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Prefac e

This work combines several diverse fields of study to

develop a potentially realizable laser phase locked array

system. Phaselock techniques, control theory, signal

detection, and laser physics were all required to analyze

the system’s performance. This paper assumes the reader has

a work ing knowledge of random processes and Fourier and

Laplace transforms.

I was fortunate to have had as my advisor Captain

Stanley R. Robinson whose critical comments and direction I

gratefully acknowl edge. With his skillful guidance and

patient friendship this work changed from just a thesis into

a nearly overwhelming personal learning experience not only

in textbook knowledge but in self knowledge as well. For

this personal growth I am eternally grateful.

I would also like to thank the men of the GEO-77D

section, especially Captain R. Stanley Shinkle, Captain

Barry W. Lyons, and Captain Hal E. Hagemeier for thier com-

radeship and exchange of ideas.

Finally , my wife, Mary , deserves much more than a simple

thanks for the typing and moral support she has given me

throughout this task.

James B. Armor, Jr.
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Notation

a Loop filter coefficient

A Amplitude of the laser field (volts/meter /~E~ )
( subscripted by the number of the laser it
represents)

Ad Act ive area of the optical detector (meters 2)

b Loop filter coefficient

b(t) Heterodyne receiver bandpass filter impulse
response

B(j2irf) Heterodyne receiver bandpass filter transfer
function

B~~ Bandwidth of the heterodyne receiver bandpass
filter for the control loop pairing the nth
and mth laser (Hz)

BPF Bandpass filter

c Rate of the modulation control signal acceler-a ation (volts/ sec2)

c (t) In-phase component of laser field noise M(t)
(volts/meters v’~l~~)

cr Slope of the modulation control signal ramp
(volts/sec)

c Magnitude of the modulation control signal$ step (vo lts)

• 1/C01 Magnitude of the heterodyne receiver bandpass
filter

C1 Phase variance equation coefficient due to HR
* noise (sec)

C2 Phase variance equation coefficient due to
quantum laser instabilities (sec l)

C3 Phase variance equation coefficient due to
external laser instabilities (sec 2)
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Cm for the nth control loop

for the nth control loop

C3 for the nth control ioop

d Width of the laser modulation crystal across
which the voltage is applied Cm)

dpE Piezoelectric crystal coefficient (meter/volt)

D Modulated reference phase acceleration rate
(frequency ramp) (rad/sec2)

D Maximum tracking frequency sweep rate
(rad/sec’~)

en(t) Modulation control signal for the nth control
1oop (volts)

eldC Time constant portion of the modulation control
signal for the two-laser control loop (volt)

e
~~~d(~) Time varying portion of the modulation control

signal for the two-laser control loop (volts)

E[ ] Ensemble average of the quantity in brackets
(expected value)

E[ 
~~~ 

Steady state, expected value of the quantity
in brackets

E0 Electra-optic crystal

En(s) Laplace transform of e~(t)

E(r,t) Spacial and time dependent laser electric
field (subscripted by number of laser it
represents)

E(t) Time dependent laser electric field

f Frequency (Hz)

f( t) Loop filter’s impulse response

Cutoff fr equency (Hz)

Frequency difference between two lasers (Hz)

ix
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Operating frequency of the nth laser (Hz)

~nq Quiescent frequency of the nth laser (Hz)

Frequency step in the modulated reference
phase (Hz)

z~f Cold cavity, FWHM bandwidth of a laser resonatorcay (Hz)

Laser field spectrum linewidth (FWHM) due to
external laser phase noise (Hz)

Laser field spectrum linewidth (FWHM) due toq quantum laser phase noise (Hz)

F(s) Loop filter transfer function

FWHM Full width at half maximum

h Planck ’s constant (6.63xlO 34 joule-sec)
h(t) Closed-loop filter impulse response

H(s) Closed-loop filter transfer function

HR Heterodyne receiver

Hz Hertz (cycles/see)

id(t) Heterodyne receiver output current (amps)

K Loop constant (sec m)

Kd Phase detector gain (1/volt)

Km Laser crystal modulator gain (Hz/volt)

1 Length of the modulator crystal (meters)

t~l Change in the Piezoelectric crystal length with
applied voltage (meters)

L Length of the laser resonator cavity (meters)

L ’ Length of the laser cavity less the length of
an internally mounted crystal (meters)

The lowpass portion of the quantity in brackets

x



L
~ 

Optical length of the laser resonator cavity
(meters)

ALx Change in the optical length of the laser
cavity with voltage applied to a modulator
crystal (meters)

L [ ] The Laplace transform of the quantity in
brackets

L~~~{ } The inverse Lap lace transform of the quantity
in brackets

m Laser index number (m0 ,l,2,...,N)

M(t) Random process representing the additive ran-
dom noise of a laser field (volts/meter /61i~)

n Laser index number (n=0,1,2,...,N)

n (t) In-phase component of heterodyne receiver noiseC n(t) (volts)

Quadrature component of heterodyne receiver
noise n(t) (volts)

n(t) Random process representing heterodyne
receiver noise (volts)

n ’(t) Random process representing the loop phase
noise due to the heterodyne receiver noise (rad)

n Index of refraction of an electro-optic
modulator crystal

• Change in the index of refraction of an
electro-optic modulator crystal when voltage
is applied

N Number of laser pairs in a laser array (Enumber
of modulated lasers in a laser array)

NEB Noise equivalent bandwidth

N ’(s) Laplace transform of n ’(t)

N Power spectral density magnitude of the ref er-r ence phase noise

N2 Population of the upper laser transition level

Population difference between the upper and
lower laser transition levels

xi
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P Power out of a laser (watts)

PD Phase detector

FE Piezoelectric crystal

q Charge of an electron (1.6Oxl0 19 coul )

Spacial position with respect to arbitrary
reference axes (meters) 

-

rEO Electro-optic crystal coefficient (meters/volt)

R Resistance (ohms)

Re[ } The real part of the quantity in brackets

Maximum 4cquisition frequency sweep rate
(rad/ sec~)

R(t2, t1)
=‘R(t+r ,t) Autocorrelation of a nonstationary process

(subscr ipted by the variable whose autocorre-
lation it represents)

R(r) Autocorrelation of a stationary process
(subscripted by the variable whose autocorre-
lation it represents)

R(O) Variance of a stationary process (subscripted
by the variable whose variance it represents)

Reflectivity of the front laser cavity mirror

R2 Reflectivity of the rear laser cavity mirror

s Laplace operator

s (t) Quadrature component of the laser field noise
M(t) (volt/meter /~E~ )

S(f) Power spectral density or “spectrum”

t Time (see)

TL Lock-in time (see)

Pull-in t ime (see)

u Dummy variable used in integrations

xii.
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u(t)  Step function (=1 for t � 0 and 0 elsewhere)

v( t) Time vary ing signal (volts)

Vd(t) VCO output signal (i.e., heterodyne receiver
output) (volts)

Ve (t) Phase detector output signal (volts)

Vf (t) Loop filter output signal (volts)

Vr(t) Loop reference signal (volts)

VCO Voltage controlled oscillator

Vd Amplitude of Vd(t) (volts)

Ve(S) Laplace transform of Ve (t)

Vf (s) Laplace transform of vf (t)

Vr Amplitude of vr(t) (volts)

WH Closed loop transfer function noise equivalent
bandwidth (H7)

W~~ . Value of WH for which the laser differential
phase variance is minimized

x(t) Defined as exp jy(t)

y(t) Defined as 6(t+’r) - cS(t)

Y(f) Fourier transform of y(t)

Defined as t~f q/2lt for the nth laser (Hz)

Average distributed field loss per pass in a
laser cavity (cu rl)

Defined as ~f~/8irln2 for the nth laser (Hz
2)

y(t) Random process representing phase instabilities

• Yd(t) Differential phase instabilities of the locked
( laser pair

y (t) Differential phase instabilities of the lockede laser pair due to external laser noise

xiii



y (t) Differential phase instabilities of the lockedq laser pair due to laser quantum noise

Y~
(t) Phase instabilities of the reference signal

Ay(t,r) Defined as y(t+’r) - y(t)

rd(s) Laplace transform of yd(t)

rr(s) Laplace transform of Yr(t)

6(t) Dirac delta (=1 for t=O , and 0 elsewhere)

~ (t) Reference phase control modulation (rad)

Z(s)  Laplace transform of y ( t )

Quantum efficiency of an optical detector
(photo-electrons/photon )

O d(t) Modulated portion of the laser differential
phase (rad)

Or(t) Modulated portion of the reference phase (rad)

~O (r) Defined as Or(t2) 
- er(ti) (rad)

~~~~ 
Laplace transform of ed(t)

er(s) Laplace transform of er(t)

X Wavelength (meters)

Loop damping factor

cY A Phase variance matrix of a single reference
array

Phase variance matrix of a sequential array

ae
2 Variance of the measured laser field spectrum

due to external noise

Phase variance between the nth and mth laser

a0lmin Minimum laser differential phase variance for
the basic two-laser loop

xiv
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$ Constant portion of phase (rad)

Phase step in the modulated reference phase
(rad)

Phase of the nth laser (rad)

•d(t) Laser differential phase (rad)

Reference phase (rad)

Phase error (~~ r (t)  - 

~d(t) ) (rad)

~Y(s) Laplace transform of ~p( t)

Radian frequency (rad/sec)

Loop natural frequency (rad/sec)

Hold-in frequency range (rad/sec)

Lock-in frequency range (rad/sec)

Pull-in frequency range (rad/sec)

Frequency step limit (rad/sec)

(
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AFIT/GEO/EE/ 77-2

Abstract

This paper presents design considerations and funda-

mental performance limitations of phase-lock control loops

which are used to coherently combine a specified array of

lasers. The control problem is first investigated in a

“two-laser” control loop designed to lock the differential

frequency/phase between the two lasers to a specified

reference frequency. An optical heterodyne measurement con-

figuration is used to determine the differential frequency

and phase between the laser pair . An error voltage related

to error between the desired frequency/phase (i.e., the rf

reference) and the measured optical differential frequency!

phase is filtered and used to frequency modulate one of the

lasers (by electronically changing the effective cavity

length) in an attempt to null the error. An integro-

differential equation , valid for the linearized operating

region of the loop is derived in terms of the specified

(desired) phase control , the heterodyne measurement noise,

and the various laser phase noises (instabilities). The

power spectrum of the laser phase noise has two components:

one due to quan tum limitations (proportional to 1/f 2) and

the other due to random thermal and acoustical vibrations

(proportional to 1/f 4) .  The solution of the integro-

differential equation results in an expression for the phase

xvi
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error variance (the phase deviation between the two lasers)

in terms of the closed-loop equivalent noise bandwidth of

the system, WH. The variance involves three terms: the

first is proportional to 
~
fe/W

~ 
where 

~~e 
is the linewidth

of the combined laser fields due to external noise; the

second is proportional to I
~
fq/WH where ~fq is the combined

quantum limited laser field linewidth; while the third, due

to measurement noise, is proportional to hfOWH where hf 0 is

the energy of a detected photon. The conflicting effects of

on the terms in the phase error variance indicate that

some optimization of WH is desirable . In addition to noise

effects, the relationship between the error voltage filters ’

characteristics and W~ and other system performance parameters

such as loop acquisition time, frequency pull-in range and

steady state error is examined. A design example using a CO2
waveguide laser paired with a relatively stable, conventional

CO2 laser was presented and found to have an rms phase devi-

ation between the two lasers of less than .1 radian and a

lock up time of no more than 1 ~isec. The basic pairwise con-

trol model is then used to develop control configurations for

the phase coherent control of the laser array. Two configu-

rations are presented : (1) all lasers are compared pairwise

to the same reference laser and (2) each laser is locked

pairwise in sequence across the array. The resulting impli-

cations of system complexity and potential relative phase

errors across the array are discussed.

xvii
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PHASE-LOCK CONTROL CONSIDERATIONS

FOR MULTIPLE , COHERENTLY

COMBINED LASERS

I. Introduction

A well-known method of generating periodic , optical

pulse trains with high peak powers and extremely narrow

pulses is the mode-locked laser (Ref 1:256-266). However,

the modulation characteristics are largely dependent on the

laser ’s cavity parameters. For instance, the pulse repe-

tition rate of a mode-locked laser is determined primarily

by the cavity length. Thus, the modulation format is

inflexible.

Conceptually, it is easy to think of each of the laser

modes as being generated in individual laser cavities. So,

a generalized concept of mode locking could be the coherent

combination of the outputs of an array of single mode, but

electronically phase controlled, lasers. Such a configu-

ration has a potential modulation format that is much more

flexible. For the special case of each of the individual

lasers offset from the next by a constant frequency , such a

configuration will result in the familiar mode-locked wave-

forms. More general phase control of the individual lasers,

however , will allow the synthesis of other space-time field

waveforms.

1
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The key requirement for such a system is the precise

control of the relative frequencies and phases of the indi-

vidual lasers of the array. This paper presents design con-

siderations and fundamental performance limitations of

phase-lock feedback loops which are used to achieve the

desired coherent laser combination .

The control problem is first investigated in a two-

laser or “pairwise” control ioop designed to lock the

differential frequency/phase between the two lasers to a

desired , controllable value. An tntegro-differential

equation, valid for the linearized operating region of the

loop, is derived in terms of the desired frequency/phase

control, the laser phase instabilities, and other loop com-

ponent noises and instabilities. Expressions for the power

spectra of the various noises and instabilities are developed

and used to solve the integro-differential equation for the

phase error variance in terms of the closed-loop noise equiv-

alent bandwidth of the system. The phase error variance

expression can be used to determine the optimum, i. e . ,  mini-

mum variance, closed-loop bandwidth. In addition to noise

effects, system performance parameters (such as loop acqui-

sition time, frequency pull-in range and steady state error)

are related to the loop filter characteristics and the

closed-loop bandwidth for various desired control schemes

(such as step and ramp changes in frequency). Other design

considerations such as loop control methods, laser field

detectors, laser frequency modulation and laser quiescent

2 
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frequency will also be discussed. A detailed design example

for the two-laser control loop is presented to illustrate

the effects of the various noise and control parameters on

the overall phase-lock performance.

Finally, the basic pairwise control model is used to

develop control configurations for the phase coherent con-

trol of a laser array. Two configurations are presented:

(1) all lasers are compared pairwise to the same reference

laser and (2) each laser is locked pairwise in sequence

across the array. The resulting implications of system

complexity and potential relative phase errors across the

array are discussed. Other array design considerations (such

as stability of the reference laser, laser gain bandwidth,

and beam combination) are also discussed.

3
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II. Two-Laser Control Loop

The phase control of an array of lasers will first be

investigated in “pairwise” control loops designed to lock

the differential phase between two lasers to a desired

value. The array can then be constructed by proper combi-

nation of the basic pairwise units. Phase control is accom-

plished by using common phaselock techniques which will be

briefly reviewed first.

Basic Phaselock Loop

The standard device for estimating the phase of a

signal is -the phaselock loop (PLL). It is motivated from

Estimation Theory, where the maximum a posteriori estimate

of a signal phase in white, Gaussian noise results in such a.

signal processor. Such a model is valid for the problem at

hand (Ref 2: Chap. 5, p. 123). The basic form of the PLL is

shown in Figure 1.

* 

vr(t) 

~~~~~~~~~~~~~~~~~ 

vf t

-
~ VCO -<- -—

Figure 1. Basic Phaselock Loop

4

- •~~~~~— - - - - —

- 1  — - . 
— -



The loop input reference signal has the form:

vr(t) = V s in~~(t) (1)

where

= (2~~ dt + 
~~~ 

+ Or(t) (2)

The first term, (2
~
fdt ÷ 

~d~’ 
is the constant portion of the

reference phase and represents the voltage-controlled

oscillator quiescent frequency. The second term, e (t), is
the modulated term and consists of two portions:

= ~ (t) + Yr(t) (3)

where ~(t) is the control modulation and Y~ (t) is a zero

mean random process representing the reference phase insta-

bilities.

When the PLL is locked, the phase of the voltage con-

trolled oscillator (VCO) is (ideally) equal to that of the

input signal. The VCO output signal then has the form:

Vd
(t) = Vd COS

~~d
(t) (4)

where

(Z
~~ dt + d~ 

+ Od (t) (5)

The VCO signal also consists of a constant, quiescent phase

term, (2
~
fdt + ~d~ ’ and a modulated term, O

d(t).

- 5
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If the phase detector (PD) is assumed to be linear, its

output, called the phase error signal , is propo?.tional to the

difference between its two inputs times a phase detector gain

Kd~

ve(t) 
= 
~
iKd(~~

(t) - 

~d
(t
~~ 

(6)

or cancelling the VCO quiescent phase term,

Ve(t) 
= pKa(er(t) - G

d(t~~ 
(7)

where p is the linear proportionality constant.

The phase error signal is filtered by a loop filter,

f(t), which helps determine the noise and dynamic perfor-

mance of the ioop. The filtered error signal is

V
f
(t) = ve(t)*f(t) = f ve(u)f(t~

u)du (8)

The frequency of the VCO is controlled by the filtered

error signal. The frequency deviation from the quiescent

frequency is

O d(t) 
= 2lTK vf(t) (9)

where Km is the VCO gain in Hz/volt. It is convenient to

express these results in the frequency domai~i. Taking the

Laplace transforms of Eqs (7) through (9) gives respectively

Ve(s) — PKd(Or(8) - 
~~~~~ 

(10)

6

_ _ _  — -—— “_ ___
( 

— --——-—‘— - .  — - —

•

------



Vf(5) 
= V (S)F(s) (11)

and
K Vf (s)

= 
m (12)

Manipulation of these equations gives the basic PLL loop

parameter

o (a)
- 

~~~~~ 
— 

s + KF(s)

and

O (s) -
1-H(s) = 

0 (s) = s ÷ KF(s) (14)

where K 11KmKd~ 
The function H(s) is called the closed-

loop transfer function of the linear loop model. Thus, the

PLL can equivalently be modeled as a simple linear filter,

where the impulse response is h(t) = L~~~[ H ( s ) ~ , as shown in

Figure 2. The results for the basic PLL will now be used to

solve the two-laser phase lock.

1 r 
£ LH(s)i 

________

6 (t —
~
• h(t) ~~

8d(t) 0 (t)- > h(t) .>®~
.t )....e (t)

- - ~j  .O d (t)

Figure 2. Equivalent Linear Filter Model of the
Phaselock Loop

7
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Pairwise Laser Phaselock

Ideally, two 1aser~ could be placed in phaselock by

letting the output field of one laser be the PLL input sig-

nal and letting the other, its frequency being voltage

adjustable, act as the VCO. Unfortunately, this scheme is

not feasible since there are no direct detectors for laser

field, E ( r , t ) .  They all detect the intensity or power

density of the field, I E ( ~~, t) I 2 , thus losing all phase

information. The extremely high laser frequencies , on the

order of 1014 Hz , also present difficult problems.

To circumvent these problems, a common procedure is to

sum the output fields of the two lasers into a single

detector . The output of the detector will include a signal

with a phase equal to the difference of the laser phases plus

a low frequency term. The phase difference or “beat fre-

quency’-’ is more readily handled by available electronics.

Typically, one laser has a very stable phase so that the

phase instabilities of the other can be examined

(Ref 3:509).

Another reason this procedure is so attractive is that

excellent noise performance can be obtained with very simple

• post-detector processing. This technique is called hetero-

dyne detection, the results of which are examined in

Appendix A.

The basic PLL of Figure 1 can now be adapted to lock

the phase difference between two lasers to a reference

phase, as shown in Figure 3. The entire laser pair and

8
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e1(t)

SAMPLER - 

Figure 3. Two-Laser Differential Phase Control Loop

detector combination acts as the VCO. The filtered error

voltage modulates the frequency of one laser only, but this

is translated to a modulation in the differential phase seen

at the detector. The voltage e1(t) is an analog control

signal the uses of which will be discussed later. The

important aspect of the two-laser loop is that the differ-

ential phase between the two lasers is locked to a reference

phase; the absolute phase of the laser pair remains uncon-

trolled except by the nature of the lasers themselves and

* thus is free to fluctuate.

VCO Output. It will be assumed that the optics sampling

the laser fields are aligned such that the beams fall collin-

early upon the detector and that the fields are planar with

9
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constant amplitudes (see Appendix A). Thus the incident

fields for the reference and modulated lasers are respec-

tively:

- 1i’~ (t)1
E0(r ,t) = A0cos~0(c) = AoReLe 

° J (15)

- - F j~ 1(t)~E 1(r , t )  = A1cos~1(t) 
= A1ReLe J (16)

In this paper the Re[ ]will be understood when using the

complex envelope (exponential) notation. Thus the fieLds

are written as

- 
j~~ (t)E0 (r ,t )  = A0e ~ (17)

and

-

E 1(r , t )  = A1e (18)

respectively. The planar assumption is reasonable if the

detector is perpendicular to the beam at the beam waist, if

the detector is curved to fit the curvature of the field , or,

as is most likely, if the detector is small compared to the

radius of curvature of the field. The constant amplitude

assumption is a reasonable result of the nature of the laser

instabilities if interest is primarily in the field frequency

spectrum. This is discussed further in the opening para-

graphs of Appendix B.

The phase of the reference laser is

— (2trf0t ÷ $~) + y (t) (19)

10



_______________________________  -

where (2ir f 0t + $.~) is the operating phase and y0(t) is a

zero mean, Gaussian random process describing the measurable

reference laser instabilities. Its statistical description

is derived in detail in Appendix B. Since this laser is not

modulated, f0 is always the quiescent frequency ~oq ’ that is,

f0 ~~~ (20)

The phase of the modulated laser is

= (2irf1t + ÷ y1(t) (21)

where (2 n f1t + is the operating phase and 11(t) is again

a zero mean, Gaussian random process representing that laser’s

instabilities (Appendix B). More specifically, the operating

frequency f1, consists of a constant quiescent frequency

portion and a portion modulated by the filtered error and

control signals. Frequency modulation of lasers for control

applications is discussed briefly in Appendix C. From

Eq (C-17) , the instantaneous frequency of the modulated laser

is

= 2’lT[flq ÷ Km(Vf(t) + e1(t))] + ~ 1(t) (22)

where Km is the modulator gain in Hz per volt.

The two laser fields of Eqs (17) and (18) are added on

the detector surface such that without loss of generality ,

A0 >> A1. (The reverse A1 >> A0 could also be true but

would be included in the following with a simple change of

11
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subscrip t s . )  The output of the heterodyne receiver (HR) is,

from Eqs (A-l3) and (A-l6) in Appendix A ,

Vd (t) 
= Vdcos~d

(t) + n(t) (23)

where n(t) is a zero mean random process describing the HR

noise. The phase is

= ~1(t) 
- 

~0(t) (24)

= 2lrfdt ÷ 
~d 

+ Od(t) (25)

where

- 

~d 
= 

~iq - 
~oq (26)

and

(27)

The phase modulation portion is

O d(t) 
= 2ITKm (vf(t) ÷ e1(t)) + ‘rd(t) (28) 

-

where

= y1(t) 
- y0(t) (29)

Eq (28) is the same as Eq (9) of the basic PLL results but

includes a control signal and an instability term. The HR

noise in Eq (23) arises from the fundamental quantum nature

of the optical fields and should not be confused with the

noise arising from the laser phase instabilities .

12
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Using the quadrature component representation of the

HR noise, as outlined in Appendix D, and assuming that the

noise spectrum is symmetric on the VCO quiescent frequency

~d’ 
Eq (23) can be rewritten as

vd(t) 
= Vdcos~d

(t) + nC(t)c05(~d
t + 

~~~ 
+ n (t)sin(c

~d
t ÷

(30)

where nc(t) and n5(t) are the in-phase and quadrature com-

ponents of the noise n(t), respectively. Eq (30) is the

VCO output.

- 

Loop Reference Input. The loop reference signal remains

the same as that of the basic loop given in Eqs (1) through

(3). All derivations will be made with respect to the laser

differential (VCO) quiescent frequency, 
~~

Phase Detector Output. The reference and VCO signals, -

as seen in Figure 2, meet in a phase detector (PD). The

PD will be modeled as a multiplier with double frequency

components removed (Ref 4:58). The output of the PD, called

the error signal, is then

Ve(t) 
= KdLp[Vr(t)Vd(t)] (31)

where Kd is the PD gain and L~[ I denotes the low pass portion
of the quantity in brackets. Substituting Eq s (1) and (30)

into the above equation results in

K V V
ve(t) — ~i2

r d (sin4(t) + n’(t)) (32)

13
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where

n’(t) = 
~
_ [n (t)sin0r(t) + ns(t)coser(t)] (33)

and

4(t) = 
~r
(t) - 

~d
(t) = 0 (t) - ed(t) (34)

The variable 4(t) is called the 1oop phase error . As seen

in Eq (33) the noise due to the HR is independent of the ioop

phase error. Eq (32) is the equivalent of Eq (7) in the basic

PLL results where p = VrVd/2 P but is nonlinear in 4(t) and

contains detector noise.

Loop Filter Output. Referring again to Figure 2, the

error signal is now passed through a ioop filter f(t) which

gives a filtered error voltage of

KdV VdVf (t) = 
r (sin4(t) + n’(t))*f(t) (35)

This is equivalent to Eq (8) of the basic PLL results.

Loop Equation. The filtered error voltage plus a con-

trol voltage is next fed back into the frequency modulator

of the modulated laser changing its output frequency as

described in Eq (22). The instantaneous frequency of the

VCO output is, from Eqs (25) and (28):

d(t) 
= 21r [fd + K (v f(t) + e1(t))} + Yd(t) (36)

14
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Substituting into this expression the results derived for

filtered error signal , Eq (35) , gives

= 2
~~d 

+ [K(sin4(t) + n’(t))*f(t) ] + 2’ffKmel(t) + Yd(t)

(37)

where -

K = 71K_
~
KdVrVd (38)

Finally, using Eq (34), the nonlinear stochastic

integro-differential equation for the loop phase error is

~ (t) = §r(t) 
- K(sin4(t) + n’(t))*f(t) - 2lTKmel(t) 

- id(t)

(39)

This equation will be linearized by assuming that 4(t) is

small (less than 1 radian) so that sin4(t) ~ 4(t). Addi-

tionally, converting this equation into the frequency domain

by taking the Laplace transform yields

‘F (s) = 

~~~~~ 
- rd (s) - ~ [KF(s) (‘F(s) + N ‘(s)) + 2ITKmE1(s)]

(40)

(It is assumed that the transform of the sample functions

of the random processes exist.) This l inearized version of

the integ~o-differential equation is graphically depicted in

Figure 4.

15
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N’(s) 27rKE 1(s) rd(s)

Or(s) ~~~‘F(s)~~~ ~~F(s) I _ _ _ _ _ _ _ _

Figure 4. Linear Two-Laser Phaselock Loop Model

Solving for ‘F(s) gives

‘F(s) = 
[S+~~~~~~~(S~~~~~ 

(0(s) - rd(s))

- 

[s+~~(s)]2un1(m
El(5) 

- 

[S~~
c~~)]N’(S) (41)

This is the loop phase error between the laser differential

phase and the desired reference phase. It will become impor-

tant when considering the modulated, steady state response

of the system in a later section.

In considering an array of phase locked lasers, of pri-

mary concern is the laser differential phase 
~d
(t). Since

= (2lr fdt + ~~~ 
+ ed(t), it is sufficient to know only

the modulated phase, ed(t). Substituting 
~~~~ 

- ed ( s) for

‘F(s) (from Eq (34)) and solving for ed(s) gives 
-

[s+I~~(s)] 
271K E1(S)

+ 
[S+i~~(S)]rd

s + 
[S~~~8)](N

’ s + Or
(s)) (42)

_ _ _ _ _ _ _ _ _ _ _ _  

-c-i U -. 
-

~ 
-

~~~~~ 
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The laser differential phase error can thus be obtained by

passing the various noise, instability, and control processes

through a set of linear filters. Eq (42) is shown graphi-

cally in Figure 5 for both Laplace and time domains. From

Eq (3), the transform of the reference modulated phase is

0 (s) = s(s) + r r (s) (43)

rd (s) - 
s + KF(s) F

NOISE rr(s)

CONTROL

(a) Laplace Domain

1d(t)~~~~~~~~~~~~~~~~~~~~~~
1,ff

NOISE ‘
~ 
(t)- 1

n ’( t) ~~~ ~f L~5 KF(s)~~~L~ ~~~
0d(t)

~ (t) 
- -

CONTROL 

{
ei(t) ~{~~~s_+ KF(s)]~~~~

(b) Time Domain

Figure 5. Equivalent Linear Filter Model of the Two-Laser
Phaselock Loop for (a) Laplace and (b) Time Domains
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To find the mean and variance of the laser differential

phase error , the statistics of the noises and instabilities

and the nature of the control modulation and control signals

must be known. A first and second momeut description of the

noises and instabilities will be discussed next.

Statistical Description of Loop Noise Sources

There are three sources of noise preventing a steady

value of laser differential phase. They are the ioop refer-

ence phase instabilities, the individual laser phase insta-

bilities, and the heterodyne receiver noise. A second moment

model for each will be presented in this section.

Loop Reference Instabilities. As defined in Eq (3),

the phase modulation of the ioop reference phase consists of

a control modulation component ~(t) and an instability com-

ponent Yr(t)~ 
It will be assumed that the reference phase

is very stable with respect to the other noises in the system,

that is, Yr(t) 0. The phase modulation term thus consists

only of the deterministic control term so that the mean and

spectrum are

E[0 (t)] = r~(t) (44)

and -

S0 (f) = S (f) = 0 - (45)
r Yr

(All power spectral densities in this paper are the Fourier

18
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transform of the covariance of the particular stationary

process , not the autocorrelation.)

Laser Phase Instabilities. As defined in Eq (29), the

laser differential phase instability is due to the instabil-

ities of both the reference and modulated lasers. The mean

and power spectral density of the measured laser instabilities

are derived in Appendix B. From Eq (B-8) , the laser insta-

bilities are zero mean, thus

E[yd(t)1 
= 0 (46)

It will further be assumed that the instabilities in

each laser are statistically independent, which is reasonable

if they are in their own thermally and acoustically isolated

cavities. Using this assumption, the spectrum of the dif-

ference is the sum of the individual spectra. Thus from

Eq (B-49) is obtained

S (f) = 
~~ 

1(~ + ~~ + ~o~ co + (47)
1d f 1 ° f

~0
+f

where

- (48)

and

~f
2

B — = 8ITln2

The variable t~fq is the full width at half maximum (FWHM)

of the quantum limit of the laser field line width and

19



is the FWHM of the laser field line width due to all other

sources, primarily by thermal and acoustic fluctuations

(Ref 1:304). The variables 
~co 

and f~~ are mathematically

expedient cutoff frequencies and are explained in detail in

the appendix.

Thus the power spectrum of the laser differential

phase noise has two components: one due to quantum limi-

tations (proportional to 1/f2) and the other due to random

external vibrations (proportional to 1/f4) .

Heterodyne Receiver Noise. The loop phase noise due

to the HR is from Eq (33)

n’(t) = ~ -[n (t)sin0 (t) + ns(t)cosOr(t)] (33)

Drawing freely from the properties of narrowband noi listed

in Appendix D, the mean of n’(t) using Eq (D-2) is simply

-• 
E[n’(t)] = 0 (50)

The autocorrelation of n’(t) is

Rnt(t2,t1) 
= E[n’(t2)n ’(t1)] (51)

which when expanded becomes

Rnt(t2~
ti) 

= ~~~~~~~~~ CR (r)E[cos(Or(t2) 
-

d c

+ R (t)E[sin(0 (t2) + Or(tl))]} (52)

wnere t — t 2 - t1. Since the noise spectrum of n(t), S~ (f)~

20
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is assumed to be symmetric about f~ (Eqs (A-l4) and (A-l7)),

the cross correlation between nc(t) and n5(t) is zero and

Eq (52) reduces to

R ,(t 2, t1) = R~ (~t)E[
c05S

~
0r(T)] (53)

d c

where

~6 (’r) = 0(t2) 
- 0(t 1) (54)

= ~(t2) 
- ~(t1

) + 1r~t2) - Yr(ti) (55)

This result is strictly not stationary. However, recall

that it was previously assumed that the reference is very

stable so that Yr(t) 0. It is further assumed that the

desired modulation ~(t), will not change as fast as (will

have a larger correlation time than) the other system

processes. So for time intervals of interest it follows

that

~ 0 (56)

so that

R ,(t2,t1) = R ,(r)  = J~ Rn (1) (57)
d c

or f inally

Sn~
(f) = —

~~~~~ S~ (f) (58)
Vd C

From the results of Appendix A (Eqs (A-l4) and (A-li)) and
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Appendix D (Eq ¼D-3)), the power spectrum of the loop noise

due to the HR is then

q2rlA~A 
2R2

= ° I~ I < B01/2 (59)
0 01 d

where q is the charge of an electron, ri the detector quantum

efficiency in photo-electrons per photon, R is an effective

HR resistance, Ad is the active area of the detector, and

and B01 are the magnitude and bandwidth of the HR BPF

transfer function respectively. Eq (59) can be reduced

further by using the value for Vd stated in Eq (A-15) which

when substituted gives

hf
S~~(f) = If I  < B01/2 (60)

AdAln

The power spectrum of the loop noise due to the HR is then

proportional to the energy of a detected photon, hf 0.

With the statistical nature of the reference insta-

bility, laser instability, and HR noise now specified, the

performance of the laser differential phase from Eq (42) can

now be determined.

Steady State, Second Moment Description of the Laser
Pair Differe1.’itial Phase

Using the basic PLL transfer function of Eqs (13) and

(14), Eq (42) carL alternately be written in terms of the

closed ioop transfer function, H(s), as

22
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= [l_H ( S)
~1 2TrK E (s) + {1_H(s))rd (s)

+ [H(s)I (N’(s) + 0 (S)) (61)

Since the exact nature of F(s) need not be specified , this

equation is more convenient to use in deriving expressions

for the steady state mean and variance of ed(t). In this

section, the mean will only be derived for the unmodulated

case (~ (t) = e1(t) 
= 0) since F(s) must be known if there is

modulation. The modulated steady state mean is discussed in

the section on. loop filter design. To simplify the problem,

an equivalent model for H(s) will be used.

Noise Equivalent Bandwidth Model of the Closed-Loop

Transfer Function. The closed-loop transfer function is

from Eq (13)

H~s~ 
KF(s) (13

-• 
‘ / s+KF(s)

For any loop filter F(s) considered here, the following is

true:

IH(O)~
2 

= 1 (62)

The noise equivalent bandwidth (NEB) of H(s) is defined as

an ideal low pass filter (LPF) with magnitude ~H(0)J
2 and

one sided bandwidth WH whose area under the curve is the

same as the area under IH(s)1
2 across the entire spectrum

(Ref 5:33). That is
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WH 
~~~~~

-
~~

- j’

~~~ 
IH(s)1 2 ds (63)

or in Fourier notation

WH = IH(32rrf) 1
2 df (64)

This is shown graphically in Figure 6.

- 

IH(i2nf)1
2

~.—.---- 
1 ~~__~ —-*-~~

0 WH f(Hz)

Figure 6. Noise Equivalent Bandwidth Model of the Closed
Loop Transfer Function

The exact size of WH will of course depend on the exact

nature of F(s). Although ideally F(s) is only the loop

filter which follows the PD in the loop (Figure 2), this

assumes that no filtering occurs elsewhere in the loop . How-

ever, realistically, F(s) includes contributions not only

from the designed loop filter, but from every other component

in the loop (e.g., the response time of the laser phase

modulator and the HR BPF), thus the component with the

24
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narrowest bandpass response will set the maximum limit on

the value of WH. In this model, the two dominate filtering

sources are the designed filter and the HR BPF, the narrower

of which will determine WH.

Steady State Mean. The laser differential phase error

is given by Eq (42). Using the expression for the expected

value of laser phase noise Eq (46); HR noise, Eq (50) ; and

loop ref erence phase modulation, Eq (44), the mean of the

laser differential phase error is

E[Od(s)1 
= 21rKmEl(5) + [~J~

)
)] Z(s)  (65)

where

Z(s) = L[ ~~(t) ]  (66)

If the system is unmodulated, that is e1(t) 
= ~(t) = 0

then

E [ed(t)] = E[ed(s)] 
= 0 (67)

and the constant phase between lasers, from Eqs (2) and (25)

is

E[~d
(t)] = E[~~(t)] = 2

~~d
t + 

~d 
(68)

That is, the phase difference between the two lasers is

equal to the loop reference phase when the system is

unmodulated.
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A similar procedure starting with Eq (41), results in a

mean of the loop phase error of

E[’F(s)1 = 
[5+K (s)] 

Z(s) - 

[s+g~(s)]27rKmEl(s) (69)

Again , if the system is unmodulated , then

E[4(t)] = E[’V(s)] = 0 (70)

which is the expected result from Eq (34) since

4(t) = 
~r
(t) - 

~d
(t) (34)

As desired , the laser differential phase is matched on

the average to the loop reference phase when the system is

wunodulated. A measure of fluctuations away from this desired

result is now required. This will be found in terms of vari-

ance from the mean.

Steady State Variance. Eq (61) can be slightly modified

as

2ii•K E1(s)
= [1_H(s)] + 

~~~~~ 
+ [H(s)] (N’ (s) ÷ 0 (S))

• (71)

This expression show3 that the phase error is obtained by

passing the HR noise and reference phase modulation through

the filter H(s) and the integrated control signal and laser

instabilities througn the filter [1_H(s)] . Using the NEB

model of H(s) and assuming that all the processes are
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statistically independent and that ~(t) = e1(t) 
= 0 (no

modulation), the variance of the phase error is

WH r
a
o~ 

= 2 f L5
~’~ 

+ S
1 

(f)~ df + 2 1 5 (f)df (72)
a r -~ W11 d

The two terms of this integral are illustrated in Figure 7

to aid in showing the effect of WH on the resulting

_ _ _ _ _ _ _ _  

IH(j2~rf)~
2

S~~(fl f 1
I 

_ _

0 WH B01/2 f(Hz)
(a)

S (f) • -

0 WH f(Hz)
(b)

Figure 7. Graphical Representation of Contributions to
the Laser Differential Phase Error Variance due to (a) the
Heterodyne Receiver Noise and (b) the Lasers’ Phase
Ins tabilities

The total crosshatched area on the two graphs is the van-

ance. In Figure 7a, as previously noted, B01/2 by
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definition can never be less than WH. Thus from the point

of view of the closed-loop transfer function, the HR noise

n’(t) is nearly white.

Using the values for the spectral densities of Eqs (45),

(47), and (60) and integrating reduces Eq (72) to

2 2hfoWH 2(~0+ct1) 28 11f 1 it -la01 = 

nAdAl
2 + WH 

+ - + tan

2B rf 1 WH 1 (73)

From Appendix B, 
~co 

and 
~~l’ 

are arbitrarily small (experi-

mentally less than 1 Hz (Ref 6:184)) 50 it is reasonable to

assume that

w
1 (74)

Co

and

W

cl

Using that result, the tan~~ terms can be approximated by

the first three terms of their power series as

l W f f2 -

tan (76)
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Substituting this approximation back into Eq (73) finally

yields an expression for the laser differential phase error

variance of

2 A  C C
a01 = C1WH + + 4 (77)

H H

where

2hf
C1 

= 
2 (78)

nAdAl

= 2(a + a1
) (79)

and
2(~ +B,)

1’~~~~~~~ 
0 a.
3

The variable C~ is proportional to the energy of a detected

photon, hf0 ; C2 is proportional to ~fq~ the sum of the

quantum limited laser field linewidths; and C3 is propor-

tional to t~f , the sum of the laser field linewidths due to

external effects. The conflicting effects of the closed-

loop bandwidth on the terms in the phase error variance

indicate that some optimization of Wfl is desirable .

Two-Laser Loop Design Considerations

Several parameters are important when considering the

two-laser loop performance . One measure of performance is

the laser differential phase error variance which, as was

shown in Eq (77), depends on the closed-loop bandwidth.

This result, however , was based on the assumption that the
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loop reference signal was perfectly stable. Reference

instabilities must ultimately be considered in the loop

variance performance.

Variance is not the only measure of performance. In

addition, the loop must be able to accurately respond to the

desired modulation schemes of the reference signal thus

placing minimum standards on the loop filter design and the

loop dynamic response. All of these design considerations

will now be examined.

Minimum Phase Variance Bandwidth. To optimize the loop

performance, the variance of the laser differential phase

must be minimized. The expression for phase error variance

is given by Eq (77) and a plot showing the effect of the

three different terms is given in Figure 8. -

To f ind WH such that a0~ is minimal, take the derivative

of Eq (77) with respect to WH and set it equal to zero. This

leaves

C 2C
H H c1

Since C1, C2, C3 and WH are all real, the only real solution

to the cubic equation gives the minimum variance bandwidth as

3[C3 [C3 
2 c2 

3 R 2

~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ ~~~~
(82)

30

-_ _ _ _ _  - -



a01
A A

~~~~~~~~~ 2 A C C

I ~C3 a01 = C1WH + ~
;i— +

H~2H H WH
“H

C2
WH

2 Aa01 
-

mm

W}~~ WH(Hz)

Figure 8. Closed Loop Bandwidth versus Laser Differential
Phase Error Variance

If C~ >> C~ , which is typically the case since, for most

lasers >> L~fq (Ref 6:181), then Eq (82) simplifies to

3[~~

—

(83)

It is obvious from the examination of Figure 7 , that if the

actual bandwidth is less than W
~~an 

the variance is limited

by the laser phase instabilities (i.e., laser phase- noise

dominates). If WH is greater than WHmirl the variance is

dominated by detector noise. Surprisingly, it will be shown

that in many conceivable systems, WH < because is
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very large and thus the variance is limited by the phase

instabilities of the lasers and is independent of the HR

measurement noise (see the numerical example in a later

section).

• Loop Filter Requirements. As stated earlier, F(s) in

Figure 2 actually includes all “filtering” by any component

in the ioop. It will be assumed that all of these compo-

nents are controllable and thus F(s) can be constructed as

desired.

There are- several 1oop filters that are commonly used

in phase-lock 1oops (Ref 2:23). These are the first,

second , and third order filters and are listed in Table I.

The expressions for H(s) and WH were calculated using

Eqs (13) and (64) respectively.

The steady state mean response of the laser differential

phase error O d(t) :~~
- the modulated case can now be examined

for each of the difLerent loop filters under different con-

trol modulation schemes. The modulation schemes to be

examined are listed in Table II in both Laplace and time

domains. (Since each of the modulation schemes are causal,

they are unique transform pairs.) The variable ~(t) from

Eq (3) is the control phase modulation of the loop reference

phase and is in units of radians. The variable e1(t) is a

control signal introduced after the loop filter and is

measured in volts.

Once the filter and modulation scheme are known, the

mean steady state response for the laser differential phase
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error can be determined. If it is the reference p-hase that

is modulated then the ioop phase error t~(t) becomes impor-

tant. From Eq (34)

= Or(t) 
— O d(t) (34)

and using Eq (44) (and the assumption that Or(t) and O d(t)

are statistically independent) and exchanging terms gives

E[ed(t)] 
= ~(t) - 

E[~i(t)j (84)

Thus the mean, steady state value for the laser differential

phase error can be found by knowing the mean, steady state

value for the loop phase error and the control modulation of

the reference phase. For instance, if ~(t) is a ramp in
Dt2frequency, 
~~~ 

and the 1oop second order , then using

Eq (69) and the final value theorem, the mean, steady state

loop phase is

r ~ r 2,
lim E[~(t)1 

= lim 5E L’Y(s)j = lim 
~l 2 

S 
—

~~~ (85)
s÷o s÷o Ls + K~ + aKi s

1’
= D/ aK (rad) (86)

Now utilizing Eq (84) the mean, steady state laser differ-

ential phase error is

( ‘
. ~ r ,~~1 Dt2 D

~~
G d~ thi ss — —
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That is, the ioop will follow the frequency ramp (acceler-

ating phase) but there will be a constant phase error offset

of D/aK radians. This procedure is followed for all com-

binations of filter orders and reference phase modulations

schemes and the results are summarized in Table III. Only

the third order loop will follow accelerating phase with no

constant phase offset. (The first order ioop has a phase

and frequency offset when trying to track accelerating phase

and is not calculated.)

To calculate the mean steady state value for the laser

differential phase when the control signal is modulated,

Eq (65) is used. For example, if e1(t) is a voltage ramp ,

Crt~ 
and the loop is second order, then

lim [E Od(t)l = lim sE[0(s)] = lim s1 2 1 2itK C

s-,.o 5+0 Ls ÷ Ks + aKJ S

(88)

E[e d (t)] SS = 2rrK C /aK (89)

Thus a constant phase offset between the lasers can be

attained by use of the control signal e1(t). Results for

other combinations of loop orders and control signal scheme

are listed in Table III. (The first order loop has a fre-

quency and ramp frequency offset when an accelerated control

signal is applied and is not calculated.)

Actually, there appears to be no real advantage to

using e1(t) instead of ~(t) to control the laser differential

36
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phase. The main use of the control signal e1(t) is in con-

trol of the modulated laser quiescent frequency 
~lq • The

VCO quiescent frequency is from Eq (26)

= 

~lq - 

~oq (26)

The frequency of the modulated laser from Eq (22) is

= 211[flq + KW(vf(t) + e1(t))] + ~‘1(t) (22)

If there is a dc component eldc, in addition to any modulated

component elmod(t) of the control signal then Eq (22) becomes

= 211~~q + K ( v f(t) + elmod(t))} + -‘1(t) (90)

where

= 

~lq ÷ Kmeldc (91)

This will change the VCO quiescent frequency of Eq (26)

accordingly.

The control signal could also be used to sweep the VCO

frequency (using a voltage ramp) to “search” for the loop

reference signal then release when the reference is acquired.

Other dynamic effects of the loop will now be examined.

Loop Dynamic Effects. The loop filter, as shown pre-

viously, is important in determining the loop performance.

First, the filter determines the closed-loop transfer

function and resulting loop bandwidth (Table I). This in
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turn influences the steady state variance of the laser

differential phase error caused by the laser instabilities

and detectc~r noise. Second, the filter determines the steady

state response of the loop to various modulation patterns

(Table III). In addition to these steady state performances,

the loop filter also determines the transient or dynamic

response of the ioop.

The most versatile filter, as seen in Table III, is the

one resulting in a third-order loop . The exact behavior of

a third-order ioop is complex and difficult to obtain

(Ref 2:72). However, it can be roughly contrasted with the

second-order ioop whose behavior is relatively well known.

When a third-order ioop is not initially locked to the loop

ref erence phase , it is not as stable in its ability to

acquire lock as the second-order loop. The second order

results could in this case act as an upper bound (“best case”)

on the.third-order loop performance (Ref 7:362). Once locked,

however , the third-order can out perform the second-order

loop, most notably in its ability to follow accelerating

phase (frequency ramp) with no steady state phase error . In

this case, second-order loop performance acts as a rough

lower bound on third-order ioop performance. More specific

results must be obtained by computer simulation.

Some important performance equations for a second-order

loop in a noiseless environment are listed in Table IV.

Since they are valid for a noiseless environment, they repre-

(

4- 

sent the “best possible” performance in a noisy environment.
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These results are in terms of radian frequency ~ (rad/sec)

instead of f(Hz) since ~ is typically used in the literature

when dealing with dynamic feedback system behavior. The

general relationship is c = 2iif. Some results utilize two,

loop-parameter dependent variables called the natural fre-

quency, 
~n’ 

and the damping factor ~~~~. They are defined as

follows (Ref 7:359):

(92)

i iic _ K (93)

The natural frequency is the system phase error oscillation

frequency in response to a step in the input reference fre-

quency when there is no damping (
~ 

= 0) .  The damping factor

is a measure of how quickly the oscillations attenuate as

the loop acquires lock. Many of the expressions for the

same parameter vary depending on the reference so all sources

are also listed in the table.

The two main areas of transient behavior are tracking

and acquisition. Tracking parameters assume that the loop is

initially locked to the input reference phase. The hold-in

range, Ac~H , is the maximum amount the reference frequency

can deviate from the VCO quiescent frequency (HR output

frequency) and have the loop remain locked. It is theoret-

ically infinite for both second and third-order ioop~

(Ref 7:358). Another important tracking parameter is the

4].
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frequency step limit, A~ 3. It is the maximum step in ref er-

ence frequency below which the loop will not skip cycles.

Cycle skipping occurs when the difference between the refer-

ence and VCO frequencies is large enough to create a differ-

ential frequency (“beat frequency”) at the PD output.

Finally, the maximum reference frequency ramp that the loop

will follow without dropping out of lock is called the maxi-

mum tracking sweep rate, Dmax (rad/sec
2).

Acquisition parameters assume that the loop is not

initially locked. The pull-in frequency, t~c~ , is the maxi-

mum amount the reference frequency can deviate from the VCO

quiescent frequency and still permit the loop to converge

to a locked state . This , like the hold-in range , is also

theoretically infinite . As the ioop converges on the refer-

ence frequency, the VCO frequency finally gets close enough

to the reference frequency so that the ioop stops skipping

cycles—and settles into the locked state. The range within

which the loop ceases skipping cycles after pull-in is

called the lock-in frequency, 
~~L• 

The associated times for

the ioop to pull-in and lock-in to a step change in reference

frequency are respectively T~ and TL. The pull-in time T~
includes only the time that the loop cycle-skips. The lock-

in time TL, is the time from the last cycle-skip until lock

is acquired. The tracking frequency step limit is often

equated with the acquisition lock-in frequency 
~~L 

since the

basic criterion in the definition of each is the maximum fre-

quency difference below which the loop does not skip cycles.
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It does not matter if this frequency difference occurs as a

result of an input reference frequency step with the ioop

initially locked or as a result of pull-in with the ioop

attempting to acquire lock. This can readily be seen in the

similarity of the expressions for and in Table IV.

The lock-in time TL thus applies to either case. Finally,

the maximum frequency ramp that the loop can sweep and still

acquire lock is called the maximum acquisition sweep rate,
2R (rad/sec ) .

It is important to note that these transient performance

criterion may dominate simple noise considerations. If for

example, WH was chosen to minimize the phase error variance

(Eq (82)), it might not be large enough to meet say the

acquisition sweep rate demanded of the system.

Loop Reference Instability. The loop reference phase

was previously assumed to be perfectly stable , that is,

the power spectrum of the phase instabilities was zero

(Eq (45)). It is apparent from careful examination of Eq (42)

or (61) that any loop reference phase instabilities yr(t) will

be passed by H(s) and manifested in the laser differential

phase error variance.

For example, if the power spectral density of the refer-

ence phase instabilities is nearly white it can be written as

N
S ( f )  r 

— - ç~94)-r
f + fcr
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where Nr is a constant and ~cr is a cutoff frequency which

is very small (Ref 8:183). This expression is substituted

back into Eq (72) and solved for phase error variance. The

additional term that arises in the laser differential phase

error variance is

WH
2 f S.~, (f)df (95)

o r

which, after using the first two terms of the series for

tan~~, becomes approximately

- (96)

Not surprisingly, this term is reduced by making WH small.

A small WH, as previously discussed can have an extremely

detrimental effect on device flexibility. Thus the loop

reference stability is extremely important in specific

system design.

Other possible design considerati-~ns are mentioned in

the conclusion of this paper . However, the effect of any

given individual parameter (e.g., F(s), Yd(t), n’(t), r (t),

etc.) on the overall laser differential phase ed(t) can

readily be understood by careful examination of Figure 5

(Eq (42)). The steady state mean and variance of O d(t) due

to unwanted fluctuations (detector noise , laser instabilities

and reference instabilities) has been examined when the con-

trol inputs were zero . The steady state and dynamic changes
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in Od(t) with various control inputs and filter designs were

also examined. A design example for a potentially realizable

two-laser control system will now be presented to illustrate

the effects of the various parameters on the performance of

the loop .

Numerical Design Example

The specific system to be examined here pairs a highly

stable CO2 reference laser with a highly adj us table CO 2
waveguide laser . CO2 lasers were chosen because of their

widespread use. The waveguide laser was chosen because it

has a very wide gain bandwidth and thus can operate over a

wide range of frequencies around the centerline frequency

(Ref 9:1-33).

The transition of interest in this example is A = lO .6ii

which corresponds to:

f0 
= 2.83 x io13 Hz (97) 

-

The reference laser has the following characteristics:

~~qo = 6.28 x l0~~ Hz (98)

and

~~eo = 
~~~~~~~~~~~ x 10~ Hz (99)
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The waveguide laser has the following characteristics:

P1 2.4 watts (lOOa)

= .004 cm~~ (lOOb)

R1 = .922 (lOOc)

R2 
= 1.00 (lOOd)

L = 20 cm (lOOe)

n = 1 (lOOf)

and a useable gain linewidth (range over which the output

frequency is adjustable and the laser power out does not

drop below half its maximum value) of 7.00 x io8 Hz. From

Eq (B-37),

~~cav1 
= 2.85 x 1O7 Hz (101)

It is further assumed that the waveguide laser is operating

f ar enough above threshold so that N2/~N 1. Thus from

Eq (B-36),

~~ql = 2.00 x l0~~ Hz (102)

The field spectrum linewidth of the waveguide laser (includes

both quantum and external components) is measured as

+ 
~~e1 = 2.12 x l0~ Hz (103)

Thus

~~el~ 
2.12 x ~~~ Hz (104)
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As is true here, most lasers’ linewidths are dominated by

external disturbances not quantum limitations. With the

quantum and external linewidths for both lasers known,

Eqs (48) and (49) can be used t ’.. find:

= 1.00 x l0~~ Hz (105a)

= 3.18 x 10.6 Hz (105b)

= 3.47 x io6 Hz2 (lO5c)

= 2.58 x io l3 Hz 2 (105d)

Eqs (79) and (80) are then used to obtain

= 2.06 x lO~~ sec~~ (106)

and

C3 = 1.72 x io13 sec 2 (107)

Clearly, 
~~el 

dominates in the term C3 . The HR samples

1 x l0~~ watts (= A~A~) and has a quantum efficiency of

— 0.5.  -Using Eq (78) it is found that

= 7.51 x io 47 sec (108)

The reference signal is assumed to have no instabilities.

If the HR BPF is designed to allow the frequency to range

over the entire useable gain bandwidth, then B01, must be

greater than 7.00 x 108 Hz. Arbitrarily, B01, is picked to

be equal to that amount or:

B01 7.00 x 108 Hz (109)
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If it is assumed that the ioop filter does not limit the

bandpass of the loop , then WH is at most B01/2. The NEB ,

WH , of the closed-loop transfer function reasonably must be

somewhat less than that and is arbitrarily assumed to be

WH 
= 4.15 x l0~ Hz (110)

Using the results for C~ , c2, C3 and WH the laser differen-

tial phase variance from Eq (77) is

= 9.99 x io~~ rad
2 (111)

or a standard deviation of

a01 = .100 rad

= 5.75 degrees (112)

This is a fairly good result. However, if WH is decreased

by only one order of magnitude to 4.15 x 106 Hz then the

standard phase deviation will increase to a01 = 1 rad

(57.3 degrees). The minimum variance bandwidth using

Eq (83) is

W~~. = 7.7 x 10~ Hz (113)

This is more than two orders of magnitude greater than the

actual WH thus the system is dominated by laser phase noise.

The variance at W
~~jn 

is

aOlmin = 8.68 x l0~~ rad2 (114)
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or

aOlmin = .932 mrad

= .053 degrees (115)

which is the best noise variance this particular loop can

attain.

A second-order loop will be used in this example. A

commonly employed compromise between stability and speed of

response for a second-order system is to let (Ref 2:54)

- ~~~~
= .707 (116)

Using the expression for WH of a second-order ioop from

Table I and Eq (93) to solve for K gives

K = 1.11 x 108 sec~~ (117)

Again using Eq (93) gives

a = 5.53 x l0~ sec~~ (118)

and Eq (92) results then in

= 7.83 x 10~ rad/sec (119)

The waveguide laser is modulated by a rectangular

piezoelectric crystal 2.5 mm square by 25 mm long with a

crystal constant of dpE = 225 x lO 12 m/volt mounted on the

rear mirror. Using these values in Eq (C-14) gives

Km = 3.18 x l0~ Hz/volt (120)
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Using Eq (38) leaves

KdVrVd 
= 800 volts (121)

These three variables may be chosen arbitrarily as long as

their product is the above constant. The detector output

voltage amplitude Vd (Eq (A-l5)) is most easily adj usted by

varying the effective load resistance R. The loop reference

voltage amplitude Vr is similarly adjusted. The variable

Kd is the phase detector gain.

The transient performance of the ioop is found by

using the results of Table IV. The tracking frequency step

limit is

= 2.41 x rad/sec

= 3.83 x l0~ Hz (122)

The maximum tracking sweep rate is

D = 6.13 x ~~~ rad/sec2

= 9.76 x io14 sec 2 (123)

The acquisition lock-in frequency is

= 2.05 x 108 rad/sec

3.26 x l0~ Hz (124)

As long as the changes in the reference input frequency are

less than 
~
wL (or L~~~) then the loop will have a lock-in

time of no more than
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= 40 nsec (125)

If , however , the reference frequency changes by the full

amount of useable laser gain linewidth, 7.00 x i08 Hz, then

the pull-in time is

T~ = 722 nsec (126)

which is in addition to the lock-in time, giving a maximum

time to lock of 762 nsec for the system. This is very good

and could allow modulation on the order of msec with the

ioop still in lock. The maximum acquisition sweep rate is

R = 3.07 x 1015 rad/sec2

= 4.88 x 1014 sec 2 (127)

There is, however, a steady state phase error if this

second-order ioop tracks a frequency ramp. If, for example,

the tracking sweep rate is at its maximum allowable value

for the loop (Dmax = 6.13 ~ io
15 rad/sec2), the steady state

phase error from Table III is 1 rad (57.3  degrees) .  A

third-order 1oop must be used to eliminate this error.

This example has shown that even if one laser of the

pair has a large field spectrum linewidth (2.l x l0~ Hz)

the loop can perform very well, with a standard deviation

between the two-laser phases of less than 6 degrees and a

maximum locking time of about 762 nsec. It is important to

note that the system performance is limited by the laser

phase instabilities (especially that of the waveguide laser)
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and not by detector noise. The key elements in improving

performance are to make WH as large as possible and to make

the lasers as stable as possible.

This completes the study of the two-laser control 1oop .

The basic pairwise control model will now be used to develop

control conf igurations for the phase coherent control of a

laser array.
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III. Laser Arrays

It is a relatively straightforward process to construct

an array of phase locked lasers from the two-laser control

loop. However, tradeoffs between equipment simplicity and

laser differential phase performance can be made . Two array

systems will be considered in terms of laser differential

phase error variance. One consists of each laser in the

array paired against the same reference laser and in the

other each laser is paired against the next in sequence.

For this discussion the same quantities that were used

in the two-laser problem will be subscripted with the appro-

priate number of the lasers in the array (n = 0,1,2, . . . ,  N).

The reference laser is subscripted “0”. Unless otherwise

noted , it is assumed that the higher the laser number, the

higher its operating frequency.

A critical assumption in any of the following arrays

is that all of the loop reference signals are in phase with

each other ; that is, when all control voltages , e~ (t), are

zero , the phase difference between loop reference signals is

precisely the same as between the respective laser pairs.

Proper separation (control) of their phases then is mandatory

for the coherent summation of all laser output phases . This

requirement will be discussed later.
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Single Reference Array

A single reference array is constructed of N modulated

lasers each paired with the same single reference laser, in

the same manner as discussed in the two-laser case , making a

total of N lasers in the array. Thus there are N separate

ioops, one for each modulated laser as shown in Figure 9.

The ~~~~ laser pair” refers to the laser pair consisting of

the reference laser and laser n. The “beam sampling optics”

refers to the optics required to combine the laser output

beams in the proper r~quence and with the proper alignment

into the detectors. The “beam combining optics” are those

optics used to coherently add the output beams and direct the

sum towards the target.

It will be assumed that the individual loops are

uncoupled; that is, the performance of a given laser pair

does not depend on the performance of any other laser pair. -

The variance of the laser differential phase error for the

~th laser pair is then given according to Eq (77) as

A

C~ C.~
— ~

, ,, ~ Lfl .~fla On - 

~4-ln
WHn

Hn

The variables Cln~ 
C2n~ C3~ and WHU are defined by Eqs (78),

(79), (80), and (64) respectively. Since ultimately the

system adds all laser beams to a single output, it is impol-

tant to know the variance of phase differences among all the

lasers in the array . To do this it is assumed that the

noises and instabilities of all N lasers are statistically
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independent . The variance between any two different lasers

n and m is then

= a~~
2 

= E[(~m
(t) - ~~(t))2) , m n

= E[(~m
(t) - ~0 ( t ) ) 21 + E[(~m(t) - 

~0(t))2] (129)

and

a~~
2 

= a~~
2 

= + a om
2 , m n (130)

Since a~~
2 is a measure of the spread of the differential

phase between laser m and n , then if n = m , 
~m
(t) =

and thus

a~~
2 = O  , m = n  (131)

The array variance is defined in matrix form as

2 2 2 2a 00 a01 a02

2 2 2 2a 10 a11 a 12 a lN

a2 = a 2~ a 2~ a 2~ a 2~ (132)

2

aNO aNl °N2 . . .  a~~~ j

C
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For the single reference array, the array variance cIA
2 is

2 2 2 20 a 01 002 003 . . .

0 (a O~ + a0~) 
(a Oi + 003) (a~~ + 00N)

— a02 + 003 002 + ON

0

0

(133)

If all the lasers, except perhaps the reference laser , are

identical and all n loops have the same performance (e.g.,

same WH) then

a0~ 
= a O~ , 1 < n < N (134)

and the array variance reduces to

2 2 2 20 aOl 001 001 ... 001

0 2a0~ 2ao~ 
2a o~

a~ = 0 2c70~ (135)

- 
0

O j
(
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A simplification possible with this type of array is to

combine all the heterodyne receivers into one detector fol-

lowed by a parallel array of bandpass filters. The reference

laser must be placed where no two differential frequencies

are the same, probably at the lower or higher frequency end

as shown in Figure lOa. If all the assumptions for a hetero-

dyne receiver still hold for each laser pair (e.g.,

A0 >> A1 , A~ , . . .  , AN) then each BPF will continue to pass

the same signal as before (see Appendix A , Figure A—3). The

main advantage of this multiple heterodyne receiver is that

it requires N-i less detectors. It is also likely that this

will simplify the beam sampling optics since now the refer-

ence laser beam is required at only one detector , not N.

There are some disadvantages however. Where as before

each detector needed an active bandwidth (frequency range

over which the detector will respond) only wide enough to

cover the frequency difference between two lasers, now the

detector must be able to respond to the entire frequency

range of all laser outputs. Another disadvantage is that no

two BPFs can pass the same frequencies . If they could, then

a differential phase of one laser pair which drifted or was

changed too far would feedback its signal through the wrong

loop to the wrong laser modulator . This requirement obvi-

ously puts a limit on the flexibility of the system. That

is, the differential phase of each laser pair is restricted

to a specific range of frequencies and can never crossover

into another laser-pair zone (without changing the BPF array).
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A good compromise to restore some flexibility and reduced

required detector active bandwidth might be to use two or

three detectors and place the reference laser at some cen-

tral frequency as shown in Figure lOb .

Sequential Array

A sequential array is constructed of N + 1 lasers each

paired against the next in sequence, “0” with “1”, “1” with

“2” , “2” with “3”, etc., as shown in Figure lOc, making a

total of N control loops. The only difference between this

array and the single reference is in the beam sampling optics

represented in Figure 11. The rest of the array i~ the same

as in Figure 9.

L~ l 1 HR2 L HR3~ ... [HR ~

Figure 11. Representation of Beam Sampling Optics for
a Sequential Array

Again , the loop reference signals are assumed to be in phase

with each other.

60

- -~~~~~ - - .- ‘— .- —.~~~~ U- — — 
-~~~~~~~~ ~~~~~-; 

—



Assuming again that the individual loops are uncoupled,

the variance of the laser differential phase error for each

pair is still given by Eq (77), but the modulated laser of

one pair is the reference laser of the next. Thus a change

in differential phase anywhere will “ripple” down the

remaining laser pairs. If the noise and instabilities of

all N lasers are statistically independent then the variance

between any two lasers is

= = 0
fl ~~~fl +1) 

+ 0(~+1)(fl+2) 
+ a(+2)(+3) +

+ a(
2

2) ( l) + 0(
2

1) , n < in (136)

If all N+1 lasers are identical , then

= 001 , 0 < n < N-i (137)

and the laser differential phase variance matrix of the

sequential array is

O 001 2a o~ 
3ao~ 

. . .  Na0~

0 001 2ao~ 
(N l) a0~

0 0O~ : (138)

0 

H
(
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The further apart in the sequence two lasers are, the

proportionally more is the variance between them . This

obviously is not as good as the single reference array

performance (Eq (135)).

If the lasers are separated by a constant frequency ~f,

then the differential frequency for each laser pair is the

same. In this case a single detector cannot be used, as in

the single reference array, because each BPF must pass the

same differential frequency. However, since all ioops have

the same differential frequency ~f there is no way to

distinguish the differential frequency of a given pair. A

possible method to circumvent this problem is not to pair

the lasers sequentially in frequency. This approach is

depicted in Figure lOd. With this configuration the differ-

ential frequency for every laser pair is different and can be

distinguished by the BPF array. Again, however, each differ-

ential .frequency is restricted to its own bandpass (deter-

mined by the BPF) outside of which it will modulate the

wrong laser.

A possibly major disadvantage of the sequential array

is that if one laser malfunctions, it will separate into two

independent, smaller arrays destroying the device output . A

laser malfunction in the single reference array will result

in only one beam missing from the device output.

Laser Array Design Considerations

There are several important factors to be considered in

the design of any array. Some of these points will be
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mentioned here but they are by no means a comprehensive list.

It may be helpful to refer to Figure 9 during the discussion.

Loop Reference Control. Early in this discussion it

was assumed that the loop reference signals were in phase.

Indeed this must be tru since the separate laser phase dif-

ferentials cannot be coherent if the standards to which they

are locked are not.

The simplest way to guarantee phase coherence between

reference signals is to let them all be the output of a

single VCO . This of course places the restriction that all

laser differential phases must be the same, that of the VCO .

It is increasingly more difficult to control the dif-

ferential frequency and phase of each pair separately. This

would require phase locking the reference VCOs, or adding a

control signal internal to the loop (see Table III). Each

of these procedures, however, would add to device complexity .

Single Versus Separate Detectors. The advantage of

using a single detector is that it reduces the number of

detectors required and thus simplifies the beam sampling

optics. However, the disadvantages must be carefully con-

sidered.

The active bandwidth of the single detector must range

over all laser outputs not just two. This could especially

be a problem if the detector response is not uniform (con-

stant for all frequencies).
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Also since all differential frequencies are coming from

the same detector, the BPFs for the separate PLLs cannot

overlap. Thus each laser pair is restricted to a band of

frequencies determined by the BPF array. Additionally,

limiting the size of the BPFs also limits the bandwidth of

the closed-loop transfer function , WH. This could have a

severe effect on differential phase error variance performance

and on the dynamic performance.

Separate detectors , although more are required and beam

sampling optics may be more complex, have no such restrictions

on BPF bandwidth, B~~, and thus on differential frequency

operation range. Indeed the BPF may be a high pass filter

instead, and cover virtually all frequencies. Also detectors

with narrower active bandwidths can be utilized (this will

restrict the differential frequency operating range, but not

the noise performance).

Stability of the Reference Laser. The phase locked by

the basic two-laser control ioop is the differential phase

between the two lasers, not their absolute phases. The

laser pair absolute phase is free to drift throughout the

Laser bandwidth. This is also true for the array; it is the

r e 1at ~ive phase among the lasers that is locked , not their

• 

- 
-~~t q  phases. If, as is likely, the array utilizes fre-

.- .~ from as much of the laser gain linewidth as pos-

- . entirely possible that the lasers operating

- ge ~av be forced out of the gain linewidth by a
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drifting reference laser. For those lasers, the power out

would then drop significantly below the others (or even

worse cease to lase) thus having a deleterious effect on the

array output field and phase variance. If the power dropped

enough, that particular pair would drop out of lock com-

pletely.

Thus the absolute frequency stability of the reference

laser is of paramount importance. There are many stabili-

zation techniques, but these will not be discussed here

(Ref 10:1015-1026). The key design requirement, however, is

that the reference laser must have its own characteristics

and controls. It is therefore likely that the reference

laser should be separate from the array lasers and perhaps

not even used in the ultimate array output.

Initial Acquisition. The heterodyne receiver output

phase 
~d
(t) is the difference in phase between the two input

lasers (Eq (A-12)). However, there is no distinction between

which laser has the higher frequency. If the control 1oop is

configured to shift f1 to a higher frequency when a positive

error voltage is applied and if f0 is initially greater than

then the loop will drive f1 up to f0 where the ioop will

lock. But if f0 is initially lower, the loop will still

drive f1 higher and it will never lock. Therefore, if the

initial acquisition is to be assured , the reference laser must

have a known frequency relative to each of the modulated

lasers at system turn-on . This is another good argument for
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stabilizing the absolute frequency of the reference laser. If

the reference laser were stabilized at one extreme of the

modulated lasers operating range even if a laser pair momen-

tarily broke lock, it would automatically be in a position to

relock. The control voltage could also be used to “sweep”

the modulated frequency to attain lock.

Beam Control. The optics of the laser array must fulfill

two functions. First, the beams must be coherently combined

and directed towards the desired target. And second, each

field must be “sampled” for use in the control loops. For

the laser array fields to combine with the desired effect in

the far field , several attributes of the fields must be

regulated precisely.

Alignment of the sampled beams into the detector is

critical since heterodyne detection requires accurately

parallel and overlapping incident fields. A difference in

angle between the two fields on the order of A/diameter of

detector will result in degraded output (Ref 11:186).

Another difficult problem regards the relative optical

path lengths of the beams in the beam combining and beam

sampling optics. The control loop for each laser pair locks

the laser differential phase of the sampled beam, not the

actual output beam , to the reference phase. So while the

sampled beams may be perfectly locked by the control array,

the actual beams directed towards the target may not be

coherent in the desired manner. To avoid this problem , for
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each laser pair , the optical distance between the beam

sampling points of each beam must precisely equal the optical

distance between each sampling point and the beam array out-

put combination point (or be an integer multiple of the wave-

length). The optical precision required could be a major

consideration in the construction of any array.

These are only some of the array design considerations.

Others are mentioned in the suggestions for further study

following the s11mTn~ ry.
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IV. Conclusion

Summary

This paper presented design considerations and funda-

mental performance limitations of phase locked feedback

loops which were used to coherently combine- the outputs of an

array of single mode, but electronically phase modulated ,

lasers. The control problem was first investigated in a

“two-laser” control loop designed to lock the differential

phase between the two lasers to a specified reference phase.

An optical heterodyne receiver configuration was used to

measure the differential phase between the laser pair . An

error voltage proportional to the error between the desired ,

reference phase and the measured differential phase was

filtered and used to frequency modulate one of the lasers in

an attempt to null the error. An integro-differential

equation, valid for the linearized operating region of the

loop was derived in terms of reference phase control, the

heterodyne measurement noise, and the various laser phase

instabilities. The solution of the equation resulted in

the following expression for the laser differential phase

error variance in terms of the closed-loop equivalent noise

bandwidth of the system, W
~
:

A C2 c
001 = C1WH + + (77)

H
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The first term was due to heterodyne measurement noise where

C1 was proportional to the energy of a detected photon. The

second was due to the quantum limited noise of the laser

where C2 was proportional to the quantum limited laser field

linewidth. The third term was due to external noise on the

laser where C3 was proportional to the linewidth of the field

(less that due to quantum noise). The conflicting effects of

WH on each term suggested optimization of WH. Additionally,

the relationship between the loop filter and WH and other

system performance parameters such as ioop acquisition time,

frequency pull-in range and steady state error was examined.

A design example was presented to illustrate the effects of

various laser, detector and desired phase control parameters

on the overall performance of the loop . It was found that

the ioop performed very well for the specific example pre-

sented with a standard phase deviation between the two lasers

of less than .1 radian and a lock-up time of no more than

1 usec. *

The basic pairwise control model was then used to develop

control configurations for laser arrays. Two configurations

were reviewed : (1) all lasers locked pairwise to the same

reference laser and (2) each laser locked pairwise in sequence

across the array. Finally, resulting implications of system

complexity and potential sou’.’ces of phase errors across the

array were discussed.
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Suggestions for Further Study

Several of the assumptions made in this paper may not

always hold. For instance, it was assumed in deriving the

differential phase variance that the loop reference was rela-

tively stable (Eq (45)). Although treated briefly

(Eqs (94) through (96)) a more complete study is in order.

It wa~ also implicit in the discussion but never really

stated that lasers operate in one mode , on one transition

line only. Active mode competition will have an especially

harmful effect on the far field but could also affect the

loop control. Discrete jumps in frequency due to vibration/

rotational level competition would increase the phase vari-

ance. Both these effects are unfortunately enhanced by the

mirror movement which may be used to modulate the frequency.

Another assumption was that the lasers in an array were

all statistically independent. This may not be true if all

the lasers are in the same structure. The external portion

of phase noise in this case would be mostly comuon to all

the lasers .

In the same vein, it was assumed that the external

noise had a Gaussian density (Appendix B). If it does not,

the resulting field phase spectrum becomes very difficult to

determine, but may be important if a particular external

noise source is persistent (e.g., aircraft vibrations if the

device is to be mounted on an aircraft).
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Also the field amplitude has instabilities that were

neglected (Eq (B-4)). It will have an effect on the far

field waveform.

The closed-loop transfer function was modeled as an

ideal low-pass filter (Eq (64)). A more accurate description

could be found which would include the effects of other loop

components (such as heterodyne receiver band pass filter ,

line impedances , modulator crystal capacitances and loop

filter).

Several assumed linearities are especially worth inves-

tigating. The laser output power for instance is dependent

on where along the gain medium bandwidth the laser is oper-

ating. Also the detector may not have a uniform response

over its entire active range. Further, the modulator crystal

may not respond linearly to large requests for changes in

frequency. All of these must be considered in the final

evaluation of performance .

The most versatile loop filter, the third order

(Table III), presents a mathematically intractable problem .

A computer simulation of such a system would help predict

loop performance much better than the rough estimates using

second order results (Table IV).

The effect on the array output of a single laser ceasing

to lase was only briefly mentioned. A more thorough study

of possible array configurations and their inherent reliabil-

ity and sensitivity to equipment malfunctions could be
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worthwhile especially if the system is to be used in a

hostile environment.

Specific attention should be given to the use of the

CO2 waveguide laser referred to in the example. It combines

a relatively wide useable gain bandwidth with single fre-

quency operation (Ref 9:1-33).

There has been one successful attempt to control the

phase of a number of CO2 waveguide lasers (N = 4) and

coherently sum their outputs (Ref 12:263-4). Construction of

larger arrays with more flexible modulation capabilities

could now be considered.
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Appendix A

Heterodyne Detection

Heterodyne detection is a measurement technique used

to determine the phase of a field relative to a reference

field while simultaneously suppressing the effects of thermal

and dark current noise present in optical detectors . The

first and second moment characteristics of the heterodyne

receiver output are presented in this appendix.

The basic heterodyne receiver (HR), depicted in

Figure A-i consists of mixing (adding) two fields together

onto the same detector to produce a signal with a phase

equal to the differential phase of the fields (“beat

frequency”).

BAND

FILTER ~ 
Ld(t)

E0 (r , t )  
- 

-- -——---—-——___ _ _ _ _ _ _ _ _ _ _ _

Figure A-i. Basic Heterodyne Receiver Configuration
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This signal is then passed through a bandpass filter (BPF)

which suppresses the noise relative to the signal. If the

phase of one field , E0 (r , t )  called the local oscillator, is

known , then the phase of the other field can be readily

determined from the detector output.

The results stated herein are conditional on the

following assumptions:

(1) The fields impinging on the detector are coilinear ,

planar , of constant magnitude and normally incident. They

can therefore be expressed as

- 1i~ (t)1E0 (r , t )  = A0cos~0(t) 
= AoRe [e 

° (A-i)

and

- I j~ 1(t)]E 1(r , t )  A1cos~1(t) 
= AiReLe j (A-2)

In this paper the Re[ ] will be understood when using the
complex envelope notation. Thus the fields will be written

as
j c~ (t)

E0(r , t) = A0e ~ (A-3)

and
j~ (t)E 1(r , t )  = A1e ~ (A-4)

The phases are

= 271f0qt + + 00(t) (A 5)
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and

= 2lTf1qt + + o~~(t (A-6)

where 
~oq 

and 
~iq are the respective quiescent frequencies

and e0(t) and 91(t) are phase modulation terms which include

both control and random phase fluctuations.

(2) For power or energy calculations only,

= 

~oq ~lq 
(A-7)

(3) The combined beam is incident on area Ad of the

detector, called the active area.

(4) The fields, traveling in free space , have units of

volts/m/I~E~ and without loss of generality,

A0 >> A1 (A-8)

(The reverse, A1 > >  A0 , could also be true but would be

included in the following results with a simple change in

subscripts.)

(5) There is negligible excess noise. (An “excess

noise” term arises strictly from the random portion of the

fields (Ref 11:16).) -

(6) The BPF is ideal with impulse response b(t), trans-

fer function ~B(j2rrf)~
2 , magnitude l/C0~ , spectral width

B01 Hz , and centered on frequency

= 

~iq 
- 
~oq 

(A-9)
(-
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The transform function is shown in Figure A-2.

1 B(j2irf) 1 2

_ _ _  

-
~~~~~~ 

_ _ _CO1

0 Ed f(Hz)

Figure A-2. Heterodyne Receiver Bandpass Filter
Transfer Function

With the previous assumptions, the second moment sta-

tistics of the HR output current id(t) are (Ref 11:187)

qriA~A A1E[Ld(t)] 
= hf0C01 

COS
~d
(t) (A-iO)

and
q2T)A~A

2 B01 B
Si (f) = 

‘ 
- 

~~~~~~~

- 
~~. 

If I 
~ ~d 

+ 4— (A-li)
d LhL0C01

where

= ~~1(t) - ~ 0 (t) (A-12)

and h is Planck ’s constant, q is the charge of an electron

and ri is the quantum efficiency of the detector in photo-

electrons per photon. (All power spectral densities in this

paper are the Fourier transform of the covariance of the F
particular stationary process, not the autocorrelation.)
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If these results are desired in terms of a voltage,

vd(t), multiply the current id(t) by an effective load

resistance R to obtain

E[vd(t)] 
= Vdcos~d

(t) (A-13)

and

q2nA~A
2 R2 B01 B01S,, (f)  = 2 ‘ ~d - 

~~. 
If I 

~ ~d + 
~~ 

(A-14)

where

q n A A A R

R includes the effective resistance of the HR plus any

additional resistance (load) added to obtain the desired

Vd(t).

These results are typically modeled as the signal

Vd(t) 
= E[vd(t)] + n(t) (A-l6)

where n(t) is a zero mean, Gaussian random process with

spectrum (Ref 13:1820-1823)

• S ( f)  = S (f)  (A-l7)
fl Vd

The HR will also operate with more than one field added

to the local oscillator field as long as the resultant beat

frequencies are different and each can be separated by its

• ( own BPF. The multiple HR configuration and BPF array transfer
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function are shown in Figures A-3 and A-4. The individual

BPFs need not have the same magnitude. The output of each

BPF is precisely the same as in the basic case and is given

by Eqs (A-b ) through (A-l7) .

E~<i , J~ /\/~
4Y

~Lf\..4~
__

EN (~
,t) —II!!~iII1—— 

id (t)

Figure A-3. Multiple Heterodyne Receiver Configuration

IB~(i2~f)I
2

_ _ _ _  _ _ _ _ _ _ _ _  

1 HBO1 1B 02 ~ HB ON_~~

~
dN ~~~2 ~~~l 

- 

~~1 ~~2 ~
dN

__-  ~~~~~~~~~~~~~~~ •~~~•~~~~~~~~~~~~~_ _

Figure A-4. Multiple Heterodyne Receiver BPF Array
Transfer Function. (Each cell need not have the same
magnitude ..)
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Appendix B

Laser Phase Instabilities

The objective of thi s appendix is to derive the power

spectral density of the laser phase in terms of quantities

measurable from the laser field. First, the form of the

laser output field and the nature of its instabilities will

be discussed. From there, an expression for the spectrum

of the laser phase in terms of the field spectrum will be

derived. Only the temporal characteristics of the field are

considered, that is E(r,t) = E(t).

The laser output field can be modeled as a sinusoid

with constant amplitude and phase plus a random noise term

14(t). (This treatment is taken primarily from Yariv

(Ref 1:307-318).) The field is thus written:

E(t) = Acos(2nf0t + ~~) + M(t) (B-b)

where f0 and are the constant frequency and phase of the

• field respectively. Furthermore, the noise is assumed to be

narrowband around f0 (slowly varying with respect to f0) and

can thus be written in quadrature (see Appendix D) as

M(t) = cn(t)cos(2nfot + 4~~) + s~(t)sin(2irf0t + •~
) (B-2)

• (i~
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The in-phase and quadrature components, cn(t) and s~(t)

respectively, are Gaussian random processes.

The field can also be written in polar form as

E(t) = E(t)cos(2rrf0t + + y(t)) (B-3)

where

E(t) = ~Js~(t) + (A + c~(t))
2 (B-4)

and
~ (t)

y(t) = tan 
~A +c~(t) 

(B-5)

These relationships can be seen from the phasor diagram

shown in Figure B-i. When the laser is sufficiently above
(

A sin(2~f0t +

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
+ ~

)

Figure B-l. Phasor Representation of Laser Instabilities

threshold so that

A >> c~ (t) , s~~(t) (B-6)

then the field representation reduces to
(

~(t) — Acos(2trf0t + + y(t)) (B-7)
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where the phase instability is now given by the approximation

S (t)
y(t) = A (B-8)

From Eq (B-7) it is clear that the spectral characteristics

of the laser field are determined almost exclusively by

phase, not amplitude instabilities (Ref 6:181; 14:404). It

follows from Eq (B-8) that y(t) is a Gaussian process since

it is linearly related to the Gaussian term s~(t). It will

arbitrarily be given a mean of zero by including any constant

mean terms in (2ir f0t + ~
). However, y(t) is not necessarily

stationary and in fact represents the random walk of the

oscillation phase under the influence of the various noises

(Ref 6:181; 14:404).

An assumption about the stationarity of the phase

instability y(t) is now made. Laser electric fields because

of their inherently high frequencies are typically measured

as a “beat” or relative field between two lasers as shown in

Figure B-2 (Ref 6:182; 15:901; 16:375). For that type of

configuration , where the measurements are made with respect

to a standard laser whose instabilities are negligible com-

pared to those of the laser to be tested , it has been shown

that y(t) is a stationary, Gaussian random process (Ref 6:180-

189; 15:901-902; 16:373-386; 17:277—280; 18:165-1.67; 19:2398-

2407). Such a measurement technique is assumed for all fields

used in this paper. Thus, any statements in this appendix

( (and throughout the text) regarding laser fields or spectra
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will be interpreted as the respective measured quantities.

This interpretation is consistent with the types of meas-

urements required by the two-laser phaselock loop discussed

in the text .

MEASURED
1~~~~Ri~ 1 LASER

_ _ _ _ _ _ _ _  DETECTOR I ANALYZERI FIELDr LASER #~± T H  ~
) J SE (f)

-
~4(ODI~~~~~~~~~~~~~~~

STABILIZATION LOOP ~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Figure B-2. Typical Arrangement for Measuring the Spectra
of a Laser Field and Its Instantaneous Frequency

Using the assumption that y (t) is a zero mean, station-

ary, Gaussian random process , an expression for the relation-

ship between the field spectrum and the phase instability

spectrum can now be derived. (This derivation comes primar-

ily from Siegman (Ref 6:183-184).) The following cosine

Fourier transform pair will be utilized (Ref 20:138)

S(f) = 2 f R(r)cos(2nft)dt (B-9)

R(t) — 2 f S(f)cos(2rrft)dt (B-iD)
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where S(f) is the power spectral density and R(t)  is the

autocorrelation over the interval t = t2 - seconds .

From Eq (B-i) , the measured laser field can be written

in exponential form as

f j ( 2 i r f t + ~~ + y( t ) ) 1
E(t) = A Re [e ° J (B-il)

For notational convenience, the process x(t) is defined as

x(t)  = 5j 1(t) (B-12)

Thus the field can be written in the form

A 1 j ( 2lT f t + + ) 
* 

-j ( 2ir f t + ~ 
)

E(t) = zL~
t)e + x (t)e °

(B-l3)

where x*(t) = e
_j

~~
t) . The autocorrelation of the field is

= E[E (t+r)E
*
(t)]

A2 I j(2nf (t+t)+4 )
= 

~~ 
E [(x( t+t )e  °

* -j(2nf (t+t )+$ ) j(2nf0t+40)+ x (t+t)e ° °

* 
- j ( 2ir f t+c~ ) 1

+ x (t)e ° ° )J

Expanding this expression and neglecting the double fre-

quency terms yields

2 j 27r f T 
* 

-j 2ir f ti
R E( t+t , t) = 

~~_ [Rx (t+t~ t)e ° + R~
( t+’r , t)e ° J (3-15)

C
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where

Rx(t + t , t) = E[x(t + t )x*(t)] (3-16)

and

R ( t  + t , t) = E[x*(t + t) x(t)] (B-li)

If R
~

(t + t , t) and R(t + t , t) are stationary then Eq (B-15)

becomes

A2 1 j2 rr f 0t 
* 

-j2irf ti
RE(t) 

= 

~~L~x
(t

~~ 
+ R~ (r ) e  ° (B-18)

Thus the spectrum of the field is

A2 
*S E(f) T[~x~ 

- f 0) + Sx
(_ f - f0)] (B-l9)

This is a two-sided spectrum formed about f0 and -f 0 . Since

it is impossible to distinguish between a positive or a

negative frequency on a spectrum analyzer, this result will

be converted into a one-sided spectrum by flipping the~

negative spectrum about f = 0 to overlap the positive portion

of the spectrum. If S(f - f0) is real and symmetric on

which is true if R
~
(t) is real, the field has the one-sided

spectrum

2
S~ (f )  = 4~- S,c (f - f 0) (3-20)

An expression for S
~
(f) is found by noting that the

( autocorrelation of x(t) is

* I
R~ (t + t ,t) = E [x(t + r )x  (t) } = E[e J (3—2 1)
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where

~y(t ,t) = y(t+t) - y(t) (B-22)

Since y(t) is a zero mean, stationary, Gaussian random

process , the autocorrelation of x(t) can be shown to be

(Ref 21:159-160)

-½R~ (0)
= e (B-23)

where R~1
(O) is the variance of ~y(t,T) and R

~
(T) is sta-

tionary. Taking the transform (Eq (B-9)) gives

~ -½R~ (0)
S (f) = 2 J

o 
e ~ cos(2i~ft)dt (B-24)

Finally, substituting this result into Eq (B-20) gives the

general result.

2 -~ R (0)
SE(f) = A I e ~~ cos(2n (f- f0)r)dt (B-25)

Next, a relationship between R~~(0) and the spectrum of

phase instability must be found.

To find R~1(O), first express ~y(t,r) in terms of y(t)

as

Ay(t , t )  = y(t)*y( t )  (3-26)

where

y( t )  = [S (t+t) - d( t ) }  (B-27)
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The transform of y(t) is

j2irf t
Y(f) = e ° - 1 = 2je3~~

tsin(1rft) (B-28)

so that

IY(f)I 2 4 sin2(irft) (B-29)

Thus the following relationship between the spectra of y(t)

and ~y(t , T) holds :

S~~ (f) = 4 sin2(tT ft)Sy(f) (B-30)

The spectrum of y(t) is not readily measurable, howaver the

spectrum of the instantaneous phase instabilities ~~(t) = ~~y(t)

is (Figure B-2). Therefore using the identity (Ref 20:138)

5y(f) = 2 
S~(f) (B-31)

(27rf)

Eq (B-30) becomes

S~1
(f) = 

(
~~in~ rft))2 S~(f) (B—32)

Finally, the variance of 
~Yd

(t ,T) is

R~1
(O) = J S~1

(f)df = 2t2 J (sin~~ft))2 S~(f)df (B-33)

(This result differs by a factor of two from Siegman’s results

due to the definition of the transforms used in this paper,

( Eqs (B-9) and (3-10).) Using Parseval ’s general theorem
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Eq (B-33) can be recast into the form

R~1
(0) = 2t f (1 - 

~
) R. (u)du (B-34)

These are tLL~ desired results. The relationship

between the field spectrum S~(f) and the phase instability

spectrum S
1
(f) is given by Eq (B-25) where R~1

(0) is expressed

by Eq (3-33) or (B-34) and S..(f) by Eq (B-31). These general

results will now be related to the specific cases generally

observed in a laser .

The random phase instability y(t) of lasers is composed

of two components (Ref 15:901). One is an “external” con-

tribution Ie(t) due to acoustic noise, structural vibrations ,

plasma oscillations, thermal arid pressure drifts and other

environmental disturbances . (It is also called “technical”

noise (Ref 16:373), or “extraneous” modulation (Ref 17:277;

18:165).) The other element is a quantum contribution

Yq(t)~ usually much weaker. Quantum noise is the quantum

mechanical or statistical limit of phase fluctuations and

thus sets the minimum size of the phase spectrum. This

quantum noise will be examined first.

The generally accepted form of the field spectrum due

to quantum noise alone for a homogeneous laser operating

above threshold at atomic line center is the Lorentzian

lineshape (Ref 1:154, 318; 16:374)

2 ~f /21T
( 5E (f) = 

~~~~

— 2 2 (B-35)
q (Afq/2) + (f - f0)
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The variable ~fq is the full width at half maximum (FWHM)

of the lineshape. This linewidth is given by

— 

irhf0(~f )2 N2 6q~~ 
(B-3 )

where h is Planck’s constant, P is the power out of the

laser, N2 is the electron population of the upper laser

transition level, and L~N is the population difference

between upper and lower levels. The variable 
~~cav 

is the

“cold cavity” bandwidth (FWIIN) and is described by

(Ref 1:142)

c(a L - ln/R R )
cay — 

2rrLn 
-

where c is the speed of light, c~ is an average distributed

field loss per pass (not including mirrors) in cm~~~, L is

the length of the resonator, n is the index of refraction of

the laser medium and R1 and R2 are the reflectivities of the

front and back mirrors respectively.

Assuming that (f) is known, S• (f) can be found
q 1q

using Eqs (3-25) and (3-33) or (B-34). However it is easier

here to predict a value for S~, (f) and then show that itq
gives the desired SE (f). Therefore the predicted value for

q
the spectrum of the instantaneous quantum phase instabilities

I j
~

S~, (f)  = 2~~f (B-38)
q q
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From Eq (B-33)

R~1
(O) = 21T~fqt (B-39)

Substituting this value into Eq (B-25) gives

~ -wtif t
SE (f ) = A2 f e q cos(2i~(f-f 0)t ) dt

q 0

irt~f

(W~fq)
2 + (2n (f-f0))

2

= 
A2 

~~g”2 ’~ (B-40)
T (t~fq/2) 2 + (f-f)2

This is the desired field spectrum stated in Eq (3-35).

Thus the spectrum of the phase fluctuation due to quantum

noise is , from Eqs (B-38) and (3-31)

S (~) = 
q
2 (B-41)

2irf

The external noise contribution, as previously noted, is

due to a wide variety of environmental factors. Although

each factor may have different statistical properties (i.e.,

non-Gaussian), itis reasonable to assume that the laser field

spectrum resulting from their combined effects will be

Gaussian in shape , and indeed this is confirmed by experi-

mental evidence (Ref 6:180-189). The form of the field

spectrum due to external noise only is thus given as
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2 ( f f  ) 2
SE (f)  = 4~- ~ exp -[ 

~ ] 
(B-42)

e V 2,Tci 2a ee

where is the standard deviation (rm s width) of the curve

and is given by

• ~e = (8 ln2)~~~f (B-43)

where 
~~e 

is the FW}IN linewidth. Again it is easier to

anticipate the value of S• (f) and show that it leads to the
1e

proper value of the field spectrum. The spectrum of the

instantaneous external phase instabilities is

4ira2f
S• (E) = 2 

e c (B-44)

where is an arbitrarily small “cutoff” frequency which is

effectively a measure of how closely SE (f) approximates ae
Gaussian distribution. If it is perfectly Gaussian in shape

then 
~c 

0 and S (f) becomes an impulse at f = 0. The

approximately 1/f2 relationship of Eq (B-44) has been verified

experimentally (Ref 6:180-189 ; 14:901-902; 17:373-386). The
• corresponding autocorrelation is from Eq (B-lO)

2 2~~ t
R• (t) — (2~~ e) e c 

, > 0 (B-45)

This expression indicates that is difficult to actually

( measure in that r , the observation interval, must be very
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large before a measurable decay in R• (r) occurs. Since

ideally 
~~ 

is small 
~~e

(T) (2
~
ae)

2. Us ing this approxi-

mation for R• (t) in Eq (8-34) gives

R.4~ (O) = (2n ae)
2 ~2 (B-46)

Substituting this value into Eq (B-25) finally gives

2 -½ (2na ) 2
t

2

= A f e e cos(2ir(f-f 0)r ) d t

— 
2 /~~ _ _ _ _ _ _ _ _ _ _— A 4~a exp -

~ 2e L 2(2n a2)

2 1(f-f ) 2 1
= 

A 1 exp - ° I (B-47)
ae

which is the desired field spectrum of Eq (B-42). Thus the

spectrum of the phase instabilities due to external noise is,

from Eqs (B-44) and (B-3l)

f a 2

~ (E) = 2 
c e  (B-48 )1e ~~

The observed field spectrum is the sum of the quantum

and external spectrum results. Adding the expressions of

Eqs (B-41) and (B-48) gives

____ 

r 2a2f 1( S ( f )  — S (f) + S (f)  1 
2 ~~ + 2 

e C (B-49)1e 2irf q + f )J
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Much of the external noise can be removed by careful

isolation and construction of the laser, but the quantum

aoise is of course inherent in all lasers. Typically the

external noise so totally overwhelms the quantum contri-

bution that the shape of the field spectrum appears, for all

practical purposes, to be Gaussian only. It is only in the

higher frequencies that the wider “tails” of the Lorentzian

may become apparent (Ref 16:384) . This is also obvious from

examination of the phase noise spectrum Eq (B-49). The

quantum contribution is proportional to 1/f 2 and the external

contr ibution 1/f 4 . Thus although the external noise clearly

dominates at low frequencies , the quantum noise persists to

higher frequencies.

This derivation assumed that all the external noises

acted together to create a field spectrum that was Gaussian

in shape , and this in general appears to be true . However

the Gaussian assumption is destroyed if a single noise

(e .g . ,  aircraft vibrations or 60 Hz hum) is dominant . If

its specific contribution to the field or frequency spectrum

can be estimated , then Eq (B-25) or (B-31) respectively can

again be used to determine its phase spectrum.

I
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• Appendix C

Laser Frequency Modulation

Although there are many methods of modukating or sta-

bilizing the frequency of a laser field, the simplest is by

changing the optical length of the resonator cavity (Ref 22:

116) . This method is also compatible with the feedback

techniques discussed in this paper . Typically the change in

optical length is affected by changing the driving voltage

across a crystal which is mounted internally or externally

to the cavity. Both types will be briefly discussed .

For a single mode laser , the axial mode frequencies are

given by

(C-i)

where m is an integer, c is the speed of light and L
~ 
is the

optical length of the cavity . The change in frequency with

a change in Lx is

dL-mc Xdf — —
~~ dLx — - f -r— (C-2)

Lx

which can be written approximately as

t~L~( — - (C3 )

_ _ _  

9~ ~~~~~~~~~
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The external modulation technique consists of mounting

a piezoelectric crystal (PE) on the back of one of the cavity

mirrors as shown in Figure C-i.

v(t)

_____-I

-

PE j d

Figure C-i. External Crys tal Frequency Modulation
Configuration

Applying voltage v(t)  to the crystal physically changes its

length according to the expression (Ref 23:115-116)

d l
Al = ‘~~ v(t) (C-4)

where 1 and Al are the length and change in length of the

crystal , d is the width of the crystal across which the

voltage is applied , and dpE is the crystal constant in

rn/volts. Since expanding the crystal shr inks the cavity ,

the relationship between crystal and cavity length is

AL = - Al (C-5)

Substituting Eqs (C-4) and (C-5) into (C-3) gives

d l
— ~ L~~ 

v(t) (C-6)
x
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where

Lx = nL (C-7)

The internal modulation case consists of mounting an

electro-optic crystal (EO) inside the cavity as shown in

Figure C-2. Applying voltage v(t) to the crystal changes the

index of refraction that the laser field encounters according

to the expression (Ref 1:347)

n3r
An0 = ~d

EO v(t) (C-8)

v(t)

_ _I
(1 L E O  )d

L’ ——-—>j-< Tj  ,~ T
L

Figure C-2. Internal Crystal Frequency Modulation
Configuration

• where n0 and An0 are the index and change in index of

refraction of the crystal , d is the width of the crystal

across which the voltage is applied and rEO is the electro-

optic coefficient in m/volt. The optical length of the

cavity is

Lx — nL’ + n0l (C-9)
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where n and L’ are the index and length of the laser medium

respectively. The change in optical length with a change in

crystal index is

dLx = 1dm0 (C-lO)

or approximately

ALx 
= lAn0 (C-ll)

SubstItuting Eqs (C-8) and (C-li) into Eq (C-3) gives

3
= - ~ 

O E O  v(t)  (C-12)

A generalized expression for either EO or PZT modulation

from Eqs (C-6) and (C-12) is

= KmV(t) (C-l3),

where

Km 
= f (C-l4)

and

dPE (C-15)

for the external (PE case) or

= 
n0r~~ (C-16)

for the internal (EO case) .
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The frequency of the laser then is composed of its

natural or quiescent frequency fq (when v(t) 
= 0), a modu-

lated frequency as described above , and any instantaneous

phase instabilities, y(t). Thus the instantaneous frequency

of a modulated laser can be written as

~(t) — 2n (fq + Kmv(t)) + ~(t) (C-l7)
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Appendix D

Quadrature Component Representation

of Narrowband Noise

For a system operating at fre~uency ~d 
with bandwidth

B01, where >> B~1 , it is common to represent the system

noise in terms of quadrature components as

n(t) = nC(t)cos(2Trfdt + ‘~d~ 
+ nS(t)sln(2Trfdt + ~~ 

(D-l)

where nc(t) and n~
(t) are the in-phase and quadrature compo-

nents of the noise n(t) respectively and 
~d 

is an arbitrary

phase angle (Ref 24:237-244). They have the following

properties

E[n(t)] = E[nc(t)] 
= E[n5(t)

’ = 0 (D-2)

Snc
(f) = S (f) = Lp[Sn(f~

••fd) + Sn(f+fd)] (D-3)

Snsnc
(f ) = Sn n (f)  — iLp[Sn ( f_ f d) - Sn ( f+f d)] (D- 4)

where L~ [ } means “the lowpass portion of,” E[ ] is the
expected value, and S(f) is the power spectral density. If

S~(f) is symmetric about ~d’ 
then n

~
(t) and n8(t) are

uncorrelated and

Rn ~ 
(r) — R~ ~~ 

(t )  — 0 (D-5)
S c  C s
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where R(t) is the autocorrelation. If, in addition, n( t)

is a Gaussian random process n~ (t) and n5(t) will be inde-

pendent Gaussian processes. From Eq (D-3) the magnitude

of S (f) (or S~ (f)) is twice that of S (f). This isn

shown graphically in Figure D-l.

S
~ 

( f)

_ _ _ _ _ _  

~~~~0l >j

4 8~~~
>’•

0 
~d 

fd+~
_
~
.
~ 

f(Hz)

(a)

~ ~n 
(f) , Sn l~~~

l 
c

_ _ _ _  _ _ _ _- I ~~~~~~~~~~~~~~~~~

-B01/2 0 B01/2  Ed

-- --- -V •- -- --••--- 

b) 
_ _

Figure D-i. Spectra of (a) Narrowband Noise and (b) Quad-
rature Components of the Narrowband Noise with 5n(

~
) Sym

metric about 
~d 

(Ref 22:242)
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