same as #4 except J ~ K

L
6 
: S1 4 4 s~ S5 S6 I+J>K , I+K>J , J+K<I

L
7 
: S~ 4 S~ S5 S6 I+J>K , I+K <J

L8 : S1 S~ S5 S6 I+J<K

G
1 

= {I ,J ,K; (I+J >K) (I+K >J) (J+K> I) (I ~ J ~ K # r )}

= {I ,J,K; ( I+J >K) (I+K >J) (J+K> I) ; (I ~ J ~ K = i)}

= {I ,J ,K; ( I+J>K) ( I+K>J) (J+K>I) (I ~ J = K) }

C
4 

= {I ,J ,K; (I+J >K) (I+K>J) (J+K>I) (I = J ~ K ) )

C5 
= {I ,J,K; (I+J>K) (I+K>J) (J+K>I) (I = J = K))

G6 = {I ,J,K; (I+J>K) (I+K>J) (J+K’~-I)}

G 7 
= {I ,J ,K; (I+J>K) ( I+K<J) )

= ~I,J.K; (I+J <K)} V

Figure 5—5 : Triangle Program Paths

—83—

____________________________ 
1_~



5.3 Testing the Stack Program

To further investigate the testing of functional versus non—functional

programs, several versions of the STACK program (Section 4.2) were developed

and analyzed by the Automated Test Data Generator (ATDG)8. Although ATDG

was originally developed by TRW to support the rigorous testing of software

at the NASA Johnson Space Center, its capability of producing path—related
test cases made its applicability to functional programs especially inter-

esting.

The ATDG analyzes source code elements (e.g., subroutines), identifies

conditional transfers, and generates a set of paths containing all of these

transfers. By application of powerful mathematical techniques, the number

of paths required to cover all transfers is minimized. Supplementary in-

formation is also provided by ATDG to support derivation of actual test

input data to execute the paths .

Within ATDG, a rather elaborate algorit1~ is included for the sole

purpose of avoiding the generation of unexecutable (i.e., phantom) paths.

Since functional programs contain no phantom paths, it was expected that

ATDG resulting test cases would correspond to the previously defined function-

al test cases. In each instance, the ATDG—generated cases (i.e., those

required to exercise all conditional transfers at least once) corresponded

exactly to those designed to test all functions8. Finally, a rough com-

parison was obtained for the ATDG execution time required for the function-

al versions of STACK versus that required for similar (i.e., approximately

the same size and logical complexity) but non—functional programs. The

execution time was substantially less for the functional STACK programs,

and this is most likely attributable to the lack of time required to
process, recognize and discard phantom paths.

In completing the STACK/ATDG experiment, it was recognized that an

important relationship exists between the fundamental concepts underlying

FP and ATDG. This relationship is based on the fact that ATDG (and related

technologies like symbolic execution and program proving) attempt to gen-

erate and work with one (or more) path(s) for each of the G. as defined in

Section 2.2. It’s natural to conclude that such a tool could be very use-

ful as a management aid in analyzing functional programs to assure that none

of the intended F~ are inadvettantly omitted and (probably just as important
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but much more difficult to detect) that no extraneous functions are includ-

ed during implementation. In add ition, the tool could be used to support
F? analysis of existing code and aid in the identification of existing

functions and thus an understanding of current functional content.
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6 • 0 FUNCTIONAL PROGRA~~IING I~~ ACT EVALUATION

Since F? is a new way of writing programs, it may be expected to have
an impact on programning language requirements and on the reliability and

maintainability of programs developed using it. The results of a study of

this impact are reported in the following sections.

6.1 Impact on Programming Language Requirements

Although F? concepts are applicable whatever programming language is

used, the following questions can be raised:

• Are there language features capable of making functional programming
easier?

• Are there progra ing standards — i.e., restrictions on the use of
language fea tures — that would make functional programming easier?

F? partitions the input doma in E into the subsets G~ associated with
logic paths L~ and functional capabilities F~ . It therefore focuses on the
inputs. A programmer writing a program should accordingly have a clear

picture of the input variables, the values assignable to them, and how the

ranges of the variables are partitioned to form the G~. Most programming

languages do not aid the progra er in clearly defining the inputs to the

program he is writing . Generally, input variables may appear, for the first

time, anywhere within a program and in many programming languages — e.g.,

FORTRAN — a progra er does not have to explicitly declare an input variable

unless he wishes to restrict its range to a set of values different from

that defined by a computer word.

Visibility of the input domain would be aided by requiring that all
input variables be declared at the beginning of a program. EUCLID, e.g.,

requires a program to list all the identifiers input into a procedure.

Partitioning of the input domain is specified using branch expressions.

;ince F? associates an input domain partition G~ with an executable logic

path ~~ visibility of that association is often improved through use of

compound branch expressions. Thus, facilities to aid the writing of com-

pound branch expressions and their consistent and efficient interpretation

could contribute strongly to the writing of functional programs.
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Structured prograxmning has been successfully introduced into many pro-

gramming groups by expressing it in terms of a few simple rules — viz.,

restricting code structural elements to:

• in—line code segments

• IF A THEN B ELSE C

• DO S W H I L E A

• DO S UNTIL B
Since these rules are relatively simple, programmers can easily learn to
follow them. Are there similar rules for FP that can be just as easily

learned and followed?

That question can be investigated by using FP notation to analyze

differences between F? and structured programming . As originally proposed

by Dijkstra, structured programming is essentially writing a program in the

form :

• IF S~ THEN C11 ELSE C11

IF S~ THEN C21 ELSE C22

IF sk THEN C ELSE C

In this repr:sentation of a st:uctured program , S~ represents a branch

expression and C~1 and C~2 represent executable code segments containing
the allowable code structure elements. This form of the program code

provides a linear structure. It can be read sequentially; i.e., the code

in line i is executed before the code in line i+l. Dijkstra sought by this

means to obtain increased visibility of program structure from the program

text, an objective of F?, too. This linear structure does improve struc-
tural visibility over oUr methods of programming because it eliminates

the complex, often convoluted branching present in many programs; however ,

as noted in functional programming analysis of structured programs, it can

also encourage the formation of phantom paths and, in the process , obscure
both structural and functional visibility.

F? can ~e compared with structured programming by looking closely at

a funct ional  program in its simplest f o r m :
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• IF S1 THEN C1

ELSE IF 4 THEN C2
ELSE IF 4 THEN C3
ELSE IF Sk THEN Cn -

In this representation of a functional program, 4 represents the branch
expression which upon TRUE evaluation initiates execution of the logic path

L1 = S~ C1; 4 represents the branch expression which upon TRUE evaluation
initiates execution of the logic path 4 S~ C2; and so on. C1 represents an

executable code segment, possibly containing DO structures. In this form, a

functional program is a structured program in which C12 is represented by

C1, C22 is represented by C2, etc.

The problem in this form of functional program is the code redundancy

generally occurring in the C1; i.e., the code sequences in each of the Ci
generally will have subsequences repeated in two or more C~. This leads to

writing more lines of code, potentially resulting in more errors, and a

requirement for more computer resources (storage and time) to process the

program. As is shown in sections 3 and 4, programs can be designed to

eliminate all or most of the code redundancy, while retaining the functional

property of no phantom paths. Therefore a requirement for a language to aid

in the writing of functional programs is to provide facilities for specify-

ing in a compact, visible way the intended execution sequence of code

segments for each Ci.

6.2 Impact on Software Reliability

FP was developed to aid the production of reliable programs. Has it

achieved this goal? The following evidence supports the conclusion that FP

does contribute to producing more reliable programs:

• Rewrite of programs originally written using conventional programa—

Ing methods (see Section 3) generally results in programs having

fewer statements (as much as 502 fewer in the case of Routine A).

The fewer statements means that fewer characters and words have to
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be written , resulting generally in fewer typographical errors.

The shorter program text also makes the text easier to read and

comprehend increasing the probability that a progra ier will spot

an error tbat has been made and correct it before the program goes

into use.

• Since in a functional program all paths are executable, it is

relatively easy to trace a path through the program mentally

executing the path and assuring one’s self that program operation

will proceed as int ended .

• Since a program written using FP methodology will have it s function-

al requirements — i.e. , the (G .~~F~ ) — defined before the code is

written and since the executable logic paths L~ are constructed to

correspond to the functional requirements (G~~ F~)~ it is possible

to mentally compare the code of logic path L~ with its associated

functional requirement and by that process detect errors in the

code.

• Since the G~ for a functional program are explicitly defined , it

is relatively easy to design test cases to demonstrate satisfaction

of functional requirements — viz., select an E~ from each —

assuring verification of all functional requirements.

The preceding arguments are theoretical, stating what should happen.

An empirical argument is obtained from the experience with the STACK program

(see Section 4.8). STACK was written using FP methodology — i.e., def ining
the functional requirements (G~~F~) first and then designing the program to

have logic paths corresponding to the (G~~F~). That program was tested

functionally, designing test case-s by choosing E~ from each C~. Test cases •

for each fui~ctional requirement were executed and all executed correctly,

supporting a conclusion that with a high probability there were not errors

in STACK as it was originally written. Although this is only one case and

the absence of detectable errors could be fortuitous, the results of STACK

testing support the cor~’lusion that FP contributes to produc±ng reliable

programs.
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b.3 Impact on Software Maintenance

Software maintenance — solving of problems occurring in operational

use of a program and adapting a program to a changing operational environ-

ment — is one of the largest components of life cycle cost. FP can impact

software maintenance in several ways:

• By contributing to production of more reliable programs, PP
reduces the number of problems maintenance progra ners have to

solve and hence reduces maintenance cost.

• FP produces a description of a program — viz., the functional
requirements (G~~F~) and an association of each functional require-

ment with an executable logic path and functional capability — that

a maintenance programmer, who was not involved in developing the

program, can use to understand the program and to solve problems. E.g.,
a software problem generally can be associated with a specific input

or a specific set of inputs. From this input, the F? program descrip-

tion readily aids associating the problem with a specific ~~~ ~~
and L

3
. From examination of the problem evidence and the G~ 1 ~~

descriptions, the source of the problem can be more quickly identi-
fied and the problem solved at less than usual expense.

• If the problem is elusive, the PP description can aid the design

of test cases to make the problem more visible.

• Once the source of a problem is identified, the F? description

aids identification of the code to be modified.

• A new operational requirement, if it is functional in nature, can
be expressed in the form (G~~F~). This defines the functional

requirement precisely. This form of the requirement when added

to the PP description of the program will show immediately whether

the new requirement is a modification of an old requirement or

whether it is a completely new requirement. With the revised set

of functions, the modifications to the code necessary to implement
the rel.isions are easily designed and the test cases needed to

verify the Implemented revision can be readily constructed.
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• If the new operational requirement is a performance requirement ,

generally it can be related to certain of the functional require-

ments — e.g., to speed up execution of function F~ 
— and the PP

description can aid finding the code to be modified to fine tune

program performance.
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7 • 0 SYSTEM LEVEL FUNCTIONAL PROGB.ANMING

The concepts of F? were developed and applied initially at the routine

level. Programs are, however , collections of routines and software sub-
systems and systems generally are collections of programs and routines.

Thus F? concepts can also be applied at those levels, for a routine is

connected to another routine by having its output F~ (E~) serve as the input
E to the connected routine where it initiates executic~. of logic path L.K
specifying function F

k 
and resulting in output

• E F~ (E
1
)

• F
k

( E )  — F
k

(F
j

(E
i
))

Thus execution of two connected routines results in composition of the
functions specified by the individual routines. This composition can be

extended to the subsystem and system level.

Taken as a whole, the sof tware for a f ire control system specif ies a
function. That function generally will be analyzable into functions

corresponding to specific functional requirements. A particular functional
A A

requirement (G~~ F .) may define the f ire control rules corresponding to a

specific combat situation while another functional requirement (
~k,

Fk) will

define the functional requirement corresponding to another combat situation.

It is equally possible to envision F? application at the system level in

terms of a computer operating system. Here the inputs are things such as

application programs, f iles, and machine resources. Outputs are things

such as initiation of execution of a program and execution of a service, a
distinct function of the operating system. The complete requirements for

an operating system can be def ined by specifying, for each operating

system service, its domain and the function F~ to be performed .

—92—

-— p — — .  - - —.—-—— — — -~



8 • 0 TOOLS TO SUPPORT FUNCTIONAL PROGRA~~(ING

Although the concepts of functional progra ing are relatively simple,

application of them can involve considerable analysis, writing , and book-

keeping. The tedious nature of these chores may inhibit the use of the

methodology. Accordingly, tools need to be developed to automate the

manual effort required and to reduce possibilities for human error.

An informal preliminary requirements specification for a tool (FPA)to

support functional prOgramming analysis of existing programs is:

• FPA is required to:

• Read the text of, for example, a JOVIAL (J3) program and
identify each branch expression and in—line code segment
in the program.

• Assign to each branch expression a symbol S(J,K), with J
denoting an integer value representing the numerical order

of the branch expression in the program.

• Assign to each in—line code segment the symbol S(J), with

J denoting an integer value representing the numerical

order of the segment in the program.

• Produce a listing of the program annotated to show in the

left hand margin a symbol S(J,K) for each line of code
containing a branch expression, with the integer J in the

symbol denoting the numerical order of the branch expression

and to show, also in the left hand margin, a symbol S(J) for

each line of code beg~.nning an in—line code segment ,

If a line of code contains both a branch expression and the

beginning of a code segment, the branch expression symbol
shall be printed first followed by a couma and the segment

symbol printed to the right of the comma.

• List all branch expression symbols and their corresponding

branch expression in the format — the branch expression

symbol followed by a colon followed by the branch expression.

• List all in—line code segment s~mbols and their corresponding

segments in the format — the segment symbol followed by a

colon followed by the segment.
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• List all input variables — i.e., variables to which values

must be assigned in order for the program to be executed

and any data declarations involving those variables.

• Print the program in PP notation.

Such a tool would greatly ease the job of analyzing existing programs,
producing an annotated listing, a listing of the branch expression and
segments, and a listing of the program in PP notation.

Another tool (FPS) to support the writing of functional programs has the

following informal preliminary requirement specification:

• FPS is required to:

• Accept as input, the name of each input variable and its

range.

• Accept as input, specifications on input domain partitions

in the form of branch expressions.

• Accept as input, specifications on the functions associated

with each input domain partition — viz., a specification of
the range of each function and a specification of the rule

assigning to each input E~ in a value F
j

(E
i
) in the range

set.

• List the name of each input variable, followed by its range

specification.

• List the specifications of the input domain partitions in

the format — followed by a colon followed by the branch

expressions defining the partition and a listing of any

input varIables belonging to but not partitioned.

• List the specifications for the functions corresponding to

each input domain partition in the format — R~ followed by

a colon followed by the range set specification and F
1

followed by a colon followed by the assignment rule specifIca-

tion.
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• Check the input variable ranges against the ranges speci-

fied in each input domain partition. Print any variables

whose range is not completely covered in the input domain

partition specifications and identify the portion of the

range not covered.

Such a tool would assist in maintaining the functional requirements

and in identifying any missing requirements.
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9.0 CONCLUSIONS AND RECOZ’~fENDATIONS

At the outset of the contractual project effort reported here,

functional programming (F?) was little more than a gleam in the eye of the

authors. To be sure, several applications of VP analysis to some small

routines had been accomplished and the results (i.e., improved understand-

ability, reliability and performance) were particularly encouraging. The

ultimate goal then was to extend the scope of applications, investigate

both the potential capabilities and limitations of the F? techniques, and,
where appropriate, refine and add to the techniques as necessary to form
a disciplined and comprehensive yet practically useable programming

methodology. The more realistic goal of our initial study was to invest

limited time and resources necessary to concentrate on key issues whose
resolution should and will play a major role in the future evolution and
acceptance of F? as an integral part of improving software engineering

practice. With completion of the subject study and this report of key
f indings , the latter goal has been reached and substantial progress toward
the ultimate goal has been achieved.

Still, the F? methodology as def ined and demonstrated in this report
is in its infant stage. For example, we have shown that in every sample
application it was possible to carefully analyze a computer program and

revise the logical structure so that the resulting program ’s functional
content could be more readily discerned than that of the original, non-

functional version. In some cases the improvement has been dramatic

(in terms of reduced number of distinct logic paths), but in others only

ninor improvements were possible. In short, we have been able to show
that in most cases we should be able to effect some improvement in the

functional visibility of computer programs, but we have yet to prove that

we can do so in all instances.

Similar ly,  we have f.~rmulated a sequence of eight basic steps to be

taken in developing a functional program from scratch. In this study,
ciowever , we have gone no further than to demonstrate (by way of var ied
examples) that the procedure accurately imp lements the F? principles and
that a good prograamer can (with -only ~ little training) actually follow

the procedure in successful development of functional programs. -
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One of the major results of the F? study was to further cc- riffrm the

hypothesis that time and effort spent in rigorously (i.e., :ompleteiy ant

precisely) specifying software requirements leads to marked reductions in

the usual problems and costs of life cycle software development, test,

operation and maintenance.9’10 In fac t, we observed from one experiment
(the development of multiple versions of the stack creation and maintenance

program) that if the original program requirements are written “functionally”

(i.e., in terms of distinct, required functions corresponding to distinct
subdomains of possible values of program inputs), then it is almost impossi-
ble to design and implement any-thing other than a functional program to do

the job. As a consequence, a very high degree of traceability (from re—

quire’nents to code) is achieved, and this traceability directly contributes

to eliminating ordinary problems owing to differing interpretations and

~missions due to oversights.

At this stage in the evolution of a more rigorous and disciplined

sof tware development process , many new te~hnLques have been proposed and
some have been heavily advertised as a panacea for the past problems of

soft-dare production. Understandably, they who have experienced and/or

paid for the problems in the past are eager to find new, mere effective

methods that can help to eliminate similar problems in the future. Such

a climate can be very good or very bad with respect to the development,

application , refinement and eventual, cost—effective utilization of any

particular new technique. For instarce, if one makes great claims about

the potential of a technique (in order to get a 1.ot of people to try it

out), it is possible, in fact , likely that the technique will ( in actual
practice) fail to live up to the claims. (in the other hand, if no claims

are made it can be difficult to get the attention of those who can pre—

sumabl’~ use and benefit from the technique. In either case, the two things
hat are r~ost needed (lcts of experimental applicatiori~ in carefully con—

L.r.~lled situations followed by objective evaluation of not only current

i apabilities and limitations b~t also the probable and possible capabilities

ac.iievable through continued development and refinement) will not be forth—

com ing. The restilt; an otherwise sound and very promisIng new technique

n ight die betore it ever really gets off the ground .
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We hope for and expect a nicer fate for Functional Programming . We

have tried in this report to make only those claims for which we have
reasonable supportive evidence of their validity. At the same time we are

careful to point out that, although our limited experiences with PP have

all been positive and encouraging, we see the need for a great deal more

experimentation and study and still more experimentation before the full

potential of F? can be brought effectively to bear on a wide variety of

software development activities. It is worth noting that it has. taken about

eight years and much study for structured programming to grow from newly

proposed and only slightly understood principle to commonly accepted and

widely used modern programming practice. We suggest that the time has come

to give strong attention to the outstanding problems that still plague

developers and users of software and to invest appropriate time and energy

to bring about an accelerated maturation of PP principles and methodology.

If we really work at it, we can probably be producing truly reliable and

highly maintainable software long before another eight years has passed us

by.

During the course of the F? study, many reference documents were
reviewed and many discussions were held with people currently working at

advancing a variety of software development and test technologies, including:

software requirements engineering , structured programning, automated test
data generation, symbolic program execution and program proving. The

overall outcome of this investigation of other technologies has been to ex-

pose the existence of very strongly related objectives and, in- some cases,

almost ident ical techniques. For example, we found that in completing a VP

analysis (as defined in this report) we were actually accomplishing the

basic steps and deriving the necessary information required for automated

generation of test data. Moreover, it was found that those who are deep into
sym bolic execution and program proving are fully as interested in the actual

functional content of program paths and are fully as frustrated by un—

warranted program complexity as we are in attempting a thorough F? analysis.

Among all these technologies, the dominant common thread is a particularly

strong interest in striving (whether by constructive techniques as in VP,

analytical approaches as in symbolic execution and program proving, or

actual execution and evaluatIon of test results) to remove any and all
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differences between functional requirements (i.e., what the software need s
to do) and functional capabilities (i.e., what the software actually does).
This close tie between technologies is fortunate, in that concerted re-
search and development leading to new breakthroughs in any one area is

almost certain to yield related advances in others. For example, continued

refinement and broad application of PP can lead to production of programs

having a much smaller number of logic paths than might otherwise be the
case, and , as a diL ect result, it should be possible to complete path—by-
path proofs of much larger programs than any attempted to date.

Based on the above consideration, it is recommended that we not only

continue needed research into the fundamentals of software structure (in

general) and F? constructive techniques (in particular), but also that we

maintain the fullest possible understanding of ongoing research and new

advances in related technology areas. A comprehensive research program

should include:

• continued, iterative application and refinement of the PP inethodo—
logy documented in this report,

• special studies of the impact of evolving F? methodology on other
technologies,

• investigation (through experimental application) of the feasibility
and merit of applying F? principles in the writing of formal system
and software requirements specifications,

• detailed design, implementation and experimental application of the
PP analysis and F? support tools specified in this report and
continued analysis of the type and extent of support obtainable
from existing tools (e.g., compilers, text editors, automated test
data generators and symbolic execution systems), and

• study of new advances in other technology areas (e.g., improved
network analysis and path representation techniques, development of
more easily proven programming constructs and language features, and
program test measurement and reliability assessment/prediction
technology) and subsequent incorporation of appropriate new technology
as integral elements of the VP methodology.

If the needed research and development is carried out, it is highly

likely that F? will, become a~ important , const~uctive element of future
software engineering discipline and, perhaps more importantly, we should

achieve unprecedented synergism among previously distinct (and not altogether

cooperatIve) software technologists. If so, we nay begin to reap the real

rewards of truly advanced software production technology much sooner than one

nigh: expect.

—99— 

-- ~~ - - — --- - - - - --



10.0 BIBLIOGRAPHY

This section provides a list (Section 10.1) of the source materials

referenced in the test of the report .  In addition, many other papers and

technical reports were reviewed prior to and during the course of the F?
stud y, and the most relevant of these are listed in Section 10.2.

10.1 References

1. H. K. Blum , “The Semantics o~ Programming Languages , Part  I , ”
TRW sS— 69— 0 1 , (1969).

2. E. R. Anderson , F. C. Belz , and E. K. Blum , “SEMANOL (73) , A
Hetalanguage for Programming the Semantics of Programming Languages” ,
Acta Informatica 6 , 109—131 (1976) .

3. Krause , K. W . ,  M. A. Goodwin and R. W. Smith , “Optimal Software Test
Planning through Aut om ated  Network Analysis,” Record 1973 IEEE
Symposium on Computer Software Reliability, May, 1973 , pp. 18—22
and TRW—SS—73—0 1 , April , 1973.

4. R. H. Hoffman , and G. L. Houser , User Information for the Interactive
Automated Test Data Generator (ATDG) System, Revision 1, NASA
Johnson Space Center Internal Note No. 75—FH—88 , January,  1977.

5. R. H. Hoffman , ATDG Impossible Paris Detection Capability Study
Report, TRW Technical Report 76: 2511.3—115, July ,  1976.

6. Brown , J. R . ,  “Pr act i ’ al App lications of Automated Software Tools ,”
WESCON 1972, Session 21 and TRW—SS—72 — 05 , September , 1972 .

7. Gruenberger , F., “Program Testing : The Historical Perspective ,”
Program Test Methods, ed. W. C. Hetzel , Prentice—Hall , 1973 ,
pp. 11—14.

8. Hoffman , R. H., “ATDG Analyses of STACK Programs ,” TRW In te rof f  ice
Correspondence 77:25 11.3—117 , 27 May 1977.

9. Thayer , T . ,  E. C. Nelson , et al , Software Reliabili ty Stud y Final
- Technical Report ,  TRW Report No. 76—2260 . 1 9—5 , March 1976.

10. Bros-in , J. R . ,  I~ pa cL~~~f . ~~ P on System Development Final Technical
Report, RADC— TR— 77— 12I . ~1ay 1977 and TRW Report 29 ll5—6 00l—RU OO ,
January 1977.

—100—



10.2 Related Publications

Brown, J. R. and M. Lipow, “Testing for Software Reliability,”
Proceedings of the International Conference on Reliable Software,
April, 1975 and TRW—SS—75—02, January, 1975.

Brown, J. R., and K. F. Fischer, “A Graph Theoretic Approach to the
Verification of Program Structures,” to be published in TRW Software
Series.

Dahl, 0. J., E. W. Dijkstra and C. A. R. Hoare, Structured Programming,
Academic Press (London), 1972.

Boehm , B. W., J. R. Brown, E. Horowitz, et al, Practical Strategies
for Developing Large Software Systems, Addison—Uesley, 1975.

Nelson , E. C., “A Mathematical Theory of Data Structures,” TRW—
SS—7l—03 , May, 1971.

Hecht, M. S., and J. D. Ullman, “Flow Graph Reducibility,” SIAM
Journal of Computing , Vol. I, No. 2, June, 1972, pp. 188—202.

Earnest, C. P., K. G. Balke, and J. Anderson, “Analysis of Graphs
by Ordering of Nodes,” Journal of the Association for Computing
Machinery, Vol. 19, No. 1, January, 1972, pp. 23—42.

Howden, W. H., “The DISSECT Symbolic Evaluation System,” Computer
Science Technical Report No. 8, University of California, San Diego,
February, 1976.

Nelson, E. C., “A Statistical Basis for Software Reliability
Assessment,” TRW—SS—73—03, March, 1973.

King, J. C., “A New Approach to Program Testing,” Proceedings of
the International Conference on Reliable Software, April , 1975 ,
pp. 228—233.

Liskov, B., “Specification Techniques for Data Abstractions,”
Proceedings of the International Conference on Reliable Software,
April , 1975 , pp. 72— 87.

Parnas , D. L . ,  “A Techni que for Software Module Specification with
Examp les ,” Communications of the ACM, Vol. 15 , No. 5 , May , 1972 ,
pp. 330—336 .

Floy d , R. W . ,  “Assigning Meaning to Program s ,” Proceedings of a
Symposium in App lied Mathematics, Vol. 19 , 1967 , pp. 19—32 .

Hoare, C. A. R., “An Axiomatic Basis for Computer Programming ,”
Communications of the ACM, Vol. 12, No. 10, October , 1969,
pp. 576—580, 583.

—101—


