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Introduction

Over the past few years, the authors have been engaged in a
coordinated research program on inverse problems. By this time, the
results have been spread over a number of different papers. Thus, it is
the considered opinion of the authors that a review of the present state
of this research be written. This review also provides an opportunity
to filter some of the work that has proven to be of less interest and to
incorporate into the presentation new insights that have been developed
during this research project.

This report describes the three main segments in this research
program:

(i) physical optics far field inverse scattering (denoted by the
acronym, POFFIS);

(ii) seismic or subsurface profiling in media with small variations
in propagation speed;

(iii) analysis of the inverse source probl-m.




1. The POFFIS Identity

The POFFIS identity was originally derived by BOJARSKI [1].
Analysis of the basic identity and its extensions can be found in LEWIS
[2], BOJARSKI [3], PERRY [4], TABBARA [5,6], ROSENBAUM-RAZ [7], BLEISTEIN
[8,9] and MAGER and BLEISTEIN [10]. The problem of interest here is
reconstruction of the image of a convex scatterer from observations of
the high frequency far field scattering from the object in response to a
known probing signal.

The POFFIS identity relates the scattered field to the Fourier
transform of the characteristic function of the scatterer. The character-
istic function is equal to unity in the region occupied by the scatterer
and zero elsewhere. Thus, knowledge of this function makes possible the
reconstruction of an image of the scatterer. The Fourier transform of
the characteristic function is itself a function of a vector transform
variable, k. The magnitude of the vector is proportional to frequency;
the direction of the vector is determined by the source-receiver directions. 5
Consequently, in any practical situation, with limited bandwidth and
directions of observation, the Fourier transform is known only in some
aperture limited--band limited and aspect angle limited--domain in k
space. The problem of extracting information about the characteristic
function from a high frequency aperture limited Fourier transform is
solely a question in the Fourier analysis of piecewise constant (in this
case zero-one) functions. The problem is discussed from this point of
view in Section 1.3 and will prove useful in the discussions in Sections

2.1--2.3 below.




1.1 Derivation of the POFFIS Identity

A point source located at 50 in Figure 1, gives rise to a

signal, uI(g, X , w), which is a solution of the reduced wava2 equation,

2
Here, 7 is the three-dimensional Laplacian, & (x) is a three-dimensional

Dirac delta function and

(1.2) up (%, x 5 @) = exp {dulx - x |/c}/ (4n]x - x ).
The signal Uy is incident upon a convex scatterer (B in Figure 1), giving
rise to a scattered signal Ug - The scattered field has the following

integral representation in terms of its values on 3 B, the boundary of B

(See, for example, BAKER and COPSON [11]):

(1.3) ug(xs x » w) = /{us(g', X 'n)%%(ﬁ, x's w)

Here the integral is over the scattering surface in prime variables, g
is the Green's function, given by (1.2) with x replaced by x', and 3/'n
- X

denotes the outward normal derivative to 4B.
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At this point, the physical optics approximations are
introduced (See [11]). To do so, attention is first restricted to the
backscatter case, x = X, in (1.3).Jr Then, it is assumed that X is very
far from the scatterer. Thus, in a coordinate system with origin "near"
or inside the scatterer, e |§0| > > 1. The scatterer is now divided
into two parts, a lit side L (;0) and a dark side D (;o) with respect
to "physical optics" illumination by a plane wave from the direction of
X, that direction denoted by the unit vector ;0 as shown in Figure 1.

Under the assumption that the scatterer is acoustically hard

(so that the exact boundary condition is that the normal derivative of the

total field is zero on 3B) the physical optics approximations are as

follows.
aus A
(1.4) e St g x' on D(x ) ;
dug duy -
(1.5) Ug = Ups s = x' on L(xo).

For the acoustically soft case (where the exact boundary condition is that
the total field is zero on 3B), the minus sign in the second equation in
(1.5) is deleted and a minus sign is inserted on the right side of the
first equation in (1.5). This will only result in an overall minus sign
in the results to be derived and, hence, only the case (1.4,5) will be

discussed below.

¥ The physical optics approximations remain valid for "small" separation
angle between x and X .
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Applying all of these results to (1.3) yields

(1.7} X T2 My x = |x} X on 3B.

The , for x on 8B, |x - x | may be expanded as follows:
b Gt =0

(1.8) Sl A S B + 0(x / xo)

The result (1.2) is now inserted in (1.6) and then from (1.8), a two-term
expansion is used in the phase and a one-term expansion is used in the

amplitude to yield

exp {Zimxo/c} o(w;o/c)

(4nx0)2

Here p(w x /c) is a phase and range normalized far field scattering
0

amplitude given by

(1.10) o(w ;(O/c) = /{g? { exp {- 2iw x' * ;O/C} }}dA.




If a similar experiment is performed from the opposite direction,

the result is

(1.11)  o(- w Qo/c) = f {-g? {exp (2w x* - ;O/C}}}dA.

D(x )
0
From (1.10) and (1.11), it follows that

(1.12) ot Qo/c) b io/c)

2 g g e
= / 5 {exp{ 2iw Xx XO/C}} dA.

oB

*
Here ( ) denotes complex conjugate.

Applying the divergence theorem here yields

(149 ol ;o/c) i e io/c)

= J/.V" { exp{- 2iw x' -« ;q/c} } dv
B

~

a2 _(4m'/c') v (2w ;O/C)-

v




Here,

The function y (k) is the Fourier transform of the function

in B

| >

1,
(1.15) v (x) = {

0 not in B '

| <

This function is the characteristic function of the region B. If y (x)

is known, the region B is known. (Actually, if the discontinuity of

v (x) is known, B is known.) The result (1.13) relates the Fourier
transform of y (x) to the phase and range normalized scattering amplitude.

The value of the transform variable is
(1.16) k = 2w xo/c.
Thus, (1.13) is the POFFIS identity.

It should be noted that the POFFIS identity is a result
derived for high frequency only. Thus, the identity is suspect when
used to determined ; (k) for small values of [k|. Often, as a practical
matter, low frequency (and hence, small |k|) information is simply not
available. Furthermore, the obstacle often cannot be probed from all
directions ;0. Thus, one is faced with the limited aperture problem

mentioned in the introduction and addressed in Section 1.3.




1.2 The PQFFIS Identity for One-Sided Viewiny of Anomalies
in a Geological Structure

In geophysical or oceanographic exploration, one is faced with
the problem of mapping a reflector from one-sided backscatter information,
only. As an example of this type, Figure 2 depicts an anticlinal
perturbation B of finite extent in a plane R. The surface to be detected
here is S which is the same as R except on the anticline.

With Ug denoting the field scattered by S, and making the same

approximations as in the previous section, (1.6) is replaced by

In the absence of the anticline, the backscattered field, denoted by Ups

has the exact representation

% d 2 |
(118) UR()_(Oa )SO’ UJ) = f gﬁ' { UI (50a X'y w)} dA.
R

Thus, the difference between the two fields Ug and up is given by

3 ; |
up = d/ﬁ ﬁﬁ'{ up (50, x' w)} dA.

oB

(1.19)

oS

Proceeding now as in the previous section leads to the result

e -
R o 2 g L R, . e . . ”
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exp{2iw xo/c} p(w;o/c)

u s
R (4 )?

(1.20) Ug

with p now given by

(1.21) o(w; /c) = fg— exp{- 2iwx' - >A( /c} dA
0 n = 0
3B

= -(8w?/c?) v (2w§0/c) .

Here, ; (k) is again the Fourier transform given by (1.14, 15) but
with B defined by Figure 2.
In (1.20), Ug is observed for ;0 having a positive first
component. The function up does not have to be observed since it
| is a mathematical construct defined by (1.18). Thus, ;(5) is known
only in the upper half k space and this POFFIS identity does not
suffice to generate B. To overcome this difficulty the region B*
of Figure 3 is introduced. This region is generated by projecting
B through the origin. That is, if x is in B, then -x is in B’ .
The characteristic function of the region B + B* is denoted

by w(x). Thus,

10




Its Fourier transform is given by

(1.23) J)(K) = / exp{ik « x}dv = 2 /cos(g « x) dv,
B+B B

or, using (1.14)

(1.24)  w(k) = 2 Re (k).

Therefore, y(k) is determined by taking twice the real part of
v(k) for k in the upper half-space and by extending this function
as an even function of k to obtain its value in the lower half-

space. By inverting, one then finds that

(1.25) y(x) = = / Re ;(g)cos(g - x)d*k, x; > 0.
ki> 0

In this case, then (1.20, 21, 25) constitute the POFFIS identity.
For a synclinal structure (with B a region below R), the
result (1.19) is replaced by its negative. This change in sign
persists throughout and the syncline is then revealed by the pro-
cessing in (1.25) yielding a function equal to -1 or zero for
Xi > 0,
’ For a cylindrical anomaly, such as the anticline in

5 Figure 4, the analysis must be modified. Firstly, the medium is

..W e - M o - ————— -
) 4"""”"" . \.'Mm--. [ 5 S aprey ] w_»_‘q.,.




probed only alone a line parallel to the x, axis, say with x; = 0.
Then in (1.17) and (1.18), x3;, is set equal to zero and the
integration in x'3 is carried out by the method of stationary phase

[12]. The result is

exp{2iwx /c + im/4} "
0

ug - up = p(wao/c) ;

1.26)
( a(2nx )32

Here,

3/ 2
(1.27) p(k) =« /exp{—ig « x'} dA; k = (ki, k2, 0)

and 7. is the cross-sectional area of B in the (x;, x») plane.
Because B is a cylinder, when ¥ is known, B is known.

For the region &, its characteristic function o(x,, x»)
is defined by
Is (X], Xz) in %

(1.28) o(xy, x2) = {

0 (%3, X2) not in %

It then follows from (1.27) that

(1.20)  ole) = & ¥2 s{e}.

By using the same symmetry arguments as above, one finds that

ab
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(1.30)

0(X1, XZ)

;g_ / Re o(x) cos(k « x)

kK, >0

13
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s An Approach to the Limited Aperture Problem for
the POFFIS Identity ’

As noted in earlier sections, complete information
required for Fourier inversion of the POFFIS identity is not
available in practice. That high frequency far field scattering
data should suffice to reconstruct the image of the scatterer has
been rigorously proven by MAJDA [13].

In this section a method for processing both band 1imited
and aspect angle limited data will be described. The method was
originally proposed by BOJARSKI [3] for high frequency band 1imited
data and further analyzed for this case in [9]. Limited aspect
angle is discussed in [10].

The method is based solely on the features of the Fourier
transform of piecewise constant (in this case, one-zero) functions.
The only additional assumption made here is that the region in
which the function equals unity is convex, finite and has a smooth
boundary surface. These are exactly the assumptions made for the
scatterer B of Section 1.1. Indeed, the function to be analyzed
here is y(x) defined by (1.15) and its Fourier transform ;(5) defined
by (1.14).

The approach to be presented here is based on the
following ideas from one-dimensional Fourier analysis. If y(x) is
a one-dimensional characteristic function, then its first derivative i

consists of two Dirac delta functions at the boundaries of the

|
|
.
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region where y(x) = 1. The function §(x-a) has Fourier transform

exp{-ika} and band Timited inverse transform
(1.31) §(x-a) = m '(x-a)"?! sin[k(x-a)] ,

with k _ the band limits. This function peaks at x = a, with peak
value zk+ - k_)/n. Thus, the boundaries of the region of interest
are readily recognized from this band Timited processing. The
purpose of this section is to show that this is true in two- and
three-dimensions, as well, and also to show the effects of aspect
angle limitations in these cases.

For the function y(x) defined by (1.15), the directional
derivative is the direction defined by the unit vector 5 is given by

A

(1.32)  A(x, p) = -p * Wy(x).

If 5B is defined by ¢#(x) = 0, with ® negative in B and positive

outside of B, then
(1.33)  A(x, p) = p * Vo6(0).
The Fourier transform of A is

(1.34) A(g, p) = f p - ve(g)s [o(2)] expi-ik « £} dv.

15
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Here the domain of integration is all of £-space. The integration
normal to the boundary is readily calculated by exploiting the

properties of the delta function. The result is

(1.35) Ak, p) = / p - n exp{-ik » £} dA.
28

Here n is the outward unit normal to 9B.
The aperture limited inverse transform of A will be denoted by

fApe SLf Ap(g) denotes the aperture in k space, then

1.3 mlww = gl [ @ fosnenice -0
Ak R

The apertures of interest are those for which k = |k| ranges between
two values k_ and k_ and the angle of k is restricted to some region «.

Thus, -

~

Ky
(1.37) M(x, p) = -(—2—710—7 f k?dk [dQ fdA p « nexp{ik « (x - £)}.
K 5B

Q

Here d% is the solid angle element in k space.
The four fold integral over © and 3B can be calculated by the
method of four-dimensional stationary phase [12]. The integration over

k can then be done explicitly. The method is described in [10], but E

16




the form of the result presented here is due to Armstrong [14]. The
conditions that the phase be stationary are as follows. Firstly, the
point £ on 9B must be such that x - £ is perpendicular to 3B. Secondly,
the angles of k are such that x - £ and k are colinear or anticolinear.
Thus, the stationary points in £ and k are such that x - £ and k Tie
along the normal to 5B at the stationary point.

For each choice of x there may be one or more stationary
points (or none at all!). If the contribution from each stationary

~

point is denoted by A.(x, p), then one finds that asymptotically

~

(1.38)  Az(xs p) = (21)7} nep (1 - uKiD) %(1 - 1K,D)™2

. p {sin(kn) - f[cos(kD) - 1] }

Here,
(1.39) D= li - gl 5

K, and K, are the principal curvatures of 3B at the stationary
point; u = +1 or -1 accoraing to whether x - £ and n are anticolinear
or colinear at the stationary péint.

The real part A, is seen to have the same qualitative
behavior for D small as the one-dimensional result (1.31).

Furthermore,

17
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(1.40)  1im  a(x, p) = (21)7} nep (K

D~-0
For each point on 3B the contributions from stationary points
with D = 0 will dominate all other contributions to 4,(x, b) il
the bandwidth is sufficiently broad. There can be at most two
such cont~ibutions. This will occur if the region 2 contains both
the vectors ; = 3 and @ = -; for the given stationary point, ¢.

In [9], the following test of this method, as applied to
the POFFIS identity, was carried out. The exact backscatter solu-
tion for a sphere of unit radius was used to generate n(mio/c) for
the POFFIS identity (1.13). The angular aperture © was taken to
be unrestricted; i.e., all angles were used. The vector 5 = (i 00
was used and A, (x, é) was calculated for x, = x; = 0. The angular
integrations were carried out numerically and the integration in
k was done numerically with the trapezoid rule. An example of
the output of this processing is shown in Figure 5. The circles
represent the theoretical results based on the asymptotic analysis
presented here. In this case, k_ = 15.75 = 5m, k= 31.5 -~ 10m.

At the peak, the percentage error between theory and computation
was .3%.

The two-dimensional analog of the results presented here
is carried out in exactly the same manner. In (1.37), 5B would
now be a curve and d is replaced by ds, the polar angle of
k = (ky, k). The factor (2n) * is replaced by (2n) °. The result

(1.38) 1is now replaced by

18




2 ~

(1.41) A (x, p) = (2m)™" nep (1 - kD)

: D‘l{sin(ko) -i[cos (kD) - 1]}

Here u and D are as defined below (1.38).

In [15], the two-dimensional result was tested for an
ellipse with semi-axes of length one and two. The result for full
angular aperture k range 9 to 27 and B = (1, 0) is shown in
Figure 6. The third dimension (the value of A,) is laid back down
in the plane. On each line the height is normalized with respect
to maximum height. Furthermore, the maximum on each line is tested
against the absolute maximum. When this relative maximum falls below
a critical value, the entire line is zeroed out. This insures,
for example, that "noise" will not be enhanced outside of the
vertical extent of the ellipse. Nonetheless, near the top and
bottom of the ellipse, where B . ; is nearly zero, there is clearly
some loss in resolution. This region could be resolved better if
6 were chosen to be (0, 1).

In Figure 7, limited aperture process is shown for §
consisting of two quadrants. There is some "spill-over" outside of
the angular aperture, but, for the most part the ellipse is
reproduced as in the previous diagram, but only for the region for
which the normals to the ellipse lie in the angular aperture in

k space.

19
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In [10], further examples are carried out in which
numerical data is generated for backscattering by a circular
cylinder. The results confirm the POFFIS method of Section 1 as
well as the Fourier analysis of this section.

It should be noted that near the evolute of 5B, (1.38)
or (1.41) becomes invalid. In [14], ARMSTRONG shows that the con-
tribution from that region is extremely small relative to the peak

value of A, at D = O.

20
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1.4 POFFIS in the Time Domain

Returning to (1.9), the inverse time transforms of Ug and o

are defined to be US and V, respectively. From (1.9) it follows

that
(1.42) ¥ixe, t} = (Buxs)? Us(go, t + 2xq/c).

That is, the Fourier transform of the phase and range normalized
scattering amplitude is a range normalized and time-delayed
scattering amplitude in the time domain and thus, is as easily
observable as o(w;olc). The objective of this section is to show
how to use this result and the basic POFFIS identity to derive a
POFFIS identity in the time domain.

The Fourier inversion in (1.13) is first expressed as an

integral in polar coordinates. The result is

(1.85)  ylzy = == /dw fdQ{o((u;o/c) + p (-wxo/c)}
4n3c
0 Q

« exp{2iwx  « x/c}

Here, @ denotes the unit sphere with variable xo and differential
solid angle element on it, d2. The volume element in polar

2
coordinates has a factor of w ; however, the integrand also has a

21
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factor w ° arising from solving for y.
This result may be rewritten as an integral over the

A

hemisphere centered at x,. The result is

1 /th. / dQ { [.‘.(()));o/c) + »j‘*(‘(AJ);O/C)]
43¢

0 Qf2

(1.44) v (

| <
~
|
1

. exp{Zimio- x/ct

. -
+ [;‘/(-mxo/C) + P (wXO/C)]
- exp{ -2iwx - x/c! }

Here, the second pair of terms, with xn replaced by =X provides
the integral over the back hemisphere. From the defin%tions of

in (1.10, 11), it should be recalled that these terms are calculated
by integrating over regions L(-;n) and D(-;n), respectively. These,
in turn are just D(; ) and L(; ) respectively. Furthermore, from

0 0

El=aL ),
(1.45) .*(“QO/C) = i(-ux /c),

where now, the change of sign is in w, with X and hence L(xq)

remaining unchanged. Thus, the fourth term provides the extension
of the first term to negative frequencies; the second term

provides the same extension of the third term. Thus,

22




(1.46)  ¥(

| >

)= - 1 [dw [dﬂ{p(&o/c) exp{Ziwxo- x/c}

4mic }
-00 Q/2

+ p(-wxo/c) exp{-Ziwa- x/c} } .

Here, p in the first line is defined by (1.10) and in the second

A A

Tine by (1.11). However, again using the fact that D(xo) = L(—xo),

the result can again be written as an integral over a sphere:

(1.47) ¥(x) = - L fdw [ do O(wxo/c) exp{21'w; « x/c}
. A
oo Q

4m3c

The inverse time transform of p was defined to be V.

Therefore, (1.47) can be rewritten as

(1.48)  v(x) = - — a2 V(x , -2 x + x/c)
4.”3C 0 0
94

This is the POFFIS identity in the time domain.

The result (1.47) also provides an alternative to the
POFFIS identity (1.13). In the form (1.46), the requirement of
combining "front side" and "back side" observations before Fourier
synthesis has been dispensed with. There is still a double covering
in k space in (1.47), but this may be overcome by using (1.44) to

conclude that

23
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(1.49) v(x) = - Re / dw /d:_ p(wx /c)exp{2iux « x/c} .
2n’c 5 :
0

P

In this form, the integral is again a Fourier transform. When (1.9)

is used and the integral is expressed again in terms of
(1.50) b R
the result becomes
€L.51) ((x) = - 8n ! Re‘/‘kn'd'k X;us(kx”, kxq, ck)

« expl2ikex - Zikxm}
Similarly, one can show that for j =1, 2, 3,

(1.52) —_—— = 16 ] hny/‘k-k'?d*k xoualkx 5 kx , ck)
J 05 0 0

+ exp{2ikex - 2ikx |
In these two equations x_may be a function of x, (i.e., the ob-

servation distance may be different in different directions).

Thus, in general, x must remain under the integral sign.

24

e o . e —

it ki A S NG TS 8 s i Preae sy .u(m_".p“




2. An Inverse Method for Determining Small Inhomogeneities

In a Medium

When a medium is known to have small and perhaps slowly
varying inhomogeneities, the method of Section 1 is inapplicable to
the problem of reconstructing the medium. The method presented
here is a procedure for determining such variations. This method
would be appropriate to the detection of velocity gradients in the
seabed as well as to the general problems of subsurface mapping or
geophysical exploration. Mathematically, the inverse problem
considered here is to determine coefficients in a system of
equations governing a wave propagation problem. It is assumed that
the reference values of these coefficients (often constants) are
available and that variations from thesc reference values are to be
determined from observations of the field arising from known input
sources. Physically, the coefficients to be determined, usually
characterize the medium velocities or the acoustic impedance or
some similar quantity.

For clarity of exposition, the discussion here will be
restricted to media in which propagation is governed by the three-
dimensional wave equation. In reference [16] by the authors, the
inverse problem for electromagnetic waves and elastic waves is
discussed, as well.

An essential feature of the inverse method presented here
is that an integral equation is derived for a function which

characterizes the velocity or impedance variation. This equation

25




is a Fredholm integral equation of the first kind; it has parameters

in it which characterize the source and receiver locations. In a '
number of cases of source-receiver configurations of practical ‘
interest, this integral equation is invertible. Thus, a velocity or

impedance profile (depth section) is obtained by direct processing

of the observed data (time section) itself; i.e., by performing

weighted quadratures on the data. This direct inversion of time

section to depth section involves only one theoretical assumption:

The subsurface variation must be "“small." Even this limitation is

not overly restrictive as can be seen from one of the examples below

in which a 20% velocity variation was successfully migrated. In

fact, the real world data restrictions--noise, attenuation, dis-

cretization and finiteness of observations, etc.,--are usually of

greater concern than this theoretical Tinearization assumption.
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2.1 An Integral Equation for Three-Dimensional
Velocity Variation

It is assumed here that three-dimensional wave propagation

is governed by the equation

(2.1) [v? - v 2(x, z)atz] Uix, 2z, 1) = 0; == {x.)-

Waves propagate in the semi-infinite medium, z > 0, measured down-
ward. The operator 9t denotes a partial derivative with respect

to time. It is the coefficient v(x, z) which is to be determined
from probes and observations made at the upper surface, z = 0. For
many cases of interest, the surface z = 0 separates two media of
greatly differing impedances (e.g., air-water, air-earth). Hence,
an appropriate boundary condition for (2.1) which introduces the

probes is

(2.2) 3,0 = ®t, x3 A)s, 2z=0,A= (2.

The sources ® characterized by the vector X may be many types (See
[16] for a discussion of plane wave sources). For definiteness, here,

the discussion will be restricted to impulsive point sources located at

X =X, z=20. Thus, the boundary condition actually treated is
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To complete the specification of the direct problem for U, it is

assumed that
(2.4) Uu=o0, t<o.
The reference value of the velocity, which is assumed known, will

be denoted by c(x, z). Then, the variation, denoted by «(x, z)

is defined by the equation

(2.5) v ke 2) = e 0w Y0 1+ uln, 2] .

It is the variation « which is to be deteirmined by means of
observations of U made at surface points x = 7, z = 0.

The total field U is decomposed into a primary field UI’

which is the solution in the absence of the variation , and a
scattered field US’ which is the response to «. Thus

(2.6) U(t, x, 23 1) = Up(t, x, z3 A) + Ug(t, x, z5 1),
where UI satisfies the following:

(2. 7) IV =g 91U, =0, 2 -0;

(2.8) d, Uy = «6(t) &(x = A), 2 = 0

(2.9) U Uy < 0.
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The argument ) is introduced into U, UI’ and US to emphasize
their dependence on the source location. It then follows from

the problems for U and UI that US satisfies the following:
- 2 - e 2 .

(2.10) [v? - ¢ 9 ] Ug = -ac 3,7 Us

(2.11) U =0, z=0;

z S

(2.12) U

wm
1

An adjoint function V is now introduced, satisfying the

following:

(2.03) (W= R ) ¥ =0, 220

(2.14) 9V = -(t-t)H(T-1t)S8(x-8&),2z=0;¢=(&n);
(2.15) VEO t>1.

It will be seen below that £, T denote the locations and times of
observations at the upper surface. Furthermore, by comparing the

problems for UI and V, it can be seen that

(2.16) 8, Vit, X, %3 B) = Ule~ 4 & 22 %),
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Upon applying Green's theorem (in space and time) to the
quantity,
v _ —28 2 _ 72 o -Za 2
( € 8y )Wo- V(Y €9 Y

S S°

the following integral equation is obtained:

o) T

(2.17) /dz [dxdy a(x, z) ¢ " (x, Z)ﬁt Ut, x, z3 Mup(T-t, =, z; x)
0

o 0

The right side here is a function of the field observations at

the upper surface and, hence, known. The left side has two unknowns,
namely, @ and US' (A nonlinear system for these two unknowns is
supplied by (2.17) and (2.10, 2.12).) However, Ug appears only in

U and, therefore, only through the product 0tUS . However, from
(2.10) it is seen that Ug is itself of the order of « . Thus,

P

for “ small, it is expected that @ U can be reasonably

approximated by « UI' In this case, (2.17) becomes an integral

equation for = alone, namely,
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e (5] T
(2.18) /dz fdxdy alx, z)c'z(i, z)/dt UI(t, Xs 23 A)Ul(r-t, £, 23 x)
0 -~ 0
T
=/ dt Ug(t, &, 05 A)(t- t).
0

This is the basic linear integral equation for a(x, z).
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2.2 Direct Inversion for Backscatter Over a Medium with

Two-Dimensional Velocity Variation

The integral equation (2.18) will now be specialized as
follows. The reference velocity c will be taken to be a constant,

so that UI’ defined by (2.7 - 9) is given by

(2.19)  up(t, x, 25 4) = &(t - |x - Al/c)/(2n]x - A] ).

The variation in o will be assumed to be independent of y, so that
a(x, z) will be replaced by u(x, z). In this case, both the sources
and receivers will be restricted to the x axis. Finally, only

backscattered (or CDP stacked) observations will be made, so that
(2.20) 1r=¢ = (&, 0).

For this case, it is possible to carry out the y and t

integrations in (2.18) to obtain

(2.21) /dz/ dx a(x,z)H(ct/2 - p) [(ct/2)2- p2]172
0 -CX

T

—2'r(ﬂc)?/dt U(t, £, 25 £)(T- t).
0

Here,
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(2.22) =[x -£)2 +22] ®

This integral equation can be solved by transform techniques.
The result is
o0 X

(2.23)  alx, 2) = 2ic*s™" /dé f dklfdkadefdt{ka(Tz_Tt)

oo o 0 0
. Us(t, By 25 E) exp{Zikl(x-g) - 21k3z + imT}};
w = c[sgnka] (k12 + kaz);é

This is the direct inversion formula for the prescribed source
receiver configuration for this section.

In [18], by the authors, this result was implemented for
high frequency data synthetically produced for a number of layered
models. Because of the high frequency bandlimiting, the data was
processed for 9a /3z = o' rather than for a(x, z), itself. This

merely requires multiplication of the integrand in (2.23) by -21k3.

In accordance with the results of Section 1.3, not only the

location of discontinuities may be determined but the magnitude
of the discontinuities may be determined, as well. This direct
inversion procedure produces a mapping of the interfaces and an

estimate of the velocity variations across them.
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The model used embodies other real world restrictions band

limiting, namely;

(i) the observations are made only at discrete
points on the Tine;

(ii) the observations are made only over a
finite length of the Tine.

In these examples, the spacing between ¢ points is 100 feet, the
maximum array length is 8,000 feet and the bandwidth is 6 to 24
Hertz.

Synthetic data was generated for tilted planes at angles
up to 75°. Direct inversion reproduced these planes with three-
place accuracy both in tilt angle and velocity variation.

In an earlier paper by the authors [19], a direct
inversion formula was presented for the parabolic approximation to
the wave equation used by CLAERBOUT [17] for 15° wave equation
migration. Synthetic data for tilted planes is used and the
direct inversion is carried out analytically. The results show an
error in tilt angle and in velocity estimation on the order of the
fourth power of the angle of inclination. Numerical tests confirm
this result, as well. This kind of error is already known to
users of 15° wave equation migration. The error is due to the
underlying parabolic approximation and not a flaw of the direct in-
version procedure or the wave equation migration procedure. Since
the computational requirements of direct inversion for the wave
equation are no more difficult than those for the parabolic

approximation, the former is preferred to the latter by the authors.
34
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Figure 8 shows a subsurface configuration for which
synthetic data was graciously provided to us by the research group
at Marathon 0il. The time section provided by them is depicted in
Figure 9; Figure 10 is the result of our direct inversion procedure
and Figure 11 shows our estimate from the output of various
relevant quantities in the model. The lower two sets of numbers
exhibit errors of less than 4%, while above the level, the errors
are less than 1%.

The program was implemented on a time-sharing system on
a Burroughs 6700 at the University of Denver. Output data was
generated at a rate of 5 miliseconds per record. The number of
records is defined as the product of

(No. of geophones) x (No. of subsurface output

points) x (Average number of non-zero time

samples/trace).

Modifications of the original program have now improved

that rate to 2.4 miliseconds per record.
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2.3 Direct Inversion for Backscatter Over a Medium with
Three-Dimensional Velocity Variation

When a three-dimensional velocity variation is to be
detected, a two-dimensional source receiver array on the upper
surface is required. When the reference speed is constant, UI is
again given by (2.19) but now * is no longer restricted to the x

axis. Now (2.18) becomes

(2.24) /dz fdxdy (x, z) 8(1 - 2 plc) /o
0 s

Here,

1

(2.25) o= [(x=-¢€)2 +(y-n)?+2z2]"

The integral equation can again be inverted by integral transform

methods. The result is
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(2.26)  alx, z) = 2icin™? fd&;dn [dkldsz dk dfﬁt{k (12-1t)
3
- - 0

3
)
- Ug(t, &, 73 £) exp{2i[k (x-£) + k (y-n)-k z]+i L,r}};
1 2 3
w= c[sgnk ] (k2 +k2+k?2)?
3 1 2 3

A computer program could be developed to implement this
formula much as was described in the previous section. Output data
would be generated at the same rate per record discussed at the
end of the section. However, the number of records increases by a
factor (say, N) for the new dimension in the geophone array and by
a factor (say, N) for the output array. Thus, the computer time
would increase by a factor of N>. Thus, for the present, only

analytical verifications have been carried out.
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2.4 Direct Inversion for a Case with Separated Source

and Receiver

Here it is assumed that « = «(z), i.e., thata varies with
z alone. Intuitively then, one would expect that only one experiment
would be necessary to determine «. Again, it is assumed that c is
constant so that U; is given by (2.19). In this case, » and ¢ are

taken to be fixed with
(2.27) E = =)

In (2.18), the x, y and t integrations can all be performed
yielding an elementary integral equation which can readily be

inverted to yield

1.
/\2 o 22) Z/C

2(
2 2
(2.28) - wiz) # -4ﬂC/dt %1_1_211_ - t]Ug(ts a5 05 -2).
()k2+22)'z :
0

For backscatter, it is only necessary to set A = 0 here to obtain
the result

2z/c
(2.29) a(z) = -dnc dt [4z/c - t] Us(t, @ 9; 0.
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2.5 Direct Inversion for a One-Dimensional Problem

In one dimension, one can generate synthetic wide band
data by straightforward and economic means. This was done by
GRAY [20] as a prelude to the analysis of strongly depth dependent
velocities in three dimensions. An example of the output of this
analysis is shown in Figure 12. The solid line is the assumed
a (z) while the dots are the result of direct inversion on
synthetically generated wide band backscattered data.

In [16], the authors also treated a case in which c(x)
was not constant. The function s the time transform of UI’ was
expressible as a sum of exponentials and the integral equation was

still invertible in closed form.
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2.6 Direct Inversion In Free Space

Often in oceanographic and seismic exploration, the source
is placed below the surface z = 0. In this case, the basic problem
‘ (2.1, 3,4) should be replaced by a source problem, with the delta
r function moved from the right side of (2.3) to the right side of
| (2.1) and the boundary condition (2.3) imposed on a new interface
i above z = 0, say at z = z = 0.

If the effects of the reflections from the interface at
z_can be accounted for (by no means an easy task), then such an
experiment can be modeled by a free space problem in which the
medium is "known" for z < 0 and assumed to vary only for z > 0.

In this case, one still obtains (2.18) as the basic jntegral
equation, but with UI now a solution of the corresponding source

problem in free space. For ¢ = constant, the effect of this modifi-

cation on UI is to replace the factor of 2 on the right side of
(2.19) by a 4. Since two factors of UI appear in the kernel of the
integral equation (2.18), the results (2.23, 26, 28) need only be
modified by the introduction of a multiplier of 4 on the right

side.
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3. Non-Uniqueness in the Inverse Source Problem

In the previous sections the presentation assumes that
the probing signal is an impulsive point source (See 1.1, 2.3). In
practice, this is never the case. Thus, one is faced with the prob-
lem of "stripping away" source effects, i.e., performing source
deconvolution, before proceeding to the inversion problem at hand.

In other problems, the source itself is the ultimate goal
of the inversion process. This would be the case either for detec-
tion problems or for source synthesis problems (such as antenna
design problems) in which the objective is to create a source to
produce a given radiated field.

The objective of this section is to address the inverse
source problem. The presentation follows the lines of [21] by the
authors. It will be shown that there is a great deal of non-
uniqueness in this problem. That is, a source cannot be completely
reconstructed from observations of the field it radiates. The
reason is that, in general, a certain part of the source simply
does not radiate and, hence yields no clue, in the radiated field,
to its presence. Thus, the solution to the inverse source problem is
non-unique. Analytic characterizations of this non-uniqueness will
be stated.

For source deconvolution, the non-uniqueness is not as
serious a problem as it might at first appear to be. The reason is,

that only the radiating part of the source is of interest in these
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problems. This is so because only the radiating part of the source

can effect the scattering obstacle or medium. l
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3.1 Analysis of the Direct Problem for Acoustic Waves

It is assumed that U(x, t) is a solution of the following

problem in free space:
(3.1) [v? - € %3,2] U(x, t) = -F(x, t);
(3.2) Ur=nos s R0

The source F is assumed to be confined to some sphere x < a, to be
denoted by D. This region is itself confined to the interior of
some larger region D,. Observations of the radiated field will be
made on 39D, the boundary of D.

The Fourier time transform and space-time transforms
are defined by the following:

/;it U(x, t) exp{iut} 3

-0

(3.3) u(x, w)

(3.4) u(k, w) = [dt f dV U(x, t) exp{-ik « x + it}

= f dV u(x, w) exp{-ik « x} .

43

o __4';?‘»-- vﬂ‘waugu g gy

! el




The time reduced problem equivalent to (3.1, 2) is
{3.5) (V2 +w2/C?) u(is w) = 'f(is w)
with u outgoing,

(3.6) u(x, w)v uo(x, w) exp{ iw x/c} /(47 x), x > = .

The solution to this problem can be expressed as a con-

volution of the source with the free space Green's function:

(37) u(x, w) = / V' fix's w) glr. w).

x <a
Here, dV' is the differential volume element in the prime variables,
(3.8) AL Rt o
and
(3.9) g(r, w) = exp{iwr/cl /(4nr).
The solution on 3D is of interest. The origin of the

coordinate system is taken to be in D. Then for x on 3D, x > a.

In this case, using the spherical harmonic expansion for g
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(JACKSON, [22], p. 742), the solution u may be expressed as follows:

oo

m
(3.10) u(x, w) = 'iwc'lné:o nz:-m & hm(l)(wX/c)Ymn(6’¢)’ X > a.

Here,

a
(3.11) O J/. fmn(x‘, w) jm(w x'/c) x'Zdx',
0

jm and hm(l) are the spherical Bessel function and Hankel function
of the first kind, respectively, and Ymn is the spherical harmonic
of order mn. The functions fmn are defined by

m 2m

(3.12) fmn(x, w) = / sind do / do f(x, w)Ymn*(6,¢).
0 0

These functions are the coefficients of f in its spherical harmonic

expansion

(3.13)  f(x, ) = ZO 2 foa(x @)Y (8,9).
m:

Since the spherical harmonics are a complete set of
functions, knowledge of the coefficients fmn constitutes knowledge

of f itself. However, from (3.10, 11) it is seen that the radiated
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field (i.e., u for x > a) is a function, not of the fmn's, but only
of their projections on the Bessel functions jm' Stated another
way, the radiated field depends only on the projections of the
source on the "doubly" infinite set of functions {jm(mr/c)Y ,0)1}.

Since this class of functions is known not to be complete, knowledge

ol

of these projections does not suffice to determine f uniquely.
To demonstrate this non-uniqueness, one need only produce
a non-zero function f for which all of the projections Can in (3.11)
are zero. Such an example is provided by the function
a ik
6(&)-J0(f‘x/c) 4v]j02(wx/c)x? dx , X < a
(3.14)  f(x, w) = 0

In this example, all of the functions fmn’ m > 0, are zero, while
foo is not. However, the projection of f00 on j0 is zero. Thus
for (3.10), the radiated field is zero, while the source is not.
The inverse time transform in (3.14) produces a source in space-
time confined spatially to the region r < a and temporally to the
interval -a/c <t < a/c.

An alternative characterization of this non-uniqueness
can be deduced as follows. One solves the space time transformed
problem for J and inverts the time transform to obtain the

representation of the solution
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(3.15)  U(x, t) =n %c/16) + /k"dak ;(K, + ck)exp{ik + x ¥ ckt} .
+

-0

Thus, the solution is seen to depend upon ;(5) w) only on the two
sheets of a hyper-cone where k = |w| /c. Thus, the source need only
have Fourier transform equal to zero on this hyper-cone in order
that the radiated field be zero.
As an example, the source (3.14) has Fourier transform
a a
(3.16)  f(k, w) = 1 -/jo(wx/c)jo(kx/c) x2dx /joz(wx/c)xzdx
0 0
which indeed vanishes when w = +ck, but is clearly not identically
zero.
For the electromagnetic case with current source distribution

J(x, t), there will be no radiated field if
(3.17) [ - kk] j(k, + ck) = 0.

Here I is the identity operator and ;E is the dyadic operator that
yields the radial part of i in k-space. The operator in (3.17)
therefore produces the transverse (as opposed to radial) part of j.
Thus, any j which is purely radial will produce a non-radiating field.
In addition, there will be no radiated field if only the transverse

part of j vanishes on the appropriate hyper-cone.
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3.2 Far Field Analysis of the Direct Problem

In the far field, x > > x', the Green's function in (3.7)
can be expanded just as in Section 1 (see equation 1.8). Then one
finds

~

(3.18) uo(x, w) = dv f(x, w)exp{ -iw; - x/c}

IA‘-__\

= ¥(w;/C, W) .

Here u0 is the phase and range normalized far field scattering
amplitude defined by (3.6). Thus, observation of the far field at
all frequencies and in all directions provides an asymptotic
expression for that part of %(5} w) which produces the radiated
field.

It should be noted here that (3.18) provides an asymptotic
solution of the inverse source problem for F on the appropriate

hyper-cone.
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3.3 The Inverse Source Problem

The objective here is to develop methods for obtaining
information about a source distribution solely in terms of obser-
vations made on aD.

The function v(x, w) is introduced, denoting any solution
of the homogeneous reduced wave equation in the domain D. Then
Green's theorem is applied on the domain D to the quantity
vix, w) [V? + w? ¢ 2] u(x, w) - u(x, w) [V* + w2c™?] v(x, w).

Here, u is a solution of (3.5). The result is

(3.19) /v(i, w) f(x, w) dV = /{u oy g—‘r‘,} dA.

x <a aD

For any choice of v(x, w) of the prescribed type, this is
ar ‘ntegral equation for f(x, w). A particular choice suggested by

the discus:ion of the previous sections is any function in the class

(3.20) ¥, = dpn(wx/e) Y (8,0), m=1,2 [n|<m

5 5 *
with v = (3.19) becomes,
3
*  Qu
(3.21) ¢ =ﬂu L. —} dA
i an P an

Here, the c_ 's are defined by (3.11). The source
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(3.22) f (X, w) ={m

will produce the same radiated field as f itself.” Thus, f (x, w)

L
would serve as an equivalent source for the purpose of source
deconvolution.

Another choice of v(x, w) is the plane wave
(3.23)  v(x» w, k) = exp{i k - x } » k = |u|/c.

Here ﬁ may range over any of the continuum of directions in three

space. Now (3.19) becomes

(3.24)  Fk, w) = f ik neu-2 explik - x} dA, k= fu|/c.
aD

This is the exact result for which (3.18) is the far field asymptotic
expansion. It should be noted that the plane wave, in fact, contains

all of the functions Bons from [22], p. 767,

3 i | |
(3.25)  exp{ik « x} = 47 mz=0 n;_m 3 e o e

Here (6',¢4') are the spherical polar angles of k.

1f the source f or the radiated field u has a convergent expansion
in spherical harmonics, then the convergence in (3.22) is assured.
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3.4 Uniqueness in the Inverse Source Problem

It has been shown that the inverse source problem has

nonunique solutions. The only way to obtain a unique solution is to

provide additional information about the source. Here, examples of

this type will be presented.

Example 1: The point source

Here, it is assumed a priori that

(3.26)  F(x, t) = &(x) G(t)

and that the observed data is consistent with this assumption (i.e., an-

gularly independent). Although the general theory will provide the

solution in this case, it is certainly easier to simply observe that

(3.27) u(x, w) = g(w) exp{iwx/c}t/(4mx)

and determine g uniquely (hence, F(x, t) uniquely) from observations

in one direction.

A more interesting example is the following:

Example 2: The implusive source

Here,

(3.28)  F(x, t) = 6(t) G(x),
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and

(3.29)  f(k, w) = g(k), k= |ol/c.

The function f is determined from observations by (3.23), for all
choices of the direction of k. A1l values of k are determined from
frequency information.” Thus the function 5(5) (and hence G (x))
is known. Because of the a priori knowledge (3.28) about F(x, t),
this function is now determined uniquely.

This problem of making the source unique by additional
constraint is not well understood at all. The authors believe that
a better understanding of the relation of uniqueness to side constraints

would have important application to source synthesis and antenna design.

.*.
The problems of aperture 1imiting will not be addressed here.
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