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Introduction

Over the past few years , the authors have been engaged in a

coordinated research prog ram on inverse problems . By this time , the

results have been spread over a number of different papers . Thus , it is

the considered opinion of the authors that a review of the present state

of this research be wri tten. This rev i ew also provides an opportunity

to filter some of the work that has proven to be of less int~r~st and to

incorporate into the presentation new insights that have been developed

during this research project.

This report describes the three main segments in this research

program :

(i) physical optics far field inverse scattering (denoted by the

acronym , POFFIS);

(ii) seismic or subsurface profilin g in media with small variations

in propagation speed ;

(iii) analysis of the inverse source prob’ m .
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1. The POFFIS Identity

The POFFIS identity was originally aerived by BOJARSKI [1].

Analysis of the basic identity and its extensions can be found in LEWIS

[23, BOJARSKI [3), PERRY [4), TABBARA [5,6], ROSENBAUM-RAZ [7], BLEISTEIN

[8,9] and MAGER and BLEISTEIN [10]. The problem of interest here is

reconstruction of the image of a convex scatterer from observations of

the high frequency far field scattering from the object in response to a

known probing signal.

The POFFIS identity relates the scattered field to the Fourier

transform of the characteristic function of the scatterer. The character-

istic function is equal to unity in the region occupied by the scatterer

and zero elsewhere. Thus , knowledge of this function makes possible the

reconstruction of an image of the scatterer. The Fourier transform of

the characteristic function is itself a function of a vector transform

variable , k. The magnitude of the vector is proportional to frequency ;

the direction of the vector is determined by the source-receiver directions.

Consequently, in any practical situation , wi th limited bandwidth and

directions of observation , the Fourier transform is known only in some

aperture limited --band limited and aspect angle limited -—domain in k

space. The problem of extracting information abou t the characteristic

function from a high frequency aperture limited Fourier transform is

solely a question in the Fourier analysis of piecewise constant (in this

case zero—one) functions. The problem is discussed from this point of

view in Section 1.3 and will prove useful in the discussions in Sections

2.1--2.3 below.

• -?“r~~ ~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~



1.1 Derivation of the POFFIS Identity

A point source located at x in Figure 1, gives rise to a

signal , u (x, x , ~), which is a solution of the reduced wave equation ,
I —  — o

2 2 2

(1.1) U T + w u T / c  = — ~(x — x ); x = (x , x , x ) .
— 

~~O — 1 2 ~

2
Here , 7 is the three-dimensional Laplacian , ~ (x) is a three -dimensional

Dirac delta function and

(1.2) u 1 ~ , 
~~~~~

‘ 
= exp ~i~~x - x~~/c}/ (4 l~ 

- 

~~l ) .

The signal u 1 is incident upon a conve> scatterer (B in Figure 1)., giving

rise to a scattered signal u5. The scattered field has the following

integra l representation in terms of its v~lues on ~ B , the boundary of B

(See, for example , BAKER and COPSON [11]):

(1.3) U5 (X , x , ‘~) 
= f{us (x ’~ X , r~~) ~~(x, x ’ , w)

- 
~~ 

(
~~

, ~~~~~~ ~) )  .
~~~~~~~ 

(X
I 

~~ 
)} dA .

Here the integral is over the scattering surface in prime variables , g

is the Green ’ s function , given by (1.2) with x replaced by x ’ , and ~/ n

denotes the outward norma l derivative to .8.
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1
At this point , the ph,ysical opti cs approximations are

introduced (See [11]). To do so, attention is first restricted to the

backscatter case , x = x i n (1~3 ) • t Then , it is assumed that x is very

far from the scatterer. Thus , in a coordinate system with origin “near ”

or inside the scatterer , x = Ix I > > 1. The scatterer is now divided
0 0

into two parts , a lit side L (x) and a dark side 0 (x) with respect

to “physical optics ” illumination by a plane wave from the direction of

x , that direction denoted by the unit vector x as shown in Figure 1.
— o  0

Under the assumption that the scatterer is acoustically hard

(so that the exact boundary condition is that the normal derivative of the

total field is zero on ~B) the physical optics approximations are as

follows .

(1.4) u5 
= -

~~~~
-
~~

- = 0 x ’ on D( x )

(1.5) u5 = u 1, ~~~~~~~~ 
= ~~~~ ~~

‘ on L(x
0
).

For the acoustically soft case (where the exact boundary condition is that

the total field is zero on SB), the minus sign in the second equation in

(1.5) is deleted and a minus sign is inserted on the right side of the

first equation in (1.5). This will only result in an overall minus sign

in the results to be derived and , hence , only the case (1.4 ,5) will be

discussed below .

I
The physical optics approximations remain valid for “small” separation

V angle between x and x .

5
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Applying all of these results to (1.3) yields

(1.6) US (
~~~

, 
~~~ 

‘ .)) = J {
~ 

{ u
1

2 (x ’ , 
~~~~~

‘ 
- ,)

L(x )

The far field assumption is now made , namely that

(1.7) x > x , x = , x on ~B.

ThL , for x on ~B , I~ 
- may be expanded as follows :

(1.8) x - x = x - x • x + 0(x / x— _ o 0 — 0 0

The result (1.2) is now inserted in (1.6) and then from (1.8), a two-term

expansion is used in the phase and a one—term expansion is used in the

amplitude to yield

exp {2iwx /c} p(wx /c)

(1.9) US ~~~ 
- )~~) = 

0 

2
(4ir x )

Here 
~

( x /c)  is a i h ~se ~~ y ; ~~7-? ~~~~~~ ~~‘J j~ci’ ~‘ield sc~ tter inq

~1 J p ll t (] ~ given by

(1.10) p (~~ x / c)  = J { ~f~ ~~ exp {-  2 iw x ’ x / c }  }}dA .

L ( x )

6
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/
If a similar experiment is performed from the opposite direction ,

the result is

(1.11) p(- w x /c) = £ {
~ 

{ exp {2i~ x ’ • x /c}}}dA.

D( x )

From (1.10) and (1.11), it follows that

(1.12) p(w x / c)  + * ( x / c)

= 

~
[ 

~~~~~

- { exp { —2 i w  ~~~
‘ . x / c }  } dA.

Here ( )  denotes complex conjuga te .

Applying the divergence theorem here yields

(1.13) 
~~ x / c)  + ~* (~ w x /c)

[

~~:
2 { exp{ - 2L x ’ x / c }  } dV

= - (4
2
/c ) y (2  x / c ) .

~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ ~~ ..~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- - - -



Here,

(1.14) y (k) = I exp~- i k  x ’ }  dV , k = (k , k , k ) .  V— 

J 
— 1 2 3

B

The funct ion y (k)  is the Fourier transform of the function

( 1, x in B
(1.15) y (x) = 

—

~ 0 x not in B

This function is the characteristic function of the region B. If -y (x)

is known , the region B is known . (Actually, if the discontinuity of

-{ (x) is known , B is known.) The result (1.13) relates the Fourier

transform of ‘y (x) to the phase and range normalized scattering amplitude.

The value of the transform variable is

(1.16) k = 2~ x /c.

Thus , (1.13) is the POFFIS identity .

It should be noted that the POFFIS identity is a result

V derived for hi gh frequency only. Thus , the identity is suspect when

used to determined ~ ‘ (k) for small values of kj. Often , as a practical

matter , low frequency (and hence , small k f ) information is simply not

available. Furthermore , the obstacle often cannot be probed from all

directions x .  Thus , one is faced with the limited aperture problem

mentioned in the introduction and addressed in Section 1.3.

8 H
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1.2 The POFFIS Identity for One-Sided Viewin~ of Anomalies
in a Geological Structure

In geophysical or oceanographic exploration , one is faced with

the problem of mapping a reflector from one-sided backscatter information ,

only. As an example of this type, Figure 2 depicts an anticlinal

perturbation B of finite extent in a plane R. The surface to be detected

here is S which is the same as R except on the anticline .

With US denoting the field scattered by S, and making the same

approximations as in the previous section , (1.6) is replaced by

(1.17) u5(x , 
~~~~

‘ w) = J~
-
~

- { u~ 2 (x , x ’ , w ) } cIA.

In the absence of the anticline , the backscattered field , denoted by U R .

has the exact representation

(1.18) UR(X , x , ~) = [ ~~~~~ ~ u~~(x , x ’ , w) dA .

Thus , the difference between the two fields U
S 

and UR is given by

(1.19) u5 
- U

R 
= f  

~~ 
{ u 1

2
(x , x ’ , w ) } dA.

Proceeding now as in the previous section leads to the result

1 

— __ .
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I
exp{2iw x Ic} p(wx /c)

(1.20) US — UR 
= 0

( 4 rrx ) 2

with p now given by

(1.21) p (~ x /c) = 

BB 

exp{- 2iwx ’ . x /c} dA

= -(4w2/c2) y (2wx /c)
0

Here , -y (k) i s again the Fourier transform given by (1.14 , 15) but

wi th B defined by Fi gure 2 .

In (1.20), u5 is observed for x havin g a positive first

component. The function UR does not have to be observed since it

is a mathematical construct defined by (1.18). Thus , y (k) is known

only in the upper half k space and this POFFIS identity does not
*suff ice to generate B. To overcome this difficulty the region B

of Figure 3 is introduced . This region is generated by projecting
*B through the origin. That is, if x is in B , then —x is in B

*
The characterist ic function of the region B + B is denoted

by tp (x ). Thus ,

~
‘ y(x )  x , > 0

(1.22) ~p(x) = 
— —

( y ( - x )  x , < 0

- , -.• . 
•~~~ V~ ~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ ,. ~~-~ø.-.- -~ -~~~~ ~. -



Its Fourier transform is given by

(1.23) ~~~ 
=

B ~~~ 
e x p { i k  • x}dV = 2 ~[cos(k 

. x) dV ,

or , using (1.14)

(1.24 ) ~(k) = 2 Re y (k) .

Therefore , y (k)  is determined by taking twice the real part of

-y (k) for k in the upper half-space and by extending this function

as an even function of k to obtain its value in the lower half-

space. By inverting, one then finds that

(1.25) y (x )  = ~~~ £ Re ‘~(k )cos(k • x)d 3 k , x 1 > 0.
2Tr 3 — — — —

k1 > 0

In this case , then (1.20 , 21, 2 5) constitute the POFFIS identity .

For a synclinal structure (with B a region below R), the

result (1.19) is replaced by its negative . This change in sign

persists throughout and the syncline is then revealed by the pro-

cessing in (1.25) yielding a function equal to -1 or zero for

x 1 > 0.

For a cyl i ndrical anomaly, such as the antic line in

V Figure 4, the analysis must be modified . Firstly, the medium is

11
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I
probed only alone a line parallel to the x2 a x i s , say w i t h  x 3 0.

Then in (1.17) and (1.18), x 30 is set equal to zero and the

integration in x ’3 is carried out by the method of stationary phase

[12]. The result is

exp f2iwx /c + irr/4 }
(1.26) US - U

R 
= 0 

/ p (2wx /c)
4 (2iix )3 2 0

Here ,

3/2

(1.27 ) p (v ) = K 

J

’
exP{_L • x ’ } dA; K = (k1, k2, 0)

and ~ is the cross-sectional area of B in the (x1, x2) plane.

Because B is a cylinder , when ~ is known , B is known .

For the region ~ , its characteristic function o(x1, x2)

is defined by

~ 1, (x1, x2) in ~(1.28 ) o C x 1, x 2 )  =

~ 0 (x 1, x2 ) not in ~

It then follows from (1.27) that

(1.29) 0 ( K )  = K
3
~
’ 2 p (K )

By using the same symmetry arguments as above , one finds that

12
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(1.30) a(x1, x2) = 4 f Re 0( K )  cos (K . x) d
2
K , x 1 > 0.

K 1 > O

I t 13
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I
1.3 An Approach to the Limited Aperture Problem for

the POFFIS Identity p

As noted in earlier sections , complete information

required for Fourier inversion of the POFFIS identity is not V

available in practice. That high frequency far field scattering

data should suffice to reconstruct the image of the scatterer has

been rigorously proven by MAJDA [13].

In this section a method for processing both band limited

and aspect angle limited data will be described. The method was

originally proposed by BOJARSKI [3] for high frequency band limited

data and further analyzed for this case in [9]. Limited aspect

angle is discussed in [10].

The method is based solely on the features of the Fourier

transform of piecewise constant (in this case , one-zero) functions.

The only additional assumption made here is that the region in

which the function equals unity is convex , finite and has a smooth

boundary surface. These are exactly the assumptions made for the

scatterer B of Section 1.1. Indeed , the function to be analyzed

here is -y (x) defined by (1.15) and its Fourier transform y (k) defined

by (1.14).

The approach to be presented here is based on the

following ideas from one-dimensional Fourier analysis. If y(x) is

a one-dimensional characteristic function , then its first derivative

consists of two Dirac delta functions at the boundaries of the

- — 

14 
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region where y(x) = 1. The function ~(x-a) has Fourier transform

expf-ika} and band limited inverse transform

k
(1.31 ) ~(x—a)  ~r ’ ( x — a ) ~~ s in[k(x-a) ]  +

k

wi th k~ the band limits . This function peaks at x = a , wi th  peak

value (k~ - k )/ir . Thus , the boundaries of the region of interest

are readily recognized from this band limited processing. The

purpose of this section is to show that this is true in two- and

three-dimensions , as well , and also to show the effects of aspect

angle limitations in these cases.

For the function y (x) defined by (1.15), the directional

derivative is the direction defined by the unit vector p is g i ven by

(1.32) A (x , p) = -p - Vy (x).

If ~B is defined by 4(x) = 0, with 4 negative in B and positive

outside of B, then

(1.33) A (x , p) = p .

The Fourier transform of A is

(1.34) ~(k, p) = f  p 
~~~~~ [~~~~

)] exp f - ik  . 
~} dv.

H 15
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I
Here the domain of integration is all of i-space. The integration

normal to the boundary is readily calculated by exploiting the

properties of the delta function. The result is

(1.35) A (k, p) = f p • n exp (-ik • ~} dA.

Here n is the outward unit norma l to ~B.

The aperture limited inverse transform of A will be denoted by

A 1 . If A~(k) denotes the aperture in k space , then

(1.36) A 1 (x, ~ 
= (2~)~ 

f  d3kfdA p • n exp{ik . (
~~ 

-

A~(k) ~B

The apertures of interest are those for which k = ki ranges between

two values k_ and k+ and the angle of k is restricted to some region

Thus ,

(1.37) A 1 (x , p) = (2~)~ 
J 

k2dk 
fd~ fdA p 

. n exp{ik • (x - 

~~.

Here d~1 is the solid angle element in k space.

The four fold integral over c~ and ~B can be calculated by the

method of four-dimensional stationary phase [12]. The integration over

k can then be done explicitly. The method is described in [10], but

16
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the form of the result presented here is due to Armstrong [14]. The

conditions that the phase be stationary are as follows . Firstly, the

point ~ on ~B must be such that x - ~ is perpendicular to ~B. Secondly,

the angles of k are such that x - ~ and k are colinear or anticolinear.

Thus , the stationary points in ~ and k are such that x - ~ and k lie

along the norma l to ~B at the stationary point.

For each choice of x there may be one or more stationary

points (or none at all !). If the contribution from each stationary

point is denoted by A 2(x , p), then one finds that asymptotically

(1.38) A 2 (x , p) = (271) ’ n.p (1 - pK 1 D) (1 - pK2 D)~~

- D ’  { sin(kD) - i[cos(kD) - 1] }
k = k

Here ,

(1.39 ) D =  x - ~~I

K 1 and K2 are the princ ipal curvatures of BB at the stationary

point; p = +1 or -1 according to whether x - g and n are antico linear
or colinear at the stationary point.

The rea l part A2 is seen to have the same qualitative

behavior for D small as the one-dimensional result (1.31).

Furthermore ,

17
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(1.40) lim A 2 (x , p) = (2~~) 1  n.p (k~ — k ) .
D - * 0

For each point on ~B the contributions from stationary points

with D = 0 wi l l  dominate all other contributions to ~1(x , p) if

the bandwidth is sufficient ly broad. There can be at most two

such cont ibut ions. This w i l l  occur if the region ~2 contains both

the vectors k n and k -n for the given stationary point ,

In [9] , the following test of this method , as applied to

the POFFIS identity , was carried out. The exact backscatter solu-

tion for a sphere of unit radius was used to generate (- x 0/c) for

the POFFIS identity (1.13 ). The angular aperture Q was taken to

be unrestricted ; i.e., all angles were used . The vector p = (1, 0, 0)

was used and A 1 (x , p ) was calculated for x = x 3 = 0. The angular

integrations were carried out numerically and the integration in

k was done numerically with the trapezoid rule. An example of

the output of this processing is shown in Figure 5. The circles

represent the theoretical results based on the asymptotic analysis

presented here. In this case , k = 15.75 5ii , k~ = 31.5 10~.

At the peak , the percentage error between theory and computation

was .3%.

The two-dimensional ana log of the results presented here

is carried out in exact ly the same manner. In (1 .37) ,  ~B would

now be a curve and dQ is replaced by d~, the polar angle of

k = (k 1, k2 ). The factor (2ii )~~ is replaced by (2rr) . The result

(1.38) is now replaced by

18
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2 -

(1.41) A (x, p) = (2- rr) ’ n.p (1 - pKD)
2

k~

• D ’  sin(kD) -i[cos(kD) - 1]

k

Here p and D are as defined below (1.38).

In [15], the two-dimensional result was tested for an

el lipse with semi-axes of length one and two. The result for full

angu lar aperture k range 9 to 27 and p = (1, 0 ) is shown in

Figure 6. The third dimension (the value of A2) is laid back down

in the plane. On each line the height is normalized with respect

to max imum height. Furthermore , the maximum on each line is tested

against the absolute maximum. When this relative maximum fal ls below

a c r i t i c a l va lue , the entire line is zeroed out. This insures ,

for examp le, that “no ise ” wil l not be enhanced out si de of the

vert ical extent of the ell ipse. Nonetheless , near the top and

bottom of the ell ipse , where p . n is near ly zero , there is clear ly

some loss in resolution . This region could be resolved better if

p were chosen to be (0, 1).

In  Figure 7, limited aperture process is shown for c2

consisting of two quadrants. There is some “spill -over ” outside of

the angular aperture , but , ~or the most part the ellipse is

reproduced as in the previous diagram , but only for the region for

which the normals to the ellipse lie in the angular aperture in

k space .

19
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a
In [10] , further examples are carried out in which

numerical data is generated for backscattering by a circular

cylinder. The results confirm the POFF IS method of Section 1 as

well as the Fourier anal ys is of this section.

It should be noted that near the evo lute of ;B , (1.38)

or (1.41) becomes inval id.  In [14], ARMSTRONG shows that the con-

tribution from that regi on i s ex tremely small relat i ve to the peak

value of A 2 at D = 0.

20
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1.4 POFFIS in the Time Domain

Returning to (1.9), the inverse time transforms of US and p

are defined to be U5 and V , respective ly. From (1.9) it follows

that

(1.42) V(x0, t) = (4Trxo)2 Us(x , t + 2x0/c).

That is, the Fourier transform of the phase and range normalized

scattering amplitude is a range normalized and time-delayed

scattering amplitude in the time domain and thus , is as easily

observable as p (wx 0/c). The objective of this section is to show

how to use this result and the basic POFFIS identity to derive a

POFFIS identity in the time domain.

The Fourier i ñ’Version in (1.13) is first expressed as an

integral in polar coordinates. The result is

(1.43) V
~~ ( X)  = -

~~~~~~~~

- f dw f d~{p(~xo /c) +
4~

3c

expt2iwx 0 . x/c}

Here, Q denotes the unit sphere with variable Xo and differential

solid angle element on it , d~. The volume element in polar
2

coordinates has a factor of w ; however , the integrand also has a

21
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- a
factor ~~2 arising from solving for

This result may be rewritten as an integral over the

hem i sphere centered at x 0 . The result is

(1.44) ~~~~ 
= - 

~~~c 
f ~~~~~- f d~. { [~(wx4/c) + ( ) ]

- exp~2i~; - x/c}

+ {~-(-~x /c) + 
*( ) ]

- exp~ -2i -x - x/ c

Here , the second pair of terms , with x replaced by -x , provides
0 0

the integral over the back hemisphere . From the definitions of -

in (1.10 , 11), it shoul d be reca l l ed  that these terms are c a l c u l a ted

by integrating over regions L(-x 0) and D(-x 0), respectively. These ,

in turn are just D (x ) and L(x ) respectively. Furthermore , from
0 0

(1.11),

V 

(1.45) *( = (-- .x /c),

where now , the change of s i gn is in V~~~ with x and hence L(x )

rema ining unchanged . Thus , the fourth term provides the extension

of the firs t term to nega tive frequenc i es; the second term

provides the same extension of the third term . Thus ,

22

I V J

- ~- V  - -

— _____ 
- 

I



(1.46) y(x) = - 
1~ fd~ f d~~i (.x /c) exp{2i~ x • x/c}
4~~c~ 

0 0

-
~~ 7/2

+ ~(-wx /c) exp{-2iwx x/c} } -

Here , p in the first line is defined by (1.10) and in the second

line by (1.11). However , again using the fact that D(x 0) 
= L(-x 0),

the result can again be written as an integra l over a sphere :

(1.47) (x) = - fd~ f dQ ~(wx /c) exp {2iwx - x/c}
— 4r[3c J J 0

-~~~

The inverse time transform of p was def ined to be V.

Therefore , (1.47) can be rewritten as

(1.48 ) y (x)  = - —
~
---—-- d~ V(x , -2 x . x/c)

421 3 c J 0

-.

This is the POFFIS identity in the time domain.

The result (1.47) also provides an alternative to the

POFFIS i dentity (1.13). In the form (1.46), the requirement of

combining “front side ” and “back side ” observations before Fourier

synthesis has been dispensed wi th. There is still a double covering

in k space in (1.47), but th i s may be overcome by using (1.44) to

conclude that
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(1.49) (x) = - 

~~~c 
f d . f d: ;~(- x /c)exp~2Lx . x/c

In th is form , the integral is again a Fourier transform . When (1.9)

is used and the integral is expressed again in terms of

(1.50) k = - x  /c , k = x
— 0 1)

th~ result becomes

(1.51) ,(x) = - 8;~~ Re k d k  x~:u 5(kx , kx , c k )
— 0 0

- exp~2ik x - 2ikx~~

Similarly, one can show that for j  = 1 , 2 , 3,

-y (x) I -

(1.52) — --a-— = 16~~
1 Im I k V k 2d 3k x~ u (kx , kx , ck)

~x .  j ‘~ 
L S  0

3

- exp -2ik .x - 2ikx~~

In these two equa ti ons x 0 may be a function of x 0 (i.e., the ob-

servat ion distance may be different in different directions).

Thus , in general , x roust remain under the integral sign.
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I

2. An Inverse Method for Determining Sma ll Inhomogeneities
In a Medium

When a medium is known to have small and perhaps slowly

varying inhomogeneities , the method of Section 1 is inapplicable to

the problem of reconstructing the med i um . The method presented

here is a procedure for determining such variations . This method

would be appropriate to the detection of velocity gradients in the

seabed as wel l as to the genera l problems of subsurface mapping or

geophysical exploration . Mathematically, the inverse problem

considered here is to determine coefficients in a system of

equations governing a wave propagation problem . It is assumed that

the reference values of these coefficients (often constants) are

available and that variations from theso reference values are to be

determined from observations of the field arising from known input

sources. Physically, the coefficients to be determined , usually

characterize the medium velocities or the acoustic impedance or

some similar quantity .

For clarity of expos ition , the d i s c u s s i o n  here w i l l  be

restricted to media in which propagation is governed by the three-

dimensional wave equation. In reference [16] by the authors , the

inverse problem for electromagnetic waves and elastic waves is

discussed , as well.

An essential feature of the inverse method presented here

is that an integral equation is derived for a function which

characterizes the velocity or impedance variation . This equation
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is a Fredholm integral equation of the first kind ; it has parameters

in it which characterize the source and receiver locations. In a

number of cases of source-receiver configurations of practical

interest , this integral equation is invertible. Thus , a velocity or

impedance profile (depth section) is obtained by direct processing

of the observed data (time section) itself; i.e. , by performing

weighted quadratures on the data. This direct inversion of time

section to depth section involves only one theoretical assumption:

The subsurface variation must be “ sma ll.” Even this limitation is

not overly restr ict ive as can be seen from one of the examples be low

in which a 20% velocity variat ion was successfu lly migrated. In

fact , the real world data restrictions --noise , attenuation , dis-

cretization and finiteness of observat ions , etc . ,--are usually of

greater concern than this theoretical linearization assumption .
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2.1 An Integral Equation for Three-Dimensional
Velocity Variation

It is assumed here that three-dimensional wave propagation

is governed by the equation

(2.1) [V2 - v 2 (x, z)
~t
2] U(x , z, t) 0; x = (x,y).

Waves propagate in the semi-infinite medium , z > 0, measured ±-
~~
‘
~ :-

ward . The operator 
~ 

denotes a partial derivative with respect

to time . It is the coefficient v(x , z) which is to be determined

from probes and observations made at the upper surface , z = 0. For

many cases of interest, the surface z = 0 separates two media of

greatly differing impedances (e.g., air-water , air-earth). Hence ,

an appropriate boundary condition for (2.1) which introduces the

probes is

(2.2) = t)(t, x; A), z = 0, ~ = (A ,~) .

The sources ~ characterized by the vector ~ m ay be many types (See

[16] for a discussion of plane wave sources). For definiteness , here ,

the discussion will be restricted to impulsive point sources l ocated at

x = A , z = 0. Thus , the boundary condition actually treated is

(2.3) = -~(t) cS(x - A ) ,  z = 0 -
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a
To complete the specification of the direct problem for U , i t is

assumed that

(2.4) U 0, t < 0.

The reference value of the velocity , which i s assume d known , w i l l

be denoted by c(x , z). Then , the variation , denoted by ~(x, z)

i s def ined by the equa t ion

(2.5) v~ (x, z) = c~~(x, z)[ 1 + I ( X , z)]

It is the variation which is to be determined by means of

observa tions of U made at surface poi nts x , z 0.

The total field U is decomposed into a primary field U 1,

which is the solution in the absence of the variat ion -
~~~, and a

scattered f i el d Us, wh i ch i s the res ponse to -
~~~. Thus

(2.6) U(t, x , z; ~ ) = U 1 (t, x , z; A) + Us(t, x , z; ~
) ,

where U 1 satisfies the following:

(2.7) [ -  - c 7 -
~~

I U 1 
= 0, z 0;

(2.8) 
~z 

u 1 
= — (t) -~(x — 

~),  z = 0;

(2.9) U 1 0, ~ 0.
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C-

The argument A is introduced into U , U1, and Us to emphasize

their dependence on the source location. It then follows from

the problems for U and U 1 tha t U 5 sat isf ies the following:

(2.10) [V 2 - c 2
~ t

2] U~ = -cx c 2
3
~
2 U;

(2.11) 
~zUS = 0, z = 0;

(2.12) U5 0, t < 0.

An adjoint function V is now introduced , satisfying the

fol l owing:

(2.13) (~7 2 
— c

2
~ t

2
) v = 0, z > 0;

(2.14) 
~Z V = _ ( T  — t) H(T - t) ó (x — ~

) ,  z = 0; ~ =

(2.15) V E 0, t > T .

It wi l l  be seen below that ~~, T denote the locations and times of

observations at the upper surface. Furthermore , by comparing the

problems for U 1 and V , it ca n be seen that

(2.16) ~~~2 
V(t , x , z; ~ ) = U(i - t, ~ , z; x) .
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Upon a pp l yi ng Green ’s theorem (in space and time) to the

quantity ,

Us(V
2 

- c
2
~t

2 )V - V(v 2 
- c

2
~t

2
) U~ ,

the following inte gral equat i on i s obtai ned:

(2.17) fdz fdxdy r1(x , z) c
2
(x, z)~~t U(t , x , z; X)U 1

(T-t , , z; x)

= fdtu s(t , ~~, 0; ~)(T - t).

The right side here is a func tion of the fiel d observa ti ons at

the upper surface and , hence , known. T he left side has two un knowns ,

namely, ~ and U~ . (A nonlinear system for these two unknowns is

supplied by (2.17 ) and (2.10 , 2.12 ) . )  However , Us appears onl y in

U and , therefore , only through the product coU5 . However , from

(2.10 ) it is seen that U~ is i tself of the order of -~~ . Thus ,

for r, small , it is expected that ~ U can be reasona b ly

approximated by I In th i s case , (2.17) becomes an integral

equation for ~ alone , namely,

~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~ - 
- —  
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(2.18) fdz f dxdy a(x, z)c 2
(x, z)fdt U1(t, x , z; A)U1 (T-t , ~~, z; x)

=f dt U5(t, ~~, 0; A ) ( T -

This is the basic linear integral equation for c~(x , z) .
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2.2 Direct Inversion for Backscatter Over a Medium wi th
Two-Dimensional Veloc ity Variation

The integral equation (2.18) w i l l  now be special ized as

fol lows . The reference velocity c wi l l  be taken to be a constant,

so tha t  U 1, defined by (2.7 - 9) is given by

(2.19) U1(t , x , z; A)  = o(t - I x - AI/c)/(2 T1-lx - A l ).

The variation in ~ will be assumed to be independent of y, so that

a(x, z) will be replaced by I o ( x , z ) .  In th i s case , both the sources

and receivers wi l l  be restricted to the x ax is .  Finally , only

backsca ttered (or CDP stacked ) observations will be made , so that

(2.20) A = = (~~
, 0).

For t h i s  case , it is possible to carry out the y and t

integrations in (2.18) to obtain

(2.21) fdzf dx ~(x,z)H(cT/2- p) [(cT/2)2 - ~~2]~~~

= ~2T(flc)2f dt U5(t, ~ , z; ~~)(T- t). I
Here ,
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I

(2.22) p = [ (x - + z2] ½ -

Th is integral equation can be solved by transform techniques .

The result is

(2.23) a(x, z) = 2ic~~~’ fd~ f dk fdk fdTfdt{k (T
2
~~Tt)

E~, z; ~
) exp~2ik (x— ~) — 2ik z + iw T } } ;

w = c[sgnk ] (k 2 + k 2 )2

This is the direct inversion formula for the prescribed source

receiver configuration for this section .

In [18], by the authors , this result was implemented for 
V

high frequency data synthetically produced for a number of l ayered

mode ls. Because of the high frequency bandlimiting , the da ta  was

processed for ~ /~z 
= a’ rather than for a(x, z), itself . This

merely requires multiplication of the integrand in (2.23) by -2ik .

In accordance with the results of SecLion 1.3, not only the

V 
location of discontinuities may be determined but the magnitude

of the discont inu i t ies may be determ ined , as we ll. This direct

inversion procedure produces a mapping of the interfaces and an

estimate of the velocity variations across them.
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a
The model used embodies other real worli restrictions band

limit ing , namely;

(i) the observations are made only at %~sc; ”o~ e
points on the line;

(ii)  the observa tions are made only over a
j~-n - :~ .e length of the line.

In these examples , the spacing between ~ points is 100 feet , the

max imum arra y len gth i s 8,000 feet and the bandwidth is 6 to 24

Hertz.

Synthetic data was generated for t i l ted planes at angles

up to 750 Direc t  inversion reproduced these planes with three-

place accuracy both in tilt angle and velocity variation .

In an earlier paper by the authors [19], a direct

inversion formula was presented for the parabolic approximation to

the wave equation used by CLAERBOUT [17] for 15° wave equation

migration . Synthetic data for tilted planes is used and the

direct inversion is carried out analytically. The results show an

error in tilt ang le and in velocity estimation on the order of the

fourth power of the angle of inclination. Numerical tests confirm

this result , as well. This kind of error is already known to

users of 150 wave equation migration. The error is due to the

underlying parabolic approximation and not a flaw of the direct in-

vers ion procedure or the wave equation migration procedure . Since

the computational requirements of direct inversion for the wave

equation are no more difficult than those for the parabolic

approximation , the former is preferred to the latter by the authors .

34 ; _J
1

- V~
_ 

~~~~~~ ~~~~~~~~ — • V ——— -V 
- - 

__~_~ V

V ~~-~ ‘r--- -
~ -~--~~~~~~~~ ,-*~ ~~‘- 

— —



Figure 8 shows a subsurface configuration for which

synthetic data was graciously provided to us by the research group

at Marathon Oil. The time section provided by them is depicted in

Figure 9; Figure 10 is the result of our direct inversion procedure

and Figure 11 shows our estimate from the output of various

relevant quantities in the model . The l ower two sets of numbers

exhibit errors of less than 4%, while above the level , the errors

are less than 1%.

The program was implemented on a time-sharing system on

a Burroughs 6700 at the University of Denver. Output data was

generated at a rate of 5 miliseconds per record . The number of

records is defined as the product of

(No. of geophones) x (No. of subsurface output
points ) x (Average number of non-zero time
samples/trace).

Modifications of the original program have now improved

that rate to 2.4 mi1iseconds per record.
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a
2.3 Direct Inversion for Backscatter Over a Medium with

Three-Dimensional Velocit y Variation

When a three—dimensional velocity variation is to be

de tected , a two-dimensional source receiver array on the upper

su rface is required . When the reference speed is constant , U1 is

again given by (2.19) but now A is no longer restricted to the x

axis. Now (2.18) becomes

(2.24) /dz fdxd Y I(X , z) -
~

( - 2 -/c) /~ .2

= 2 (71c ) 2  fdt U5(t , ~~, 0; ~~) (T  - t).

Here ,

(2.25) = [ (x - [)~ + (y - + z2] 
1
2

The integra l equation can again be inverted by integral transform

methods. The result is

36 1 ,

C l

—-V 
1 •  V 

~~~~~~~~~~ ~~~~~~~~~~~~~ ~~~ ~ ~ ~~~~~~~ ~~~~



(2.26) a(x , z) = 2ic 3~~2fd~dn fdk dk
f 

dk fdT~~t~k(T
2
~Tt)

U5(t, ~~, z; ~ ) exp{2i [k (x-~) + k(y~n)~ k z]+LT }};

w = c[sgnk ] (k2 + k 2  + k 2 ) 2

A computer program could be developed to implement this

formula much as was described in the previous section. Output data

would be generated at the same rate per record discussed at the

end of the section. However , the number of records increases by a

factor (say, N) for the new dimens i~n in the geophone array and by

a factor (say, N) for the output array . Thus , the computer time

would increase by a factor of N 2 . Thus , for the present , only

analytical verifications have been carried out.
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a
2.4 Direct Inversion for a Case wi th Separated Source

an d Rece i ver

Here i t i s assumed tha t  -
~ 

= i (z), i.e., t h a t - c var ies with

z a lone . In tui tivel y then , one would expect that only one experiment

woul d be necessary to determine co. Again , it is assumed that  c i s

cons tan t so tha t  U 1 is given by (2.19). In this case , an d are

taken to be f ixed  w i t h

(2.27) -
~ 

= -

In (2.18), the x , y and t integratio r s can all be performed

yi el d ing an elementar y i nte g ral equa ti on wh i ch can read i ly be

inverted to yield

2(A 2 + z2)~ /c

(2.28) a(z) = -4~c dt • A 2 + 2z~ - ti U~(t, A , 0; -
~~~

) .

L
c (A 2 +z 2 ) 2  ] — - -

0

For backsca t ter , it is onl y necessary to set A = 0 here to ob ta i n

the r e s u l t

2z/c

(2 .29)  1 (z )  = -4nc 

/ 

dt [4z/c - t] U5(t , 0, 0; 0).
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2.5 Direct Inversion for a One-Dimensional Problem

In one dimension , one can generate synthetic wide band

data by straightforward and economic means. This was done by

GRA Y [20] as a prelude to the analysis of strongly depth dependent

velocities in three dimensions. An example of the output of this

analysis is shown in Figure 12. The solid line is the assumed

a (z) while the dots are the result of direct inversion on

synthetically generated wide band backscattered data .

In [16], the authors also treated a case in which c(x)

was not constant. The func t ion 111, the time transform of U 1, was

expressible as a sum of exponentials and the integral equation was

still invertible in closed form.
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2.6 Direct Inversion In Free Space

Often  in  o c e a n o g r a p h i c  and seismic exploration , the source

is placed below the sur face  z = 0. In th is case , the basic problem

(2.1, 3,4) should be replaced by a source prob lem , w i t h  the delta

function moved from the right s ide of (2.3)  to the right side of

(2.1) and the boundary condi t ion (2.3) imposed on a new interface

above z = 0, say at z = z < 0.

If the effects of the reflections from the interface at

z can be accounted for (by no means an easy task), then such an
0

experiment can be modeled by a free space problem in which the

med i um is “known ” for z < 0 and assumed to vary only for z > 0.

In this case , one still obtains (2.18) as the basic integral

equat ion , bu t wi th  U I now a solution of the corresponding source

p ro b lem in free s pace .  For c = constant , the effect of this modifi-

cation on U1 is to replace the factor of 2 on the ri ght side of

(2.19) by a 4. Since two factors of U 1 appear in the kernel of the -•

integra l equation (2.18), the results (2.23 , 26 , 28) need only be

mod ified by the introduction of a multiplier of 4 on the right

side.

~1 1
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I

3. Non-Uniqueness in the Inverse Source Problem

In the prev ious sect ions the presentat ion assume s tha t

the probing si gnal is an impulsive point source (See 1.1 , 2.3). In

practice , this is never the case. Thus , one is faced with the prob-

lem of “stripping away” source effects, i.e., performing source

deconvolution , before proceeding to the inversion problem at hand .

In other problems , the source itself is the ultimate goal

of the inversion process. This would be the case e i the r  for detec-

tion problems or for source synthesis problems (such as antenna

design problems) in which the objective is to create a source to

produce a given radiated field.

The objective of this section is to address the inverse

source problem . The presentation follows the lines of [21] by the

authors. It will be shown that there is a great deal of non-

uniqueness in this problem . That is , a source cannot be completely

reconstructed from observations of the field it radiates. The

reason is that, in general , a certain part of the source simply

does not rad iate and , hence yields no clu e, in the radiated field ,

to its presence. Thus , the solution to the inverse source problem is

non—u nique. Analytic characterizations of this non-uniqueness will

be stated .

For source deconvolu ti on , the non-uniqueness is not as

serious a problem as it might at first appear to be. The reason is ,

that only the radiating part of the source is of interest in these

41
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problems. This is so because only the rad iating part of the source

can effect the scattering obstacle or med ium .
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3.1 Analysis of the Direct Problem for Acoustic Waves

It is assumed that U(x, t) is a solution of the following

problem in free space:

(3.1) [V 2 - c 2
3t
2] U(x, t) = —F(x , t);

(3.2) U 0, F 0, t < t -

The so-~rce F is assumed to be confined to some sphere x 
< a, to be

denoted by D. This region is itself confined to the interior of

some larger region D~. Observations of the radiated field will be

made on ~D, the boundary of 0.

The Fourier time transform and space-time transforms

are defined by the following:

(3.3) u(x , w) = ~~t U(x , t) exp{iwt}

(3.4) u(k , 
~~) 

= fdt f dV U(x, t) exp{-ik • x + iwt}

= f dV u(x , 
~~) exp{-ik • x }

111 r— . 
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a
The time reduced problem equivalent to (3.1, 2) is

(3.5) (V 2 + w2/c~ ) ~(x , 
~~) = - f (x , j

with u outgoing,

(3.6) u(x , ~~ u(x , ~) exp{ iw x/c} / (4ii x), x 
-
~

The solution to this problem can be expressed as a con-

volution of the source with the free space Green ’ s funct i on :

(3.7) u(x , 1) = f dv’ f(x ’ , -~ ) g(r, 
~
) .

x < a

Here , dV ’ is the differential volume element in the prime variables ,

(3.8) r =  x - x ’ I .

and

V 
(3.9) g(r , ~~I) 

= exp{i r/c} /(4 r).

The solution on ~D is of interect . The origin of the •

coordinate system is taken to be in D. Then for x on ~D , x > a.

In  t h i s  case , u s i n g  the spherica l harmonic  e x p a n s i o n  f or g

44
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(JA CKSON , [22], p. 742), the solution u may be expressed as follows :

(3.10) u(x , w) = iwc 1
~~ n=~-m 

cmn hm
(’)(wx/c)Ymn (@,i

~
), x > a.

Here,

(3.11) cmn = I ~mn~~~’ 
w) j~~(w x ’/c) x ’2dx ’ ,

and hm~
’
~ 

are the spherical Bessel function and Hankel function

of the first kind , respectively, and 
~
‘mn is the spherical harmonic

of order mn. The functions 
~mn 

are defined by

(3.12) 
~mn~~’ 

w) = 5 m B  de f d~ f(x, w)Ymn
*(e~~)~

These functions are the coefficients of f in its spherical harmonic

expansion

m
(3.13) ~~~ w) = 

~~ ~mn~~’ 
w)Ymn (O,~)m=0 n= -m

Since the spherical harmonics are a complete set of

Func ti ons , knowl edge of the coefficients 
~mn constitutes knowledge

of f i tself. However, from (3.10, 11) it is seen that the radiated
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a
field (i.e., u for x > a) is a function , not of the 

~mn
’
~ ’ but onl y

of their ~;-r~ojections on the Bessel functions Stated another

way , the radiated field depends only on the projections of the

source on the “doubly ” infinite set of functions ~~~~~~~~~~~~~~~

Since this class of functions is known not to be complete , knowledge

of these projections does not suffice to determine f uniquely.

To demonstrate this non-uniqueness , one need only produce

a non-zero function f for which all of the projections Cmn in (3.11)

are zero. Such an example is provided by the function

~(x)-j (-x/c) 
[4~ J j 2(wx/c)x2 

dx] ~~~, x a

(3.14) f(x, ~~) 
= 0

0 , x - a

In this example , all of the functions 
~mn ’ 

m > 0, are zero, while

f is not. However , the projection of f
0 0  

on j
0 

is zero. Thus

for (3.10), the radiated field is zero, while the source is not.

The inverse time transform in (3.14) produces a source in space-

time confined spatially to the region r < a and temporally to the

interval -a/c < t < a/c.

An alternative characterization of this non-uniqueness

can be deduced as follows . One solves the space time transformed

problem for u and inverts the time transform to obtain the

representation of the solution

- i
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(3.15) U(x, t) ~r 3C/16~~ + (k’d~k f(k, ± ck)exp{ik • x ~ ckt } -

-~~~

Thus , the solution is seen to depend upon f(k, w) only on the two

sheets of a hyper -cone where k = Iw l Ic. Thus , the source need only

have Fourier transform equal to zero on this hyper-cone in order

that the radiated field be zero.

As an example , the source (3.14) has Fourier transform

(3.16) f(k, w) = 1 - f i ( w x / c ) i  (kx / c) x2d¼j
2(wx /c)x2dx

which indeed vanishes when w = ±ck, but is clearly not identically

zero .

For the electromagnetic case wi th current source distribution

J (x , t), there will be no radiated field if

(3.17) Ci - kk ]  j ( k , ± ck) = 0 .

Here I is the identity operator and kk is the dyadic operator that

yields the radial part of j in k-space. The operator in (3.17)

therefore produces the tranaveree ~as opposed to radial) part of j.

Thus , any j  which is purely radial will produce a non-radiating field.

In addition , there w ill be no radi ated field if only the transverse

part of j vanishes on the appropriate hyper-cone.
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3.2 Far Field Anal ysis of the Direct Problem

In the far field , x > > x ’ , the Green ’s function in (3.7)

can be expanded just as in Section 1 (see equation 1.8). Then one

finds

(3.18) u (x, w) = dV f(x , w)exp{ -iwx - x/c}
0 J — -

x < a

= f(wx/c, w).

Here u is the phase and range normalized far field scattering
0

amplitude defined by (3.6). Thus , observation of the far field at

all frequencies and in all directions provides an asymptotic

expression for that part of f(k, w) which produces the radiated

field.

It should be noted here that (3.18) provides an asymptotic

solution of the inverse source problem for f on the appropriate

hyper-cone.

-- 
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3.3 The Inverse Source Problem

The objective here is to develop methods for obtaining

information about a source distribution solely in terms of obser-

vations made on 3D.

The function v(x, w) is introduced , denoting any solution

of the homogeneous reduced wave equation in the domain D. Then

Green ’s theorem is applied on the domain D to the quantity

v(x , 4 [V2 + w
2 c 2] u(x , 4 - u(x , 4 [V2 + w

2
c

2
] v (x , 4.

Here, u is a solution of (3.5). The result is

(3.19) fv(x~ 4 f(x, 4 dV = f{u
.
~ - - v - ~ -} dA.

x < a  3D

For any choice of v (x , 4 of the prescribed type, this is

a~’ ~tegral equation for f(x, 0. A particular choice suggested by

the s-~us.~ion of the previous sections is any function in the class

(3.20) ‘1mn = jmn (wx /c) Ymn (O~l
~
)
~ 

m = 1, 2 n I  < m

with v = ‘
~rnn ’ (3.19) becomes,

(3.21) Cmn = 

~/1A 
~~~ - 

~~ 
.
~
-} dA .

Here , the cmn ’s are defined by (3.11). The source
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m

~~ 
cmn ‘F’mn~ 

x < a
(3.22) f(x , ~A i ) = m = 0 n = —m

0 : x > a

will produce the same radiated field as f itself.t Thus , f (x, w)

would serve as an equivalent source for the purpose of source

deconvoluti on.

Another choice of v(x , w) is the plane wave

(3.2 3) v(x , w , k)  = exp{i k - x } , k = w I/ c .

Here k may range over any of the continuum of directions in three

space . Mow (3.19) becomes

(3.24) f(k, ~ ) = ik n • u - -
~~~~

- exp{ik • x} dA , k = wI/c.

This is the exact result for which (3.18) is the far field asymptotic

expansion. It should be noted that the plane wave , in fact , contains

all  of the functions 
~mn from [22], p. 767 ,

(3.25) exp{ik . x} = 4rr 
~~ ~

m ~ y* (~~~~~i)
i n = 0  n = - m  n mn

Here (~~i
’
,~~~~’) are the spherical polar angles of k.

If the source f or the radiated field u has a convergent expansion
in spherical harmonic s, then the convergence in (3.22) is assured .
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3.4 Uniqueness in the Inverse Source Problem

It has been shown that the inverse source problem has

nonunique solutions. The only way to obtain a unique solution is to

provide additional information about the source. Here, examples of

this type will be presented .

Example 1: The point source

Here, it is assumed a priori that

(3.26) F(x, t) = ó(x) G(t)

and that the observed data is consistent with this assumption (i.e., an-

gularly independent) . Although the genera l theory wi ll provide the

solution in this case, it is certainly easier to simply observe that

(3.27) u(x , w )  = g(w) exp {iwx/c}/(4nx)

and determine g uniquel y (hence, F(x, t) uniquely) from observations

in one direction .

A more interesting example is the following :

Example 2: The implus ive source

Here,

(3.28) F(x, t) = 5(t) G(x),
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and

(3.29) f(k, w) = g(~ ), ~ = Iw I/c.

The function f is determine d from observations by (3.23), for all

choices of the direction of k. All values of k are determined from

frequency information. t Thus the function g(k) (and hence G (x))

is known . Because of the a priori knowledge (3.28) about F(x, t),

this function is now determined uni quely.

This problem of making the source unique by additional

constraint is not well understood at all. The authors believe that

a bet ter unders tanding  of the r e l a t i on  of uni queness to s id e constra i nts

woul d have important application to source synthesis and antenna design.

The problems of aperture limiting will not be addressed here .
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