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Preface

This thesis establishes a cataloguing criteria , and

catalogues three operational formal defini tion techniques ,

SEMANOL , the Vienna Defini tion Language , and BASIS/1-12. The

three techniques are then evaluated to determine which technique

is the best.

The reasons for cataloguing and finding a fairly simple

formal defini tion technique that completely describes the syntax

and semantics of a programming language are many. I think the

two most important reasons are standardization and providing

information to users. With a formal standard definition of a

programming language , hopefully someday a program written in

one language can be transfered without worry from one computer

system to another. Software systems are becoming more complex

and much more expensive each year , and the ability to implement

these programs on different computer systems without major

revisions is becoming more and more desirable. Language

standardization would do much in relieving this problem. A

formal definition would not only make transfers easier but also

provide useful information about the defined language .

The usefulness of the information provided by a formal

definition varies from user to user. Language designers are

able to completely understand the implications of their decisions

in designing or changing a language . Programmers are able to

answer detailed questions about a language wi thout having to

guess at the answer and then run several tests verifying the

ii



guessed answer.
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AFIT/G~/W~A/78M-1

Abstract

Operational techniques for defining computer programming

languages are examined; specifically, SEMANOL , the Vienna

Definition Language(VDL), and BASIS/1-12. A survey of the

opera tional methods is given , in which specific examples of

SEMANOL , the VDL , and BASIS/1-12 are explained in detail. A

cataloguing criteria is established and evaluated. The cata -.

loguing criteria is then used to catagorize and evaluate

SEMANOL , the VDL , and BASIS/1-12. The SEMANOL technique was

judged as the best technique followed by BASIS/1-12 and the

VDL, in that order.
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A CATEGORIZATION AND EVAL UATION OF

FORMAL AND SEMI-FORMAL DEFINITION TECHNIQUES

I Introduction

Background

In recent years extensive effort has been spent in

developing formal definitions for computer programming lan-

guages. A formal definition of a programming language com-

pletely describes the syntax(grammar) rules and semantics

(m e a n ing ) for that language. A formal definition enables

• 
. language designers to better analyze their work, allows for

the standardization of computer programming languages, and

provides programmers with a clear and precise understanding

of a language. The importance of a formal definition was

succinctly stated by J. A. Robinson, “Reliable, high quality

computer programming is impossible without a clear and

precise understanding of the language in which the programs

are written -- this being true quite independently of the
merits of the language as a language ”(Ref 1). The development

of formal definitions of programming languages began with

John W. Backus .

John W. Backus developed the Backus Norma]. Form (BNP),

which enables one to give a formal description of syntax

rules that describe acceptable sentences in a specific lan-

guage. A result of BNF is that the syntax of programming

1 



languages has been clearly defined. However, the semantics

of a language have not been defined so accurately . Recently

other techniques for specifying syntax rules and semantics

have been developed. These techniques can be catagorized

as either denotational(mathernatical) or operational(algo-

rithmetic).

The denotational and operational techniques differ in

their basic methodology. The denotational technique uses

functional calculus while the operational technique uses

the concept of a machine to define the “meaning” of a program.

A brief description of the denotational and operational

techniques follows.

- 
• Denotational techniques do not introduce the concept of

- 
. a machine. The “meaning” of -the source program is described

with a functional calculus; that is, the “meaning” of a

program is described with an input-to-output function.

Since many individuals feel that the true semantics of a

source program can not be expressed with an input-to-output

function this thesis will focus on the operational techniques.

The operational techniques involve the description of

a machine. The specification of a language describes how

the machine “behaves ” when given a program text and the data

required by the program text. The machine will react to an

input by either changing states1 or responding with a compu—

1A machine state consists of the data set, a source pro-
gram, and the definition of each instruction, The transfer

2



-tationa]. result. The operational catagory provides two basic

me thods of defining the “meaning” of a program; compiler

oriented methods and interpreter oriented methods

The compiler oriented methods define how source programs

may be translated into target programs of a target language

with known semantics(Ref 5). The compiler method provides

-the user with a formal definition of a target language and

provides some insight into the relationship between the source

and target languages. A drawback of the compiler me thod is

that it does not give the user the definition needed of the

source language(Ref 5) .  The other method in the operational

catagory , the interpreter oriented method, defines the

“meaning” of a program using an interpreter.

The interpreter oriented method defines , for each source

program and its data , an algorithm for computing the value

which results from executing the program for the given data(Ref . )

Using the interpreter oriented language definition, and given

a program text with the data required by the program text ,

the interpreter will , depending on the specific method imple-

mented, either change states as a result of the current input

statement from the program text, or it will describe the

“meaning” of the current statement with a meta-program2.

from one state to another is governe d by a “state transition
function” . -The state transition function is defined as the
execution of one step(cycle),  where several steps are required
for the execution of one instruction . The concept of states,
in this circumstance, requires the concept of the initial and
final ( terininating ) states. A valid program will begin in the
ini~ial state and end in the final state(Ref 12).

~ A me -ta-program is a program that defines the steps required
to describe the effects of executing either a statement or a
program , written in a different language .

3



Objective

This thesis will focus on the operational methods of

defining a computer programming language, and due to the draw-

back of the compiler methods, mentioned above , only interpreter

oriented methods will be examined. The objective of this

thesis is to develop a criteria for cataloguing interpreter

oriented operational methods for defining computer programming

languages; evaluate the established criteria; and finally,

catalog interpreter oriented formal definition techniques

according to the cataloguing criteria established.

Approach

In establishing a cataloguing criteria, several denota-

tiona]. and operational methods of defining computer program-

ming languages were examined, and other comparative evalua-

tions were studied. Information applicable to interpreter

oriented methods was extrapolated from these reports. Examina-

tion of several methods of formal definitions gave an insight

as to how different methods could vary. A cataloguing

criteria was then composed of specific questions aimed at

pointing out the variance of different interpreter oriented

techniques. The usefulness of the cataloguing criteria was

-then evaluated. This was accomplished by determining how

useful the information gathered from different techniques

was to different users . Two groups of users were specified ,

language designers , and programmers in general . ~ith a
cataloguing criteria established , interpreter oriented formal

1;.
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definition techniques were examined, specifically , TR~l’s
SEMANOL , and IBM’s Vienna Definition Language(VDL), and IBLY s

BASIS/1-12.

A by-product of the above process makes this thesis the

only single source for a reader interested in understanding

the mechanics of TR~l’ s SEMANOL , IBM ’s VDL , and IBM ’s BASIS/1-12.

Overview

Chaptar II of this thesis presents the process involved

in developing a cataloguing criteria. Chapter III provides

an evaluation criteria, and evaluates the cataloguing criteria

developed in chapter II. A brief summary of SEMANOL ,VDL , and

- . BASIS/1-12 is presented in chapters IV, V , and VI, respectively .

- 
. In chapter VII the cataloguing criteria developed in chapter

II is applied to each technique, SEMANOL , VDL , and BASIS/1-12.

The conclusion, chapter VIII, contains the results of the

cataloguing procedure along with the advantages and disadvan-

tages of each technique

5
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II A Cataloguing Criteria

Approach

The purpose of a cataloguing criteria is to indicate the

quality of a specific technique used to formulate a formal def-

ini tion of a programming language , and enumerate differenc es

among various techniques. Several methods were studied to de-

termine what qualities should be examined when evaluating

formal definition techniques. The research involved the

denotational and operational techniques listed below.

The denotatiorial techniques examined were W-grammars(Ref

3),  production systems with an axiomatic approach to semantics
• • (Ref 3),  attribute gramrnars(Ref 3), an axiomatic approach by

Hoare(Ref 10), lambda-calculus as used by Landin(Ref 11), and

the Oxford Definition Method(Re±’ i;4).

The operational techniques studied were SEMANOL(Ref 2;11.;7;

8;9), -the Vienna Definition Language(VDL) (Ref 3;5;6;12), and

BASIS/1-12(Ref 16).

Examination of the denotational and operational techniques

provided the author with information relating what each tech-

nique considered primary characteristics of a programm (ng

language.

Previous comparative evaluations of denotational and.

operational techniques were then studied, specifically , “The

Definition of Progrpmming Languages”(Ref 1), and “A Sampler of

Formal Definitions”(Ref 3) .  Both of the comparative evaluations

•~~mined operational and denotational techniquss. against each

6
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other. Such evaluations are useful in pointing out the differ-

ences between the two basic approaches. A reader searching for

any formal defini tion technique , regardless of approach , would

find such evaluations useful.

However, if one is interested in interpreter-oriented

techniques, then an evaluation of only interpreter-oriented

techniques is required. Evaluating two distinct catagories is

inequitable . “Weakness ” inherent in a catagory shoul d not be

listed as a weakness of a specific technique ; a particular

interpreter used in an interpre ter-oriented technique should

not be classified as a weakness . An evaluation of a specific

formal definition technique should not evaluate techniques from

the denotational catagory and the operational catagory together.
• 

- The above research indicated major areas of concern when

defining a computer programming language. These major areas

are

A. Control. Specifically , how does this formal definition

technique describe the flow of control for sequences, jumps,

loops, and procedure calls.

B. Memory . This area involves the storage of values for

future reference .

C. Expressions. Specifically, the rules governing the

evaluation of expressions .

D. Clarity. Clarity in this field of study refers to how

we].]. the user of a formal definition technique is able to

understand the technique .

E. Completeness. Completeness refers to ax~y weakness 
in7



the definition technique . The formal definition of a language

should be able to describe every syntax or semantic event which

may occur in that language .

Any cataloguing criteria which proposes to give some indi-

cation of the quality of a formal definition technique must at

a minimum address these areas.

Realizing that in any evaluation a certain amount of

subjec tivity is introduced, a criteria compose d of specific

questions was formulated. Specific questions minimize subjec-

tivity, and make subjective answers more apparent to the reader.

This technique was particularly useful in dealing with the

clarity of a definition. A specific question aimed directly

at clarity would rely only on a user ’s unsupported opinion for

an answer . However , several questions aimed at charac teristics

which make a specific method easier to understand enables one

to reduce the amount of subjectivity involved in deciding the

clarity of a technique.

The following question is an example of the type of ques-

tions used in determining the clarity of a definition. Does

this method seperate context-free syntax , context-sensitive

syntax, and the semantic parts of a language definition?

Though this question does not seem to be directed toward clarity,

the seperation of context-free syntax , context-sensitive syntax ,

and the semantics of a definition makes the me thod easier to

understand and thus the technique is clearer than if these parts

were not seperated. Several other questions relating to the

clarity of a technique are listed with the other questions used

8
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in the cataloguing criteria , at the end of this chapter.

The concept of completeness is almost impossible to

decompose into components as was done with clarity and so the

subjectivity involved in determining this characteristic could

not be deminished.

C1-wacteristics which do not particularly fit into the

above areas , but are vital in distinguishing one formal defini-

tion from others, include s

A. Context-free and context-sensitive syntax. How does

a particular method process or evaluate the syntax?

B. Defining the execution of a program. Does the method

use the machine-theoretic approach in which execution is
- - 

described by changing states until the final state is achieved ,

• or is the execution described with a meta-program(Ref 7) .

C. Deciding the validity of a program. How demanding is

the definition? When will a me thod declare a program valid

(after a good syntax check , a good semantics check , or proper

execution of the program)(Ref 3) ?
ID. Specification of implementation dependencies. This

area pertains to a defini tion which is implemented on a computer

and deals with finding out how the cons traints of the host

computer are defined within the definition.

criteria 
-

A cataloguing criteria which covers each of the above

characteristics enables one to obtain an idea of the quality of

a specific formal definition technique , and enables a reader to

9



• compare various formal definition techniques. Each of the

qualities specified above are listed below , and then followed

by -the specific questions used in the cataloguing criteria to

determine if a specific quality was present in the technique

being evaluated.

No “ideal” answers are provided. The evaluation of

different techniques involves evaluating the techniques directly

against each other, not against an “ideal” technique, and then

against each other.

I Control

A. How does this mf~thod process the flow of control for

sequences, jumps, loops , and procedure calls?

II Memory

• B. How is memory defined (assignment statements, variables ,

etc.)?

III Expressions

C. How are evaluations of expressions defined?
D. How are lexical transformations processed?

E. Can external functions and relations be called from a

system library?

F. How is the semantic operator expressed?

IV Clarity

G. Can people understand the method?

H. Is high-level expressiveness utilized? (How much detail

must one know before utilizing the technique?)

I. Are the mneumonic names helpful to the reader?

10
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J. Does this me thod seperate context-free syn tax , context-

sensitive syntax, and the semantic parts of a language defini-

tion?

V Completeness

K. Does this technique provide a complete definition?

VI Context-free and context-sensitive syntax

L. How is the context-free syntax processed?

M. How is the context-sensitive syntax processed?

VII Defining the execution of a program

N. How does this method define the execution of a~~rogram?

VIII Deciding the validity of a program

0. What constitutes a valid program?

IX Specification of implementation dependencies

• 
- P. How are the implementation dependencies defined?

• Q. Are the representations of the data types and

operators machine independent?

The above cataloguing criteria specifies what was examined

in cataloguing different interpreter-oriented formal definition

techniques. The following chapter conducts an evaluation upon

the above criteria to determine its usefulness .

11
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• III Evaluation of the

Established Cataloguing Criteria

A cataloguing criteria must cover every major requirement

of a formal definition technique arid display qualities of the

technique that are beneficial to a wide range of users . This

• chapter evaluates the established cataloguing criteria given in

chapter II to determine if it conforms to the above descrip-

tion.

Constructing the cataloguing criteria in chapter II

consisted of identifying major areas of importance(control,

memory , expressions, clarity, and completeness) in a formal
- • definition. Questions aimed at exploiting how different formal

- 
- definition techniques cover these areas were then formulated.

Thus the first goal of this evaluation, verifying that the

cataloguing criteria covers the important areas in a language

definitjo~ , has been confirmed, since these areas were used in

the construction of the criteria.

The second goal of the cataloguing criteria is to display

qualities of a formal definition technique that are beneficial

to a wide range of users. For this evaluation, two groups of

users were identified in order to represent both ends of a

spectrum of users. The two groups of users were language

designers and prog rammers in general .

The value of the established catalog uing criteria to language

designers was de termined by lis ting several qualities of

importanöe to langua ge designers interested in changing a

12
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language . Each listed quality was then followed by related

questions from the cataloguing criteria . Qualities of impor-tance

to language designers contemplating a change in a language are :

A. Changes should be easy to implement. The formal

definition should be easy to use.

B. The effects of a particular source program statement

should be easy to trace.

C. Effects of a language change should be completely

defined .

ID . The effects of a language change on the flow of

control should be easy to trace.

E. Context-free syntax and context-sensitive syntax
• - should be easy to modify.

F. The user should be able to verify the interface

between the language and external system functions.

Evaluation of how well the established criteria verified

these qualities in a formal definition was determined by listing

each of the qualities followed by related questions from the

cataloguing criteria. These qualities and the related questions

are listed below.

Changes should be easy to implement. The formal definition

should be easy to use.

a. Can people understand the method?
• b. Is high-level expressiveness utilized? (How much

detail must one know before utilizing the technique?)

c~. Are the mneumonjc name s helpful to the reader?

d. Does this method seperate context-free -syntax , context-

13
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sensitive syntax, and the semantic parts of a language defini-

tion?

The effects of a particular source program statement should be

easy to trace.

a. How is the semantic operator expressed?

b. Can people understand the method?

c. Is high—level expressiveness utilized? (How much

detail must one know before utilizing the technique?)

d. Are the mneumonic names helpful to the reader?

e. Does this me thod seperate context-free syntax , context-

sensitive syntax, and the semantic parts of a language d~fini-

tion?

• f. Does this technique provide a complete definition?

• Effects of a language change should be completely defined.

a. Can external functions and relations be called from

the system library?

b. Does this technique provide a complete definition?

c. What constitutes a valid program?

The effects of a language change on the flow of contrc should

be easy to trace.

a. How does this me thod process the flow of control for

sequences, jumps , loops , and procedure calls? -

b. How are evaluations of expressions defined?

c. How is the semantic operator expressed?

d. Does this me thod seperate context-free syntax , context-

sensitive syntax , and the semantic parts of a language defini-

tion?

1k -
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Context-free syntax and context-sensitive syntax should be ea~y

to modify .

a. How is the semantic operator expressed?

b . Does this method seperate context-free syntax, context-

sensitive syntax and the semantic parts of a language defini-

tion?

c. How is the context-free syntax processed?

d. How is the context-sensitive syntax processed?

The user should be able to verify the interface between the

language and external system functions.

a. Can external functions and relations be called from

the system li brary?
• - As shown above , the established cataloguing criteria

• provided. information related to every area of interest to a

• language designer .

At the other end of the user spectrum is the programmer.

The programmer is interested in answering specific questions

pertaining to “how” a language “works”. Specific areas of

concern, to programmers, ares

A. The definition should be easy to understand ;

B. One should easily see how and what a source program

statement does;

C. The flow of control within a source program should be

• easy to follow ;

ID . The effects of source program statements on each other

should be apparent;

E. The requirements of the syntax and semantics should be

• 15
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easy to de termine ;

F. The user should easily understand how values are stored;

G. The user should not have to worry with items that are

not relevant;

H. One should be able to determine exactly when a substi-

tution takes place .

The programmer should select a formal definition technique

that fulfills these eight areas of concern. The usefulness of

a cataloguing criteria , to a programmer , could be determined by

examining how many of the above eight areas are evaluated.

Evaluation of the cataloguing criteria, verifying inspec tion of

the eight areas, is listed below. The evaluation consists of

• the quality desired by the programmer followed by the related

questions .

The definition should be easy to understand.

a. Can people understand the method?

b. Is high-level expressiveness utilized?

c. Are the mneumonic names helpful to the reader?

One should easily see how and what a source program statement

does.

a. How are the evaluations of expressions defined?

b. How is the semantic operator expressed?

The flow of control within a source program should be easy to

follow. -

a. How does this method process the flow of control for

sequences, jumps , loops , and procedure calls?

16
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The effects of source program statements on each other should

be apparent.

a. How does this method define the execution of a program?

The requirements of the syntax, and semantics should be easy

to determine.

a. Does this me thod seperate context-free syntax , context-

sensitive syntax , and the semantic parts of a language defini-

tion?

b. How is the context-free syntax processed?

c. How is the context-sensitive syntax processed?

The user sl~ould easily understand how values are stored.

a. How is memory defined (assignment statements, variables,

etc.)?

The user should not have to worry with items that are not

- - relevant.

a. Can external functions and relations be called from

the system library?

b. How are the implementation dependencies defined?

c. Are the representations of the data types and operators

machine independent?

One should be able to determine exactly when a substitution

takes place.

a. How are lexical transformations processed?

The cataloguing criteria does supply information to the

programmer , in every area of interest to the programmer.

This evaluation has shown that the cataloguing criteria

17
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exposes information in the five major areas of concern in a

formal defini tion (control , memory, expressions , clarity, and

completeness). The evaluation also has shown that the

cataloguing criteria provided useful information in every major

area of concern for both language designers and programmers in

general .

The result of this evaluation reveals that the established

cataloguing criteria provided all the information normally

required by a cataloguing criteria. Tht~refore, it is the opinion

of this writer that the established cataloguing criteria is

at a minimum, satisfactory.

With a satisfactory cataloguing criteria established the

- • process of examining SEMANOL , the Vienna Definition Language,

and BASIS/1-12 can begin. The following chapter, chapter IV ,

provides a brief introduction to the SEMANOL technique.

18 •

• - -~~
- - —-- — ~~— — —• 

- • -



IV SEMANOL

Backgr ound

Research , that lead to the SEMANtics Oriented Language

( SEMANOL ), began at TR~ by Dr. E . K. Blum in the late 1960 ’s.

SEMANOL was developed to enable a user to completely describe

the syntax and semantics of procedural programming languages,

such as ALGOL 60 , FORTRAN , COBOL , and SIMULA 67. Designed to

provide a definition used by people , SEMANOL provides a precise

method of communicating syntax and/or semantic details of a

computer programming language . The SEMANOL specification can

be processed by a SEMANOL interpreter, thus, a SEMANOL language
- - definition can be machine test ed(Ref 2 ) .

Methodology

A SEMANOL meta-program provides a formal technique for

defining the “execution” of a source program. The effect of

executing a source program , written in the defined language , is

obtained b~ determining the effects of each computation sepa-

rately. Obtaining each computation separately is accomplished

through a parse tree representation of the source program.

The leaves(terminal nodes) of the parse tree consists of the

source program text . An example of a parse tree , for the

statement “LET A=B +C ” , with the grammar rules given below , is

shown in Fig .• 1. The grammar rules are s

GINE> is ~~TATEME NT>

<STATEMENT> ss= ~LET ‘ CNIJMERIC-VARIABLE> ‘ = <NUMERIC-EXP>
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<NUMERIC-VARIABLE> ::= ‘A’ I ‘B’ I ‘C’

<NUMERIC-EXP> ; :=  <NUMERIC-VARIABL E> ‘ + ‘ <NUMERIC-VARIABLE>

Where:

“ ::=“ means the item on the left side is composed of the

items on the right side , and

< >“ indicate that the quantity inside is to be defined;

that is, it must appear on the left  side of “ z - s = ” for at leas t

one grammar rule .

as specified in the thir d grammar rule indica tes an

“exclusive or ” condition . Either the ‘A’ , the ‘B ’ , or the ‘C’

can compose a NUMERIC-VARIABLE .

<INE> node (N)

‘LET ‘ <NUMERIC-VARIABLE> ~= ‘ <NUNERIC-EXP>

<NUMERIC-VARIABLE> ‘ + ‘ <NUMERIC-VARIABLE>

B C

Fig . 1. Parse tree for the statement “LET A B+C ” .
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The concept behind the SEMANOL meta-program is defined

below. The SEMANOL system defines a programming system CS)

as S = (P ,I,T ,~~) ,  where

P = The set of programs which can be expressed in the programming

system;

I = The set of input values;

T = The set of output traces. A trace is an ordered record of

significant ac tions ( such as assignmen t) that are per for med

by the program as it is executed; it is the visible manifes-

tation of performing the algorithm that is the operational

SEMANOL specification of semantics; and

= The semantic operator. This operator, given as ~:P x I 
-.

is considered to define the “meaning” of a program (Ref 2).
• 

- 

The product of two sets P and I (P x I) is defined as all the

finite set of pairs pi such that p is in the set P and i is in

the set I. Individual members of P, I, and T are repres ented

by p,i, and t, respectively. The execution effects of a given

program , p , can be re presen ted as

- 
~(p , i )  = t (1)

which states, the effect of executing the program p with an

input i is the output trace t.

A SEMANOL me ta-program p3 describes the semantics of the

defined language . The effect of the semantic operator ~ equals

the effect of the SEMANOL meta-program defining ~~ , thus ,

p5(p,i)  = ~( p , i )  t (2)
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The comple te SEMANOL sys tem involv es an interpre ter,

capable of executing the SEMANOL me-ta-program. The semantic

effects of the SEMANOL meta-program are defined by a semantic

operator for the SEMANOL system (
~~~~~~

) thus ,

~s(p5,(p,i)) = ~ (p , i) = t ( 3)

While the SEMANOL approac h is algori thmic , it is also

“program-oriented” . SEMANOL does not use the basic concept of

machine states, usually associated with interpreter-oriented

techniques. However , SEMANOL can be considered interpreter-

oriented because it employs the concept of a machine , and neither

the SEMANOL meta-program nor the source program, written in the

• defined language, are translated into another language(Ref 2;5;7).

The Meta-language

SEMANOL was develope d to provi de the user with an easil y

understood method for defining semantics. The use o±~ FORTRAN ,

or any other language , would have required complex programs to

define the semantics. These programs would have been less

readable, and less comprehensible.

The SEMANOL description of a language consists of a program

with four sections. The four sections are s the declaration

section. the context—free section , the semantic section , and

the control section.

The first section, the declaration section , identifies

SEMANOL declared global variables, and syntactic components .

Declared global variables are independent of any individual
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source program. Therefore, declared glo bal variables are limi ted

to variables that retain control related information, such as,

a lis t of return poin ts from subrou tines , etc..

Syntactic components represent a very interesting charac-

teristic of SEMANOL. Executing a program, written in the defined

language , first involves parsing the program. The program text

serves as the terminal nodes of the parse tree . Each parse

tree non-terminal node has several attributes. One of the

attributes, syntactic component, is composed of a pair (s,v ) ,

where s is a semantic definition name , and v is a SEMANOL value

assigned to that name. The first time a node is used in a seman-

• tic definition, a SEMANOL value is obtained. If that value must

• • remain constant throughout the execu tion of the source pro gram,
• that value is assigned to the “v” in the syntactic component.

At a later time in -the program if that specific node is used in

the same semantic defini tion , the value is availa ble and will

not have to be recomputed. The semantic definition “Left-Hand-

Side-Of” is an example of the type of semantic defini tion used

in a syntactic component. Applying “Left-Hand-Side-Of” to node(N),

in Fig. 1, which has a value “LET A=B+C ” , will always obtain

the value “A” • The next time “Left-Hand-Side-Of” is applied to

node (N) the value “A” will be available and will not have to be

derived again .

The total number of declared global variables and syntactic

components specified in the declaration section is a function

of the language defined.

The second section is the context—free section. This section
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contains the syntactic definitions which specify an (almost)

context-free grammar over the ASCII character set for the

defined language. The only context-sensitive feature implemente d

in this section is the keyword #GAP . The keyword #GAP represents

the set of zero or more ASCII blank characters (on e or more

when concatenated with the left or right sides of alphanumeric

strings). Grammars are used as recognition grammars in SEMANOL

and the above feature ensures that a valid program , syntactically ,

will be recognized.

If a grammar specified in this section is ambiguous , an

error message results. An ambiguous grammar is a grammar in

which two different parse trees have identical leaves. In this

situation an ambiguous grammar is exposed by the existence of

• two different parse trees for the same source program. proving

- • a grammar unambiguous is essentially impossible, unless that

grammar is composed of relatively few rules(few enough to test

every combination of rules). Therefore , the flaw of having

specified an ambiguous grammar, in the language definition can

only be recognized by parsing a program that causes more than

one parse tree to be generated.

The semantic definitions section is the third section.

“Semantic definitions consist of a “semantic definition name”,

followed by an optional “dummy parameter list” followed by a

semantic definition body . A semantic definition may be function-

al or procedural, i.e. it specifies the selection of a SEMANOL

expression which is to be evaluated(functional), or it specifies
a sequence of “statements” which are to be executed in order

2Z~.



(procedural)(Ref 14).”

The four th sec tion in a SEMANOL descri ption of a programming

language is the control section. This section contains a sequence

of statements which are executed in order .- Execution of a

SEMANOL program begins with the first statement in the control

section , and proceeds until the effects of executing th program,

written in the defined language, are completed.

Execution

The previous section described the SEMANOL program used

to obtain the effects of executing a source program. This see-

tion describes the processes the SEMANOL program performs upon

-the source program.

A lexical analysis, dependent on the defined language , is
• the first process performed upon the source program text.

During this process any lexical substitutions(macro substitutions)

are performed, and comment statements removed. An example of

a macro substitution is the “DEFINE ” statement in JOVIAL(J3).

The “DEFINE ” statement “DEFINE EXP “A+B*C” specifies that

everywhere “EXP” appears in the program text “A+B*C” must be

substituted. Therefore , when processing a JOVIAL program a

lexical analysis must examine the text for “DEFINE ” statements .

The source prograu~ is then parsed using the grammar speci fied

in the context-free section . After a successful parse , several

context-sensitive tests are performed. The number of context-

sensitive tests is a function of the language defined with the

SEMANOL program. The MINIMAL BASIC specification contains

25
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• seventeen context-sensitive tests . Examples of the context-

sensitive tests used in the MINIMAL BASIC specification are:

testing to verify that all line numbers are non-zero , testing

to verify that all line numbers are uniquely numbered , and

testing to verify that all “FOR ” statements have matching

“NEXT” statements, etc..

The SENANOL program then computes the effect of executing

the syntactically valid program, using the semantic definitions

section. The above processes are shown in a flow chart format

in Fig. 2.

I PROGRAM TEXT1
- -

- 
- I LEXICAL ANALYSIS

I REVISED PROGRAM TEXT I

I CONTEXT-F~RE~ PARSE I

rPARSE TREE I

CONTEX T SENSITIVE
TESTS

[PARSE TREE I

[ EXECUTION
• SEMANTICS

INTERPR~TATION

I RESULTS i

Fig. 2. Stages of a definition.
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During the above processes the occurance of any errors

either in the source program text or in the SEMANOL program

description results in the output of the appropriate error

message(Ref 8),

An example of a SEMANOL definition is given below . The

language defined is very simple , enabling the reader to under-

stand the four sections in the definition . The defined language

the Assignment Statement language , ASL consists of assignment

statement; a stop statement, and an end statement . Each

statement except the end statement is terminated with a semi-

colon . The forma t of the assignment statement consists of

‘LET” followed by a single alphabetic character(A , B, or C ) ,

then “ =“ followed by an unsigned integer constant(LET A = 2 ) .

The words composed of capital letters, in the definition,

are SEMANOL commands. These commands are not defined since

their meaning is obvious . The other words linked with hyphens

are entities defined in the semantic section or in the control

section . SEMANOL definitions, in the syntactic and semantic

sections , begin with “#DF ” and end with “a . ” , and “#U”

indicates an “ exclusive or ” condition. An example of a

SEMANOL definition is given below.

#DF sequence-of-statements-in (basic-program)

=> #SE~UENCE-OF <numeric-let-statements> #U <stop-statement>

#U <end-statement> #IN basic-program #.

Treating the SEMANOL definition of the test language as a

program is helpful since using the definition involves executing

the statements in the control section . The SEMANOL definition
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for the specified language is listed below , a few comments ,

enclosed in quo tation marks , are included.

DECLARATION SECTION

Rule

1. #DECLARE-GLOBAL :

basic -program

current-statement #.

2. #DECLARE-SYNTACTIC-COMPONENT :

sequence-of-statements -in

is-not-stop-or-end

left-hand-side-of

- • right-hand-side-of #.

CONTEXT-FREE SECTION

3. #DF<program> => <~<line>><end-sta t aient> I -<%<line>>

<stop-statement><end-s tatement>

4. #DF<line> => <numeric-let-statement><#GAP> ’ ; ’

5. #DF<numeric-let-statement> => ‘LET ‘<#GAP><numeric-vari-

able><#GAP> ’ = ‘<#GAP>-~numeric~constant>#,

6. #DF’ numeric-variable> => ‘A’ I ‘B ’  I ‘C’ #.

7. #DF<numeric-constant> => c%1<digit>> #,

8. #DF<digit> => ’ O ’ I ’ 1 ’ I ’ 2 ’ I ’ 3 ’ i ’ 4 ’ I ’ 5 ’ I ’ 6 ’ I ’ 7 ’ I ’ 8 ’ I ’ 9 ’ # .
9. #DF<end-statement> => ‘END ’ #.

10. ~DF’cstop-statement> => ‘STOP ’ <#GAP>’~~’

“Where “ % “ means the following item is repeated zero or

more times, “% 1” means the following item is used at least once. ”
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SEMANTIC-SECTION

Rule

1. #DF is-contex-t-free-syntactically-valid(basic-prograrn)

=> #TRUE #IF basic-program #13-NOT #UNDEFINED

> #FALSE #OTHERWISE #. “an error message resul ts”

2. #DF sequence-of-statements-in(basic-program)

=> #SEQUENCE-OF <numeric-let-statement> #U <stop-

statement> #U <end-statement> #IN basic-program #.

3. #DF is-not—stop-or-end(strnt)

=> #TRUE #IFF #NOT stint #13 <stop-statement> #U <end-

statement>

> #FALSE #OTHER~ISE # .

• 4’. #DF effect-of(current-s-tatement)

> #BEGIN

#COMPUTEI #ASSIGN-LATEST-VALUE(left-hand-side-of

(current-statement) • “receiv es ” right-hand-side-

of(current-sta -tement))

#END #.

5. #DF left-hand-side-of(current-statemen-t)

=> SEG 3 #OF current-statement #.

“the third item in the syntax definition of the

numeric-let-statement, the numeric-variable”

6. #DF right-hand-side-of(current-statement)

=> SEG 7 #0? current-statement #.

“the seventh i-tern in the syntax definition of the

numeric-let—statement, the numeric-constant”
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CONTROL COMMANDS SECTION

Rule

1. #CONTROL-CO MMANDS :

2. #ASSIGN-VALUE! basic-program = #CONTEXT-FREE-PARSE-

TR.EE( #GIVEN-PROGRAM , program)

3. #IF(~ basic-prograin~) is-context-free-syntactically-valid

4 . #THEN

5. #BEGIN “The following loop determines the execution

effects of each statement in the source program

text” .

6. #ASSIGN-VALUE! current-statement = #FIRST-ELEMENT-

sequence--of-statements-in(basic-prograrn )

7. #WHILE($current-statement~) is-not-stop-or-end #DO

8. - #COi~LPUTEt effect-of(current-sta-tement)

9. #END

10. #COMPUTE ! #STOP #.

A test program demonstrating the previous SEIvIANOL definition,

of the language used to write this program, is given below .

LET A = 1;

LET B = 2t

END

The reader “executing ” this test program must start with

the first control command , in the SEMANOL defini tion , whic h is,

“ASSIGN-VALUEs basic-program #CONTEXT-FREE-PARSE-TREE(#

GIVEN-PROGRAM,program). This command parses the, source progr am

text, using the context-free syntax section. The basic-program

resulting from this command is shown in Fig. 3. •The next con-
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• trol command “#IF(~basic-program$) is-context-free-syntactically-

valid #THEN”, verifies that a valid parse tree was obtained

from the previous command. A valid parse tree in the language

defini tion , will allow the execution of the following commands,
a loop delimited by “#BEGIN” and “#END” , which determines the

execution effects of the test program. The first command

within the loop is “#ASSIGN-VAL tJE! current-statement = #FIRST-

ELEMENT-IN sequence-of-statements-in(basic-program)”. This

command takes the first available statement from the source

program text (LET A = 1) assigns it to current-statement and then

deletes it from the source program text. The test program now

looks like

- • L E T B = 2 ;

- - END

The “# HILE(~ current-statement~) is-not-stop-or-end #DO”

command is execute , verifying that the entire source program

has not been executed. If the current statement is not a “stop”

or an “ end” statement the “#COMPUTE effect-of(current-state-

men-t)” command is executed. The “meaning” of “effect-of” i~
defined in the fourth defini tion in the semantic section(page 2 9) .

Essentially , the value “1” is assigned to A. The next control

command executed is the first one in the loop , “ASSIGN-VALUE!

current-statement = #FIRST-ELEMENT-IN sequence -of statements -

in(basi-program)” . This time “LET B = 2” is assigned to the

current statement. The loop continues until a “stop” or “ end”

statement is obtained in the current statement. - When the “end”
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statement in the test program is reached the effects of

executing the test program will hav~ been realized.

This chapter defined the SEMANOL formal definition tech-

nique , and provided a simplistic example of a SEMANOL descrip-

tion of a language.

With a brief intro duc tion to SENANOL comp lete, the process

of examining the Vienna Definition Language(VDL) can begin.

The followin g chapter, chapter V , provides a brief introduction

to IBM ’s Vienna Definition Language .
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V The Vienna Definition Language

Background

The Vienna Definition Language(VDL) is a product of re-

search conducted in the late 1960’s at IBM ’s laboratory in

Vienna, Austria. The objective of the research was to develop

a technique to pro duce a formal definition of Programmin g

Language I(PL/I). The developed technique was to be capable

of defining a programming language(syntax and semantics)

without ambiguity, with the ultimate goal of standardizating

the defined language.

Me thodology

The Vienna Definition Language is an interpre ter oriented

programming ‘anguage capable of defining programming languages.

The VDL definition process utilizes three abstract machines, an

ANALYZER , a TRANSLATOR , and an INTERPRETER .

A source program is not interpreted directly , but prepro-

cessed by the ANALYZER and the TRANSLATOR . This preprocessing,

similar to SEMANOL ’s lexical analysis, context-free syntax

parse , and the context-sensitive syntax tests, translates the

source program into an abstract object representation that is

ready for interpretation. The goal of this chapter is to

present a brief informal introduction to the Vienna Definition

Language , covering the data structure the language manipulates,

and how the semantics of a program are defined (Ref 3;5~6;12)
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The Meta-language

The Vienna Definition language defines the semantics of a

program by manipulating the data structure, a tree , that rep-

resents the source program. This tree manipulation is accom-

plished with operators that select tree components , construct

new trees , and assign new values to r~odes of existing trees(Re±’ 5).

A sourc e pro gram ready for interpre tation is represented

by abstract data objects. There are two classes of data objects:

elementary objects, having no components and represented by

terminal nodes on a tree; and composite objects composed of a

finite number of data objects, and represen ted by nonterminal

nodes on a tree. An elementary object “E” is shown in Fig. 4’,

and a composite object “Cl” is shown in Fig. 5.

A very important feature of the “Vienna tree” is that each

• branch(a connector and a node, coming from a node) is labeled.

The labeling of each branch allows one to represent an entire

tree with a set of “selector-object” pairs such as <S1:E1>.

The selec tor pair “~Sl :E1> indica tes that Si is the selector of

object El , as shown in Fig. 5. The object E2 in Fig. 5 would

be selected with <S1:(<32:Ci>)>, where <32:Cl> indicates object

C2 and then <S1:C2> selects object E2. The Vienna tree depicted

in Fig. 5 is represented by expression 1.

Cl = (<SliEl> , (<S2:(<51 zE2>, <S2:E3>)>),<33:Ek>) (1)

Every branch emanating from the same node mus t have a unique

label , and selecting a branch which does not exist(selecting Sk

of node Cl) yields the null object.
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• The Vienna Definition Language operators, described below ,

manipulate the Vienna tree. There are three basic catagories

of operators in the VDL, the construction operator u0, the

mutation or assignmen t opera tor u, and relational operators.

The cons truction operator u0 allows one to “build” a

Vienna tree . An example of the cons truc tion operator in opera-

tion is expression 2.

u0kSl:El> , ( <S2:(<Sl :E2> , <32:E3>)>), <33:E4>) (2)

The execution of expression 2 results in the creation of the

Vienna tree specified in Fig. 5. Thus the construction opera-

tor , u0, is used to build new objects.

The mutation or assignment operator u is used to modify

• existing objects. An example of the mutation operator ’s

capability is demonstrated with expression 3.

-.

C2

E/ E2/ NE)

Pig . 4. Elementary Object Fig . 5. Composite Object
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• u (Cl:’~Sl:EO>) (3)

Expression 3 results in a mutation of object  Cl ;

branch Si, if existent, is deleted , and a new branch Si with

an object E0 is added. Applying expression 3 to Fig. 5

results in a modified tree, shown in Fig . 6.

The relational operators, predicates, are used to iden-

tify different sets of objects. A predicate can be regarded

as the name of an object set. The value of a predicate is

either TRUE or FALSE . An example of a predicate is “IS-DIGIT”

which identifies the set of digits. The predicate “IS-DIGIT”

is defined in expression 4.

IS-DIGIT = 1  v 2 v 3 v 4 v 5 v 6 v 7 v 8 v 9 v O  (4)

where “v” signifies a logical exclusive or condition.

Applying “IS-DIGIT” to any digit would yield the value TRUE.

£2 E3 
-

Fig. 6. Modified composite object
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Conditional expressions are an example of how predica tes

can be used. Conditional expressions in the VDL have a format

speci fied in expression 5.

P1 El, P2 -
~ E2 , .. ., Pri -

~ En (5)

where P1 is a predica te , and Ei is an expression defining

the action to be taken or a value . The value of a conditional

expression is the value of the first Ei for which Pi was

true . If no predicate in the conditional expression is true

then the value of the conditional expression is undefined.

An example of a conditional expression defining the logical

“AND” operation is given in expression 6.

- 
- 

A AND B = (A=0 -. 0 , T 
~~~) 

(6)

To obtain a value of “1” for this conditional expression

“A” would have to equal “1” , and “B” woul d have to equal “ 1” .

If “A = 0” then the value of the expression must be “0” . If

“A = 0” the first predicate (A=0 ) is true and the value of —

the expression is “0” . If “A = 1” then the first predicate

is false and the second predicate is tested. In this defini-

tion the second predicate is defined as always being true.

Therefore ~if “A = 1” the value of the conditional expression

is equal to the value of “B” • Thus, if “A = 1” and “B = 0”.

the value of the conditional expression would be “0” , if

“A = 1” and “B = 1” , the value would be “1” .

There is another set of operators in the VDL , however ,

these operators are better classified as elementary functions .

- 

- 
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Elementary functions are used in dealing with objects that

represent lists. A list is defined to be a string of N

objects ( none null ) selected by <n :O> where 1 < i-i < N. A

program is an example of a list in which each element is a

statement. Elements in a list are selected by a selector

sometimes identified by elem(n). Elementary functions used

in VDL are :

LENGTH(L ) = to tal number of elements in the list;

}tEAD(L) = object selected from a list when n = 1;

TAIL(L) = a list of objects selected from the original

(before this function is executed) list with the original first

item(item selected when n = 1) missing. The TAIL(L) will be

a list with a length equal to- the original length minus one;

La Lb = conc atenation of two lis ts La and Lb to form

a single list.

The “L” in the above functions specifies the list currently

being operated upon(Ref 3;5;12).

Having covered the Vienna tree , the operatore used to

manipula te the Vienna tree , and elementary func tions , one is

now ready for a brief informal introduction on how a program-

ming language is defined.

The source program , as written by the pro grammer , is
not in the proper form to be interpreted by the VDL interpreter .

The VDL interpreter does not operate on program strings , but

operates on objects of a Vienna tree . Therefore , the source

must be transformed into an abstract form before its semantics

can be defined. Transforming the source program is accomplished
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by two abstract machines, the ANALYZER , arid the TRANSLATOR .

The ANALYZER modifies the program~iers source text by

verifying that the program text is syntactically(context-

free) correct. This is accomplished by coz~iparing the source

program text with a context-free syntax specification for

the language being defined. A program failing any test is

left undefined, that is no attempt is made to determine the

meaning , semantics , of the program. A source program with

correct context-free syntax is then parsed. The parsed text

is represented with selector-object pairs, described on page

35. The parsed text is then processed by -th e TRANSLATOR .

The TRANSLATOR performs a series of context-sensitive

Syntax tests on the parsed text supplied by the ANALYZER .

- - 
- The TRANSLATOR also implements some of the affects of certain

statements . Types of statements whose affects are implemented

by the TRANSLATOR are FORTRAN “explicit type declaration”

stat* -

-

~-rits. A FORTRAN program with a statement “REAL 1”

would, c ..se the TRANSLATOR to locate the variable “I” and

change its attributes, causing “I” to be classified as a

real variable.

The output of the TRANSLATOR is a parsed text with correct

Context-free and context-sensitive syntax . This output text

is now in the proper forma t to be processed by the INTERPRETER .

The VDL technique of defIning the semantics of a program

involves starting in an initial state and changing states

until a final s-tate has been reached. This process is

handled by the VDL INTERPRETER . The VDL INTERPRETER is based

- 

- 
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on the concept of machine states and state transformations.

A state is represented as a composite object(a Vienna

tree). The components that compose a state vary with the

language being defined. For this introduction a simple state

like the state presented in Ref 3 will be described. A state

composed of three components, an abstract program , a control

object, and a storage object is shown in Fig. 7.

The program object, in Fig. 7, is the parsed text of the

abstrac t pro gram , provided by the TRANSLATOR , and ready to

be interpreted. The control object defines which transfortna-

tions are to be performed. The control object is a composite

object whose elementary objects are instructions waiting to

be executed. Once an instruction is executed it is erased

• from the control tree. When all -the instructions have been

removed from the control tree , the final state has been

achieve d, and the interpretation is completed. An example

of state transformations is given below.

Memory(storage ) can be looked upon as three symbol tables,

PROGRAM CONTROL STORE

Pig . 7. A Machine State
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the environment, the denotation, and the attribute tables(Ref 5).

The first table, the environment table, identifies a machine

location for every source program identifier. This location

contains the value of the identifier. The second table, the

deno tation table , makes sure that the machine location

contains the proper value at all times. The third table,

the attribute table, identifies the -type(in-teger , real , etc.)

of value identified with each machine location specified in

the environmen t table(Ref 5).

The semantics of a program are described by state trans-

formations . The process of state transformation is performed

by the VDL INTERPRETER . The initial state contains a control

object with a complete list of the program instructions to

be executed . As a program instruction is executed it is re-

moved from the control object thus- transforming the state .

When the control object is empty the final state has been

achieved . These transformations of the control object are

accomplis hed by two types of VDL ins truc tions , self-replacing

and value-returning instructions.

Self-replacing instruction are instructions which replace

themselves with a subtree of ins truc tions , similar to macro

substitutions. An example of a self-replacing instruction

is the VDL instruction “VALUE (arg) , (when arg is an expression .

VALUE(arg) is the name given to a computed value . The commands

required to obtain the value of the current source program

expression will replace the single instruction VALUE(arg).

The value-returning instruction is the second type of

42 -
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VDL instruction. The actual semantics of a program, -the

actual state transformations, are defined by value-returning

instructions. Value re-turning instructions delete the current

node being executed from the control tree and pass the computed

value -to ancestor nodes that reference the just computed value.

The VDL ins truc tion “VALUE(arg)” with the arg equal to a

constant is a value-returning instruction.

Execution

An exercise t94 illustrate self-replacing and value-returning

instructions and /0 show the transformation of a control tree,

due to the evalua4tion of one expression “5-3+1” , is now given.

The exercise begins with one object in the control tree, the

VDL ins truc tion “EVAL-.EXPR(arg)”, shown in Fig. 8 (s-c is the

selector name for the control object). EVAL-EXPl~(arg) is a

self-replacing instruction, therefore, executing EVAL-EXPR(arg)

changes the control tree, Fig. 9. The control tree in Fig. 9

has a terminal node of “S:VALUE(A)” , this instruction is

dependent on its argument as to wether it is a value-returning

or self-replacing instruction. The INTERPRETER decides based

/

EVAL-~XPR(p) s :va lue(a)

Pig . 8. A control -tree. Fig. 9. A control tree

• 
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• 

on the following rule.

VALUE(arg) = IS-BINARY APPLY (a,b,S-OP(A)

a: VALUE (S i (A ) )
b x VA LUE ( S 2 ( A ) )

IS-CONST PASS A

where

APPLY(valuel,value2,op) = op=”+” PASS valuel + value2

-* PASS value l - value2
An instruction of the form X:VALUE(Y) means the value calculated

by VALUE(Y) is assigned to X. The VDL command PASS returns

a value to VALUE(A). At present the argument for the

“VALUE(A)” instruction is binary(5-3+1), so this instruction

• 
- is self-replacing, as shown in Fig. 10. Any terminal node

- • on a control tree may be executed for the purpose of illus-

trating the self-replacing instructions, and then the value-

replacing instructions, the left most -terminal node , will b~

S

s—c -

szapply(a ,b , ”+”)

azva] .ue(sl(p))  b~ va lue (s2(p) )

Pig. 10. A control tree

• 44

- 

~~~~~~~~~~~~~~~~~~~ 

- _ . .~~~~~• -._—Ii i



examined next. Executing “a:VALUE(Sl(p))” which has a binary

argwnent(5-3) results in another self-replacement that

produces the control tree in Fig. 11. Execution of any

terminal node in Fig. 11 would demonstrate the value-

returning instruction. Executing the left most node
N x:VALUE ( S 1(p) )~f , produces -the control tree in Fig . 12.

No te the node is removed ax-id the value passed to preceedirig

node s that reference “x ” . To demonstrate the point that any

terminal node can be executed , the righ t most terminal node

will be executed next. This is another value-returning

ins truc tion , and the result of the execution is shown in Fig. 13.

The control tree is Fig. 13 has only one terminal node to

execute . Execution of this node leads to the control tree

in Fig. 1~~. Execution of the terminal node in Fig. 14 leads

to the control tree in Fig . 15, and execution of the terminal

S

- 
s-c

s:apply(a ,b,  
~
+ ‘)

azapply(x ,y,”-”)
b svalue(s3(p))

x :value (sl (p)) y:value(s2(p))

Pig. 11. A control tree
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S

s-c

s:apply(a,b, “ + “ )

a:apply(5,y,”-”) 

<
~~~~~~~

ue(s3(P))

y:value(s2(p) )

Fig. 12. A control tree

S

8-c

,s:apply(a, 1, “+“)

- 

~~~~~~~~ly (5 , y , ” -”) 

-

y:value(s2 (p))

Pig. 13. A control tree
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S

s-c

I 
s:apply(a,1,”+”)

• / s-c

/ -, 
a :apply(5,3, ” — ”)  

- _________________________

Fig. 14. A control tree Fig. 15. A control tree

node in the control tree in Fig. 15 calculates the sum of

“2 + 1” and produces an empty control tree. An emp ty control

tree signifies the final state, thereby signifying a successful

statement evaluation.

The above exercise demonstrated how state transformations

occur since each different control tree represents a seperate

state. This exercise also illustrated how conditional state-

ments are use d in defini ng the VDL abstrac t machines , which

will be illustrated again in the example at the end of this

chapter.

The relationship between each of the three abstract

- machines is illustrated in Fig. 16. This completes the exam-

ination of the indivi dual componen ts of a VDL defini tion .

Sewing all the components of a VDL definition together

is accomplished by a definition of the same program and lan-

guage ASL presented in chapter IV. The language consists of
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I Concrete
~text

~~~
TZER ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

parsed 
-

text ~Jimplicit
- linformation

TRA NALATOR

‘I, __________________________

abs-tract syntax of
text abstract text

• _ _ _  

_ _

~~ TERPRETER 
~data1

[results instruction
function
definitions

Fig. 16. The language defini tion machine (Ref 12 ,Fig. 5.6)

assi gnment statements, a stop statement, and an end statement.

Each statement except the end statement is terminated with a

semi—colon. The format of the assignment statement consists

of “LET” followed by a single alphabetic character(A, B, or C)

then “ =“ followed by an unsigned integer constant(LET A3).

The test program is

LET A~~~ 1:

L E T B 2;

END 
-

- - 4-’ - -  
_a 
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The ANALYZER is the first machine to process the test

program. The ANALYZER checks the context-free syntax of the

test program according to the following rules.

IS-PROGRAM = (Si :IS-STMT-LIST, S2 :IS-END),

IS-STMT-LIST = (<S-DEL:IS-;> , <S1:IS-STMT>,...),

IS-STMT = IS-ASMT-STMT v IS-STOP,

I5-ASMT-STMT = S1:IS-LET, S2:IS-LETTER , S3~IS- ,

S4~IS-INT-CONST,

IS-LETTER = IS-A v IS-B v IS-C ,

IS-INT-CONST = IS-i v IS-2 v 13-3 v IS-I-i- v IS-S v IS-6 v

15-7 v IS-8 v IS-9 v IS-O ,

where (<S -DEL:IS- ;> ,<S1:IS-STMT> ) signifies that each state-
• ment terminates with a semi-colon.

With the test program as input to the ANALYZER the output

of the ANALYZER , a parsed text, is illustrated in Fig. 17.

-PROGRAM

S 1r~~—Q~
STMT-LIST

S -DEL

(1) ELEM( 2)
• STMT STMT

ASMT-ST MT-ST

Si S2 S3 S4 Si S S3 S4 ,

LET A :1  LET B = 2 ’

• Fig. 17. The ANALYZER output. 
-
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The parsed text from the ANALYZER is then passed to the

TRANSLATOR for context-sensitive testing. The set of

conditional statements defining the TRANSLATOR for the test

language is given below with comments in quotation marks.

The argument “p” represents the parsed program text inputed

to the TRANSLATOR .

TRANSLATE(p) = program-length(p) < max-program-length —

TRANS-STMT-LIST(p)

TRUE ERROR “program too long”

TRAN S-STMT-LIST (p) = LENGTH(p ) = 0 -. ~ “if there are

no statements length(p) = 0 returns empty set ~~~~~
“

TRUE -. uo(C<elein(i) :TRANSLATE-ASSIGN-

MENT(Si( p )) > U 1 ~ LENGTH(pfl)

- - TRANSLA TE-ASSIGNMENT(p) = TRUE uo(<targetzMAKE-ID(S1(p))>,

- <source ~MAKE-INT-CONST(p)>)

MAKE-ID(p) = length of ID ~ max-ID-length 
-

~ LETTER (p )

TRUE -. ERROR “ID is too long”

LETTER(p) = IS-A(p) -~ A

IS-B(p) B

IS-C(p) -
~~ C

MAKE-INT-CONST(p) = VALU .E—INT-CONST (p) ~ max-value

VALUE-INT-CONST(p)

TRUE ERROR “integer constant too big”

VALUE-OF-INT -CONST(p) = 13-1(p) 1

13—2(p) 2

18-3(p) 3 
-

IS_A1.(p) 4 -

• 50



I S-5(p)  - 5

IS-6(p) — 6

I S— 7 (p)  — 7

13-8(p) — 8

13-9(p) — 9

IS-O(p) -. 0

The implementation restriction listed above max-program-

length, max-ID-length, and max-value are user defined. The

output of the TRANSLATOR is an abstract parsed program text,

illustrated in Fig. 18. -

The abstract program text produced by the TRANSLATOR is

now ready -to be interpreted , ( have its semantics defined).

• The interpretation process involves changing states through

changes in the control tree , as shown earlier. The argument

“p” in . the rules which define the INTERPRETER represents the

abstract program manipulated by the INTERPRETER . The rules

that define the INTERPRETER for the test language are:

PROGRAM

ELEM(1) ELEM(2)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-

Fig. 18. Translator output
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INTERPRET-STATE~~NT-LI3T(p) = IS- — NULL “if no statements

do nothing”

TRUE — INTERPRET-STATEi~iENT-LIST( TAIL(p));

INT ERPRET-STAT ENENT(H EAD (p))

“look at the control object as a LIFO stack, the head of the

program(the first statement) is the first instruction to be

processed.”

INTERPRET-STATEI”iENT(p) = IS-ASMT(p) — INTERPRET-ASSIGNNENT(p)

INT .ERPRET -ASSIGNMENT (p) = ASSIGN( target(p), VALUE);

VALUE: EVAL-EXPR(source(~,j)

EVAL-EXPR(p) = I3-VALUE (p) — PASS:p

ASSIGN(target,VALUE) = u(store(state-s): target:VALUE)

• The above defined INTERPRETER is ready -to process the

abstract program provided by the TRANSLATOR . The INTERPRETER

-
- executes the statements in the con trol objec t beginning in

an initial state and finishing in a final state(an empty control

object).

The initial state for the test program is shown in Fig. 19

In Fig. 19 the program is the abstract program, the control

object and the storage object are predefined for the initial

state • Rather than redraw the entire s-tate for each state

transition only the control tree will be shown until the source

program is completely interpreted, then the entire state will
4- be shown . The terminal node of the con trol tree in the ini tial

S tate is a self-replacing instruction “INTERPRET-STATE MENT-

LIST” , the execution of which leads to the next state , Fig . 20.
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SO

PROGRA M \\\
- 

\ 
\STORAGE

CONTROL

ELEM(1) EI,EM(2)

target source~~~
’
~~

t 
source I ERPIIET NULL

Fig. 19. The initial state.

S -

s-c

I ‘4NTERPRET-STATEMENT-
LIST(TAIL(p))

~INTERP RET-STATEMENT (HEAD(p))

Fig . 20 The control object for the first state •
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Execution of the terminal node of the control tree of the

first state, Fig. 20, leads to the second state shown in

Fig. 21. The terminal node of the control tree for the second

state contains another self-replacing instruction, the

interpretation of which leads to state three in Fig. 22.

The terminal node of the control tree for the third state

contains a value-replacing instruction, whose execution leads

-to the fourth state, Fig. 23. Execution of the terminal node

in Fig. 23 leads to state five, Fig.24, and the storage has

changed from NULL to the storage shown in Fig. 25. Executing

the control object in state five will initiate the same

process again because the next statement is also an assignment

statement. The final state of -the interpretation is shown

in Fig. 26. Note that in the final state the control object

is always NULL.

This chapter has presented a brief informal, description

of the Vienna Definition Language , and has presented an

example which shows how a test program is processed by a VDL

language definition.

di-th a brief introduction to the VDL complete, the process

of examining BASIS/1-12 can begin . The following chapter ,

chapter VI, provides a brief introduction to IBM ’s BASIS/1-12

technique.
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S

- (INTERPRET -STATEMENT-
LIST(TAIL( p ) )

• INTERPRET-ASSIGN MENT(p)

Fig. 21. The control object  for the second state

S

~4NTERPRET - STATEMENT -LIST (TAIL (p))

ASSIGN( target(p ) ,VAL UE )

VALUE :EVAL-EXPR(source(p))

Fig. 22. The control object for the third state

• S

INTERPRET-STATEMENT-
- I • LIST(TAIL(p))

- 

ASSIGN(target(p),1)

Pig . 23. The control object for the fourth state -

• 5-5
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S

.~cNTERPRET - STATEMENT -
LI ST ( TA IL (p ) )

Fig. 24. The control object for the fifth state

~~~~~~~ 0 A G E

Fig. 25. The storage object for the f i f th state

• 
- 

S-FINAL

PROGRAM STORAGE

CONTROL

ELEM(1) LEM(2) NULL
A

targe t 
- target source I 

• 

2

source -

A 1 
-

Fig. 26. The final state 
-
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- VI BASIS/1-12

Background

Research conducted at IBM laboratories in liursley, England

resulted in a semi-formal language definition technique

known as BASIS/1-12. Personnel at the Mursley laboratories

prefered a semi-formal approach for language definition

techniques rather than the formal approach persued by the

Vienna laboratories in -their development of the Vienna Defini-

tion Language(VDL). BASIS/1-12, though semi-formal , is very

similar to VDI- in that the same concepts of abstract machines,

state transformations, and an abs-tract representation of the

source program are used. BASIS/1-12 is semi-formal because

state transformations are defined with operations written in

• English prose. On August 9, 1976, the BASIS/1-12 definition

of FL/I was used by the American National Standards Institute

(ANSI) in establishing a national standard for the programming

language .

This chapter contains a brief look at the BASIS/1-12

technique, consisting of a brief summary of “The Definition

Mechanism For Standard FL/I” -by Marcotty and Sayward(Ref 16)

and an example of the technique defining the assignment state-

ment language(ASL), presented in chapter IV.

Methodology -

The BASIS/1-12 technique of defining a programming lan-

guage appears to be a combination of SEMANOL , presented in
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chapter IV , and the Vienna Definition Language(VDL), presented

in chapter V.

The concept of machine state and state transformations

are utilized, as in the VDL, and the semantics are defined

with algorithms, as in SEMANOL . However the algorithms in

BASIS/1-i2 are written in English. Therefore BASIS/t-12

appears to be more closely related to the VDL. The basic

machine state of BASIS/1-i2 and the VDL are identical, each

containing information that controls the machines operations ,

the program being defined , and the values of variables and

data required by the source program being defined. The BASIS/1-12

machine state, though represented as a tree, is not represented

- as a “Vienna tree” , i.e. the branches are not labeled,

The Me ta—lang-uage

The details of the BASIS/1-12 technique will be covered

in the following orders the structure of the BASIS/i-12 machine

state ; the instructions used to manipulate the machine state ;

the BASIS/1—12 abstract machines; and the structure of the

algorithms used to “operate” the machine.

The structure of the data manipulated by the BASIS/1-12

machine is that of a tree . The “BASIS/ 1-12 tree ” has a unique

feature in which each node of the tree has a unique name,

allowing each node to be referenced. This feature is illus-

trated in Fig. 27. The node contents of Fig. 27 are represented

by alphabetic charac ters , and the unique node names are rep-

resented by digits. -Nhile the corrtents of several nodes may
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Fig . 27. The BASIS/1-12 tree

be identical a node ’s name is unique . Nodes “2” and “4”

have -the same content in Fig. 27. A term assiciated with

the tree struc ture is “the son of a node” . In Fig. 27 a son

of node “1” is either node “2” , “3” , or “L ~” , that is the son

of a node is an immediate component of that node .

• Throughout the definition the source program is maintained

as part of the machine state. The source program is in the

form of a tree with the appropriate syntax rules governing

-the structure of the tree. During the definition the source

pro gram is firs t a “charac ter ” program in which all the char-

acters of the source program form the terminal nodes of the

tree . The “charac ter ” progr am is then transform ed into an

“abstract” program in which only abstract objects form the

terminal nodes of a tree.

Another feature of the “BASIS/l-lZ tree” is the “designator

node” . Related to the unique name concept, -the designator

node is a node which refers or points to another node. An

example of a designator node is the <TYPE-DESIGNATOR> node

in Fig . 28. The arrow in Fig. 28 is added to demonstrate the

meaning of a designator node . -
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<PROGRAM>

_ _ _ _  

I
<TYPE> <STATEMENT-LIST>

I I
<VARIABLE> <VARIABLE - TYPE> <EXPRESSI ON>

<VARIABLE> + <INTEGER>

<TYPE-DESIGNATOR>

Fig. 28. The BASIS/1—12 designator node

Instead of drawing out a tree every time a tree structure

is being refered to , an indentation notation is used. The

indentation format involves listing a root node of a tree and

below it, indented equally, the sons of the root node. For

example , the tree in Fig. 31 (page 63)  would be represented

as

<A>

<B>

<A>

<C>

The indentation notation proves to be very useful when specifying

new tree structures. - -

- 

• 
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The basic structure of the machine state, the BASIS/1-12

tree, has been described above , now the instruction used to

manipulate this structure will be defined.

Execution

The syntax and semantics of a source program are defined

by manipulating the machine state. The instructions used to

manipulate the tree are used directly in the algorithm.

These manipulation instructions fall into two basic catagories:

those whose eff~cts depend on the tree structure(syntax) of

the defined program and those whose effect do no depend on

the syntax of the defined program .

There are two instructions that depend on the syntax of

the defined program: the ATTACH and DELETE instructions. The

ATTACH instruction attaches a specified tree to a specified

node , inserting the proper nodes to make the attachment

syntactically valid. Using the two syntax rules below:

<Z> zz= A I A<B>

<B> s: X I Y

the command

ATTACH X to N
where N is the unique name of the node whose content is Z in

Fig. 29. Results in the tree structure presented in Fig. 30.

Node N2 in Fig. 30 was inserted to make the structure of the

-tree(the syntax) valid.

The other instruction whose effect is dependent on the

structure of the tree is the DELETE instruction. The DELETE

61 
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Fig. 29. The ~riginai n~~e :;

~~N1 N2

~~ N3

Fig. 30. The redefined node N

instruction causes the designated node and its associated tree

(-the designated node is the root node of its associated tree)

to be deleted. If the tree remaining after the specified

deletions have been made is not valid then other nodes, as

required to make the tree valid are deleted.

The effects of the remaining three instructions, LET ,

REPLACE , and APPEND do not depend on the tree structure.

The LET instruction makes a local variable designate an

existing tree. The LET instruction below

LET L be

<A> 
-

<B> -
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specifies the local variable “L” as designating the entire

tree in rig.  30.

The REPLAC E instruction replaces a specific tree with

another tree designated by a local variable. The format of

the REPLACE statement is

REPLACE A designated by Ni by a copy of 1

Execution of this statement using the trees in Fig. 27 and

Fig. 30 results in the tree in Fig. 31. Note th~.t the unique

name of the root node of the tree to be replaced now becomes

the unique name of the root node of the new tree.

The last tree manipulation instruction is the APPEND

instruction. “The APPEND instruction attaches a tree to the

rightmost element of a list.”

— The above five commands are used throughout the RAsIs/1-12

definition to manipulate the machine state into reflecting

changes caused by the “ execution” of the source program. The

framework from which the tree s truc ture is manipula ted , the

abstract machine , is defined below .

BASIS/1-12 is an interpreter-oriented technique utilizing

Fig. 31. The modified node N
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an abstract machine. The abstract machine can be defined as

the combination of three abstract machines : an ANALYZER , a

TRANSLATOR , and an INTERPRETER .

The ANALYZER takes the string representation of the source

program, removes the blanks from the program , and parses the

program according to the syntax rules of the defined language .

The output of the ANALYZER is the parsed source program in

tree form, with the characters of the source program as the

terminal nodes of the tree .

The TRANSLATOR takes the output of the ANALYZER , performs

context-sensitive tests, removes any characters associated

with the string structure of the program (e.g. parenthesis,

semi-colons, etc.), and then outputs an abstract program, a

simplified version of the source program. The abstract pro-

is also represented by a tree structure.

The final process involves the INTERPRETER . The INTERPRETER

“executes” the abstract program, changing machine states as

it responds to the syntax and semantic definitions being

utilized . The output of the INTERPRETER is the set of machine

states generated and the output file generated by the ‘exection ”

of the source program.

The interface between each machine is shown in Fig. 32.

When it is not important tQ distinguish between these

machines they will be considered as one machine.

With the BASIS/1-12 machine defined, the operations per-

formed in defining a source program can now be defined. Only

the operations utilized in the example at the end of this

- _ t  “~



source
progr am 1

I4NALYZER

- 
—. syntax and

I TRANSLATOR~~ 
semantics of the j

_ _ _ _ _ _ _ _ _  )~
defined languagej

- 

En /input ‘ INTERPRETER
data

output
file

- (results )

Fig. 32. The language definition machine

chapter will be described.

The BASIS/1-12 machine state is manipulated and thus

transformed by a set of operations. These operations use a

small set of data manipulating instructions, enabling one to

referenc e specific nodes on a tree , cons truc t new temporar y
trees, manipulate trees, do arithmetic, and establish local

variables. -Operations also have the capability of calling

other operations. Calling an operation causes that operation

to be placed at the rightmost node of the operations tree;

thus, making it the current operation. The operation in

- 
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control of the BASIS/1-12 machine is the rightmost operation

of the operations tree, if there are two operations trees

the rightmost tree is executed first. Upon completion an

operation is deleted from the operations tree, and con tro l

returned to the new rightmost operation.

An operation always begins with the word “OPERATION”

followed by the name of the operation. The body of the

operation consists of steps and cases. Steps in the operation

are executed either sequentially , conditionally, or iteratively ,

while the cases are mutually exclusive. An operation consisting

of cases must have at least one case satisfied, or the opera-

tion is undefined(similar to the conditional statements in

the VDL).

Instruc-tions(steps) in the operations are executed sequen-

tially , however, there are instructions that alter the flow

of control . Control altering instructions presented are:

GO TO, FOR EACH, PERFORM, and RETURN instructions.

The GO TO ins truc tion trans fers contro l to another step
within the operation. The FOR EACH instruction causes a series

of instructions to be executed once for every item specified

in the FOR EACH statement . The PERFORM instruction “calls ”

another opera tion , there by, transfering con trol to the calle d

operation . The RETURN instruction returns control to the op-

eration that called the current operation . Control is transfered

to the step following the PERFORM instruction in the calling

operation . -

The operations used in BASIS/1-12 are straightforward,
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easy to follow, and several operations are demonstrated at

the end of this chapter.

An example of how to follow the flow of control between

operations is given below, The two sample operations are:

OPERATION: OP1

- STEP 1. PERFORM 0P2

STEP 2. PERFORM 0P3

.

OPERATION: OP2

The first step of operation OPi, “PERFORMOP2” , transfers control

to 0P2. Therefore , the reader should “leave” 0P1 at step 1

and execute 0P2. After 0P2 is executed the reader should return

to OP1 at the step after the respective “PERFORM” step, in

this case the reader returns to step 2.

Along with the flow of control the reader must also

keep track of local variables. The basic purpose of local

variables is demonstrated by the ANALYZE-PARSE operation.

Step 1 of the ANALYZE-PARSE operation is “Obtain a source pro-

gram the structure of which is a character list, cl. ” At this

point the source program is assigned the name ci. ghen a local

variable is used in parenthesis it is used as a parameter.

Step 2 of the ANALYZE-PARSE operation is “PERFORM PARSE(cl)

to get pro gram , cp.” In step 2 “ci” is use d as a parame ter

for the PARSE operation, that is, the PARSE operation will

operate on ci. The result of the PARSE operation, a parse d
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program , is then given the name cp. Referencing the parsed

program is accomplished by using the local variable cp. The

reader is now prepared to follow the example below.

The following is a very simple example of a BASIS/1-12

language definition for the test language ASL presented in

chapter IV. The test language consists of assignment state-

ments, a stop statement, and an end statement. Each statement

except the end statement is terminated with a semi-colon.

The format of the assignment statement consists of “LET”

followed by a single alphabetic character(A , B, or C) then

“ =“ followed by an unsigned integer constant(LET A = 3). The

test program is

LETA 1;

LETB 2; -

END

The ini tial state of the BASIS/1-12 machine is illustrated

in Fig. 33. The trees illustrated in this example will have

only the unique names of nodes which are referenced. It is

important to remember that every node has a unique name .

- 

M2 
_ _ _ _ _ _ _ _ _ _  

M~
~~~~GRAM ) (OPERA TIONSj (ANALYZE-PARSE)

( DEFINE-PROGRA~J

Fig . 33. The initial state -

- 
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The BASIS/1-12 machine is controlled by the rightmost

node of the operations tree. Examing the initial state(Fig. 33)

reveals that the rightmost node of the operations tree is

“DEFINE PROGRAM” . Therefore the operation DEFINE PROGRAM

will be executed next. The DEFINE PROGRAM operation consists

of three s teps 
-

OPERATION: DEFINE PROGRAM

STEP 1. PERFORM ANALYZE-PARSE

STEP 2. PERFORM TRANSLATE-PARSE

STEP 3. PERFORM INTERPRETATI ON

The execution of step 1 causes the ANALYZE-PARSE operation

to become the rightmost node of the operations tree and thus

in control. The effect of step 1 is illustrated in Fig. 31$..

: Before describing the ANALYZE-PARSE operation which performs

the initial parse on the source program, the syntax rules used

for the parse will be given. The context-free syntax checks

LPROGRAM) (OPERATIONS) (‘Ai ALYi~ \
‘~P~RS!_J

- 

(bEFIN~~\ ~4iALYZE ~ \
~ PROGRA~9 ~~ARSE _J

Fig . 3Z~. Step 1 of DEFINE —PROGRAM
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performed by the ANALYZE-PARSE operation are divided into two

leve ls, low and high level checks. The low level check verifies

that the characters in the source program are either words

or constants. The high level check verifies that the words

and constants make up a valid program. The low level syntax

rules for ASL are:

<TEXT> ::= <DELIMIT-PAIR><DELIIvIIT-PAIR>

<DELIMIT-PAIR> :: <~ORD><DELIMITER>

~DELIMITER> :: $ I = I

<~VORD> :: <LETTER> I <DIGI T> I LET I STOP I END

<LETTER> : : = A  I B I C

<DIGIT> ::= 1 I 2 3 I ~i. I 5 I 6 I 7 I 8 I 9 I 0

The meta-syinbol [] means zero or more repetitions of the con-

tents, while $ represents a blank. The high level syntax

rules for ASL are:

<PROGRAM> :: <STATEMENT-LIST>CSTOPJ END

<STATEMENT-LIST> : : = <STATEMENT-LIST><STATE MENT>

<STATEMENT> ::= <ASSIGNMENT-STATEMENT> I STOP
<ASSIGNMENT-STATEMENT> ::= <LETTER> = <DIGIT>

The two level syntax checks make it easier to remove the blanks

from the source language.

The operation currently in control is the ANALYZE-PARSE

operation. The operations ANALYZE-PARSE and PARSE are given

- 
- below . 

-

OPERATION z ANALYZE-PARSE

STEP 1. Obtain a source program the structtare of which

is a charac ter lis t,cl.

- 
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STEP 2. PERFORM PARSE(cl) to get program, op.

STEP 3. ATTACH cp to <ANALYZE-PARSE>.

OPERATION : PARSE(cl)

where: ci is a character list

result: a program

STEP 1. PER FORM low level parse(cl) to get a text, tx.

STEP 2. PERFORM high level parse(tx) to get a program, cp.

STEP 3. RETURN .

The two operations high and low level parse are not listed

because their effects are obvious. The result of the ANALYZE-

PARSE operation is a program with the blanks removed. The

result of ANALYZE-PARSE on the test program is illustrated in

Fig. 35. with its completion the ANALYZE-PARSE operation deletes

itself from the operations tree and returns control to DEFINE-

PROGRAM. The current location within DEFINE-PROGRAM is step

2; therefore, step 2 is executed. Step 2 of DEFINE-PROGRAM

is PERFORM TRANSLATE-PARSE, which causes the operation TRANSLATE-

PARSE to become the rightmost node of the operations tree and

therefore in control. The operation TRANSLATE-PARSE conducts

context-sensitive tests(not required for ASL), constructs the

abstract program, and changes the machine state to prepare

for the interpretation phase . Because context-sensitive test

are not required for ASL the TRANSLATE-PARSE operation consists

of only two steps, listed below. Step 1 creates the abstract

program while step 2 prepares the machine state for the inter-

phase . -
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(PRoGR~~I) (OPERATIONS) (ANALYZE’\
‘~ PARSEJ

(PEFINE-PROGRAM)
‘PROGRAM)

- 
STATEMENT-LIST (END

A ; L~~~~ L T .~
- 

_

STATEMENT ~STATEMENT

LETTER = DIGIT (LE T’TER) -= DI GIT

FIg. 35. The result of executing ANALYZE-PARSE

OPERATION : TRANSLATE-PHASE

STEP 1. PERFORM CREATE-ABSTRACT-PROGRAM .

STEP 2. DELETE the ANALYZE-P ARSE from the machine state.

The CREATE-ABSTRACT-PROGRAM operation consists of one step

and is self-explaining.

OPERATION: CREATE-ABSTRACT-PROGRAM

J E 2  : ,  ?OR ~~C-i ~rAri~z :rT , st
?~RF’ r~. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~ ~~~~~ 
- -~~ - -~~:~~ -r p.ratior ~~~~~~~ th• program

• - - •, - 
- j- ~

- - 
~~~~~~~~ ~p.rsti~ r~

_ 

- —

- 
_



STATE

- PROGRA M OPERATI ONS

(DEFINE-PROGRA~~)
STATEMENT-LIST END

STATEMEN T ~. $ TATEMENTJ

ASSIGNMENT (ASS IGNMEN~ \STATEMENT 1..~ TATEMEN T j

Fig . 36. The abstract assignment statements

is shown in Fig. 36. The CREATE-ABSTRACT-STATEMENT operation

removes the “LET” and the “ = ‘ from the assignment statements.

Note that the new assignment-statement tree in Fig. 36 was

specified in the indentation format in step 2 of the CREATE-

ABSTRACT-STATEMENT operation listed below .

OPERATION : CREATE-ABSTRACT-STATEMENT (cas)

where: cas is an assignment-statement

result: an abstract assignment-statement

STEP 1. LET L and D, be respectively , the sons of <LETTER>

and <DIGIT> of cas

STEP 2. RETURN an <assignment-statement>

<LETTER>
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Upon completion of the TRANSLATE-PARSE operation the rightmost

node of the operations tree is again DEFINE-PROGRAM . Step 3
of the DEFINE-PROGRAM operation is now in control . The

general format of the machine state during the interpreteation

phase is illustrated in Fig. 37.

The first operation executed in the interpretation phase

of the language definition is the INTERPRETATION operation

listed below. -

OPERATION: INTERPRETATION

STEP 1. LET std be a statement designator that specifies

the first element of statement-list of <PROGRAI~i> .

“In Fig.37 the STATEMENT-DESIGNATOR points to the node with

the unique name of “1” .

STEP 2. ATTACH to INTERPRETATION the tree

<PROGRAM-S TATE>

<STORAGE>

<DIRECTORY>

<CELLS>

<PROGRAM-CONTROL>

<std>

STEP 3. APPEND an operation for program execution to

<PROGRAM-CONTROL>

“Steps 2 and 3 added the entire PROGRAM-CONTROL tree shown

in Fig . 37. - Note that the rightmost operation node is now

the PROGRAM-EXECUTION node in the PROGRAM-CONTROL tree . The

operations in the PROGRAM-CONTROL tree will remain in control

until the interpretation is complete , then con~~ol transfers
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to the original operations tree. ~Jhen the original operations

tree is null the final state, indicating a successful inter-

pretation, has been achieved.

The oper ation curren tly in control , PROGRAM-EXECUTION ,

is listed below:

OPERATION : PROGRAM-EXECUTION

STEP 1. LET St be the <STATEMENT> designated by the

<STATEMENT-DESIGNATOR> of the <PROGRAM-STATE>.

STEP 2. PERFORM EXECUTE-ASSIGNMENT-STATEMENT( st)

STEP 3. GO TO STEP 1.

The above operation (PERFORM-EXECUTION) executes steps 1 and

2 until the entire source program has been “interpreted” ,

• then control passes to the operations tree on the machine state

where the final state is achieved.

• After execution of step 2 of PROGRAM-EXECUTION the machine

state is transformed. The new PROGRAM-CONTROL tree of the

machine state is shown in Fig. 38. Note that the EXECUTE-

ASSIGNMENT-STATEMENT operation is now in control. The

PROGRAM
CONTROL

STATEMENT OPERATIONS
DESIGNATOR

- PROGRAM EXECUTE
EXECUTI ON ASSIGN MEN T

Pig. 38. The new PRO GRAM-CONTROL tree
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EXECUTE-ASSIGNMENT-STATEMENT operation , listed below , identifies

each side of the abstract assignment statement, and then calls

upon the ASSIGN operation -to make the actual assignment.

OPERATION: EXECUTE-ASSIGNMENT-STATENENT( st)

where: st is an ASSIGNMENT-STATEMENT

STEP 1. LET D be the son of <DIGIT>.

STEP 2. LET L be the son of <LETTER>

PERFORM ASSIGN(L ,D).

STEP 3. PERFORM NORMAL-SEQUENCE.

After step 2 of the EXECUTE-ASSIGNMENT-STATEMENT operation

is executed , the PROGRAM-CONTROL tree of the machine state
• is changed(shown in Fig. 39). The ASSIGN operation, listed

below, is now in control. The first thing the ASSIGN opera-

tion must do is determine which storage cell has been saved

for the specific letter obtained from the left side of the

current assignment statement. This location is determined

by the EVALUATE-VALtJE-REFERENCE (L) operation. The first

(PROGRAiTh
\~~CONTROL J

(~TATSME~~~’~ ~à~ERATI ON~)\p~~I GNATORJ 

I ~~~~~~~~~~~~~~~~~
- (PROGRAi Th (EXECUTE ~\ (~~S IG~~

~~~~CUTI~~1 ( ASSIGNMENT )
‘~STA TEMENT I

Fig. 39. The PROG RAM-CON TOL tree - - - -

• 
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statement in the -test program has a left side consisting of

the letter “A” , Fig. 37 reveals that the designator for this

letter is “2” . Therefore, the EVALUATE-VALUE-REFERENCE opera-

tion, when in control, will return the value designator “2”

to the ASSIGN operation. The ASSIGN operation will then store

the value of the right side of the current assignment state-

ment into the storage cell reserved for the letter “A” .

The structure of the PROGRAM-CONTROL tree when the EVALUATE-

VALUE-REFERENCE operation is in control is illustrated in Fig. Li.O .

The structure of the PROGRAM-STATE after the ASSIGN operation

is complete is illustrated in Fig. ~1.1, note the value of “1”

has been stored in node “2” (the node reserved for the value

of the letter “A”).

~1ith the ASSIGN operation completed and deleted from the

PROGRAM-CONTROL -tree , control is re-turned to the EXECUTE-

ASSIGNMENT-.-STATEMENT( st) which immediately -transfers control

to the NORMAL-SEQUENCE operation , resulting in the PROGRAM-

CONTROL tree shown in Fig. Ls.2. The NORMAL-SEQUENCE operation,

(PROGRAM ~~\.~çONTROL J

TATEMENT COPE~ATI ONSJ

~~
?NA 

T~~~ 

~4 (EXE C TE (~A S IGN) VA LUA TE
- ELECUTI~~D ASSIGNMEN~~ (VALUE

\STATEMENT 
- 

REFERENCE

Fig . 14Q. The PROGRAM -CONTROL tree
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INTERPRETATI ON

PROGRAM-STATE

STORAG~J PROGRAM
CONTR OL

(DIREc T0RY) (~CELLS)
.-.- \ STATEMENT OPERATIONS

- — ~~~~ \ DESIGNA TOR
~~ALUE) ~~~~~~I I PROGRAM 

- 
EXECUTE

(NULLJ EXECUTION ASSIGNMENT
- STATEMENT /

Fig . ~1. The structure of the PROGRAM-STATE

PROGRAM
CONTROL

STATEMENT OPERATIONS
DESIGNATOR

EXECUTION (EXEcUTE~~~\ 
‘ASSIGN

Fig. Ll.2. The PROGRAM-CONTROL tree 
-

given below , advances the STATEMENT-DESIGNATOR . izi the

• PROGRAM-CONTROL tree, so that the designator node points to

the next statement to be interpreted. Examining Fig . 37
reveals that the next statement to be executed has a unique

name of “LI.” . Therefore, the <STATEMENT-DESIGNATOR> is updated

so that it points to node 4. The -result of the NORMAL-SEQUENCE

79 -
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operation is the PROGRAM-CONTROL tree shown in Fig. 43. Since

the second statement is also an assignment statement the entire

process begins again. However once the second statement is

INTERPRETATI ON -

PROGRAM
STATE

PROGRAM
CONTROL

STATEMENT (~~~~ k~TI ON$ J
DESI GNAT OR

~~XECUTIONJ

Fig. Ai.3 . The PROGRAM -C ONTROL tree

(~i4ACHI NE
~~~ STATE

PROGRAM ) t. INTE RPR ETATI ON)
- 

- 

(END ) LPROGRAMLSTA T~)

__________  
(STORA GE1

(STATEMENT ) (,~STATE MEN~J• (CELL sJ
(ASSIGNMENT~ (ASSIGNMEi~?\\$~AT.EMENT~J ~ STATEMENT~J

______  ____  _ _ _ _ _ _ _  ______  
LVALUE) 1~VALUE~

~ ETT~~ ~~I~ IT) ~LETTER) ( DIGIT)

• Pig . 44. The final machine state 
-
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interpreted -the interpretation is completed , the operations

tree is null, and the final machine state(Fig. 44) is achieved.

The operations involved in PROGRAM-EXECUTION and discussed

above are now listed sequentially so that the reader can

follow the process more easily.

OPERATION : PERFOR M-EXECUTION

STEP 1. LET St be the <STATEMENT> designated by the

<STATEMENT-DESIGNATOR> of the <PROGRAM-STATE>.

STEP 2. PERFORM EXECUTE-ASSIGNMENT-S TATEMENT ( st).

STEP 3. GOT O 1  
-

• OPERATION: EXECUTE-ASSIGNMENT-STATEMENT( st)

STEP 1. LET D be the son of <DIGIT>.

STEP 2. LET L be the son of <LETTER>

PERFORM ASSI GN (L ,D).

STEP 3. PERFORM NORMAL-SEQUENCE.

OPERATION: ASSIGN(L,D)

where L is a -~LETTER>

D is a <VALUE>

STEP 1. PERFORM EVALUATE-VALUE.-REFERENCE(L) to get a

<VALUE-DESIGNATOR>, vd.

• STEP 2. REPLACE the <VAL UE> designated by vd with a

copy of D.

OPERATION : EVALUATE-VALUE-REFERENCE(L)

where : L is a 4JETTER>

results a <VALUE-DESIGNATOR>

81.
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STEP 1. LET vd be a copy of the <VALUE-DESIGNATOR>

component of -the <DIRECTORY> that contains a

<LETTER> equal to L.

STEP 2. RETURN vd.

OPERATION: NORMAL-SEQUENCE

STEP 1 • LET sti be -the <STATEMENT-LIST>

LET et be the <STATEMENT> of stl that is

designated by the <3TATEi~iTNE-DESI GNATOR> , sd

of the <PROGRAM-STATE>.

STEP 2. LET sd designate the <STATEMENT> that immediately

follows St in s-ti .

This chapter has presented a brief informal introducti3n

to BASIS/1-12, a semi-formal definition technique.

The following chapter presents the cataloguing criteria

developed in chapter II along with the results of applying

this criteria to SEMANOL, the Vienna Definition Language, and

BASIS/i- 12
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VII Cataloguing

The goal of -this chapter is to take the cataloguing

criteria, established in chapter II, and apply each question

to the formal and semi-formal language definition techniques

(SEMANOL , V-DL, and BASIS/1-12) discussed in chapters IV , V .

and VI. The method used in cataloguing -the definition tech-

niques consists of listing the questions of the cataloguing

criteria followed by the “answers ” for each technique. Triis

method allows each reader -to quickly evaluate each forma~.

language definition technique . The cataloguing criteria and

the “answers” are listed below :

• I CONTROL

A . How does this method process the flow of control for seguences~
jumps, loops, and procedure calls?

SEMANOL: For sequences, the user moves from the

current-statement position along sequence-of-state-

ments-in-program to the next executable statement node

determined by the semantics definition. For jumps the

next statement executed is determined by the semantics

algori thm, which finds the statement with the proper

statement label. ~Vith loops an active-block-list is

employed, containing a sequence of triples(control

variable , value of limi t, and value of increment).

A global varia ble is use d to determine if the loop is

being execu ted for the firs t time for initiation( placing

- 
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trible on the active-block-list). Procedure calls are

handled similar to jumps except before the transfer

of control the first executable statement after the

“call ” statement is placed in a return-point-list

(a LIFO stack) to be used in determining the successor

of the “re turn ” statement.

VDL z The VDL technique allows two basic methods for

specifying control for sequences and loops. For

sequences the next statement to be executed can be

either specified in the semantics definition, or the

next statement in a LIFO stack. If the stack method

is used the statement executed is deleted from the stack.

The next statement to be executed after a jump instruc-

tion is determined by the semantics definition of the

• jump instruction. Loops can be handled in one of two

methods, either breakdown the loop “begin statement”

and the loop “end statement” into simple test and jump

instructions in the TRANSLATOR phase, or use a LIFO

stack to determine where to return after executing the

loop “end statement” (NEXT, CONTINUE, etc.). Procedure

calls in the VDL are handled with a LIFO stack containing

the location of the next executable statement following

the “call ” statement, thus saving the return point for

the “return ” instruction.

BASIS/1-12i For sequences a pointer(the statement

designator node) is incremented to the next statement

on the program tree . The TRANSLATOR transforms the
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“jump” instructions so that they contain the unique

names of the nodes to which the jump is to be made .

Therefore, when the IN TER PRETER executes the jump

command the statement designator node is made to point

to the node specified in the jump command. BASIS/i-12

can process loops in one of two methods. The TRANSLATOR

can break down the loop control statements into simple

test and jump statements, or the INTERPRETER can process

the loop control statements using the semantic definitions

specifying the value of the statement designator node .

Procedure calls are processed with the INTERPRETER which

manipulates the statement designator node into pointing

- 

- 

to the procedure called.

II MEMORY

B. How is memory defined? (This question refers to how vari-

ables are defined.)

SEMANOL : In SENANOL the memory is defined as a single

level associative memory, represented as name-value pairs.

VDL: In the VDL memory is defined with three symbol

tables; the environment, denotation, and attribute tables.

The environment table specifies the machine location for

the source program variable. The denotation table main-

tains the proper value for each machine location. The

attribute -table maintains the machine location and its

attributes(-type: real, integer , etc.). In its simplest

representation the memory is a selector-ebject pair with

• 85
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the variable as the selector and the value as the object.

BASIS/1-128 In BASIS/1-12 the memory is defined as

consis ting of a “ direc tory ” and storage locations.

The direc tory consis ts of a varia ble and a value

designatcr node. The value designator node points

to the loca-tion(unique name) allocated for that variable.

III EXPRESSIONS

C. How are evaluations of expressions defined?

SEMANOL: The cons tants and opera tors of the define d

language are translated into SEMANOL cons tants and

operators and then the INTERPRETER S operated by algo-

rithms wri tten in SEMANOL , performs the required opera-

tions on the SEMANOL represen tati ons of the cons tants

and operator~ .

VDL : The expressions are represen ted as abstrac t objec ts

on a control tree . The expressions are evaluated in

accordance with commands in a algorithm that expands

or contracts the control tree .

BASIS/i-U: Expressions are represented as abstract

objects on a program tree. Rules for evaluating the

expressions are given in algorithms written in English .

D. How are lexical transformations processed?

A lexical analysis of the source program is basically
• performed the same way for SEMANOL , the VDL , and BASIS/ 1-12.

The lexical analysis is the first processed performed

on the source program . The analysis is performed by

an algorithm which performs lexical transformations(macro
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substitutions), removes comments from the source pro-

gram , and removes text as required by “skip” instructions.

E. Can external functions and relations be called from a

system library?

All three techniques SEMANOL, the VDL, and BASIS/1-12

can specify functions and relations of the sys tem

library , however the VDL and BASIS/1-12 are not as yet

implemented on host machines.

F. How is the semantic operator expressed?

SEMANOL : In SEMANOL the semantic operator is expressed

as a SEMANOL program(algorithm).

VDL: The semantic operator in the VDL is expressed

as value returning instructions which manipulate a

control -tree.

BASIS/1-12: In BASIS/1-12 the semantic operator is

expressed as an algorithm written in English that

manipul ates an operations tree .

IV CLARITY

G. Can people understand the method?

All three techniques can be readily understood by people.

However, the author found the SEMANOL definition
easiest to follow, the BASIS/1-12 technique was the

next - easiest to follow , leaving the VDL technique as

the most difficult technique to follow.
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H. Is high level expressiveness utilized? (How much detail

must one know before utilizing the technique?)

SEMANOL : High level expressiveness is utilized in

SEMANOL . The SEMANOL algorithms are straightforward

and easy to follow.

VDL s No , the user must keep careful track of each

minute detail to follow the definition.

BASIS/1-12: Yes, the SASIS/1-12 instructions, written

in English, can be followed wi thout a “strict” main-

tenance of the machine state.

I. Are the mneumonic names helpful to the reader?

The mneumonic names used in each of the three techniques

are helpful to the reader. Conventional notation

found in mathematics and programming languages is used,

enabling a user to easily interpret the meaning of the

term used. -

J. Does this method seperate context-free syntax, context-

sensitive syntax, and the semantic parts of a language

definition?

SEMANOL: Yes , through differnet steps in the inter-

pretation .

S VDL and BASIS/1-12s Yes, through the use of three

seperate abstract machines. The ANALYZER checks the

context-free syntax , the TRANSLATOR checks the context-

sensitive syntax, and the INTER PRETER defines the

semantics . 
S

- 
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V COMPLETENESS

K. Does this technique provide a complete definition?

Each of the three techniques SEMANOL, the VDL, and

BASIS/i-12 provides a complete definition, the tech-

niques can describe every possible situation in the

language being defined.

• VI CONTEXT-FREE AND CONTEXT-SENSITIVE SYNTAX

L. How is the context-free syntax processed?

SEMANOL : A context-free parse is conducted by an

algorithm which parses the source program in accordance

with the context-free syntax specified. The result

is a context-free parse tree of the source program.

VDL and BASIS/i-U: The last function of the ANALYZER

• is to perform a context-free parse on the source pro-

gram using the context-free syntax rules specified.

The result, a context-free parse tree, is passed to

the TRANSLATOR .

M. How is the context-sensitive syntax processed?

SEMANOL: A SEMANOL algorithm is applied -to the context-

free parse tree to determine if the context-sensitive

restrictions are satisfied.

VDL: The TRANSLATOR performs the context-sensitive

checks on the context-free parse tree , supplied by the

• ANALYZER . The context-sensitive checks are performed

by applying a series of conditional statements to the

context-free parse tree . -

BASIS .1-12: The TRANSLATOR perofrms the context-

-
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sensitive checks on the context-free parse tree,

supplied by the ANALYZER . The context-sensitive checks

are performed by operations that conduct context-

sensitive tests.

VII DEFINING THE EXECUTION OF A PROGRAM

N. How does this method define the execution of a program?

SEMANOL : The definition of the execution of a

program is program oriented. The consequences of a

computation are described in a series of semantic

definition , expressed as SEMANOL programs.

VDL and BASIS/I-12: The execution of a program is

defined by a series of state transitions. Each state

- 

- 
transition transforms the machine state until the con-

trol tree(operations tree for BASIS/1-12) is empty.

The empty control(operations) tree characterizes the

final state.

VIII DECIDING THE VALIDITY OF A PROGRAM

0. ~Vhat consti tutes a valid program?

SEMANOL : A program is valid if it passes a context-

free parse, a context-sensitive check, and a successful

semantic execution.

VDLs A program is valid if it passes a context-free

parse, a context-sensitive check, and an execution

which results in an empty control tree.

BASIS/1-12: A program is valid if it passes a context-

free parse, a context-sensitive check, and an execution

90



which results in an empty operations tree.

IX SPECIFICATION OF IMPLEMENTATI ON DEPENDENCIES

P. How are the implementation dependencies defined?

SEMANOL: Machine dependencies are stated in a seperate

section of the language definition. This section is

accessed through parameters used in the semantic

definitions.

VDL: Machine dependencies are implemented through

variables in the semantic definitions of instructions.

BASIS/1-12: Machine dependencies are implemented

through variables in the operations.

Q. Are the representations of the data types and operators

machine independent?

SEMANOL : Yes , the technique can be used without

• forcing the limitations of the host machine on the

definition.

VDL and BASIS/i-12s Yes, these techniques are not

implemented on an actual machine.

A summary of the information presented above is given in Table

I. A comparative cataloguing of the three techniques~ SEMANOL ,

the VDL , and BASIS/1-12 is given in table ii on page 9k. A

numbering system was developed to permit a comparative

evaluation of each technique. In this numbering system the

number “1” represents the easiest or best situation, while

the number “3” represents the hardest or worst situation.

The assignment of the same number to two techniques represents
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Table II

Comparative evaluation of SEMANOL , VDL , and BASIS/1-12

CHARACTERISTICS SEMANOL VDL BASIS

I Follow the flow of control 1 3 1

II Visualize the memory scheme 1 1 2

III Follow t1~ evaluation of 1 3 2
an expression

IV The clarity of the 1 3 2
• language defini tion

V Provides a complete defini- 1 2 2
tion

VI Follow the contex-free and 1 2 3
context-sensitive syntax

VII Follow the execution of a 1 3 2
source program

VIII Determine the validity of 1 2 2
a source program

IX Recognize implementation 1 3 2
dependencies

- 
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a situation that presented an equal degree of difficul ty to

the author.

Table II is divided into nine sections . Each section

evaluates SEMANOL , the VDL , and BASIS/1-12 in one of the nine

important qualities required of a formal definition technique ;

control, memory , expressions , clarity, completeness, context-

free and context-sensitive syntax, execution of a source pro-

gram, validity, and implementation dependencies. A brief

justification of the ratings in each section is given in the

paragraphs below.

The first section, follow the flow of control, rates

S.~MANOL and BASIS/1-12 equal and superior to the VDL. The

SEMANOL technique specifies the flow of control in semantic

definitions. In BASIS/1-12 the flow of control is determined

through operations which affect the value of the statement

designator node . The VDL technique relies on the status of

the machine state, transfering control through VDL instructions .

The memory scheme is evaluated in section two. In this

section SEMANOL and the VDL are rated equal and superior to

BASIS/1-12. In S.EMANOL and the VDL memory is basically viewed

as (variable, value) pairs. In BASIS/1-12 memory is defined

with pointers and storage locations.

Section III deals with the evaluation of expressions.

It is easier to follow the evaluation of an expression in

SEMANOL because there is no tree manipulation. Therefore

SEMANOL is rated higher than the VDL or BASIS/f -12. BASIS/i -12

is rated higher than the ‘(DL because BASIS/1-12’ utilizes
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algorithms, written in English, to define the state transitions

that compose the evaluation of an expression. In the ‘(DL,

expressions are evaluated through instructions that depend

heavily on the machine state , a tr’~e structure.

The major factor in determining the clarity of a language

definition, section IV , is the dependence on a parse tree.

Since SEMANOL minimizes this dependence it is rated as being

clearer than BASIS/i-12 and the VDL. BASIS/1-12 is rated

higher than the ‘(DL because the operations, written in English,

in BASIS/1-12 help minimize the dependence on the parse tree.

The ‘(DL instructions require the machine state, and thus this

technique relies the most on the parse tree.

The fifth section evaluates the ability of a technique

to provide a complete definition. All the techniques examined

were complete in that they could define any situation which

could occur within the defined language. However SEMANOL is

successfully implemented on an actual machine , thus proving

that it is complete.

The technique used to specify the context-free and the

context-sensitive syntax is evaluated in section ‘(I. SEMANOL

is rated as the best method because of the meta-language,

similar to BNF , used in the SEMANOL technique . The condi tional.

statements used in the ‘(DL to check the syntax makes the ‘(DL

superior to -BASIS/ 1-12. BAZIS/ 1-12 is rated the lowest because

the context-free syntax is divided into high and low level

syntax .
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Section ‘(II deals with the execution of a source program.

In this section SEMANOL is rated as the best because no tree

manipulation is required. BASIS/1-12 is rated second because

its operations, written in English, allow for easier tree

manipulation than is possible in the ‘(DL. The ‘(DL executes

a program through instructions that rely heavily on the machine

state, a tree struct.ze.

In section VIII SEMANOL was rated superior to the VDL

and BASLS/1-12. In determining the validity of a source pro-

gram in the SEMANOL definition the user does not have to main-

tain a changing machine state in search of the final state.

The validity of a source program is dependent on attaining

the final state when the VDL or BASIS/1-12 technique is utilized ,

therefore the ‘(DL and BASIS/1-12 are rated as being equal.

The final section, section IX , pertains to implementattion

dependencies. Again the SEIvIANOL technique ranks first because

the machine dependencies are specified in a sepera te section

accessed through paramenters , and the SEMANOL technique has

been proven through actual implementation. The BASIS/1-12

technique is rated higher than the ‘(DL because machine depen-

dencies are implemented through variables in the operations ,

while the VDL technique implements machine dependencies through

variables in the required instructions.

This chapter applied the questions, comprising the cata-

loguing criteria established in chapter II, to the three

techniques; SEMANOL, the ‘(DL, and BASIS/1-12 covered in chapters

IV V and VI, respectively. The author’s comparative

9?
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evaluation of each technique was also presented.

Chapter VIII, the conclusion, presents advantages and

disadvantages of each technique along with the author ’s choice

of the “best” definition technique.
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VIII Conclusion

This thesis examined three techniques for specifying

formal definitions of programming languages; SEMANOL , the

Vienna Definition Language(VDL), and BASIS/1.-12. Some of the

advantages and disadvantages of each technique are specified

below.

SEMANOL ’s close resemblance to programming languages makes

it fairly easy to learn except for the fact that information

on SEMANOL is spread out over several publications , and no

“simple ’ example is “talked through” in any of the publications.

While a parse tree is utilized in the SEMANOL technique,

execution of a source program statement can be easily followed

• without a parse tree. The S.EMANOL technique is also easy to

learn because the user can readily visualize his progress

when executing a source program. Once learned , the SEMANOL

algorithms are easy to follow, and the user does not have to

keep track of a changing tree structure.

Information on the ‘(DL does not seem to be as spread out

as the information on SEMANOL. Another advantage of the VDL

is that there are only two catagories of tree manipulating

instructions. The major disadvantage of the ‘(DL is that the

user must keep track of every minute change in the control tree,

and the execut ion of all but the simplest programs requires

an unreasonable number of machine states.• Another character-

istic of the VDL which the author considered a disadvantage,

at first, was the flexibility of the VDL. Different authors
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describing the same situation using the VDL used completely

different approaches which seemed to contradict each other ,

until a detailed examination was performed. The overall

description of the abstract machines used by the VDL definition

also varied from author to author. One author described the

VDL technique as consisting of two abstract machines, a

TRANSLATOR , and an INTERPRETER . Other authors described the

VDL technique as consisting of three abstract machines, an

ANALYZER , a TRANSLATOR , and an INTERPRETER . The difference

between these two viewpoints is that the TRANSLATOR in the

two machine description performs the same functions as the

ANALYZER and the TRANSLATOR in the three machine description.

Af ter studying SEMANOL and the VDL , the author found

BASIS/1-12 relatively easy -to comprehend . Some of the advan-

tages of BASIS/1-12 are that the algorithms for the state

transitions are written in English and are very easy -to follow.

Because the algorithms are easy to follow, the problems of

keeping track of the machine states are not as severe as in

the ‘(DL. However, the user must keep track of certain instruc-

tions(ATTACH and DELETE) as their effect on the machine state

varies with the syntax of the source program. -

The technique that provides the clearest definition of

a source program is SEMANOL, followed by BASIS/1-12- and the

VDL, in that order. The major reasons for SEMANOL s clearity

is that the user does not have to trace state transitions and

machine states. BASIS/1-12 is rated superior to the VDL

because the BASIS/i-12 algorithms, written in English , are
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simpler than the ‘(DL instructions when trying to manipulate

a tree structure.

From the comparisons in Table II , page 94, and the above

described advantages and disadvantages an overall rating of

the three techniques would have to list SEMANOL as the best

technique followed by BASIS/1-12 and the VDL, in that order.

The comparisons of the techniques , SEMANOL , the ‘(DL,

and BASIS/1-12, and the list of advantages and disadvantages

of each technique makes this thesis the only single source

for a reader interested in understanding the mechanics of

each technique .

Recommendations

While this thesis covered only interpreter oriented for-

mal and semi-formal definition techniques a similar report

covering mathematical techniques is needed. The purpose of

the report besides cataloguing certain techniques should be

to provide simple examples, demonstrating how the techniques

work; so that “new ” explorers into this area can easily see

how a method works and then study the details of each technique .

As any field of study develops the rules governing that

field become more precise , rigid, and. definite. As man ’s

communication with his fellow man developed , the need for

precise, rigid and definite rules brought about grammer rules

and the dictionary. The same is true with computer programming

languages. Computer programming languages have developed to

the point where standard definitions are needed . The first
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step toward standard definitions is to develop a formal

definition technique(a meta-language ) that provides useful

information to all interested individuals.

“The meta-language of a formal definition must not

become a language known to only the high priest of the cult.

Tempering science with magic is a sure way to return to the

dark ages”(Ref 3).
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