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" Preface

This thesis establishes a cataloguing criteria, and
catalogues three operational formal definition techniques,
SEMANOL, the Vienna Definition Language, and BASIS/1-12. The
three techniques are then evaluated to determine which technique
is the best.

The reasons for cataloguing and finding a fairly simple
formal definition technique that completely describes the syntax
and semantics of a programming language are many. I think the
two most important reasons are standardization and providing
information to users. With a formal standard definition of a
programming language, hopefully someday a program written in
one language can be transfered without worry from one computer
system to another. Software systems are becoming more complex
and much more expensive each year, and the ability to implement
these programs on different computer systems without major
revisions is becoming more and more desirable. Language
standardization would do much in relieving this problem. A
formal definition would not only make transfers easier but also
provide useful information about the defined language.

The usefulness of the information provided by a formal
definition varies from user to user. Language designers are
able to completely understand the implications of their decisions
in designing or changing a language. Programmers are able to
answer detailed questions about a language without having to
guess at the answer and then run several tests verifying the
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guessed answer.

I would like to thank Captain Thomas E. Reeves, thesis
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AFIT/GE/MA/78M-1

Abstract

Operational techniques for defining computer programming
languages are examined; specifically, SEMANOL, the Vienna
Definition Language(VDL), and BASIS/1-12. A survey of the
operational methods is given, in which specific examples of
SEMANOL, the VDL, and BASIS/1-12 are explained in detail. A
cataloguing criteria is established and evaluated. The cata-
loguing criteria is then used to catagorize and evaluate
SEMANOL, the VDL, and BASIS/1-12. The SEMANOL technique was
Judged as the best technique followed by BASIS/1-12 and the
VDL, in that order.
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A CATEGORIZATION AND EVALUATION OF
FORMAL AND SEMI-FORMAL DEFINITION TECHNIQUES

I Introduction

Background

In recent years extensive effort has been spent in
developing formal definitions for computer programming lan-
guages. A formal definition of a programming language com-
pletely describes the syntax(grammar) rules and semantics
(meaning) for that language. A formal definition enables
language designers to better analyze their work, allows for
the standardization of computer programming languages, and
provides programmers with a clear and precise understanding

of a language. The importance of a formal definition was

succinctly stated by J. A. Robinson, "Reliable, high quality

computer programming is impossible without a clear and
precise understanding of the language in which the programs

are written -- this being true quite independently of the

merits of the language as a language"(Ref i1). The development

of formal definitions of programming languages began with
John W. Backus.

John W. Backus developed the Backus Normal Form(BNF),
which enables one to give a formal description of sjntax
rules that describe acceptable sentences in a specific lan-

guage. A result of BNF is that the syntax of programming
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languages has been clearly defined. However, the semantics
of a language have not been defined so accurately. Recently
other techniques for specifying syntax rules and semantics
have been developed. These techniques can be catagorized

as either denotational(mathematical) or operational(algo-
rithmetic).

The denotational and operational techniques differ in
their basic methodology. The denotational technique uses
functional calculus while the operational technique uses
the concept of a machine to define the "meaning" of a program.
A brief description of the denotational and operational
techniques follows.

Denotational techniques do not introduce the concept of
a machine. The "meaning" of the source program is described
with a functional calculus; that is, the "meaning" of a
program is described with an input-to-output function.

Since many individuals feel that the true semantics of a
source program can not be expressed with an input-to-output
function this thesis will focus on the operational techniques.

The operational techniques involve the description of
a machine. The specification of a language describes how
the machine "behaves" when given a program text and the data
required by the program text. The machine will react to an

input by either changing statesl or responding with a compu-

1A machine state consists of the data set, a source pro-
gram, and the definition of each instruction. The transfer

2
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tational result. The operational catagory provides two basic
methods of defining the "meaning" of a program; compiler
oriented methods and interpreter oriented methods

The compiler oriented methods define how source programs
may be translated into target programs of a target language
with known semantics(Ref 5). The compiler method provides
the user with a formal definition of a target language and
provides some insight into the relationship between the source
and target languages. A drawback of the compiler method is
that it does not give the user the definition needed of the
source language(Ref 5). The other method in the operational
catagory, the interpreter oriented method, defines the
"meaning" of a program using an interpreter.

The interpreter oriented method defines, for each source
program and its data, an algorithm for computing the value'
which results from executing the program for the given data(Ref *).
Using the interpreter oriented language definition, and given
a program text with the data required by the program text,
the interpreter will, depending on the specific method imple-
mented, either change states as a result of the current input
statement from the program text, or it will describe the

"meaning" of the current statement with a meta-programz.

from one state to another is governed by a "state transition
function". .The state transition function is defined as the
execution of one step(cycle), where several steps are required
for the execution of one instruction. The concept of states,
in this circumstance, requires the concept of the initial and
final(terminating) states. A valid program will begin in the
inifial state and end in the final state(Ref 12).

A meta-program is a program that defines the steps required
to describe the effects of executing either a statement or a
program, written in a different language.

3




Objective

This thesis will focus on the operational methods of
defining a computer programming language, and due to the draw-
back of the compiler methods, mentioned above, only interpreter
oriented methods will be examined. The objective of this
thesis is to develop a criteria for cataloguing interpreter
oriented operational methods for defining computer programming
languages; evaluate the established criteria; and finally,
catalog interpreter oriented formal definition techniques

according to the cataloguing criteria established.

Approach

In establishing a cataloguing criteria, several denota-
tional and operational methods of defining computer program-
ming languages were examined, and other comparative evalua-
tions were studied. Information applicable to interpreter
oriented methods was extrapolated from these reports. Examina-
tion of several methods of formal definitions gave an insight
as to how different methods could vary. A cataloguing
criteria was then composed of specific questions aimed at
pointing out the variance of different interpreter oriented
techniques. The usefulness of the cataloguing criteria was
then evaluated. This was accomplished by determining how
useful the information gathered from different techniques
was to différent users. Two groups of users were specified,
language designers, and programmers in general. -With a
cataloguing criteria established, interpreter oriented formal

4




definition techniques were examined, specifically, TRAW's
SEMANOL, and IBM's Vienna Definition Language(VDL), and IBli's
BASIS/1-12.

A by-product of the above process makes this thesis the
only single source for a reader interested in understanding

the mechanics of TRW's SEMANOL, IBM's VDL, and IBM's BASIS/1-12.

Overview

Chapter II of this thesis presents the process involved
in developing a cataloguing criteria. Chapter III provides
an evaluation criteria, and evaluates the cataloguing criteria
developed in chapter II. A brief summary of SEMANOL,VDL, and
BASIS/1-12 is presented in chapters IV, V, and VI, respectively.
In chapter VII the cataloguing criteria developed in chapter
II is applied to each technique, SEMANOL, VDL, and BASIS/1-12.
The conclusion, chapter VIII, contains the results of the
cataloguing procedure along with the advantages and disadvan-

tages of each technique

T —




IT A Cataloguing Criteria

Approach

The purpose of a cataloguing criteria is to indicate the
quality of a specific technique used to formulate a formal def-
inition of a programming language, and enumerate differences
among various techniques. Several methods were studied to de-
termine what qualities should be examined when evaluating
formal definition techniques. The research involved the
denotational and operational techniques listed below.

The denotational techniques examined were W-grammars(Ref
3), production systems with an axiomatic approach to semantics
(Ref 3), attribute grammars(Ref 3), an axiomatic approach by
Hoare(Ref 10), lambda-calculus as used by Landin{Ref 11), and
the Oxford Definition Method(Ref 1;4).

The operational techniques studied were SEMANOL(Ref 2;4;7;
8;9), the Vienna Pefinition Language{VDL)(Ref 3:;5:;6;12), and
BASIS/1-12(Ref 16).

Examination of the denotational and operational techniques
provided the author with information relating what each tech-
nique considered primary characteristics of a programming
language.

Previous comparative evaluations of denotational and
operational techniques were then studied, specifically, "The
Definition of Programming Languages"(Ref 1), and "A Sampler of
Formal Definitions"(Ref 3). Both of the comparative evaluations
examined operational and denotational techniques. against each

6
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other. Such evaluations are useful in pointing out the differ-
ences between the two basic approaches. A reader searching for
any formal definition technique, regardless of approach, would
find such evaluations useful.

However, if one is interested in interpreter-oriented
techniques, then an evaluation of only interpreter-oriented
techniques is required. £Evaluating two distinct catagories is
inequitable. "Weakness" inherent in a catagory should not be
listed as a weakness of a specific technique; a particular
interpreter used in an interpreter-oriented technique should
not be classified as a weakness. An evaluation of a specific
formal definition technique should not evaluate techniques from
the denotational catagory and the operational catagory together.

The above research indicated major areas of'concern when
defining a computer programming language. These major areas
are:

A. Control. Specifically, how does this formal definition
technique describe the flow of control for sequences, jumps,
loops, and procedure calls.

B. Memory. This area involves the storage of values for
future reference.

C. Expressiqns. Specifically, the rules governing the
evaluation of expressions.

D. Clarity. Clarity in this field of study refers to how
well the user of a formal definition technique is able to
understand the technique.

E. Completeness. Completeness refers to any weakness in




the definition technique. The formal definition of a language
should be able to describe every syntax or semantic event which
may occur in that language.

Any cataloguing criteria which proposes to give some indi-
cation of the quality of a formal definition technique must at
a minimum address these areas.

Realizing that in any evaluation a certain amount of
subjectivity is introduced, a criteria composed of specific
questions was formulated. Specific questions minimize subjec-
tivity, and make subjective answers more apparent to the reader.
This technique was particularly useful in dealing with the
clarity of a definition. A specific question aimed directly
at clarity would rely only on a user's unsupported opinion for
an answer. However, éeveral questions aimed at characteristics
which make a specific method easier to understand enables one
to reduce the amount of subjectivity involved in deciding the
clarity of a technique.

The following question is an example of the type of ques-
tions used in determining the clarity of a definition. Does
this method seperate context-free syntax, context-sensitive
syntax, and the semantic parts of a language definition?

Though this question does not seem to be directed toward clarity,
the seperation of context-free syntax, context-sensitive syntax,
and the semantics of a definition makes the method easier to
understand and thus the technique is clearer than if‘these parts
were not seperated. Several other questions relafing to the

clarity of a technique are listed with the other questions used

-
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in the cataloguing criteria, at the end of this chapter.

The concept of completeness is almost impossible to
decompose into components as was done with clarity and so the
subjectivity involved in determining this characteristic could
not be deminished. /

Craracteristics which do not particularly fit into the
above areas, but are vital in distinguishing one formal defini-
tion from others, include:

A. Context-free and context-sensitive syntax. How does
a particular method process or evaluate the syntax?

B. Defining the execution of a program. Does the method
use the machine-theoretic approach in which execution is
described by changing states until the final state is achieved,
or is the execution described with a meta-program(Ref 7).

C. Deciding the validity of a program. How demanding is
the definition? When will a method declare a program valid

(after a good syntax check, a good semantics check, or proper

execution of the program)(Ref 3)7?

D. Specification of implementation dependencies. This
area pertains to a definition which is implemented on a ccmputer
and deals with finding out how the constraints of the host

computer are defined within the definition.

Criteria

A cataloguing criteria which covers each of the above
characteristics enables one to obtain an idea of the quality of

a specific formal definition techniéue. and enables a reader to

¢ Gl a2 R R .




compare various formal definition techniques. Each of the
qualities specified above are listed below, and then followed
by the specific questions used in the cataloguing criteria to
determine if a specific quality was present in the technique
being evaluated.

No "ideal" answers are provided. The evaluation of
different techniques involves evaluating the techniques directly
against each other, not against an "ideal" technique, and then

against each other.

I Control
A. How does this method process the flow of control for
sequences, Jjumps, loops, and procedure calls?
II Memory
B. How is memory defined (assignment statements, variables,
etc.)?
III Expressions
C. How are evaluations of expressions defined?
D. How are lexical transformations processed?
E. Can external functions and relations be called from a
system library?
F. How is the semantic operator expressed?
IV Clarity
G. Can people understand the method?
H. 1Is high-level expressiveness utilized? (How much detail
must one know before utilizing the technique?)

I. Are the mneumonic names helpful to the reader?

10
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J. Does this method seperate context-free syntax, context-
sensitive syntax, and the semantic parts of a language defini-
tion?

V Completeness

K. Does this technique provide a complete definition?
VI Context-free and context-sensitive syntax

L. How is the context-free syntax processed?

M. How is the context-sensitive syntax processed?

VII Defining the execution of a program

N. How does this method define the execution of a ,jprogram?

S, e g@;:-nﬁ-ﬁvcw .

VIII Deciding the validity of a program -
0. What constitutes a valid program?
IX Specification of implementation dependencies
P. How are the implementation dependencies defined?
Q. Are the representations of the data types and
operators machine independent?
The above cataloguing criteria specifies what was examined
in cataloguing different interpreter-oriented formal definition r
techniques. The following chapter conducts an evaluation upon
the above criteria to determine its usefulness.
11
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III Evaluation of the

Established Cataloguing Criteria

A cataloguing criteria must cover every major requirement
of a formal definition technique and display qualities of the
technique that are beneficial to a wide range of users. This
chapter evaluates the established cataloguing criteria given in
chapter II to determine if it conforms to the above descrip-
tion.

Constructing the cataloguing criteria in chapter II
consisted of identifying major areas of importance(control,
memory, expressions, clarity, and completeness) in a formal
definition. Questions aimed at exploiting how different formal
definition techniques cover these areas were then formulated.‘
Thus the first goal of this evaluation, verifying that the
cataloguing criteria covers the important areas in a language
definitior®, has been confirmed, since these areas were used in
the construction of the criteria. -

The second goal of the cataloguing criteria is to display
qualities of a formal definition technique that are beneficial
to a wide range of users. For this evaluation, two groups of
users were identified in order to represent both ends of a
spectrum of users. The two groups of users were language
designers and programmers in general.

The value of the established cataloguing criteria to language
designers was determined by listin; several qualities of
importance to language designers interested in changing a

12

-—w_ — W’” 1
: + o -y A o e W ei«-ﬁ--‘myfﬂ 3




language. Each listed quality was then followed by related
questions from the cataloguing criteria. Qualities of impor<ance
to language designers contemplating a change in a language are:

A. Changes should be easy to implement. The formal
definition should be easy to use.

B. The effects of a particular source program statement
should be easy to trace.

C. Effects of a language change should be completely
defined.

D. The effects of a language change on the flow of
control should be easy to trace.

E. Context-free syntax and context-sensitive syntax
should be easy to modify.

F. The user should be able to verify the interface
between the language and external system functions.

Evaluation of how well the established criteria verified
these qualities in a formal definition was determined by listing
each of the qualities followed by related questicns from the -
cataloguing criteria. These qualities and the related questions

are listed below.

Changes should be easy to implement. The formal definition
should be easy to use.

a. Can people understand the method?

b. Is high-level expressiveness utilized? (How much
detail must one know before utilizing the technique?)

¢. Are the mneumonic names helpful to the reader?

d. Does this method seperate context-free syntax, context- <

13
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sensitive syntax, and the semantic parts of a language defini-
tion?

The effects of a particular source program statement should be

easy to trace.

a. How is the semantic operator expressed?

b. Can people understand the method?

c. Is high-level expressiveness utilized? (How much
detail must one know before utilizing the technique?)

d. Are the mneumonic names helpful to the reader?

e. Does this method seperate context-free syntax, context-
sensitive syntax, and the semantic parts of a language defini-
tion?

f. Does this technique provide a complete definition?

Effects of a language change should be completely defined

a. Can external functions and relations be called from
the system library? .
b. Does this technique provide a complete definition?

c. What constitutes a valid program?

The effects of a language change on the flow of contrc should
be easy to trace.

a. How does this method process the flow of control for

sequences, jumps, loops, and procedure calls?

b. How are evaluations of expressions defined?

c. How.is the semantic operator expressed?

d. Does this method seperate context-free syntax, context-
sensitive syntax, and the semantic parts of a language defini-
tion?

14
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Context-free syntax and context-sensitive syntax should be easy

to modify.

a. How is the semantic operator expressed?

b. Does this method seperate context-free syntax, context-
sensitive syntax and the semantic parts of a language defini-
tion?

¢c. How is the context-free syntax processed?

d. How is the context-sensitive syntax processed?

The user should be able to verify the interface between the

language and external system functions.

a. Can external functions and relations be called from
the system library?

As shown above, the established cataloguing criteria
provided information related to every area of interest to a
language designer.

At the other end of the user spectrum is the programmer.
The programmer is interested in answering specific questions
pertaining to "how" a language "works". Specific areas of
concern, to programmers, are:

A. The definition should be easy to understand;

B. One should easily see how and what a source program
statement does;

C. The flow of control within a source program should be
easy to follow;

D. The effects of source program statements on each other

should be apparent;

E. The requirements of the syntax and semantics should be

15




easy to determine;

F. The user should easily understand how values are stored;

G. The user should not have to worry with items that are
not relevant;

H. One should be able to determine exactly when a substi-
tution takes place.

The programmer should select a formal definition technique
that fulfills these eight areas of concern. The usefulness of
a cataloguing criteria, to a programmer, could be determined by
examining how many of the above eight areas are evaluated.
Evaluation of the cataloguing criteria, verifying inspection of
the eight areas, is listed below. The evaluation consists of
the quality desired by the programmer followed by the related
questions. '

The definition should be easy to understand.

a. Can people understand the method?
b. Is high-level expressiveness utilized?

¢c. Are the mneumonic names helpful to the reader?

One should easily see how and what a source program statement
does.

a. How are the evaluations of expressions defined?
b. How is the semantic operator expressed?

The flow of control within a source program should be easy to
follow.

a. How does this method process the flow of control for

sequences, jumps, loops, and procedure calls?

16




The effects of source program statements on each other should

be apparent.

a. How does this method define the execution of a program?

The requirements of the syntax, and semantics should be easy

to determine.

a. Does this method seperate context-free syntax, context-
sensitive syntax, and the semantic parts of a language defini-
tion?

b. How is the context-free syntax processed?

c. How is the context-sensitive syntax processed?

The user should easily understand how values are stored.

a. How is memory defined (assignment statements, variables,

etc.)?

The user should not have to worry with items that are not

relevant.

a. Can external functions and relations be called from
the system library?

b. How are the implementation dependencies defined?

c. Are the representations of the data types and operators

machine independent?

One should be able to determine exactly when a substitution
takes place.

a. How are lexical transformations processed?
The cataloguing criteria does supply information to the
programmer, in every area of interest to the programmer.

This evaluation has shown that the cataloguihg criteria
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exposes information in the five major areas of concern in a
formal definition (control, memory, expressions, clarity, and
completeness). The evaluation also has shown that the
cataloguing criteria provided useful information in every major
area of concern for both language designers and programmers in
general.

The result of this evaluation reveals that the established
cataloguing criteria provided all the information normally
required by a cataloguing criteria. Therefore, it is the opinion
of this writer that the established cataloguing criteria is
at a minimum, satisfactory.

With a satisfactory cataloguing criteria established the
process of examining SEMANOL, the Vienna Definition Language,
and BASIS/1-12 can begin. The following chapter, chapter IV,
provides a brief introduction to the SEMANOL technique.
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IV SEMANOL

Background
Research, that lead to the SEMANtics Oriented Language

(SEMANOL), began at TRW by Dr. E. K. Blum in the late 13960's.
SEMANOL was developed to enable a user to completely describe
the syntax and semantics of procedural programming languages,
such as ALGOL 60, FORTRAN, COBOL, and SIMULA 67. Designed to
provide a definition used by people, SEMANOL provides a precise
method of communicating syntax and/or semantic details of a
computer programming language. The SEMANOL specification can
be processed by a SEMANOL interpreter, thus, a SEMANOL language

definition can be machine tested(Ref 2).

Methodology

A SEMANOL meta-program provides a formal technique for
defining the "execution" of a source program. The effect of
executing a source program, written in the defined language, is
obtained by determining the effects of each computation sepa-
rately. Obtaining each computation separately is accomplished
through a parse tree representation of the source program.
The leaves(terminal nodes) of the parse tree consists of the
source program text. An example of a parse tree, for the
statement "LET A=B+C", with the grammar rules given below, is
shown in Fig. 1. The grammar rules are:

<LINE> 3= <STATEMENT>
<STATEMENT> 3= 'LET ' <NUMERIC-VARIABLE> ‘'=' <NUMERIC-EXP>
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<NUMERIC-VARIABLE> :: w4 B e

<NUMERIC-EXP> :: <NUMERIC-VARIABLE> '+' <NUMERIC-VARIABLE>

where:

"1:=" means the item on the left side is composed of the
items on the right side, and

"< 3" indicate that the quantity inside is to be defined;
that is, it must appear on the left side of "::=" for at least
one grammar rule. i
"|" as specified in the third grammar rule indicates an

"exclusive or" condition. Either the 'A', the 'B', or the ‘C‘

can compose a NUMERIC-VARIABLE.

<LINE>

node(N)

<STATEMENT>

'LET ' <NUMERIC-VARIABLE> '=' <NUMERIC-EXP>

A
<NUMERIC-VARIABLE> '+' <NUMERIC-VARIABLE>

Fig. 1. Parse tree for the statement "LET A=B+C".
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The concept behind the SEMANOL meta-program is defined

below. The SEMANOL system defines a programming system (S)

as S = (P,I,T7,8), where

P = The set of programs which can be expressed in the programming
system;

I = The set of input values;

T = The set of output traces. A trace is an ordered record of
significant actions(such as assignment) that are performed
by the program as it is executed; it is the visible manifes-
tation of performing the algorithm that is the operational
SEMANOL specification of semantics; and

b = The semantic operator. This operator, given as #:P x I - T,
is considered to define the "meaning" of a program(Ref 2).

The product of two sets Pand I (P x I) is defined as all the

finite set of pairs pi such that p is in the set P and i is in

the set I. Individual members of P, I, and T are represented

by p,i, and t, respectively. The execution effects of a given

program, p, can be represented as
B(poi) =t (1)

which states, the effect of executing the program p with an

input i is the output trace t.
A SEMANOL meta-program pg describes the semantics of the

defined language. The effect of the semantic operator & equals
the effect of the SEMANOL meta-program defining &, thus,

Pg(pri) = 8(p,i) = ¢t , (2)
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The complete SEMANOL system involves an interpreter,
capable of executing the SEMANOL meta-program. The semantic
effects of the SEMANOL meta-program are defined by a semantic
operator for the SEMANOL system (&g) thus,

Ba(pgs (psi)) = B(p,1) = % (3)

While the SEMANOL approach is algorithmic, it is also
"program-oriented". SEMANOL does not use the basic concept of
machine states, usually associated with interpreter-oriented
techniques. However, SEMANOL can be considered interpreter-
oriented because it employs the concept of a machine, and neither
the SEMANOL meta-program nor the source program, written in the

defined language, are translated into another language(Ref 2;5;7).

The Meta-language
SEMANOL was developed to provide the user with an easily

understood method for defining semantics. The use of FORTRAN,
or any other language, would have required complex programs to
define the semantics. These programs would have been less
readable, and less comprehensible.

The SEMANOL description of a language consists of a program
with four sections. The four sections are: the declaration
section, the context-free section, the semantic sectioﬁ. and
the control section.

The first section, the declaration section, identifies
SEMANOL declared global variables, and syntactic components.
Declared global variables are independent of any individual
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source program. Therefore, declared global variables are limited
to variables that retain control related information, such as,
a list of return points from subroutines, etc..

Syntactic components represent a very interesting charac-
teristic of SEMANOL. Executing a program, written in the defined
language, first involves_parsing the program. The program text
serves as the terminal nodes of the parse tree. Each parse
tree non-terminal node has several attributes. One of the
attributes, syntactic component, is composed of a pair (s,v),
where s is a semantic definition name, and v is a SEMANOL value
assigned to that name. The first time a node is used in a seman-
tic definition, a SEMANOL value is obtained. If that value must
remain constant throughout the execution of the source program,
that value is assigned to the "v" in the syntactic component.

At a later time in the program if that specific node is used in
the same semantic definition, the value is available and will

not have to be recomputed. The semantic definition "Left-Hand-
Side-0f" is an example of the type of semantic definition used

in a syntactic component. Applying "Left-Hand-Side-0f" to node(N),
in Fig. 1, which has a value "LET A=B+C", will always obtain

the value "A". The next time "Left-Hand-Side-Of" is applied to
node(N) the value "A" will be available and will not have to be
derived again.

The total number of declared global variables and syntactic
components specified in the declaration section is a function
of the language defined.

The second section is the context-free section. This section
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contains the syntactic definitions which specify an (almost)
context-free grammar over the ASCII character set for the

defined language. The only context-sensitive feature implemented
in this section is the keyword #GAP. The keyword #GAP represents
the set of zero or more ASCII blank characters{one or more

when concatenated with the left or right sides of alphanumeric
strings). Grammars are used as recognition grammars in SEMANOL
and the above feature ensures that a valid program, syntactically,
will be recognized.

If a grammar specified in this section is ambiguous, an
error message results. An ambiguous grammar is a grammar in
which two different parse trees have identical leaves. In this
situation an ambiguous grammar is exposed by the existence of
two different parse trees for the same source program. proving
a grammar unambiguous is essentially impossible, unless that
grammar is composed of relatively few rules(few enough to test
every combination of rules). Therefore, the flaw of having
specified an ambiguous grammar, in the language definition can
only be recognized by parsing a program that causes more than
one parse tree to be generated.

The semantic definitions section is the third section.
“Semantic definitions consist of a "semantic definition name",
followed by an optional "dummy parameter list" followed by a
semantic definition body. A semantic definition may be function-
al or procedural, i.e. it specifies the selection of a SEMANOL
expression which is to be evaluateq(functional). or it specifies

a sequence of "statements" which are to be executed in order
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(procedural) (Ref 14).”

The fourth section in a SEMANOL description of a programming
language is the control section. This section contains a sequence
of statements which are executed in order. Execution of a
SEMANOL program begins with the first statement in the control
section, and proceeds until the effects of executing th program,

written in the defined language, are completed.

Execution

The previous section described the SEMANOL program used
to obtain the effects of executing a source program. This sec-
tion describes the processes the SEMANOL program performs upon
the source program.

A lexical analysis, dependent on the defined language, is
the first process performed upon the source program text.
During this process any lexical substitutions(macro substitutions)
are performed, and comment statements removed. An example of
a macro substitution is the "DEFINE" statement in JOVIAL(J3).
The "DEFINE" statement "DEFINE EXP "A+B*C" specifies that
everywhere "EXP" appears in the program text "A+B*C" must be
substituted. Therefore, when processing a JOVIAL program a
lexical analysis must examine the text for "DEFINE" stafements.

The source program is then parsed using the grammar specified
in the context-free section. After a successful parse, several
context-sensitive tests are performed. The number of context-
sensitive tests is a function of the language def;ned with the
SEMANOL program. The MINIMAL BASIC specification contains
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seventeen context-sensitive tests. Examples of the context-
sensitive tests used in the MINIMAL BASIC specification are:
testing to verify that all line numbers are non-zero, testing
to verify that all line numbers are uniquely numbered, and
testing to verify that all "FOR" statements have matching
"NEXT" statements, etc..

The SEMANOL program then computes the effect of executing
the syntactically valid program, using the semantic definitions
section. The above processes are shown in a flow chart format

in Fig. 2.

[ PROGRANM T=eXT |

| LEXICAL ANALYSIS |

| REVISED PROGRAM TEXT ]

[ CONTEXT-FREE PARSE |

PARSE TREE

CONTEXT SENSITIVE
TESTS

LPARSE TREE

EXECUTION
SEMANTICS
INTERPRETATION

[(RESULTS]

Fig. 2. Stages of a definition.
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During the above processes the occurance of any errors
either in the source program text or in the SEMANOL program
description results in the output of the appropriate error
message(Ref 8).

An example of a SEMANCL definition is given below. The
language defined is very simple, enabling the reader to under-
stand the four sections in the definition. The defined language
the Assignment Statement language, ASL consists of assignment
statements, a stop statement, and an end statement. Each
statement except the end statement is terminated with a semi-
colon. The format of the assignment statement consists of
'LET" followed by a single alphabetic character(A, B, or C),
then "=" followed by an unsigned integer constant(LET A = 2).

The words composed of capital letters, in the definition,
are SEMANOL commands. These commands are not defined since
their meaning is obvious. The other words linked with hyphens
are entities defined in the semantic section or in the control
section. SEMANOL definitions, in the syntactic and semantic
sections, begin with "#DF" and end with "#.", and "#U"
indicates an "exclusive or" condition. An example of a
SEMANOQOL definition is given below.

#DF sequence-of-statements-in(basic-program)
=> #SEQUENCE-OF <numeric-let-statements> #U <stop-statement>
#U <end-statement> #IN basic-program #.

Treating the SEMANOL definition of the test language as a

program is helpful since using theldefinition involves executing

the statements in the control section. The SEMANOL definition
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for the specified language is listed below, a few comments,

enclosed in quotation marks, are included.

DECLARATION SECTION
Rule

1. #DECLARE-GLOBAL:
basic-program
current-statement #.

2, #DECLARE-SYNTACTIC-COMPONENT:
sequence-of-statements-in
is-not-stop-or-end
left-hand-side-of

right-hand-side-of #.

CONTEXT-FREE SECTION

3. #DF<program> => </4<line>><end-stat ment> | <%<line>>
<stop-statement><end-statement>

4. #DF<line> => <numeric-let-statement><#GAP>';'

5 #DF<numeric-let-statement> => 'LET'<#GAP><numeric-vari-
able><#GAP>'='<#GAP><numeric-constant>#.

6. #DF<numeric-variable> => 'A' | 'B' | 'C' #.

7. #DF<numeric-constant> => <%i<digit>> #.

8. #DF<digit> => '0'|'1'['2 '3 |'4"|'5'|'6'|'?'|'8"'1'9" #.

9. #DF<end-statement> => 'END' #.

10. #DF<§top-statement> => 'STOP' <#GAP>';'

"Where "%" means the following item is repeated zero or

more times, "%1" means the following item is used at least once."
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Rule
1.

b4,

5.

6.

SEMANTIC-SECTION

#DF is-context-free-syntactically-valid(basic-program)
=> #TRUE #IF basic-program #IS-NOT #UNDEFINED
=> #FALSE #0THERWISE #. "an error message results"”
#DF sequence-of-statements-in(basic-program)
=> #SEQUENCE-OQF <numeric-let-statement> #U <stop-
statement> #U <end-statement> #IN basic-program #.
#DF is-not-stop-or-end(stmt)
=> #TRUE #IFF #NOT stmt #IS <stop-statement> #U <end-
statement>
=> #FALSE #CTHERWISE #.
#DF effect-of(current-statement)
=> #BEGIN ;
#COMPUTE! #ASSIGN-LATEST-VALUE(left-hand-side-of
(current-statement), "receives" right-hand-side-
of (current-statement))
#END #.
#DF left-hand-side-of(current-statement)
=> SEG 3 #OF current-statement #.
"the third item in the syntax definition of the
numeric-let-statement, the numeric-variable"
#DF right-hand-side-of(current-statement)
=> SEG 7 #OF current-statement #.
‘"the seventh item in the syntax definition of the

numeric-let-statement, the numeric-constant"
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CONTROL COMMANDS SECTION
Rule
1. #CONTROL-COMMANDS :
2. #ASSIGN-VALUE! basic-program = #CONTEXT-FREE-PARSE-
TREE( #GIVEN-PROGRAM, program)

3. #IF($basic-programp) is-context-free-syntactically-valid

L, #THEN

5. #BEGIN "The following loop determines the execution
effects of each statement in the source program
text".

6. #ASSIGN-VALUE! current-statement = #FIRST-ELEMENT-

sequence-of-statements-in(basic-program)

T #WHILE($current-statement3) is-not-stop-or-end #DO
B #COMPUTE! effect-of(current-statement)
9. #END

10. #COMPUTE! #STOP #.

A test program demonstrating the previous SEMANOL definition,

of the language used to write this program, is given below.

LET A = 1;
LET B = 2;
END

The reader "executing" this test program must start with
the first control command, in the SEMANOL definition, which is,
"ASSIGN-VALUE! basic-program = #CONTEXT-FREE-PARSE-TREE(#
GIVEN-PROGRAM,program). This command parses the source program
text, using the context-free syntax section. the basic-program

resulting from this command is shown in Fig. 3. The next con-
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trol command "#IF(3basic-program$) is-context-free-syntactically-
valid #THEN", verifies that a valid parse tree was obtained
from the previous command. A valid parse tree in the language
definition, will allow the execution of the following commands,
a loop delimited by "#BEGIN" and "#END", which determines the
execution effects of the test program. The first command
within the loop is "#ASSIGN-VALUE! current-statement = #FIRST-
ELEMENT-IN sequence-of-statements-in(basic-program)". This
command takes the first available statement from the source
program text(LET A = 1) assigns it to current-statement and then
deletes it from the source program text. The test program now
looks like
LET B = 2;
END

The "#WHILE(3current-statementd) is-not-stop-or-end #DO"
command is execute, verifying that the entire source program
has not been executed. If the current statement is not a "stop"
or an "end" statement the "#COMPUTE effect-of(current-state-
ment)" command is executed. The "meaning" of “"effect-of" is
defined in the fourth definition in the semantic section(page 29).
Essentially, the value "1" is assigned to A. The next control
command executed is the first one in the loop, "ASSIGN-VALUE!
current-statement = #FIRST-ELEMENT-IN sequence-of statements-
in(basi-program)". This time "LET B = 2" is assigned to the
current statement. The loop continues until a "stop" or "end"

statement is obtained in the current statement. ' When the "end"
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statement in the test program is reached the effects of
executing the test program will have been realized.

This chapter defined the SEMANOL formal definition tech-
nique, and provided a simplistic example of a SEMANOL descrip-
tion of a language.

With a brief introduction to SEMANOL complete, the process
of examining the Vienna Definition Language(VDL) can begin.

The following chapter, chapter V, provides a brief introduction

to IBM's Vienna Definition Language.
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v The Vienna Definition Language

Background

The Vienna Definition Language(VDL) is a product of re-
search conducted in the late 1960's at IBM's laboratory in
Vienna, Austria. The objective of the research was to develop
a technique to produce a formal definition of Programming
Language I(PL/I). The developed technique was to be capable
of defining a programming language(syntax and semantics)
without ambiguity, with the ultimate goal of standardizating

the defined language.

Me thodology

The Vienna Definition Language is an interpreter oriented
programming language capable of defining programming languages.
The VDL definition process utilizes three abstract machines, an
ANALYZER, a TRANSLATOR, and an INTERPRETER.

A source program is not interpreted directly, but prepro-
cessed by the ANALYZER and the TRANSLATOR. This preprocessing,
similar to SEMANOL's lexical analysis, context-free syntax
parse, and the context-sensitive syntax tests, translates the
source program into an abstract object representation that is
ready for interpretation: The goal of this chapter is to
present a brief informal introduction to the Vienna Definition
Language, cdvering the data structure the language manipulates,

and how the semantics of a program are defined(Ref 3;5;6;12)

v
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The Meta-language

The Vienna Definition language defines the semantics of a
program by manipulating the data structure, a tree, that rep-
resents the source program. This tree manipulation is accom-
Plished with operators that select tree components, construct
new trees, and assign new values to nodes of existing trees(Ref 5).

A source program ready for interpretation is represented
by abstract data objects. There are two classes of data objects:
elementary objects, having no components and represented by
terminal nodes on a tree; and composite objects composed of a
finite number of data objects, and represented by nonterminal
nodes on a tree. An elementary object "E" is shown in Fig. &,
and a composite object "C1" is shown in Fig. 5.

A very important feature of the "Vienna tree" is that each
branch(a connector and a node, coming from a node) is labeled.
The labeling of each branch allows one to represent an entire
tree with a set of "selector-object" pairs such as <S1:E1>.

The selector pair <S1:E1> indicates that S1 is the selector of
object E1, as shown in Fig. 5. The object E2 in Fig. 5 would
be selected with <Sl:(<SZzCi$)>, where <S2:C1> indicates object
C2 and then <S1:C2> selects object E2. The Vienna tree depicted

in Fig. 5 is represented by expression 1.
Cl1 = (<S1:E1>, (<S2:(<S1:E2>, <S2:E3>)>),<S3:E4>) (1)

Every branch emanating from the same node must have a unique
label, and selecting a branch which does not exiét(selecting Sk
of node C1) yields the null object.

-
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The Vienna Definition Language operators, described below,
manipulate the Vienna tree. There are three basic catagories
of operators in the VDL, the construction operator ugy, the
mutation or assignment operator u, and relational operators.

The construction operator ug allows one to "build" a
Vienna tree. An example of the construction operator in opera-

tion is expression 2.
ug (<S1:E1>, (<S2:(<S1:E2>, <S2:E3>)>), <S3:E4>) (2)

The execution of expression 2 results in the creation of the
Vienna tree specified in Fig. 5. Thus the construction opera-
tor, ugy, is used to build new objects.

The mutation or assignment operator u is used to modify
existing objects. An example of the mutation operator's

capability is demonstrated with expression 3.

C1
S1 S3
S2
S
Et E4
c2
S1.
S1 S2
. E2 23
Fig. 4. Elementary Object Fig. 5. Composité Object
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u(C1:<S1:E0>) (3)

Expression 3 results in a mutation of object Ci;
branch S1, if existent, is deleted, and a new branch S1 with
an object EO is added. Applying expression 3 to Fig. 5
results in a modified tree, shown in Fig. 6.

The relational operators, predicates, are used to iden-
tify different sets of objects. A predicate can be regarded
as the name of an object set. The value of a predicate is
either TRUZ or FALSE. An example of a predicate is "IS-DIGIT"
which identifies the set of digits. The predicate "IS-DIGIT"

is defined in expression 4.
IS-DIGIT =i v2vi3vivsvbv7?v8vovo (4)

where "v" signifies a logical exclusive or condition.

Applying "IS-DIGIT" to any digit would yield the value TRUE.

C1

EO

E2 £3

Fig. 6. Modified composite object
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Conditional expressions are an example of how predicates
can be used. Conditional expressions in the VDL have a format

specified in expression 5.
Pt - E1, P2 - E2,...,Pn = En (5)

where Pi is a predicate, and Ei is an expression defining

the action to be taken or a value. The value of a conditional
expression is the value of the first Ei for which Pi was

true. If no predicate in the conditional expression is true
then the value of the conditional expression is undefined.

An example of a conditional expression defining the logical

"AND" operation is given in expression 6.
A AND B = (A=0 - 0, T - B) (6)

To obtain a value of "1" for this conditional expression
"A" would have to equal "1", and "B" would have to equal "1".
If "A = 0" then the value of the expression must be "0". If
"A = 0" the first predicate (A=0) is true and the value of
the expression is "0". If "A = 1" then the first predicate
is false and the second predicate is tested. In this defini-
tion the second predicate is defined as always being true.
Therefore if "A = 1" the value of the conditional expression
is equal to the value of "B". Thus, if "A = 1" and "B = 0",
the value of the conditional expression would be "0", if
"A =1" and "B = 1", the value would be "t".

There is another set of operators in the VDL, however,

these operators are better classified as elementary functions.
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Elementary functions are used in dealing with objects that
represent lists. A list is defined to be a string of N
objects(none null) selected by <n:0> where 1 < n < N. A
program is an example of a list in which each element is a
statement. Elements in a list are selected by a selector
sometimes identified by elem(n). Elementary functions used

in VDL are:

LENGTH(L) = total number of elements in the list;
HEAD(L) = object selected from a list when n = 1;
TAIL(L) = a 1list of cbjects selected from the original

(before this function is executed) list with the original first

item(item selected when n = 1) missing. The TAIL(L) will be

a list with a length equal to- the original length minus one;
ﬁ;flb = concatenation of two lists Lz and Lp to form

a single list.

The "L" in the above functions specifies the list currently

being operated upon(Ref 3;5;12).

Having covered the Vienna tree, the operatore used to
manipulate the Vienna tree, and elementary functions, one is
now ready for a brief informal introduction on how a program-
ming language is defined.

The source program, as written by the programmer, is
not in the proper form to be interpreted by the VDL interpreter.
The VDL interpreter does not operate on program strings, but
operates on objects of a Vienna tree. Therefore, the source
must be transformed into an abstragt form before its semantics

can be defined. Transforming the source program is accomplished
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by two abstract machines, the ANALYZER, and the TRANSLATCR.

The ANALYZER modifies the programmers source text by
verifying that the program text is syntactically(context-
free) correct. This is accomplished by comparing the source
Program text with a context-free syntax specification for
the language being defined. A program failing any test is
lef't undefined, that is no attempt is made to determine the
meaning, semantics, of the program. A source program with
correct context-free syntax is then parsed. The parsed text
is represented with selector-object pairs, described on page
35. The parsed text is then processed by the TRANSLATOR.

The TRANSLATOR performs a series of context-sensitive
syntax tests on the parsed text supplied by the ANALYZZER.

The TRANSLATOR also implements some of the affects of certain
statements. Types of statements whose affects are implemented
by the TRANSLATOR are FORTRAN "explicit type declaration”
stateonts. A FORTRAN program with a statement "REAL I"
would c2use the TRANSLATOR to locate the variable “I" and
change its attributes, causing "I" to be classified as a

real variable.

The output of the TRANSLATOR is a parsed text with correct
context-freeAand context-sensitive syntax. This output text
is now in the proper format to be processed by the INTERPRETER.

The VDL technique of defining the semantics of a program
involves starting in an initial state and changing states
until a final state has been reached. This process is

handled by the VDL INTERPRETER. The VDL INTERPRETER is based
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on the concept of machine states and state transformations.

A state is represented as a composite object(a Vienna
tree). The components that compose a state vary with the
language being defined. For this introduction a simple state
like the state presented in Ref 3 will be described. A state
composed of three components, an abstract program, a control
object, and a storage object is shown in Fig. 7.

The program object, in Fig. 7, is the parsed text of the
abstract program, provided by the TRANSLATOR, and ready to
be interpreted. The control object defines which transforma-
tions are to be performed. The control object is a composite
object whose elementary objects are instructions waiting to
be executed. Once an instruction is executed it is erased
from the control tree. When all the instructions have been
removed from the control tree, the final state has teen
achieved, and the interpretation is completed. An example
of state transformations is given below.

Memory(storage) can be looked upon as three symbol tables,

PROGRAM  CONTROL STCRE

Pig. 7. A Machine State
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the environment, the denotation, and the attribute tables(Ref 5).
The first table, the environment table, identifies a machine
location for every source program identifier. This location
contains the value of the identifier: The second table, the
denotation table, makes sure that the machine location

contains the proper value at all times. The third table,

the attribute table, identifies the type(integer, real, etc.)

of value identified with each machine location specified in

the environment table(Ref 5)-

The semantics of a program are described by state trans-
formations. The process of state transformation is performed
by the VDL INTERPRETER. The initial state contains a control
object with a complete list of the program instructions to
be executed. As a program instruction is executed it is re-
moved from the control object thus transforming the state.
when the control object is empty the final state has been
achieved. These transformations of the control object are
accomplished by two types of VDL instructions, self-replacing
and value-returning instructions.

Self-replacing instruction are instructions which replace
themselves with a subtree of instructions, similar to macro
substitutions. An example of a self-replacing instruction
is the VDL instruction "VALUE(arg),(when arg is an expression.
VALUE(arg) is the name given to a computed value. The commands
required to obtain the value of the current source program
expression will replace the single instruction VALUE(arg).

The value-returning instruction is the second type of

L2




VDL instruction. The actual semantics of a program, the

actual state transformations, are defined by value-returning
instructions. Value returning instructions delete the current
node being executed from the control tree and pass the computed
value to ancestor nodes that reference the just computed value.
The VDL instruction "VALUE(arg)" with the arg equal to a

constant is a value-returning instruction.

Execution

An exercise t? illustrate self-replacing and value-returning
instructions and %o show the transformation of a control tree,
due to the evalugiion of one expression "5-3+1", is now given.
The exercise begins with one object in the control tree, the
VDL instruction "EVAL-EZXPR(arg)", shown in Fig. 8 (s-c is the
selector name for the control object). EVAL-EXPR(arg) is a
self-replacing instruction, therefore, executing EVAL-EXPR(arg)
changes the control tree, Fig. 9. The control tree in Fig. 9
has a terminal node of "S:VALUE(A)", this instruction is
dependent on its argument as to wether it is a value-returning

or self-replacing instruction. The INTERPRETER decides based

S S
s-¢
s-c
EVAL-EXPR(p) sivalue(a)
Fig. 8. A control tree. Fig. 9. A control tree
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on the following rule.
VALUE(arg) = IS-BINARY - APPLY(a,b,S-O0P(A)
a:VALUE(S1(A))
bsVALUE(S2(A))
IS-CONST = PASS «~ A
where
APPLY (valuel,value2,op) = op="+" = PASS « valuel + value2
op="-" - PASS < valuel - value2
An instruction of the form X:VALUE(Y) means the value calculated
by VALUE(Y) is assigned to X. The VDL command PASS returns
a value to VALUE(A). At present the argument for the
“VALUE(A)" instruction is binary(5-3+1), so this instruction
is self-replacing, as shown in Fig. 10. Any terminal node
on a control tree may be exequted for the purpose of illus-
trating the self-replacing instructions, and then the value-

replacing instructions, the left most terminal node, will be

8-~C"

s:apply(a,b,"+")

asvalue(si(p)) b:value(s2(p))

Fig. 10. A control tree
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examined next. Executing "a:VALUE(S1(p))" which has a binary
argument(5-3) results in another self-replacement that
produces the control tree in Fig. 11. Execution of any
terminal node in Fig. 11 would demonstrate the value-
returning instruction. Executing the left most node
"x:VALUE(S1(p))", produces the control tree in Fig. 12.

Note the node is removed and the value passed to preceeding
nodes that reference "x". To demonstrate the point that any
terminal node can be executed, the right most terminal node
will be executed next. This is another value-returning
instruction, and the result of the execution is shown in Fig. 13.
The control tree is Fig. 13 has only one terminal node to
execute. Zxecution of this node leads to the control tres

in Fig. 14. Execution of the terminal node in Fig. 14 leads

to the control tree in Fig. 15, and execution of the terminal

s:apply(a,b,"+")

1 . .u-")
a:apply(x,y bivalue(s3(p))

x:value(si(p)) y:value(s2(p))

Fig. 11. A control tree
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S-C

s:apply(a,b,"+")

a‘aPPIY(Sle "‘")
bivalue(s3(p))

@
yivalue(s2(p))

Fig. 12. A control tree

s:apply(a,1,"+")

asapply(5,y,"-")

yivalue(s2(p))

Fig. 13. A control tree
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s:apply(a,1,"+")

s:apply(2,1,"+")

atapply(5,3,"-")

Fig. 14. A control tree Fig. 15. A control tree

node in the control tree in Fig. 15 calculates the sum of

"2 + 1" and produces an empty control tree. An empty control
tree signifies the final state, thereby signifying a successful
statement evaluation. |

The above exercise demonstrated how stafé transformations
occur since each different control tree represents a seperate
state. This exercise also illustrated how conditional state-
ments are used in defining the VDL abstract machines, which
will be illustrated again in the example at the end of this
chapter.

The relationship between each of the three abstract
-machines is illustrated in Fig. 16. This completes the exam-
ination of the individual components of a VDL definition.

Sewing ‘all the components of a VDL definition together
is accomplished by a definition of the same program and lan-
guage ASL presented in chapter IV. The language consists of
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concrete
text
ANALYZER context-free
Eyntax
4 3
parsed -
text implicit
. ﬁ/////,//’/information
4
TRANALATOR
’
abstract syntax of
text abstract text
i
INTERPRETER data
results instruction
function
definitions

Fig. 16. The language definition machine (Ref 12,Fig. 5.6)

assignment statements, a stop statement, and an end statement.
Each statement except the end statement is terminated with a
semi-colon. The format of the assignment statement consists
of "LET" followed by a single alphabetic character(A, B, or C)
then "=" followed by an unsigned integer constant(LET A=3).

The test program is

LET A = 1;
LET B = 2;
END
L8
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The ANALYZER is the first machine to process the test
program. The ANALYZER checks the context-free syntax of the

test program according to the following rules.

IS-PROGRAM (S1:IS-STMT-LIST, S2:IS-END),

IS‘STNIT-LIST (<S"DEL =Is- ;). <Sl 3IS‘STTA‘D. Y ) »

IS-STMT IS-ASMT-STMT v IS-STOP,

IS~-ASMT-STMT

S1:IS-LET, S2:IS-LETTER, S3:IS-=,
S4:IS-INT-CONST,
IS-LETTER

IS-A v IS-B v IS-C,

IS-INT-CONST IS-1 v IS-2 v IS-3 v IS-4 v IS-5 v IS-6 v

IS-7 v 1s-8 v 1Is-9 v Is-0,
where (<S-DEL:IS-;>,<S1:IS-STMT>) signifies that each state-
ment terminates with a semi-colon.
With the test program as input to the ANALYZER the output
of the ANALYZER, a parsed text, is illustrated in Fig. 17.

-‘PROGRAM

LET A s 3 LET B = 2

—
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The parsed text from the ANALYZER is then passed to the
TRANSLATOR for context-sensitive testing. The set of
conditional statements defining the TRANSLATOR for the test
language is given below with comments in quotation marks.
The argument "p" represents the parsed program text inputed
to the TRANSLATOR.

TRANSLATE(p) = program-length(p) < max-program-length -

TRANS-STMT-LIST(p)
TRUE - ERROR "program too long"

TRANS-STMT-LIST(p) LENGTH(p) = 0 = < "if there are

no statements length(p) 0 returns empty set <"
~ TRUE ~ uo({<elem(i):TRANSLATE-ASSIGN-
MENT(Si(p))> Il 1 < LENGTH(p)})
TRANSLATE-ASSIGNMENT(p) = TRUE = uo(<target:MAKE-ID(S1(p))>,
\ <source :MAKE-INT-CONST(p)>)
MAKE-ID(p) = length of ID < max-ID-length = LETTER(p)
TRUE - ERROR "ID is too long"
LETTER(p) = IS-A(p) = A
IS-B(p) = B
Is-C(p) = C
MAKE-INT-CONST(p) = VALUE-INT-CONST(p) < max-value =
VALUE-INT-CONST(p)
TRUE - ERROR "integer constant too big"
VALUE-QF-INT-CONST(p) = IS-1(p) = 1
Is-2(p) = 2
Is-3(p) = 3
IS-4(p) = &4
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IS-5(p)
Is-6(p)
Is-7(p)
I1S-8(p) -
IS-9(p) =
IS-0(p) = O

!

The implementation restriction listed above max-progranm-
length, max-ID-length, and max-value are user defined. The
output of the TRANSLATOR is an abstract parsed program text,
illustrated in Fig. 18.

The abstract program text produced by the TRANSLATOR is
now ready to be interpreted, (have its semantics defined).
The interpretation process inveclves changing states through
changes in the control tree, as shown earlier. The argument
"p" in the rules which define the INTERPRETER represents the
abstract program manipulated by the INTERPRETER. The rules
that define the INTERPRETER for the test language are:

PROGRAM

Fig. 18. Translator output
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INTERPRET-STATEMENT-LIST(p) = IS- = NULL "if no statements
do nothing"
TRUE - INTERPRET-STATEMENT-LIST(TAIL(p));
INTERPRET-STATEMENT(HEAD(p))
"look at the control object as a LIFO stack, the head of the
program(the first statement) is the first instruction to be

processed."

INTERPRET-STATEMENT(p) IS-ASMT(p) - INTERPRET-ASSIGNMENT(p)

INTERPRET-ASSIGNMENT(p) = ASSIGN(target(p), VALUE);
VALUE: EVAL-ZXPR(source(.,)

EVAL-EXPR(p)

IS-VALUE(p) = PASS:p

ASSIGN(target,VALUE) = u(store(state-s): target:VALUE)

The above defined INTERPRETER is ready to process the
abstract program provided by the TRANSLATOR. The INTERPRETER
executes the statements in the control object beginning in
an initial state and finishing in a final state(an empty control
object).

The initial state for the test program is shown in Fig. 19
In Fig. 19 the program is the abstract program, the control
object and the storage object are predefined for the initial
state. Rather than redraw the entire state for each state
transition only the control tree will be shown until the source
program is completely interpreted, then the entire state will
be shown. The terminal node of the control tree in the initial
state is a self-replacing instruction "INTERPRET-STATEMENT-
LIST", the execution of which leads to the next State. Fig. 20.
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S0

PROGRAM

STORAGE
CONTROL

ELEM(1) ELEM(2)

INTERPRET NULL
STATEMENT
LIST

oo

Fig. 19. The initial state.

INTERPRET-STATEMENT-
LIST(TAIL(p))

INTERPRET-STATEMENT (HEAD(p))

Fig. 20 The control object for the first state
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Execution of the terminal node of the control tree of the
first state, Fig. 20, leads to the second state shown in

Fig. 21. The terminal node of the control tree for the second
state contains another self-replacing instruction, the
interpretation of which leads to state three in Fig. 22.

The terminal node of the control tree for the third state
contains a value-replacing instruction, whose execution leads
to the fourth state, Fig. 23. Execution of the terminal node
in Fig. 23 leads to state five, Fig.24, and the storage has
changed from NULL to the storage shown in Fig. 25. Executing
the control object in state five will initiate the same
process again because the next statement is also an assignment
statement. The final state of the interpretation is shown

in Fig. 26. Note that in the final state the control object
is always NULL.

This chapter has presented a brief informal description
of the Vienna Definition Language, and has presented an
example which shows how a fest program is processed by a VDL
language definition.

With a brief introduction to the VDL complete, the process
of examining BASIS/1-12 can begin. The following chapter,
chapter VI, provides a brief introduction to IBM's BASIS/1-12
technique.
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INTERPRET-STATEMENT-
LIST(TAIL(p))

INTERPRET-ASSIGNMENT(p)

Fig. 21. The control object for the second state

INTERPRET-STATEMENT -
LIST(TAIL(p))

ASSIGN(target(p),VALUE)

VALUE :EVAL-EXPR(source(p))

Fig. 22. The control object for the third state

INTERPRET-STATEMENT -
"~ LIST(TAIL(p))

ASSIGN(target(p),1)

Fig. 23. The control object for the fourth state
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s-C

INTERPRET-STATEMENT-
LIST(TAIL(p))

Fig. 24. The control object for the fifth state

SO

STORAGE

Fig. 25. The storage object for the fifth state

S-FINAL

PROGRAM

Fig. 26. The final state




VI BASIS/1-12

Background

Research conducted at IBM laboratories in Hursley, England
resulted in a semi-formal language definition technique
known as BASIS/1-12. Personnel at the Hursley laboratories
prefered a semi-formal approach for language definition
techniques rather than the formal approach persued by the
Vienna laboratories in their development of the Vienna Defini-
tion Language(VDL). BASIS/1-12, though semi-formal, is very
similar to VDI. in that the same concepts of abstract machines,
state transformations, and an abstract representation of the
source program are used. BASIS/1-12 is semi-formal because
state transformations are defined with operations written in
English prose. On August 9, 1976, the BASIS/1-12 definition
of PL/I was used by the American National Standards Institute
(ANSI) in establishing a national standard for the programming
language.

This chapter contains a brief look at the BASIS/1-12
technique, consisting of a brief summary of "The Definition
Mechanism For Standard PL/I" by Marcotty and Sayward(Ref 16)
and an example of the technique defining the assignment state-

ment language(ASL), presented in chapter IV.

Methodology
The BASIS/1-12 technique of defining a programming lan-

guage appears to be a combination of SEMANOL, presented in
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chapter IV, and the Vienna Definition Language(VDL), presented
in chapter V.

The concept of machine state and state transformations
are utilized, as in the VDL, and the semantics are defined
with algorithms, as in SEMANOL. However the algorithms in
BASIS/1-12 are written in English. Therefore BASIS/1-12
appears to be more closely related to the VDL. The basic
machine state of BASIS/1-12 and the VDL are identical, each
containing information that controls the machines operations,
the program being defined, and the values of variables and
data required by the source program being defined. The BASIS/1-12

machine state, though represented as a tree, is not represented

- as a "Vienna tree", i.e. the branches are not labeled.

The Meta-language

The details of the BASIS/1-12 technique will be covered
in the following order: the structure of the BASIS/1-12 machine
state; the instructions used to manipulate the machine state;
the BASIS/1-12 abstract machines; and the structure of the
algorithms used to "operate"” the machine.

The structure of the data manipulated by the BASIS/1-12
machine is that of a tree. The "BASIS/1-12 tree" has a unique
feature in which each node of the tree has a unique name,
allowing each node to be referenced. This feature is illus-
trated in Fig. 27. The node contents of Fig. 27 are represented
by alphabetic characters, and the unique node names are rep-

resented by digits. while the contents of several nodes may
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2 3 4

Fig. 27. The BASIS/1-12 tree

be identical a node's name is unique. Nodes "2" and "4"
have the same content in Fig. 27. A term assiciated with
the tree structure is "the son of a node". In Fig. 27 a son
of node "1" is either node "2", "3", or "4", that is the son
of a node is an immediate component of that node.

Throughout the definition the source program is maintained
as part of the machine state. The source program is in the
form of a tree with the appropriate syntax rules governing
the structure of the tree. During the definition the source
program is first a "character" program in which all the char-
acters of the source program form the terminal nodes of the
tree. The "character" program is then transformed into an
"abstract" program in which only abstract objects form the
terminal nodes of a tree.

Another feature of the "BASIS/1-12 tree" is the "designator
node"”. Related to the unique name concept, the designator
node is a node which refers or points to another node. An
example of a designator node is the <TYPE-DESIGNATOR> node
in Fig. 28. The arrow in Fig. 28 is added to demonstrate the
meaning of a designator node.
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<PROGRAM>

l
I |

—= <TYPE> <STATEMENT-LIST>

f T
<VARIABLE> <VARIABLE-TYPE> <EXPRESSION>

f T 1
<VARIABLE> + <INTEGER>

<TYPE-DESIGNATOR>

Fig. 28. The BASIS/1-12 designator node

Instead of drawing out a tree every time a tree structure
is being refered to, an indentation notation is used. The
indentation format involves listing a root node of a *ree and
below it, indented equally, the sons of the root node. For
example, the tree in Fig. 31 (page 63) would be represented

as

The indentation notation proves to be very useful when specifying

new tree structures.
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The basic structure of the machine state, the BASIS/1-12
tree, has been described above, now the instruction used to

manipulate this structure will be defined.

Execution
The syntax and semantics of a source program are defined
by manipulating the machine state. The instructions used %o

manipulate the tree are used directly in the algorithm.

These manipulation instructions fall into two basic catagories:

those whose effects depend on the tree structure(syntax) of
the defined program and those whose effect do no depend on
the syntax of the defined program.

There are two instructions that depend on the syntax of
the defined program: the ATTACH and DELETE instructions. The
ATTACH instruction attaches a specified tree to a specified
node, inserting the proper nodes to make the attachment
syntactically valid. Using the two syntax rules below:

<Z> 331= A | A<B>

<B> ;=X | ¥
the command

ATTACH X to N

where N is the unique name of the node whose content is Z in
Fig. 29. Results in the tree structure presented in Fig. 30.
Node N2 in Fig. 30 was inserted to make the structure of the
tree( the syﬁtax) valid. |

The other instruction whose effect is dependent on the

structure of the tree is the DELETE instruction. The DELETE
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%DN

@x'i B2

N3

Fig. 30. The redefined node !

instruction causes the designated node and its associated tree
(the designated node is the root node of its associated tree)
to be deleted. If the tree remaining after the specified
deletions have been made is not valid then other nodes, as
required to make the tree valid are deleted.

The effects of the remaining three instructions, LZ=T,
REPLACE, and APPEND do ﬁot depend on the tree structure.

The LET instruction makes a local variable designate an
existing tree. The LET instruction below

LET L be

<Z>

R
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specifies the local variable "L" as designating the entire
tree in Fig. 30.

The REPLACZ instruction replaces a specific tree with
another tree designated by a local variable. The format of
the REPLACE statement is

REFLACE A designated by N1 by a copy of 1
Execution of this statement using the trees in Fig. 27 and
Fig. 30 results in the tree in Fig. 31. Note that the unique
name of the root node oI the tree to be replaced now becomes
the unique name of the root node of the new tree.

The last tree manipulation instruction is the APPEND
instruction. "The APPEND instruction attaches a tree to the
rightmost element of a list."

The above five commands are used throughout the BASIS/1-12
definition to manipulate the machine state into reflecting
changes caused by the "execution" of the source program. The
framework from which the tree structure is manipulated, the
abstract machine, is defined below.

BASIS/1-12 is an interpreter-oriented technique utilizing

o

N1 N2

Fig. 31. The modified node N
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an abstract machine. The abstract machine can be defined as
the combination of three abstract machines: an ANALYZER, a
TRANSLATOR, and an INTERPRETER.

The ANALYZER takes the string representation of the source
program, removes the blanks from the program, and parses the
program according to the syntax rules of the defined language.
The output of the ANALYZZR is the parsed source program in
tree form, with the characters of the source program as the
terminal nodes of the tree.

The TRANSLATCR takes the output of the ANALYZER, performs
context-sensitive tests, removes any characters associated
with the string structure of the program(e.g. parenthesis,
semi-colons, etc.), and then outputs an abstract program, a
simplified version of the source program. The abstract pro-
is also represented by a tree structure.

The final process involves the INTERPRETER. The INTERPRETER
"executes" the abstract program, changing machine states as
it responds to the syntax and semantic definitions being
utilized. The output of the INTERFPRETER is the set of machine
states generated and the output file generated bty the "exection"
of the sourée program.

The interface between each machine is shown in Fig. 32.

When it is not important to distinguish between these
machines they will be considered as one machine.

With the BASIS/1-12 machine defined, the operations per-
formed in defining a source program can now be defined. Only

the operations utilized in the exémble at the end of this
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source
program

IANALYZER

parsed
source
program

! syntax and l
TRANSLATOR =——— semantics of the
! defined language

abstract
source
program

'

input ~ INTERPRETER
data

output
file
(results)

Fig. 32. The language definition machine

chapter will be described.

The BASIS/1-12 machine state is manipulated and thus
transformed by a set of operations. These operations use a
small set of data manipulating instructions, enabling one to
reference specific nodes on a tree, construct new temporary
trees, manipulate trees, do arithmetic, and establish local
variables. Operations also have the capability of calling
other operations. Calling an operation causes that operation
to be placed at the rightmost node‘or the operations tree;

thus, making it the current operation. The operation in
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control of the BASIS/1-12 machine is the rightmost operation
of the operations tree, if there are two operations trees
the rightmost tree is executed first. Upon completion an
operation is deleted from the operations tree, and control
returned to the new rightmost operation.

An operation always begins with the word "OPERATION"
followed by the name of the operation. The body of the
operation consists of steps and cases. Steps in the operation
are executed either sequentially, conditionally, or iteratively,
while the cases are mutually exclusive. An operation consisting
of cases must have at least one case satisfied, or the opera-
tion is undefined(similar to the conditional statements in
the VDL).

Instructions(steps) in the operations are executed sequen-
tially, however, there are instructions that alter the flow
of control. Control altering instructions presented are:

GO TO, FOR EACH, PERFORM, and RETURN instructions.

The GO TO instruction transfers control to another step
within the operation. The FOR EACH instruction causes a series
of instructions to be executed once for every item specified
in the FOR EACH statement. The PERFORM instruction "calls"
another operation, thereby, transfering control to the called
operation. The RETURN instruction returns control to the op-
eration that called the current operation. Control is transfered
to the step following the PERFORM instruction in the calling
operation.

The operations used in BASIS/1-12 are straightforward,
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easy to follow, and several operations are demonstrated at
the end of this chapter.

An example of how to follow the flow of control between
cperations is given below. The two sample operations are:

OPERATION: OP1

STEP 1. PERFORM 0OP2

STEP 2. PERFORM ij

OPéRATION: opP2

The first step of operation OP1, "PERFORMOP2", transfers control
to OP2. Therefore, the reader should "leave" O0P1 at step 1
and execute 0P2. After OP2 is executed the reader should return
to OP1 at the step after the respective "PERFORM" step, in
this case the reader returns to step 2.

Along with the flow of control the reader must also
keep track of local variables. The basic purpose of local
variables is demonstrated by the ANALYZE-PARSE operation.
Step 1 of the ANALYZE-PARSE operation is "Obtain a source pro-
gram the structure of which is a character list, cl." At this
point the source program is assigned the name cl. When a local
variable is used in parenthesis it is used as a parameter.
Step 2 of the ANALYZE-PARSE operation is "PERFORM PARSE(cl)
to get program, cp.” In stép 2 "cl" is used as a parameter
for the PARSE operation, that is, the PARSE operation will
operate on cl. The result of the PARSE operatioh. a parsed
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program, is then given the name cp. Referencing the parsed
program is accomplished by using the local variable cp. The
reader is now prepared to follow the example below.

The following is a very simple example of a BASIS/1-12
language definition for the test language ASL presented in
chapter IV. The test language consists of assignment state-
ments, a stop statement, and an end statement. EZach statement
except the end statement is terminated with a semi-colon.

The format of the assignment statement consists of "LET"
followed by a single alphabetic character(A, B, or C) then
"=" followed by an unsigned integer constant(LET A = 3). The

test program is

LET A = 1;
LET B = 2;
END

The initial state of the BASIS/1-12 machine is illustrated
in Fig. 33. The trees illustrated in this example will have
only the unique names of nodes which are referenced. It is

important to remember that every node has a unique name.

M1
M2 M3 Mb
(PROGRAM)  (OPERATIONS) (ANALYZE-PARSE )
(DEFINE-P‘ROGRAE.’I)

Fig. 33. The initial state
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The BASIS/1-12 machine is controlled by the rightmost

node of the operations tree.

reveals that the rightmost node cf the operations tree is

"DEFINE PROGRAM".

will be executed next.

of three steps

Therefore the operation DEFINE PROGRAM

The DEFINE PROGRAM operation consists

OPERATION: DEFINE PROGRAM

STEP 1.
STEP 2.
STEP 3.

PERFORM ANALYZE-PARSE
PERFORM TRANSLATE-PARSE
PERFORM INTERPRETATION

Examing the initial state(Fig. 33)

The execution of step 1 causes the ANALYZE-PARSE operation

to become the rightmost node of the operations tree and thus

in control.

The effect of step 1 is illustrated in Fig. 34.

Before describing the ANALYZE-PARSE operation which performs

the initial parse on the source program, the syntax rules used

for the parse will be given.

The context-free syntax checks

( PROGRAM )

\OPERATIONS)

(ANALYZE

DEFINE
PROGRAM

PARSE

ANALYZE
PARSE

Fig. 34. Step 1 of DEFINE-PROGRAM
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performed by'the ANALYZE-PARSE operation are divided into two
levels, low and high level checks. The low level check verifies
that the characters in the source program are either words
or constants. The high level check verifies that the words
and constants make up a valid program. The low level syntax
rules for ASL are:
<TEXT> ::= <DELIMIT-PAIR><DZLIMIT-PAIR>
<DELIMIT-PAIR> ::= <WORD><DZLIMITER>
<DELIMITER> ::= ¥ | = | ;
<WORD> ::= <LETTER> | <DIGIT> | LET | STOP | END

<LETTER> ::=A | B | C

<DIGIT> ::=1 | 2|3 14 ]l5161718]91l0
The meta-symbol [ ] means zero or more repetitions of the con-
tents, while ¥ represents a blank. The high level syntax
rules for ASL are:

<PROGRAM> ::= <STATEMENT-LIST>(_STOP] END
<STATEMENT-LIST> ::= <STATEMENT-LIST><STATEMENT> ;
<STATEMENT> ::= <ASSIGNMENT-STATEMENT> | STOP

<ASSIGNMENT-STATEMENT> ::= <LETTER> = <DIGIT>
The two level syntax checks make it easier to remove the blanks
from the source language.

The operation currently in control is the ANALYZE-PARSE
operation. The operations ANALYZE-PARSE and PARSE are given
below.

OPERATION: ANALYZE-PARSE

STEP 1. Obtain a source program the structure of which

is a character list,cl.
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STEP 2. PERFORM PARSE(cl) to get program, cp.

STEP 3. ATTACH cp to <ANALYZE-PARSZ>.

OPERATION: PARSE(cl)

where: cl is a character list
result: a program

STEP 1. PERFORM low level parse(cl) to get a text, tx.

STEP 2. PERFORM high level parse(tx) to get a program, cp.

STEP 3. RETURN.
The two operations high and low level parse are not listed
because their effects are obvious. The result of the ANALYZZE-
PARSE operation is a program with the blanks removed. The
result of ANALYZE-PARSE on the test program is illustrated in
Fig. 35. With its completion the ANALYZE-PARSE operation deletes
itself from the operations tree and returns control to DEFINE-
PROGRAM. The current location within DEFINE-PROGRAM is steb
2; therefore, step 2 is executed. Step 2 of DEFINE-PROGRAM
is PERFORM TRANSLATE-PARSE, which causes the operation TRANSLATE-
PARSE to become the rightmost node of the operations tree and
therefore in control. The operation TRANSLATE-PARSE conducts
context-sensitive tests(not required for ASL), constructs the
abstract program, and changes the machine state to prepare
for the interpretation phase. Because context-sensitive test
are not required for ASL the TRANSLATE-PARSE operation consists
of only two steps, listed below. Step 1 creates the abstract
program while step 2 prepares the machine state for the inter-

phase.
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PROGRAM (OPERATIONS)

(DEFINE-PROGRAM) PISEE,

DIGIT

®

Fig. 35. The result of executing ANALYZE-PARSE

OPERATION: TRANSLATE-PHASE

STEP 1. PERFORM CREATE-ABSTRACT-PROGRAM.

STEP 2. DELETE the ANALYZE-PARSE from the machine state.
The CREATE-ABSTRACT-PROGRAM operation consists of one step
and is self-explaining.

OPERATION: CREATE-ABSTRACT-PROGRAM

STEP 1, PFOR EACH STATEMENT, st

PERPORM CRZATZ-A35TRACT-STATEMENT(st).

. - TANENT operation utilizes the program
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MACHINZ
STATE

(OPERATIONS
\_r___a'
(DEFINE-PROGRAM )

PROGRAM

(STATEMENT-LIST)

,/////ﬁ\\\\

STATEMENT )

ASSIGNMENT
STATEMENT

( STATZMENT )
GNMENT
EMENT

Fig. 36.

The abstract assignment statements

is shown in Fig. 36. The CREATE-ABSTRACT-STATEMENT operation

removes the "LET" and the "=" from the assignment statements.

Note that the new assignment-statement tree in Fig. 36 was

specified in the indentation format in step 2 of the CREATE-

ABSTRACT-STATEMENT operation listed below.

OPERATION: CREATZ-ABSTRACT-STATEMENT(cas)

STEP 1.

STEP 2.

where: cas is an assignment-statement
result: an abstract assignment-statement
LET L and D, be respectively, the sons of <LETTER>
and <DIGIT> of cas
RETURN an <assignment-statement>
<LETTER>
<>

7)




Upon completion of the TRANSLATEZE-PARSE operation the rightmeost
node of the operations tree is again DEFINE-PROGRAM. Step 3
of the DEFINE-PROGRAM operation is now in control. The
general format of the machine state during the interpreteation
phase is illustrated in Fig. 37.

The first operation executed in the interpretation phase
of the language definition is the INTERPRETATION operation
listed below.

OPERATION: INTERPRETATION

STEP 1. LET std be a statement designator that specifies

the first element of statement-list of <PROGRAN>.
"In Fig.37 the STATEMENT-DESIGNATOR points to the node with
the unique name of "1".
STEP 2. ATTACH to INTERPRETATION the tree
<PROGRAM-STATE>
<STORAGE>
<DIRECTORY>
<CELLS>
<PROGRAM-CONTROL>
<std>

STEP 3. APPEND an operation for program execution to

<PROGRAM-CONTROL>
"Steps 2 and 3 added the entire PROGRAM-CONTROL tree shown
in Fig. 37.. Note that the rightmost operation node is now
the PROGRAM-EXECUTION node in the PROGRAM-CONTROL tree. The
operations in the PROGRAM-CONTROL tree will remain in control

until the interpretation is complete, then control transfers

74




-9seyd uotiejasadasjuy oyl Sutanp a8jels sutydoew Byl °*LE *F1d

b moaczuH mov
LTTI0ON ) (110N ) A FNTVA
I
(I0TVA) mwﬂ%mo

(X¥0L0a¥Iq)
—
NOILNOAXH
WY¥DONA @ ® @w(\\rmu

FOVHOLS

INTWALYLS
INTWNDISSY
P

Aﬁmmsme<amy (INTWALVLS)

R

U
INTFWIALVILS
INIWNDISSY

(SNOI1ZVHTd0)

e

TOHLINOD
WVYD0oUd
NVY¥D0Yd

Amacam-4<muommu (NOILVIZNJHAINI) \ -@NIJIQ
(NOILVIFYJYAINI )

ILSIT
INIWILVLS

NVY¥D0Y¥d

(SNO1IY43d0)

75




to the original operations tree. dhen the original operations
tree is null the final state, indicating a successful inter-
pretation, has been achieved.

The operation currently in control, PROGRAM-EXECUTION,
is listed below:

OPERATION: PROGRAM-EXECUTION

STEP 1. LET st be the <STATEMENT> designated by the

<STATEMENT-DESIGNATOR> of the <PROGRAM-STATE>.

STEP 2. PERFORM EXECUTE-ASSIGNMENT-STATEMENT(st)

STEP 3. GO TO STEP 1.
The above operation(PEZRFORM-EXECUTION) executes steps 1 and
2 until the entire source program has been "interpreted",
then control passes to the operaticns tree on the machine state
where the final state is achieved.

After execution of step 2 of PROGRAM-EXECUTION the machine
state is transformed. The new PROGRAM-CONTROL tree of the
machine state is shown in Fig. 38. Note that the EXECUTE-

ASSIGNMENT-STATEMENT operation is now in control. The

PROGRAM
CONTROL

(OPERATIONS )

STATEMENT
DESIGNATOR
PROGRAM
EXECUTION

Fig. 38. The new PROGRAM-CONTROL tree

EXECUTE
ASSIGNMENT
STATEMENT
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EXECUTE-ASSIGNMENT-STATEMENT operation, listed below, identifies
each side of the abstract assignment statement, and then calls
upon the ASSIGN operation to make the actual assignment.
OPERATION: EXECUTE-ASSIGNMENT-STATEMENT(st)
where: st is an ASSIGNMENT-STATEMENT
STEP 1. LET D be the son of <DIGIT>.
STEP 2. LET L be the son of <LETTER>
PERFORM ASSIGN(L,D).
STEP 3. PERFORM NORMAL-SEQUENCE.
After step 2 of the EXECUTE-ASSIGNMENT-STATEMENT operation
is executed, the PROGRAM-CONTROL tree of the machine state
is changed(shown in Fig. 39). The ASSIGN operation, listed
below, is now in control. The first thing the ASSIGN opera-
tion must do is determine which storage cell has been saved
for the specific letter obtained from the left side of the
current assignment statement. This location is determined

by the EVALUATE-VALUE-REFERENCE(L) operation. The first

.
PROGRAHM
CONTROL
STATEMENT OPERATIONS
DESIGNATOR "<:::;\\\\\\‘
PROGRAM EXECUTE ASSIGN
(’£XECUTION ASSIGNMENT <“"‘:>
STATENMENT
Fig. 39. The PROGRAM-CONTOL tree -
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statement in the test program has a left side consisting of
the letter "A", Fig. 37 reveals that the designator for this
letter is "2". Therefore, the EVALUATE-VALUE-REFERENCZ opera-
tion, when in control, will return the value designator "2"

to the ASSIGN operation. The ASSIGN operation will then store
the value of the right side of the current assignment state-
ment into the storage cell reserved for the letter "A".

The structure of the PROGRANM-CONTROL tree when the EVALUATE-
VALUE-REFERENCE operation is in control is illustrated in Fig. 40.
The structure of the PROGRAM-STATE after ths ASSIGN operation
is complete is illustrated in Fig. 41, note the value of "1"
has been stored in node "2" (the node reserved for the value
of the letter "A").

With the ASSIGN operation completed and deleted from the
PROGRAN-CONTROL tree, control is returned to the EXECUTE-
ASSIGNMENT-STATEMENT(st) which immediately transfers control
to the NORMAL-SEQUENCE operation, resulting in the PROGRAM-
CONTROL tree shown in Fig. 42. The NORMAL-SEQUENCE operation,

PROGRAM
CONTROL

OPERATIONS

TATEMENT
DESIGNATOR

{ ASSIGNMENT
\STATEMENT

Fig. 40. The PROGRAM-CONTROL tree
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(INTERPRETATION)
1

(PROGRAM-STATE)

STORAGE

(DIRECTORY )  (CELLS)

e

VALUE VALUE :
@ °
(NULL

Fig. 41. The structure of the PROGRAM-STATE

PROGRAM

OPERATIONS

EXECUTE .
ASSIGNMENT |
STATELENT / !

EXECUTION

PROGRAMN
CONTROL
STATEMENT (OPERATIONS )
DESIGNATOR) ~ __—

QO PROGRAM EXECUTE \ (ASSIGN
EXECUTION ASSIGNMENT!
STATEMENT /

Fig. 42. The PROGRAM-CONTROL tree

given below, advances the STATEMENT-DESIGNATOR, in the
PROGRAM-CONTROL tree, so that the designator node points to

the next statement to be interpreted. Examining Fig. 37
reveals that the next statement to be executed has a unique
name of "4"., Therefore, the <STATEMENT-DESIGNATOR> is updated
so that it points to node 4. The result of the NORMAL-SEQUENCE

4
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operation is the PROGRAM-CONTROL tree shown in Fig. 43.

Since

the second statement is also an assignment statement the entire

process begins again.

However once the second statement is

(INTERPRETATION

PROGRAM
STATE

PROGRAM
CONTROL

STATEMENT (OPERATIONS )
DESIGNATOR
PROGRAM
& EXECUTION /
Fig. 43. The PROGRAM-CONTROL tree
MACHINE
STATE
PROGRAL (INTERPRETATION)
| !
STATEMENT END (PROGRAM-STATZ) |
LIST
. STORAGE
STATEMENT STATEMENT
CELLS
ASSIGNMENT ASSIGNMENT
STATEMENT STATEMENT
VALUE VALUE
(LETTER) (DIGIT LETTER DIGIT
Pig. 44. The final machine state
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interpreted the interpretation is completed, the operations
tree is null, and the final machine state(Fig. 44) is achieved.

The operations involved in PROGRAM-EXECUTION and discussed
above are now listed sequentially so that the reader can

follow the process more easily.

OPERATION: PERFORNM-EXECUTION

STEP 1. LET st be the <STATEMENT> designated by the
<STATEMENT-DESIGNATOR> of the <PROGRAM-STATE>.

STEP 2. PERFORM EXECUTE-ASSIGNMENT-STATEMENT(st).

STEP 3. GO TO 1

OPERATION: EXECUTE-ASSIGNMENT-STATEMENT(st)

STEP 1. LET D be the son of <DIGIT>.

STEP 2. LET L be the son of <LETTER>
PERFORM ASSIGN(L,D).

STEP 3. PERFORM NORMAL-SEQUEZENCE.

OPERATION: ASSIGN(L,D)
where L is a <LETTER>
D is a <VALUE>
STEP 1. PERFORM EVALUATE-VALUE-REFERENCE(L) to get a
<VALUE-DESIGNATOR>, vd.
STEP 2. REPLACE the <VALUE> designated by vd with a

copy of D.

OPERATION: EVALUATE-VALUE-REFERENCE(L)
where: L is a <LETTEB>
result:s a <VALUE-DESIGNATOR>
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STEP 1. LET vd be a copy of the <VALUZ-DESIGNATOR>
component of the <DIRECTORY> that contains a
<LETTER> equal to L.

STEP 2. RETURN vd.

OPERATION: NORMAL-SEQUENCE

STEP 1. LET stl bé the <STATEMENT-LIST>
LET st be the <STATEMENT> of stl that is
designated by the <STATEMTNE-DESIGNATOR>, sd
of the <PROGRAM-STATES.

STEP 2. LET sd designate the <STATEMENT> that immediately

follows st in stl.

This chapter has presented a brief informal introduction
to BASIS/1-12, a semi-formal definition technique.

The following chapter presents the cataloguing criteria
developed in chapter II along with the results of applying
this criteria to SEMANOL, the Vienna Definition Language, and

BASIS/1-12.




VII Cataloguing

The goal of this chapter is to take the cataloguing
criteria, established in chapter II, and apply each questicn
to the formal and semi-formal language definition techniques
(SEMANOL, VDL, and BASIS/1-12) discussed in chapters IV, V,
and VI. The method used in cataloguing the definition tech-
niques consists of listing the questions of the cataloguing
criteria followed by the "answers" for each technique. This
method allows each reader to quickly evaluate each formal
language definition technique. The cataloguing criteria and

the "answers" are listed below:

I CONTROL

A. How does this method process the flow of control for sequences,

jumps, loops, and procedure calls?

SEMANOL: For sequences, the user moves from the
current-statement position along sequence-of-state-
ments-in-program to the next executable statement node
determined by the semantics definition. For jumps the
next statement executed is determined by the semantics
algorithm, which finds the statement with the proper
statement label. With loops an active-block-list is
employed, containing a sequence of triples(control
variable, value of limit, and value of increment).

A global variable is used to determine if the loop is
being executed for the first time for initiation(placing
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trible on the active-block-list). Procedure calls are
handled similar to Jjumps except before the transfer

of control the first executable statement after the
"call" statement is placed in a return-point-list

(a LIFO stack) to be used in determining the successor
of the "return" statement.

VDL: The VDL technique allows two basic methods for
specifying control for sequences and loops. For
sequences the next statement to be executed can be
either specified in the semantics definiticn, or the
next statement in a LIFO stack. If the stack method

is used the statement executed is deleted from the staczk.
The next statement to be executed after a jump instruc-
tion is determined by the sémantics definition of the
jump instruction. Loops can be handled in one of two
methods, either breakdown the loop "begin statement"
and the loop "end statement” into simple test and jump
instructions in the TRANSLATOR phase, or use a LIFO
stack to determine where to return after executing the
loop "end statement" (NEXT, CONTINUE, etc.). Procedure
calls in the VDL are handled with a LIFO stack containing
the location of the next executable statement following
the "call" statement, thus saving the return point for
the "return" instruction.

BASIS/1-12: For sequences a pointer(the statement
designator node) is incremqnted to the next statement

on the program tree. The TRANSLATOR transforms the
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"jump" instructions so that they contain the unique
names of the nodes to which the jump is to be made.
Therefore, when the INTERPRETER executes the jump
command the statement designator node is made to point
to the node specified in the jump command. BASIS/1-12
can process loops in one of two methods. The TRANSLATOR
can break down the loop control statements into simple
test and jump statements, or the INTERPRETER can process
the loop control statements using the semantic definitions
specifying the value of the statement designator node.
Procedure calls are processed with the INTERPRETER which
manipulates the statement designator node into pointing

to the procedure called.
II MEMORY

B. How is memory defined? (This gquestion refers to how vari-

ables are defined.)

SEMANOL: In SEMANOL the memory is defined as a single
level associative memory, represented as name-value pairs.
VDL: In the VDL memory is defined with three symbol
tables; the environment, denotation, and attribute tables.
The environment table specifies the machine location for
the source program variable. The denotation table main-
tains the proper value for each machine location. The
attribute table maintains the machine locaticn and its
attributes(type: real, integgr. etc.). In its simplest

representation the memory is a selector-object pair with
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the variable as the selector and the value as the object.
BASIS/1-12: In BASIS/1-12 the memory is defined as
consisting of a "directory" and storage locations.

The directory consists of a variable and a value
designater node. The value designator node points

to the location(unique name) allocated for that variable.
III EXPRESSIONS

C. How are evaluations of expressions defined?

SEMANOL: The constants and operators of the defined
language are translated into SEMANOL constants and
operators and then the INTERPRETER, operated by algo-
rithms written in SEMANOL, performs the required opera-
tions on the SEMANOL representations of the constants
and operators.

VDL: The expressions are represented as abstract objects
on a control tree. The expressions are evaluated in
accordance with commands in a algorithm that expands

or contracts the control tree.

BASIS/1-12: Expressions are represented as abstract
objects on a program tree. Rules for evaluating the

expressions are given in algorithms written in English.

D. How are lexical transformations processed?
A lexical analysis of the source program is basically
performed the same way for SEMANOL, the VDL, and BASIS/1-12.
The lexical analysis is the first processed performed
on the source program. The analysis is pérformed by

an algorithm which performs lexical transformations(macro
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Iv

substitutions), removes comments from the source pro-

gram, and removes text as required by "skip" instructions.

Can external functions and relations be called from a

system library?

All three techniques SEMANOL, the VDL, and BASIS/1-12

can specify functions and relations of the system

library, however the VDL and BASIS/1-12 are not as yet

implemented on host machines.

How is the semantic operator expressed?

SEMANOL: In SEMANOL the semantic operator is expressed

as a SEMANOL program(algorithm).

VDL: The semantic operator in the VDL is expressed

as value returning instructions which manipulate a

control tree.

BASIS/1-12: In BASIS/1-12 the semantic operator is

expressed as an algorithm written in English that

manipulates an operations tree.

CLARITY

Can people understand the method?

All three techniques can be readily understood by people.

However, the author found the SEMANOL definition

easiest to follow, the BASIS/1-12 technique was the

next-easiest to follow, leaving the VDL technique as

the most difficult technique to follow.




Je

Is high level expressiveness utilized? (How much detail

must one know before utilizing the technique?)

SEMANOL: High level expressiveness is utilized in
SEMANOL. The SEMANOL algorithms are straightforward
and easy to follow.

VDL: No, the user must keep careful track of each
minute detail to follow the definition.

BASIS/1-12: Yes, the BASIS/1-12 instructions, written
in English, can be followed without a "strict" main-

tenance of the machine state.

Are the mneumonic names helpful to the reader?

The mneumonic names used in each of the three techniques
are helpful to the reader. Conventional notation

found in mathematics and programming languages is used,
enabling a user to easily interpret the meaning of the

term used.

Does this method seperate context-free syntax, context-

sensitive syntax, and the semantic parts of a language B
definition?

SEMANOL: Yes, through differnet steps in the inter-
pretation.

VDL and BASIS/1-12: Yes, through the use of three
seperate abstract machines. The ANALYZER checks the
context-free syntax, the TRANSLATOR checks the context-
sensitive syntax, and the INTERPRETER defines the

semantics.
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VI
L.

COMPLETENESS

Does this technique provide a complete definition?

Each of the three techniques SEMANOL, the VDL, and
BASIS/1-12 provides a complete definition, the tech-
niques can describe every possible situation in the

language being defined.

CONTEXT-FREE AND CONTEXT-SENSITIVE SYNTAX

How is the context-free syntax processed?

SEMANOL: A context-free parse is conducted by an
algorithm which parses the source program in accordance
with the context-free syntax specified. The result

is a context-free parse tree of the source program.

VDL and BASIS/1-12: The last function of the ANALYZER
is to perform a context-free parse on the source pro-
gram using the context-free syntax rules specified.

The result, a context-free parse tree, is passed to

the TRANSLATOR.

How is the context-sensitive syntax processed?

SEMANOL: A SEMANOL algorithm is applied %to the context-

free parse tree to determine if the context-sensitive
restrictions are satisfied.

VYDL: The TRANSLATOR performs the context-sensitive
checks on the context-free parse tree, supplied by the
ANALYZER. The context-sensitive checks are performed
by applying a series of conditional statements to the
context-free parse tree.

BASIS.1-12: The TRANSLATOR perofrms the context-
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sensitive checks on the context-free parse tree,
supplied by the ANALYZER. The context-sensitive checks
are performed by operations that conduct context-

sensitive tests.

VII DEFINING THE EXECUTION OF A PROGRAM

N. How does this method define the execution of a program?

SEMANOL: The definition of the execution of a
program is program oriented. The consequences of a
computation are described in a series of semantic
definition, expressed as SEMANOL programs.

VDL and BASIS/1-12: The execution of a program is
defined by a series of state transitions. Each state
transition transforms the machine state until the con-
trol tree(operations tree for BASIS/1-12) is empty.
The empty control(operations) tree characterizes the

final state.

VIII DECIDING THE VALIDITY OF A PROGRAM

0. What constitutes a valid program?

SEMANOL: A program is valid if it passes a context-
free parse, a context-sensitive check, and a successful
semantic execution.

VDL: A program is valid if it passes a context-free
parse, a context-sensitive check, and an execution
which results in an empty control tree.

BASIS/1-12: A program is valid if it passes a context-

free parse, a context-sensitive check, and an execution
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which results in an empty operations tree.

IX SPECIFICATION OF IMPLEMENTATION DEPENDENCIES

P. How are the implementation dependencies defined?

SEMANOL: Machine dependencies are stated in a seperate
section of the language definition. This section is
accessed through parameters used in the semantic
definitions.

VDL: Machine dependencies are implemented through
variables in the semantic definitions of instructions.
BASIS/1-12: Machine dependencies are implemented
through variables in the operations.

Q. Are the representations of the data types and operators

machine independent?

SEMANOL: Yes, the technique can be used without
forcing the limitations of the host machine on the
definition.

VDL and BASIS/1-12: Yes, these techniques are not

implemented on an actual machine.

A éummary of the information presented above is given in Table
I. A comparative cataloguing of the three techniques; SEMANOL,
the VDL, and BASIS/1-12 is given in table II on page 94, A
numbering system was developed to permit a comparative
evaluation of each technique. In this numbering system the
number "1" represents the easiest or best situation, while

the number "3" represents the hardest or worst situation.

The assignment of the same number to two techniques represents
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Table II _
Comparative evaluation of SEMANOL, VDL, and BASIS/1-12

CHARACTERISTICS SEMANOL VDL BASIS
I Follow the flow of control 1 3 1
II Visualize the memory scheme 1 1 2
III Follow the evaluation of 1 3 2

an expression

IV The clarity of the 1 3 2
language definition

V Provides a complete defini- 1 2 2
tion
VI Follow the contex-free and 1 2 3

context-sensitive syntax

VII Follow the execution of a 1 3 2
source program

VIII Determine the validity of 1 2 2
a source program

IX Recognize implementation 1 3 2
dependencies
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a situation that presented an equal degree of difficulty to
the author.

Table II is divided into nine sections. Each section
evaluates SEMANOL, the VDL, and BASIS/1-12 in one of the nine
important qualities required of a formal definition technique;
control, memory, expressions, clarity, completeness, context-
free and context-sensitive syntax, execution of a source pro-
gram, validity, and implementation dependencies. A brief
Justification of the ratings in each section is given in the
paragraphs below.

The first section, follow the flow of control, rates
" SEMANOL and BASIS/1-12 equal and superior to the VDL. The
SEMANOL technique specifies the flow of control in semantic
definitions. 1In BASIS[1-12 the flow of control is determined
through operations which affect the value of the statement
designator node. The VDL technique relies on the status of
the machine state, transfering control through VDL instructions.

The memory scheme is evaluated in section two. In this
section SEMANOL and the VDL are rated equal and superior to
BASIS/1-12. In SEMANOL and the VDL memory is basically viewed
as (variable, value) pairs. In BASIS/1-12 memory is defined
with pointers and storage locations.

Section III deals with the evaluation of expressions.

It is easier to follow the evaluation of an expression in
SEMANOL because there is no tree manipulation. Thefefore
SEMANOL is rated higher than the VDL or BASIS/1-12. BASIS/1-12
is rated higher than the VDL because BASIS/1-12 utilizes
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algorithms, written in English, to define the state transitions
that compose the evaluation of an expression. In the VDL,
expressions are evaluated through instructions that depend
heavily on the machine state, a tree structure.

The major factor in determining the clarity of a language
definition, section IV, is the dependence on a parse tree.
Since SEMANOL minimizes this dependence it is rated as being
clearer than BASIS/1-12 and the VDL. BASIS/1-12 is rated
higher than the VDL because the operations, written in English,
in BASIS/1-12 help minimize the dependence on the parse tree.
The VDL instructions require the machine state, and thus this
technique relies the most on the parse tree.

The fifth section evaluates the ability of a technique
to provide a complete definition. All.the techniques examined
were complete in that they could define any situation which
could occur within the defined language. However SEMANOL is
successfully implemented on an actual machine, thus proving
that it is complete.

The technique used to specify the context-free and the
context-sensitive syntax is evaluated in section VI. SEMANOL
is rated as the best method because of the meta-language,
similar to BNF, used in the SEMANOL technique. The conditional
statements used in the VDL to check the syntax makes the VDL
superior to -BASIS/1-12. BASIS/1-12 is rated the lowest because
the context-free syntax is divided into high and low level
syntax. l
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Section VII deals with the execution of a source program.
In this section SEMANOL is rated as the best because no tree
manipulation is required. BASIS/1-12 is rated second because
its operations, written in English, allow for easier tree
manipulation than is possible in the VDL. The VDL executes
a program through instructions that rely heavily on the machine
state, a tree structure.

In section VIII SEMANOL was rated superior to the VDL
and BASIS/1-12. In determining the validity of a source pro-
gram in the SEMANOL definition the user does not have to main-
tain a changing machine state in search of the final state.

The validity of a source program is dependent on attaining
the final state when the VDL or BASIS/1-12 technique is utilized,
therefore the VDL and BASIS/1-12 are rated as being equal.

The final section, section IX, pertains to implementattion
dependencies. Again the SEMANOL technique ranks first because
the machine dependencies are specified in a seperate section
accessed through paramenters, and the SEMANOL technique has
been proven through actual implementation. The BASIS/1-12
technique is rated higher than the VDL because machine depen-
dencies are implemented through variables in the operations,
while the VDL technique implements machine dependencies through
variables in the required instructions.

This chapter applied the questions, comprising the cata-
loguing criteria established in chapter II, to the three
techniques; SEMANOL, the VDL, and BASIS/1-12 covered in chapters

IV, V, and VI, respectively. The author's comparative

97

——————

‘”:." - o g B o e ! "“-""m Sl
s . :




evaluation of each technique was also presented.
Chapter VIII, the conclusion, presents advantages and
disadvantages of each technique along with the author's choice

of the "best" definition technique.
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VIII Conclusion

This thesis examined three techniques for specifying
formal definitions of programming languages; SEMANOL, the
Vienna Definition Language(VDL), and BASIS/1-12. Some of the
advantages and disadvantages of each technique are specified
below.

SEMANOL's close resemblance to programming languages makes
it fairly easy to learn except for the fact that information
on SEMANOL is spread out over several publications, and no
"simple" example is "talked through" in any of the publications.
While a parse tree is utilized in the SEMANOL technique,
execution of a source program statement can be easily followed
without a parse tree. The SEMANOL technique is also easy to
learn because the user can readily visualize his progress
when executing a source program. Once learned, the SEMANOL
algorithms are easy to follow, and the wuser does not have to
keep track of a changing tree structure.

Information on the VDL does not seem to be as spread out
as the information on SEMANOL. Another advantage of the VDL
is that there are only two catagories of tree manipulating
instructions. The major disadvantage of the VDL is that the
user must keep track of every minute change in the control tree,
and the execution of all but the simplest programs requires
an unreasonable number of machine states. Another character-
istic of the VDL which the author considered a disadvantage,
at first, was the flexibility of the VDL. Different authors
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describing the same situation using the VDL used completely
different approaches which seemed to contradict each other,
until a detailed examination was performed. The overall
description of the abstract machines used by the VDL definition
also varied from author to author. One author described the
VDL technique as consisting of two abstract machines, a
TRANSLATOR, and an INTERPRETER. Other authors described the
VDL technique as consisting of three abstract machines, an
ANALYZER, a TRANSLATOR, and an INTERPRETER. The difference
between these two viewpoints is that the TRANSLATOR in the
two machine description performs the same functions as the
ANALYZER and the TRANSLATOR in the three machine description.

After studying SEMANOL and the VDL, the author found
BASIS/1-12 relatively easy to comprehend. Some of the advan-
tages of BASIS/1-12 are that the algorithms for the state
transitions are written in English and are very easy to follow.
Because the algorithms are easy to follow, the problems of
keeping track of the machine states are not as severe as in
the VDL. However, the user must keep track of certain instruc-
tions(ATTACH and DELETE) as their effect on the machine state
varies with the syntax of the source program.

The technique that provides the clearest definition of
a source program is SEMANOL, followed by BASIS/1-12 and the
VDL, in that order. The major reasons for SEMANOL s clearity
is that the user does not have to trace state transitions and
machine states. BASIS/1-12 is rated superior to the VDL
because the BASIS/1-12 algorithms, written in English, are
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simpler than the VDL instructions when trying to manipulate
a tree structure.

From the comparisons in Table II, page 94, and the above
described advantages and disadvantages an overall rating of
the three techniques would have to list SEMANOL as the best
technique followed by BASIS/1-12 and the VDL, in that order.

The comparisons of the techniques, SEMANOL, the VDL,
and BASIS/1-12, and the list of advantages and disadvantages
of each technique makes this thesis the only single source
for a reader interested in understanding the mechanics of

each technique.

Recommendations

While this thesis covered only interpreter oriented for-
mal and semi-formal definition techniques a similar report
covering mathematical techniques is needed. The purpose of
the report besides cataloguing certain techniques should be
to provide simple examples, demonstrating how the techniques
work; so that "new" explorers into this area can easily see
how a method works and then study the details of each technique.

As any field of study develops the rules governing that
field become more precise, rigid, and definite. As man's
communication with his fellow man developed, the need for
precise, rigid and definite rules brought about grammer rules
and the dictionary. The same is true with computer programming
languages. Computer programming languages have developed to
the point where standard definitions are needed.. The first
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step toward standard definitions is to develop a formal
definition technique(a meta-language) that provides useful
information to all interested individuals.

"The meta-language of a formal definition must not
become a language known to only the high priest of the cult.
Tempering science with magic is a sure way to return to the

dark ages"(Ref 3).
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