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Abstract

Minimum energy control problems are con-
sidered for commutative bilinear systems with
and without end point constraints. Optimal con-
trols are shown to be constant vectors deter-
mined by the boundary conditions when the ter-
minal state belongs to the reachable set. Suf-
ficient conditions for unicueness of solutions
are derived for the minimum energy problem
without a terminal constraint. Application to
a missile intercept problem is discussed in
which the pursuer possesses thrust modulation
in addition to thrust vectoring.

I. Introduction

Bilinear control systems have received in-
creasing attention in recent years due, in part,
to their natural applications in various engi-
neering, biological and socio-eccnomic systems,
Mohler [1], and in part to their intrinsically
nearly linear structure, Bruni et al [2],
Brockett [3]. In addition, the study of bilinear
control systems has potential applications to sys-
tems containing sinusoidal nonlinearities, Lo
and Willsky (4], especially those arising in spa-
tial flight mechanics. This observation in con-
junction with a missile intercept problem motiva-
ted the study of the bilinear regulator problem
discussed in this paper.

The focus of this paper is on "commutative' bi-
linear systems, i.e. the special class of bilinear
control systems in which the coefficient matrices
cemmute with one another. This class has been
studied bv Sussmann [5] relative to "bang-bang"
control functions. Here, the minimum energy con-
trol of such commutative bilinear systems is in-
vestipated with and without end point constraints
cn the state. Concerning the regulator problem
without end point constraints, it is shown in
Section II that the optimal control is a constant
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vector determined by the initial cenditiens. In
the case of the regulator problem with end point
constraint, it is first shown that a given termin-
al state x, = x(T) for a commutz+tive bilinear
system is constant reachatle if and only if it is
reachable bv a time-dependent control. If x, Se-
longs to the reachable set, it is then shewn~that
the cptimal control is a constant vector ceter-
mined by the boundary conditicns. Unicueness cf
solutions to the regulator problers of Section I
is discussed in Section III. As an exarple of a
bilinear svstem, a missile intercect probler is
discussed in Section IV in which the pursuer cos-
sesses thrust modulation in additiecn to thrust
vectering. This additional decree of freedem for
the pursuer facilitates the formulation of the
prcblem as a regulator prcblem for a comrutative
bilinear system with end point corstraint. It is
then pointed out how a closed-forr solution can
be obtained for this exarple.

3

II. Problem Statement and Existence of Scluticns

Consider the multi-input bilinear svster+
. g n
x = (A + 121 Biui)x. x(to) = x eR,

tc[to.T] g u = u(t) = (ul--um)‘ (1)

where A,Bi.i=l"m. are nxn constant matrices,
ucL2([t°,T].Rm), the class of m-vector valued
square integrable functions on [to.T].

Definition 1: The system (1) is called a cormuta~

tive Filinear system if every pair of the ratrices
(A.Bl-'Bn) cormute with each other.

As mentioned earlier, the cormutative b
ear svstem has been studied bv Sussrann [%]
it was shown that the attainable set is clcse
tive to "hbang-bang" controls; Raras and Harpten
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recently extended these results to delayed commu-
tative bilinear systems. The problem considered
here is the minimum energy control of a commutative
bilinear system. 3Brockett [7] has obtained a solu-
tion to the minimum control energy problem with a
fixed terminal state in the case of nxn matrix
state commutative bilinear systems with det X # 0.
By contrast, it will be shown that this problem
for the vector state system (1) has a simple solu-
tion which possesses an easily implemented charac-
ter.

Two kinds of cost functions are investigated
here,
(2)

T
Jl(u) = x'(T)Qx(T) + J u'(t)Ru(t)dt
: 4

o}

without a terminal constraint on the state, and

(3)

T
Jz(u) = J u'(t)Ru(t)dt with x(T) = %,
t

o

where x, 1is a prespecified vector; Q and R are

1
nxn nonnegative definite and positive definite sym-
metric constant matrices respectively, and prime
denotes the matrix transpose operation.

In consideration of the existence of opti-
mal controls to the above-mentioned problems, the
reachable set plays a verv important role. There-
fore, we shall give the following definitions of
reachable set and reachability of a bilinear sys-
tem. With these definitions we can also reveal
some interesting characteristics of the reachable
set for a commutative bilinear system.

Definition 2: A set Z(xo;U) is called a reachable
(1) 1f 20x 30) = (x(T)er"ix(t,)
= X u(t)eU,x(t) satisfies (1) in some finite in-
terval rt +T1)e 3U) is
able zone assocxated with (1) if
zZ(p;U) = L_} z(x 30).

x €D
o

set associated with

A set Z(D called a reach-

with
and U if there is an input u(t)

Definition 3: System (1) is reachable to *)
respect to xo
at some fin-

€ U which steers it from x, to Xy

System (1) is constant reachable to
if there is a constant in-

ite time T.

%, with respect to x
1 ith respect 5

put function u,

which steers it from X, to %

at some finite time T,

he follewing theorem states an interesting

~rnoartv reparding the reachability of corwutative

. bilinear systems. - . . ’ ‘
Theorem 1:

e xe e reach-

,71,e™)

"

The commurative hilinear system (1) is

uz([t
o

and

able to x

1 with respect to x
(-]

if and only if it is constant reachable to x

with respect to X 1
Remark:
Theorem 1 assures that if u(t) e L2([t°,T ,2™)

steers the commutative bilinear system from X,

to x, at T, then there exists a constant inrut

31

function u, which can do the same job as well.

This enables us to study the commutative bilinear
system with a class of simple easily irplerented
input functions, namely, the constant irput
functions.

Proof:

The sufficiency part is true by definition. To show
u(t)cLQ(rto,T],?m) steers (1)

at some finite time T.

necessity, suppose

from Xy to x Then, since

1

each pair of (A,B --Em) cormutes with each other,

¢ S
the solution of (1) at time T can be expressed as

m
= T =
x(T) oA(T’to).H oi(.,to)xc %y
i=1
where OA(t t ) and 9.(t,t ) denote the state
transition ragrxces assoc1ated with A and B,u,(t),

respectively. Choosing u, such that
3 T
u = == | u,(s)ds
¢,  T-tg jto i

it is easily seen that Qi(T,to) = Oci(T-to), where
where oc is the state transition matrix corre-
£
sponding to Bi .
Thus €1

m m
oA(T.to)_n Oi(T,to)xo = °A(T'to).§ oc.(T-to)xo = x,
i=1 i=1 7i

which verifies the theorem.

This result holds for a slightlvy more gen-
eral bilinear system in which A = A(t) is tire-
varying provided (A(t).El--Bn)) commute with

one another. For this class of bilinear svsters,
the reachable zone is much easier to characterire
because one need onlv consider a constant input

as a set of parameters, tben corpute the corresvcn-
dinpg transition matrices (T- t, ) i%),...m,

which characterize the rmachsrle zone of the given

" system (1) with a set D of initial conditions.

Define the set of attainability K of (1)
and (2) by

a
a
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(T
K= ((xo(u),x(T;u)):Rn’lzxo(uFJt u'(t)Ru(t)dt,
o
*(T3w=8(T,t_su)x_, uel’([t ,T1,R™)} (4)
ui=Eels, o’ 0! 02t 0"

where Q(t.to;u) is the state transition matrix

of (1) for each given u. It is clear that X
consists of the pairs of cost and terminal state
corresponding to all admissible input functions as
coordinates.

Now consider the map G: X=+[o,=) defined by

6(x%(u),x(T;u))=x" (T3u)0x(T3u) + x°(u).  (5)

Hence, J(u) = G(x°(u),x(T;u)).

The following lemma reveals some character-
istics of the set of attainability K.

Lerma 1: Every subset Hc(p) of K generated by

constant controls on [to,T] is compact, where

Hc(p)={(xo(u),x(T;u))eK:Osxo(u)sp,p<~,and u(t)=0}.
(6)
Preoof:

The proof is straightforward by the Euclidean
topolcgy and the linear structure of (1) for each
given u. Since Nc(p)C:K(:Rn’l

cne can easily establish the closedness and bound-
edness of the set

and 0g x°(u)s P,

= Tsu): - 'Ru ¢
Eo {x(T3u) (T to)u Ru g pl,
which proves the lemma.

The compactness of Nc(p) for each given

positive p assures the existence of an optimal
solution of the commutative bilinear system (1)
and (2) as given in the next theorem.

Theorem 2:

Given a commutative bilinear system (1), the
optimal controls which minimize the cost (2) are
in the form of a constant vector u® which satis-
fies the transcendental equation:

where ¢ (T-t ) and ¢,(t,t ) are the state

ci o A o
transition matrices associated with u?!i and A
respectively, =

Proof:
Theorem 1 allews us to assume that for a

given x(T,u), there exists a constant vector u,

such that x(T,uc) coincides with x(T,u) and

i

P

(T -t u = J u(t)dt. (8)

c C
(=]

Consider the costs associated with u and u.s

and assume without loss generality that R is a
diagonal matrix with positive elements T, i=leem:

7 m ) 2
I u'(t)Ru(t)dt = § r, J ui(t)dt = U
sy “dg °

T t
o o

From (8) and Holder's inequality, we have

T
ucz('?-to)2 = (j !uc |dt)2
i €S i

T 5 2
< (Itolui(t)ldt) < Ito ug(t)de(T-t )

1 < U2. The equality is

achieved if and only if ui(t) = ¢, a constant.

for i=l-°m. Hence U

Therefore, if the minimum enerpy exists, it must
be incurred by a constant input u®. But this

is indeed the case because the function G(-,+) is
continuous on Nc(p). and Nc(p) is compact for any

given p, so that Jl(u) attains its minimum on
Nc(p).

With the assurance that u® exists, the Maxi-
mum Principle can e used to derive the characteri-

m m
ui] x22(T,t ) n e, (T-t )BjQ M & (T-t )8,(T,t )x
i=1 "i i) 3
sforiopesy 3
4 Ve -
; : F(T,e ) 0 80 (T-t )30 1 8 (Tot)0,(Tyt )
u# x'e } - -t Tyt )x
™ ¢ oA "o 121 61 O Mgy e 0 A **"6" %0
e 3 v v . : (7) zation piven by (7); f.e. alonp with an ertiral
trajectory for (1) and (2) the state, co-state and

of




control satisfy

ot o
x = (A + Z B.u¥)x¥, x(t ) =x
P o ]
i=1
iy m
p* ==(A' + ] Bluf)o*, p(T) = -0x(T)
gz 11

X gip:'r
o, 1 -l -
u*(t) = ER
x%'B'n#
'

From these relations it can be verified di-

du*(t)
dt
assumption, so that putting t = T into u*(t) and

rectly that = 0, using the commutivity

m
using x(T) = °A(T’to) Z ec.(T-to)xo leads ulti-

i=1 i
mately to expression (7). This proves Theorem 2.

Theorem 2 states the simple character of the
minimum energy control problem for commutative bi-
linear systems, i.e. the optimal controls are sim-
ply constant vectors which satisfy the transcen-

dental equation (7). This fact enables us to treat

the optimal cormutative bilinear system as a fixed
linear system for which the explicit solution is
immediately available. As in the case with Theo-
rem 1, this result also holds for a slightly more
general system in which A = A(t) is a nxn time-
varyving rmatrix which commutes with B,(izleem)
because in the proof the time-dependence of A
does not play any role. To study the minimum
energy problem associated with cost function

(3), i.e. with a terminal constraint, we ack-
nowledge that a bilinear system does not gener-
ally have the global controllability property as
a linear system which has been quite thoroughly
characterized. Therefore, we shall limit our
attention only to the reachable zone Z asso-
ciated with each bilinear system rather than

the whole space P"  as the target set when we
are dealing with the cost (3). In other words,
the minimization of control energy is taken

over the set Uc of admissible controls which

consist of those constant input functions which
do steer the piven system to the desired tarpet
set at a certain finite tire,

The following theorem assures the exist-
ence of a constant ontimal control to the mini-
mum enerry preoblem (1) and (3).

" Given a cormutative bilinear system (1)
with the cost (3), If Xy belongs to the reach-
T akle set Z(x “’2(rf°.?],?')), then there exists

i
a constant optiral control uf which steers (1)

from X, to 3% at T and minimizes the as-
sociated cost (3). Furthermore, ug satisfies

the transcendental equation:

Xy ® OA(T,tO)

1 # (Tt % (2)

Proof:

Suppose

m
u =(u(t)eL2([t°,T],Pm):OA(‘!’,to) ENCEATEEN

is the set of admissible controls. Then U is
non-empty bv hvpothesis, and from Theorer 1
there exists a non-empty subset E censisting
of all elements of U which are constant input
functions. For each u(t) e U, there is a u,

€ U such that

T T

[ u(t)dt = I u dt.
c

t

o

Comparing the costs associated with wu(t) and
u, and using a similar argument as that in

Theorem 2, one can show that the minirum energv
is incurred by a constant input ugcvc. Ecuatien

(9) then follows bv a direct computation of the
solution of the 'linear' fixed svstem (1). 2.E.D.

In order to obtain u® from ecuatiocn (7) or
(9) by iterative schemes, it is interesting to
study the uniqueness property of the soluticn to
these equations. llext, we will use the preperty
of monotonically increasing maps to show the
uniacueness of solutions to (7) for a class of
bilinear systems.

IIT. Uniqueness of the Minimum Energy Control
Definition u:

A continuous map G from R" into itself
is monotonically increasing if <x1-x2.G(x1)-G(x.)>

2 0 for all x, and %, in Rm. where <+, >

1
is the usual inner product, i.e. <x,v> = x'v,

The followinp lemma states the unicueness
property associated with a monotonic map. The
proof can be found in Mintv (8].

. Lemma 2: Civen a monotonically increasing map G,

then the solution of the equation x + G(x) =
0, x¢ R'. is unicue.

Based on this lerma, sufficient conditions
for uniqueness can be derived as surrarized in

PR




the following theorem.
Theorem u:

There is a unique optimal solution to the
commutative bilinear system (1) with cost (2)
if the matrix R-lz(vo) is non-negative definite

for all v_ in R", where Z(v ) = (Z.,.) and
o o ij

(10)
Zij = vé(B§B§Q+BiOBj)v° O (0 B I R
Proof:

&

We define G(u*) = % R™ g where

m m
- L " ' e ' -
gj = yooA(.,to)iEloi(T to)Bjoizloi('r to”A(T'to)yo’

J = Yool

and compute the Fréchet differential of G at
u* with increment h:

d6(u*;h) = [% R'li(yo)]-h, herR"

where

- m
Zij=yé°A(?,to)kzl°i(T-to)[BsBiCOBiQBj]

m
x krzllek(".‘-to)4>A('r,1:°)y0.

By hypothesis, P'lZ(vo) 3> 0 which implies

that G is monotonically increasinz.+ There-
fore, Lerma 2 gives the uniqueness result. Q.E.D.

In the case of a single-input bilinear sys-
tem, condition (10) simplifies significantly to
the non-negative definiteness of the matrix

24 .n0
810081081.

As far as the minimum eneryv -roblem asso-
ciated with a terminal constraint (s concerned,
sufficient conditions for the uniqueness of
the solutions to Faq. (9) are more difficult to
derive because of the nonuniqueness of solu-
tions to the TPBVP associated with a nonlinear
system.

The following simple example illustrates
the nonuniqueness of optimal controls for a

“Because R'lz(vo) > 0 implies that the Freéchet

derivative of 6 is monotonically increasing,
which implies the monotonicity of G, see
Vainberg (9].

minimum energy problem with a fixed termiral
constraint.

Exarple 1:

Given the bilinear system

xl 1 0 xl 9 X 1

d =

E = + u,
X e 2 Xy -l10

x(0) = (0,1)’

x

x

with the ccst to be minimized and terminal con-
straint given by

1
J(u) = I

o)

wl(t)dr, x(1) = i

0 !
-e)

It can be easily seen that (A,Bl) commute;
hence, by Theorem 3 an optimal control ui sa-

tisfies the following equation:

o cos u* sin u® 0 e sin u*
c c c

e = '

-e -sin u* cos u* 1 e cos u¥j
c € c

Solving for ug, we obtain ug s kv, k = 21,23,

In order to have the total control energv rini-
mized, the integers with the smallest absclute
value are chosen, i.e. kl L k2 = -1, Clear-

1y uf = 7 and ug = -n both incur a miniral
cost of 72 and steer the given svstem to the
desired final state. Hence both u§ and ug

are optimal controls.

The lack of uniqueness of the minimum ener-.
gy control problem for a commutative svstem asso-
ciated with a terminal constraint is, in general,
expected because the nonlinear two-point ‘oundary
value problem generallv does not have a unigue
solution which prevents the uniqueness of cpti-
mal solutions in many cases.

1V. A Two-Dimensional Missile Intercept Svstem

It is assumed that for a tvnical hiph-speed
pursuing missile and short initial range, *he man-
euvering of the vehicles can be restricted to a




two-dimensional plane. Choose the coordinate sys-
tem fixed in the missile as shown in Figure 1.
Denote the angular rate of the missile and the
target with respect to a non-rotating reference

frame as up and U, respectively.
X
3
\
\
Y Target
a
X P
2
Ay
Pursuer
Y4
4\x
Z
FIGURE 1

The equations of motion are then descrited
by [10]

Xl = -V,r sSin xa =5 qup

.
X, = V. cos X
2 i 1

3 s up

e xlup-vp (11)

X
n

where v, and v_ are the line speeds of the

4 3
target and the missile relative to air; X and
x, are the horizontal and vertical distance from

the missile, and x, is the relative angle be-

3
tween the headings of the missile and target mea-
sured counterclockwise.

The system (1l1) can be transformed into a
homogeneous bilinear system by introducing three
auxiliary states: x, = sin XysXg = COS X, and

= L
% = 3. That is,

= Ax + Bxu (12)

X

with

0/ 0 a=v, O O 0 3 @6 o 0 o
00 0 0 w -v -1 0 0 0 6 o0
iy
A=10 0 0 0 0 wuij,Bs{0 000 0 -1
0 0 06 0 un 0 00 0 0 =

0 0 0 ~u, O 0 0 & 0 1 © 0

@ 9 0 0 (o] 0 0.0 a6 8 0 0

(13)
x(t )
o

= (xl(to),xz(to),x3(t°),sin x3(t°),ccs x3(t°).l)'

in which u = “p is defined as the control vari-
able.

The objective is to find a sauare inter-

grable function u®(t) which steers the missile
to the target at some finite time T (a free
tire formulation) while the total ccntrol ener-

gy consumed over this interval [to,.l is mini-

mized. The following performance incex is thus
considered:

LEss
J(u) = J uet)ge , Tt (1)
+ o

subject to

x,(T) = x,(T) = 0. (15)

In addition to the usual thrust vectoring,
the missile is assumed to possess thrust rodulaticn
capabilities so that v _(t) can be adiusted in ad-

dition to up(t). Rather than reeard v, as an

independent control, a proportionality relation-
ship between up(t) and vp(t) is postulated:

= yu 16)
v =y (

with the proportionality parameter y to be de-
termined by the boundary conditions as indicated
presently. With this postulated relation, Eq. (12
becomes

© 0 0 -v. 00 AR s e R -
000 0 v, O 5 o TS T A
A jor 00 0 0 wiB=lo 006 0 0 «i
000 0 u 0o 0 0 0 0-1 0
0 00 -u 0 0 g e S R
& 0.0 00 0 o8 060 -0

a7




and it can be readily verified that A and B
commute for all y. Consequently, in the event

that Vo and u, are constants, the solution

of the system (12) and (17) can be expressed an-
alytically.

We will first resolve the terminal con-
straint problem by considering the intercept
angle as a parameter, then incorporate the solu-
tions with the minimum energy problem. Consi-
deration should be given to two separate cases in

which up is zero and non-zero.

From Equation (11), denote the intercept
angle by B8, i.e.

T

g = xs(T) = xa(to) - f u(s)ds + uT(T-to). (18)

t
(o] "

.
The terminal constraint (15) becomes

[xl(t°)+ylcos(uT(T-t°) + xs(to)-B}

L-[xl(t°)+v]sin(uT(T-t°) + xa(to)-s}

'xz(to)sin(uT(T-t°)+x3(to)—B}-y

+ (19)

Lx2(to)cos{uT(T—t°)+x3(t°)-B}

cos 8 - cos[uT(T-to)-B]
v,
b i
t o
t
sin[uT(T-to)-B] + sin 8}

In other words, the termiral constraint problem
of the differential system (12) and (17) has
been reduced to solving a pair of nonlinear al-
gebraic equations (19) of transcendental type
for an appropriate set (y,8,T). A solution of-
ten exists for this case in which the number of
unknowns exceeds the number of equations.

The next proposition shows the existence of a
triple (y,8,T) which solves (19) for differ-
ent initial conditions (xl(to).xz(to),xa(to))

in 23. the analvtic expression for this triple,
as well as the proof of the proposition, is given
in Wei, [11] and [12].

Prorosition 1: (a) If u, is a non-zero constant,

then there exists a triple (v,8,T) satisfying (18)
and (19) which solves the terminal constraint 3
problem (15) for every (xl(to).xz(to),xg(to))ck .

“The usual limit will be taken when ur , approaches
zero.

(b) If u, is zero, then there exists a trirle
(v,8,T) wgich solves the same termiral con-
straint problem (15) for every (xl(to),xa(to).

xa(to)) € Ra\E', where

E = {(0,y,z) €R>: Eithery > 0 and z
y<

= (2k+
0 and z = 2km; k = 0

Since the system (12) and (17) is a coru-
tative bilinear system, the results in secticn II
are applicable to the minimum energv problen (1&)
and (15). The set Uc of admissible controls in

this case includes those input functions u(t)
satisfying the algebraic equations (18) and (19).
The next proposition which gives the explicit
form of the optimal controls to the croblerm (1u4)
and (15) is a direct consequence of Theorem 3.

Provosition 2: Given the system (12) ané (17),
there exists an optimal control u* ¢ UC which

minimizes the cost (14) and steers the svstem to

%, (T) = x,(T) =0 at some T > t_ for each ar-
1 2 o

propriate set of initial conditions (x,(to),

xz(to)’XS(to)’uT’vT)' This control is given :v

xa(to)-s

u*(t) = un + _—T:?;—_ (20)

where T and B are given as discussed in Pro-
position 1.

Proof:

Theorem 3 implies the existence of constant cpti-
mal controls u* € Uc' By equation (18), u* is

given as in (20).

The striking character of this optiral coen-
trol law in a constant form is not corpletelv
without expectation because the control asvects
proposed here include two channels. One is the
angular maneuver of the missile which counter-
balances (offsets) the anpular maneuver of the
target, while the additional degree of freecom
introduced by y carries out the major pursuit
part of the problem and leads to a sirple solu-
tion having some intuitive sense.

On the other hand, it should be noted that
although an optimal control is in a constant form
(a step function), a sub-ontimal centrol law can
always be constructed which will drive the ris-
sile to the tarpet at some T, with an approcri-
ate intercept anple B and for some ratio v,
as long as the area swent out satisfies (12).

This allows the control enfineer a sreat ceal of
flexibility in the desigm of a feasible easily
implemented sub-optimal controller.

TANB denotes the complement of B in A.




V. Conclusions

It has been shown that the optimal con-
trols are in the form of constant vectors deter-
mined by the boundary conditions for a class of
minimum energy control problems associated with
commutative bilinear systems. Sufficient con-
ditions for the uniqueness of solutions were ob-
tained for the minimum energy problem without a
terminal constraint on the state. In the case of
the control problem with a fixed terminal con-
straint belonging to the reachable set, it was
shown that a variety of different controls can
be applied to reach the desired terminal state
provided that all such controls satisfy an area
condition. This allows greater flexibility
from a design point of view and has been exploit-
ed in [12] for the singularly perturbed commu-
tative bilinear system.
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