AD=A052 997 TRW DEFENSE AND SPACE SYSYEMS GROUP REDONDO BEACH CALIF F/6 9/2
FUNCTIONAL PROGRAMMING. (L)
FEB 78 J R BROWNe E C NELSON F30602=76=C=0315
UNCLASSIFIED _ RADC=TR=78=24 NL

ADAODSR997

%

¥

R

3

0DC FiLE cop

AD No.__

e
o

4

RADC-TR-78-24
Final Technical Report
February 1978

. FUNCTIONAL PROGRAMMING

J. R. Brown
E. C. Nelson

TRW Defense and Space Systems Group

Approved for public release; distribution unlimited.

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command
Griffiss Air Force Base, New York 13441

This report has been reviewed by the RADC Information Office (0I) and is
releasable to the National Technical Information Service (NTIS). At NTIS it
will be releasable to the general public, including foreign nations.

RADC-TR-78-~24 has been reviewed and is approved for publication.

APPROVED: C}h ‘L/O ‘B [

DONALD F. ROBERTS
Project Engineer

APPROVED: W,;é i

WENDALL C. BAUMAN, Colonel, USAF
Chief, Information Sciences Division

FOR THE cmnnzn‘?/j,/ f%d/

JOHN P. HUSS
Acting Chief, Plans Office

If your address has changed or if you wish to be removed from the RADC mailing
list, or if the addressee is no longer employed by your organization, please
notify RADC (ISIS) Griffiss AFB NY 13441. This will assist us in maintaining
a current mailing list.

\

Do not return this copy. Retain or destroy.-

L
|

UNCLASSIFIED

S ITY SSIFICATION OF THIS PAGE (When Data Entered)
READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE pEpREAD INSTRUCTIONS
2. GOVY ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER
C4TR-78~24 ’ | (a)

(‘U inal iechnical eﬁto

FUNCTIONAL PROGRAMMING o 9 June 7] - 15 Jul’ 77y

.J/ Brown
elson

e

/A

8. CONTRACT OR GRANT NUMBER(s)

——

' 3pog2-76-c-§314!

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
J AREA & WORK UNIT NUMBERS

TRW Defense and Space Systems Group

One Space Park P.E. 62702F

Redondo Beach CA 90278 =~ PJ.0. 55811415 W

11. CONTROLLING OFFICE NAME AND ADDRESS e '

Rome Air Development Center (ISIS) I, I ebetiiygy #9578

Griffiss AFB NY 13441

14. MONITORING AGENCY & ADDRESS(if different fr trolling Office) 15. SECURITY CLASS. (of repol')

Same ”D

258

13. NUMBER OF PAGES
01 Ij_/) 1t !

UNCLASSIFIED

15a. DECL ASSIFICATION/ DOWNGRADING
j SCHEDULE
w § L —d

1€. DISTRIBUTION STATEM

Approved for public release, distribution unlimited. ™\ c
. * \ A

2

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

Same \
3 \"
e L

18. SUPPLEMENTARY NOTES “\)\/‘k ?
RADC Project Engineer: Donald F. Roberts (ISIS)

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)
Computer Programming

Programming Techniques

Software Requirements

Software Reliability

%

20. A LTRAl:'.“’ (Continue on reverse side If necessary and identify by block number)

This document is the final technical report and computer program documenta-
tion for the project entitled Functional Programming, Contract F30602-76-C-0315.
It presents the results of a thirteen month study of a new methodology for soft-
ware development. The new techniques, collectively called Functional Programminq
(FP), are described in the report as are the results of varied applications of
the methods in both the rewriting of existing programs and the development of
new programs. The purpose of the report is toj e —

DD ,':2:",3 1473 EDITION OF 1 NOV 65 IS OBSOLETE UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REY b

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)
= a.

Describe the FP methodology in sufficient detail to permit an average

programmer to understand and employ FP practices and succeed in developing
computer programs embodying FP principles,

b.

Provide detailed documentation of the sample programs as necessary to
illustrate the contrast between conventional programs and functional programs
including functional descriptions, source listings and logic diagrams.

c. Present findings of the study of the potential benefits to be derived
from using FP, especially with regard to improved testability, reliability, and
maintainability of computer programs.

\

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Duta Entered)

ga

PREFACE

This document is the final technical report and computer program

documentation (CDRL Items A002 and A003) for the project entitled Functional
Programming, Contract F30602-76-C-0315. It presents the results of a

thirteen month study of a new methodology for software development. The
new techniques, collectively called Functional Programming (FP), are

described in the report as are the results of varied applications of the
methods in both the rewriting of existing programs and the development of
hew programs. The purposes of the report.are. to:

e describe the FP methodology in sufficient detail to permit an

average programmer to understand and employ FP practices and
succeed in developing computer programs embodying FP principles,

e provide detailed documentation of the sample programs as necessary
to illustrate the contrast between conventional programs and
functional programs including functional descriptions, source
listings and logic diagrams, and

e present findings of the study of the potential benefits to be
derived from using FP, especially with regard to improved test-
ability, reliability and maintainability of computer programs.

The report was prepared by J. R. Brown and E. C. Nelson, incorporating

valuable support, constructive criticism and suggestions from M. W. Alford,
E. X. Blum, B. W. Boehm, R. H. Hoffman, J. T. Lawson, M. Lipow, and
F. G. Spadaro. The authors also acknowledge the positive encouragement

and guidance received from the RADC Project Engineer, D. Roberts.

Prepared by: Approved by
\
gi;?. Brown F. G. Spadaro
ject Manager Manager
functional Programming Software Systems Engineering Laboratory

S0 Voboen,
E. C. Nelson

Principal Investigator
Functional Programming Project

iii

TABLE OF CONTENTS

INTRODUCTION AND SUMMARY

1.x
1.2

Overview

Summary

FUNCTIONAL PROGRAMMING DEFINITION AND DESCRIPTION

2.1
2.2
2.3
2.4
2.5
2.6

The SEMANOL Model of a Program

Extension to Program Structural Elements

Functional Requirements and Functional Capabilities

FP Notation
Phantom Paths

Input Domain Partitions

2.6.1 Determination of Input Domain Partitioams

2.6.2 Specification of Input Domain Partitioms

2.7

Functional Programs

FUNCTIONAL PROGRAMMING ANALYSIS

353
3.2
3.3
3.4
3.5
3.6

Functional Programming Analysis Methodology
Example of Functional Programming Analysis
A Functional Version of Routine B
Performance Improvement

Effect of Subroutines

Effect of Assembly Language and Interrupts

COMPOSITION OF FUNCTIONAL PROGRAMS

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

Method for Writing Functional Programs
Informal Requirements Specification
Formal Specification

Functional Redundancies

Branch Expressions Specifying Partition Constraints

Segment Sequences Specifying Functions
Designing the Program

Writing a Functional Program Containing Loops
Writing a Functional Program Containing a DO Loop

iv

Page

»

0 N un &

12
13
13
14
16
19

19
21
28
34
35
41

47

48
49
52

95
57
61

Page

s TESTING FUNCTIONAL PROGRAMS 73
5.1 Testing Routine A 74
5.2 Testing the Triangle - Type - Decermination Program 77
5.3 Testing the Stack Program 84
6. FUNCTIONAL PROGRAMMING IMPACT EVALUATION 86
6.1 Impact on Programming Language.Requirements 86
6.2 Impact on Software Reliability 88
6.3 Impact on Software Maintenance 90
7 SYSTEM LEVEL FUNCTIONAL PROGRAMMING 92
8. TOOLS TO SUPPORT FUNCTIONAL PROGRAMMING 93
9. CONCLUSIONS AND RECOMMENDATIONS 96
10. BIBLIOGRAPHY 100
10.1 References 100
10.2 Related Publications 100
LIST OF FIGURES
2-1. TFORTRAN Subroutine A 9
2-2., Routine A in FP Notation 10
2-3. Structure of Routine A 11
2-4. Graphical Representation of Input Domain Partitions 16
2-5. Revised Routine A 17
3-1. TFORTRAN Subroutine B 21
3-2. Routine B in FP Notation 22
3-3. Structure of Routine B 23
3-4, Structure of Revised Routine B 32
3-5. Structure of Routine Collection 42
4=1. Graphical Representation of STACK Functions 50
4-2, TINSORT without DO Loop 66
4-3. INSORT Structure 67
5~-1. FORTRAN Listing of Triangle-type-Determination Program 78
5-2. Structure of Triangle Program 79
5-3. Functional Triangle Program 81
5-4. Structure of Functional Triangle Program 82
5-5. Triangle Program Paths 83

EVALUATION

An objective of RADC TPO-R5A, Software Cost Reduction, is the
exploration and development of novel software tools and procedures
which enhance the USAF software development process. Tools are
hardware/software devices which enable a human to bring greater
leverage upon software production and quality assurance processes.
Procedures are uniform guidelines which assist in the unambiguous
specification and development of desired software products,

This effort has resulted in the development of a new procedure
for writing computer programs that are consistent with the functional
specification of the program., The procedure directly supports
requirements traceability and test case data generation. The
resulting programs contain no functional redundancies (non-executable
statements), and are easy to recad and comprehend., The concepts can
also be applied to existing software to eliminate non-executable
statements and improve execution performance.

The Functional Programming methodology was developed and
demonstrated using isolated computer programs. Application
on a large software system development will be required in order to

nrove the actual effectiveness of thec methodology.

D7 Rk
DONALD ROBERTS
Project FEngineer

Software Sciences Section

vi

1.0 INTRODUCTION AND SUMMARY

Functional Programming (FP) is both a theory of programming and a
method of programming derived from the theory. The theory provides a
conceptual framework for thinking about programs and analytical tools
usable in analyzing programs and in writing programs, whatever programming
method is used. The theory does, however, suggest a method of programming
described in this document and called the "FP method". Both the theory and
the method are evolving as they are used and problems encountered are
solved. FP has potential for improving the reliability, maintairability,

and performance of programs.
1.3 Overview

FP theory is based on the formal model of programs in the semavoL!
system. It is concerned with questions, such as: What is a program?
What is execution of a program? How are programs structured? What are
the relations among the structural elements of a program? What 1s a
functional requirement on a program? What is a formal specification of a
program? What is a functional capability of a program? What is a correct
program? What inference concerning correctness of a program can be made
from correct execution of a test case? The theory provides precise answers

to these questions.

The FP method involves viewing (and partitioning) the total set of
inputs (i.e., the input domain) to a program as a number of distinct subsets
associated with program logical structures and with functional requirements.
The partitioning and association:

e provide traceability of functional requirements to structural

elements of the progranm,

e simplify the control structure of a program to eliminate non-
executable (phantom) paths, functional redundancies, and
unnecessary executions,

e support development of test cases to demonstrate satisfaction
of requirements,

e provide a description of the program usable in solving problexs
encountered in maintenance,

e provide a method of constructing a program from the specification
of its functional requirements, and

-]

e provide a method for performance improvement by eliminating
unnecessary processing.

A program written using FP is called a "functional program'.
Because its structure is simpler, more visible, and more directly traceable
to functional requirements than is the structure of conventional programs,
a functional program is easier to read and understand. The increased struc-
tural visibility also enables the programmer to detect, analyze, and
correct many errors as he is writing the program, resulting in fewer errors
in the developed program. Because test cases to demonstrate satisfaction
of a functional requirement can be constructed by merely selecting inputs
from the input domain partition associated with that requirement, testing
becomes substantially simpler.

%2 Summary

Studies have shown that much of the apparent complexity of programs
is due to the presence of phantom paths and functional redundancies (logic
paths that compute the same function). By eliminating them, FP produces
programs having simpler structure - fewer paths and executable statements.
The presence of loops, usually regarded as the source of much complexity,
is treated in terms of sets of execution sequences, and association of each
such set with an input domain partition and functional requirement. The
partitioning of the input domain also aids in the analysis of program

usage problems and suggests ways to eliminate some of them.

The simpler structure and resulting fewer executable statements in a
functional program may reduce the program's use of computing resources -
storage and execution time. Additionally, the association of input domain
partitions with program logical structures can identify statements executed
for inputs from a given partition but not needed to compute the output for
that partition. Rearrangement of the statements so that processing is
performed for each partition only if needed can reduce processing time for

the affected partitions.

FP can also be used to analyze existing programs. It derives from
the program tevxt a complete description of the program - what it does,
how it executes, and its response to any input - in terms of the input

domain partitions and their associated logical structures and functional

requirements. FP analysis can identify problems in a program and indicate
how to correct them, thereby improving the reliability of a program. I
also provides data enabling the rewriting of the program, with little
effort, as a much simpler functional program having no phantom paths and in

some cases, fewer executable statements,

The FP description of a program, derived from FP analysis of the
program or from the process of writing a functional program, can be used
by a maintenarce programmer to solve problems occurring in the operational
use of the program. It enables him to relate the problem to specific
structural elements, functional requirement, and input domain partitionm.
He can then more easily determine the source of the problem and how to
change the program in a way that ensures that the change satisfies the

functional requirement.

Many functional programs are structured programs; however, FP analysis
of existing programs has shown that some structured programs have Qﬁnecess—
arily complicated structures. It shows how to simplify those structures and,
in many cases, obtain a structured functional program. It has also shown
that, in some cases, a structured program does not have ;he simplest

structure.

FP theory does not depend on the programming language used, but
details of the FP method can be language dependent. FP is applicable to

both high level language programs and assembly language programs.

In this report we have provided a detailed definition and description
of FP and have incorporated numerous examples wherever necessary to clarify
important FP principles and demonstrate the intended application of FP

techniques.

FP theory is described in section 2, FP analysis in section 3,
writing of functional programs in section 4, and testing functional
programs in section 5. Studies performed on the impact of functional pro-
gramming on programming language requirements, software reliability, and
maintenance are reported in section 6, Section 7 discusses system level
functional programming and section 8 contains preliminary specifications on
two tools to support functional programming. Section 9 presents

conclusions and recommendations and section 10 lists references and related
publications.

2.0 FUNCTIONAL PROGRAMMING DEFINITION AND DESCRIPTION

FP theory is based on the formal model of a program given in the
SEMANOL systea (section 2.1). The theoretical concepts in the SEMANOL
system are extended to the structural elements of a program (section 2.2).
The distinction between functional program requirements and functional
program capabilities is discussed (section 2.3). Notation for describing
program structure is developed (section 2.4); the concept of phantom paths
is discussed (section 2.5); input domain partitions are defined (section
2.5); and functional programs are defined (section 2.7). The examples
used here and in subsequent sections (i.e., Routines A, B, and C) are
actual routines that were developed for a very large scale real-time sys-

tem.

2.1 The SEMANOL Model of a Program

The semantic theory of the SEMANOL system2 provides the following

definition of a program:

® A program p specifies a computable function F on the set E of

inputs speéified by the input expressions in the program.

The set E, the input domain of the program, is composed of members E_, each
i

member being a set of input values for an execution of p.

E = {Ei: 4=} 2. .ivey B}

The input values composing each E, include all the values necessary to

>l
cause exacution of p, including those saved, if any, from a previous

execution of p. E identifies all the computations program p can make:
e Eacn Eiin E corresponds to a possible execution of p.
e Each actual execution of p is initiated by an inpuc Ei from E.

{ne number N of members in the set E is finite,although perhaps very large,
for all programs in which the number of input variables and their ranges

are finite. Tre function F is a rule which assigns to each E, in E a

i
value, called the "function value" and denoted by F(E,), chosen from a

sat called the '"range'" of F.

The definition of a program is formalized through a semantic operator
% which, applied to a program p and an input Ei’ prescribes the execution

of p to produce as its output the function value F(Ei):
Q(p,Ei) = F(Ei)
E is the domain of F - i.e., the set on which F 1is defined.

The correct output of an execution of p with input Ei is F(Ei)’ the
desired function value. An execution of p which does not produce as its

output §(Ei) is called an "execution failure'. It can result in:
e incorrect output: o(p,Ei) -_F(Eil # E(Ei)
e premature termination of execution,
o failure to terminate as in an endless loop.

Since an endless loop does not compute a function value, code containing
one is not only incorrect, it is an "illegal' program. Some programs
include apparent endless loops used to use up time until an interrupt is

initiated by an operator or some external signal. In FP theory, such an
interrupt is aa input to the program and should be included in the analysis

of the program.

A "correct" program is one for which all executions produce correct

output:
e TFor all Ei in E; ¢(p,Ei) = F(Ei)

This definition of a correct program can be extended to allow a tolerance

in execution output:

e For all Ei in E, |¢(p,Ei) - F(Ei)l < €

2.2 Extension to Program Structural Elements

When program p executes with input Ei, the execution proceeds through
a specific code sequence, called an executable logic path, Lj' The same code
sequence - i.e., the executable logic path Lj - may be caused to execute by

other inputs. The set of all inputs which cause L, to be executed is denoted

3

G, is a subset of E such that:

by Gj' I

e execution of p with Ei in Gj executes Lj’ and
o 1if Ei causes execution of Lj’ it is in Gj'
Execution of p with an Ei a member of E but not a member of G, causes

3
execution of another logic path, say Lk with k#j.
All inputs Ei in E cause execution of some logic path; therefore

each Ei is a member of some G, and is associated with a logic path L

3 i

(There can be code sequences in a program which cannot be executed by

any input.) Thus the union of all the subsets Gj is the set E:

UG, = E

33
The subsets GJ are disjoint, for no E, can cause execution of more than one
logic path.

Gjnck = ¢ for jJ # k (¢: null set)

The Gj therefore partition E.

Since the code sequence Lj is itself a program, it may, in accordance
with the formal definition of a program, be interpreted as specifying a

computable function F, on G,:

3 3

¢(Lj,Ei) = Fj(Ei) for Ei in Gj

The "total” function F, specified by p, may therefore be represented

by the collection of functions F,, each F, being defined on its domain G,.

3 3 b
In terms of the Gj and Fj, a program may be represented as:
e For all j in 1<j<n (If Eiis in G,, Compute Fj(Ei))

In actual programs, determination of the G, of which E, is a member

is accomplished by evaluation of a sequence of branch expres:ions. Evaluation
of the sequence may include transforming some of the values in Ei to

a fora such that the branch expressions are simpler; e.g., the variables

X1 and X2 may be transformed into polar coordinates before a particular

branch expression is evaluated.

2.3 Functional Requirements gnd Functiopal Capabilities

Partitioning of g. the function p is intended to compute, and its
domain g into the set of pairs (Ej’ﬁ) defines a set of "functional require-
ments" on p. (In addition to functional requirements, a program may have
performance requirements, reliability requirements, maintenance requirements,
etc.) The partitioning of F, the function p actually computes, and its
domain E into the set of pairs (Gj,Fj) defines the "functional capabilities"

of p.

The objective of reliable software development generally is to produce
the program such that its functional capabilities are the same as its func-
tional requirements. Similarly, the objective of software verification is to
verify that the functional capabilities are the same as its functional re-

quirements - i.e., to verify that, for all j:

e G, =G, and

Problems arise when G, # G, and/or the F, # . In addition to the

E
] 3 5 ad

obvious problem of an execution failure, Fj(Ei) # Fj
F). One common

s

problem is that a program may have functional capabilities not specified

(Ei), there are other

problems analyzable in terms of the (G

in its functional requirements; e.g., in addition to functional capabilities
(Gl, Fl), (GZ’ Fz), SOy (Gn’ Fn) corresponding to functional requirements
(él, ?1), (G2, Fz), ey (én, Fn), a program may have functional capabili-

n+l,Fn+l)’ (Gn+2’ Fn+2)’ R
stated functional requirements. These "hidden capabilities" are the source

ties (G (Gm, Fm) not corresponding to any

of many usage problems. This commonly arises when the G, do not collect-

]

ively cover all of the variable ranges defined by the computer word size.

A user not understanding the limitations of a program may then select an

input Ei from one of the Gn+j's and obtain as output a function value

not interpretable in terms of what he expected the program to compute.

Another type of usage problem arises when the required functions
gj are not clearly associated with the 6j on which they are defined. A
user wanting to perform a function FJ may select an input from Gk’ with
k#j, and when he obtains the output Fk(Ei) instead of the expected Fj(Ei),

he ascribes the problem to an error in the program.

FP methodology for writing programs (secticn 4) involves explicit

definition of the functional requirements <Gj’ F) and provides a method

3
for designing the program so that it contains only the functional capabili-
ties (G,, Fj) corresponding to the (G F) and no others.

¥ 45

2.4 FP Notation

Functional analysis of programs is aided by introducing a notation for
representing program structure in more detail. The structural elerents

at the level below the logic path are:

e branch expression - an expression which when evaluated determines

the executicn sequence, such as a boolean expression in a logical
IF statement or an arithmetic expression in an arithmetic IF

statement.

e in-line code segment - a sequence of executable expressions not

containing any branch expressions, such that, if one of the

executable expressions is executed, all of them will be executed.

In-line code segments will be denoted by the symbol Sy, with the value of
the subscript i denoting the numerical order of a segment in the program.
Branch expressions are denoted by S?, with the subscript j taking on
numerical values denoting the numerical order of the branch expression in
the program. The superscript k identifies S? as representing a braach ex-
pression, and is also a variable denoting the valus resultir, from an
evaluation of the branch expression. If S; is a boolean expression, such
as MN.EQ.O, it may be evaluated TRUE, denoted by t, or FALSE, denoted by f;

€eBoy S§ denotes branch expression sk evaluated TRUE. If Sk is an expression

] 3

in a FORTRAN arithmetic IF statement, it may be evaluated to be less than
0, denoted by -; it may be evaluated to be-equal to 0, denoted by 0; or
it may be evaluated to be greater than O, denoted by +; i.e., S+ denotes
branch expression Sk evaluated to be greater tham 0. If Sk is in
arithmetic expression in a FORTRAN computed GOTO statement, k denotes the
integer result of its evaluation; i.e., S? denotes branch expression Sk

3

evaluated to be 3.

As an example of the use of the notation, consider the following
FORTRAN program, called Routine A:

sk IF(GN.NE.0) GOTO 10
ss IF(CN.LT.CT) GOTO S
5, 15 = 1

GOTO 25
8y .5 EE =0

GOTO 25
s§ 10 IF(CN.LT.TR) GOTO 20
s, IE = 1

GOTO 25
s, 20 I =0
S¥ 25 IF(IE.NE.1) GOTO 40
s, J5 e 24t

XI = JD

Kt -2

KR = 3

K3 = JA

KE = JB

VeIV ARE]

KG = 1
Sg 40 RETURN

END

FIGURE 2-1. FORTRAN Subroutine A

Routine A has 20 executable statements, 6 segments, and 4 branch expressions.
The branch expressions S? are defined to be the expressions evaluated

within the IF statements and the segments Si are defined not including

any GOTO statements at their termination; thus, for Routine A, the branch

expressions and segments are:

Branch Expressions Segments

Sk: GN.NE.O S.: IE=1 SS: JE=JE +1

3 1 KI = JD

k' H = ﬂI-Z

SZ' CN.LT.CT SZ' IE 0 S
s CN.LT.TR §.: IE= 1 KB = JA

: 3 KE = JB

S ¢ IE.NE.L S,: IE=0 JV=JV+ KL +1
4 4 KG = 1

S,: RETURN

6°

In terms of this notation, Routine A can be written as shown in Fig. 2-2.

k k
IF) GOTO Sy
IF s¥ GoTo s
2 2

51

k
GoTO Sf
s'7

K
GoTO SK
=
IF 55 GOTO S,
3

k
GoTO S
54
Ir s GoTo s
0 6
S5
S6

Figure 2-2. PRoutine A in FP Notation

-10-

Routine A in FP notation is more compact than the original program and

its structure is shown more vividly. In this notation, "IF" denotes th:
the branch expression following it is to be evaluated, with the results

of the evaluation used to determine the branch to be taken. 'GOTO" denotes
a transfer of the execution sequence to the branch expression or segment
named following the GOTO. From the FP notation form of a program, a
diagram showing the logical structure of the program can be prepared

directly. Such a diagram for Routine A is presented in Fig. 2-3.

Figure 2-3. Structure of Routine A

wl]s

oA

In the diagram, the left hand branch from the lower side of a circle
surrounding a branch expression S? denotes a FALSE evaluation S§ and the
right hand branch denotes a TRUE evaluation 5

3

execution is downward, so arrows denoting execution flow direction are not

By convention, the flow of

used.

In terms of the FP notation, the 8 potential execution sequences are:

sf sg 5 sf By i
Si s§ 5, S, Se
si 353, sf g5,
sf 538, 5, Sg
s s§ 5, sf g
s 55 55 5 ¢
=9s si 8o 9,
5] sg 8.5 %

2.5 Phantom Paths

Although there are 8 apparent logic paths through Routine A, & of
them are not executable. They arise because the evaluation of branch
k .
expression S4 is dependent on prior assignments of value to the
S

variable IE in segments S S3, and SA' Sf branches on whether IE has

l’
the value 0 or 1. Since Sl,

tae sequence Sf g Sl must result in S

21
SZ’ S3, and 54 set IE to 1, 0, 1, O respectively,

the sequence Si S; S2 must result
S S

A)

t
in SA’ the sequence st S3 must result in 34, and the sequence S

1 5 1
must result in SA’ Only the following 1ogic paths are executable:
. f
® 5] 5,8, 5, S¢S, L,
f ot t
® S; 5, S, S, S4 ¢ L,
v 58S, 8
e S R e S
Ceab ok
° Sl 53 S, 3, Sé T..4

The remaining 4 code sequences are not executable. They are therafore

"phantom paths',

In the case of Routine A, one-half of the potential logic paths are
executable and one-half are phantom paths. Some programs have more phantom
paths than executable paths. The actual structure of a program can be
concealed in a web of phantom paths obscuring the executable logic paths

so that they cannot be readily seen by reading the program text.

Because of the existence of phantom paths, the text of a program
does not continually cue the programmer on the actual structure of the
program as he writes it. He has to keep a picture of the structure entire-
ly in his mind. If the program is more than a few statements long, this may
be quite difficult. The resulting structural confusion may lead to pro-
grammer errors. Such errors, when made, cannot be easily detected by
scanning the program text; they are found only through extensive and costly

debugging and testing.

2465 Input Domain Partitions

2.6.1 Determination of Input Domain Partitions

Partitioning of the input domain into subsets, Gj is determined by
constraints on the values of the input variables imposed by the branch ex-
cression evaluations selecting the logic path Lj. Each input variable ran-
ges over a set of values specified explicitly in p by a data declaration or
implicitly by a convention in the programming language. A branch expression
partitions the range set of a variable into two or more subsets. As a
logic path is executed each successive evaluation of a branch expression
constrains the range of one or more input variables, The net effect of all
of the branch expression evaluations for logic path L, is to constrain the
values of the input variables to lie within Gy Some of the input variables
nay not have their ranges constrained by the branch expression evaluations.
Also, some of the input variables may not enter into the calculationms in Ly
Thus the number of variables to which values must be assigned may differ

from logic path to logic path.

Deterrination of the Gj may be illustrated by constructing the input
domain partitions for Routine A. Routine A has 9 input variables - GN, CU,
¢T, TR, JE, JD, JA, J3, JV = to which values are assigned prior to entering

the routine. It has no data declarations, so the range sets of the input

] F=

variables are determined by the convention in FORTRAN that variables
beginning with the letters, I, J, K, L, M, or N are integer variables
and variables beginning with any other letter are real variables.
Thus:

e GN, CN, CT, and TR are real variables.
e JE, JD, JA, JB, and JV are integer variables.

The ranges of these variables are determined by the computer word length.

The partitioning of the ranges of these variables is determined by

the branch expressions St, Sg, and Sg:
] Si partitions the range set of GN into the value 0 and all cther

possible values.

® S§ partitions the range set of CN into values less than the value

of CT and values greater than or equal to the value of CT.

° Sg partitions the range set of CN into values less than the
value of TR and values greater than or equal to the value of TR.
Si acts on the internal variable IE and has no partitioning effect on the
input variables. Si, Sg, and S§ act only on the variables GN, CN, CT, and
TR. They have no partitioning effect cn JE, JD, JA, JB, and JV.

2.6.2 gpecification of Input Domain Partitions
The input domain partitions may be specified by listing the branch

expression evaluations and any variables whose range sets are not

partitioned:
e G, :GN =0, CN>CT, JE, JD, JA, JB, JV
o G, : GN = 0, CN<CT
e Gy :GN#O, CN>TR, JE, JD, JA, JB, JV
o G, : GN # 0, CN<TR

Note that although there are 9 input variables, only 8 are included in

Gl’ 3 in Gz, 8 in G3, and 3 in Ga. Thus each Ei in Gl is a set of 8 values;
each Ei in G2 is a set of 3 values; each Ei in G3 is a set of 8 values;

and each Ei in GA is a set of 3 values. The complete input domain may be

constructed by forming the union of its partitions:
E = Gl U G2 u 63 U GA

The functions corresponding %o each of the G, are:

3

alf=

38, 82 ¢ JE = JE +)
i % KI = JD
M = 2
KR = 3
KB = JA
KE = JB
JV=JV+KI +1
KG =1
RETURN A

i.e., F, updates certain values in a data base.

1

Each computed value of F, is a combination of the values assigned to

1
the variables JE, KI, 1, KR, K3, KE, JV, and KG at the end of execution of

Routine A. It is,therefore, an 8-tuple having as its elements the values
assigned to these variables. Three of these elements - viz., the elements
associated with XM, KR, and KG - are restricted to a single value. The re-
maining 5 elements can individually range over the set of integers fitting

within one word length. The range set of F. is the set of these 8-tuples.

1

The mapping from G, to this output set of 8-tuples is defined by the equations

1
corresponding to the assignment statements in SS’
e F,: S6 : RETURN: vomputes no output values;

t.e., FZ does not update the data base.

Since F, computes no value, the range set of Fz is a set containing no

values - viz., the null set 8, F, tnen maps the set G2 into 6.

] F3 S 36 JE = JE + 1

e XI = JD
RM =2
KR = 3
KB = JA
XE = JB
JV = JV @ Ki + L
KG =1
RETURN

F3 updates the data base,

® F,t Sgi' RETURY:no update,
Note that Fl = F3 and F, = F&' Routine A contains functional redundancies

0f the kind treated in the next section.

-]15=

An alternative technique for specifying the input domain partitions is
via a graphical representation (Figure 2-4). This type of illustration
supports the analyst in assuring that all significant values of branch
variables have been considered. It also helps in the derivation of input
values for test cases. This technique has proven to be a valuable tool in
the functional design (or redesign) of large programs. If desired, the
functions (F;) may also be included as shown in Sections 4.3 and 4.4, thus
providing a concise illustration of the desired functional capabilities.

GN =0 GN = 0

CN 2 CT CN < CT CN 2 TR CN < TR

Gl Go G3 Gy

Figure 2-4., Graphical Representation of Input Domain Partitioms

2.7 Functional 2rograms

Can programs be written so they contain no phantom paths? Can the
functional redundancies be eliminated? Based on the preceding analysis
into the GJ and Fj’ Routine A can be rewritten without functional
radundancies and with no phantom paths., First combine the partitions of

the redundant functions:

=16=

' -
o Gl Gl U G3

' =
° G2 G2 U G4

Then construct the branch expressions corresponding to the new partitions:
k'

e G: (GN.EQ.O).AND.(CN.GE.CT).OR. : Sl

(GN.NE.Q) .AND. (CN.GE.TR)

|
e G): (GN.EQ.0).AND.(CN.LT.CT).OR. s S%
(GN.NE.O) .AND. (CN.LT.TR)

Since Gi and Gé are disjoint sets and are complements of each other
relative to E, only one of the new branch expressions is needed. Routine A

may therefore be written, in F? notation:

kl
IF S2 GOTO 36
L
[
“6

Tais new form of the program has only 2 paths, both executable, correspond-

ing to the 2 distinct functions. Substituting the FORTRAN expressions for

1
s+ Sas and 56 provides FORTRAN code for the revised version of the Routine A

b

shown in Figure 2-5.

IF ((GN.EQ.0) .AND.(CN,.LT.CT) .OR.
(GN.NE.O) .AND. (CN.LT.TR)) GOTO 10

JE = JE + 1
KI = JD
KM =2
KR = 3
KB = JA
KE = J3
JV = gV = KE += L
RKG = 1
10 RETURY
END

Figure 2-5. Revised Routine A

-17=

The original version of Routine A had 8 apparent paths, 4 of which were

executable, and 20 executable statements. The revised version has 2 logic
paths, both executable, and 10 executable statements. It therefore has a
simpler structure and less code; however, it has introduced a complication

in that it contains a compound Boolean expression.

The final version is called a "functional program'", because its
structure is explicitly related to the functions Fj performed by the pro-~
gram and their input domain partitions Gj’ More generally, a functional
program has no phantom paths and the functions Fj and input domain parti-
tions G, corresponding to each of its logic paths L

3]

defined; i.e., specifications for them have been written down, so they are

have been explicitly

explicitly known and not merely intuitive concepts in the programmer's mind.

Routines A and the other routines, Routine B and Routine C, used in
this report as examples explaining FP concepts, are actual routines from a
real time software project. These routines, written in FORTRAN, were
required to be structured using only certain specified control structures,
modelling the structured programming control structures of IF THEN ELSE,
DO WHILE, etc. in terms of specified groups of FORTRAN IF statements and
GOTO statements. Both the original and FP version of Routine A are

"structured" in accordance with this definition.

=18

S it - e

3.0 FUNCTIONAL PROGRAMMING ANALYSIS

Functional programming analysis is the application of the basic
ideas ouf functional programming to the analysis of existing programs. It
derives from the program text a complete description of the program -
what the program actually does, how it executes, and its response to any
input. It therefore is a technique for independent analysis of programs.
Since this independent analysis can identify problems in the program, it
can contribute to improving the reliability of the program. The description
of the program can also aid the maintenance programmer, who generally was
not involved in developing the program, in understanding the program,
analyzing problems, and determining the changes needed to solve the problems.
Because it partitions the input domain into subsets associated with function-
al requirements, functional programming analysis can aid the generation of
test cases to demonstrate satisfaction of the functional requirements. The
descripfion also provides data usable in rewriting the program as a

functional program.

3.1 Functional Programming Analysis Methodologv

Functional prograrming analysis closely follows the method used in
Section 2 for amalyzing Routine A to illustrate the concepts of functional
programming. The objective of functional programming analysis of a given
progran is to partition the input domain E of that program into subsets
Gj associated with executable logic paths L, and to determine the function
Ej each Lj computes. This analysis is accomplished by identifying in Fhe

program text the in-line code segnments Si and the branch expressions S, °*

analyzing the evaluations of the S, to determine the Lj’ and analyzing the

J
S, composing each Lj to determine the F,.

]

This analysis can be performed by carrying out the following steps:

-19-

———

1. Identify the segments Si and branch expressions Sk in the program text
by marking them on the left hand margin of the program listing.

2. Rewrite the program in FP notation. This provides a more compact
representation of the program, aiding further analysis.

3. Construct a diagram (such as the one in Fig. 2-3) showing the
Si’ the S?, and their interconnections. Although this step is not
absolutely necessary, it aids in visualizing the structure of the

progran.

4, Determine the subsets Gj' using the Sg evaluations to specify
partitioning of the input variable ranges, by carrying out the
following substeps:

a) identify the input variables and their range sets.

b) analyze the first branch expression, Si, to determine its

partitioning effect on input variable ranges.

c) successively analyze execution sequences involving 2, 3, ...
branch expressions, determining at each stage the partitioning

effect on input variable ranges.

d) on identifying a phantom (non-executable) sequence, eliminate it

from further analysis.

e) continue the process until all the executable sequences have been
defined. The corresponding partitions on the input variable ranges
are the G,.

3
5. Associate each Gj with a sequence of Si's.
6. Determine F, from the sequence of Si associated with Gj'
-
7. Construct E from the union of the Gj and F from the Fj'

Carrying out this procedure is relatively easy for small programs
(<100 statements). For larger programs, the analysis can be made mora
manageable if the program contains subroutines. The subroutines are
analyzed first. The set of inputs for each subroutina are then matched

with the range of values computed for each input variable in the calling

routine.

~20-

3.2 Example of Functional Programming Analysis

e
-

Application of the functionalnarog ng analysis steps, given in
3.1, is explained by using them to analyze a FORTRAN ne, called

"Routine B". The first step in the FP analysis has been comple

marking the S, and Sk

4 o8 the left hand margin of the listing (Figure 3-1)%

S KF = ZR

K = KF + 1

Ul = =ZT(2)

U2 = =ZT(3)*ZS(K) + ZT(7)*ZC(K)
U3 = ZT(3)*ZC(K) + ZT(7)*ZS(K)
IF (U3.LT.ZE(K)) GOTO 100

S2 = Ul**2/(Ul**2 + U2**2)
IT = 1

IF (S2.LT.ZA) GOTO 20

w0
o H®

~nw

IF (U1.LT.0) GOTO 10

KF = KF + 1
GOTC 50
S 10 KXF =KF + 3
GOTO 50

20 IF(U2.LT.0) GOTO 30

IT =0
GOTO 50
S 30 KF = KF + 2

s‘;,s7 50 IF (KF.GT.3) KF = KF - 4
sg IF (IT.EQ.0) GOTO 200

s TL(1) = 5
TL(2) = KF
GOTO 200

s 100 TL(1) = 6
TL(2) = KF

S; IF (2D.EQ.1) GOTO 200

le ZRF = ZRF + 1
2Q(Z3) = ZF
ZV(Z3) = 2X
ZB(Z3) = z1
ZDQ(Z3) = 3
23 = 23 + 2Q(23) +1
ZD = 1
S, , 200 ZFC = 2R
RETURN
END
Figure 3=1, FORTRAN Subroutine B

B

Routire B has 35 exacutable statements, 7 branch expressions, and 11

segments.

The second step is to rewrite the routine in FP notation, producing

the following more compact representation shown in Figure 3-2,

N

Sl .

IF Sl GOTO 59
52 k k
IF S2 GOTO S4

IF S§ GOTO S

S5
GOTO S
S,
K

GOTO s,
1F s* GoTo s

4 6
S5
GOTO §
8 :
IF (59 S,

4

k
5

k
5

IF s: GOTO S,
Sg

GOTO s,

Sy

IF §5 GOTO §
s
s

11
10
11

Figure 3-2. Routine B in FP Notation

A graphical representation of the structure of Routine B (Figure 3=3)

shows 18 apparent logic paths.

«22-

Step 4a applied to Routine B finds all the variables to which values
must be assigned external to the routine in order for it to execute:

ZR
ZT(2), ZT(3), ZT(7)
ZS(K)
2C(K)
ZE(K)
za
ZD
ZRF
z3
ZF
ZN

A

The value of input variable ZR is converted in the first executable
statement to an integer value, denoted by KF. A constraint external to
the subroutine limits values of ZR to 0S2ZR s3, 23 is defined externally

as an integer for use as a subscript.

Step 4b, analysis of Si: U3.LT.2E(K), shows that two of the variables
in Si, U3 and K, the index of ZE(K), are not themselves input variables but
are computed by code in S1 from input values of the actual input variables
ZR, 2T(3), 2T(7), 2C(K), and ZS(K). Si partitions the set of values which

can be assigned to U3 in 2 subsets:

e values less than the value of ZE(K)

e values greater than or equal to the value of ZE(K).

TRUE evaluation of Si transfers execution to 59, followed by evaluation
of S?, which partitions the set of possible values of ZD into ZD = 1 and

ZD # 1. These evaluations define two logic paths:

t ¢
® Ll. Sl Sl 59 57 Sll

, t £
o Lyt S, 5 Sy 8; 8,8,

The input domain partitions for these paths are:

e G;: IR, U3 < ZE(X), 2D = 1;
U3 = ZT(3)*ZC(K) + ZT(7)*2S(K), KF = ZR, K = KF + 1
e G,: IR, U3 < 2E(K), 2D # 1, ZRF, 23, ZF, 2N, ZI;

U3 = ZT(3)*2C(K) 4+ ZT(7)*ZS(K), KF = ZR, K = KF + 1

il

In the description of the Gj’ the partitioning relations and any
unpartitioned input variables are listed preceding the semicolon. After
the semicolon, transformations on the input variables that must be made

before applying the partitioning relations are listed.

.FALSE evaluation of ST transfers execution to SZ' Then evaluation
1,
of S;:S2.LT.ZA, followed by evaluation of S?:Ul.LT.O or SE:UZ.LT.O,

selects whether SB’ SA’ SS’ or 56 is executed:

(2]
n

e selects S

3

[]
(2]
[%2]

selects S4

[]
[72]
Nt N D N

(%]
St S o WwWerr WM

selects S5

[]
(2]
wm

selects 86

53, Sa, and 56 change the value of KF¥, while S5 does nct. Evaluation of
S?:KF.GT.3 tests KF to determine whether or not its value is greater than 3.
For initial values of KF < 3, execution of the sequence S5 S? can only result
in s? being evaluated FALSE. If an initial value of KF > 3 (i.e., ZR > 3)

is input, the external constraint on ZR is violated, causing Routine B to
compute something having no physical significance. Thus the sequence S5 S;
will not be executed for all meaningful inputs. Therefore it is a phantom
sequence. This analysis suggests that the routine should include a test for

ZR > 3 with an error message in case it is.

SE:IT.EQ.O tests the value of the internal flag IT, which is set to
the value 1 by 82 and to the value 0 by SS' Thus the sequence S5 Sg SE must

result in Sg evaluated TRUE and all sequences not involving S5 must result

in S: evaluated FALSE. Accordingly, the following are phantom sequences:

o S

w
O Hh

S

5

[]
wn

w
w

wn
o

[]
wn

w

(73]
Uirh Uit Liim U0 Mh

®
wn

N
(7]

w)Be

These 7 phantom sequences plus the two identified earlier - S5 S; S7 Sg and
t f
S5 SS S7 56 - indicate that 9 of the 18 apparent paths of Routine B are

phantom paths. The remaining 9 paths are executable.

Definitions for two of the input domain partitions, G. and Gz, and

1

their associated logic paths, L., and LZ, were given previously. The

1
sequences for the 7 other executable paths and their input domain partitions

are:

:
6 58 511 G,: ZR, U3 > ZE(K), S2 <za, U2<0, RE>1;

; KF = ZR, K = KF + 1,
U3 = ZT(3)*ZC(K) + ZT(7)*2s(K),
s2 = (WL /(n)? + WD,
Ul = =ZT(2)
U2 =ZT(3)*ZS(K) + ZT(7)*2C(X)

£
® L3. Sl S1 S; Se S5 S

{
S 53 84 S¢

7

s
wv ot

.
w
w

2R, U3>ZE(K), S2<ZA,U2<0, KF< 1;
KF, K, U3, S2, Ul and U2 as

[5]
N

defined in G3

ZR, U3>ZE(K), S2<ZA, U2>0,KF <3;
K7, K, U3, S2, Ul, and U2 as
defined in G

"
£ h
(ad

3

c f . *)/ i3 "F) O .

S; SarS 56 S8 Sll Gé. ZR, U3>ZE(K), S2>ZA, Ul<0, K 3
KF; K, U3, S2s Uly U2 as

defined in G

()

.
w rt
¥y
w
~

3

S G,: ZR, U3>ZE(K), S2>ZA, Ul<O, KF=0;
KF, K, U3, S2, Ul, and U2 as

defined in G3

=26-

: £ .4 t £
o Lyt 8, 8, 8,6 858, 8.8, 8.8, 5 Gg: ZR, UI>ZE(K), S2>ZA, Ul>0, KF=3;

1 3 811 8
KF, K, U3, S2, Ul, and U2 as

defined in G3

S, 5, S

e g Gq: ZR, UISZE(K), S2>ZA, U1>0, KF<3;
KF, K, U3, S2, Ul, and U2 as

defined in G3.

£ £ f
9¢ Sy 5p 55 55 85 §,4

The segment sequences for each logic path specify the functions Fj'
The range set of each 2f the Fj's is a set of n-tuples, the value of n being
1 for FS, 4 for Fl, F3, Fa, FG’ F7, Fa, and Fg, and 11 for Fz. The mappings
F, from the G, to the range sets are specified by the equations associated

3 3

with the assignment statements in the segment sequences listed below:

S F,: KF=ZR, TL(1)=6,TL(2)=KF, ZFC=ZR

F,: KF=ZR, TL(1)=6, TL(2)=KF, ZRF=ZRF+l
2Q(Z3)=ZF, zV(z3)=IN
ZB(Z3)=Z1, zDQ(z3)=3
23=73+2Q(z3)+1, ZD=1, ZFC=ZR

o S, S¢S, Sg S, Fyi KF=ZR-2, TL(1)=5, TL(2)=KF, ZFC=ZR

F,: KF=ZR+2, TL(1)=5, TL(2)=KF, 2FC=ZR

b w68 11 4
@ Sl S5 Sll FS: ZFC=ZR
° Sl S4 57 S8 Sll F6: KF=ZR~-1, TL(1)=5, TL(2)=KF, ZFC=ZR
° Sl S4 58 Sll F7: KF=3, TL(l1)=5, TL(2)=KF, ZFC=ZR
] Sl S3 S7 58 Sll F8: KF=ZR-3, TL(l)=5, TL(2)=KF, ZFC=ZR
(] Sl 53 S8 Sll F9: KF=ZR+1, TL(1l)=5, TL(2)=KF, ZFC=ZR

-

S, is not listed in the segment sequences because it does not affect the
computation of the output values. (Its value is involved only in branch
axpressions.) In the equations for the value of KF in F3, F4, FG’F7’ FS’
and F9 the algebra involved in the several executable statements involving

KF has been performed. The description of the F, given above defines the

b

values of all output variables in terms of functions of values of input

variables.

-27=

3.3 A Functional Version of Routine B

The information developed in the FP analysis of Routine B - viz., the
Gj' Lj’ and FJ - can be used to rewrite the ;outine as a functional progran.
Examination of this information shows that 86: IT.EQ.O0 is not needed to parti-
tion the input domain. If Sg is eliminated, the executable statements involv-
ing IT can also be eliminated, for they also do not contribute to the computa-

tion of the Fj. IT appears in two segments, 52 and SS' It can be removed
*
from 52 by defining a new segment Sz:

*
® SZ: S2=ULl*%*2/ (Ul**2 + U2**2)

Since Ss is the statement IT = 0, it can be eliminated completely.
To determine the branching sequence for the FP version, it is

convenient to list the branch expressions for the input domain partitions Gy:

e G.: U3.LT.ZE(K), ZD.EQ.l

[

e G,: U3.LT.ZE(X), ZD.NE.1l

e G,: U3.GE.ZE(X), S2.LT.ZA, U2.LT.0, KF.GT.3

3
e 04: U3.GE.ZE(X), S2.LT.ZA, U2.LT.O0, KF.LE.3
® GS: U3.GE.ZE(K), S2.LT.zZA, U2.GE.O
) G6: U3.GE.ZE(K), S2.GE.ZA, Ul.LT.0, KF.GT.3
© G7: U3.GE.ZE(X), S2.GE.ZA, Ul.LT.0, KF.LE.3
® G8: U3.GE.ZE(K), S2.GE.Za, Ul.GE.O, KF.GT.3
] Gg: U3.GE.ZE(K), S2.GE.ZA, Ul.GE.O, KF.LE.3

To structure Routine B as a functional program, list the execution
sequences for the 9 logic paths, removing S5 and S: and substituting

b £ .
52 Lor 52.

[4
o L B RS,
t £
® Lyt 8§15 9 9% S0
e[, &
o Lyt 85 85885 8¢ 8 85 By B Spx
£ 2N _E - f
rils RELE LY K5,
% b A% o oL
Lyt By 850 0 8 Gy
—28_

o L 8 sf s; sg LA
o L 8 & 8, 6 55 s, s§ 8. 8.,
. Lyt 8 sf s; sg s§ Gy 80 0y
o Lyt 5 sf s; s§ s§ 7 s§ Gutdley
S§ is also removed from L5 since it is not necessary.

Examination of the Fj shows there are no functional redundancies;
however, it shows that F3, F4, F6’ F7, and FB differ only in their handling
of KF. KF is defined initially in Sl as KF = ZR, for all F The KF {

computation sequences for these F,6's are:

3

5

@ F3: 36 S;: KF= KF+2, KF = KF-4
e F,: 36 KF = KF+2
) F6: S,S; ¢ KF = KF+3, KF = XF-4
® F7: S4 ¢ KF= KF+3

o Fg: S35, : KF = KF+l, KF = KF-4

[F9: 83 ¢ KF = RF+l.
Since the KF computation sequences involve incrementing KF by 1, 2, or 3
and since the variable K is defined in Sl as KF + 1, the computation
sequences can be simplified by redefining K to be ZR + 1 and replacing

KF by K. The incrementing sequences then beccme:

(] F3: K= K+1, K = K=4
® Fa: K= K+1

. F6: K= K+2, K = K=4
° F7: K= K+2

° FS: K= K=4

a F9:

This can be done by eliminating segment 53, since it does not change the

»

value of K and redefining segments Sl’ Sa, 56’ S7, and S?.

=29~

® Sl: K = ZR+1
Ul = -ZT(2)
U2 = =ZT(3) *ZS(K)+ZT(7)*ZC(K)
U3 = ZT(3)*ZC(K)+ZT(7)*ZS(K)
*
e S5, K= K+2
/Y
=
° 56: K = K+1
*. L
o S7. K K-4
ok
e S&: K.GT.3
Since S8 and 59 involve KF, they must be changed:
*
e Sg: TL(1l) = 5
TL(2) = K
*
° 59: TL(1) = 6
TL(2) = K -1

1
Also note that the FALSE evaluation of SZ branches directly to Sll while
the TRUE evaluation is followed by 86 S% involving further branching.
Thus the code can be simplified by replacing Sz by its complement:

%
sf : U2.GE.O

With these substitutions, the execution sequences become:

L w .t %t
® Igt 5 S 89 Sp Syq
4 * ¢t % _f
o kgt 5 5 Sy 99 S35 01
* f * ¢t £k Kk tk * _*
o Lot 8 88,908, 98 855 8.
A f k ¢t fk k £k %
shd NG REET RN
® £ ® Lt tw
¢ Ly 8 8 8, 88 &y
X £ k F £ % gk %k %
¢ L K S 6K 008 050 60 %,
X f * £ & k fk %
o bar S TS 8T 9S8 B % 6
: % Lf oW _f P ek N R
oLy 8 88,88 55 S, 8,5,
* f * f :' f'k *
¢ Lyt S, 95 85 %585 8y 5 8o

A program having these logic paths can be written in FP notation:

The logic diagram shown
that it has 9 paths.

*

5

103
*
2

IF §

k
1 GOTO S

9
S

k*

GOTO 54

WE NDF

*
IF S5, S4

%
GOTO S§

ok
k* o010 s

IF S4 11

=
IE S7 GOTO Sll

S10

1

in Figure 3-4 for this form of Routine B shows

-31-

Figure 3-4. Structure of Revised Routine B

This version is not a structured program, for the SZ* branch of SE*
creates a cross-link, forbidden by structured programming rules. It can
be converted into a structured FORTRAN program (modelling structured programm-
ing control structures in terms of FORTRAN IF and GOTO statements), while
remaining a functional program, by introducing some logical complicationms.
One way is to combine Sg and Sk* into a compound branch expression

4
*
S?.AND.SZ . This involves replacing the structure:

-32-~

by:

IF s§ coto s&* IF (s5.AND.5E") GOTO 5y
IF s§, s, IF S5 GOTO s:

Goro s IF S5 , s,

IF 5" GoTo . GoTo S5

H S

which, while having the same number of lines of code, has the complication
of a compound Boolean expression. Another way of writing a functional
FORTRAN program conforming to structured programming rules (modelling
structured programming control structures in terms of FORTRAN IF and GOTO

* *

statements) combines segments SA and S7, combines SG and S7, and replaces

*
Sg by three branch expressions: one in the FALSE branch of Sg, one in the
ok
TRUE branch of Sg, and one in the FALSE branch of 52 . This version increases

the number of executable statements but involves no compound expressions.

Substituting the definitions of the segments and branch expressions

into the first FP version produces the following code for Routine B:

K = ZR+L
Ul =-2T(2)
U2 =-ZT(3)*ZS(K) + ZT(7)*ZC(K)
U3 = ZT(3)*ZC(K) + ZT(7)*2S(K)
IF (U3.LT.ZE(K)) GOTO 100
S2 = UL#*2/(U1**2 + U2%*2)
IF (S2.LT.ZA) GOTO 10
IF (U1.LT.0) K = K + 2
GOTO 50

10 1IF (U2.GE.0) GOTO 200

K = R+l

50 IF (X.6T.3) K = K=&
TL(L) = 5
TL(2) = K
GOTO 200

100 TL(L) = 6
TL(2) = K-1
IF (2D.EQ.1l) GOTO 200
IRF = ZRS+1
2Q (23) = ZF
Zv (23) = 2N
Z8 (23) = z1
ZDQ (23) = 3

=33=

23 = 23 +2Q(23) +1
2D =1 '
200 ZFC = ZR
RETURN
END

This version of Routine B has 27 executable statements compared to 35 in

the original versionm.

3.4 Performance Improvement

N
&

Because the FP version of Routine B reduced the number of executable
statements and did not introduce any complication, it undoubtedly improves
the performance - i.e., reduces primary storage requirement and execution
time. A further small performance improvement, a reduction in execution
time, is possible by investigating whether the execution sequences in any
of the logic paths contain any unnecessary executions - i.e., executable
statements that do not contribute to branching or computing of output

values. It is readily apparent that two statements in S, - viz,, the

1

statements assigning values to Ul and U2 - are not needed in paths Ll and
L2 alcthough they are needed for the remaining 7 paths. These unnecessary

* *
executions in L, and L, can be removed by redefining S, and S,:

) 2 1 2
*k
Sl ¢ K=2Z2R +1
U3 = ZT(3)*ZC(K)+ZT(7)*ZS(K)
*k
S2 ¢ Ul = -2T(2)

U2 = =ZT(3)*ZS(K)+ZT(7)*ZC(K)
S2 = UL**Z2/(UL**2+U2%*2)

This change does not change the number of executable statements but it

should reduce execution time for Ll and L2.

Test runs were made on Routine A. It was found that the FP version,
in spite of its having a compound Boolean expression, compiled on the
CDC 7600 computer intn approximately 2/3 the amount of primary storage as
the criginal version and it executed in 2/3 the time. This performance

improvement is, of course, dependent on the compiler.

3l

.

3.5 [Effec -

Although Routine A and Routine B do not contain subroutines, many
programs do. FP analysis of programs containing subroutines proceeds sim-
ilarly to FP analysis of programs having no subroutines, in terms of input
domain partitions, functions and logic paths; however, the analysis of the
input domain partitions must determine, for each input variable, whether
the value is obtained from sources external to the program or as a result
of execution of one of the subroutines. For those input values obtained
from execution of a subroutine, the range of output values produced by the
subroutine must be compared with the allowable input values. The descrip-

tion of the function associated with each input domain partition must in-

clude the effects of execution of the subroutines included in its associated

logic path.

To illustrate FP analysis of such programs, a program called

"Routine C", containing calls to subroutines is used:
Routine C

S CALL TPR

1
i IF (ZR) 500, 500, 100
S2 100 CALL TZD
; 150 IF (z3) 200, 200, 550
3 200 ZG = ZG + 1
Z2C =0
CALL TCO
300 CALL TRA
GOTO 2000
S 500 CONTINUE
23 =1
GOTO 150
CONTINUE
CALL TEC
ZB =23 +1
2C=2C+1
GOTO 300

wn
o
w
w
o

=35

S

Routine C has 7 segments and two branch expressions.

FP symbols to elements of Routine C, the subroutine calls are treated as

executable statements.

2000 RETURN

END

In the assignment of

Following the steps in the FP analysis procedure, the second step in

the analysis is to write Routine C in FP notation:

The logic diagram is then:

o
IF () S
s,)

IF (S;) S5, Sy» S
54

S4
GOTO S
s,

)
GOTO S
56
GOTO S
S

s» S0 §

7

k
2

4
7

i:

ey

S R AR

xe

Despite the somewhat confusing placement of S3, SA’ and S5 in the program code,
the logic diagram shows that Routine C has the structure of a structured

program,
The input variables for Routine C are:
e ZR, Z3, ZG, 2B, and ZC.

Branch expression S% partitions the set of possible values of ZR

into those specified by ZR< 0 and those specified by ZR > 0. Evaluation of
S% to be less than 0 or to be equal to 0 transfers execution to S5 followed

by evaluation of Sg, which partitions the set of p:fsible Yflues of %?. Since
SS sets Z3=1, the only executable s:quence is S5 Sz. Ss S2 and S5 S2
phantom sequences. Evaluation of S1 to be greater than 0 transfers execution

to 52' followed by evaluation of S;. Since the value of 23 is not assigned

are

in any executions in this sequence, all Sg evaluation possibilities are
possible. The logic paths of Routine C are then:

=0 o ighig

& Las 5y 8y g S5 5008, S5
+ -0

. Lt 8,808, 8, 455 5
+ +

¢ B S E 8 88

-0
Routine C has one phantom path, the path containing the sequence S5 S2 .
The notation Szo is used to denote that the < O and O evaluations of the
arithmetic IF statement transfer to the same segment and therefore do not

produce distinct sequences.
The input domain partitioéms for these paths are:

e Gl: 2R < 0, 2B, 2C.
GZ: ZR > 0, Z3 < 0, ZG.
) G3: ZR > 0, Z3 > O, 2B, 2C.

he segment sequences for each logic path specify the functions F

3

j:

1 % %5 % 5% F,: TPR, Z3=l, TEC, ZB=Z3 + 1,

1
ZC= 2ZC + 1, TRA.
® S, 8,548, 5, F,: TPR, TED, ZG=ZG + 1, 2C = 0, TCO, TRA.
e S, 5, 5 S, S Fy: TPR, TED, TEC, ZB=23 + 1, 2C=ZC 41,
TRA.
=37~

& - [. 1 s WAL TS

In the description of the functioms, Fj’ the effect of each subroutine
is represented by its name. From these function descriptions, it is
apparent that Routine C acts principally to call subroutines TPR, TED,
TEC, TCO, and TRA. It always calls TPR and TRA. Calling of TED, TEC,
and TCO depends on the Gj to which the input Ei belongs.

For the most part, these subroutines when called obtain their input
from a common data base, used by many routines in the large software
system from which these routines were chosen. They record their output in
that data base. Routine TED, alone of these routines, changes a value of
a variable, Z3, used in the explicit calculations of Routine C. TED out-
puts 23 = 0 or 23 1,

Thus for G2

consequence of the execution of TED. These values are within the range

and G3, the values for input variable Z3 are obtained as a

specifications for 23; therefore, execution of TED is completely compatible
with the execution of Routine C. Input values for ZR, 2B, ZC, and ZG are
obtained from the common data base, where they have been placed as the result

of execution of routines outside of Routine C.

In general, analysis of subroutine interfaces is more complicated

than in this example., It will generally involve:

e determination, for each subroutine, of the inputs, if any,

it receives from execution of the calling routine.

s comparison of the allowable values for these inputs with the

values computed by the calling routine.

e determination, for each subroutine, of output values, if any,

computed by it and used in execution of the calling routine.

e comparison of these output values with the allowable ranges
of the variables to which they are assigned in the calling

program,

£ any incompatibilities of ranges are fcund, they may indicate a problem

and the effect of the incompatibilities must be analyzed further.

-38-

.
?l
I

From the FP notation representations of the Lj for Routine C, it is
relatively easy to rewrite the routine as a functional program. In FP

notation, it is:

51

k
IF (Sl) SS’ 85, SZ

2

k
1F (Sz) 53, S., S

3”76

and in FORTRAN notatiomn:

CALL TPR
IF (ZR) 500, 500, 100
100 CALL TED
IF (23) 200, 200, 550
200 ZG=272G +1
ZC =0
CALL TCO
GOTO 600
500 23 =1
550 CALL TEC
ZB = 7B + 1
ZC=2C+1
600 CALL TRA
RETURN
END

-39~

T A
S .

It contains 14 executable statements compared to 16 in the original version.
Although the new version has fewer executable statements and no phantom
paths, it is not a structured program. The branch S+ S, creates the path

276
L3 by cross-linking L1 and L3. To convert it to a program having the
structure of a structured program requires either routing S5 through Sg,
as is done in the original program, creating a phantom path, or duplicating

the code for 56’ as in the following:

s

1
TP (8;) €., 8525
¢, ;
55
GOTO §
S.

]

2

*
6

4

*
S6 denotes a block of code identical to the code in SG' It is apparent that
either method produces a program structurally more complicated than the

unstructured functional program.

wljQee

& ol

i

g TR

3.6 Effect of Assemblv Language and Interrupts

Although the initial exploration of FP concepts was performed by

analyzing higher order language programs, the concepts are also

applicable to assembly language programs.

For such programs, the inputs

include storage addresses, contents of machine registers, and interrupts.

To show how FP analysis can be used to analyze assembly language scftware,

a collection of routines from a communications software package on the

H 316 computer were analyzed.

processing.

+

These routines are concerned with interrupt

The text of these routines, annotated by writing segment labels in

the left hand margin is:

Segment

o

Storage Location

12634
12635

12636
12637

12640
12641

12642
12643

12644
12645
12646
12647
12650
12651
12652
12653
12654
12655
12656
12657
12660
12661
12662

12663
12664

Routine

HIQE:
HilE:
HIZE:
HI3E:

HISB2:

HISB:

HISB1:

il

Instruction

INT
JST

INT
JST

INT
JST

INT
JST

9
STA

H2I
HISB2

H2I
HISB2

H2I
HISB2

H2I
HISB2

(HIA)I

STX(HIX)I

LDA
SUB
STA
LDA
STA
LDA
ARS
STA
JMP
9

STX
STA

DXaA
JMP

HISB2
(HI1E)
9
HIQEX
HISB

2

P

9
HISB11

(HIX)I
(HIA)I

(HISBll)I

S8 13046 HISBl1l: STX HIP
13047 . INK
13050 STA HIK
13051 LDA HIM
13052 SMK INTM
13053 IMA PRIM
13054 STA HIMS
13055 ENB H2I
13056 JMP HILO

Each of these routines consists of a single segment. The structure of this

collection of routines is shown in the diagram in Figure 3-5,

Figure 3-5. Structure of Routine Collection

Note that there are no branch expressions in these routines. The routine
collection can be entered from Sl, Sz, 53, 84’ or 36’ which connect to

either S5 Or Sa.
/

Sl, 52, S3, and SA are entered respectively when one of four possible
interrupts occurs. The H31l6 computer responds to an interrupt signal by
interrupting the processing, setting the computer in the extended address
mode, and making a jump to the routine for processing the interrupe, HI@E,
if interrupt signal 0 occurs, HI1lE, if interrupt signal 1 occurs, HI2E,

if interrupt signal 2 occurs, and HI3E, if interrupt signal 3 occurs.

The addresses of these routines are given in storage locations to which
the respective interrupts trap and are loaded into those locations in an
initialization process. The H31l6 interrupt operates by storing the
address L of the next instruction that would have been processed, had the
interrupt not occurred, in the first storage location of the interrupt

processing routine.

42-

Each of the initial interrupt processing routines, and therefore t .2
segments Sl, SZ’ 53, and SA’ consists of a single instruction JST HISBZ,
which causes execution to transfer to subroutine HISB2 at storage location
12644, JST stores in that location the address of the next sequential
location following the JST - viz., 12636 for HIQE, 1264C for HI1lE, 12642
for HI2E, and 12644 for HI3E. These addresses are used in HISB2 {indicating

which interrupt signal occurred.

Thus the inputs to the routines, HI@PE, HI1E, HI2E, and HI3E, are the
hardware signal I, initiating the interrupt that selects the routine, and
the address L of the instruction that would have been processed had the
interrupt not occurred. The outputs of these routines are the address L
and the address B, denoting the specific interrupts. The functions performed

by the routines are to:

e save the address L, and

e convert the hardware signal into B

The hardware signal I can only have four possible values and to each of

these values there corresponds a unique value of B.

The inputs to the routine HISB2 are B and the contents A of the A-
register and X of the Index register. Since B can have only 4 possible
values - 12636, 12640, 12642, or 12644 - its range is limited to these
values. From the internal structure of HISB2, the range could be any
possible value that could be stored in the 16 bit word; however, the
possible values of B are limited by the 4 routines which transfer to HISB2.
The outputs of HISB2 are A, S, the interrupt number N, and the address L.
The functions of HISB2 are:

e save the values of A and X by storing them in HIA and HIX,
e compute the interrupt number N from B aand store it in the
index register,

e compute address of L and store in HISB.

BISB2 will compute the correct interrupt number (0,1,2, or 3) if presented
with the correct values of B; however, if presentad with any other value
of B, it will compute and store in the index register a value which is not

the number of any interrupt. HISB2 therefore has capabilities which are not

wly Y

needed for the interrupt processing and which if used could lead to

improper functioning. It does appear tﬁat any such trouble is unlikely,

for the software inputs to HISB2 should only produce proper input values

and only hardware errors can lead to improper inputs. Nevertheless, the
routines HIQE, HI1lE, HI2E, HI3E, and HISB2 are examples of "clever" programm-
ing, which is hard to interpret, and which produces hidden capabilities that

frequently are sources of problems.

Routine HISB provides a software entrance to this routine collection.
Its inputs are return addresses stored in the first location of HISB for
later use by the routine HIDONE, X, and A. 1Its outputs are the return

addresses, X, and A. Its functions are:

e save the return address in HISB.
e save the contents of the A-register, in EIA,

and the contents of the X register, in HIX.

The input to the routine HISBl is the address state of the computer
(extended address). The output is a signal to change the address state to
normal address. The function of the routine is to change the address state

of the computer from extended address mode to normal address mode.

The inputs to routine HISBll are the current interrupt number (stored
in the index register), kevs (obtained from hardware registers, the new
interrupt mask (stored in HIM), the old priority mask (stored in PIM)).

The outputs are:

e current interrupt number, stored in HIP.

e the keys stored in HIX.

9 new interrupt mask stored in PRIM and output to register INTM.
e the old priority mask stored in HIMS.

@ a bit enabling interrupts after exit from the routine.
The functions of the rcutine are:

s save current interrupt number.
e acguire and store keys,

® set up new interrupt mask.

e save old interrupt mask.

e enable interrupts.

bl

No computations are performed, only the places where various values a-

stored are changed.

There
® Ll
e L,
[L3
® L4
° L5

are 5 logic paths through this collection of routines:

Sl,S
SZ’S
S3,S
SA,S

56,5

5:5g
5758
5+58
5258

758

The inputs to the routines are:

I
L,
A,
X,

K,

the
the
the
the

return address.

contents of the A register.

, the interrupt signal which selects the entrance routine.

contents of the index register.

keys, from hardware registers.

NM, the new priority mask, obtained from HIM.

OM, the old priority mask, obtained from PRIM.

The subsets G, are:

b

A,X,K,NM, and 0M, which are commen

to all G,'s.

3

The set of addresses, L, of the portions of the IMP software

which are

The

The

The

The

interruptable are common
value of I which selects
value of I which selects
value of I which selects

value of I which selects

The outputs of the rcutines are:

N,
L,
is
A,

in

to Gl’GZ’G3’ and G

routine HIOE.

4"

routine HI1E.
routine HI2E.

routine HI3E.

the current interrupt number, stored in HIP.

the return address for use when the interrupt processing

completed, storad in HISB.

the contents of the A register before the interrupt, stored
HIA.

5w

-

e X, the contents of the index register before the interrupt,
stored in HIX.

e K, the keys, set into a hardware register and stored in HIK.

e OM, stored in HIMS.

e NM, stored in PRIM.

e mode change to extended addressing and enable interrupts.
The functions of the routine collection are:

e Compute current interrupt number.

e Save the contents of A and X registers.
e Save the return address.

e Set keys in hardware.

e Save old priority mask.

e Store new priority mask in PRIM.

e Enable interrupts after completion of the processing.

e Change address mode from extended address to normal address after

current interrupt number computation is complete.

Although this collection of routines is structurally and functionally
simple, the analysis of the routine collection by FPA demonstrates the
applicability of the technique to assembly language software, shows that

application of the technique is relatively straightforward, and shows the
level of detail to which the analysis can be carried in obtaining a clear

understanding of both intended and unintended functional capabilities of

software.

b=

4,0 COMPOSITION OF FUNCTIONAL PROGRAMS

FP theory can be used to guide the writing of programs. The
basic FP association of input data partitions, logic paths, and functional
requirements is used but is applied in the inverse order. That is, function-
al requirements are defined first, then the input domain partitions, next
the logic paths, and finally the program. This approach assures traceability
of the functional requirements to the code structures. It also assures that
the requirements on the program are defined first rather than plunging into
writing code based on a vague concept of what the program is intended to do.
The FP method tells how to write the requirements and how to translate them
into a formal specification of the program. The result is more explicit,
complete, and precise requirements, ensuring that the program written is the

one desired.

The FP method is described in section 4.1. 1In following sectioms, it
is. explained by showing how to use it in writing programs. Section 4.8

further discusses the writing of functional programs containing loops.

4,1 Method for Writing Functional Programs

The method for writing functional programs is a step-by-step applica-
tion of the FP basic association, beginning with the functicnal raquirements.

The steps are:

L. Write an informal requirements specification - i.e., a set of state-~

ments defining the functions the program is required to perform.

2 Translate these functional requirements into a formal specification
defining the Gj and Fj in mathematical and/or logical terms.

3 Identify any functional redundancies - i.e., two or more Gj's
associated with the same Fj.

4, Remove the functional redundancies by forming the union of the
Gj's associlated with the same Fj.

S Write, in the programming language to be used for the program, the

branch expressions defining the partition constraints for each Gj'

Assign FP symbols S? to the branch expressions.

e

6. Write the code segment sequences specifying the Fj'
Assign FP symbols Si to the segments.
7. Design program by:

a) determining sequencing for execution of branch expressionms,
b) defining program logical structure in FP notation,

8. Write program in programming language by substituting code
definitions for the Si and S§.

4.2 Informal Requirements Specification

The FP method will be explained by applying it to designing and
vriting a program tc create and maintain a stack data structure. The
first step is to decide what the program, named "STACK", is to do. This
is done by writing an informal requirements specification, defining the

functions STACK is required to perform.

Since the purpose of STACK is to create and maintain a stack data
structure, that data structure must be defined. A stack data structure is
an ordered finite list of data elements accessible from its top; i.e.,
elements of the stack can be added to the top or removed from its top.

For the purpose of this example, the data elements will be chosen to be
integers in the range 0<I<IM, the variable I denoting an arbitrary integer

and IM denoting the maximum integer value allowed in the stack.
The informal requirements specification of STACK is:

e STACK is required to perform the following functions, as selected

by the user:

e Accept an integer input value I and
e test the value of I for being within the acceptable
range, 0<I<IM and
® create stack data structure JS, or
e push value of I onto top of stack, unless stack is

maximum size, J = JM.

-48-

o User options not involving integer input:
e Pop stack, removing top value, unless stack is
empty, J = 0.
e Determine value of top element of STACK, JS(J),
unless stack is empty, J = 0.

e Determine number of elements in stack, the value of J.

e Save after each execution,
e the stack JS, and

e the number J of elements in the stack.

4.3 Formal Specification

The next step is to translate the informal statement of the require-
ments into a formal specification defining the Gj and Fj precisely and
completely. First the stack data structure JS is defined as an ordered
J-tuple, (Il, 12’ ceisis IJ). Each Ij in the J-tuple is an integer in the
range OiljfﬁM and J, the number of elements in the tuple (stack), is an

integer in the range 0<J<JM, the value J = 0O denoting an empty stack; i.e:

@ I8 m (T, By ovey B

J
° Ojﬁj:lM,

e 1<j<J, unless J = 0,

o 0<J<IM,

e J = 0 denotes an empty stack.

e JS(J) = IJ, top element in stack. .

To completely define the inputs, a design decision on how to represent
the user option choices must be made. For simplicity, the user option choice

will be represented by an integer value assigned to an input variable K.

The Gj'and F, may now be defined:

]
Gl: K=1, 0<I<IM Fy: J=1, JS(1) = I,
Print: STACK CREATED
Gyt K=l, I<0 or > IM FZ: Prinz: RANGE ERROR
=49~
Rumeeyey =
- _i £ 22’ ¥ —— & ol e .«.~'“"

This set of Gj and F

K=2, 0<I<IM, JS,
0<J<JM

G,: K=2, O<I<IM, J=JM
K=2, I<0 or I>IM

K=3, 0<J<J

K=3, J=0

: K=b, 0<J<JM, JS
G,: X=4, J=0

K=5, 0<J<JM

K<l or K> 5

3

J' = J+1, JS(J') = I,

Print:

Print:

Print:

VALUE
STACK

RANGE

B g

Print:

Print:

Print:

Print:

Print:

Print:

VALUE
STACK
Value
STACK

Value

ADDED
FULL

ERROR

REMOVED

EMPTY

of JS(J)

EMPTY

of J

OPTION ERROR -

definitions may be graphically represented

(Figure 4-1) to clarify the relationships of the input branch variables.

K=1 K=2 K=3 K=4 R=5 [K<l
K>5
I I) I I Stack | Stack| Stack| Stack J K
Valid| Not |Valid|Valid|{Not |Not Empty|Not | Empty |Valid| Not
Valid| and |And | Valid|Full " | Full Valid
Stack|Stack And and
O R0 Igor |rull Stack Stack
or Full Not Not
I>IM Empty Empty
Sy 1 & f 85 1%]| G} Sl Sl g Gy S10-4 84
Bpopts el Ry plpel Ry Jodg o Reunhibgaol ol R T
Create| Print|Add |Print|Print|Remove|Print|Print|Frint | Print{ Print
Stack| Range| Value|Stack|Range|Value |Stack|Value|{Stack | Value| Option
Error Full |Error Empty|JS(J)| Empty J Error
Figure 4-1. Graphical Representation of STACK Functions

-50-

AT TRV 5 g

Note that the function Fll 1s not defined in the informal specification.
Its inclusion in the formal specification came from noting that the user
option input variable was defined for the values 1, 2, 3, 4, and 5 but was
undefined for other values. Unless a response is defined for these other
values of K, the program could be made to execute by inputting other values
of K, providing it with functional capabilities not specified in its require-
ments; i.e., explicit specification of the Gj showed that the GJ were not
defined for possible values of the input K. Although a similar question
could be raised for values of J outside the range 0<J<JM, provision for
handling them is not specified, for the values of J are obtained from a
prior execution of STACK and are not subject to arbitrary input by the

user.

The formal specifications are in a mathematical notation ih order to
precisely define what they mean. The Gj's are specified by listing the
variables involved and any constraints on their ranges; e.g., G3 is specified
by specifying the single value 2 for the variable K, limiting the range of
the variable I to the integer values in the interval O through IM, listing
the variable JS denoting a stack of size J, and limiting J to integer values
in the interval 0 to JM. The functions F, are defined in terms of their

b

allowed values and the rule by which one of the allowed values is assigned

to each allowed input value; e.g., F3 is a collection of three output
values: J' an integer value denoting the number of items in the stack

at the end of the computation of F3 and constrained to values in the range
O:JE;M, JS(J') the value of the top item in the stack, and a message to

the user stating a value has been added to the stack. The assignment rule
is: J' is one plus the input value J, the value assigned to JS(J') is the
input value I, and the message '"VALUE ADDED" is printed for all computations
initiated by an input from G3.

Before writing the program, the input domain partition specifications
should be examined to ensure that they completely specify all possible
inputs. This is done by listing all variables, noting the maximum range
of each one allowed by the computer (usually limited by the word length),
and noting whether the G, cover all possible values within those ranges.
For STACX, the input variables are K, I, JS, and J. Values of K ia the

interval 1 through 5 are covered by Gl - G10 and Gll covers all values of

-51=

K less than 1 or greater than 5 up to the limits of one computer word length
(no multiple precision computation is involved in STACK). Values of I in
the interval O through IM are covered by Gl’ G3, and Ga. Values of I less
than 0 and greater than IM are covered by G2 and GS' Both K and I are
defined as integer values. Any non-integer values supplied as inputs
should be truncated to integer values, if the compiler enforces the type
specification. JS, the stack data structure, is specified for all sizes

J of the stack from 0 through JM by G3 and GS' Since it is not specified
by any Gj for J greater than JM or J less than 0, a potential incomplete
situation exists; however, since JS and J are both products of prior
executions of STACK and are not supplied externally, this potential

incompleteness should cause no problems.

In other studies relating to verifiable software, investigators have
developed formal specifications in terms of assertions written in modified
predicate calculus or in a record-like format called Parnas specificationms.
These approaches to formal specifications have tended to be more abstract
" than the specification of STACK given here and the question of completeness
of the specifications generally has been ignored. There is a need for a
language for writing formal specifications. Such a language should have
a precisely defined syntax and semantics in order that users of it can
know exactly what the statements in the language are specifying and it
should be computer processable to pPermit the use of automated tools in

working with the specifications.
4.4 FEunctional Redundanciss

Examination of the 11 F,'s shows that:

3

rxy

e F, =F._
2 5

° F7=:9
hence there are functicnal redundancies present in the formal specifica-

tion as it is derived from the informal requirements specification. They
can be removed by defining:

G

1
- ey G2 U G5 ¢! R®lorld, L 0eoril> M
1

G7 = G7 u G9 t K= 3or4,J=0

=52

This reduces the number of inpuf data partitions and their associated
functions to 9; hence the program STACK can be constructed so as to hava

9 executable logic paths.

4.5 Branch Expressions Specifying Partition Constraints

The next step is to write the branch expressions specifying the
partition constraints in the programming language chosen for the program,
in this case FORTRAN. The preceding steps are independent of the programm-

ing language used.
G+ (K.EQ.1).AND.(I.GE.0).AND. (I.LE.IN)
c;: ((R.EQ.1) .OR. (K.EQ.2)) .AND. ((I.LT.0).OR. (I.GT.IM))

G,: (K.EQ.2).AND.(I.GE.O).AND.(I.LE.IM).AND.(J.LT.JM)
G,: (K.EQ.2).AND.(I.GE.O).AND.(I.LE.IM).AND.(J.EQ.JM)

G,: (K.EQ.3).AND.(J.GT.0)

6

Gyt ((R.EQ.3).0R.(K.EQ.4)) .AND. (J.EQ.0)
Gg: (K.EQ.4).AND.(J.GT.0)

Gygt (K.EQ.5)

G+ (K.LT.1).OR.(K.GT.5)

Branch expressions constraining J within its range, O - JM, are not listed,

for in accordance with the assumption stated in the preceding section that J
is assigned values ouly by execution of STACK. Values of J will be adequately
constrained by G“ and G;, which recognize J having a value at a range bound-

ary, and by Fa and F7. which do not allow its value to go outside the range.

=5 T

n B { Sk - e e MREL R e

- R

Design of the program is aided by representing the branch expressions

in FP notation:

k.
sk : k.EQ.k
k.
S5+ L.GE.O
s§ : I.LE.IM
sf : J.LT.JM

sk : J.GT.O
D

Ir. terms of these symbols, the branch expression constraints for the

Gj can be written:

¢, : si s; a5
Gyt (SpioR.SD) (s.0R.5D)
Gy si s; g ;
G,: si s; 55 Z
Gy si Sy
G (si.oa.si) s§
GS: Si S;
10 si
Gyqt s§<1.on.s§’5

In this example, all of the branch expressions are tests made directly

on input variables.

If transformations on these variables had been necessary

before applying a test, segments defining those transformations would need

to be constructed.

~54=

I

R M

4.6 Segment Sequences Specifying Functions

The next step is to develop algorithms for computing the functions Fj
and code these algorithms. 1In this example, the algorithms are simple and
are given in the definitions of the Fj. Therefore this step involves

defining the segment sequences specifying each Fj.

The program will be designed for batch execution, with tape input
and output, on the Cyber 174 at TRW. The input tape is assigned device
number 5; the stack JS and number of elements J are stored on a tape

assigned device number 7; the output tape is assigned device number 6.

Since the first action of the program is to read the input values,

the first code segment is:

.Slz READ (5, INPUT)
The remainder of the segments are developed by examining the formal
specification of the Fj's in order and developing the code necessary

to compute them.

.Sz: J=1
.S3: JS({J)=I
.S4: REWIND 7

WRITE (7)J,JS

.S PRINT(990)

5:

990 FORMAT (1H1, 13STACK CREATED)

.56: PRINT(991)

991 FORMAT (1H1, 11RANGE ERROR)

.S7: REWIND 7

READ (7) J, JS

e W e PRI T 0, L [O S S

The F

3

oSat JuJdl

8
«Sq: PRINT (992)

992 FORMAT(1H1, 11HVALUE ADDED)

9

'Slo‘ PRINT (993)

993 FORMAT (lH1l, 1O0HSTACK FULL)

.Sll: J=J=-1

.S PRINT (994)

12°
994 FORMAT(LH1, 13HVALUE REMOVED)

.513: PRINT (995)

995 FORMAT (1H1, 11HSTACK EMPTY)

-S;,} PRINT(996)

996 FORMAT(1H1,S5X,6HJS(J)=,1I5)
.slS: PRINT (997)

997 FORMAT (1H1,5X,2HJ=,I5)

.S PRINT (998)

998 FORMAT (1H1,12HOPTION ERROR)

16°

.517: STOP

are then expressed in terms of sequences of the S

.Fl: 5152535455

.F2: 5156

.F3: 515758538459

%' "%

.FG: 518751184512

¢ 7: 5157513
'FS: 515751“

e e L L

n
(9]
wn

“"11° 1716

~56-

i:

4.7 Designing the Program

From the list of the S? sequences for the branch expression constraints
of the Gj and the list of the segment sequences specifying the Fj’ a functional
program can be designed. It is apparent that a functional program can be
written by using the compound branch expressions associated with each
G. as the subjects of IF statements with a TRUE evaluaticn branching to the
segment sequence specifying the corresponding Fj’ Such a program, however,

has a lengthy text and poor performance.

A program having economical text and good performance can be designed by
analyzing the branch expression sequences and segment sequences. First note

that segment Sl appears in all segment sequences; therefore the program begins
execution with S;. Next the branch expression for Gll and the segment seq-
uences for Fll have no common elements with the other branch expression
sequences; so it simplifieg matters to make that partitioning next:

1 k>5

<
IF(Sk .OR. S) GOTO S

16

A similar argument suggests that the branching for G2 should be performed
next:
1r(st.ox.s2) coto (sf.or.sfy
R <SSR
=
The term "'GOTO (Sf.OR. f)" in the above expressions mean a transfer is
made to a statement lacer in the code sequence containing "(S .OR. S3)"
Segment S7 follows the FALSE evaluation of (S «OR. Sl) since it is the next
se t in th
gmen e sequences for F6’ 79 8’ and FlO G10 and FlO have no
common elements gith GG’ G7, G8 and F6' F7, F8 so they are partititioned
next: f.e., IF S1 GOTO S

15
The first branch expression for G7-viz. Si .OR.S?-—is acconmodated as the
FALSE evaluation of Si , for K=1 and 2 were separated by an earlier test on K.
£
Thus: IF S5 GOTO 513
4
1F Sl GOTO 516
11

w5 e

12

GOTO 517

13

GOTO 517

14

GOTO 517

S1s

GOTO 517

The processing for F6’ F7, F8 and FlO having been accomplished, the next

step is to begin processing for F2, Fl, F3, and Fd:

IF (sg.ox.sg) GOTO S

2
1

6

®
GOTO S

IF S 7

% * :
S7 is the same as S7, the * denoting that the GOTO is forward to S, not

7

backward to be previous occurrence of 57. The final processing for F,, F

and F

11

28

3 %4

actual code involves only substituting the definitions of the

GOTO Sy7

10
GOTO 517

516

%17

The program design having been created in FP notation, writing the

and adding the non-executable statements.

and S,
i

The maximum allowed values of

Jand I - i.e., JM and IM, are input in a data statement and are chosen,

arbitrarily, for this example as 7 and 99,999.

text is:

PROGRAM STACK(INPUT,OUTPUT,TAPES=INPUT,TAPE6=0UTPUT,TAPE7)

DIMENSION JS (7)
DATA JM,IM/7,99999/
NAMELIST/INPUT/X,I
READ(5, INPUT)
IF((K.LT.1) .OR.(X.GT.5))GOTO 80
IF(K.LE.2) GOTO 40
REWIND 7

READ(7) J,JS
IF(K.EQ.5)GOTO 30
IF(J.EQ.0)GOTO 10
IF(K.EQ.4) GOTO 20
J=J-1

REWIND 7

WRITE (7) J,JS
PRINT (990)

990 FORMAT(1H1,13HVALUE REMOVED)

10

991

GOTO 90
PRINT (991)

FORMAT (1H1,l1HSTACK EMPTY)
GOTO 90

~59-

Accordingly, the program

20 PRINT (992) Js(J)
992 FORMAT (1H1,5X,6HJS(J)=,I5)
GOTO 90
30 PRINT (993) J
993 FORMAT (1H1,5X,2HJ=,15)
GOTO 90
40 IF ((I.LT.0).OR.(I.GT.IM)) GOTO 50
IF (K.EQ.2) GOTO 60
J=1
JS(J)=I
REWIND 7
WRITE (7) J,JS
PRINT (994)
994 FORMAT (1H1, 13HSTACK CREATED)
GOTO 90
50 PRINT (995)
995 FORMAT (1H1, 11HRANGE ERROR)
GOTO 90
60 REWIND 7
READ (7) J,JS
IF (J.EQ.JM) GOTO 70
J=J+1
JS(J)=1
REWIND 7
WRITE (7) J,JS
PRINT (996)
996 FORMAT (1H1,11HVALUE ADDED)
GOTO 90
70 PRINT (997)
997 FORMAT (1H1,l10HSTACX FULL)
GOTO 90
80 PRINT (998)
998 FORMAT (1H1, 12HOPTION ERROR)
90 sTOP
END

In the substitutions for SS’ S6’ Sg, SlO’ SlZ’ 813, Slé’ SlS' and 816,
the last digit of the 99X label of the FORMAT statements was reassigned

to allow an orderly increase in the label numbers.

«60=

4.8 _\Yriting a Functional Program Containing Loops

The programs analyzed in Section 3 and the one written using FP
techniques in 4.1 - 4.6 contain no loops. How FP concepts are extended to
deal with loops is illustrated by developing a sort routine called "INSORT".
Two versions of INSORT are developed, one containing ordinary loops and the
other containing a DO loop. Whereas the STACK program described in the
preceding section was developed as an independently running batch program,
INSORT is developed as a subroutine; i.e., it obtains its inputs from the

calling program and its outputs are made available to the calling program.
The informal requirements specification for this subroutine is:

e INSORT is required to sort the first N values of a sequence of

integer values into descending order.

The formal specification for INSORT begins with definition of the

input variables, their types and their ranges:

o 1IN denotes an arbitrary M-tuple of integer values. Repetitions

of integer values are permitted in the M-tuple.
e IN (J) denotes the Jth element of the M-tuple.

e M denotes an integer value representing the maximum

number of integer values sorted by INSORT.
e J denotes an integer value in the range 1l<J<M,

e The values assigned to I (J) can range over the set of

integer values fitting within one computer word length.

o N denotes an integer value representing the number of values in

IN to be sorted.

The Gj and F, may then be specified:

3

° Gl: N<1 or N>M Fl: Range: L=0, deroting an admissible
value of N.
Assignment Rule: For all values of

N in G, L=0.

bl

e G.: N=1 FZ: Range: L=1, denoting an admissible

value of N.

Assignment Rule: For all values of
N in GZ, L=1., No
sort required, only

1 value to be sorted.

° c3; 1<N<M, IN F3: Range: L=1, INs’ and N-tuple of
integer values INS(J) such
that 1<N<M and for all J in

1<J<N-1, IN_(J)> IN (J+1).

Assignment Rule: Each pair (N,IN)
in G3 1s assigned to
the INS from the range
of F3 such that for all
K in 1<K<N, there exists
a J in 1<J<N, such that
INS(J)-IN(K).

The specification of F, given above defines the integer sort function

sufficiently well for a proggammer to develop the routine from it; however, P3
has internal structure analyzable using FP concepts. Since the F3 range
specification applies to adjacent members of the N-tuple - i.e., to INS(J)

and INS(J+1) and since the assignment rule involves only rearranging the
positions of the integers and not changing their values, it is of interest

to partition the N-tuple elements in accordance with application of the F3
range specification. Because this is a partitioning of G
33 and F3j is used. The F3j
the final output of the routine; they compute the result of applying the

specifications, IN'(J)

3 and F3, the

notation G 's in this analysis do not compute

v
f4 range specification to the G3j inputs. 1In the F3j

denotes the value of the Jth element of the N=-tuple after the F3j computaticn
has been performed » The G3j and F3j are specified as:
® G3l: J=1, ION(1)<IN(2) F3l: Range: IN'(1)>IN'(2)
Assignment Rule: IN'(1l)=IN(2)
IN'(2)=IN(1)
-62=

¥
&

) 632: 1<J<N-1, F32: Range: IN'(J)>IN'(J+1)
IN(J) <IN(J+1) Assignment Rule: IN'(J)=IN(J+L)
IN'(J+1) = IN(J)
® Ggpf 1J<N-1 Fy,: Range: IN' (J)>IN' (J+1)
IN(I)2IN(I+1) Assignment Rule: IN'(J)=IN(J)
IN' (J+1)=IN(J+1)
] G3a: J=N F34: Range: INs

Assignment Rule: INS-IN

From this analysis of (G3,F3), an algorithn for computing values of
F3 can be constructed by setting J = 1 initially and applying the F3 range
specification to IN(1) and IN(2). If the values of IN(1l) and IN(2) do not
meet the specification, the input is in G3l and F31 applied to it inter-
changes the values of IN(1) and IN(2) so that IN(1l) and IN(2) now meet the
specification. The value assigned to J is then increased by 1. If the
values of IN(l) and IN(2) meet the specification, the input is in 633.
F33 applied to this input leaves the values of IN(J) and IN(J+l) unchanged.
The value of J is then increased by 1. In either case the value of J has
37 ©°F G33. If it 4s in G32,

F32 interchanges the values of IN(2) and IN(3). The value of J must then

become 2, so the next input is either in G

be decreased by 1, because the new value of IN(2) can change its relation
to IN(1). If the input is in 033, the values IN(2) and IN(3) are not

changed and the value of J is increased by l.Therefore, depending upon the
value of the input inG,, the appropriate assignment rule is applied and

J is subsequently increased or decreased until J=N, placing the input in G, ,
5

and completing the sore,

Translation of the formal specification into a program design begins

by writing the constraints on the input values for each G (and G3*) in

terms of branch expressions . Here again, the example is illustrated using

FORTRAN, but any programming language could be just as easily used,

-63~

2o Rl M e

° Gl: (N.LT.1).0R.(N.GT.M)
® Gz: N.EQ.1
° G3: N.GT.1 , IN
@ G31: (J.EQ.1l) .AND. (IN(J) .LT.IN(J+1))
® .932: (J.GT.1) .AND. (J.LT.N) .AND. (IN(J) .LT.IN(J+1))
® 633: (J.LT.N) .AND. (IN(J) .GE.IN(J+1))
® G3A: J.EQ.N

In the branch expressions defining the constraints on G33, the constraint
J.GE.l is not given explicitly, since J is set equal to 1 initially and
successive applications of the F3j's will not reult in J becoming less

than 1.

FP symbols are next assigned to the branch expressionms.

° Si: (N.LT.1).OR. (N.GT.M)
° Sk: N.EQ.1l
2
® S?: J«EQ.1
k
° 54. J.EQ.N
k
e SS: IN(J) .LT.IN(J+1)
In terms of these symbols, the branch expressions for each Gj are:
t
° Gl. S1
£ e
e Gz. Sl S2
£oof
® G3. Sl 52 =
A
@ G3l' S3 S5
¢ et AR
° G32. S3 Sé S5
-64~
‘ - e

- SR B s . & {37! “--;I}.urm"")‘ 0

° G33: Sf Sg
] 634; SZ

The segments for computing the Fj's (and st's) are:

® Slz J=1

. SZ: K=IN(J)

IN(J)=IN(J+1)
IN(J+1)=K

° 83: J=J+1

@ S4= J=J-1

° 55: L=1

° 56: L=0

® S7: RETURN

In terms of these segments, the segment sequences for the Fj's (and F3j's)
are:

° Fl: S6 57

] FZ: 55 S7

® F3' Sl S5
° F31: 52 53
. F32: S2 Sy
° F33: 53
] F3a: S5

The program design can now be written in FP notation:

k
LF 51 GOTO S6

X ok
52 GOTO Ss

-
rf

vy

[

k
IF S5 GOTC S2

-65=~

k
IF Sb GOTO S5

k
GOTO 85

S,

IF S

k
3 GOTO S

3

The program text is obtained by substituting the definitions of the

FP symbols as shown in

30
40

50

80

100
200

Fig

Figure 4-2,

SUBROUTINE INSORT (IN,N,M)
DIMENSION I (M)
IF(N.LT.1.0R. N.GT.M) GOTO 100
IF(N.EQ.1) GOTO 80

J=1

IF(IN(J) .LT.IN(J+1)) GOTO 50
J=J+1

IF(J.EQ.N) GOTO 80

GOTO 30

K=IN(J)

IN(J)=IN(J+1)

IN(J+1)=K

IF(J.EQ.1) GOTO 40

J=J-1

GOTO 30

L=1

GOTO 200

L=0

RETURN

END

ure 4-2. INSORT without DO Loop

«66=

e

aani

4 dre AR MRSERTIS ST g, oot

Figure 4-3 presents the logical structure of INSORT,

Figure 4-3, INSORT Structure

w5 w

f
‘ « T3 ey T AL ¥ 2oaty bl WO ool

In the diagram of Figure 4-3,, S: has been replaced by its complemen:~sk'
J.NE.1l to avoid crossing of lines. The lines looping back from 84 and

k

transfer, all other transfers being, by convention, downward.

The paths:
t

® Ll. Sl
A b3

° LZ' S1

executed for N<1

6
t
Sy

87

S5 S7

and N=1, respectively, are non-looping paths,

S4 to Sg have an arrow at their S§ end to indicate the direction of the

For N=2,

30

there are two paths that go directly through the program without looping:

. £
[L3. S1
3 f
® L“. l

In L3,

)

S

N N

S1 S

Ulr' W rh

1

wer &t

S

S

5

3

S

S 9

S

S §

s 7

Sg constrains the inputs to those values such that IN(1)<IN(2).

All other execution sequences, occurring for N>2, involve at least

one of the loop sequences:

t
S S S S3 S

S

£

k.
Ss

t
» Sg 5,3

f
3 S

4

S

k
3"

Sg constrains the inputs to those values such that IN(1)>IN(2); in L

The possible execution sequences for N>2 can be analyzed into 3 cases:

e The input IN(J) is already sorted into order, defining

execution sequences, one for each value of

N, in which Sk

4

5
is always evaluated FALSE.
£ ok £ £o ok t
@ Ls. Sl S2 5 S3 S4 55 S3 S4 S5 S7 : N=3
£ & i L ek L nd t
Sl 52 5 S3 S4 S5 S3 S4 S5 83 Sa S5 S7 : N=4
f f f f f f
1 2 5 3 4 . sees S 5 S3 S S5 87 ; N=M
These sequences involve only the first loop.
%
-68- A
@
2
3
—— s - e
o ¥ L T e e

e The input value IN(l) is greater than or equal to the value
of IN(J) for all J in 1<J<N, but those values of IN(J) are

not in descending order.

e
® Lgt S/ S,5S S;8;8,S:S,85;5, 5§ 8 3
£

3

mn

v
~

£
3 2 S4 S

U Uy
HMm B

N N Hh
Wnm bt
Hrm LM
v &
WHh W
Ui ULy
E N o T i e
UVirh W
(o]

S1 S- 83 8, 8= 8057 8= S0.S=1 8 SE 8. S

3 3

N

4

w

In this set of execution sequences, the sequence S; S3 will never

occur, for Sg can never be evaluated TRUE when J#1.

e All other inputs.

cr o SIS f FASt: £ t t £
o L,: 5] S, s1 s5 53 S, Ss S2 Sy S, Sg S, S35, 85, S

Ui rh
(a4

These sequences contain all 3 loop sequences.
Each of these sets (LS’ L6’ L7) of sequences corresponds to a
recursively defined function (FS, F6’ F7, respectively); therefore an
association of a set of inputs, a set of sequences, and a function is

defined for these three cases; i.e., the triples:
° (GS’ LS’ Fs)

° (G6, L6’ F6)

® (G7, L., F.)
are defined. Because of this association, one may call LS’ L6’ and L7
"logic paths", meaning by a logic path Lj a set of executable sequences
composed of the same segments and branch expressions and associated with

a recursive function F, defined on a domain G

3 -3
Note that in handling loops the FP concepts were applied at two
levels: <first to analyze the structure of F3 and second to partition G3

and F3 into the 5 partitions (G3, L3, F3), (GA’ Lh’ F4), (Gs, LS’ FS)’

(Gé, L6’ F6), and (G7, L7, F7). This shows how a function :j defined by

the reguirements on a program may have internal structure.

-69~

- BE Y L\i- o X & LY ’:ﬁ&r”“""—‘"”?‘&‘)' A

4.9 Writing a Functional Program Containing a DO Loop

Since the looping part of the INSORT Program is entered after setting J=1
and is exited when J=N, it may be contained in a DO loop. In FORTRAN, a
DO loop of the form:
DO 30 J=1, N

30 CONTINUE

executes by setting J initially to the value 1 ard executing in sequence the
statements following the DO statement until the statement labeled 30 is
reached. Then the value of J is increased by 1 and execution continues

with the statement immediately following the DO statement. This activity
continues until the value of J becomes greater than N, whereupon the loop

is exited with execution continuing with the statement immediately following
the labeled statement 30,

The logic of the FORTRAN DO loop can be expressed in FP notation by
denoting the labeled statement terminating the DO loop by S? and the DO

statement by DO S?.
of the DO loop (in the case of INSORT, the value of J). Evaluation of S?

denotes executing the terminal statement, increasing the value of the index

Here the superscript k denotes the value of the index

by 1, comparing the new value of the index with the value of the upper limit
in the DO statement, and transferring to the statement immediately following
DO S? unless the new value of the index exceeds the upper limit, in which

1
case execution proceeds with the statement following S;.

Thus INSORT can be rewritten to contain a DO loop having an index J.
Execution of the DO loop will cause J to be set initially equal to 1 and be
incremented automatically by 1 until J>NMI at which time execution continues
with the statement following the DO loop. Since DO loop semantics do not
allow the value of J to be changed within the DO loop, the decrease in the
value of J called for in the case (F32) cannot take place inside the DO
loop; consequently the sort algorithm must be changed, so that evaluating
S§ branches outside the DO loop. The interchange of elements specified by
52 is then executed and the DO loop exeuction is started over from tze
beginning, J=1l. Denoting the terminal statement of the DO loop by SA then

leads to the following expression of the sort algorithm in FP notation:

-70-

Do sk

k
IF 85 GOTO S2

k

GOTO DO 84

and the revised sort program in FP notation is:

P

IF S, GOTO S6

IF S, GOTO S

5
DO S

LWESEEFNEH

k
4

leading to the program text:

30

40

50

80

100
200

SUBROUTINE INSORT (IN,N,M)
DIMENSION IN(M)
IF((N.LT.1).OR.(N.GT.M)) GOTO 100
IF (N.EQ.1) GOTO 80

NM1 = N-1

DO 40 J=1, NM1
IF(IN(J).LT.IN(J+1)) GOTO 50
CONTINUE

GOTO 80

K=IN(J)

IN(J) = IN(J+1)
IN(J+1) = K
GOTO 30

L=1

GOTO 200

L=0

RETURN

END

P——y= - -

il

A5 ﬁ‘.m&'f"’lﬂ‘t‘z T

This version of INSORT will run slower than the first version because
it always returns to the beginning (J=1) of the list of integers after an

interchange of two list members has been made.

The first two paths of this version are the same as for the other

version because they do not pass through the DO loop.

t
° Ll. S1 S6 S7
£ o
° L2' S1 S2 55 S7

For N>2, the paths involve the DO loop sequences. They can be analyzed as

two cases:

e The input IN(J) 1is already in descending order, defining execution

sequences in which S? is always evaluated FALSE.

gt £ 2 ey
¢ Ly 8 8 8. 8.8 5 8 : Nw2
L s U
g 5,8, 8.8, 5.5, 6 8 : N=3
f £ 1 f 2 f £ M
Sy 85 8, 82 8; S¢ el Bg 8 B, 8, ¢ WM

e The input IN(J) is not in descending order, defining the following

exelution sequences.

¢ L sf sg si 5 8, sz s§ SZ S 8
8§ 8, o, of 8806 8§ 8 5 8y8;
st sf s, S5 S, S, st s; st s, s, St S, s s, ss s,
Si sg si s§ sf s§ S si s§ SZ s§ sZ % %,

Thus with the DO loop, the execution sequences can be partitioned into 2
sets, each set composed of members containing the same segments and branch

expression evaluations.

e

5.0 TESTING FUNCTIONAL PROGRAMS

The earliest thinking about FP was largely motivated by testing concerns,
In recent years, attempts to apply engineering discipline to software testing
have brought about increased attention to thoroughly testing a program's
structural components. Most recently this trend has extended to the desire,
if not the requirement, to identify and test each and every program logic
path at least once in the resting process. For small and/or simple programs,
this objective can usually be reached with relative ease. For large and/or
very complex programs, however, the large number of logic paths and the
often complicated conditions associated with executing a specific path
together pose overwhelming difficulty with which the tester must cope. In
appreciation of the need for both reduced cost and increased rigor of test-
ing, much effort has been devoted to research and development of very
sophisticated tools to help the tester identify program logic paths and
develop program inputs (i.e., test cases) to force their execution. The
use of such tools (e.g., the Automated Test Data Generator3’4’5developed
by TRW for NASA/JSC) in support of testing even small (but relatively
complex) FORTRAN programs has made it clear that a good deal of the testing
effort can be wasted in looking for inputs to force the execution of phan-
tom paths. Moreover, a program containing 8 executable logic paths to do
the "functional" work of two generally requires more analysis and computer

resources for testing than is actually necessary.

FP directly addresses these problems in several ways. First, as seen
in the preceding examples of Routine A and B, FP yields programs of reduced
logical complexity, containing only those logic paths needed to supply
unique, explicitly required processing capabilities. Jecond, application
of FP establishes and maintains the mapping between subsets (GJ) of the
input domain, functions (Fj) required to operate on E, in Gj’ and the
logic paths (Lj) which, when coded and executed, perform the intended
function on the specified inputs. Clearly, the implication of FP, at
least with respect to exercising all program logic paths, is strong and
euncouraging for those truly concerned with the cost and rigor of testing

software.

Py T

The following discussion illustrates the primary benefits of FP

with respect to testing. These benefits include:

e reduced difficulty in selecting input values for program test

cases,

and

e reduced difficulty in defining a set of test cases to thoroughly

exercise program structure

They are presented in the context of sample FORTRAN programs, however, as

with other aspects of FP, the concepts and techniques can be readily gen-

eralized to other languages and applications and the above benefits should

be even more pronounced for larger and more complex programs.

5.1 Testing Routine A

We tackle Routine A first to demonstrate that, even for very simple

programs, the question of what it takes to achieve a thorough test may not

be easy to answer.

The original version of Routine A listed in Section 2.3

was tested prior to the time that it was rewritten as a functional program.

The programmer was required to devise those tests necessary to execute

each branch at least once and, without much difficulty found four test

cases that satisfied this requirement. They are:

Case

Case

Case

Case

1

4

GN=0
CN=5
CT=4
TR=6

GN=0
CN=3
CT=4
TR=6

GN=1
CN=8
CT=4
TR=6

GN=1
CN=5
CT=4
TR=6

The values assigned to the integer variables JA, JB, JD, JE, and JV were

the same for all 4 test cases and are not listed here.

- -

ys

i MADTT

S Lane o

These test cases reflect the modus operandi of most testers - viz.,
to construct one test case and then construct the remaining cases by
changing the values of the minimum number of variables. Comparing
these test cases with the input domain partitions developed in the FP
analysis of Routine A shows that each test case belongs to a different
input domain partition Gj and the test case set provides a test for each

of the partitions in the original version of Routine A.

The actual formulation of the required tests involved tracing through
the flow diagram (or the code) and noting the branching actioms which
were directly controllable by the assignment of input Qalues. Thus, it
is not surprising that the description of the test cases (above) is much
like that of the input domain partitions. That is, if the testing ap-
proach had been to simply select a single test case from each subset of
the input domain, then the set of test cases thus derived would have been
equivalent to the actual test cases developed by the programmer. Case

1, an input from G.,, makes no use of the value assigned to TR; case 2,

l’
GZ’ makes no use of the values assigned to TR. JA, JB, JD, JE, and JV;
case 3, G3, makes no use of the value assigned to CT; and case 4, G4,

makes no use of the va_ues assigned to CT, JA, JB, JD, IE, and JV.

On the other hand, the final version of the functional program (Sec-
tion 2.7) was developed using a compound conditional branch expression
which, upon evaluation, would choose between the two distinct functions

to be performed.

This latter version of the program corresponds to the merged input
L}
domain subsets Gl = GlUG3 and G'2=G2 U GA‘ Notice that one method of
deriving test cases (i.e., simply sampling once from each subset G'l and

G'z) yields two test case sets, as follows:

Set 1: (GN#0, CNzIR) or (GN=0, cN>CT), JE, JD, JA, JB, JV
Set 2: (GN#0, CN<TR) or (GN=0, CN<CT)

Ian contrast, if one attempts to devise test cases that will exhaust

all of the logical poissibilities for the evaluated branch expression,

75~

>

((GN.EQ.0) .AND. (CN.LT.CT) .OR. (GN.NE.O) .AND.(CN.LT.TR)) then it is
possible to specify eight distinct test case sets, as follows:
Set 1: GN=0, CN2CT, CN<TR, JE, JD, JA, JB, JV

Set 2: GN=0, CN2CT, CN=TR, JE, JD, JA, JB, JV
Set 3: GN#0, CN<CT, CN2TR, JE, JD, JA, JB, JV
Set 4: GN#0, CN2CT, CN2TR, JE, JD, JA, JB, JV
Set 5: GN¥=0, CN<CT, CN<TR
Set 6: GN=0, CN<CT, CN2TR

Set 7: GN#0, CN<CT, CN<TR
Set 8: GN#0, CN2CT, CN<TR

A more careful analy:sis of the compound boolean expression, however,
shows that the combination (GN=0, CN >CT) causes the left half of the
expression to be "FALSE" and the right half of the expression to be
"FALSE" (because GN# 0 is "FALSE") independent of the relationship bet-
ween CN and TR. Thus, Set 1 and Set 2 are logically equivalent and can

be combined and represented as:

Set 1' : GN=0, CN2CT, JE, JD, JA, JB, JV
Similar arguments hold for Set 3 and 4, S and 6, and 7 and 8:

Set 3' : GN=0, CN2TR, JE, JD, JA, JB, JV
Set 5' : GN=0, CN<CT
Set 7" : GN=0, CN<TR

Finally, looking again at G'l and G'2 and at the two test cases sampled,
the need for a Set la and 1b and a Set 2a and 2b is indicated by the
presence of the "or" in both domain definitions and test case specifi-
cations. Notice that the three separate attempts to derive Routine A

test cases eventually produced sets of four cases, such that:

Case 1 is a member of Set 1'=Set 1lb
Case 2 is a member of Set 5'=Set 2b
Case 3 is a member of Set 3'=Set la

Case 4 is a member of Set 7'= Set 2a

= [

5.2 Testing the Triangle - Tvpe - Determination Program

In a prior investigation§ of an approach and a tool (the Product

Assurance Confidence Evaluator, PACE) used to assure thorough structural
testing of programs, a small program written to "determine whether three
integers representing three lengths constitute an equilateral, isosceles,
or scalene triangle or cannot be the sides of any triangle" was used as an
example. The problem was said by Fred Gruenberger7 to be a dandy one for
teaching logic and flowcharting as well as program testing. In particular,
he reported that "even the good students are astonished to find that it

takes more than six cases to make a thorough test. ".

As part of an investigation of alternative measures of testing
thoroughness, a programmer was given the problem statement and asked to
write a Triangle-Type-Determination program. Figure 5-1 presents a listing
of the FORTRAN source code developed by the programmer. The segments of
the program are identified in the left margin, and the program logic is
illustrated in Figure 5-2, showing the logical branching potential between
the segments. From Figure 5-2 one can quickly identify 88 “apparent"
paths through the program, but it is not so easy to tell which and how many
paths are actually executable. As it turns out, only 11 of the paths can

be executed, and the remaining 77 are phantcm paths. Reference 3 further

demonstrated the need for 5 separate test cases to cause all executable

statements to be exercised and 11 cases to execute every transfer.

)

R . i . TP 1T ¥ T 0. L STk TR

NAMELIST/INPUT/I1,J,K

S1 READ (5, INPUT)
MATCH = 0
S];,S2 IF (I.EQ.J) MATCH = MATCH + 1
55,83 IF (1.EQ.K) MATCH = MATCH + 2
Sg,sa IF (J.EQ.K) MATCH = MATCH + 3
Sz IF (MATCH.EQ.0) GO TO 500
Sg IF (MATCH.EQ.l1) GO TO 400
sE IF (MATCH.EQ.2) GO TO 300
S? IF (MATCH.EQ.3) GO TO 100
S5 WRITE (6,901)
991 FORMAT (1H1, 11HEQUILATERAL)
GO TO 900
S: 100 IF (J+K.LE.I1) GO TO 600
S6 200 WRITE (6,902)
992 FORMAT (1H1, 9HISOQSCELES)
GO TO 900
S; 300 IF (I+K.LE.J) GO TO 600
GO TO 200
S?O 400 IF (I+J.LE.K) GO TO 600
GO TO 200
8 500 IF (I+J.LE.K) GO TO 600
4 IF (J+K.LE.I) GO TO 600
ST3 IF (I+K.LE.J) GO TO 600
S7 WRITE (6,903)
993 FORMAT (1H1, 7HSCALENE)
GO TO 900
58 600 WRITE (6,904)
994 FORMAT (1H1, 14HNOT A TRIANGLE)
59 700 STOP
END
Figure 5-1 : FORTRAN Listing of Triangle-Type-Determination Program
-]l
. 3 ' b
» il s g g

Figure 5-2

¢ Structure of Triangle Program

-7 G

We now consider a more functional version of the triangle-type-
determination program and investigate the need for test cases to achieve
equivalent testing thoroughness. From case analysis, we can see that
there are two basic outcomes possible: 1) Triangle and 2) Not-a-triangle.
Qutcome 2 should be obtained 1f, for three positive integers I,J, K it is
determined that the length of one "side" 1s greater than or equal to the
sum of the other two. That is,

I+J< K or I+K<sJ or J+Ks I—-Not-a-triangle

For Outcomel, there are three subcases, namely:

1.1 I =J =K (All sides equal)—Equilateral

1.2.11I=J=K

1.2.2 1 = J=K| (Exactly 2 sides equal) Isosceles

1.2.3 1 =K=J

1.3 I#J and J#K and I#K (No sides equal) Scalene

The functional program listed in Figure 5-3 differs from the earlier
version in one major respect. That is, the original program contained logic

paths corresponding.to three extraneous cases, namely:
e Equilateral Non-triangle
e Isosceles Non-triangle
e Scalene Non-triangle

Although this distinction is neither required by the problem statement nor
immediately obvious, the logic necessary to distinguish is, nevertheless,
embedded in the program. These extra paths may be of little or no importance
to the user of the program, but to someone required to read and understand,
maintain or test the program, the paths require extra analysis and can

(in the case of large and/or complex programs) make the job much more diffi-
cult than it has to be.

-80-

—

‘e Lk & Y AT AL Pty 7 i ol A e T S

NAMELIST/INPUT/I,J,K
READ (5, INPUT)

wn

1
sf IF (I+J.LE.K) GO TO 400
sg IF (I+K.LE.J) GO TO 400
sg IF (J+K.LE.I) GO TO 400
sy IF (I.EQ.J) GO TO 100
s? IF (J.EQ.K) GO TO 200
SE IF (I.EQ.K) GO TO 200
S, WRITE (6,901)
991 FORMAT (1H1, 7HSCALENE)
GO TO 900
ss 100 IF (J.EQ.K) GO TO 300
Sq 200 WRITE (6,902)
992 FORMAT (1H1, 9HISOSCELES)
GO TO 900
S, 300 WRITE (6,903)
993 FORMAT (1H1, 11HEQUILATERAL)
GO TG 900
S 400 WRITE (6,904)
994 FORMAT (1H1, 14HNOT A TRIANGLE)
Se 700 STOP
END

Figure 5-3 : Functional Triangle Program

Thé logical branching potential of this functional version of the
program is illustrated graphically in Figure 5-4. As expected, there are
eight distinct logic paths (Li), they are easy to identify, and all are
possible to execute (i.e., there are no phantom paths). It is also fairly
easy to see that it is necessary to execute each path at least once in
order to execute each and every branch in the program. Thus we need eight
test cases to achieve testing thoroughness equivalent to that obtained with
eleven test cases for the non-functional version. More important, however,
is the ease with which the appropriate test cases can be specified.

Figure 5-=5 lists the segment-to-segment sequence for each path together
with the logical conditions on the inputs which cause the path to be taken
and the composite conditions which comprice the specification of the input

domain partition.

~81~

. — —— —

- P i Sl s M > e LU S e ek ORI TN gt =i

o

Figure 5-4 : Structure of Functional Triangle Program

-82-

[
T — Hh

wn wn wn w
wn wn w wn
et = ehEh b Eh

wn
0

11,0,K;

{1,J,K;

{1,3,K;

{1,J,K;

{I1,J,K;

{1,J,K;

{L,J,Ks

1I,J,K;

Code Sequence

3 5354 55 5 5
o of of of 5f 3,
53 53 5, S¢ 53 §¢
Sy 53, 7 53 5
o5 uLo8t S5t
55 53 S S
g 8, 9,
s Bg
(I+J>K) (I+K>J)
(I+J>K) (I4+K>J)
(I+J>K) (I4K>J)
(I+J>K) (I+K>J)
(I4+J>K) (I4K>J)
(I+J>K) (I4K>J)
(I+J>K) (I+K<J)
(I+J<K) }
Figure 5-5

Logical Conditions

I+J>K, I+K>J, J+K>I,
I43, %K, L4K

Se Same as #1 except I=K
I+J>K, I+K>J, J+K>I,
I+#J, J=K
Same as #3 except I=J and J # K

Same as i#t4 except J # K

I+J>K, I+K>J, J4K<I
I+J>K, I+K<J

I+J<K

(J+K>1) (I1#J#K#1)}
(JHK>I) - (I #J#K=1)}

(J+K>1I) (I #J =K}

(J4+K>1) (I =J #K)}

(J+K>1) (I =1J

K) }

(J4K<I) }

}

: Triangle Program Paths

-83-

o 0 SRR e - i W T ol -

5.3 Testing the Stack Program

To further investigate the testing of functional versus non~-functional
programs, several versions of the STACK program (Section 4.2) were developed
and analyzed by the Automated Test Data Generator (ATDGf. Although ATDG
was originally developed by TRW to support the rigorous testing of software
at the NASA Johnson Space Center, its capability of producing path-related
test cases made its applicability to functional programs especially inter-
esting.

The ATDG analyzes source code elements (e.g., subroutines), identifies
conditional transfers, and generates a set of paths containing all of these
transfers. By application of powerful mathematical techniques, the number
of paths required to cover all transfers is minimized. Supplementary in-
formation is also provided by ATDG to support derivation of actual test
input data to execute the paths.

Within ATDG, a rather elaborate algorithm is included for the sole
purpose of avoiding the generation of unexecutable (i.e., phantom) paths.
Since functional programs contain no phantom paths, it was expected that
ATDG resultingvtest cases would correspond to the previously defined function-
al test cases. In each instance, the ATDG-generated cases (i.e., those
required to exercise all conditional transfers at least once) corresponded
exactly to those designed to test all functions8. Finally, a rough com-
parison was obtained for the ATDG execution time required for the function-
al versions of STACK versus that required for similar (i.e., approximately
the same size and logical complexity) but non-functional programs. The
execution time was substantially less for the functional STACKX programs,
and this is most likely attributable to the lack of time required to

process, recognize and discard phantom paths.

In completing the STACK/ATDG experiment, it was recognized that an
important relationship exists between the fundamental concepts underlying
FP and ATDG. This relationship is based on the fact that ATDG (and related
technologies like symbolic execution and program proving) attempt to gen=-
erate and work with one (or more) path(s) for each of the Gj as defined in
Section 2.2. It's natural to conclude that such a tool could be very use-
ful as a management aid in analyzing functional programs to assure that none

of the intended Fj are inadvertantly omitted and (probably just as important

Bl

5 X TS) PO R T VBl e i, L2 ST T

but much more difficult to detect) that no extraneous functions are includ-
ed during implementation. In addition, the tool could be used to support
FP analysis of existing code and aid in the identification of existing

functions and thus an understanding of current functional content.

-85~

R, R PRRIR W -

6.0 FUNCTIONAL PROGRAMMING IMPACT EVALUATION

Since FP is a new way of writing programs, it may be expected to have
an impact on programming language requirements and on the reliability and
maintainability of programs developed using it. The results of a study of
this impact are reported in the following sectionms.

6.1 Impact on Programming Language Requirements

Although FP concepts are applicable whatever programming language is
used, the following questions can be raised:

e Are there language features capable of making functional programming
easier?

e Are there programming standards - i.e., restrictions on the use of
language features - that would make functional programming easier?

FP partitions the input domain E into the subsets Gj associated with

logic paths L, and functional capabilities F It therefore focuses on the

inputs. A prggrammer writing a program shouid accordingly have a clear
picture of the input variables, the values assignable to them, and how the
ranges of the variables are partitioned to form the Gj' Most programming
languages do not aid the programmer in clearly defining the inputs to the
program he is writing. Generally, input variables may appear, for the first
time, anywhere within a program and in many programming languages - e.g.,
FORTRAN - a programmer does not have to explicitly declare an input variable
unless he wishes to restrict its range to a set of values different from

that defined by a computer word.

Visibility of the input domain would be aided by requiring that all
input variables be declared at the beginning of a program. EUCLID, e.g.,

requires a program to list all the identifiers input into a procedure.

Partitioning of the input dcmain is specified using branch expressions.
since FP associates an input domain partition Gj with an executable logic
path Lj’ visibility of that association is often improved through use of
compound branch expressions. Thus, facilities to aid the writing of com=-
pound branch expressions and their consistent and efficient interpretation

could contribute strongly to the writing of functional programs.

-86-

Structured programming has been successfully introduced into many pro-
gramming groups by expressing it in terms of a few simple rules - viz.,

restricting code structural elements to:

e in-line code segments

e IF A THEN B ELSE C

e DO S WHILE A

e DO S UNTIL B
Since these rules are relatively simple, programmers can easily learn to
follow them. Are there similar rules for FP that can be just as easily

learned and followed?

That question can be investigated by using FP notation to analyze
differences between FP and structured programming. As originally proposed
by Dijkstra, structured programming is essentially writing a program in the

form:

e IF S, THEN C,, ELSE C

11 12

IF S, THEN C,, ELSE C

DR R

21 22

IF Sk THEN C_. ELSE C_,
n n n

1
: i 5 k

In this representation of a structured program, Si represents a branch

represent executable code segments containing

expression and C and Ci

the allowable c:j; strucéire elements. This form of the program code
provides a linear structure. It can be read sequentially; i.e., the code
in line i is executed befcre the code in line i+l. Dijkstra sought by this
means to obtain increased visibility of program structure from the program
text, an objective of FP, too. This linear structure does improve struc-
tural visibility over old:r methods of programming because it eliminates
the complex, often convoluted branching present in many programs; however,
as noted in functional programming analysis of structured programs, it can
also encourage the formaticn of phantom paths and, in the process, obscure

both structural and functional visibility.

FP can Ye compared with structured programming by looking closely at

a functional program in its simplest form:

-87~

") o Y TR St SR ARE T i e el

k
e IF Sl THEN C1

ELSE IF S, THEN C2

ELSE IF S, THEN C

3

WE NwE

ELSE IF Sk THEN C
n n

In this representation of a functional program, Sk represents the branch

1
expression which upon TRUE evaluation initiates execution of the logic path
L1 = Si Cl; S; represents the branch expression which upon TRUE evaluation

initiates execution of the logic path Sf S; Cz; and so on. Cl represents an
executable code segment, possibly containing DO structures. In this form, a

functional program is a structured program in which C., 1s represented by

12
Cl’ sz is represented by 02, etc.

The problem in this form of functional program is the code redundancy
generally occurring in the Ci; i.e., the code sequences in each of the Ci
i This leads to

writing more lines of code, potentially resulting in more errors, and a

generally will have subsequences repeated in two or more C

requirement for more computer resources (storage and time) to process the
program. As is shown in sections 3 and 4, programs can be designed to
eliminate all or most of the code redundancy, while retaining the functional
property of no phantom paths. Therefore a requirement for a language to aid
in the writing of functional programs is to provide facilities for specify-
ing in a compact, visible way the intended execution sequence of code
segments for each Ci.

6.2 Impact on Software Reliability

FP was developed to aid the production of reliable programs. Has it
achieved this goal? The following evidence supports the conclusion that FP

does contribute to producing more reliable programs:

e Rewrite of programs originally written using conventional programm-
ing methods (see Section 3) generally results in programs having
fewer statements (as much as 50% fewer in the case of Routine A).

The fewer statements means that fewer characters and words have to

-88-

AD=A052 997

UNCLASSIFIED

2 2

END

DATE
FILMED

6 =78

DDC

TRW DEFENSE AND SPACE SYSYEMS
FUNCTIONAL PROGRAMMING. (L)
FEB 78 J R BROWNe E C NELSON

GROUP REDONDO BEACH CALIF

\

F/6 972

r:osoa-rs-c-osxs'
RADC=TR=78=26

=

be written, resulting generally in fewer typographical errors.
The shorter program text also makes the text easier to read and
comprehend increasing the probability that a programmer will spot

an error that has been made and correct it before the program goes

into use,

e Since in a functional program all paths are executable, it is
relatively easy to trace a path through the program mentally
executing the path and assuring one's self that program operation

will proceed as intended.

e Since a program written uSLng FP methodology will have its function-

al requirements - i.e., the (G F) - defined before the code is

g5

written and since the executable logic paths Lj are constructed to

correspond to the functional requirements (Gj’ F,), it is possible

]
to mentally compare the code of logic path L, with its associated

3

functional requirement and by that process detect errors in the

code.

e Since the Gj for a functional program are explicitly defined, it
is relatively easy to design test cases to demonstrate satisfaction
of functional requirements - viz., select an Ei from each G, -

3

assuring verification of all functional requirements.,

The preceding arguments are theoretical, stating what should happen.
An empirical argument is obtained from the experience with the STACK program
(see Section 4.8). STACK was wrltten using FP methodclogy - i.e., defining
the functional requirements (Gj F) first and then designing the program to
have logic paths Lj correspondlng to the (Gj Fj) That progfam was tested
functionally, designing test cases by choosing E; from each Gj' Test cases-
for each functional requirement were executed and all executed correctly,
supporting a conclusion that with a high probability there were not errors
in STACK as it was originally written. Although this is only one case and
thie absence of detectable errors could be fortuitous, the results of STACK
testing support the conclusion that FP contributes to producing reliable

programs.

-89-

2 e P e i His " % (90

6.3 Impact on Software Maintenance

Software maintenance - solving of problems occurring in operational

use of a program and adapting a program to a changing operational environ-

ment - is one of the largest components of life cycle cost. FP can impact

software maintenance in several ways:

By contributing to production of more reliable programs, FP
reduces the number of problems maintenance programmers have to

solve and hence reduces maintenance cost.

FP produces a description of a program - viz., the functional
requirements (éj,ﬁj) and an association of each functional require-
ment with an executable logic path and functional capability - that

a maintenance programmer, who was not involved in developing the
program, can use to understand the program and to solve problems. E.g.,

a software problem generally can be associated with a specific input
or a specific set of inputs. From this input, the FP program descrip-
tion readily aids associating the problem with a specific Gj’ Fj’

j’ Fj!

Lj descriptions, the source of the problem can be more quickly identi-

and Lj' From examination of the problem evidence and the G

fied and the problem solved at less than usual expense.

If the problem is elusive, the FP description can aid the design

of test cases to make the problem more visible.

Once the source of a problem is identified, the FP description

aids identification of the code to be modified.

A new operational requirement, if it is functional in nature, can

be expressed in the form (G). This defines the functional

$hs
requirement precisely. This form of the requirement when added

to the FP description of the program will show immediately whether
the new requirement is a modification of an old requirement or
whether it is a completely new requirement. With the revised set
of functions, the modifications to the code necessary to implement
the revisions are easily designed and the test cases needed to

verify the implemented revision can be readily constructed.

=90~

iy

If the new operational requirement is a performance requirement,
generally it can be related to certain of the functional require-
ments - e.g., to speed up execution of function Fj - and the FP
description can aid finding the code to be modified to fine tune

program performance.

-9]1-~

oo BN e L AR 0 s - S di MW v it o

7.0 SYSTEM LEVEL FUNCTIONAL PROGRAMMING

The concepts of FP were developed and applied initially at the routine
level. Programs are, however, collections of routines and software sub-
systems and systems generally are collections of programs and routines.

Thus FP concepts can also be applied at those levels, for a routine is
connected to another routine by having its output Fj(Ei) serve as the input
Em to the connected routine where it initiates executici. of logic path Lk

specifying function F, and resulting in output Fk(Em).

k
® Em = Fj(Ei)

° Fk(Em) = Fk(F (Ei))

3

Thus execution of two connected routines results in composition of the
functions specified by the individual routines. This composition can be

extended to the subsystem and system level.

Taken as a whole, the software for a fire control system specifies a
function. That function generally will be analyzable into functioms Fj
corresponding to specific functional requirements. A particular functional
requirement (6 5 gj) may define the fire control rules corresponding to a
specific combat situation while another functional requirement (Ek,%k) will
define the functional requirement corresponding to another combat situation.
It is equally possible to envision FP application at the system level in
terms of a computer operating system. Here the inputs are things such as
application programs, files, and machine resources. Outputs are things
such as initiation of execution of a program and execution of a service, a
distinct function of the operating system. The complete requirements for
an operating system can be defined by specifying, for each operating

system service, its domain G, and the function Fj to be performed.

3

-92-

8.0 TOOLS TO SUPPORT FUNCTIONAL PROGRAMMING

Although the concepts of functional programming are relatively simple,

application of them can involve considerable analysis, writing, and book-

keeping. The tedious nature of these chores may inhibit the use of the

methodology. Accordingly, tools need to be developed to automate the

manual effort required and to reduce possibilities for human error.

An informal preliminary requirements specification for a tool (FPA)to

support functional programming analysis of existing programs is:

e FPA is required to:

Read the text of, for example, a JOVIAL (J3) program and
identify each branch expression and in-line code segment
in the program.

Assign to each branch expression a symbol S(J,K), with J
denoting an integer value representing the numerical order

of the branch expression in the program.

Assign to each in-line code segment the symbol S(J), with
J denoting an integer value representing the numerical

order of the segment in the program.

Produce a listing of the program annotated to show in the
left hand margin a symbol S(J,K) for each line of code
containing a branch expression, with the integer J in the
symbol denoting the numerical order of the branch expression
and to show, also in the left hand margin, a symbol S(J) for
each line of code beg:inning an in-line code segment,

If a line of code contains both a branch expression and the
beginning of a code segment, the branch expression symbol
shall be printed first followed by a comma and the segment

symbol printed to the right of the comma.

List all branch expression symbols and their corresponding
branch expression in the format - the branch expression

symbol followed by a colon followed by the branch expression.

List all in-line code segment sgmbols and their corresponding
segments in the format - the segment symbcl follecwed by a

colon followed by the segment.

-93-

w3 5 Wa Y2 3 2 iy ol WHLTS

List all input variables - i.e., variables to which values
must be assigned in order for the .program to be executed

and any data declarations involving those variables.

Print the program in FP notation.

Such a tool would greatly ease the job of analyzing existing programs,

producing an annotated listing, a listing of the branch expression and
segmentsS, and a listing of the program in FP notation.

Another tool (FPS) to support the writing of functional programs has the
following informal preliminary requirement specification:

e FPS is required to:

Accept as input, the name of each input variable and its

range.

Accept as input, specifications on input domain partitions

in the form of branch expressions.

Accept as input, specifications on the functions associated
with each input domain partition - viz., a specification of
the range of each function and a specification of the rule

assigning to each input Ei in Gj a value Fj(EL) in the range

set.

List the name of each input variable, followed by its range
specification.

List the specifications of the input domain partitions in
the format - Gj followed by a colon followed by the branch
expressions defining the partition and a listing.of any

input variables belonging to G, but not partitioned.

3

List the specifications for the functions corresponding to
j followed by
a colon followed by the range set specification and F

each input domain partition in the format - R

3

followed by a colon followed by the assignment rule specifica-

tion.

-94-

A S - ol o e gy WREEEE S e scdagie

e Check the input variable ranges against the ranges speci-
fied in each input domain partition. Print any variables
whose range is not completely covered in the input domain
partition specifications and identify the portion of the

range not covered.

Such a tool would assist in maintaining the functional requirements

and in identifying any missing requirements.

-95-

9.0 CONCLUSIONS AND RECOMMENDATIONS

At the outset of the contractual project effort reported here,
functional programming (FP) was little more than a gleam in the eye of the
authors. To be sure, several applications of FP analysis to some small
routines had been accomplished and the results (i.e., improved understand-
ability, reliability and berformance) were particularly encouraging. The
ultimate goal then was to extend the scope of applications, investigate
both the potential capabilities and limitations of the FP techniques, and,
where appropriate, refine and add to the techniques as necessary to form
a disciplined and comprehensive yet practically useable programming
methodology. The more realistic goal of our initial study was to invest
limited time and resources necessary to concentrate on key issues whose
resolution should and will play a major role in the future evolution and
acceptance of FP as an integral part of improving software engineering
practice. With completion of the subject study and this report of key
findings, the latter goal has been reached and substantial progress toward
the ultimate goal has been achieved.

Still, the FP methodology as defined and demonstrated in this report
is in its infant stage. For example, we have shown that in every sample
application it was possible to carefully analyze a computer program and
revise the logical structure so that the resulting program's functional
content could be more readily discerned than that of the original, non-
functional version. In some cases the improvement has been dramatic
(in terms of reduced number of distinct logic paths), but in others only
ainor improvements were possible. In short, we have been able to show
that in most cases we should be able to effect some improvement in the
functional visibility of computer programs, but we have yet to prove that

we can do so in all instances.

Similarly, we have furmulated a sequence of eight basic steps to be
taken in developing a functional program from scratch. In this study,
nowever, we have gone no further than to demonstrate (by way of varied
examples) that the procedure accurately implements the FP principles and
that a good programmer can (with only a little training) actually follow

the procedure in successful development of functional programs.

-96-

One of the major results of the FP study was to further ccnfirm the
hypothesis that time and effort spent in rigorously (i.e., completeiy an
precisely) specifying software requirements leads to marked reductions in
the usual problems and costs of life cycle software development, test,
operation and maintenance.g’lo In fact, we observed from one experiment
(the development of multiple versions of the stack creation and maintenance
program) that if the original program requirements are written "functionally"
(i.e., in terms of distinct, required functions corresponding to distinct
subdomains of possible values of program inputs), then it is almost impossi-
ble to design and implement anything other than a functional program to do
the job. As a consequence, a very high degree of traceability (from re-
quirements to code) is achieved, and this traceability directly contributes
to eliminating ordinary problems owing to differing interpretations and

omissions due to oversights.

At this stage in the evolution of a more rigorous and disciplined
software development process, many new tezhniques have been proposed and
some have been heavily advertised as a panacea for the past problems of
software production. Understandably, they who have experienced and/or
paid for the problems in the past are eager to find new, more effective
methods that can help to eliminate similar problems in the future. Such
a climate can be very good or very bad with respect to the development,
application, refinement and eventual, cost-effective utilization of any
particular new technique. For instance, if one makes great claims about
the potential of a technique (in order to get a lot of people to try it
out), it is possible, in fact, likely that the technique will (in actual
practice) fail to live up to the claims. Un the other hand, if no claims
are made it can be difficult to get the attention of those who can pre-
sumablv use and benefit from the technique. 1In either case, the two things
*hat are most needed (lots of experimental applications in carefully con-
trulled situations followed by objective evaluation of not only current
capabilities and limitations but also the probable and possible capabilities
achievable through continued development and refinement) will not be forth-
coming. The result; an otherwise sound and very promising new technique

night die before it ever really gets off the ground.

We hope for and expect a nicer fate for Functional Programming. We
have tried in this report to make only those claims for which we have
reasonable supportive evidence of their validity. At the same time we are
careful to poiht out that, although our limited experiences with FP have
all been positive and encouraging, we see the need for a great deal more
experimentation and study and still more experimentation before the full
potential of FP can be brought effectively to bear on a wide variety of
software development activities. It is worth noting that it has taken about
eight years and much study for structured programming to grow from newly
proposed and only slightly understood principle to commonly accepted and
widely used modern programming practice. We suggest that the time has come
to give strong attention to the outstanding problems that still plague
developers and users of software and to invest appropriate time and energy
to bring about an accelerated maturation of FP principles and methodology.
If we really work at it, we can probably be producing truly reliable and
highly maintainable software long before another eight years has passed us
bv.

During the course of the FP study, many reference documents were
reviewed and many discussions were held with people currently working at
advancing a variety of software development and test technologies, including:
scftware requirements engineering, structured programming, automated test
data generation, symbolic program execution and program proving. The
overall outcome of this investigation of other technologies has been to ex-
pose the existence of very strongly related objectives and, in' some cases,
almost identical techniques. For example, we found that in completing a FP
analysis (as defined in this report) we were actually accomplishing the
basic steps and deriving the necessary information required for automated
generation of test data. Moreover, it was found that those who are deep into
symbolic execution and program proving are fully as interested in the actual
functional content of program paths and are fully as frustrated by un-
warranted program complexity as we are in attempting a thorough FP analysis.
Among all these technologies, the dominant common thread is a particularly
strong interest in striving (whether by constructive techniques as in FP,
analytical approaches as in symbolic execution and program proving, or

actual execution and evaluation of test results) to remove any and all

~98~

b

K< S : e (R ; 2 413 - M e i

differences between functional requirements (i.e., what the software needs
to do) and functional capabilities (i.e., what the software actually does).
This close tie between technologies is fortunate, in that concerted re-
search and development leading to new breakthroughs in any one area is
almost certain to yield related advances in others. For example, continued
refinement and broad application of FP can lead to production of programs
having a much smaller number of logic paths than might otherwise be the
case, and, as a direct result, it should be possible to complete path-by-

path proofs of much larger programs than any attempted to date.

Based on the above consideration, it is recommended that we not only
continue needed research into the fundamentals of software structure (in
general) and FP constructive techniques (in particular), but also that we
maintain the fullest possible understanding of ongoing research and new
advances in related technology areas. A comprehensive research program
should include:

e continued, iterative application and refinement of the FP methodo-
logy documented in this report,

e special studies of the impact of evolving FP methodology on ather
technologies,

e investigation (through experimental application) of the feasibility
and merit of applying FP principles in the writing of formal system
and software requirements specifications,

e detailed design, implementation and experimental application of the
FP analysis and FP support tools specified in this report and
continued analysis of the type and extent of support obtainable
from existing tools (e.g., compilers, text editors, automated test
data generators and symbolic execution systems), and

e study of new advances in other technology areas (e.g., improved
network analysis and path representation techniques, development of
more easily proven programming constructs and language features, and
program test measurement and reliability assessment/prediction
technology) and subsequent incorporation of appropriate new technology
as integral elements of the FP methodology.

If the needed research and development is carried out, it is highly
likely that FP will become an important, constructive element of future
software engineering discipline and, perhaps more importantly, we should
achieve unprecedented synergism among previously distinct (and not altogether
cooperative) software technologists. If so, we may begin to reap the real
rewards of truly advanced software production technology much sooner than one

might expect.

-99-

RS o A9Y bR WL .S 1 ns

¢
I

10.0 BIBLIOGRAPHY

This section provides a list (Section 10.1) of the source materials

referenced in the test of the report. In addition, many other papers and

technical reports were reviewed prior to and during the course of the FP

study, and the most relevant of these are listed in Section 10.2.

10.1

10,

References

E. K. Blum, "The Semantics of Programming Languages, Part I,"
TRW $S-69-01, (1969).

E. R. Anderson, F. C. Belz, and E. K. Blum, "SEMANOL (73), A
Metalanguage for Programming the Semantics of Programming Languages'",
Acta Informatica 6, 109-131 (1976).

Krause, K. W., M. A. Goodwin and R. W. Smith, "Optimal Software Test
Planning through Autcmated Network Analysis,'" Record 1973 IEEE
Symposium on Computer Software Reliability, May, 1973, pp. 18-22

and TRW-S55-73-01, April, 1973.

R. H. Hoffman, and G. L. Houser, User Information for the Interactive
Automated Test Data Generator (ATDG) System, Revision 1, NASA
Johnson Space Center Internal Note No. 75-FM-88, January, 1977.

R. H. Hoffman, ATDG Impossible Paris Detection Capability Study
Report, TRW Technical Report 76: 2511.3-115, July, 1976.

Brown, J. R., "Practiral Applications of Automated Software Tools,"
WESCON 1972, Session 21 and TRW-SS-72-05, September, 1972.

Gruenberger, F., "Program Testing: The Historical Perspective,"
Program Test Methods, ed. W. C. Hetzel, Prentice-Hall, 1973,
pp. 11-14.

Hoffman, R. H., "ATDG Analyses of STACK Programs," TRW Interoffice
Correspondence 77:2511.3-117, 27 May 1977.

Thayer, T., E. C. Nelson, et al, Software Reliability Study Final
Technical Report, TRW Report No. 76-2260.1 9-5, March 1976.

Brown, J. R., Impact c¢f :.’P on System Development Final Technical
Report, RADC-TR-77-121, May 1977 and TRW Report 29115-6001-RUQO,
January 1977.

-100-

10.2 Related Publications

Brown, J. R. and M. Lipow, "Testing for Software Reliability,"
Proceedings of the International Conference on Reliable Software,
April, 1975 and TRW-SS-75-02, January, 1975.

Brown, J. R., and K. F. Fischer, "A Graph Theoretic Approach to the
Verification of Program Structures,'" to be published in TRW Software
Series.

Dahl, 0. J., E. W. Dijkstra and C. A. R. Hoare, Structured Programming,
Academic Press (London), 1972,

Boehm, B. W., J. R. Brown, E. Horowitz, et al, Practical Strategies
for Developing Large Software Systems, Addison-Uesley, 1975.

Nelson, E. C., "A Mathematical Theory of Data Structures,'" TRW-
$S§-71-03, May, 1971.

Hecht, M. S., and J. D. Ullman, "Flow Graph Reducibility,’ SIAM
Journal of Computing, Vol. I, No. 2, June, 1972, pp. 188-202.

Earnest, C. P., K. G. Balke, and J. Anderson, '"Analysis of Graphs
by Ordering of Nodes," Journal of the Association for Computing
Machinery, Vol. 19, No. 1, January, 1972, pp. 23-42.

Howden, W. E., "The DISSECT Symbolic Evaluation System," Computer
Science Technical Report No. 8, University of California, San Diego,
February, 1976.

lNelson, E. C., "A Statistical Basis for Software Reliability
Assessment," TRW-SS-73-03, March, 1973.

{ing, J. C., "A New Approach to Program Testing," Proceedings of
the International Conference on Reliable Software, April, 1975,
pp. 228-233.

Liskov, B., "Specification Techniques for Data Abstractions,"
Proceedings of the International Conference on Reliable Software,
April, 1975, pp. 72-87.

Parnas, D. L., "A Technique for Software Module Specification with
Examples,'" Communications of the ACM, Vol. 15, No. 5, May, 1972,
pp. 330-336.

Floyd, R. W., "Assigning Meaning to Programs,'" Proceedings of a
Symposium in Applied Mathematics, Vol. 19, 1967, pp. 19-32.

Hoare, C. A. R., "An Axiomatic Basis for Computer Programming,'
Communications of the ACM, Vol. 12, No. 10, October, 1969,
pp. 576-580, 583.

-101-

2 e U oS b o3.c) <ok TR Ty St

