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FORWARD

With the convening of the Seventh Image Understanding Workshop in Cambridge ,
Massachusetts on 3-4 May 1978, the planned five year Defense Research Projects Agency
program reached its temporal mid—point. It is interesting to note that this program
was initiated by the calling of a preliminary workshop in March 1975 which attempted
to set out goals for both the research effort as well as the areas in which the results
might make significant impacts in the military user community .~ At that initial work-
shop , Dr. J. C. R. Licklider , then the Director of the Informat’~~n Processing Tech-niques Office which sponsors the program, made this observation : N~

“The objective (of the Image Understanding Program) wI1-~. be
to develop the technology which c~ n be exploited by the DoD com-
ponents to solve their specific problems. Thus, the activit ies
that will be supported in the program will not be the engineer-
ing of specific solutions to specific problems. The philosophy
in the program will be to develop generalized technology by
driving the research in particular directions. However , at
the end of the five year period the technology developed must
be in a state in which it can be utilized by the DoD componentF
to solve their specific problems without requiring a significant
research effor t  to f igure out how to apply the technology to
the specific problems. For this reason , the program must result
in a demonstration at the ençl of the five year period that an
important DOD problem has been solved .”

Also at the initial meeting , LTC Carlstrom , the Program Manager for the
Image Understanding Program, presented a list of potential problem areas of interest
to Image Understanding as follows:

1. Photo Intelligence
2. Geophysical (ERTS, LANDS1~T)
3. Cartography
4. Meteorology
5. Remotely Piloted Vehicles (Robotics, Guidance)

- . 6. Surveillance

In the two and a half years of its existence, the DAPRA Im~ge Understanding
Program has attempted to follow the philosophy enumerated at its fouktding as cited
above . The original meeting was attended by 31 representatives , whi~le workshops
dur ing the first year of research attracted 50 attendees. At the en~I of the second
year the size of the Image Ur.derstanding Workshops had growr to 72 i~ terested personnel
with many more receiving copies of the workshop proceedings . It is h~ped that th is
increase in interest is a reflection of the emphasis that the program ‘~anager and the
research personnel have placed on demonstrable and real world results . fhe close in-
teraction of the user comm unity by attendence and participation at these workshops is
much appreciated by all concered with the program .

This document contains technical reports presented by those research organiza-
tions active in the Image Understanding Program. Also , outlines of the semi-annual
progress reports as presented by the Principal Investigators are included for reference!
The University and Industrial companies currently working on the DARPA program are : 
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• Univers i ty  of Southern Ca l i fo rn ia

• University of Maryland

• Purdue University

• Carnegie-Mellon University

• Massachusetts Institute of Technology

• Stanford University

• University of Rochester

• SRI International

• Hughes Research Laboratories

• Westinghouse, Incorporated

• Honeywell , Incorporated

• Control Data Corporation

• Lockheed Missiles and Space Company

The seventh workshop was hosted by Dr. Patrick H. Winston , Director of the
Ar t i ficial Intel l igence Laboratory at the Massachusetts Institute of $chnology . The
meetings were conducted at the Howard Johnson ’s Motor Lodge , Cambridge~ Massachusetts,
on 3—4 May 1978. Representatives of various Army , Navy , Air Force , anj DoD and other
Government Agencies as well as members of the research organizations c4ncerned were
in attendence. Thus the two primary objectives of the workshop - the 4ross—fertiliza—
tion of research results among the various investigative groups and an ~xchange of
ideas between the users and the research personnel — were accomplished . lit is par-
ticularly gratifying to note that several demonstrations of achieved research results
were presented at this workshop in addition to the descriptive technical papers. .. -‘~~

The cover design of this volume attempts to carry forward the hierarchical
processing theme and the mul t ip le  technologies theme of the past two proceedings by
indicating a possible direction for the final utilization of the products of this
research program , i.e., actual technology transfer from the laboratory to the field.
Although DARPA does not concern itself with the fielding of systems - it is vitally
Concerned that its research efforts be ready for use by service or DOD agencies . The
artwork for the cover was created by David E. Badura and Thomas G. Dickerson of
Science Applications , Inc. from ideas supplied by LTC Carlstrom.

The Conference Organizer wishes to thank the moderators of the technical
sessions for keeping the program on schedule and Dr. Winston of MIT for hosting the
workshop and arranging tours and demonstrations of the MIT-Al Laboratory . Ms. Suzin
Jabari of the MIT staff was instrumental in making the arrangements for the workshop
in the Boston area. Mrs. Kristin G. Johncox of Science Applications, Inc. provided
typing support for mailings and the collection and arrangement of the conference
proceedings .

Lee S. Baumann
Science Applications , Inc.
Workshop Organizer

Reference:
1. Minutes of the 6-7 March 1975 Meeting of the ARPA Image Understanding Workshop,

Page 3, Page 10.
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HARDWARE I}C’LE~~NTATI0N OF A SMART SENSOR: A REVIEW

Thomas J. Willett -
Glenn E. Tisdale

Westinghouse Systems Development Division, Baltimore, Maryland 21203

A~ STRACT regarding target location and identity.  Develop-
ment and implementation of automatic ta rget cueing

This paper summarizes the results of a 21— algorithms was th~ subject of a 21—month program
month program to investigate the design and imple— per formed with the University of Maryland Computer
mentation of automatic target cueing logic . The Science Center . The program contained three phases ,
work was performed for the University of Maryland as follows:
Computer Science Center, under DARPA sponsorship,
and monitored by the Army ’s Night Vision Labors— Phase I: Task and Technology Review (3
tory, months)

Phase II: Algorithm Selection and Test (9During the conception and test by Maryland months)of the cueing algorithms, Westinghouse carried out
an investigation of techniques for their imple— Phase III: Hardware Development (9 months)
mentation, with particular emphasis on charge
transfer devices. When processing functions were All phases of the program were completed during

specified , a detailed analysis was then carried the prescribed period , including the construction
and demonstration of an important recognitionout so as to provide them in CCD’s. This process function using charge—coupled devices.continued throughout the first year of the program.

The success of the program is due , in largeDur in g the final nine months , a specific
circuit was chosen for the fabrication of a demon— part , to the close coordination between members of

the government—university—industry team. The teamstration unit. A sorter function was selected be-
cause of its occurrence in several cueing oper— was assembled in 1976 by Lt. Col. David Carlstrom

of DARPA . The principle team members from theations. Chips were fabricated and tested at the
Westinghouse Advanced Technology Laboratories, 

government were Mr. John Dehne and Dr. George
Jones of NVL. For the University of Maryland,and a demonstration unit was assembled and shown

at the Image Understanding Workshop in October , principle memberd were Profs . Azriel Rosenfeld
and David Milgram . The Westinghouse team included1977. The unit rearranges a random series of Dr. Glenn Tisdale, Program Manager, Mr. Thomaspulses in ascending order by magnitude. Willett , project engineer , Dr. Nathan Bluzer ,
and Dr. Gerald Botsuk.An estimate was also made of the area in

monolithic silicon required to implement the cuer
function in CCD’s. The algorithm presently pro— The design of an automatic target cueing

posed by Maryland would require an area of 11—1/4 system must begin with a statement of system

inches by 7—1/2 inches. If 3—inch by 3—inch design goals. Next , the algorithms and data flow
can be established . Finally, hardware fabricationmodules were employed with 1/2—inch centers, an can be considered . This paper will summarize theequivalent volume would be 3 inches by 3 inches effort in each area.by 6 inches.

SYSTEM DESIGN GOALS

INTRODUCTION As shown by Fig. 1, automatic cueing is
achieved by an image processor , which serves as

Although the sensors used in reconnaissance an information filter on the image, alerting the
and target acquisition continue to improve in reso— human to the presence of potential targets, possi—
lution,speed , and dynamic range, the location of bly by audible signals initially , and then by
targets still depends on the ability of a human providing visual cues or overlays on his display.
operator to search images in real time. The Automatic cueing can be carried out either in
concept of the “Smart Sensor” assumes that much, airborne or ground locations. In the airborne
if not all of the human effort in target acqui— situation , the operator views a CRT—type display
sition can ultimately be performed better by for acquisition of targets on a real—time basis.
automatic recognition logic . An initial step in His deterutination stay result in action in a matter
the development of the Smart Sensor would provide of seconds, either offensive or defensive. On the
machine assistance to the human in evaluating his ground , interpretation may be required in real—
displays, by providing audible and visual cues time, or on a more rslaxed basis. In the propøsed
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ope rat ion of remotel y p iloted vehicles (RPV ’s) ,  by Dehne e t .  al. of NVL 1. For a set of mission
for example, a video link may be used to obtain a parameters which relate primarily to the helicopter
CRY presentation at a ground station of the output scenario , it was found for processing rates between
of a senso r located on the vehicle. The problems 3 and 10 frames per second , false alarms could be
fo r the operator are somewhat similar to the air— accommodated increasing from 0.5 to 1.8 per frame .
borne situation; however, his appraisal of the These results assumed that 20 seconds were availa—
sensor image is entirely limited to the CRT output. ble to cover a large search window , resulting in
He can ’t look at the target area directly. On the about 0.7 seconds to handle each frame . This
other hand , he is not distracted by problems such figure includes the frame processing time , the
as vehicle opera t ion and personal security, time to slew the sensor , the opera tion decision

time per false alarm (0.2 seconds) and his reaction
Key considerations in the design of an time to advance to the next frame (0.2 seconds).

au tonc tic targe t cueing sys tem ar e its perf orman ce, The report considers sequential as well as com—
physical characterist ics , and allowable cost. A bined processing and slew , with  the forme r pre—
quantitative determination of design parameters ferred.
will depend on the manner in which the mission is
implemented. Such implementation will be discussed A separate consideration with the above
first, processing rates is that the cueing symbols super-

imposed on the display must appear in the correct
As explained above , the ta rget cueing location even af ter  the processing delay. With a

function might be performed aboard a vehicle , or frame ra te of 30 per second , the delay covers 3 to
at a ground station if imagery is relayed for 10 frames (0.1 to 0.3 seconds) . Misregistration
analysis.  In either case , the performance goals of target and symbol could be caused by target
will t~ nd to be comparable. As regards physical motion relative to the terrain , or the changes in
character is t ics  and cost , however , the vehicle the field of view due to aircraft  motion. Broad—
location will demand much tighter restrictions , side motion of the target is generally the worst
Our discussion will proceed on the basis of the case. Suppose the cueing window subtends twice
vehicular application. Both helic opters and high— the extent of the target on the display in both
speed a i rcraf t  are airborne candidates . The RPV the horizontal and vertical dimensions, and is
image, on the other hand , will be analyzed at a located at the point of the target cen ter in the
ground station ; therefore , the physical limitations processed f rame . It can move by half its di—
within the RPV are not a problem. As the state- mension in any direction and still be contained
of— the—art in automatic target rec~’gni tion develops , within the cueing window. For a vehicle 20 feet
and high levels of performance are attained , it is in length which subtends 20 pixels in the display,
anticipated that the human observer will eventually motion of 10 fee t must be accommodated over a
be eliminated in some applications. For example , worst case period of 0.3 seconds, with a corres—
recognition equ ipmen t migh t be p laced aboard a ponding allowable broadside speed of 30 feet per
missile for unaided terminal guidance . The re— second (43 mph). This result is independent of
quirement for high performance, small size and range if the window is porportional to target
weigh t, low power consumption , and low cost will size.
all apply in this case.

The report also considers the use of a wide
Perfo rmance Goals sensor field of view for cueing, followed by

opera tor conf irma tion with the narrow f ield of
Key performance parameters are the detection view . It is assumed in this case, that the

and recogni tion ra tes for  targets of in terest , the capability of the cuer for recognition exceeds
false alarm rate , and the speed of operation of that of the operator by an amount sufficient to
the cueing system . Detection occurs when a target compensate for the increased field of view. Under
of any kind is indicated by the cueing system , these conditions , one false alarm per frame could
while recognition occurs when the correct target be accommodated with a processing rate of 0.54
class is selected from among several possible frames per second (about a 10:1 reduc t ion over
classes. Detection and recognition performance is the previous case). However , at the present state
expressed as a percentage of the targets which are of the art , this improved cuer performance rela—
actually available. A false alarm occurs when a tive to the operator has not been demonstrated .
target is indicated even though none is present. In that regard , it is noted that because of the
The false alarm rate is expressed on the basis of eye integration time of 0.2 seconds , the operator
a unit of elapaed time or area of coverage. The gains a signal—to—noise improvement over the cost
required speed of operation is determined by the of , perhaps , 2.5.
time available to the operator to make decisions,
the search area to be covered by the sensor , and A final anproach considered a sensor with
the sensor frame rate. It depends heavily on human an expanded , high resolution scan area equivalent
factors considerations , such as decision times and to the target search window. Due to display
reaction times, and the choice of prioritization limitations , the operator sees either a low
ground—rules . l.Dehne, .1.S., Van Atta , P. and Raimondi , P,

Specifying Image Processing Systems for Thermal
A detailed examination of the trade—offs Imagers , paper presented to the Seventh Annual

between the required cuer processing rate and the Symposium of the EIA—AIPR Committee , College Park,
allowable false alarm rates was presented recently Md. 24— 24 May 1977.

—---- - - —~- -  -5 —-5—.---—
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resolution version of the entire window , or a small Allowable Cost
segment containing potential targets as selected by
the cuer. The cuer processing rate is not greatly Since the cueing system is a digital pro—
affected by r’ is mechanization. cessor, its production cost using conventional

packaging techniques can be estimc’ed reasonably
For the assumed frame size of 375 by 500 well. For helicopter or aircraft use, a figure

pixels, the processing rates of 3 to 10 frames of $20K to $50K per unit is suggested . Reductions
per second correspond to data handling rates of in size by increased use of LSI will tend to
0.6 r.o 1.9 megapixels per second, reduce the recurring cost for each unit , but at

the expense of a significant nonrecurring cost
The foregoing discussion was addressed to for initial development .

the helicopter scenario. For the high—speed
aircraft, the available search time will tend to Implementation of a complete cueing system,
be lower, but the required search window will using CCD circuits on a small number of silicon
probably also be reduced . The reduced search chips , takes this sequence one step further . The
window can be achieved by reliance on navigation final unit recurring cost , in production, might
aids for the acquisition of predesignated targets. range from $lK to $5K, including test , but the
At the high speeds and possible low altitudes , it development program would be a multimillion
appears that the single—seat operator , because of dollar affair. Before such an investment could
the burden of aircraft navigation, will be as— be considered , a number of hurdles ~~~~ ~~~~~ to
sisted significantly by the cueing system. Frame be overcome . First , the satisfactory oper~~ cn
rates which are comparable to his reaction time, of the system would have to be established . Next ,
or somewhat lower , in the vicinity of’twO per an attempt should be made to compare the per—
Secot~~ should be tolerable from the point of view rom ance of competitive approaches , since only
cf overall processing time. However , from the one design can probably be initiated . l~inally, a
point of view of increased detection and recog— variety of applications should be considered , so
nition rates, as well as reduced false alarm that the development cost can be divided as much
rates, it appears useful to consider the inte— as possible.
gration of results from successive frames. The
assignment of a priority weighting to target cues A practical approach to this dilemma, which
will improve the probability that important targets has been initiated in the present program , consists
will be considered when a number of opportunities of the selection and implementation of key circuit
occur. functions in CCD form . These circuits can hope-

fully be used in hybrid arrangements to reduce
Physical Characteristics the size, weight, and power of early cuer designs.

With the growing availability of new chips , these
The significant physical characteristics of values will continually decrease. At the same

the cueing system for aircraft or missile use in— time, the solution of a variety of application
d ude size, weight and power consumption, problems will be possible from the library of

available chip designs.
The increased availability of general—

purpose MSI circuits has made it possible to offer ALGORITHM IMPLEMENTATION
existing cuer algorithms, using conventional
packaging techniques, in packages which should be We now turn to a preferred set of algorithms
acceptable for aircraft use. A total system, developed by the University of Maryland which com—
excluding displays , might be expected to occupy prise the first portion of a cueing system. A
a volume of 0.5 to 1.0 cubic feet, and to weigh system flow chart is shown in Fig. 2. In general,
10 to 30 lbs., including power supply. Power in the Median Filter acts to suppress noise. The
the neighborhood of 200 to 300 watts will be Gradient Operator extracts edges which are then
required. thinned by the Non—Maximum Suppression Algorithm.

At the same time a set of gray levels ip determined
For missile applications, conventional and the filtered image is thresholded at each gray

packaging can be improved upon by use of flat packs, level. A Connected Components Algorithm partitions
or bare chip packaging, and by the introduction of each of the thresholded images into potential
some specially designed chips. object regions. The Super Slice Algorithm corre-

lates perimeter points formed independently by
One thrust of the present Westinghouse the Non—Maximum Suppression and Connected Coat—

program , however , has been to determine the neces— ponents Algorithms and a score is obtained for
sary area of silicon substrate required to provide each gray scale threshold . These scores and
cuer functions. As will be described later , the several other algorithms form a set of Classifi—
fabrication of special CCD LSI circuits appears cation Logic.
feasible, and would reduce the cuer to qn overall
chip area measured in square inches. On this basis, The Median Filter is the first algorithm
introduction of cueing functions into an artillery performed and acts to extract the median gray
shell, for “fire—and—target ” performance, becomes level from a 5 x 5 array of pixels and to place
feasible, that median value in the center of the 5 ~ 5. The

Filter quantizes each of the 25 analog signals
into a number of discrete units and then sorts

5--- S-5 - -_ _ _ _ _ _ _ _
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the quantized signals by arranging them in de— requires another silicon substrate in which the
cending order by magnitude. The Filter acts as a gate positions of A and B are reversed . The block
moving 5 x 5 window across the image in that diagram of the absolute difference operator IA—B~
having obtained a median value, the first column is shown in Fig. 6. A similar block can be formed
is dropped and a sixth column is added, for IC—D I and then the two connected in a straight

forward manner to form GRAD OP — max {IA—B I,IC—D !}.
The silicon substrate forming the Median

Filter Quantizer is shown in Fig. 3. Din is the The Gradient Operator extracts edges in
diffusion diode through which charge is injected either the horizontal or vertical direction; the
into the chip and into the holding well, xv. x Non—Maximum Suppression Algorithm then looks in
blocks the charge from leaving via Din. An amount a direction perpendicular to the edge for a larger
of charge, Q, proportional to 5, the signal gradient value. If a larger edge cannot be found,
voltage, is removed from ISV via the transfer gate, the edge under consideration is retained; the
TG, and placed in the signal well, SW. Via the edge is removed if a larger value is found. Em—
blocking gate, BG, and the thimble well, TW, a bodiment of the Non—Maximum Suppression Algorithm
descrete amount of charge, q, is removed and requires several operations with CCD structures.
placed in well gl. Another quantum q is removed A key part of NMS is extracting the largest, Xm ,
from SW and placed in gl while the first charge gradient value in the neighborhood surrounding
has been shifted to g2. This process is repeated the ,1.el of interest, y • Xis is then compared
until SW is empty and all the charge has been to the gradient value yg representing the yth
placed in a number of discrete wells gl, g2, .., pixel . Sorting the X values to obtain Xm can be
gn. accomplished by the sorting operation described

earlier. Comparing Yin and yg can be done by the
Recall that the contents of wells gl, g2, subtraction module also described before . Then

gn of the Quantizer each contain, at most, an the block diagram appears in Fig. 7. This time
amount of charge q. The content of each well is the subtraction module outputs an enable signal
parallel shifted into its corresponding channel to the CCD shift register instead of the actual
of the Sorter (Fig. 4) so that if there were q difference. A blocking gate is used to block
charge in g3, there is now q charge in 13 and so (enable) yg from entering the register.
on. Forming traps with wells Pgl, Pg2, and Pg3,
the charge in each channel is shifted into the Moving to the right side of the System
large holding well (LHW) . The large holding Flowchart (Fig. 2) we now discuss Threshold
well is partitioned into N channels also which Determination. The philosophy here is not to
are pulsed simultaneously in charge removal, attempt to find a single threshold but rather a
This means that the numbers are removed from the set of thresholds which span the range of gray
large holding well in a descending order by scale. For the NVL FLIR data, fifteen (15) levels
magnitude, represented the gray scale range and selecting

every third (3rd) level as threshold was deemed
The Gradient Operator Algorithm computes to give satisfactory target detections by the

edges based on an image of median values~ it University of Maryland . Implementation of this
comp’ttes an operator , OP — max (IA—B I, {~c—DI} type of algorithm requires a sorter which arranges
based on four overlapping regions A, B, C, D each the gray levels in descending order. The first
of which consists of 4 x 4 pixels and are arranged number (the largest) leaving the sorter, and
in the shape of a cross. The quantities A , B, C, corresponding to the first threshold , sets a
D in the expression represent the sum of all counter to 1. The second exiting number is then
sixteen pixels within each region. The operator compared with the first and the counter is updated
OP also works as a moving window and the compu— to 2 if they are different . If it is the same,
tational result is placed in the center pixel the counter remains at 1. In general, each
location. The key arithmetic operation in GRAD number is compared with the previous one to
OP is the formation of the difference determine if the counter should be updated. When

the counter goes to 4, the second threshold has

A—B — 
0 if A l  < I B I  been determined . In this manner every third gray

scale is selected and used as a threshold. AA—B if A I  > IB I block diagram of the implementation is shown in
Fig. 8.which is realized on a silicon substrate with the

configuration shown in Fig. 5. Din is a diffusion The purpose of the Connected Components
diode through which charge is injected into the Algorithm is to segment an image into object
chip; A and B are gates whose potentials are regions; these object regions are potential shapes
controlled by voltages representing the sums A and of interest and features are extracted from them
B respectively. These gates will form a trap to for classification purposes. The Operator moves
retain some of the injected charge. The trapped along an image line, with the previous line incharge is equal to A—B and is removed by the memory, determining which pixels are in a specifictransfer gate. The algorithm object region or if a new object region is starting.

B—A — 
0 if l~I < IA I Each pixel can be examined with respect to its

neighbors to the left and above. No diagonal
B”A if I B I  > TA I connections are permitted under this convention,

and adjacent (horizontal or vertical) pixels must
be Occupied in order to make a connection. No

_ _ _ _  -5--- --5— —V— . -5— 
~~~~~~ -~~~- ~~~~~~~~~~~~~~~~~~ 
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skips or gaps are allowed . If we are to extract FOCAL PLANE AREA
featu r es f rom each object region, there must be a
means for distinguishing between different object Here, we present a preliminary estimate of
regions. One approach to the problem is to paint the focal plane area occupied by the cueing system
(assign an analog voltage level) each object with described. That is, the image has been smoothed
a different color (analog voltage level) and then (Median Filter), edges obtained (Gradient Operator),
have a feature extractor assigned to each color edge with reduced (Non—Maximum Suppression), the
(voltage level). Where an object has several image has been segmented in object regions (Con—
colors, the feature extractors corresponding to nected Components), a best threshold selected
those colors cummulate their features, dump them (Super Slice), and features extracted (area, height ,
in a scratch feature extractor to combine them, width , perimeter extent, average gray level). The
and reassign the results to one of the two feature estimate is preliminary in the sense that none of
extractors, the clocking circuitry has been included in the

estimates for the operators, The estimates do
The system block diagram is shown in Fig. 9. not include the Classifiers, although their area

The delay line is represented by twenty (20) SI/SO contribution will be quite small.
CCD delay lines which are coded to obtain 100
colors (analog voltages) and obviate transfer Assuming that the focal plane is divided
efficiency problems. There are 20 levels of-color into 20 columns Fig. 13 shows the number of pro—
comparisons for horizontal and vertical connections cessors required for a system data rate of 1
in the Coloring Operator shown in Fig.lO. The megapixel per second . It also shows the geometric
Equivalence Box notes horizontal and connections area required for each processor and an estimate
between different colors, recolors a pixel if of the area as defined above. The area is 11 1/4
necessary, and notes when a color is no longer inches by 7 1/2 inches which is equivalent to a
used thus activating the equivalence statement 3 x 3 x 6 inch volume.
between two different colors . The switching
matrix and latches for the Equivalence Operator CHIP DEVELOPMENT
are shown in Figures lla and llb . The column
clock is actually fed to all the Feature Extractors Figure 14 shows the algorithms developed by
and they indicate when a color is no longer used, the University of Maryland and the functions which
The Feature Extractors which accumulate the object are required by each algorithm. A perusal shows
features such as area and perimeter as well as that the sorter function occurs in four Out of
the Scratch Feature Extractor form the basis for the five algorithms and is the one we selected ,
classification decisions. The Feature Extractors Several versions (buried channel and surface
are visualized as a many channeled , large holding channel CCD) of the sorter were put in production- - , well which follows along the line of the histo— runs of the Westinghouse Advanced Technology Labo—
grammer— aorter . Each channel would correspond to ratory. Figure 15 shows a wafer of the buried
a particular feature and since the features are channel devices. One portion of the demonstration
cummulative, they would simply add in the Scratch unit is shown in Figure 16 , with the device mounted
Featu re Extractor,  in place. The ten thumbwheels represent the un-

sorted numbers which the sorter must rearrange in
DATA FLOW ascending order. The observer may dial in any

arrangement of numbers which he wishes. The out—
The Median Filter, Gradient, and Non—Maxi— puts and inputs, i.e., the unsorted and sorted

mum Suppression Operators are calculated for ~~~ll arrangements are shown on a two trace oscilloscope.
windows which move over the entire frame. These Westinghouse IR&D accounted for 70 Cents of every
windows are formed by parallel shifting one line dollar spent on the Smart Sensor Project.
of image from the TDI arr ay into a parallel in ,
ser ial out shift register. This register and The demonstration unit and a two—trace
others then form a serpentine delay through which oscilloscope were exhibited at the DARPA Symposium
the pixels are shifted . Non—destructive readouts in September of 1977 at Stanford University in
form the regions comprising the appropriete window. Palo Alto, California . The symposium participants
It appears that the computation speed of the Median were encouraged to dial in their own set of random
Filter , Gradient, and Non—Maximum Suppression numbers on the thumbvheel switches and
Operators is conservatively estimated at 50—100 observe the ordered results. Figure 17 is a
KHZ , hence a parallel organization of the focal typical trace; the random sequence is shown in the
pl ane is necessary for a 1 megaptxel/sec . rate. left half of the trace and the ordered sequence
Appropriately, we divide the focal plane into 20 on the right . The unit was also demonstrated at
vertical sections each with its own set of Oper— the Night Viaion Laboratory, Pt. Belvoir, Virginia
ators (see Fig. 12) , to avoid oumerical integrity on November 28, 1977.
problems . Such a division , however, is unde-
sirable in the Connected Components case because CONCLUSIONS AND PICO)OIENDATIONS
image reconstruction becomes very difficult.
Further , the imput data is binary so numerical This work has shown that the Smart Sensor
integrity problems are not present and the CCD can be implemented with CCD technology in a smaller
implementation of the Connected Components Also— package than implementation with digital techniques.
rithm can operate at 1 megapixel/sec. Hence, Further, higher level operators (segmentors) ,
there are five Connected Component Modules normally thought to be only implementsble with
corresponding to each of five thresholds. conventional digital techniques, can be implemented

—- --—.—-——- — — -.—
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in CCD. I , ~

The total area estimate ia 11 1/4 inches by 1 1 1. ~~~~~~~~~

7 1/2 inches. If 3 inch by 3 inch boards were I I I
employed with 1/2 inch centers , the volume di— I I
mensions would be 3 inches by 3 inches by 6 inches. I

The next step in proving feasibility in— I i I
volves building some of the modules and checking L I I

— ~~_Tathem for numerical integrity, size , speed , and
power consumption . These modules, e.g. ,  Median
Filter would probably be hybrid packages in the ~~~,,• ~

, 
~~~f irst build , and the clocking circuitry included

on the chip . Other items of particular interest
are the Connected Components Algorithm with the 

A~

switching matrix and peripheral control logic 1 ...L J.... L~’~and a histogrammer which is derivable from the
sorter. Estimates of ultimate size for the
monolithic elements would be necessary as well I I
as estimates on the groupings of elements within

7S,o3O V A l ,  —the monolithic packages.
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SPOTLIGHT IMAGING OF RADAR TURNTABLE DATA

Chung Ching Chen
Harry C. An drews

Image Processing Inst i tute
University of Southern California

Los Angeles , California 90007

ABSTRACT Unfortunately , aspect-angle-dependence of
the reflectivities of the target and the

In recent years synthetic aperture shadowing effect from 3-D obscuration
radars (SAR) have proven very useful two discourage one from applying a tomography-
dimensional imaging tools in various like reconstruction algorithm to the
fields . Based on the synthetic aperture reflected signals . Hence , instead the SAR
concepts , d i f ferent  imaging mo de s are principles will be applied directly to
possible with various operating charac- small angle looks and several looks will
ter is t ics. In this naper we describe a then be registered and incoherently summed
special case where the circular projection to give the full reconstruction of the
radar data are coherently processed to object reflectivity function. A DOF as
yield both azimuth and range resolutions . well as Nyquist rate analysis in the
The Degree of Freedom (DOF) of such a frequency domain will be derived to give
system is derived as a means of measuring tIle minimum number of data points required
data redundancy for storage and coniputat- under specified physical constraints and
ional requirements . The underlying radar requirements. Basic relat ions between
imaging system is compared to a computer bandwidth and resolution also will be
aided tomographic (CAT) system to show discussed.
mathematica] similaritites as well as
physical differences. Experiments are Finally, several experimental image
performed using data obtained from the results will be shown to support the
RAT SCAT radar cross section facility , theoretical work developed.
Fairly good results are obtained which
illustrate the versatility of coherent TURNTABLE DATA
synthetic aperture processing of pulse to
pulse high range resolution radar returns. In operation , the target (say a model

airplane) is placed on a rotator at a
distance r0 from the radar to its rotation
center as shown in Fig. 1. A reference

INTRODUCTION sphere S is sitting at distances r1 from
the radar R and r2 from the rotation center
C. The angle between line RS and theIn the 2-D radar imaging system , the target line of sight RC is a.  Let ~~~~~two geometrical coordinates associated with (x ,y) be two rectangular coordinate systemsthe radar of objects are usually called with origins at C. Let (~~.ri) be associatedrange and azimuth . (In 3-D, there is one with the target and (x,y) be with themore called elevation). Range is the ground of target system at an angle 0 fromdirection along which the signal is trans- the former coordinates , as depicted inmitted , reflected and received. Azimuth

is the direction orthogonal to range in the Fig. 2. At discrete angle 04 the radar
radiates energy at a single frequency 

~~~surface of interest. The elevation is the The local oscillator defined to be thedirection normal to the surface of range reference sphere S takes the signaland azimuth. The range resolution is
usually obtained from timing information directly from R to S as a reference and

beats the signal reflected from the targetof the signal returns , and the resultant in-phase and quadrature

Depending on the requirements there phase components become the data. This

are several modes of SAR: the stripping process continues for different 
~k 

and O
~to form a 2-D data array. For simplicitymo de l , dopp ler beam sharpening m ode (DBS) we shall assume that at each aspect angleand the spotlight ‘node . In this paper a

situation closely related to the spotligh t the radar radiates the same set of step

mode is studied in which the relative frequency wave s , with M frequencies at
the same frequency ~f. We shall alsomotion between the radar and target is a assume that the step angle ~& is constantcircle , as in the tomography system.
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as one advances the aspect orientation . 2. Satisfactory phase compensation for
the propagation between the radar

HYPOThETICAL TARGET REFLECTIVITY FUNCTION and the target center is extremely
diff icul t , if not impossible .

Re ferr ing to Fig. 2 , let f(~~,~~) be the 3. However, the reflectivity function
reflect ivi ty function of the target , where can be assumed constant over small
by reflectivity function f(~~,~~) we mean the aspect angle • during which theratio of the receive d signal due to point azimuth and range processing can be
target at ( ç , r,) and the radiating signal . separated and fast FFT techniques
At wavelengths A small compared with the can be employed.
curvature of the target body the target 4. The shadowing effect can be reduced
looks specular to the radar so that only to minimum by adopting this tech-
those surfaces normal to the radiation path nique with coherent processing over
reflect strong energy back to the radar small angles and then incoherent
receiver. In addi tion , whenever a point summing over large angles , as
(~ .n) is blocked by some other points or described in the next section.
surfaces in the line of si gnt to the radar ,
shadowing occurs . In other words , the - EXPERIMENTAL RESULTS
shadowing effect occurs because of the non
convexity of the surface of the target. Utilizing the princip les outlined
Thus f(~ ,~~) is actual ly  a function of above actual radar returns were processed
aspect angle e .  Nevertheless , for ease of to verify the imaging potential of the I,Q
analysis we assume that f (~~,r~) is independ- components for pulse to pulse high range
ent of 0 and we shall see a close resem- resolution signatures . A coherence angle
blance of ths imaging system to that of of 6.4° was assumed (equalling 32 pulses
tomography. A great deal of insight can in azimuth) and a cross range (azimuthal)
thus be obtained by this theoretical assump- Fourier transform is taken over these
tion. Even if we release this assumption , pulses . The resulting range cross-range
as we shall do later , the DOF analysis images are presented in figure 3 for various
based on fixed f(~ ,~~) is still valid in the angles of rotation. The “nose” , “broads ide”
real situation , and “tail” aspects are intuitively correct

although very low quality imagery exists
ACTUAL RECONSTRUCTION METHOD at this point.

Physically the radar imaging systent To improve the image quality noncoherent
has lots of differences from the tomography integration is performed with the range
projection system because of widely differ- cross-range images as in figure 3. With
ent imaging characteristics and limitations , only 7 looks noncoherently summed (at 300

angle intervals) the image of figure 4a
In the radar imaging system two kinds results . This is a considerable improve-

of information are sought : range and ment and clearly shows the outline of the
azimuth . Range resolution is obtained by characteristic delta wing of the F102
the timing of the signal return from the aircraft. By noncoherently integrating
target point. Ideally, the relative motion 28 looks one obtains the results of
between the target points and the radar figure 4b in which a more clear image
should be zero to obtain range resolution results. To investigate the degree of
with any high degree of precision desired. coherence necessary (and allowable before
On the other han d , the azimuthal resolution “range walking” occurs) figures 4c and 4d
is obtained by creating different  doppler present result for 3.20 coherence angles
histories to different azimuthal points by and 12.80 coherence angles. In both cases
way of relative motion between the target the aircraft is still clearly visible
points and the radar . This seeming conflict although a certain amount of degradation
is resolved in the Turntable system in is beginning to be apparent in both cases.
which different frequency components at an
aspect angle 0 are obtained during which A second aircraft was imaged uaing the
there is no relative motion , to give purely same parameters as developed above. This
range information corresponding to the aircraft was an F5E and is shorter with
specific angle 0. Azimuthal information is stubby wings and wingtip pontoons . The
then provided by the phase differences of final figure (figure 5) presents a summary
the same frequency components at different  of photographs for the F5E and Fl02 air-
0’s, which is due to the change of range of frames for both azimuth and elevation
target points induced by the target motion. plots. Because all parameters are fixed

for these images , scales are preserved.
In summary, the reasons we take the Consequently it is clear that the F5E is a

discrete Fourier transform on small angle smaller aircraft and naturally has a
data are : different azimuth and elevation projection

1. The reflectivity function is a than does the F102.
function of aspect angle .

-~~~~~~~~~ 
-
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CONCLUSION [6]. S. Twomey , “Information Content in
Remote Sensing” , Applied Optics ,

This paper has attempted to present Vol. 13 , No. 4, l9~~ .
the theory of high range resolution radar [7]. ~~~ Mar)r”j, et.al “The RATSCATimaging from both a radar systems view- Cross-Section Facility” , Proceedingspoint and a degrees of freedom or numerical of the IEEE . Aug. 1965.analysis viewpoint. Similarity with the
computer aided tomographic scanner imaging [8]. R.N. Bracewell and A .C . Riddle ,
technology is pointed out. However the ‘Inversion of Fan Beam Scans in Radio
differences between the two systems are Astronomy” , Astrophysics Journal,
emphasized and a radar unique reconstruction Vol. 150, 1967.
algorithm is developed for combined coherent [91 . L.A. Shepp and B.F. Loga, “Theand noncoherent imaging. The actual recon- Fourier Reconstruction of a Headstruction method is explained and experi- Section , ” IEEE Transactions onmental results developed to illustrate the Nuclear Science, Vol . NS-21, Junetheories presented. The pictorial images 1974.resulting from the computational procedures
are surprisingly recognizable and suggest [10], D.C. McCaughey and H.C. Andrews ,
that these techniques may have some practi- “Degree of Freedom for Projection
cal application in the future. Imaging”, IEEE Transactions on

Acous tics, Speech, and Si gnal
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Nil
a) 4 looks O°-25.6° b) 4 looks 76.8°-102.4°

(nose) (b roads ide )

HH
c) 4 looks 128°-153 6° d) 4 looks 153.6°-179.2°

(tail)

(The Radar is positioned on the right)

Figure 3. 6.40 coherence in Azimuth at various
positions of rotation ,
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a) 7 lookh (~~. 4 ° coherence)  b) 28 looks (~~.4° coherence)spaced 30 apart spaced 6.4 apart

c) 56 looks (a.2° coherence) d) 14 looks (lg.8° coherence)
spaced 3.2 apart spaced 12.8 apart

Figure 4. F102 Imaged for various parameters

_ _ _ _ _ _ _ _ _ _ _ _ _-
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ru
a) Fl02 Azimuth Image b) F102 Elevation Image

(28 looks) (56 looks) (1/2 scale)

c) FSE Azimuth Image d) FSE Elevation Image
(28 looks) (56 looks) (1/2 scale)

Figure 5. F102 and F5E Azimuth and Elevation

Images (6.4° Coherence)
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optical image is shown in Figure 11. Each function
described in Eqs. 1 through 6 (and included in Test
Chip II) has been tested, and we estimate the over-
all performance to be equivalent to approximately
4 bits. Testing of linear combinations of the

~~~~~~~~~~~~~ “i” operators described in Eqs. 4 through 6 has not been
completed at the full video rates , and this effor t
is currently proceeding. We anticipate no aignif i—
cant problems in this area.

4~. 
~~~~~~ NEW CONCEPT DEVELOP~4ENT

In addition to the above work , we have started
concept development and analysis of a third test

“ ~ chip to perform statistics, including a 5 x 5 median
filter, an analog hiatogrammer (including a mode and

~ standard deviation filter, a 5 x 5 prograamable
~~ processor , and several bipolar fixed filters). This

_____________ work will continue into the next phase of the pro—
(a) gram when the detailed design, simulation, and ini-

tial processing will be undertaken,
____ 

11~
.

DEVELOPMENT OF A REAL—TIME DEMONSTRATION UNIT

As part of our effort to interface the cur-
rently developed processors with a coninercial video
camera, we are pursuing the development of a small

_________________________________________________ real—time demonstration unit that will include the
___________ 

necessary analog CCD delays, the clocks and drivers
________ for our processor, the CCD processors themselves,
______ and a small video display unit. This work is well

__________ 
under way (most of the interface circuitry has been
designed) , and we plan to have the complete unit
available in the next phase.

I CONCLUSIONS

11w During the previous phase of this program , we
developed CCD integrated circuit processors tha t
perform two—dimensional, nonlinear and adaptive

(b) operations at speeds in excess of two orders of
Flgurt’ 9. Example of the operation of the magnitude higher than general—purpose computers.

CCD Sobel processor operating Our evaluations of this circuit to date indicate
in real time from a commercial that it will perform as predicted4 and can be inter—
vidicon. faced directly to the optical sensors; this will

lead directly to the development of truly smart
these rates with a variety of images, and our intert-’ sensors,
tion is to increase the effective data rate in the
next phase of the program to achieve truly sym— REFERENCES
metrical operation.

1. G.R. Nudd , “CCD Image Processing Circuitry,”
The edge detection circuit described above is University of Southern California , Semiannual

basically an important demonstration of two— Report, 31 March 1977, pp. 142—173.
diriansional nonlinear processing. Our second test
chip , which performs the operations described in 2. O.K. Nudd and P.A. Nygaard, “Demonstration of
Eqs. 1 through 5, is aimed at demonstrating adap.- a CCD Image Processor for Two—Dimensional Edge
tive functions based on the local mean or average, Detection,” Electronics Letters, Vol. 14, No. 4,
As such, the prime operators are the edge detection, 16 Fabruary 1978, pp. 83—85.
local averaging, and the delayed original images.
Each of the other algorithms (the unsharp masking, 3. “Chip Helps Detect Targets Automatically, ”
the binarizer , and the adaptive stretch) are arith— Electronics Magazine, March 16, 1978 , pp. 41—42.
metic combinations of these. The original image,
the Sobel, and the 3 x 3 mean derived from the sec— 4. O.K. Nudd, “CCD Image Processing Circuitry,”
ond chip are illustrated in Figure 10 for a regular Proc. Image Understanding Workshop,
test pattern. Examples of the operation on a true Minneapolis, Minnesota, April 197?, pp. 89—94. 
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TARGET SCREENER SYSTEM NOISE REMOVAL
BY INTERFRA}iE ANALYSIS

Durga P. Panda

Honeywell Inc.
Systems and Research Center
Minneapolis, Minnesota 55413

ABSTRACT with the classifier results on other objects , from
the past frames, in the sequence. An inconsistent

System noise in an automatic target screener classifier result is modified in some prespecif ied
may affect the performance of the system in two manner that yields better classification result.
ways. Firstly, the target may fail to meet the This method of “smoothing” the classifier result
segmentation criteria of the system, resulting in consists of three distinct steps, frame alignment,
a missed target. Secondly, the feature values of interframe object matching, and decision smoothing.
the segmented objects may be erroneous, resulting
in missed targets as well as false alarms. Improv-
ed false alarm and detection may be achieved by - FR.AIIE ALIGNMENT
accumulating information regarding the locations
and the feature values of the objects from frame When the sensor is in motion the stationary
to frame, objects in the frames will have a relative dis-

placement with respect to the frame coordinates .
To find a match for an object in a frame, a search
has to be made over all the objects in the other

INTRODUCTION frame. The neighborhood of search can be reduced
if the two frame coordinate systems ate adjusted

An automatic target screener system, such as with respect to each other to correct for the sen—
Honeywell ’s Autoscreener, usually operates on ~~ sor motion. This adjustment is performed by the
compatible tactical image frames, extracts objects frame alignment function.
in a frame and optimally classifies these objects
into targets and nontargets based on their stat— The frame alignment is based on the assumption
istical features. The performance of the system that most of the objects in the frame are station—
(probabilities of false alarm and detection) de— ary. The alignment is performed by using the
pends on the quality of data , and the image seg— locational information of each object in a frame.
mentor and the classifier used by the system. But In general, the rectification due to sensor motion
the full potential of the segmentor and the classi— may require translation, rotation , and scale change
fier is often not achieved due to severe system of a frame. We assume that the sensor motion
noise, between the two frames to be matched is small

enough so that translation alone may give adequate
False alarm may be reduced by examining the frame alignenient for our purposes. For example,

extracted objects and the classifier decisions on if the frames are successive or near successive the
these objects over a sequence of image frames, sensor motion may be assumed to be translation
This approach is useful and effective when noise only.
in the screening system results in random noise in
the processed image or random error in the feature The method of frame alignment , called the
values of the extracted objects, and the noise or translation histogram method , conceptually works as
the error is uncorrelated from frame to frame , follows. The difference in the coordinates of an
When the image is noisy an object may fail to meet object in one frame, cay F0, ond an object in the
the segmentation criteria of the system resulting other frame, say F1, is computed. Keeping the
in a missed target. When the feature values of the object in F0 fixed, this computation is repeated
extracted objects are erroneous there may be missed for every object in F1. This process is thea re—
targets as well as false alarms. By accumulating peated for all other objects in F0. Every computed
information from one frame to the next regarding coordinate difference corresponds to a frame trans—
the locations and the feature values of the cx— lation that will match an object pair in the two
tracted objects improved false alarm and detection frames. A two—dimensional histogram of all the
can be achieved. In the following we discuss and computed coordinate differences is made, The
demonstrate this approach. In the proposed method, mode of the histogram corresponds to a frame
we first determine an interfraine sequence of cx— translation that will match the largest number of
tracted objects containing a given candidate target object pairs in the two frames. This mode is the
in the present frame. We then determine if the estimated translation necessary for the frame
classifier result on the candidate target , in the alignment. In order to achieve strong and robust
present frame, is consistent in certain manner modes the histogram is smoothed by a block filter .

The frame—to—frame displacement Is assumed to be
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less than certain fraction , f (a.~y 1/8th), of the 
in F1, and matching the jth (j # I) object in F0

frame dimensions in each of the two directions in with the mt~ object in F1 the dynamic cost —
the image. Consequently, all translations greater (0, if k ~ m for all object indices I and j.than f/2 (1/16th) or less than —f/2 (—1/16th) of S o , if k = m
the frame dimensions are ignored in the translation
histogram. An optimum matching procedure should minimize

the total cost of matching all objects in a frame.
The translation histogram method uses segmen— This may be done by computing all possible static

ted images rather than original intensities as in— and dynamic costs and selecting theparticular set
put. In the present context , the segmented image of object matches that has the lowest total cost.
is a sparse binary image with zero almost every— However, the storage and the computational require—
where and unity at the location (e.g. centroid) of ments are too high for this procedure. If we know
each extracted object. Computing the translation the maximum distance a target may have moved be—
histogram of two frames then precisely cor responds tween two frames, then we can restrict our search
to cross—correlating the two corresponding sparse for a match to a neighborhood of corresponding
binary images or computing the Hamming distance size. In this regard the frame alignment helps
between the two binary images. The mode of the save search time by cutting down the neighborhood
histogram corresponds to the peak of the cross— size. Even then , the storage and computational
correaltion . requirements for finding the optimum matches for

all objects in the frame may be very high. The
Conventional methods of frame alignment use Linear Embedding Algorithm of Fischler and

the intensities , the edge values or certain other Elschlager [3 1 is aimed at cutting down computat—
property at pixel level in matching the two frames ional reauirements by trading it off with the
to be aligned . This may make the method sensitive global optimality of matching . In particular , the
to noise. Our method uses the objects extracted method may fail to find the globally optimum match
from the two frames in matching the frames. Noise if the objects with low indices in F0 incur a highsensitivity of the method is reduced since the static cost when matched with their optimal object
chance of getting false match at object level is matches in F1. The ordered—static—cost method is
much smaller than that at pixel level. The data a similar matching procedure that is computationally
rate at object level is much smaller than that at more suited for our application . The procedure is
the pixel level. These make the translation his— independent of object indices but depends on the
tograin method potentially much faster , cheaper, relative magnitudes of the static costs.
more accurate , more reliable , and more immune to
noise than conventional methods . The matching procedure works as follows . Let

the ith object in F0 have Ki objects in F in its

INTERFRANE SYMBOLIC OBJECT MATCHING neighborhood of search. We shall call th~se K~
object indices in F1 the possible K “labels” of

A major taak in interframe object matching Is the ith object. The static costs f~r all possible
the selection of a suitable set of attributes or labels are computed for each of the N objects in
fea tu res of the objects that should be used in F In total the re are K

T 
different static costs,

matching. Another major task is the matching wRere N
procedure itself. Features usually used in symbol— K — I K -

Ic object matching are 11 ,2] size , shape , color, T I

texture , and location . The speed restriction in
real time application may allow only a few and Each of these K costs corresponds to an object—
simple features to be extracted . Other consider— label match. W~ arrange these K,~ 

costs in in—
ations in extracting the features are the compu— creasing order. We accept at the most N of these
tat ional  cost and the effectiveness of the features static costs and corresponding object—label pairs
for the specific applications and image qualities as matched objects. The lowest of the K,

~ 
costs is

in mind, first accepted. We then proceed to the next
higher cost. If the label corresponding to this

In the following we discuss Honeywell ’s “or— cost has already been taken by previously accepted
dered—static—co st” method of matching the objects, object—label pairs , then we discard this object—
The cost of matching may be of two kinds. The label (infinite dynamic cost). If , instead , the
first , the static cost , arises due to mismatch in object corresponding to this cost has already been
the features of the two objects under consideration, taken, then this object—label pair has a higher
The second , the dynamic cost, is due to mismatch static cost; hence, we discard this object—label
or inconsistency in the interobject structural pair and proceed to the next higher cost. If cer—
relationships (3]. In our application the static tam cost did not get discarded by the above two
cost is the absolute difference in the feature methods then the corresponding object—label pair
values of the two objects being matched. Since the is accepted as the next matching object—label pair.
objects , e.g., targets , may be moving with respect This process continues until all the K.~ static
to each othe r , the re is no constraint on the struc— costs are exhausted .
tu ral relationship. The only interobject constraint
is that no two different objects in one frame may This algorithm will not give the globally opti—
be matched with the same object in a second frame , mum match if the qtatic cost corresponding to Sr.
This dictates  the dynamic cost. Specif ica l ly ,  in op t iw• m object—label pair is higher than that of
matching the ith object in F0 with the kth object aaother object—label pair having the same label.
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Consider , for example, two objects, A and B, being result in every frame. The symbol “T” next to
matched with two labels, a and b , with the follow— a candidate target denotes an actual target, and
ing static costs: the symbol “C” denotes that the classifier decision

a b was target. The test frames are numbered 1 through
5, in increasing order of time. Each frame was

A 3 ~ aligned with the previous frame using the trans—
B 5 11 lation histogram method. Figures 3a and 3b show

the original and the smoothed translation histo—
The object—label pairs arranged in increasing order grams, respectively, for aligning frames 1 and 2.
of static cos t are: Aa , Ba, Ab , and Bb. The pairs Table 1 shows the result of matching the candidate
that will get accepted are As and Bb, even though targets in the frame sequence by using location as
the optimum pairs are Ab and Ba. It Is possible the feature for matching . In the table the number
that several iterations of a similar procedure in following the II sign is the frame number. The
some suitable manner , e.g., by relaxation labelling table shows the object indices in the present

[4  ] will asymptotically yield the global optimum frame , F , and the cor responding object numbers or
match, labels iR the previous frame . A label of “0”

implies no match and an tncc*~~lete sequence.

DECISION SMOOTHING Table 1. Interframe O~~ect Matching

The classifier decision made on a candidate —

target in the present frame, F
0
, may be modified 

~~ ~~~~~~~ ~ ~~~~~~~~ ~~ LA\I~ L ~~ hAI L
based on the decisions made on the same object in — — — _______

the immediate past frames. Here, by “same object” I 2 2 I I I 0

we mean the object in a past frame that matches
with the candidate target in F . The process of 4 3 4 4 4 6 4 3

modifying the classifier deci~2on in the aforesaid
manner is called decision smoothing, Consider the 7 0 7 to  7 8 7
sequence of values of a certain classifier feature 8 7 8 0 8 0 8 0

of a given object from frame to frame. This 
~ ~sequence of valuec constitutes a time—series, u u 13 I I  1° 11 14

12 I I  12 0 12 0 12 0
13 0 13 14 13 0 13 1€The error due to system noise in the fea— 14 13 14 0 14 13 14 17

ture time—series may be corrected by conventional 12 0 I S I?  15 15 I I  0

time—series smoothing techniques. The smoothed 0 18 16

featu re values of an object may then be used to 18 0 18 0 18 18 18 0
obtain a modified classifier decision on the object. 19 19 19 0

20 20 20 20A faster and simpler method of obtaining a modified 21 0
classifier decision would be to treat the classi— — — —
fier decision itself as a binary feature time—
series. One method of smoothing this binary
feature is to modify the feature value in the
present frame according to majority vote of the
decisions on the object in the previous frames.

A problem that may be encountered in decision
smoothing is an incomplete sequence. This occurs
when, due to noise in the system or In the data ,
the segmentation method fails to extract certain The most recent frame, Frame 5, contains two
object irt a frame. The problem also occurs when objects, Object 10 and Object 12, for which the
inaccuracy In the interframe object matching process classifier decision is “target”. Beginning with
causes an object in a frame not to have any match— Frame 5, the object sequence corresponding to
ing object in the previous frame. Thus, the Object 10 is 10, 10, 11, 10, 12. The sequence is
binary decision time—series for the object abruptly easily obtained from Table 1. The binary decision
ends at the frame when the object did not find a sequence corresponding to this object sequence is
match.  An approach to solving this problem is to obtained from Figure 2 and is T, N, N, N, N, where
skip the frame where a match was not found and T implies target and N implies noatarget, Thus,
proceed to f inding an object match in the next using majority vote on the binary decisions, the
f rame , modified decision on the Object 10 in Frame 5 is

N ; implying that the object was a false alarm and
ahould be classified as nontarget.

EXPERI MENTAL RESULT
Similar object sequence for Object 12, is 12,

A sequence of five FLIR frames was processed 11, 13, 0, ? , where Object 0 in Frame 2 indicates
by the Autoscreener . Figures la—le show the frame an incomplete sequence. We now need to continue
sequence in increasing order of time and Figure the sequence by skipping Frame 2 and finding in
2a—2e shows the “objects” extracted by the Auto— Frame 1 a match for Object 13 in Frame 3. Table 2
screener as candidate targets. Figure 2 also shows shows the result of interframe object matching
the ground truth and the Autoscreener classifier between Frames 3 and 1. From this we obtain the

_ _ _ _  —-.—-~~ -
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3. pick up the pi xel 1REPRESENTATION COMPLEXITY OF
IMAGE DATA STRUCTURES On a word address machine the shift instruction would be

omitted.
Raj Reddy and Greg Gill

Department of Computer Science
Carnegie-Mellon Univer,sity Packed R.Dr.s.ntatlon

Pittsburgh, PA 15213 Since pixels are generally small numbers, space can
April 1978 be saved by packing more than one pixel into one word. In

order to access a given pixel, the word containing the pixel
must be retrieved and shifted to right justify the pixel

INT RODUCTION within the word. Bits outside the pixel size must then be
masked Out. In addition to having a dope vector for row

Analysis of algorithms is an important source for addresses, a second vector can be employed to hold both
improving the perf ormance of a given system. Traditionally the word of lset from beginning of row and the amount of
some measure of arithmetic complexity, such as the number shift required (Fig. 1). A picture header would be needed to
of multip lications required, has been used as a measure of hold the location of both vectors and the mask value. The
al gorithmic complexity. Limitations of this type of measure 13 instructions required for accessing a pixel are as folows:
have been known for some time and other measures such as
representation complexity and control complexity of 1. pick up header 1
algorithms have been proposed (Reddy, 1973). In this short 2. get the row address 4
note, we illustrate how different assumptions about the (as in dope vector representation)
representation of image data structures significantly affect 3. add word Offset 4
the computationa l effort associated w ith the access and (similar to row address calculation)
storage of data. 4. ex tract pixel 4

pick up word containing pixel
pick up shif t amount from j -dope vector

ALTERNATIVE REPRESENTATIONS shif t to right justify pixel
perform the mask Operation

The choice of a representation for image data usually
depends on the size of the picture, number of bits per pixel,
processor speed, and size of the primary memory. In this Row-Daa d Reor.s.ntation
section we will present several alternative representations
that have been used to satisfy the size and speed If an image is too large to fit in primary memory some
requirements and discuss the computational cost of form of paging from secondary memory will be required.
accessing a random pixel using a given representation. Row-paging representation treats each row as a separate

page. In this scheme a test is made to see if the desired
row is already in primary memory. It not, a disk access

Conventional Reor.sentation sequence is activa ted. A slightly modified version of the
dope vector representation give n in Figure 1 is used. In

A two dimensional (image) array is usualt y stored in this version a zero in the row dope vector indicates that
memory as a linear sequence by row (or column). If we row -is not resident in memory. Also the low-order bit is
assume one pixel per word and the entire picture is in used to ind icate i f the row in memory has been modified and
memory, a picture element (i,j) is accessed by multiplying i therefore must be written back onto the disk. The cost to
by the number of columns, adding j, and adding the location access a pixel already in memory is only two extra
of pixel (0,0). The access usually takes five instructions: gel Instructions to the packed representation; one to test if the
row, multiply the number of columns, add column, dd row is in memory, and the other to clear the low-order bit
location of pixel (0,0), and get pixel yak’s, in the row address. The total cost is therefore 15

instructions, if the desired row is already in core.

Doos Vec tor Remr.s.ntation

Block-oaa.d Rassr•s.ntation
The expensive muPtiplication step of the conventional

representation can be avoided if the address of the first An alternate method of storing pixels would be by
pixel in each row can be stored in a dope vector (Fig. 1). sub-images (blocks). The size of the sub-image block is
The location of pixel (i,j) can be found by adding j to the ith usually chosen to be the same as the sector (or track) size
element of the dope vector. The six instructions re~ulred on the disk. Row and column sizes of blocks are usually
for this operation are: chosen to be powers of two. For examp le, a sub-image

block might include eight rows and 32 words for each row.
1. pick up row aedress 4 Thus a region of pixels could be read into memory without

pick up the row number having to retrieve entire rows. The t able of row addresses
shift to convert to byte addressing(optlon.l) in Figure 1 would be replaced by a page address table as in
add the dope vector location figure 2. A zero would indicate a pag. not in memory and
pick up the row address the low order bit would indicate if the page had been

2. add j t o  get the pixel address modified.

a



29

Column Calculations
In general, ca lcu la t ing  the page number for element

(i,j ) would require two divisions and a multiply. However , The column dope vector can be completely eliminated
they could be replaced by sh ift instructions by choosing the by calculating the word offset and shift amount. Assuming
page dimensions to be powers of two and disallowing byte the number of pixels packed per word is a power of two,
sizes of three and five. This would force the number of the word of fset can be calculated in four instructions (the
pixels packed in one word to be a power of two. As a same number as using the dope vector). Five instructions
consequence, pages starting at the first column will be are required to calculate the shift amount instead of one
numbered from a power of 2 (e.g., as shown in Figure 2, if (incrementing the dope vector). The total cost for row-
there were five pages across a picture, they would be paged method with hash table and column calculations would
numbered 0-4, 8-12, 16-20, etc). The total cost of 24 be 24 instructions. The cost for block-paged method would
instructions breaks down as follows: be 33 instructions.

1. retrieve header 1 1. get pixel address 4
2. calculate page number 6 get column

get row divide by pixels per word (or shift)
divide rows per page (or shift) multiply by 2 (or shift)
multiply pages across picture (or shif t) add to row address
get column 2. get shift amount 5
divide columns per page (or shift) get column
add modulo pixels per word (mask)

3. get page address 3 add 1
shift page number once multip ly by byte size (or shift)
add page table address subtract word size
pick up page address

4. check for page in memory 1
5. clear modify bit 1 Subroutine Call
6. get row address 4

get row number The instructions shown for each of these
modulo rows per page (mask) representations assume the code was written in-line. The
multiply by bytes across page (shift) added expense of invoking a subroutine call would be about
add to page address eight instruc tions. Each representation would have three

7. get pixel address 4 arguments to pass, the row and column plus the address of
(as in packed representation) either the image array or a header. Putting these arguments

8. get pixel 4 on the stack would take three instructions. Invoking the
(as in dope vec tor representation) subroutine, returning, and re-adjusting the stack would add

three more. Furthermore , for all but the unpacked
representations, two more instructions would be required to

Hash Tables save and restore a register.

Usually f or very large pictures only a small number of
pages need to be in memory at one time. Therefore , most DISCUSSION
entries in the page table (or row dope vector) would be
zeros. The size of these tables can be reduced by mapping In the preceeding section we considered several
pages into a hash table modulo its length. If the hash table alternative representation decisions arid their computational
length were a power of 2, this operation could be done in cost. Tabel 1 shows the incremental cost of individual
one mask instruction, representation decisions. Table 2 shows the cumulative cost

of increasingly complex representations for both in-line
Each non-zero table entry would point to a link list of code and subroutine call. Note that it costs only 6

all pages in memory which map to tha t table index, instructions to access a pixel from an unpacked image
However , these pages should be sufficiently far from each entirely in primary memory using an in-line macro call. This
other that the probability of any two being in memory at cost increases dramatically to a total of 41 instructions for a
the same time is very small, The hash table would add 5 subroutine call to access a packed, block-paged image using
instructi ons to the cost of either row-paged or block-paged a hash coded page table.
methods assuming the pixel was in the first page linked to
the table entry.

Conventional Representation 5
The additonal instructions are: Dope Vector Representation .1

Packed Representation +7
1. save page number for comparison Row-Paged Representation .2
2. mask the page number Block-Paged Representation .11
3. get the corresponding entry from the hash table Hash Table Representation +5
4. do the compare Column Calculation .4
5. branch. Subroutine Call +8

TABLE 1. INCREMENTAL COST BY FUNCTIOf’L
(instructions executed per call)

____  p — 
-.
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sub-
in-line routine REFERENCES

Whole Picture in Memory
unpacked pixels,dope vector 6 12 Reddy, D. R. (1973). “Some Numerical Problems in Al:

Implications for Complexity and Machine Architecture ”,
Whole pictures in Memory in Complexity ~ Sequential g~j~ Parallel Numerical

packed 13 21 AlgorIthms U. F. Traub, ed) Academic Press, Inc. New
York.

Paged from Disk by Row
packed 15 23

Paged from Disk by Block
packed 24 32

Fig 2: block-paged representationPaged from Disk by Row
packed, dope vector hashed
calculate column offset 24 32 picture divided into pages and stored on disk

Paged from Disk by Block page page page page page
packed, pagetable hashed 

~ 2 3 4calculate column offset 33 41

TABLE 2. ACCESS BY REPRESENTATION page page page page page
(instructions executed per call) 8 9 10 11 12

page
The implication of these results to image analysis can 16

be summarized in one word: “simplify”. Although a general
research system must permi t flexible representations to — — —
handle a wide variety of image data, a high performance page
operat iona l system must use The simples t possible 24
representation for that task and explore other architectural
alternatives to random address memories suci pipe-line — — —
access or parallel array access .

column dope vector
FIG 1: PACKED REPRESENTATION header: with word offset .nel shift

Ii dope vector I amount for each column

1 dope vector I
column dope vector mask I I Iheader: with word offset and shift

i dope vector I amount for each column (vector I page table
mask I I I I I I 

_________________ row
page 0

row dope vector I I I I I I
row 0 ~

.___..____ _._D~~~ 1 0,2 {  
“

~~~~ page 2 _
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SYSTEMS SUPPORT FOR ADVANCED IMAGE UNDERSTANDING

J. A. Feldma n

Computer Science Dcmartment
The University of Rochester

Rochester , New York 14627
body of a module; we wish explicitly to account
for the case in which various modules are coded

ABSTRACT in different languages on a variety of machines .
For now , let ’s consider modules to be programed

As the level of sophistication in image under- in A lgol-60 and also assume that there are some
standing projects increases , so do the demands on modules available for input , output, and file
the supporting languages and systems . We will manipulation.
describe a set of language and system facilities
tha t have been of significant importance to our Modules coninunicate with one another solely
work and other DARPA efforts. through messages. In order to have comunication ,

there must be something that is understood by both
corrinunicating modules . The comon element in
PLITS is a name which may be thought of as an un-
interpreted string of characters . A message is a
set of (name...value) pairs called slots . The

1. Introduction value portion of a slot will be an element of
some primiti ve domain (think of integers) whose

There are two important reasons for investi- representation is also generally understood.
gating message-based support systems for Image
Understanding. It is clearly preferable to allow The modules of any PLITS system will have to
distant sites to comunicate about images without be able to compose, send , receive, and decompose
transmitting enti re images. ~~

‘F
~priate conven- messages. For this purpose, we must add some

tions and protocols for this have wide-spread data types and operations to ALGOL or any other
applications. Even within a single system, complex body language. In this case the primitive data
control and resource allocation problems arise in types of ALGOL will have to be extended to include
advanced Image Understanding tasks. The facilities module and message. Each module will also contain
described below seem to provide a uniform solution an explicit declaration (Public) of every slot
to both sets of problems. iiame that it can deal wi th along wi th the data type

of that slo t. There is a process analogous to
2. PillS , a Language for Distributed Computing link—editing that insures that public slot names

are used consistently.
The PLITS project originally had no direct

relation to distributed computing , but was con- For a first example , suppose there were a
cerned with developing a non-trivially new program- module , Fibonacci , which provided the service of
ming language. -There were two basic underlying supplying consecutive positive Fibonacci numbers ,
assumptions: (1) that programing lanquages had and a module, George, whi ch wa nted to make use
changed little in the previous decade despite ad- of this service. The code for this would be
vance s in many rela ted areas , and (2) that one something like that shown in Example 1.
could hypothesize compilers of the sophistication
of the best current Artificial Intelligence We see that George and Fibonacci both know
programs . We began by trying to isolate the most the slot names “Object” and “Rec ipi en t” and thus
Important concepts currently available In can coninunicate. At the appropriate time, George
programing systems and to see where they were composes a message with one slot, having as a
compatible 3nd incompatible. The project was value the system Identifier for the module George
called PUTS (Programing Language In the Sky) and , itself. After sending the message to Fibonacci ,
al though it has come down a little closer to the this is essentially a subroutine call. The
ground , the name has stuck. Fibonacci module simply ~~its for a request andful fills it. The syntax for accessing and modi-

The two fundamental building blocks underlying fying messages treats them like the records of,
any PLu S system are modules and messages . A e.g., Pascal.
module Is a self-contained entity , something like
a Simula or Smalltalk class, a SAIL process, or a
CLU module. It Is n~’F’1iportant for the moment
which programing language Is used to encode the 
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on line 8 is:Starting from a survey of the “powerful ideas ’
of programing systems, we attempted to see ~ Mess2 ‘- Receive from Fibonacci.there were inherent incompatibilities among them.
It was imediately clear that one could not corn- But we saw in the expanded Fibonacci module of
bine all the useful language primitives in a Example 2 that there might be an error recoveryconsistent way--so PU TS had to include different module that would supply the answer if Fibonacci
languages. Networking was clearly here to stay could not. The coding style of line 8 requires
and had to be accounted for. Structured Program- that the answer be conveyed back to Fibonacci and
ming seemed to be attacking the right problem then to George, but there is nothing to be gainedwith unreasonable methods . Messages were known to by retracing our steps . To solve this and a num-
be a very good control primitive and were the ber of other control problems , we will add one
coin of networking. The experience with RIG more construct , transaction , to PLu S. In-
convinced us that messages also seemed to be a tuitively , a transaction is a key which can be
good mechanism for producing reliable yet still used in the regulation of message traffic. We
flexible software. could replace 8 with

The message-module paradigm became established 8’ Mess2 ‘- Receive about Key4quickly as the fundamental solution for PLITS.
where Key4 is a transaction which is identified

The decision to have public ~~~ as the with the generation of this sequence of Fibonacci
basis of coninunication seems obvious in retrospect, numbers. Selective receives based on transaction
but was difficult to arrive at. By sharing names keys allow a receiving module to be programed
rather than variables or sequential position in without regard to which module will ultimately
some structure, modules could be written in a way send it the message. Yet the receiving module
that was clear , but did not have the problems of is still able to keep separate ‘ convers ati ons ’
shared storage. distinct.

It was apparent from work in automatic pro- j ,~ DSy3~~=~, D j s  ibuted SI~ tea
graming and verification that more declarative
information was needed--hence we included the With the PLITS style of programaing
general notion of assertions. Although many as background and a source of examples ,
d i f f i c ul t quest ions remain, enough clean solutions we are develoçinq an experimental system
have been found to convince us that there is some- (DS!S) to support high—level distributed
thing fundamentally sound in the PLu S world view . computing. DSYS will run on the seven

computers in  our  l abora to ry :  f o u r
Example 1 is basically bad PLITS code; the ALTOS, two ~clipses, and a PDP/10. It

module Fibonacci contains no error checking. Let will provide facilities for defining and
us consider an expanded , but still weak , version running PLITS distributed jobs (DJOBs) .
which will not cause integer overflow (Example 2).

Even on a single machine , there
The first new notion occurs on line 4 , where viii have to be some underlying programs

a public slot name of type “problem type’ is which handle messaqes . We will call
declared. The type problem type is a fixed se- this collection of programs the Kernej~
quence of uninterpreted syn~ols exactly like the 

for a PLITS site. The Kernel is a
Pasca l “enumeration ” type. There will be several conventional multi—progra uming monitor
public enumerations in a PU TS system. In lines which sequences through the modules on
9-11 , a prepac kaged message Is assembled and its “ready” queue . The Kernel a lso
stored I n the messa ge va riable , My Complaint. The ma intains data structures describing
other new code is In lines 21-27; the Recipient modules which are “suspended” waiting to
slot of My_Complaint Is filled in from the Request. i!.cceiv. a message of a specified sort.
If there is a Complaint_Dept slot in this request, These data structures ,. together with
the module which is its value will be sent the ana logous ones for messages which result
complaint. Otherwise, some default complaint fro. ai~ stateme nts , suff ice to
handler, City_Ha l l , will hear about it. The name imple.ent the PLITS message primitives.
of the Recipient module (which may have been
awaiting an answer) is passed along to the Corn- A problem arises if the modules are
p la in t _Dept. because there might  be some appro- written in different body languages. It
priate response to the problem . For example , may be the case that languages differ in
there coul d be some double prec ision Fibonacci their representation of primitive data
module which would be able to return an appropriate types (e.g., Lea),). We require that the
value If George were prepared to accept It. This representation of primitive data types
would requ i re tha t George h~n’1le double size 

be uniform within a site. This, as well
i itegers ; that is not hard to arrange , for exam ple as other considerations , may give rise
by an extra slot for the hIgh order part. to the situation where there is more

than one site on a given 1avhine

~Tho?e Is a more interesting problem In the 
involved in an individual distributed

control discipline used In the coding of the lob Dlob). riqure I is a graphic
module George given In Example 1. The statement representation of the breakdown of

,

~

- - -
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1 
~~~ “George ” 

~~~~ “F ibonacc i ”
2 Public Inte~~ Object; Public Inte?er Object;3 iE1T~ Module Rec ipient ; Public  Modu e Rec ipi ent;
‘+ !igjj2. Comme nt George ’s thing; Message Request;
5 ntegei~ I,j,Next Fib; i~~~ er This , Las t, Previous ;6 Message Messl , M~ss2; Last.,-O; Thls÷1;

Wh i le true do
-

7 Send {Reclpient—Me} ~~ Fibonacci ; Receive Request
8 Receive Mess2 from Fibonacci ; Previousi-Last;

Last’-This;9 Next_Fibl-Mess2.object; This-Last+Prevlous;

Send {Object— Thls} to Request.Reclpient;
10 End End11 ~~~~~~~~ End ~~Tbonacci”

Example 1

I ~~cijn “Fibonacci”
2 Pu l ic Intecier Object;
~ Public modu e Recipient, Complai nt_Dept . Complainer;
“ Public problem_type Problem;

5 message Request, My_Complaint;
6 modtile Compla inee ;
7 inte ger This , Last, Previous , Bi ggest;

318 Last÷O; This4-l; Biggesti-2 —

9 My_Complaint.’-{ Problem—Overflow ,
10 Complainer—Me
11 }

12 Whi le True do
13
1’. Receive Request
15 Previous.-Last;
16 Last+Thls;

17 If Biggest - Last > Prevlous
18 tEen 

~~~~ 
ThIs..Last+Prevlous;

19 — end {Obiect—Thls} to Request’Reciplent
20
21
22 Put (Reclplent—’Request.Recipient) In My Complaint;
23 ~~iEplalnee.Ir Present Request.Complifnt ifept 

then
RequestS CornpTaint_bi~t else City_Kall ;

2’. 
— Send My_Complaint to Complainee

25
26 End WhiTi Loop
27 End”flEonaccl”

Example 2
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functions and terminology which we have (3) starts and stops Dlobs , and
adopted . It is conven ien t to divide the provides access to other
PLITS support f unctions into two subsets operating sys te m services;
carried out by the site kernel and by (4) checks for errors and
the DSYS Host Control Program (DHCP) assertion violations.
respectively. In the exam ple , there are
two Djobs, A and B, which have no Let us f i rst  consider the problem
connection but happen to be both of setting up a DIob. If there are two
distributed over Machines 1 and 2. Djob sites on the same machine with the same
A consists of three sites: 511 and S12 representations, the DH CP on ly  has to
on Machine 1 and S21 on Machine 2. Each check that the use of public slot names
site has a kernel associa ted with it as is compatible —— essentially the same
described above. The kernel performs process as combining the externals of
the following functions: two load modules. If there are several

•achines involved and there is an
(1) distributes messages within incompatibility in representation of a

the site; primitive data type , then some
(2) forwards messages to and from conversion routines will have to be

other sites; automatically invoked . The P.RP~. network
(3) carries out needed voice protocol presents a good model of

representation shifts for a scheme in which a dialogue between
inter-site messages; machines is used to reconcile

(4) allocates resources within the representation differences before
site; messages containing datd are sent, All

(5) generates unique (world—wide) of this is fairly messy, but should only
names; be necessary when a new PLITS language

(6) checks for errors and processor is brought up on a machine .
assertion violations. In the usual case, the standard

conversions between sites will have been
We have briefly discussed the first established and the negotiations between

three func t ions .  The four th  function , machines viii be simp le.
resource allocation within the site, is
concerned wi th storage allocation and When a PLITS message is sent by a
rec lama t ion , scheduling of ready module in a site, its destination is
modules , etc. The fifth function is the checked. If it is within a site, the
generation of unique names for •odules site kernel handles it; if not , it is
and 

~~~~~~~~~~~~ 
keys. Error and given to the local DHCP. If the

assertion checking is discussed below , destination is within another site on
the same machine , it is given to the
kernel for that site; if not , the DHCP

machine. This is the job of DHCP
Djob~~ 

has it forwarded to the appropriate

functions 1 and 2 above.  To do this
effectively requires quite a lot of

Li nk 

— 

HCP providing user services in a distributed

faced include reliable transmission ,
flow control, error handling, and

Djob B 

“emergency ” messages as the mechanism

~~~~~~~~~~~~~~~~~~~~~~

-, ~ mechanism beneath the surface. Problems

operatinq system.

The present DSYS design provides

that the syste. uses to report
— asynchronous errors to a module. If a/

module has an emergency message on its
input queue , the system will include a

____________ — — 
notice that  there is a pending emergency

Machine 1 Machine 2 message as part of the normal response

Figure 1 to any call that sends or receives a
message. This is only an initial
attempt at providing a uniform mechanism
for errors and other asynchronousEach DHCP is an extension of its conditions.machine ’s operating system. It performs

four main functions: An experimental version of DSYS is(1) distributes messages among up and working in our local network.sites local to this machine; There are experimental DRCP’S for the
(2) f o r w a r d s  messages to and from ALTOS and for the POP— lO , and the

other machines;

- — -————————---- _ ;- -———.- - _
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Eclipse DHCP is in the final stages of
debuqging. Each DH CP has most of a How should “user lob” be defined?
communica tions Manager, a nam e server . 

What services should the distribut ed
and a rudimentary Job Manager (presently system provj~~ , a~ d how should user jobs
a Reques t Fielder that provides file deal with the distributed system? Wha t
service ), are the special problems of user jobs in

such an env iro~ men t , and how can the
There is a rapidly gr owing distributed sys tem help?

awareness (Hoare 77] that the paradigm
of a collec tion of communicating How can perfo rmance be mon itored
sequential processes is a useful and and distr ibu ted computat ions (and
po werful concept for solving problems systems) tuned? In genera l, how should
and for developing compu ter systems. In the progra.mer think about an execution
the usual way, progress requires the of hi s computation? What tools can the
development of concrete systems which system prov ide to help in this regard?
bo th test ideas and lead to new ones. Suc h tools should also be helpful to the

sys tem designer .

Our work on OSYS is motivated by
the requ irements of PLITS and by our How can such a sys tem be m a d e
ex perience with RIG. our desire to reliable? A re there pract ical
provide flexible communication descriptive techni ques fo r  t h e  pro tocols
facili ties for user lobs in a of real distribu ted computatj ong ? How
distribu ted operating system has led us can such a description be used
to take a f r e sh look a t some of the effectively to uncover design problems
problems of distributed computing. In or genera te tests? How much of this can
particular , we are developi ng a scheme be automated?
that provides both a uniform user view
of inter- module communication and a

• flexible system view of resource
managemen t.

F u r t h er ,  we are developing the idea
of a distr ibuted user job , and design in q
mechanisms for handling errors and
exceptional conditions in dis tributed
sys tems .  A t the low level, w e are
wo rking on communication protocols that
use end- to—end flow control and reliable
transmission , allow fine control over
buffer space allotments for arriving
messages, and provide detailed feedback
for intelliqent f low control when such
informa tion is available.

To help quid e the work on DSYS , we
find it useful to express design goals
as questions. The pr~~~~n t collection of
such questions is outlined below.

Wha t kind of a system in required
to support a progra m ming methodology in
which sequen tial processes (“mo d ules”)
c o m m u n i c a te v ia  mes sa ges ? How can such -

a system be designed to present a
uniform user view of intermodul e
c o m m u n i c a t ion , independent of whether
the commu nicating mod u les run on the
same com p u t e r ?

What can be done to p rovide
sys tematic conventions for dealing with
the errors and exceptiona l conditions
tha t occur in distributed com putations?
In par t i c u l a r , how can suc h a system be
mad e robust? What can be done to
•aintain the integrity of a distrib uted
system (and of innocent user lobs) when
either a user lob or a part of the
system fa ils?
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Abstract
viewing angles.

We describe a partially implemented system called
ACRONYM which Is designed to recognize Instances of generic The program matches these models against images which
and specific mood s in photographs. The system is being built have been processed from the pixel level to higher level ribbon
with airfields, olltanks and aircraft as ex amples. It is intended to primitives. The data is thus already structured into natural
be easily extended to other objects. This interactive system will components. Matching Is carried out by a relaxation process.
be taught by photo interpretation experts to locate specific The conditions which go Into detailed verification vary
classes of objects. The user communicates with the system in enormously in their Cost and effectiveness. A general structuring
terms of object models. The system has a high level language of the matching process Into coarse and detailed phases reflects
for building object models with graphics support for the user. an ordering of priorities.
To make use of the models In a genera’ way, the system deTives
descriptions of observable properties from three dimensional The system is being Implemented in MACLISP.
models and matches these against the image in a relaxation
process. The Know ledge Base

The model base for this system has a variety of sources
and uses multiple Interconnected representations. The primary

Introduction representation is In terms of three dimensional generalized cones
(Blnford 1971) for volume elements. Logicall y there are three

This research addresses the problems of identifying principal graphs; the three dimensional Object graph, the two
objects based on generic descriptions, and of providing tools for dimensional Appearance graph and the Observability graph
users to specify vision tasks In a natural way. In a typical which ha., 2d and 3d features. The contents of the latter two of
scenario, a photointerpreter will give a brief symbolic these graphs are derived from the first, and may change over
description of a typical airfield , and describe some specific the course of recognition and display taskL One of the most
airfields. He will thow some examples of airfields, from which important features of these derived graphs Is that they always
both specific and generic properties will be inferred. The system contain back pointers to the object graph (and possibly to each
can infer statistical distributions, but that is not very Interesting, other) so that routines can refer back to the original three
It is now reasonable to expect only simple inferences. Rich dimensional model. See figure I.
inference of generic properties depends on broad world
knowledge. For example, to infer reasonably about lengths of The Object graph contains both generic and specific
runways requires knowledge about their function for takeoff hierarchical models. At the highest level there are SCENES (for
and landing of aircraft , and the distance required for these instance an airport). SCENES are made up of OBJECTS (e.g.
operations. airplanes, oil tanks or runways) with spatial inter-relationships.

OBJECTS are graphs (usually trees) of attached PARTS,
Objects are modeled in a high level language based on a which are graphs whose primitives are represented as

‘generalized cone~ representation of objects. The representations generalized cones. Both generic descriptions of scenes and
of most objects are very compact; they are segmented Into objects, and detailed descriptions of specific instances of them,
volume elements which seem quite natural to the user. This are included in these graphs. Scenes and objects are both
geometric language provides, graphic aids for the user for grouped into classes, such as airport-scenes, airplanes, oil tanks
modeling generic objects and scenes , as well as specific instances. etc. Properties common to members of these classes can be given

specifically in a high level description language, or can be
For a specific task, an Observability Graph is determined Inferred from specific examples already included in the object

which contains task-specific and quasi-Invariant observable, graph. Specific examples can be specified in the same high level
and relations. Task-specific information Is based on knowledge language, either by complete description or by making more
such as sun angle and camera position. Observables are those specific the properties of the general model. Eventually,
features and relations which are detectable, i.e. that are easily instances extracted from processed images may also be
found by operators; they are expected to have reasonable incorporated into the object graph. This will be useful as a
contrast and be large enough to find. Qjzmsl.invariants are those method for initially training the system, and as a means for the
features wnlch remain nearly invariant over a large range of system to become more familiar with particular classes of scenes
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or objects through experience, given by the spine.

As mentioned above , OBJECT~~ are represented as Returning now to the high level input language, models
grap hs with PARTS at the node~~’-PARTS are subgraphs of scenes, objects and parts can be named and described in the
whose primitives are single gen,r~lIzed cones. A generalized input language, edited interactively with display graphics (if the
cone representation for three~dimensIonal objects was first model is sufficiently explicit to fully specify an appearance
described by Binford (1971). Restricted versions of this graph) and stored in data bases along with derived
representation have been used by Agin (1973) (circular cross observability information (to be described later). Some examples
sections) and Nevatia and Binford (19 77). in visual recognition of the current version of the Input language are shown in figure
systems. Marr and Nishihara (1976) restrict themselves to 2. Tree structures can be naturally described using nesting of
circular cross sections, straight spines and constant sweeping S’expressions within an object description. The coordinate
rules to determine the spatial relationship of an object and an transforms can be specified by including ‘with position” and
observer. Miyamoto and Blnford (1975) have used polygonal ‘with rotation” clauses. The outputs of the parse r are the tree
cross sections, straIght spines and piecewise linear sweeping rules structures at the various levels of description, with those slots
for object modeling, which have had values specified filled in at the nodes. Any item

can be given an optional name and later be referred to in one
As in Marr and Nishlhara (1976) and Miyamoto and of two ways. If referred to simply by name a pointer directly to

Binford (1975), each cone has its own coordinate system and the the item is used as the tree node or slot filler. If referred to in a
arcs of the OBJECT graph are transformations between the “just-like’ phrase, a copy of the Item is made using the same slot
coordinate systems at each node. In our representation not all fillers and sub-trees the original used. By specifying further
arcs require an exp licit coordinate transform (the default is the qualIfications of this copy the contents of specific s lots can be
Identity). Eventually we may want to include other information altered while retaining most of the structure derived from the
in the OBJECT graph such as explicit mention that the prototype. In many places (such as position specification) the
OBJECT is symmetric about some plane. parser uses the LISP EVAL function to allow the use of

arbitrary S-ex pressions and bound variables.
Single PARTS have a cross section, a spine and a

sweeping rule. The cross section is swept along usually Generic descriptions of a scene, for example an airfield
perpendicular to the spine, a space curve. The cross section with the ground plane in the x-y plane of the coordinate system.
varies according to the sweeping rule and thus defines a three can be input in this specification language. Descriptions can
dimensional volume. Certain minimal conditions on the three Include a descrIption of the range of the number of each type of
descriptors of a PART have been assumed throughout the code object to be found in a typical airfield scene , along with generic
written so far. We have not yet implemented the full generality descriptions of those objects and their component parts. For
which these conditions permit. Incremental addItions to the code instance a generic description of an OIL-TANK is given in fig
can push towards that level of generality wIthout any obvious 2a. When describing a specific scene this can be used as a
Impediment. These assumed conditions are given in the prototype if desired as in fig 2b. This object specification would
following paragraph. then appear nested in some description of a scene. The position

value gives the position of the object coordinates relative to the
The spIne is a continuous space curve parameterized scene coordinates., A rotation specification for the whole object

between zero and one (O�s�l), with continuous tangent function. could also be included, but for this example the necessary
In the canonical coordinate system assumed for a PART, the rotation to transform from the canonical coordinate system of
spine starts In the positive x direction from the origin with the generalized cones to the scene coordinates has been inherited by
tangent lying along the x~axis. For each value of the spine the single part from the prototype part TANK-BODY. New
parameter we need to calculate the orientation of the plane copies of the cross section and spine are made using the
normal to the spine. This may be done explicitly by some “just-like” construct as the numeric values need to be made
function assocIated with a particular spine or t ’ ‘pllcitly by say a specific. The other slots of these two specifications are inherited
declaration that the spine is a straight line The cross section is from the prototype, but since in this case they are already
defined in the y-z plane. i e at s—0 . In its most general form a completely specific, no modifications need be made.
cross section is a collection of 2.d specializations of generalized
cones, called ribbons, each labeled as positive or negative. One Rather than input a generic description It can be inferred
can think of all the positive ribbons being pasted together In from examples In the manner of Winston (1975). Between these
their correct positions and the negative ones are cut out of the extremes some properties can be described directly by the user,
area defined by the positive ones. Thus a cross section can have while others can be inferred by the program from its known
many regions, perhaps with holes in them. In the same way that examp les. It is not yet clear exactl y when these inferences should
3-d generalized cones more natuarally represent volumes than be made by the program and so far this decision Is not made
do the surfaces which enclose them, so do 2-d ribbons represent automatically but only when the user specifically invokes the
an area more naturally then does a list of line segments. For the necessary functions. It is intended that this question be
applications we are currently considering a single ribbon examined in much more detail.
defining a simple area without holes should suffice. Usually
cross sections are described In our system by special case terms The Appearance graph has a variety of possible uses.
such as circle (which does not readily fit a ribbon description). Since this Is intended to be an interactive system for
square, rectangle eli.. The sweeping rule must be defined for photo~interpretation It Is an Important advantage to maintain a
each value of the spine parameter as a two dimensional linear representation which is intuitively natural for the user. The
transformation (note that this does not mean the transformations Appearance graph is used to produce a two dimensional image
are linear In the spine parameter). Thus the cross section at any for display to the user during the model building and learning
point along the spine can be calculated by applying the phases (fig 3 for example). This gives the user some feedback
sweeping rule to the cross section at s-0, followed by the rotation from the model building process; she can see what the data b*se
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thinks the models look like. Similarly when the program has eliminate the internal lines leaving the outline of a cross. For the
built up a three dimensional model from an actual image the current applications this generality seems unnecessary and so the
user can get a much clearer idea of what the program is “seeing merging is not done. The cross sections are usually limited to a
by looking at a display picture generated from that cone single cross section description. The ~type” slot in the cross
representation. In the current system this is the only function of section description of a cone is used to invoke a function of the
the A ppearance graph. same name, which uses the rest of the slots as arguments. New

routines which produce cross sections can be added
Baumgart (1974) suggested that such a graph could be Independently of the rest of the code as long as they describe the

used to produce a synthetic image which would be matched at cross section with those primitives supported by the rest of the
the pixel level against Images normalized to a standard point of program. The implementation currently includes straight line
view using recur’ive windowing techniques. Thus an area could segments, circular segments and (partially) elliptical segments as
be monitored by comparing new pictures against a synthetic two dimensional curve primitives. To introduce a new primitive
noise free image. When a picture is examined which has cross section element it is only necessary to include a few
significant differences the information about what part of the functions to handle such things as the final drawing stage, the
three dimensional model is no longer valid will be extracted production of the corresponding surface element when it is
from back pointers attached to the Appearance graph. The swept out by the sweeping rule and the rules to translate, rotate
model based recognition system can then be invoked to decide and deform it using a two dimensional linear transfoimation. A
wha~ has been added or removed from the monitored site, circular segment for instance Is represented as a center, a radius,

the orientatIon of the plane in which it lies and two angles
This graph might also be used to extract observable which delimit the end points of the segment. This is the

features w hich are dependent on a particular camera and Sun representation used throughout the production of the
position, such as occlusion and shadow Information It would be appearance graph and in that graph itself. It is not
used In this guise for features which do not have the invariance approximated by straight line segments until it comes time to
with respect to  ~~inera and sun that is common to the features place a line drawing in some output buffer. The program then
extracted from the three dimensional graphs. calculates the size of the image and based on the output device

(e.g. display terminal or Xerox Graphics Printer) decides how
An A ppearance graph can be produced from any scene many straight line segments to use. The cross section routines

whose graph arcs, nodes and value slots all have specific values, also have to mark which points in the cross section will be swept
The surfaces of the objects and their positions in space must be out as visible lines along the sides of the generalized cones.
extracted from the generalized cone description. These can then
be converted to camera coordinates and protected onto a plane. Logically the snformation provided by the spine and the
It must be decided for each surface whether it faces the camera sweeping rule could be obtained independently of cach other so
and so is potentially visible, and if so whether it is obscured by that new spine and sweeping rule types can he added
other surfaces. The initial culling of surfaces, i.e. discarding independently. New types can be added in the current
those which wholly face away from the camera , has been implementation without regard to their interactions but some of
imp lemented for planar surfaces and a small class of curved the pairings of simple cases are handled specially when
surfaces. The discussion that follows describes how to produce substantial computation savings can be made. In the general
the appearance graph for a single convex part. It seems clear case each given type of spine provides a position vector and
how to extend many of these techniques to handle a class of orientation matrix for any requested value of the spine
non-convex parts but It is not yet clear whether it Is necessary to parameter. The sweeping rule provides a two dimensional linear
do so for the domain of images which are being Investigated, transformation for any given value of the spine parameter.
Thus far we have stressed building up other capabilities, but It These two transformations are combined to give a single
is Intended to extend the hIdden surface algorithms to handle transformation which (for spine parameter s-I) can be used on
parts partially or wholly occluded by others, the whole cross section to get the face at the other end of the

generalized cone,~ or (with intermediate spine parameter values)
Most traditional hidden surface algorithms rely on the it can be used on the sweeping points to locate points on lines

fact that objects have polygonal surface representations and the which lie on the swept surfaces of the cone. However in the case
surfaces are planar; e.g. see the survey of Sutherland, Sproull of a straight spine and a constant sweeping rule, this
and Schumaker , (1973). BraId (1973) includes sections of transformation is rtierety a translat;on and all lines swept out are
elliptical cylinders but relies on special case solutions for pairs of straight lines. Thus considerable savings in the number of
six primitive volume elements. Extensions to more general arithmetic operations can be made for such a simple case. In the
curved surfaces would not fit easily into his system. In the domain being investigated many objec ts can be modeled using
system to be described here, the surfaces are extracted from the precisely these simple cases.
generalized cone representations of the parts. Ir~ general thesesurfaces are not planar polygons and they are not approximated When carrying out the back surface culling it Is not as
by such. The task of producing the outlines of each surface and clear how It should be done independently of the combInation
then the back surface culling technique used will be described, of the primitives for cross section, spine and sweeping rule

which were used In producing a particular surface. So far the
The cross section is produced for spine parameter 5.0 in culling routines have been Implemented only for planar faces,

terms of two dimensional curve primitives. The cross section slot and surfaces where a circular segment has been swept along a
irs a part description points to one or more cross section straight spine with either a constant or linear sweeping rule. For
descriptions. These are handled independently and then merged the case of a planar surface one need merely examine the
to produce a cross section. possibly non-convex and with holes direction of the outward pointing normal attached during the
in it. For Instance a cross shaped cross section might be first phase of the construction, In the second case an analytic
described by two elongated rectangles at right angles to each solution Is calculated for the extremes of visibility of the cross
other with a common center. The merging process would section at the s-0 end of the cone and using the transformation
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calculated earlier for s—I . the visibility limits at the other end of descriptive way (data-driven) as well as in a goal~driven way.
the cone are obtained. This determines what part of the edge of The system promises an interesting generality. There ar~ more
the end face pointing away from the camera Is visible. The ambiguities in this direction of mapping, however techniques
limbs (lines joining the extremes of visibility) can then be for resolution of ambiguities by enforcing global consistency are
Inserted. This same strategy can be used for more general being developed.
sweeping rules and wi ll need no modification for them. It should
also work for other two dimensional primitives besides circular
segments as long as functions are provided to find the extremes The Model Matcher
of visibility. However when the spine is no longer straight, extra
complications arise and lines which are not merely swept along The goal of the Model.Matcher is to find memL’ers of a
by the sweeping rule are introduced (see fig. I for an example, class of objects given a generic description of that class. That is ,
where a square has been swept along a circular spine and It is designed to describe and locate any of a class of airfields, as
linearly halved in size along the way). This area will be opposed to matching a specific one. Generic object models are
investigated later. matched against features and relations obtained from a picture ,

organized into a Picture Graph A matching process such as this
Usually detailed information about sun angle and faces familiar problems: in particular , errors caused by decisions

observer position will be available. The Observability Graph made on evidence which is too local, and a combinatorial
contains information which makes use of such special case number of searches for global decisions. A familiar solution is
information. It contains information which is not relaxation graph matching. In our case, there is an enormous
quasi-invariant. For example. sun angle and observer viewpuint range in cost and benefit of perceptual operations. For examp le,
information enable prediction of shadows of vertical edges; runways and aircraft both indicate airfields. Runways are 50
object dimensions can be inferred from single Vi ews. Much of times longer than aircraft , and have simpler shapes . Thus, they
the Observability Grap h contains quasi.invarlants which are are much less expensive and more reliable to locate. Once the
deduced by the modeling program from the generalized cone system finds candidates for runways, it can search for parked
representation, from the cones themselves , from their cross aircraft in a small area. The relaxation process Is structured into
sections, from their limbs, and from relations between cones, coarse matching and detailed matching. Coarse matching uses
between cross sections and between limbs, the Observability Graph to match local properties such as shape

to select initial candidates and a correspondence to the Object
i. Cones: Elongated cones appear as elongated ribbons from most Graph. The next phase uses more global contextual
viewpoints (over most of the solid angle of the observer information, as well as more detailed features to establish
hemisphere). Thus, aircraft fuselages and runways appear as globally consistent matches from these screened candidates.
elongated ribbons,

This scheme of coarse matching followed by detailed
ii. Cross Sections: Cross sections at either end of generalized matching has been used in other systems. Here, a more powerful
cones are typicall y planar. That is, cones are terminated by means of selection of candidate matches will be used than in
planes in many cases. From most viewpoints, cross sections are previous approaches. In order to succeed in comp lex real.wor ld
simply related to object cross sections. For example, circles map scenes, this research seeks mechanisms for using two.dimensional
into ellipses and rectangles map into special quadrilaterals, shape for initial selection of candidates. It also seeks ways of
Concavities are preserved. From a large range of viewpoints, using local three-dimensional Interpretations of shape to limit
circles appear nearly circular and rectangles appear nearly search, by interpreting two-dimensional features as generalized
rectangular, because foreshortening is a cosine effect. Symmetries cones, or cross sections or limbs of generalized cones. Garvey
are nearly preserved. Alternatively, some parts are terminated by (1975) selected candidates by designing filters of pointwise
hemispheres. All projections have circular and elliptic arc properties such as color. Bolles (1976) used correlation of small
segments. patches to match features of a known object in approximately

known position and orientation, It appears that pointwise
i i i .  Limbs: Limbs of generalized cones are frequently straight properties are not sufficiently selective for harder problems.
lines. Straight lines map into straight lines. In other cases, they Similarly, correlation patches are not appropriate for generic
may be roughly circular (the limb of a donut). descriptions.

iv . Relations.’ Relations between cones, cross sections, and limbs Initial candidates are selected using local features and
provide other quas l- Invariants. Often airfields have a pair of relations which have been determined to be observable by the
parallel runways Engines are parallel to the fuselage of an program which utilizes the Knowledge Base. Those features and
aircraft . Colinearity and coterminatson are common relationships relations are organized into an Observability Graph , (OG).
which are invar iants . Front/behind are quasi-invariant relations. Both its nodes and their relations are linked to both the
Symmetry of parts such as engines are quasi-invariant. Most Appearance and Object Graphs. The nodes in the OG may be
parts are generated by straight spines, cylinder or cone sweeping other Observability Graphs -- observables for an object may
rules, and planar termination. For them, cross sections at still be observable when that object is part of a larger context.
opposite ends of a part are related by simple plane Locating instances of a node is only the first part of the
transformations. Cross sections at opposite ends of a part are selection of candidates The contextual information provided by
often identIcal, that is when a generalized cy linder Is terminated related parts or objects of the scene will be encoded in the arcs
by parallel planes. Limbs of generalized cylinders are parallel. extending from this node. Each primitive node in an OG will

represent a single class of ribbon s, that is. it may be viewed as a
These invariants and quasi.Invarlants are used to map predicate which accepts any ribbon which has a certain set of

from object structures (generalized cones) to picture structures attributes.
(ribbons). Each can be used to map the other way, that is from
picture structures to object structures, They can be used In a The arcs of the OG represent structural or spatial



40

relations expected to hold between a pair of these nodes -- usually have markings and boundaries with high contrast, Thus
examples include “intersectiOn”, “parallel”, and “same-length” their boundaries or markings are likely to be found by edge
predicates. Assume on-I and on-2 are nodes in an OG finding routines. Runways are more easily found than aircraft
connected by the arc oa-l , Assume further that pn.l and pn.2 for this reason , as well as their length and simple shape. Thus,
are nodes in the Picture Graph. which will be defined soon. It Is strategies derived from the Observability Graph are expected to
then oa- l’s function to examine each pn-1 and pn-2 pair found focus attention on runways.
acceptable by on-I and on-2 to determine whether they satisfy a
prescribed set of relations. For examp le. os-I may represent (that In typical examples , there will be accurate observer
Is, returns True when) an intersection at which “the altitude, location and orientation and ground elevation. This
instantiation of on-I” terminates while “the instantiation of on-2” will enable good approximate estimates for length and width to
does not. be made directly from the Image. Under these circumstances,

typical length and width are observabies. In many cases, the
In addition , it is possible to represent n.ary relations, (for Images could be registered with familiar observables. For

arbitrary n) in an 00. An examp le might be “connectivity ”, examp le. in photos of the San Francisco Bay Area, the shore
defined as the transitive closure of Intersection. To provide the can be registered , to provide a measurement scale over the
scope and versatility desired, all three of these components whole image. Even in other situations, when these quantities
(nodes, arcs and relations) will be implemented as general LISP could not be included in the Observability Graph, the length to
functions. This format allows any component to glean width ratio could , be used, as it would be large in almost any
information from some other part of this 0G. or from any other viewing situstion; and this qualifies it as an observable. In
source it wishes. Further , it allows the Knowledge Base to store stereo viewing, measurements can be made of flatness and
only the information considered significant , sidestepping the levelness. They would not be observables in monocular viewing.
limitations which would arise if one could only fill in a standard With accurate observer location and information, parallelism is
attribute list every time, accurately determined. Otherwise , in almost all cases parallelism

is nearly preserved. Intersection is invariant. in stereo images,
Throughout the following discussion, (a simplified version planar intersection can be determined, otherwise it can

of) an Airport will be the canonical example of a scene. Its sometimes be inferred.
Object Graph can be briefly described as a collection of several
runways and taxiways, close to some terminal and hanger It is assumed that an effective edge-finding process will be
buildings. There will probably be airplanes in the vicinity as combined with a spatial organization process to obtain a graph
well. The system of runways and tax iways should be connected whose nodes are edges of the image and whose arcs represent
and alt these constituent parts of ass airport should be in close spatial relations between pairs (or fi-tuptes) of these edges. Some
proximity. particularly relevant relations between edges are: I. colinear

continuation (binary); 2. opposite, especially parallel.opposite
There are both parallel and intersection arcs between (binary) S. extended intersection , noting which edges terminate

runways in the Airport Object Graph. Intersections are usually at this j unction (binary); I .excended coincident (n.ary star)’, and
planar, not overpass intersections. Several runways may be 5. same-length (n-ary). (See Figu~e “) There Is not yet an
parallel. There will usuall y be runways in several directions to effective edge-finding and ‘IesV:~’~p;~~~ st~~ sUc ’i as assumed, yet
accomodate wind changes. Further, there is often an underlying there is reasonable progress in this r~irection with recent work
equilateral triangle pattern dating back to the time before jets. by Nevat ia(I97 7) at USC, Rosenfeld (l977) at Maryland, Barrow
when runways were much shorter. The glide path will be free of at SRI, as well as earlier work of Ohlander(l975), Marr(l975),
obstructions. Runways are connected by taxiways to terminals or and 8inford-Horn(l9’73~ Whether this process is performed
storage areas. A taxiway may be curved , relatively short or uniformly or Is control’ed by strategies calculated from the
hard-to-see. Observability Graph will not be discussed here, Ribbons

correspond to parallel-opposite and opposite relations between
At the next lower level, these parts must be defined. colinear clusters of edge fragments. These will be the primitive

Informally, runways must be straight, long, level, narrow and nodes of the “Picture Graph ”. Each ribbon node will also
highly visIble. In addition , they commonly have markings and a contain other information, surh as internal shading and
dotted line running down their center, and appear as roads Intensity contrast across its boundaries.
which lead nowhere (That is . they do not connect into the
highway system.> The runway node is itself a graph. Its two A Spatial Graph is constructed from stereo and S.D cues
nodes are both primitive. The first is the “outline” of the detected in the Picture Graph. Marr calls this the 2 l12-D
runway, which is a straight ribbon highly contrasting along the sketch. Because both camera position and orientation are
edges, and long. Here more specific information can used, as the known, exact lengths and angles can be computed and stored in
range of acceptable lengths and widths are approximately the Spatial Graph. This graph, together with the Picture Graph
known, The second ribbon is the dotted line which runs down and the Observability Graph, will be given to the Model
the length of the uther ribbon. The sole arc in the runway Matcher. From them, the Matcher will screen sub-graphs of the
graph specifies that the dotted-line ribbon must be contained in Picture Graph and Spatial Graph which are initial candidates
the main ribbon and that their axes coIncide, for detailed matching with the Object Graph. It is essential to

the coarse selection that local context be used. This means that
AIrcraft are described in terms of graphs whose nodes are initial selection relies not only on nodes but uses the arcs as well.

volume parts (fuselage, wings , tall, engines) and whose Termination Is a powerfu l cue; runways are roads that don’t go
primitives are generalized cones. anywhere. Lengt h. width, and straightness are additional

constraints, W hile parallelism and intersection are not required,
There are two types of nodes in the Airport Observability they are unlikely as accidents; they strengthen the runway

Graph, runwa ys and aircraft . From almost any angle, runwa ys interpretation.
appear as long, straight ribbons with constant width, They
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Each match of ON-PN subgraphs can be viewed as an Intelligence Laboratory, Memo AIM.295, Dec.
interpretation of that observability subgraph in the picture. It is
useful to make the Interpretation by mapping from Braid, IC. (1975): Des igning Wit/i Volumes, Cantab Press,
Observability Graph to Picture Graph. Typically, there will be Cambridge, England.
multiple spatial relations between edges and ribbons In the

Escher , M.C. (1967): The Graph ic Work of M, CEscher , MeredithPicture Graph, only some of which are consistent with the 
Press, New York , Oct.observability subgrap h. It is, however , a local mapping. The

goal now is to determine the best overall interpretation , one
which uses the full m o d el. Global considerations, (particularly Garvey, Thomas D. (1976): Percepua l Strategies for Purposive

Vision, SRI Artificial Intelligence Center, Technicalstructural or spatial relations ,) will be used to determine whether 
Note 11 7, Sept.a pair of ON-PN mappings is consistent .. that is. if both can

be realized simultaneously. This concept is well illuminated by
Horn , B.K.P. (19 75):  The Binfo r d-Horn Edge F inder , MITEscher ’s “Belvedre ”. (Escher 1967) By inspection, each of the 

Artificial Intelligence Laboratory, A.I. Memo 285,pillars joining the upper story to the base is acceptable, when 
Dec.taken by nself. It is only by considering global properties. in

particular how the position at the base of each support 
Marr, D. (1975): Early Procesing of Visual Information , MITcompares with its position at its sop, that the architectural “flaw” 

Artificial Intelligence Laboratory, Al. Memo 340,can be detected. The impossibility of the total structure emerges Decfrom the fact that there is no consistent wa y of realizing all the
pillars at the same time when the apparent relative locations of 

Mars’, D. and H.K. Nishlhara (1976)’. Representation andtheir end points is considered. Recognition of the Spatial Organizati on of Three
Dimensional Shapes. MIT Artificial IntelligenceThe consistency-finding algorithm now invoked reg;cds Laboratory, A.I Memo 377, Aug.each ON-PN correspondence as a node in the “Pairing Graph ”.

Its first task is to use the arcs and relations of the 00 to link 
Mlyamoto, Elichi and Thomas 0. Binford (1975): Displaytogether consistent pairs of these pairing nodes. It then removes Generated by a Generalized Cone Representation ,the more isolated nodes from this graph, to leave a large and Conference on Computer Graphics and imageself-consistent sub-graph. Processing, May.

In the airfield examp le, the global context primarily Nevatia, Ramakant (19 77)’ TechnIcal Report, Image Processinginvolves distin guishing runways from portions of highways Institute, Sept.among candidate ribbons Because there are detailed
expectations for each interpretation . it is useful to consider each. Nevatia, Ramakant and Thomas 0. Binford (1977)’ Descript ion
Locating taxiways , storage a eas, and aircraft , nearby large flat and Recognition of Curved Objects, Artificial
areas , and clear flight path along alleged runways supports an Intelligence 8, 77.98.
airfield interpretation. On the othe hand, locating connecting
highways, car traffic , buildings and obstructions along the path. Ohlander , RB (1975): AnalysIs of Natural Scenes , Dept. of
supports a highway Interpretation. Computer Science, CarnegIe-Mellon Univ. A pril.

Thus far , the edge detection and subsequent ribbon Rosenfeld, A. (1977)’ Algort ihsns and Hardware Technology for
finding process . have been simulated by hand. Also, the Image Recognition . Proceedings: Image
interfaces between the Matcher and the Knowledge Base have Understanding Workshop, Minneapolis. Minn . A pr.
yet to be finalized. The matching process sketched above refers
to the driver routines .- the real work will be done by the actual Sutherland, Ivan E , Robert F. Sproull. and Robert A.
observabi l isy functions; that is. the arc and relation predicates . Schumaker (197 5) ’ A Characterization of Ten
and organizing the features of a ribbon which should be used. Hidden-Surface Algorit hms. Evans and Sutherland
Finally, the extensibilit y of this part of the system should also be Computer Corporation . Salt Lake City. Utah. (also
noted -- new functions can be added anytime to incrementally published in ACM Computing Surveys. 6 (no. I)
improve the pairing evaluation process. March 1974)
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Figure I

(defi nG— objec t GENERIC-OIL-TANI( of-clas s OIL-TANK
(having-part TANK-BODY

wi th rotation n/2 about y—hat
with cross-sect ion TAMC-QIOSS hav ing(type c i r c le

radius (range (98.e . 110.0)))
w i th  sp ine TAMC-SPIbE hav ing

(type straight
length (range (70.0 . 100.0)))

w Ith sweeping—rule having
(type constant)

) )

Figure 2a

(define—object of—c l ass OIL-TAM (
wIth posItion (vector 1500 L780 0)
(having —par t just - l ike TANK-BODY

w i th  cro ss -sect ion ju s t- l ik e TANK-CROSS hiv ing
(radiu. 95.0)

with spin. just-llk• TANK-SPI~E hiv ing
(length 85,8)

Figure 2b
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1, CoZlnear continuatIon 3. Extended intersection

\2. Oppo sIt e or

/ \
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4. Extended coincident
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Figure 5
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objects. The most basic and important scene domain cuesTask Independent Aspects of Image Understand4n g are spatial three-dimensional configurations.

Takeo Kanade The second point is that general models of concepts
are usually represented in terms of scene domain cues.Department of Computer Science See [Winston, 1970] for example. An “ arch ” is descr i bed by

Carnegie-Mellon University using orientation (“ly ing ” and “standing”), spatial relation
Pit tsburgh, Pa. 15213 (“supported—by ”, “left-of”, etc.) and object kinds (“brick”), iii

of which are terms in the scene domain.

The third point is that the right halt cycle (from image
Abstract t o model) of our hypothesis-and-test loop in Figure 1 is

more crucial to the final success of the total system. The
The prob lem of tra nsform ing p icture domaus cues to f i rs t  i teration in the loop is especially important since it

scene domain cues is addressed as an imp ortant task provides our initial guess. Once we get a good ini t ial guess,
independent asp ect of Image Understanding. There are things work better and better. Most of the existing
sev’erot sources of task independent information , such as successful sys tems obtain this initial guess either bystructura l, spectral, and geometr ical knowled ge, that can assumptions about the task environment (e.g., the boundary
relate the image domain cues to the scene domain cues. In lines with the dark background for the Shirai’s Line
this p aper we present a methodology fo r integrated Firider (Shirai , 1974]), or by cooperative use of range data
exploitation of those knowledge SOUrC eS, which simplifies the problem of obtaining scene cues (e.g.,

(Ni tzan , Brain and Duda, 1977]).

In the context of Figure 1, the process of going from
I. Introduction image to p icture domain cues has been traditionally viewed

as the task independent part of Image Understanding. InAn Image Understanding System can be roughly our opinion, however, the process of going fr om p icturedivided into two parts: a task dependent par t and a task domain cues to scene domain cues is the more important aridindependent part. Although Image Understanding is relevant aspect of task independent analysis. The initialcharac terized by an effective use of knowledge of the task hypothesis generation greatly depends on what can be done
domain, the perf ormance of task independent part is in fact task independently in this process. We ought to obtain thevery critical to the final performance of the system. This basic understanding of this process before developing taskpaper focuses on the task independent aspects of specific solutions.
transforming picture domain cues into scene domain cues.
After discussing what kind of information (structural, In the succeeding sections we will discuss what kindspectral , and geometrical) is exploitable for this purpose, we of know ledge, theo ries, and heuristics are usable for going
propose to use the “Origami” world as an appropriate space from picture domain cues to scene domain cues, particularly
for the ntegrated use of all the information, for guessing the 3-D configurations of the scene, and how

they can be integratediy used.

II. From Pictur. Domain Cu.s to Sc.ns Domain Cus

The ter m “t ask independent” in Image Understanding Imageoften refers to low-level image processing such as line
extract ion, region segmentation, etc. However , in this paper
we will try to separa te out the more crucial parts of the
task independent aspects of Image Understanding.

It is somewhat standard Ir, Al problem solving to _________ View Picture Domain
employ schemes with the nature of the hypothesis-and-test I PICTURE I Cues
paradigm; schemes which involve some “positive ” feedback [~ 3MAIN I_loop among input, cues, models, and hypotheses. One
possible scheme of Image Understanding is depicted in
Fi gure 1. Several points should be noted here. First , there I SCENE Iis a distinction between the picture domain and the scene DOMAIN Instantiated Scene Domain
domain ((Clowes, 1971], (Kanade , 1977]). In short, the Model Cuespicture domain cues are the features observed in the
picture, such as line segments, homogeneous regions,
intensity gradient , etc. The scene domain cues are the ~~~~~~~~~~~~~~~~~~ 

.‘
~

“

features which cause the picture domain cues, such as edge Modelconfigurations , surface orientation , reflectivity, ligh t ing
conditions, etc. This distinction prevents one from confusing
f eatures in the picture domain with those in t he scene
domain. For example, the “above ” or “next-to” relat ionship
between regions in the picture does not necessarily Figure 1. A Scheme of Image Understanding.
correspond to the “on” or “touching” relation between

I — - - - - - — —



46

III. Structural Information Junction Huffman-Clowes Origami World
Type Dictionary DictionaryBy structural information we mean the line ____________

connections and junction types of a line drawing of the L 6 8scene. The Huffman-C lowes-Wa ltz scheme provides a _____________ ________________

method of finding the three-dimensional configurations of a ARROW 3 • 12line drawing of the trihedral world (Waltz , 1972]. It assigrs _____________ _________________ ________________

to lines the labels which represent the 3-D meaning of the FORK 3 9line such as + (convex), - (concave), and ~- or -‘ (occluding ________________ _______________

boundary). This method has various good features: (1) T 4 16clear-cut definition of the objective world, which resulted in _____________ ________________

incorporating knowledge in a systematic way as well as
eliminating vague heuristics, (2) compiled knowledge Table 1. Compar~son of Dictionary Size between therepresenta tion in the form of junction dictionary, and (3) Huffman-Clowes World and the Origami World.
efficient labeling procedure by filtering.

However , the scheme has serious limitations for being
applied to real-world images. Besides the problems of how
to accommodate m issing and ext ra l i nes, the world itself is
too li mited. For example , the carton box of Figure 2 is an
“impossible” figure. Recently I have developed a labeling

Figure 3. Some i~gal junction s i n the Origami world.

Figure 3 shows some of the junction labels which are legal
in the Origami world, but not legal in the Huff man-Clowes
world. The labeling procedure is also similar except that
some global check concerning surface orientation is
necessary. This check can be done systematically by t.sing

Figure 2. A Line Drawing of a Carton Box. the gradient space rep,esentation of surface orientation
together with the compiled knowledge contained in th3
Origami junction dictionary (see (Kanade, 1978] for the

scheme for the world called “Origami” world detail). The picture of Figure 2, for example, can have 37
(Note 1] [Kanade, 1978], which parallels Waltz ’s labeling different interpretations in the Origami world.
scheme for the trihedral world. The key difference is that in
the Origami world the plane surfaces themselves are the The Origami world corresponds well to the way in
stand-alone objects, whe reas in the conventional world for which we would interpret a picture which has been
computer vision, such as trihedral world, the solid objects segmented into reg ions. The meaning of this statement is
bounded by planes were the basic stand-alone components, understood by thinking why we get perfectl y satisfied with
This difference makes the box shape of Figure 2 either the pictures like Figure 4(a) and Figure 4(b) when they are
“possible” or “impossible” (Note 21 obtained as results of region segmentation of a “chair” and a

“door ” scene. Needless to say, the Origami world includes
The method of developing the Origami world theory the solid-object world as its subset. We feel that it is rich

almost parallels that of the Waltz labeling theory. For the enough to accept a much larger class of line drawings and at
time being, only + (convex), - (concave), and the same time it has enough structure to impose constraints
I or ~ (occluding) are used as the line labels. The direction
of the arrow of the occlud ing edge is g iven in such a way
that the region on the right hand side is occluding the left
hand side. The size of the dictionary shown in Table 1
gives an idea of the degree of constraints imposed by the
Origami world compared with the Huffman-Clowes world.

(Note 1]: Origami is a Japanese traditional manual art of
making various shapes by folding a sheet of paper. Note
that our Origami world is confined with only plane surfaces.
In this sense it is not the paper surface (i.e., developable
surface) wor ld investigated In (Huffman, 1976].

(Note 2]: We can regard Figure 2 as a case where the
thickness of the car ton paper is not shown. It is then an 

~~ (b)
Imperfect drawing in the tri hedral solid-object world.
However , it is more reasonable and practical to regard it as Figure 4. Region segmented pictures we think p.rf.ct:
a perf ect drawing in the Origami world. (a) chair and (b) door.

S - — -
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on the possible label combinations. In addition, some classes L6
L4

of curved objects become manageable in ~he sense that t he Li
interpretations in the Origami world can be regarded as

of line drawings with noise (missing or extra lines) and those 
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approximated configura tions. 

/L3 L5

IV. Spectral Information Figure 6. (a) Matched T Confi gurati on, and (b) Matched Pi
Configuration.

By spectral information we mean intensity and color
information of image. As was shown by Horn (Horn, 1977],
the image intensities carry information about three- does not tell which side is obscuring which. In the actual
dimensional shape; they should be used for more than just image, edge profiles may or may not show clear evidence
~iclcing up line segments or segmenting a picture into depending on various conditions. Thus we need a scheme
regions. One conven,ent technique for the exploitation of which integrates this partial , noisy information. It is
this information in connection with labeling line noteworthy that the relative way 0( using spectral
characteristics is to examine an intensity ‘more generally information is more eliable because it is based on the
color) profile taken across an edge. Figure 5 shows the comparison of edge profiles rather than the identification of
typical types of intensity edge profiles. The use of this particular properties.
information can be done in two ways: absolute and relative.

The absolute method exploits the properties which V. G.om.tr ical Information
give direct cues about identity of line labels. The simple
rules given by Horn (Horn, 1977] are: By geometrical information we mean exact values of
(Rule H-i) An edge profile with a peak shape or step such properties as colilnearity, angle, length, etc. They do

with a peak superimposed suggests a convex not seem to tell much about scene cues directly. Rather
edge they have to be cnmbined with other information. The global

check concerning sur ace orientation mentioned in section III(Rule H-2) A roof-shaped profile suggests a concave -
edge - is combined with structural information , and the matched T

and matched Pi configurations in the preceding section are(Rule H-3) A negative peak or a step with a
superimposed negative peak strongly suggests combined with spectral information.
obscuration.

Although much is no t known, two things should be
The rela tive method is based on the fact that if the mentioned here. First , most of the geometrical properties in

the picture domain begin to make sense only after thetwo lines have the same edge prof ile , it suggests that they
will likely take the same label, even though the label identity spatial configurations are known or hypothesized. The
itself is not known. The classical matched T configuration is gradient space by Mackworth (Mackworth , 1973] is a

a good example. In Figure 6(a) if the edge profiles of the powerful tool for relating geometry in the picture with
line Li and L2 are similar (and preferably if the edge surface orientations in the scene. Use of it together with the

labeling procedure (which is essentially a gross 3-Dprofiles of the lines L3 through L6 are also similar), then the
labels of Li and L2 are likely the same and the lines L3 configuration hypothesizer relying on the structural

information) of the Origami world led us to an interestingthrough L6 are obscuring edges in such a way that the
region P is obscuring Li and L2. It should be noted that the al gorithm for establishing relations among the “actual”
geometrical information (line collinearities between Li and orientations of the surfaces involved in the scene (see
L2, between L3 and L4 and between 15 and 16)) has also (Kanade, 1978] for the detail).
been used here. The matched Pi configuration of Figure
6(b) is another examp le which gives similar constraints. Use Second, it is interesting to note the following
of color data expands possibilities of exploiting this type of observations. Guzman’s SEE program (Guzman, 1968]
constraints, introduced a bunch of heuristics involving geometrical

properties such as matched T and parallel background
One problem with spectral information is that the boundaries. The Waltz theory which systematically realized

constraints are often local , fragme nta ry, and uncertain; in the Guzman’s goa l does not explicitly use much of
some places strong evidences exist, while in others there is geometrical information to find a unique 3-D configuration.
none. In fact, as is pointed out in [Horn, 1977], those rules Then why is it that computer vision researchers dealing with
(H-i) to (H-3) are not strictly necessary and sufficient actual image data feel that geometrical information should be
conditions. Also the rule 04-3) about an obscuring edge rule playing an important role?

One plausible explanation about these observations is

~~~~ 
‘ ‘

~~~~

‘

~~~~\~~ _,_ 

~~~~~~~~~~~~ the following. The Guzman’s SEE used the picture domain
cues and scene domain cues in a mixed way. The Waltz
world, basically the trihedral solid-object world, is so

(a) (b) (c) constrained that it does not need to directly use most of
geometrical information. However, t ~c world in which vision

Figure 5. Typical types of intensity edge profile: ~~ p.~~ researchers try to Interpret real world images should be
(b) step, and (c) roof. much richer than the trihedral solid-object world.

- I -----
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L3 through L6 will take such a combination of labels that the
VI. How to Int.grat. All the Information middle region occludes the rest.

What we have discussed so far can be summarized as The confidence value may be determined by the kind
follows: of rule used for deriving the constraints and the degree of

matching of the edge profile characteristics. How to give
(1) How we obtain the scene domain cues (particularly the the confidence value is not fully investigated yet.

3— D configurations) is one of the most crucial parts of
an Image Understanding System. More research is Then the search process in Figure 7 takes the line
required to learn how to obtain the scene domain cues drawing, the set of of constraint expressions , and the
in a task independent manner. Origami junction dictionary as input. It searches for the

“best” interpretations in the sense of the best constraint
(2) The traditional trihedral solid-object world is too satisfaction in the space of the possible interpretations in

constrained to work wi th real world images. The the Origami world. In the present implementation, if a
Origami model is a good candidate for a richer world constraint is not satisfied a penalty as much as the
which still has a we ll-behaved structure. confidence value of that constraint is added to that

interpretation. Thus the best interpretaion means the one(3) The increase of ambiguity by extending the working with the least penalty. Some additional sequential
world to the Origami world car, be offset by the mechanisms might be needed in the future for error
integrated exploitation of spectral and geometrical correction. For instance, use very confident spectral
information, evidences first , and if a junction is an impossible one, then

t ry to locate missed lines in the image so that the junction(4) Spectral information together with some geometr ical becomes a possible one. However , the important point is
information can be converted into constraints on the that we could convert the problem of finding the 3-0
possible labels and/or label combinations f or  lines.

In this section we propose a method of integrating all
the structural , spectral , and geometrical information in order
to obtain the 3-0 configurations of the scene from an image. Image
Figure 7 shows a basic idea. An image is first segmented
into regions and represented as a line drawing. Edge profile
analysis is performed to obtain a set of constraints on line
labels. This can be done locally for each line and as many
constraints as possible should be extracted. Each constraint Segmentation
obtained can be represented in the form of

(< constraint_name> <constra int-bod y> <conf idence-value >).

For example, when the (Rule H-i) about convex edges cited Region Edge
in section IV is applied to a line 1, i t will yield a const rain t Description Profile
expression like by Lines Analysis
(IDENT ((L) (+)) .8)

which means that the label IDENTity of the line L may be eStructural
+ (convex> with confidence .8. The (Rule H-3) would yield an Knowledge A Set of
expression like Constraints

(OR (IDENT (CL) (1)) .9) ) (Note 3]
(IDENT (CL) (1.)) ,~~~ ), 

. sSpectral &
Geometricalwhich means that the line I may be an occluding edge in one Origami Search for KnOwledgeOR the other direction; i.e. though the occlusion appears to Junction

occu r at the line 1, it is not known which side is occluding ictionary “Best”
which. As another example, the matched T configuration of Interpretations
Figure 6(a) will yield constraint expressions like

sWorId Knowledge
(SAME (Li L2) .9)
(IDENT ((L3 14 15 L6) (I ~ ~ ~)) .9). Plausible

The first expression means that the line Li and L2 may have 3—DConfigu—
the SAME label and the second one means that a set of lines rations

(Note 3]: Actually, the OR is the fuzzy logical OR operator Figure 7. A Method of Integrating Structural, Spectral ,of the const raint expressions. The fuzzy NOT is ~~ and Geometrical Information to Obtain 3-I)possible. Since a set of constraints mean their conjunctions, 
Configurations.

AND is not necessary.
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configurations of the scene to a problem of searching in the 
L6 i —

~;~iij~.space of the Origami world, so that all the local, noisy,
absolute, and relative evidences are exploited in a well-

t
~

S2
~~~~~>JAunderstood manner together with the global structure of the

scene.
\L4~+~~~~~~~~~~ L7 \J~~~~~A~ a simple examp le, let us take a case that an image

of a carton box is given, and let us explain how the
proposed method would work for guessing the box shape (a) (b)
from that image. The region segmentation process produces Figure 8. Some Plausible 3-0 Configurations of Figure i.
(hopefull y) a segmentation which is represented as a line (See text about the given constraints.)
drawing of Figure 2. The edge profile analysis would yield
the following set of constraint expressions:. (The confidence
values are given provisionally here, because they are not
the cen tral issue at th is point. ) Second , the labe lings are the cues to access the

models of concep ts. Consider the “ simples t” (thought not
(OR (IDENT ((Li) (I)) 9) so ) task about the image of the above example; to know

(IDENT ((Li) (1)) .9) ) tha t the object in the scene is generally ca lled a “box ”. In
(OR (IDENT ((12) (1)> .9) order to know that the Object can be named a “box”, it must

(IDENT ((12) U)) .9) ) be known , at least partially, that the image can have the
(OR (IDENT ((13) (1)) g~ box shape, which has been done in Figure 8(a). In fact , this

(IDENT ((13) (J.)) 9) ) is the point emphasized in section U by saying that the
These are obtained by the rule (Rule H-3) applied to process of go ing from image domain cues to scene domain
Li , L2, and 13. cues is the important task independent aspect.

(OR (IDENT ((14) (+)) .7)
(IDENT ((14) (—)) .6)

(OR (IDENT ((15) (+)) .7) VII. Conclusion(IDENT ((15) (-)) .7)
These correspond to the case where the edge
profiles of L4 and L5 are found not to have a This paper presents a methodology of how the
negative peak property but it is not clear whether structural, spectral, and geometrical information can be
they are a peak shape or roof shape. integrated to obtain the 3-D configura)ions of the scene

from the image. One major claim is that the Origami wor ld
If we search for the interpretations which satisfies these provides useful constraints in integrating the above
constraints among the possible interpretations in the Origami information from real images, because it accep ts a la,ge
world, then the configurations of Figure 8 are obtained as class of line drawings and still has enough structure. In fact
the first two most plausible ones. Figure 8(a) is in fact the it corresponds the manner in which we interpret the region
box shape configura tion we wanted. Note that the above segmented picture.
constraints obtained by the spectral information alone did
not tell the directions of the obscuration at Ii , 12, and 13, The complete theory of Origam i World is presented
nor the definite identities of the line characteristics of 14 elsewhere [Kanade, 1978]. The search program in Figure 7
and 15, and that the line drawing of Figure 2 alone can have with a simple set of constraints is working. This is a report
37 different configurations. However, if they are of work in progress, and we plan to apply the proposed
integratedly used the desired 3-0 configuration (box shape) method to real images as well as investigating various kinds
of the object is discovered as one of the most plausible of constraints extractable from images.
ones.

Some people might question about the significance of Acknowl.dg.m.nt
these results of labeling to the total Image Understanding
process. Firs t , they tell which surfaces are related to which I would like to thank Raj Reddy for his valuable
surfaces. For example , a simple algorithm can show that the suggestions and comments for writing this paper, and Dave
labeling of Figure 8(a) s cans that the surface orientations McKeown for his critical reading of the manuscript.
of Si , S2, S3, and $4 should have the relations in the
gradient space as shown in Figure 9(a). The gradient space
is in short a parameter space of plane surfaces and a point
in it represents the orientation of the plane relative to the
viewer. If we assume that the tines 14, 15, 16 and 17 are

~~~~~~~~~~~~~~~~ 
j
~15~ 81 53parallel in the picture, the gradients (surface orientations) of _____________________________

Si through S4 should be on a line and the ordering relations
between the surfaces connected by arcs should exist as
shown. Therefore the effect of partially know ing or
hypothesizing about the surface orientations has been (a) (b)
explicitly represented In the diagram. For example, a Figure 9. GradIent space representations of the relations
hyp othesis that the surface Si and S3 are paralle l (i.e. among surface ori entations: (a) Relations
gradient points of t hese two overlap > results in the ordering corresp onding to Figure 8(a) (b) Relations aft er
between S2 and S4 as shown in Figure 9(b). hypothesizing that SI and $3 are parallel.

- - - S - -
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ROAD TRACKING AND ANOMALY DETECT ION IN AERIAL IMAGERY

Lyn n H. Quam
SRI International

Menlo Park , California

ABSTRACT complete road—expert system , this image will then
be analyzed by part d) to screen false alarms and

This report describes a new procedure for interpret the remaining anomalies.

tracking road segments and finding potential
vehicles in imagery of approximately 1 to 3 feet ALGORITHM DESCRIPTION
per pixel ground resolution. This work is part of
a larger effort by SRI International to construct
an image understanding system for monitoring roads Figure la shows a representative road scene
in aerial imagery. containing segments of a multilane freeway, with a

few vehicles and road surface markings (painted
arrows and words in the leftmost lane). The wear

INTR ODUCTION patterns in the lanes correspond linearly with the
road. The vehicles and other anomalies stand out

This report describes a new procedure for as being quite different from the pattern of the
road.tracking road segments and finding potential

vehicles in imagery of approximately 1 to 3 feet The basic road—tracking algorithm exploits the
per pixel ground resolution. This research is part above observations. Successive road intensity
of a larger effort by SRI International to build a cross-sections (RCS) taken perpendicular to the
“Ici~owledge based road expert,” described by Barrow direction of the road showed a high degree of
and Fischler elsewhere in these proceedings. correlation, which suggested that road tracking

The overall effort is directed towards specific could be accomplished by using cross—correlation .

problems that arise in processing aerial The location of the correlation peak was used to

photographs for such military applications as maintain alignment with the road center and to

cartography, intelligence , weapon guidance , and generate a model for the road trajectory. However ,

targeting . A key concept is the use of a this approach turned out to be unsatisfactory

generalized digital map data base to aid in the because small alignment errors accumulated and
anomalies perturbed the correlation peak.interpretation of imagery.

To overcome these problems, four refinements
were introduced :

OBJECTIVES
(a) Cumulative road cross—section

model
The primary objectives of the overall “road (b) Trajectory extrapolationexpert system” are to analyze images to:

(a) Find road fragments in low— to (c) Anomaly detection

med ium—resolution images (d) Masked correlation.

(b) Track roads in medium— to high— Instead of aligning consecutive RCSs, each RCS
resolution images is aligned with a cumulative RCS model , based on an

Cc) Find anomalies on roads exponentially weighted history of previously
aligned RCSs. Parabolic extrapolat ion of past

Cd ) Interpret anomalies as vehicles , correlat ion peaks is used to predict the fu ture
shadows, signposts, surface road trajectory. The predicted trajectory is used
markings, etc. to guide the tracker past areas where the

The road tracking algorithm discussed here is correlation peak is unsatisfactory. Anomalies are

started with the position of the center and detected by comparing the aligned RCS with the RCS

direction of a road fragment found by part a). The model . Corresponding pixels that significantly

nominal road width is supplied either from the data disagree are marked as potential anomalies. The

base or by an image analysis function that can cross—correlation is then repeated , masking out the
anomalous pixels to obtain a more accuratedetermine the width of a road fragment. The road alignment.tracker produces two forms of output : a point list

describing the track of the road center and a Steps for the refined tracking algorithm are
binary image of all points in the road that are given below:
anomalous and eight belong to vehicles. In the
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(1) Based on past road center points anomalous (Figure 2b). When this occurs , the
and directions, extrapolate the tracker extrapolates ahead and tries to reacquire
position of the road center K feet the road. If the road is not reacquired within the
ahead. length of the longest expected anomaly, the tracker

then assumes that a pavement transition has(2)  Extract the road cross section occurred and establishes a new RCS model.(RCS) intensities along a line
perpendicular to the direction of Most of the anomalies marked in Figure 2b are
the road at the extrapolated due to road surface changes. All four vehicles
center point , were found also. A later section will discuss

basic changes to the control structure of the(3) Use cross—correlation to find current program to eliminate the false alarmsdisplacement of the current ECS occurring from the surface changes.with respect to a model (RCS
model) that is dynamically Figures 3a and 3b show results for a freeway
constructed by the road tracker, interchange on—ramp loop . This example is

interesting since the road curves rather tightly,(k) Generate a mask indicating the and the road surface changes at approximately thepositions of anomalous pixels that
deviate from the RCS model, same place where the road trajectory changes from a

circular arc to a straight line.
(5) Recorrelate over the unmasked Figures ka and kb show a very complicatedpi xels. example of road forks , changes in lane width , and
(6)  Update the RCS model using only intersections. For the lanes tracked , all vehicles

the valid points of the current and at least portions of the road surface marks
RCS at the best alignment. Update (arrows and words) were found. In a developed road
is done using an exponentially expert system , the data base should help
decaying average . significantly in handl ing the complexities of this

(7) Adjust the position of the road image by knowing the locations of forks ,
intersections, lane—width changes, etc. Thiscenter according to the location information will help in interpreting the cause ofof the correlation peak. RCS model changes.

(8) Detect anomalies as being In marked contrast with the situation in most ofsignificant deviations from the the previous figures, figur e 5a shows a ratherRCS model. poorly defined dirt road with little evidence of
(9)  Repeat steps 1—8 until the edge of wear patterns. Figure 5b shows the successful

the image is encountered or the results of the rcad tracker. Most of the anomalies
RCS model becomes invalid, marked were due to shadows cast by sparsely

foliated trees.

EXPERIMENTAL RESULTS
DISCUSSION

In the experiments shown here, the road tracker
was interactively started by indicating the The preceding examples demonstrate the
following information for each road segment: capabilities and limitations of the present

tracking algorithm . The algorithm has shown
surprising ability to contend with a wide variety<XO , YO> center of road lane of road situations , including total change in thethetaO direction of road at <XO ,YO> road surface. The use of masked cross—correlationw nominal width of road techniques eliminates the potential perturbances to
the road track by anomalies . Trajectory
extrapolation enables the tracker to reacquire theThe freeway example in Figure 1 conforms well road after detecting that the road surface has

to the above model , as shown by the overlay results changed . All results were obtained using the samein Figure lb. The bright lines indicate the road program and the same detection and threshold
trajectory and the bright blobs indicate potential criteria; no attempt was made to “fine—tune ” the
anomalies. parameters individually for each example.

The simplistic model that a road consists of One defect of the present algorithm is thewell—correlated intensity cross—sections clearly attempt to do too much in one pass along the road.
breaks down in the example shown in Figure 2a, In particular, in the present system , anomalywhere the road surface changes from concrete to marking begins before road—surface changes haveasphalt on the overpass. Certainly the RCS model been detected. The false alarms created by thisgenerated for the asphalt will not match the defect can be eliminated either by backtrackingintensities in this globally changed road surface, when a road transition is found , or by performing

When the tracker encounters the surface change a the detailed anomaly detection as a second pass
high percentage of the pixels in the RCS will be along the road, using the road—course and surface—

change knowledge produced by the tracker .
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The road tracker presently operates as an
independent module. As a component of a larger
road—expert system, it will be started from the
output of a map—guided road—detection algorithm
operating on lower—resolution imagery. Data—base
knowledge can also be used in the tracking
algorithm to increase reliability and reduce false
alarms in anomaly detection, Such knowledge might
consist of previous imagery of the same area or
geometric knowledg e about locations of road forks ,
intersections, over passes , surface changes , lane-
width changes, etc. To exploit suob knowledge, it
is necessary to establish geometric correspondence
between the image and the data base coordinate
system . If , for example , a road anomaly
corresponds to a known surface marking on the map
or appears in the same place in previous images ,
then it is probably a surface marking rather than a
vehicle. Similarly, the use of an illumination
model can help to distinguish objects casting
shadows from surface markings.

We plan to acquire and digitize images taken
under diverse viewing conditions such as partial
cloud cover age , snow cover , oblique viewing angles,
and seasonal variations, This will introduce a new
set of problems for the tracking algorithm such as
non visibility of road segments due to clouds or
occluding objects and major photometric differences
between images of the same area. The use of’ a map
data base and sources of knowlb~ige will be
essential to guide the interpretation of such
images.

With the planned enhancements and improvements ,
it should be possible to detect potential vehicles
with very high hit rates and low false alarm rates
in difficult imagery. This capability is a central
component of an overall road—monitoring system.

p
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DESTR I PING SATELLITE IMAGES

B. K. P. Horn and R. J. Woodham

Artificial Intelligence Laboratory, Massachusetts Institute of Technology ,
545 Technology Square, Cambridge , Massac huset ts 02139

Abstract. Before satellite images obtained with offset (dark current) due to small changes in the
multiple image sensors can be used in image analy- material of the dynodes used in the electron multi-
sis , corrections must be introduced for the dif- plier stages and temperature variations.
ferences in transfer functions of these sensors. If a reference object containing all scene
Methods are here presented for obtaining the re- radiances of i nterest were in the scene, one coul d
quired information directly from the statistics recalibrate the sensors continuously. This isdiff-
of the sensor outputs . The assumption is made icult to arrange. An alternative is the scanning
that the probability distribution of the scene of a gray wedge placed over a light source at the
radiance seen by each image sensor is the same, end of every scan line. This , in  fact , is what is
Successful destriping of LANDSAT images is demon- done aboard LANDSAT. The results are used to esti-
strated. mate the gains and offsets of the sensors. The digi-

tal data produced from the raw satellite signal s
is corrected using this information.

1. Destriping of images obtained using multiple Unfortunately, one finds that the striping ef-
sensors. fect is not removed in this fashion; the reasons

for this are not entirely clear. One cause appears

An image sensing device using a single photo- to be the use of the calibration data as a mea ns of
electric sensor which is mechan ical l y scanned adjusting gain and offset so that each sensor isre-
across the scene produces outstanding digitized lated to its preflight condition. Slight changes
images since sensitivity , resolution and transfer in the light source, the gray wedge and the geomet-
func ti ons are the same for al l  points i n the image. ry of imaging Introduce drifts which are not coin—
Unfortunately, such a dev ice i s l imi ted In speed pensa ted for. Ano the r reason Is related to the
by the mechanical movement. More Importantly, i~ 

fact that photomultipliers are somewhat nonlinear
is limited in speed by the fact that an accurate and have a response which depends on their expos-
measurement of scene radiance requires the collec- ure history. Modern devices using solid state
tion of an adequate number of photons. This ex- photodlodes do not suffer from these problems.
plains the preponderance of linear arrays of sen- The methods explored here for destriping Images
sors and area sensors such as vidicons which are are based on the assumption that each sensor is ex-
otherwi se deficient because of geometric distor- posed to scene radiances with approximately the same
tions , non-uniform response , non-un iform resolution , Probability distribution. The sensor values can
and so on . then be modified so that each one is related In the

A compromise can be struck , where a small set same way to the actual scene radiance. The inform-
of sensors Is mechanically scanned to collec t the atlon required to perform this modification is ex-
image. In the system used aboard LANDSAT , for ex- tracted from statistics of the observed sensor Out-
ample , each spectral band is scanned using six puts.

sensors at the same time. Thus , six lines of the
Image are produced during a single sweep of the L~~ simple method for linear transducers.mirror. On the next sweep, the satellite has ad-
vanced Its orbit by an amount which allow s the If the image sensors are linear and time in-
same set of sensors to pick up the next six lines var ian t, a simple method can be used to reduce
of the image. striping. The sensor output , x ’, can be written as

Unfortunately, the sensors do not have Identi- a function of the scene radiance, x, as fol lows:
cal transfer functions. As a result, images pro-
duced In this fashion show undesirable, regular K = f(x) = a + b . x
“striping . This effect can be removed If the
transfer functions are accuratel y known , since one Each sensor has its own, fixed values of offset, a,
could then compute scene radiance from the sensor and gain , b. If these are known , the scene radiance
output using the Inverses of these transfer fun~- 

can be calculated using the Inverse of the transfer

tions. The sensors used in the older equipment in function ,

particular have time-varying behavior. Photomulti-
pliers , for example , show a drift In both gain and x • g(x ’ )  = (x ’ - a)(b
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If this is done for each sensor in turn , strip ing NASA ’s destriping and possible other reasons.)
effects will be removed. One may elimi nate such areas by removing sensor

The required constants for each sensor can be values above a certain level from consideration.
determined if a calibration object containing two Slightly better results are obtained in this fash-
or more known scene radiance values is availab le in ion . Naturally the arbitrarily selected threshold
the scanned scene. If such a calibration object is will tend to introduce inaccuracies of its own.
not available one can estimate the (relative) values One way around th is  problem is to eliminate the
of gain and offset using simple statistics of ob- same fraction of high values from the output of
served sensor values. Each sensor sees a subinlage each sensor. The fraction to be removed can be
consisting of every nth line (when n sensors are estimated by guessing the fraction of the image
used). The complete image is formed by interl acing which is covered with cloud , snow or ice. This is
these subimages. It seems reasonable to suppose certainly better than using a fixed threshold di-
that, for a large enough image , each subimage has rectly on the sensor outputs.
approximately the same probability distribution of Even with this refinement , results are not en-
scene radiance v~ 1ue:. One would not expect a tirely satisfactory . Superficially, it appears that
particular subimage to contain many more values in different gains and offsets are appropriate for
a particular range of s:ene radiance than another different scene radiance ranges. That is , the sen-
subimage. sor transfer curves are somewhat nonlinear. We

If this assumption is correct, then the gain thus devised a method which deals with this problen
and offset constants can be estimated from the mean directly.
and standard deviation of the measured sensor out-
put values. If the mean of the scene radiance is
~i and the standard deviation is a , then the mean of 4. Preliminary considerations.
the sensor output will be i~ a + b ~ and thestandard deviation of the sensor output a = b ~~ . Consider a random variable X wi th probability
Then , density function p(x). The function p(x) is non-

negative and satisfies
b a/ c i

and J p(x) d x ’ l

a (i.~’ a - u a ’ )/a  The probability density function p (x) can be esti-
mated from a large number N of observations of theClearly, i t is not reasonable to assume that one random variable X. If n of these measurements fallcan find the absolute values of the mean and stan— in the interval [x , x + ox] , then n/N tends to

dard deviation of the actual scene radiance For- p(x)  Ox as N becomes very large and ox smal l (in

? e f?~P~~~~~~
1

h n n
r :t

~~: ~~~~~~~~~~~ 
al lows N ox . and thus n , to become

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ P(x )  
e
d~~~~~

t
~~ 

probability density function

dard deviation of the scene radiance. Naturally,
now the results will not be scene radiance values .
The striping however will be removed since each P(x) = J p(t) dt
subimage now has the same mean and standard devia- -

~~
tion , and , if the assumption introduced earlier
applies , the same linear relationship to scene This function is monotonically non-decreasing since
radiance . p(x) is non-negative. P(x) represents the proba-

Note that one can relax the assumption dbout bil ity that the random variable X takes on a value
the relationship of the subimages. Here it is not less than or equal to x.
necessary that they have the same probability dis- Now consider observing the random variable X
tribution of scene radiance , only that their means by means of a transducer with transfer function
and standard deviations be the same. f(x). Its output can be thought of as a new random

variable X , say, with a probability density func-
3. Shortcomings of the simple method. tion p ’(x’). This function Is related to the prob-

ability density function p(x) of the original ran-
We have found this method to be only partially dam variable X , in a fashion which depends on the

successful in destriping LANDSAT Images. One rea- transfer function x ’ = f(x). It is easiest to de-
son for th i s  may be that out of a range of 128 pos- velop this relationship In terms of the cimiulative
sible sensor outputs a range of only around 30 val- distribution functions P(x) and P’(x’) where
ues correspond to normal scene radiance values,
Low val ues are not foun d I n short wavelen gth bands
because of light scatter in the air. Conversely, P’(x ) = J p ’(t) dt
large values correspond to cloud , snow and Ice, and -~~

scene radiance values of such areas often exceed
the highest available sensor output values and so If x lies in a range R’ when x lies in the
result in clipping. This nonlinear effect will range R , then clearly ,
skew the calculat ion of means and standard devia-
tions. (Low value clipping also occurs because of
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I p ’(x ’) dx ’ = J p(x) d 
for example , a case where the input range can be

x broken up into a number of intervals such that
R

f(x) = I if x c [x ., x .
Now assume that f(x) is monotonically non-decreas- i i + 1
ing. Then the range x ~ x0 is mapped into the The probability density function of the output of
range x ’ ~ f(x0) the transducer is then discrete and ,

P [ f(x) ]  = P(x) u r n  j~i + I —

As a result one can determine the transfer function = c -‘~ 0 
p(x) dx

f(x) if the cumulative probability density functions X
,

P(x) and P’(x) are known and if the latter has an
inverse. Then, 

— Clearly, p~ ~ 0 and

1(x) = (PT ’ P ( x ) z p~~= i
If P’ is monotonical ly increasing, the required in— I = -~~
verse will exist. Difficulties will be encountered
only when P (x) is constant over a certain range. The cumulative probability density function can be
That is , if P ( x ) = c [and hence p ’(x’)  = 0] for defined as follows ,

c [xI, xfl. Then , if P(x) = c, one can say only
that f (x )  e [X i ,  xfl.

There are two possible cause~ of this problem. = 
a =~~-o~ ~~First it may be that f(x) actually has a discontin-

uity. In this case, one correctly finds a jump from
to x~ in the solution. The other possibility i~ If f(x) is monotonically non-decreasing, then the

more serious. If p ( x ) = 0 because p(x)  O [where same argument applied in the continuous case , leads
x = f (x)  as before], then the transfer function again to
f(x) cannot be found in tue specified range because
in essence no inputs are available to test it in
this range. The information to recover f(x) there P [1(x) ]  = P(x)

is thus not ava i la b le .
Note , however that if the inputs to the trans- If P can be inverted , the transfer function can be

ducer are in fa’ .h~racterized by the given proba— found using

biiitfd~r~,ity function , then our lack of knowledge
of the transfer function in the specified range is f(x)  = (P )”’ P(x)
of no consequence since there are no inputs falling
in this range anyway. The only difference is that here f(x) is a function

To calculate scene radiance from sensor values , from a continuous range to a discrete domain.

we actually need the inverse g(x ’)  of the transfer Naturally, when one finds the inverse of the trans.

function. This can be found just as easily. If, fer function , g(x’), using these methods, one has
to accept the fact that the actual value of x can-

P’(x’)  = P [g(x) ]  not be recovere d , only a range [x1 , x. +

T hen , 6. Estimation from a finite number of samples.

g(x ’) = p~~ p ’(x ) 
To apply this method to determine the trans-

fer function of a real transducer , the cumulative
The sa-ie considerations regarding the existence of probability density functions must be determined
the inverse p 1 apply here as those discussed re- from a model of the underlying process generating
garding the existence of the i nverse (P’)~ ’. All the random variables or estimated from frequencies
these special case problems are avoided if the of observed occurrence using a finite number of
cumulative probability distribution functions are samples. In the latter case an uncertainty (I.e.,
monotonically increasing, sample deviation ) will be found in the estimation

The method shown here for finding the transfer of the probabilities which will be inversely pro-
function of a transducer (or its inverse) is based portlonal to the square root of the number of
on the same analysis as that used to design a gen- samples falling in a particular interval.
erator of pseudo-random numbers wi th a desired Clearl y, then , the transfer function can be
probability distribution function p ’ (x )  when a estimated with limited accuracy. Accuracy will be

generator is availab le which produces pseudo-random least for ranges which happen to contain fewest

numbers with known probability distribution func- 
sam~1es. Thus the largest errors in determining

tion p(x). f(xj will tend to occur where p(x) Is small. In
fact, as we have seen before when p(x) becomes

5. Transducer with discrete output values, zero over a ran ge of values of x , then 1(x) cannot
be determined uniquely for this range.

Essentially the same method may be used if the The largest errors in pinning down g(x ’) will

transducer produces discrete outputs . Consider , occur where p ’(x’) is small.

p
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7. ApplIcation to satellite images . Ing scene radiance. At the same time, the overall
distributions of tones is not disturbed. The re-

To use this method of determining arbitrary sult is shown in figure 2. Some localized striping
monotonic non-decreasing sensor transfer functions is still apparent, but the regula r pat tern has been
to satellite images obtained using multiple sensors, removed.
one has to make the assumption that the subimages It Is instructive to inspect the inverse trans-
have simi la r sta ti stical proper ties . Thi s seems fer f unct ion fo r each sensor. These are shown asreasona ble , at least if the whole image is large six subfigures of figure 3. The short horizonta l
enough. One also has to assume that the sensor sections in the transfer function correspond to
transfer functions are constant at least for the sensor values which do not occur because of a par—
time taken to scan one scene. ticular data compression algorithm used on LANDSAT.

The probability distribution function of the It will be apparent from Inspection of these in-
actual scene radiance is not available and so only verse transfer functions that the sensors are some-- - relative adjustments can be made. That is , ins tead wha t nonlinear. This explains why the simple de-of this function , one uses the probability distri - striping technique described earlier fails.
bution function of the sensor outputs for the whole One channel (band 7) on LANDSAT is equipped
image as a reference. The result will be that each with silicon photodiodes instead of photomultipli-
processed subimage has the same probability distri- ers. Striping is apparent in data of this band
bution function. If the assumption that all sensors (.8k to l.1,~) as well , as shown in figure 4, and
are exposed to the same distribution of scene ra- can be removed by the technique presented here as
diance holds , the~i this implies that the same mono- shown in figure 5. The differences in transfer
tonic non-decreasing functional relationship hol ds function in this case however appear to be simple
between scene radiances and image values. That is , gain differences as shown by the six subfigures of
stripi ng will have been removed. figure 6. So for this band the simple destriping

method whi ch assume s l inea r transfe r fu ncti ons
8. Details of the algorithms , works equal l y wel l .

The first step is the determination of a cumu-
l a ti ve hi stogram of sensor val ues for the whole
image as a reference. Let there be H(x) occurrences
of sensor outputs less than or equal to x out of a
total of N values. Now for the subimage produ ced
by 3ensor i , one calculates a simi lar cumula ti ve
histogram . Let H1(x’) be the number of sensor out-
puts less than or equal to x ,  produced by sensor
i, out of a total of N1 values. Here,

n
N ”  7 N.

1 = 1  ~

where n is the num ber of sensors .
A lookup table g(x’) is now constructed by ap-

plying the i nverse of the function H(x) to H1 (x ’).
This lookup table is then used to modify all the
sensor values produced by sensor i. The inverse
can be calculated relatively easily since 14(x) Is
a monotonically non-decreasing function. The look-
up table value g(x ’) is the smallest number x such
that

N1 H ( x )  ~ N H 1 ( x )

This process Is repeated for each sensor In turn ,
unt il all Image values have been modifIed by the
lookup table appropriate to the sensor with which
they were measured.

9. Results and Conclusion.

This method has been applied to part of a
LANDSAT image extracted from CCT (Computer Compati-
ble Tape). Same of the bands showed rather heavy
striping . In figure 1 , for example , Is shown Ban d
6 (.7 to .8~i In the near Infrared). Applying the
method described here considerably reduces the reg-
ular striping. Tue overall effect is that each
subimage is related in the same way to the underly-
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LOCAL CONTE XT IN MATC H ING EDGES FOR STEREO VISION

R. David Arnold

Computer Science Department
Stanford University

Stanford, California 94305

surface discontinuities. Simple area correlati on techniques
ABSTRACT inherently fai l in the vicinity ~f surface discontinuities because

the edge of an object appears against a different background
This paper describes a stereo vision system based on edge area in each view of the stereo pair . It is important to locate

matching. Depth maps of edges have been obtained with surface discontinuities, since it is precisely the boundaries of
sequences of aerial photographs of aircraft, buildin gs and cars , objects where accurate measurements are most important.
allowing accurate measurement of heights, dimensions, and However , edge operators are ineffective in the presence of
angles of surfaces of objects. The edge.based approach enablen texture and smooth shading. In those cases, edge-based
accurate determination of boundaries of objects, is effective with techniques encounter problems. while correlation is effective.
thin objects such as poles, and offers advantages in speed. Total Thus, edge-based and area-correlation approaches are
computation time was 90 seconds with 128 x 128 images. with complementary.
no effort at optimization.

In any stereo system, ambigu ity is a major problem. Edges
in one view may match with multiple edges In the other view.
For example, in the parking lot scenes , edges of cars , pavement

INTRODUCTION markings and shadow edges are all parallel and are easily
confused. There are few techniques that can reduce such

Stereo vision has long been important in photo ambiguity when matching individual edgels. Direction,
inter pretation and mapping and has potential applications in brightness and contrast measurements extracted by the edge
guidance. This research seeks mechanisms to automate stereo operator can guide the matching , but are not strong conditions.
vision to interpret stereo images and provide three dimensional
measurements of objects from those images. The objective is to However , ambiguity can often be eliminated by
demonstrate these ca pabilities in potentially practical considering a local context which is larger than a single edgel. If
Implementations. The method should be fast, accurate, make full a scene edge has continuity in three dimensions, then we ex pect
use of the resolution of images, and be able to handle a wide adjacent, matching edgels along that edge to be continuous in
variet y of data from either stereo or motion parallax. both direction and disparity. Furthermore, intensities and colors

on one or the other side of the edge should be consistent. Edge
The system matches corresponding features in pairs of continuity and consistency are strong conditions that

images. rather than matching small corresponding areas by cross significantly affect ambiguity.
correlation. The features are edge elements (edgels) produced by
the Hueckel edge operator. This approach offers advantages in The Context of the ground surface is also important in
speed and accuracy and avoids some fundamental problems of this matching process. Techniques of Moravec (2) and Cennery
area correlation. (5] are used for automatic determination of the camera model

parameters and ground surface equation directly from the
In an edge-based system , computation effort can be pictures. The knowledge of tne camera model Imposes the strong

concentrated on the edges and depth information about planar limitation of matching features In only one dimension. A priori
surfaces Inferred from boundaries. If high speed, specialized constraints may be used during matching to limit the disparity
processors are used for edge ope rators (I], overa ll computation range to that of objects above t he ground within a reasonable
can be cut significantly. The proportions and size measurementS height.
of the boundaries are also useful for subsequent identIfication.

Typically, edge-based techniques offer a factor of 10 IMPLEMENTATION
Improvement In accuracy over correlation methods. In
correlation, accuracy near a boundary Is limited to a fraction of The data are 51 2 x 512 , 8 bit image pairs digitized from
the width of the correlation window (typically 8x8). The a small (3 cm square) region on each of two 9x9 Inch black and
Hueckel edge operator , however , provides measurements to a white aer ial photograph negatives. Subjects Include commercial
fraction of a pixel , even for weak or noisy edges. Edge.based aircraft at a terminal In San Francisco airport (see Fig. I), cars

systems also have an advantage with small objects. Poles and In a parking lot, and an apartment building complex . To date,
other long, thin objects are prominent features , but are too small most work has been on 128x 128 images, either averaged 4:1 or
for correlation windows , selected as a window from the larger pictures. This has allowed

sma ller memory requirements and simp ler debugging, but
A serious deficiency of area correlation is failure at memory management has been impl emented to allow the

p
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techniques to work on much larger images. Execution times whether to accept or reject a potential match. If the match Is
given below refe r to the KL-I0 processor at the Stanford accepted, a disparity is calculated by projecting the right edgel
Artificial Intelligence Laboratory. to the y coordinate of the left edgel. On the average, this search

produces 8 ambiguous matches for each edgel, that is, 8 edgels
A camera model and ground plane are calculated from that agree in position, angle and brightness. Most of these

the data in the images in a process which is entirely automated . ambiguous matches are actuall y multiple edgels from the same
An Interest Operator [2) is applied to the left view to select scene edge. with slight deviations in disparity due to noise. From
approximatel y 50 “interesting ” points. A point is interesting~ If this point on, no further information is obtained from the right
it promises to be easily locatable in two dimensions (ie. corners edge file.
and intersections). A fast binary search correlator (23 produces
an initial match for each point , searching the entire right image For local context , we want a list of edgels in the left
each time. These matches are refined with a high resolution picture that probably lie on the same physical edge of the
area correlator [3) and passed to a camera model solver (3). object. Again , a scan runs through all edgels on the left , and a
This camera model program solves for four parameters: search is made for each one, this time in the left grid. Two

edgels are linked if certain loose conditions are met:
I) direction of the stereo axis
2) relative rotation between left and right views I) x and y coordinates match within 3 pixels
3) scale factor between left and right views 2) their angles match within 90 degrees
4) translation perpendicular to the stereo axis 3) the angle of a line connecting edgel centers lies

between the individual edgel angles
(The usual camera solver determines S parameters. This form is 4) brightnesses are consistent on at least one side
useful in the degenerate case in w hich scene heights are small of the edgels
with respect to distance from the film plane.) The relative
positions (disparities) of each matched pair along the stereo axis Typically, this produces 3 or 4 links per edgel, and linked edgels
provide information on heights relative to the film plane. At tend to follow edges of low to moderate curvature. (See Fig. 5.)
t his stage, about half the original 50 points have been Time for the matching and linking is 33 seconds.
automatically rejected for various reasons, and we rely on the
remainder to be evenly distributed in the scene. The points and We now have for each edgel in the left picture a list of
their heights are given to a ground plane finder [3) which possible disparities and a list of neighboring edgels which are
attempts to fit a plane to a subset of them such that few points linked to it. The problem is to choose a disparity for each edgel
are assigned heights below the plane , some may be above the in such a way that disparities are consistent along linked edges.
plane. and as many as possible lie on the plane. Total processing We have implemented an ad hoc voting” scheme whereby each
for camera model and ground plane is about 8 seconds.(See Fig. disparity on the edgel’s list is a candidate , and only those
2.) neighbors which are linked can vote. (See Fig. 6.) Let £ be an

edgel and L an edgel linked to E. Let dL be a disparity on L’s
The next step is to raster-scan an edge operator over the disparity list and dE a disparity on E’s disparity list. If dL and

two pictures to extract all usable edges. We use the Hueckel dE are equal or nearly equal (within .125 pixel disparity) then
operator , with an operator radius of 3.19 (32 pixels area). The dE gets two votes. If dL and dE are close (within .375 pixel
Huecke l operator produces severa l accurate measurements which disparity) then dE. gets I vote. Otherwise , there are no votes.
can be useful in discriminating matches, including a This loose condition for voting compensates for quantizat ion
measurement of angle that is more accurate than other error in the recordisig of disparities and allows multip le edgels
operators. Information retained for each edgel includes x-y from a single edge to reinforce. After all the voting, a
position. angle of edge . and brightness of minus and plus sides. bell-shaped distribution usually results about the best disparity,
About 1200 edgels are produced from a l28x 128 picture in with wild or inconsistent matches out on the tails of the curve.
about 18 seconds. (See Fig. 3.) At this point, all information is The maximum of the distribution is taken as the disparity for
contained in the edge files, and the ori g inal images are Set aside. E. This processing takes 8 seconds We can now output a file of
The edges from the left and right pictures are then adjusted edgels with their three dimensional locations.
with the camera model and ground plane parameters, to a
standard coordinate system with the stereo axis in the x
direction and disparity shifts due to the tilt of the ground plane PROBLEMS
cancelled . Thus al l points lying on the ground plane will have
identical x -y coordinates in the two views. The method outlined above suffers from some serious

problems. It relies heavily on the edge operator. While the
We now proceed to match edges in the left ~master) with Hueckel may be one of the best choices available , it is deficient

those in the right, and extract a local context for each edge in in several respects. First , It is susceptible to slow gradients.
the left . A grid of 8x8 cells is set up for the left and right finding a multitude of parallel edges that tend to match at every
pictures . each cell being the head of a :‘~iked list. Edge records possible disparity (see Fig. 4). Second, it is a least squares
are read in and linked to an appropriate cell based on the x.y process, and so is easily led astray by a few bad points. For
coordinates of the edgel. For these pictures , the linked lists have example , the direction returned for the edge becomes ver y
an average length of about 4. For each edgel In the left picture . Innaccurate as soon as a corner enters the operator window .
we want to find a list of possible matching edgels In the right Finally, strong texture confuses most edge operators and could
picture. The search is constrained to those edgels within a prevent the operation of this system In many regions. Assuming
narrow band, about 6 pixels wide In the y direction. The band we can detect these conditions and avoid false matches , we are
starts at the x coordinate of the left edgel (zero disparity) and still left with many places where boundaries will have gaps that
extends to the a priori disparity limit in the a direction. The must be filled by other techniques.
differences In brIghtness and angle are thresholded to determine
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Ambiguity is a fundamental problem that must be solved
by any stereo system. While man y ambiguities can be resolved ACKNOWLEDGEMENT
within a given contex t , there will always remain some that
require still wider contexts. For example, a checkerboard I wish to thank Tom Binford for his many contributions
presents an ambiguity problem that cannot be solved until the and guidance In this research.
context includes the boundaries of the pattern. We are in the
process of designing several improvements , including a more This research was performed at Stanford Artif icial
extensive surface context , and a relaxation network to extend Intelligence Laboratory under ARPA contract MDA
the use of context in a controlled wa y. It Is possible to consider 903-76-C-0206.
the voting mechanism of the current implementation as the first
iteration of such a relaxation , with each successive iteration REFERENCES
extending the context and reducing the remaining ambiguity.

I. Nudd , C. R., P. A. Nygaard, and J. L. Erickson,
The ty pe of scene is a crucial factor in evaluating the “Image-Processing Techniques Using Charge-Transfer Devices,”

performance of a stereo technique. In general. this system will Image I.Jnderstandlng Workshop, Palo Alto, Ca., October 1977.
work well in scenes of man-made objects and poorly in natural
scenes. For area correlation , the situation is just the opposite. 2. Moravec, H. P., “Towards Automatic Visual Obstacle
The reason is that man-made objects (cars , buildings) tend to Avoidance,” Fifth IJCAI , MIT , August 1977.
have planar surfaces of uniform intensity and well defined
linear edges. Natutal surfaces (clouds, trees, hills), on the other 3. Gennery, D.B., “ A Stereo Vision System for an Autonomous
hand, are often curved with strong texture and Indistinct or Vehicle,” Fifth International JoInt Conference on Artificial
irregular boundaries. A general purpose , vision system would Intelligence, MIT , August 1977.
need to employ both types of techniques, perhaps even within a
single scene.

RESULTS

Results are illustrated in the photographs below (see Figs.
7-10). The technique seems fairly successful , and there is strong
reason to believe that with the additional context now being
designed very effective stereo modeling will result.

- -. —-- . ,
.. ..- . . 1~
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Figure I. A 128x 128x8 bit image pair. The scene is San Francisco
Airport and the aircraft is an L-lOll.

Stereo axis:  3.71 degrees
Re la t i ve  rotat ion: -1.86 degrees
Scale factor: .988
Translat ion:  8.41 p ixe l s

Ground plane: z = 6.88 - .O@925x - .øl2Sy

Figure 2. Camera model and ground plane parameters for the
aircraft images.

ci --- ,i ~~~~~~~~
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Figure 3. Results of the Hueckel edge operator. There are
approximately 1200 edgels from each view.
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7a
Figure 4. An Intensity profile from the left view of the aircraft. The
cut Is taken along the stereo axis at y coordinate 73. Edgels that
intersect the cut are plotted as vertical lines, with their direction
indicated by the small line segments below. The cut Is taken
through the right wing, just grazing the fuselage. Note the multiple
edgels on several of the edges.
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Figure. 5. A plot of edgels from the left view of the aircraft images,
near the left stabilizer and Its shadow. X and V axes are In units of
pixels (octal), and dotted lines represent the links between edgels
used for local context.

Edge: 346; Disperit iesi 34 ,48,54,60;
Linkei 333,365,484,412,334,362;

Edge: 365; Dispari t ies : 40,44 ,46,65,76,
Links: 333,345,412;

Edge: 412; Diepar i t .iesi 4 1,41 ,42 ,45 , 75;
Link.i 346,365,454 ;

Edget 454; Disparities: 42,42,42,46,58,64,112;
Link.: 412;

Voting tel 114 for 412:

Di ep. 345 365 454 Total

41 .11 I I I  1 1 1 1 1 1  11*
42 I II 1 1 1 1 1 1  9
45 l I l t  1 1 1 1 1 1  18
75 Ii 2

Figure 6. A portion of the data structure produced by the matching
program , and a sample voting. The edgels are selected from those
In figure 5. (All numbers are in octal.)

_ ___- . -—-- , -~~~ .-.-.______________________ -
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Figure 7. Results of the stereo system on the aircraft images. Ed gels
are shown superimposed on the video of the left image. The plot on
the left shows all edgels whose disparities were determined to lie
between -I and i (pixels) (edgels on the ground surface). On the
right is a plot of edgels between 2 and 3.5 pixels disparity (main
wings).

Figure 8. Edgels between 3.5 and 6 are plotted on the left (fuselage
and stabilizers), and between 6 an n 9 on the right (boarding ramps).
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‘5

Figure 9. Results with parking lot scene. Disparity ranges of -i to I
and 3 to I? include edges on the ground and on the cars .
respectivel y.

r.

Figure 10. Results w ilh building scene. Disparity ranges of -I to 2
and 6 to I? separate the ground from the roof. 
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THE CORRESPONDENCE PROCESS IN MOTION PERCEPTION

Shimon Ullman

The Artificia l Intelligence Laboratory
Massachusetts Institute of Technology

1. The correspondence problem 2. The Optimal (independent) correspondence strategy
The visual perception of motion requires the establishment of Given ~he two frames , the problem we face is how to establish a
corresp ondence between elements in the scene LUllman l977a]. To correspondence between their elements. Assuming there are n
be seen in motion, a moving element has to be perceIved first at elements in each frame , t here are n! different one-to-one
one location, then at anot her. The two Images of the element , at mappings betweeui them. Hence we face an ambiguity problem
the two locations, have to be identified as representing the same common to various aspects of visual anal ysis (e.g., the stereo
element in motion , and this identification is termed the matc h p rob lem [Ma r r  and  Pogg lo , 1976), t he anal ysis  of
corres pondence process. In this paper the correspondence occluding contours, [Mart 1977], the interpretation of structure
problem will be approached from a computational point of vIew , from motion , [Ullman l977a]). Namely, that the visual input
asking how might motion corres pondence be successfully admits more than a single interpretation. In the lace of such an
established, ambiguity no method is guaranteed to always yield the correct

inter pretation. However , if the structure of the task domain
The ran ge of possible correspondence strategies is determined, to renders some inter pretations more likely than others, it becomes
a large degree , by the level at which the matching process is possible to select the most likely solutIon, thus maximizing the
carried out. That is to say, the corres pondence strategies to be probability of interpreting the Input correctly. We shall
considered depend on whether the correspondence is performed therefore look for a correspondence scheme that will maximize
by matc hing high-leve l constructs such as perceived objects the probability of yielding a correct interpretation.
[Wa rren . l977~ UlIman. l977b], or by matching low-level units,
such as primal sketch elements [Marr, 1976]. or even individual The selection of the most plausible correspondence requires the
intensit y powts as suggested by Anstis (1970]. The evidence in utilization of information concerning the plausibility of different
Ullman (l977a1 supports the view that motion correspondence Is matches. Such additional information can belong to one of two
established primarily between low-level Units such as points, categories: general or particular. in using particular
blobs , ed ge-fra gments, line segments. and certain groups thereof. information . one brings to bear knowledge applicable to a
If this view is correc t , the understanding of the correspondence specific situation, e.g. assuming that the black blob or. the desk
process between such elements should provide an adequate basis in one’s office is a telephone. Examples of general know ledge
~~ ‘Ps ~ ‘heory of motion correspondence in general. are the rigidity constraint in the Interpretation of structure from

motion , (UlIman , l977a) which Is based on properties of rigid
h . l l  s ta r t  by addressing the correspondence problem In a objects in general, or the two constraints governing the stereo
.ir~~ ’i v.r sion , in which two “frames ” are presented in match [Mart and Poggio, 1976]. If motion correspondence is

‘set ..‘siiltint fl ‘apparent” motion, We further assume established at a low level, then information of the general kind

is”. only of isolated points of equal Intensitly. should be applied . In the following section properties of moving

— . ha il eatend the analysis to other types of elements in general will be used to guide the matching problem.

I(ej ; mot ion
The independence hypothesis

.‘spond.n . procedure, we shall use The selection of the most likel y correspondence requires a way of
. ‘ .- - ‘ .ns l t l ’ ntl f rom “below” The comparing the likelihood of different possible matches . To

is’ physical motion which determine the likelihood of a match , one needs to know what
p.ødencr p~ohl.m The dependencies are assumed to hold between the motions of

~ipsN d b, - t~o~puta tional 
individual elements. For example: If X and I are neighboring

‘k. ‘ .,w.’e’- s~ n’ t ha t  he point: and X moves to the right, Is I’ more likely to move to the

~~~~•s~~i ‘,~~~~~~ in partu’ u~~r r ig h t  than to the left? Since our prime objective Is the
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investigation of human motion perception, we want our higher, which Is given by the “tall Integral” p(v)-
underlying assumptions to be consistent with the correspondence (I) p(v) — f p(v)d v
p rocess as carried out by the human visual system. When the Given the independence hypothesis, the probability of having a
human correspondence process is examined using simple displays collection of n elements, with the I”’ element (I s I Sn) covering a
containing a small number of elements (UlIman , 1977a 3, no such distance d , in time Interval t Is given by the product:
biases are apparent. (2) II p(v ,) v , — d ,/t

The most likely match will therefore be found by max im iz ing 2)Consider , for exam ple, t he configuration in Figure I where over all the legal matches (the one-to-one mappings in this case).points X i  and X2 are presented in apparent motion with Vi , Y2 In what follows it wi ll be convenient to transform the product inand V3. (In all the figures unfilled circles will denote the first (2) into a sum. Since the Logarithmic function is monotonlc, andpresentation and filled circles the second. A filled circle Inside since a ll the p(v ,) are positive , the most likely match canan unfilled one means that this element participated in both the equivalently be found by:first and the second frame.) If only X i , VI and Y2 are presented. (3) mm r q(v ,)
Xi moves to the right or to the left with equal probabilities. It 

where the minimum is taken over at: the legal matches, and q(v)will usually split and move in both directions at once. When X2 — -log p(v). Since 0 s p(v) s I, q(v) is a non-negative function. Ifand Y3 are presented as well, X2 is seen to move to the right q(v) is thought of as a “cost ” function, then the optimal mappingand match I’). Will this motion Increase the likelihood of seeing minimizes the cost over all the legal matches.X I as moving to the right to match V2? The answer Is that
(provided that fixation is maintained at the center) no such 

Mappings which are not one-to-onepreference is apparent . If the number of Input and output elements is not equal the
mapping between them cannot be one-to-one. The simplestWe will generali zing from this observation and additional exam ple of this situation Is depicted in fIgure 2 where A Isevidence from (Ullman, I977b], and accept the hypothesis that the 
presented in apparent motion with both B! and B2. Theelements are treated as moving independently of each other. 
one-to-one condition has to be violated in this case , and this canGiven this independence hypothesis, we sha ll next turn to 
happen in one of two ways. Either ,4 is mapped with a singledevelop the optimal correspondence strategy. It will subsequently element, leaving the other without a “partner ”, or A can split andbe shown that the emerging method remains optimal under 
matc h both Dl and B2 (Or , if Dl and B2 precede A , t he twoconditions which violate the independence hypothesis, and that 
elements might both match A, a situation we shall call “fusion”.)the incorporation of dependencies between directions would be 
Perceptually, the latter possibility Is preferred (unless one of theredundant , 
distances is much larger then the other, [UlIman, l977a]).

The maximum likelihood correspondence
We shall therefore assume that legal matches are required to beSuppose that it elements are moving in space independently of 
covers. A cover is defined as a matc h In which every inputeach other , at various speeds. and in different directions. Two 
element is paired with at least one output element , and ever y“snapshots ” of the moving elements are taken, and a match Is to 
output element is paired with at least one input element Howbe established between the “input elements ” in the first Image 
should the optimal match be determined in these non one-to-oneand the “output elements” is the second. Let p (v )  denote the 
cases? The Independence hypothesis as formulated above doesprobabilit y density of the velocity distribution of the elements, 
not apply directl y to situations in w hich elements split and fuse.That is to say, If a moving element is selected at random, the 
For the sake of simplicity, we shall extend the Independenceprobability that Its velocity v lies between va’ues a and b Is:

fb p (v)  dv hypothesis to Include covers as well. Some further modifications
of the optimal mapping will be introduced after a method fora

Assumin g spatial Isotropy (i.e., that the elements have equal computing optimal matches has been presented. For the present.
probabilities of moving in any direction in space), then the most the optimal match will be determined, as before, by minimizing
likely match Is determined by the function p(v) In the following Z q(v ~) over all the legal matches. The only change Is that the
way. Let d denote the distance (in the image plane) covered by a set of legal matches Is extended to Include all covers. In graph
given element during some time Interval t. II no depth theoretical terms the optimal match defined In this way Is called
information Is used at this stage, we can only conclude that the the “minimum weig hted cover of a bIpartite graph”. (in a
avera ge velocity of the element In space was at least v1 — d/t. bipartite graph the set of vertices V — V 1uV 5, V 1nV , — 0, and
(This expression holds for parallel projection. The change each arc connects a vertex in to a vertex In V 2.) However, for
required for perspective projection is Insignificant.) If the brevity ’s sake, we shall refer to the match determined by minZ
element moved parallel to the picture plane, Its ve locity must q(v 1) as the “m~ mapping”.
have equalled v 0, otherwise it was hIgher than v 1. The
probability of an element covering a distance d in time Interval t We next turn to examine the constraints from “below”, namely
Is therfore given by its probability of traveling at a speed v, or computational problems associated with determIning the optImal

match.
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3. Computational feasibility universal computing machine.)
The m~ solution is obviously computable. For instance, by
enumeration: the sum Z q(v ,) can be computed for all the legal The prospects of performing the mZ computation with a simple
matches , and then a minimum can be selected. However, due to network might seem dubious due to the discrete, combinatorial
its inefficiency, such an algorithm would be unreasonable. Is character of the problem. However , we shall see that the
there a feasible method of computing the m~ mapping? The computation can be carried out if the problem is changed
feasibi lity of a computation depends, to a lar ge extent , on somewhat, Instead of the set of all cover~ we consider a subset of
properties of the processor which carries It out, and therefore the local covers. For each element there are N neighbors which are
question cannot be settled without making some assumption the initial candidates for a legal match. A legal match Is one
about the wa y the computation is carried out. Without where each element is paired with (at least) one of its initial
commLtting ourselves to a particular model, we shall make three candidates. Of these legal matches , t he one that minimizes
general assumption about the way the correspondence process is 2 q(v ,) is  sought. We shall verify in the following section that in
carried out by the human visual system. We shall then t his formulatior the optimal match is computable by a simple
investigate whether the computation of the m~ method Is local process. We shall also determine the radius of the
feasible given these assumptions. The three assumpt ions are computation, that is, to how many neighbors must each processor
parallelism, sim plicity, and locality, connect to make the mr computation possible. As It turns out, It

Paral le l ism: Since t he correspondence process operates on is sufficient that each processor be connected only to its initial

low-level elements and since there might be a large number of candidates (i.e., r — N).
those in a given image, the pairing of corresponding elements is
probabl y carr ied out to a large extent in parallel. 4. Computing m1~ by a simple, local, network.
Localit y: If the number of “processors ” is large , It becomes In this section we shall present a method by w hich a simp le
unfeasible to connect each one of them to all the others. It will network can compute the most likely match. The development

threfore be assumed that there are only local connection between involves two sta ges:
the processors. e.g.. each processor is connected only to its k I. Reformulating the computation of mE as a Linear
nearest neighboring processors. The number It will be called the Programming (LP) problem . A theorem from Integer
“radius of the computation”. Programming (IP) ensures the equivalence of the original

Simplicity: If there is a large number of processors , it seems problem and the LP formulation.

reasonab le to assume that each of the Individual processors Is a 2. Employing a method devised by Arrow ci a! [Arrow ,
rather simple computing device. We shall not attempt here to Hurwicz & Uzawa; 1958) to solve the resulting LP problem
define sim plicity precisely, but wi ll only assume that t he by a simple. local, process.
processors have no memory.

Reformulating mE as a LP problem.
We sha ll combine the above assumptions in the notion of a Linear Programming (LP) Is the study of optimizing linear
network of simple processors. All the processors are identical, and functions subject to linear constraints . In vector notation, an LP
each one is connected to k of its nei ghbors. In the problem is:
corres pondence computation, each processor is “assi gned” to an (4) Minimize ç~~
element in the image, and Its task is to find a matc h for this Subject to: A~ a
element. � 0

Where A — (a ~
) is an n~m matrix, x and c are n-dimensional

We have listed some t heoretical reasons for assuming that vectors, and b an m-dimenslonal vector. In a more explicit form,
motion correspondence is carried out by a simple, local process. find a vector ~ — (x 1. x , x _) that will minimize ~ c ,x , subject
A furt her reason for considering such a computation is that the to m constraints on the x ,’s. The j lb constraint is: Z a~5 X b � b~.a n a lysis In [UlIman, 197 7a] supports the view that the
correspondence process used by the human visual system is and x , a 0 for I • I n.

Indeed simple and local.
To recast the mE problem in terms of LP we shall introduce the

General issues such as computability, efficiency and locality In variables x ,5 , I � I s n (if there are n input elements) I s j s It (if

simple networks of this kind are yet little understood. However, there are k output elements). If an input element I is paired with

rather then addressin g them directl y, we shall restrict our an output element j . then x ,~ — I, otherwise ~~ — 0. In a cover,

discussion to their relation to the correspondence process. Since ~ is ,,, a I for every I, and Z x ,~ 2 I for all j . We shall therefore

the mE method had been advanced as an optimal matching formulate the following LP problem:
strate gy, and simple networks as a plausib le computational
model, t he main problem addressed in this section Is: can tr ~e mE
meiAod be comp uted by a s Imple network ? (It should be noted that
such simp le networks are not , In general , equ ivalent to a
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(5) Minimize E x ,~ q ,~ is ,,, 
from tI~ose in the original Kuhn-Tucker theorem. For proof, see

Subject to: ~ ~~ a I for t ~ i �~~ 
A rrow , Hurwicz and Uzawa . ch. 3.)

2 is ,,, a t  for t �J s It The Lagrangian gradient method
x ,~ ~ I) for 1 s i  S n , I sj  s I t  The Kuhn - Tucker theorem which is an extension of the

Comments: 1.) The total number of variables is ,~ is nN, since classical Lagrange Multipliers theory, transforms the problem of
there are n inpu t elements, each having N neighboring output optimizing a constrained function to the determination of a
elements. 2.) q,, is the cost of the link between Input element i saddle-point of the associa’ ~ Lagrangian. Arrow et ai [1958)
and output element j. investi gated the possibility of computing saddle points using

gradient methods. A gradient method searches for a
Is this LP problem equivalent to the original mE problem? It saddle-point of L(x ,u) by moving In the direction o~ the local
would be. if we add the restriction that eac h x ,~ can assume gradients (“uphill” in is, “downhill” In U), wit hout violating the
binary values only (I.e. is ,,, • I or x , 5 — 0). The additional non-negativity conditions on the variables. This search Is
restriction cannot be expressed in the LP formalism, but defined in terms of the Arrow-Hurwica differential equations (p.
fortunatel y it is redundant. A theorem from Integer 118 ):
Programming states that there exists an optimal solutions to the (8)
above  LP problem in which all all the is ,, are Integers. x(t) — Lx , if is , >0
[Garfinkel & Nembauser; 1972. Note that the constraints matrix
is uniniodular.) It is straightforward to verify that the integer x(t) — 0 if is , — 0 and Lx , <0
condition implies that the only possible values for the is ,3 in the • ( )  — -Lu , if u , > 0optimal solution are 0 or I. Consequently, if t he optimal solution
is u n i que , any algorithm that solves the LP problem Is also u(t) — 0 If u , — 0 and Lu, > 0
guarant red to solve the original mE problem. If the optimal Where Lx , Is the partial derivative of the Lagrangian with
soution Is not unique, then there are at least two different respect to is ,, and Lu, with respect to u,.
optimal integer solutions, and also non-integer solutions. For the An approximation to the Arrow-Hurwici equation can be
present , we shalt assume that the optimal solution is Unique. defined by the following iterations: (Marr and Pogglo. 19761
The non-unique case is examined in section 6. (9)

x~”1 — max [0, x~ p Lx ,)
We sha ll next describe a method of solving the LP problem
which can be carried out by a simple local network. — max (0, u~ - p Lu,)

w here p is a selected step size.
If L in the formulae Is the Lagrangian as defined In theComputing mE in a simple network
Kuhn-Tucker theorem , the method is catted the “n a i v e”A method of optimizing functions in which the computation is

distributed between simple. locally connected processors , was Lagrangian method. The main point to notice Is that the naive

introduced by Arrow Ct al [Arrow , Hurwicz & t izawa ; 1958). gradient computation of the mE problem Is simple and local.

This method is based on a theorem by Kuhn and Tucker [195)) The reason fur the locality Is that the values of Lx , and Lu , are

w hich states the equivalence between optimal solutions to the given in terms of the values of is and u in the ~~ processor and
constrained problem , and sadd le points of the associate d its N Immediate neighbors only. More specifically, the
Lagranglan. 1_a grangian IS:

(10) L(x.u) — E q,,,x ,3 - E u,(l - E is ,,) - Z u,(l - Z x ,)
Consider the problem of maxImizing a function f(x) subject to m If there are n input and k output elements then I — I_ n and
constraints g ,(x) a 0. 1 — I m. The Lag7anglan associated J — I It. The derivatives take the simple form:
with the problem is defined as: Lx ,, — q,, •u , • u,

(6) L(x .u) — f(x) • E u ,g, Lu, “ ~ is ,,, -Where x is n-dimensional vector and u is rn-dimensional vector.
A non-negative saddle point of the above Lagranglan Is a Lu, — I a ,, -

non-negative point (x ’,u’) satisf ying: Since the derivatives are local, the process defined by (9) Is
(7) L(x ,u’) s L(x ’,u’) s L(x’,u) for every is 2 0, U ~ ~ simple and local.

Theorem: (Kuhn - Tucker) If (I) f(x) and g,(x) are concave, and Convergence:
(It) there exists a vector x ,, a 0 such that g ,(x) > 0 (I s I sm). then The ‘rrow-Hurwicz method Is said to converge to a solution If
a vector a’ is a solution to t he maximization problem If and only (x(t), u(O) approach a saddle point of L(is.u) as t -. ~ . The naive
if there exists a vector u’ suc h that (x ’,u’) is a saddle point of the gradient method as defIned above Is not guaranteed to converge
associated Lagranglan. to a solution. If L(x ,u) Is linear In both is and u, the solution
(In the above formulation the conditions are slightly different might go Instead Into a limit-cycle. However , the naive



77

Lagrangian method can be modified In a way that will ensure (13) Eq(v ,) . e(Es, • El,,) i • I k, j — I n.

the convergence of the Arro w-Hurw lcz equation s to a The optimal match is found by minimizing (13). The larger the
saddle-point (of both the modified ~nd the original Lagranglan). a in this last ex pression (that is, the smaller the probability of

sp lits and fusions), the higher will be the preference forand hence to an optimal solution.
one-to-one ma ppings.

The modified Lagrangian LM is defined as [Arrow Ct al, p. 137):
There are empirical grounds as well for associating additional(II) LM(x ,u) — 1(x) • E u , 4’ ,[g ,(x)J 
penalty with splits and fusions. Figure 3 provides an example.where the functions 4’ , are strictl y increasing, strict ly concave 
The match in figure 3a (A!-,Bl *-A2. 82- 43 ’-83) minimi zes E qi

ana lytic functions with 4’,(0) “ 0 (An example of such a function 
(this statement holds for high ISI, see section 6) but the

is 4’(z) - I - e” for r > 0.) one-to-one match in figure 3b (Al-+ Dl . A2- B2 . A3-.83) is
Note that the gradient met hod app lied to the modified perceptually preferred.
Lagrangian still yields a local computation. similar to the naive We shall next see how to modify the mE method so that It
gradient case. minimizes the penalized sum in (13).
If the iterative procedure in (9) is app lied to this modified
Lagrangian , the iteration will usually converge to a solution as The modified mE method
well. Furthermore , it is also possible to modify the original Rather than minimizing Eq ,,,x ,,,, let us now minimize
Lagrangian in such a way ,  as to guarantee t he global Eq ,,,x ,,, • kEx ,, (“ E(k + q ,,,)x ,,,).convergence of the iterative procedure to a solution provided As before , in the optimal solution the x 15 will be binar y, hence
that the step-size p is sufficiently small , w hile maintaining the the “penalty function” kEx ,, is sim ply It times the total number
locality property of the procedure. As before, the gradients LMx of links in t he match. By making It larger . mappings with
and LMu computed for the I” component will depend only on smaller number of links will be preferred. Furthermore, the next
the i” processor and its N immediate neighbors. proposition shows that for the appropriate choice 01 It we can

minimize the required sum in (13).
Conclusions Proposition: Minimizing Eq ,,,x ,,, . 2aEx ,, (subject to the usual

The optimal match mE can be determined by a simp le. local constraints Ex ,, a I) Is equivalent to minimizing Eq,, • a(Es , *
computation. One can envision a network of simple processing Zf ,) over all covers.
elements which accepts two “snapshots” of elements in motion, Proof: First note that chains of corresponding elements are
and finds the most likely correspondence between them via local precluded For examine the chain: Al - 81 .-A2 - 82. The link
interactions. The above conclusion can be a pplied to other 81 - 42 can be removed without violating the constraints hence
problems of constrained optimization. for details see [Ullman. this chain cannot be a part of the optimal solution. Let m be the
1978). number of one-to-one links in a given match. The total number

of links in this matc h Is:
5. Preference for one—to—one mappings (14) Ex ,,, m + Z(s , * I) . E(f, . I) where I ranges over the
The mE method as presented above does not “penalize” matches sp lits and j over the fusions.
for dev ia t ing  from the one-to-one ma pping. Such a The number of input elements Ils given by:
simplification is unsatisfactor y on both theoretical and empirical (15) 1 — m • ElsI * E(f ,, • I) where Is~ is the total number of
grounds splits. The number of output elements 0 is given by

(16) 0 — m * E(s, • I) • Ifi where Ill is the total number of
On the theoretica l side . splits and fusions of elements in real fusions.
images are unlikely, though not impossible. e.g. in the case of one We now subtract e(I • 0) from the objective functIon. This
element occluding another in one of the snapshots. Let 5 denote quantity does not depend on the match , t herefore It does not
the probability of such an occlusion. That is , the probability of alter the minimization problem (a match minimizes the penalized
a simple split (an input element splitting to link with two output sum Eq , ~x , • 2eEx ,~ If and only If It minimIzes Eq,, 

~,
is 4

elements) or a simple fusion (two input elements converging onto 2uEx ,, - u(I * 0) ). By substituting for Ex ,,, I. and 0. the
the same output element) Is 1. The probability of an element 

penalty 2eTx ,,, - a(l • 0) becomes:
having three links (“double occlusior.”) Is 5°. In general , the 

(17) ~ Zs , * El,,)probabi lity of a sp lit with s • I links Is 8”, and the probabIlity of
Minimizing Eq ,,,x ,, • 2aEx ,~ Is therefore equIvalent toa fusion with I • I links Is 8’ . The probability of a match

containing k splits with si.I ,ss.l links, and n fusIons with minimizing Eq,,x ,,, * e(E s , * Ef ,,). Since the x~3 are binar y,
(and constrained by Ex ,,, a I) this is equivalent to minimizing

Ii ,.. In, is given by: Eq • a(Es • El ) over all covers. I,, , 3(12) 11 p(v,)$” 8’”
By taking the -log of the above expression we get that the COSt Note that optimizing the penalized sum does not affect the
of the match is (w here~~ - -log 8): computation. The cost q,, can subsume the constant It, so that

--
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the optimal solution is still found by minimizing E q~,x ,,. The true even when the average distance traveled by the elements
computation thus remains simple and local while exhibItIng the between the two snapshots is considerably larger than the mean
required degree of preference for one-to-one mappings. inter-elements distances, In w hich case most of the elements are

not paired with their nearest neighbors.
6. Properties of the mE mapping This flow detection capacity deserves a closer examination
So far we have characterized the optimal correspondence Strategy since It appears not to be consistent with the Independence
by a certain mathematical condition, namely minimizing a cost hypothesis made in sect ion 2. It seems to indicate that each
function over a ll the local covers. In this section we turn to element “prefers” a match whose direction is consistent with the
examine some of t he prope”ties of the mE mapping and to direction of neighboring elements. The independence
compare theni, when possible, to properties of the correspondence hypothesis, on the other hand, excluded Interactions based on
established by the human visual system. direction similarity. The flow detection phenomenon might also

suggest the existence of some global measurements, which do not
Minimizing the total distance belong to any single processor in the simple network discussed in

As t he iter-stimulus interval (1St) between successive frames section 4. The prevailing orientation can be discovered by a
i nc reases , the mE mapping is expected to minimize the total global measurement and can then affect the match assigned to
distance covered by all the elements in the image. If d , is the the individual elements. However , such a suggestion concerning
distance traveled by the i” input element, then the mE method interactions between local and global processes runs contrary to
will minimize the quantity Ed , over the legal matches. the simple network model. The flow detection phenomenon

Proof: t herefore raises the following problem: In a simp le network
We shall ma ke the further assumption that the probability of model , t he correspondence between collections of elements is
low velnci’~es is approximately constant. This assumption seems governed completely by the local Interactions. According to the
reasonable: while ver y high velocities are unlikely, there is no independence hypothesis, these local Interactions do not include
reason to assume that a ve locity of, say I degi’second Is positive interactions between matches of similar directions. Yet .
considerably more (or less) frequent than a velocity of, say, 0.5 when a common direction does exist It seems to a ffect the
deg/second. Nea r the origin, the function p(v) can therefore be corres pondence process , as Indicated by the flow detection
described as p( v)  - It for some constant It. In the region where phenemenon.
this approximation holds, the functions p(v) and q(v) assume the

To resolve this difficulty, we sha ll turn to examine the flowform:
detection in the light of the mE mapping. The conclusion we(18) p(v) — I — p( u ) du — I - kv 
shall reach is that flow detection Is not at odds with either thevs

q(v) — -log (v) kv (since kv << I) independence assumption or the simple network model. In fact,
Minimizing E q , is hence equivalent In the case of low velocities it supports them since, as we shall see, the ml method actually
(or high ISI between the frames) to minimIzIng I v , or , implies flow detection.

equivalently, (since v , — d , t’ ISI) to minimizing E d ,. I
Recall that S2 is obtained from SI by translating all the elements

The rule of non-crossing tralector ies along a common direction. The correct match between SI and
S2 is the one in which each element In SI Is paired with ItsIt has been noticed [Kolers , 1972; Attneave, 1974; Navon, 1976)

that the paths of elements in apparent motion seldom cross. If translated image in S2. We now wish to establish:

Al , A2 , are shown in a pparent motion with Al , B2 , in a c!!Jnl (the flow-detection lemma):
The correct match minimizes the total distance 1 d, (over all theconfiguration where the paths Al - 82. 42 -. 81 cross but Al -,

81. 42 -sB2 do not (see figure 4), then the latter match is one-to-one mappings).

preferred (provided that the 1St Is sufficiently large). E!92!_

The rule of non-crossing trajectories is Implied by the minimum Let (a ,, y ,) denote the position (in the image plane) of the i”

distance princip le. The triangle inequality Implies that (di • di) input element, and (is ’ ,, y ’ ,) Its position in the second snapshot.
If the X-axis Is chosen to coincide with the direction of the flow,

< (ci • ci) (in figure 4). That Is, the non-crossin g trj ectories
always minimize the total distance and therfore, for high ISI, then y’, — y ,. and x ’, a x ,. A match between the snapshots is a

ilso minimize Zq,. function m which assigns an ou t put element to ever ” input
element. Thus j “ ni(I) means that the j’5 output element Is

Flow detection paired with the I”’ input element.
Suppose that two snapshots (SI and S2) are taken of a collection The total distance Dc of the correct match Is given by:
of elements moving parallel to each other. We shall refer to such (19) Dc — I (is ’ , - is ,), — I a’, - I a ,.
a parallel motion as a flow of the elements. The visual system For another match m, the total distance Diii Is given by:

seems capable of detecting flows: when the two snapshots SI and (20) Din — I [(a ’, - x ,)’ . (y~ y ) °  ]II2 I — I n j —
S2 are presented in succession , the flow motion will usually be C2)) Din a I Ix’, - x ,~ � I (a’, - x

~
) I (a’, - a ,) — Dc I — I ...

perceived (provided that the ISI is n~t too short). This holds .,n j “ m(l).
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Since Dr~s a Dc, Dc is minimal, and the correct match is optimal. I). There exists a symmetrical optimal match, i.e., a match in
I w hich x ,3 — a’,3. This holds because If (x~~

) (a sequence of l’s
It can also be seen that Din will be strictly greater than Dc unless and 0’s) is an optimal solution, then so Is (a’,,). The solution
m is also a flow , namely y’,, — y ,, a’,, a x ,. Outside some special (y ,,) defined by y , ,  — (x ,,, • is’,,)12 Is also optimal . and
situations the optimal match will therefore be unique. symmetric.

2). The iterative procedure (9) will converge to a symmetric
The flow-detection lemma can also be proven for the case of optimal solution. Since the input is symmetric, the first stage in
radial motion. Suppose that each element moves (In the image the iteration is symmetric. Since all the processors are identical,
plane) along the line which connects it to a certain fixed point o. the next stage, and by Induction all stages, will be symmetric too.
(Such radial flow can arise from an approaching objects, as well The symmetric configurations caQ be divided into two categories:
as from the perspective projection of pure translation in space). integer and non-integer. Figure 5 exemp lifies a non-integer
Then, t he correct radial correspondence minimizes the total symmetric configuration. Figure Sa shows one optimal mapping
distance, and fi gure Sb another. The mapping in Figure Sc is a
Proof: Let o be the origin, and describe the position of each combination of the two, and is both optimal and symmetric. As
element by its polar coordinates (r , 8). If d ,, Is the distance has been noted in se~tion 4, when (and only when) the optimal
between input element i and output element j , solution Is not unique, there exist also non-integer optimal

a !r , - r,l. For a given match m, solutions, of which figure Sc is an example. The mapping in
(22) Dm — Ed , � I fr, - r,,I a I (r , - r,,) — Dr figure Sc is expected to be unstable, since it relies on the exact

equality of the distances 42-Al, and A2-82. Any deviation from
(i — I n ; j  — un(i) ) the strict equality between these distances will cause either figure

Where Dr is the total dIstance of the correc t (radial)  5a or figure Sb lo be optimal. It is not surprising, therefore, that
corres pondence. I the perception associated with this configuration Is unstable and

alternates between the two [Kolers, 1972; Attneave, 1974; Ullman,
The independence hypothesis revisited 1977a].

The optimal correspondence strategy ml has been developed for
independently moving elements. The Independence assumption Figure 6 shows an optimal, symmetric, Integer mapping. Unlike
might be questioned on the ground that proximate elements In the non-integer mappings, these are perceptually stable. This
the image are likel y to move In similar directions. It can be stability is not completely predictable Iron the ml method since
argued, t herefore, that if a “locally parallel” matc h (i.e., a matc h it depends on properties of the algorithm by which the method
in which the motion of proximate elements is nearl y parallel) is carried out. It can be verified that if a row of is elements Is
exists it should be preferred. While there is probably some truth shown in alternation with a row comprising it*l elements, then
to this , the flow detection anal ysis suggests that the explicIt whenever n is even the symmetrIc solution is non-integer, and
incorporation of such a preference might be redundant, since whenever is is odd there exists a symmetric , optimal, Integer
parallel motions also minimize 1 d ,. The ml mapping is thus a solution. It is therefore reasonable to expect that In the first case
plausible method whether or not the motion of the elements is the perceived match will be unstable and asymmetric, and in the
ind eed independent. It should also be noted that the ml second symmetric and stable. This prediction is consistent with
methods requires only the measurement of distances between the observations of Kolers [1972] and of Attneave [1974).
elements but not of directions, a property that might have an
advantage in terms of economical Implementation. Since the Symmetry in the order of presentation
number of elements In a scene can be large. a computation of the When two frames fi and 12 are shown In apparent motion, the
optimal corres pondence based on a minimal number of perceived correspondence does not depend on the order of
parameters , and with a minimal number of Interactions, might presentation. That is, the pairing of elements remains the same
offer an important advantage, whether 11 precedes or follows 12 [UlIman I977a) This symmetry

is shared by the ml correspondence process. The optimal
Symmetry solution to the matching problem remains Invariant when the

One property of the human correspondence process is “a Input and output elements switch roles.
preference for symmetrical movement, more Important things
being equal” (At tneave , 1974 , p. 118). Such a symmetry property is The minimal cover propej~y
to be ex pected in any simp le, local network as defined In section The ml mapping is a minimal cover In the sense that it does
4. Furthermore, if there is a symmetry In the Input, then there not contain superfluous links. The removal of any link from the
must be a symmetric optimal match. Symmetry Is defined as a match will result in one input or output element “uncovered” (i.e.,
permutation a’ that “does not alter the problem”. That Is to say, without a counterpart). This property Implies the phenomena of
if q ,,, is the cost of the link between input element I and output split and fusion competition discussed in Ullman (1977~1 Figure
element J. and q’,,, is the cost of the link between i’(I) and w(J), 7 exp laIns the split competition. In figure 7a, elemen t Al is
then for all i and j . q ,,, — q’,,, If such a symmetry exists, then: presented followed by a pair of flanking elements BI and 82. Al
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is perceived as sp litting and matching both Al and 82. In figure inequality a ~ p. the implication is that a’ ~ p
’, tha t Is, a’ is

7b, a second element , A2 , is added to t he first frame. The minimal. I
resulting correspondence is Al -, 81, 42 -~ B2. while the link Al
-+ 82 disappears. It is as If A2 , by taking over 82 , competes The monotonicity property has possible application for the
wit h Al and prevents It from matching 82. In the ml mapping correspondence computation. For example, in eliminating wrong
the three links A l - 81, Al -, 82 , 42 -, 82, cannot co-exist since matches by checking for consistency with intermediate matches.
this maping will not be a minimal cover (Al -+ 82 Is removable). Suppo~e that an element is in  SI is matched with y in a
Similarly, Attneave [1974] described configurations in apparent subsequent frame S2, and z In a third frame S3. If the
motion where t he number of links is kept to the minimum correspondence is correct , the matches must be consistent, i.e., y —
required to supp ly each element with a partner. Observing this z. By acceptin g only consistent matches , t he correspondence
minimal cover property as well as such properties as symmetry process can reduce the number of wrong matches. Such a
and non-crossing paths, Attneave [1974) commented: consistency check can be performed for any correspondence

“It would appear that the system is exhibiting foresight , and scheme, regardless of monotonicity. However the monotonicity
one is strongly tempted to invoIce some deus cx machine, some implies that “false alarms” In wh ich a - z Is correct but the
superordinate, ratiomorphic control system that makes everything match is rejected. are highly unlikely. Observations of the
come out neatly” [Attneave , 1971, p. 116] human coorrespondence process suggest that the human visual

system does not use such consistency verifications. However, It
The discussion in the preceeding sections suggests that no such seems that, In accordance with the monotonicity property, the
global planning is required. A simple, local process can possess performance of the human correspondence apparatus Improves
all the discussed properties. and is in fact expected to exhibit monotonically with the rate of sampling.
them if it computes the ml mapping.

The shape of q(v) and some of its Implications
Monotonicity in the rate of sampling

Roughly speaking, if the minE d , mapping yields the correct The preference for nearest neighbors:
correspondence when the second view is separated by time It has been frequently noted that the human correspondence
interval t from the first, then for every t ’ < t the match will also process tends to match each element with Its nearest neighbor,
be correct. whenever such a choice Is possible without violating other

conditions. For example, In figure 8a, element Z can be paired
To prove the claim , we shall assume that the elements are with either Yl or Y2. Both matches will be legal, since in both
moving along straig ht lines (an assumption which will hold for each of the Input elements (X, V. Z) Is paired with at least one
short time intervals). Two snapshots of the moving elements are output elemen t, and each of the output elements ( Vi . V2) is
separated by time interval t are given. Suppose that the correct paired with at least one input elements. In such a situation the
match (i.e., the match in which each input element is paired with matching of Z with Its nearest neighbor will always be preferred.
the same element after the time interval t) minimizes I d ,. That is, i f dl  < d2 in figure 8a, the match Z -. Vi  w i l l  be
Then, for every t ’ < t , the correct correspondence will also preferred over Z -, V2. In figure 8b, on the other hand, Z will
minimize 1 d,. match V2 , since a match wit h its nearest neighbor Vi will
Proof: produce an illegal match.
Let v , be the velocity of the i” element , a will denote the total

distance I d , of t he correct match at time t, an d a ’ t he total The preference for the nearest neighbor might seem to suggest
distance at time t ’ . Let p’ be the tota l distance I d , of some that the correspondence method incorporates the assumption that

lower velocities are more probable than higher ones. We haveone-to-one match m’ at time interval I’. We wish to establish
noted, on the other hand , that in the low velocity range a morethat o” < es ’. From the match in’ at time t ’ one can obtain a

match in at time t: If a point a is paired by in with some point plausible expectation is that all velocities are about equally

y(t’) (i.e., point y at time t’), then in Is obtained by paIring is with probable. If this latter vIew Is correct, what might account for

y(t) The correct match Is y(O) -. y(t’) -, y(O. In m’ x(0) -, y(t’), the strong preference for nearest neighbors at all velocities?

and in in x(0) -. y(t). We shall denote by p the total distance of
The an swer is that , in the framework of the ml method , thethe new match in. From the assumption that the correct match

minimizes I d , at time t , a ~ p. To prove our claim, ~ 
neares t neighbor should be preferred regardless of the

therefore sufficient to show that a - a ’ a p - p ’. The probability distribution of velocities In the environment. Recall

contribution of element y to a Is v I and Its contribution to a’ Is 
that q(v), the function to be minimized by the correspondence

v t ’ . Let the difference between the two contributions be r — 
process, was defined as -log p(v), where p(v) Is the “tail” Integral
f ’ ”  p(u)du.v,(t - t ’) In match in a -. y(t) and In in’ a — y(t’). The difference v

between (he two contributions of y Is (d - d’), and (d - d ’) ~ r (the Since p (u)  a 0, p(v) is monotonically decreasing In v regardless of
trian gle Inequality). Similar inequalities hold for all the the shape of p. A correspondence process which minimizes q(v)
elements , hence p - p’ ~ a - a ’. Combined wIt h the known should therefore prefer nearest neighbors even If, for example,

- -- - - ------fl .- —- p 
— —
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high velocities were actuall y more probable than low ones. case , in contrast to the rule of non-crossing paths.

The convex region of g(v)
The following relation holds between the shapes of q(v) and the 7. The experimental determination of q(v)
underlying distribution p (v) .  Where p ( v )  is either constant of The optimal match between two collections of points is by the
increasing , q(v) is convex. Where p( v) decreases , q(v) can functions q(v). (q(v) can include the constant k of the modified
assume an y shape: convex , concave or linear. (for p(v) — ke~~ , ml method.) If the visual system incorporates a correspondence
q(v) is linear). It has been assumed (section 6) that for low method sim ilar to the ml mapping, can we d iscover
velocities p( v ) is roug hl y constant. In this region q(v) Is experimentall y t he function q(v) used by the visual system ?
therefore convex. Before outlining a way of investigating q(v), we shall examine

Implication to Ternus ’ configuration: the following question: can q(v) be determined uniquel y by
Ternus’ configuration in apparent motion [Ternus. 1926; Pantle examining the matches established by the visual system?
& Picciano, 1976; Ullman, l977a] is composed of two dots (A and Suppose that a function q’(v) exists , w hich always predicts the
B) presented in brief succession with a second pair (B , C) . Dots same matches as q(v) (i.e.. 1 q’, is minimal whenever I q, is).
A, B , and C lie on the same horizontal row (figure 9). Such a function q’(v) would be indistin guishable from q(v).
Depending on var ious  conditions, the perceived correspondence However , it is possible to show that , q(v) can in princip le be
can be in one of two modes. In the “coherent” mode the pair (A , determined up to a scaling factor. If only one-to-one mappings
B) moves as a unit to the right (i.e., the perceived correspondence are examined , q’(v) is indistinguishable from q(v) if and only If
is A -. B , B — C). In the “neighbor” mode B -, B, while A often q’(v) — cq (v) * b for some constants b and c. That Is. by
“Jumps Over” to match C. examining one-to-one matches , q(v) can be determined up to a

linear function. The following procedure is an example of how
In the convex region of q(v) the ml mapping implies the q(v) can be so determined. We shall make use of bistable
coherent mode of corres pondence. In the coherent mode the displays , similar to the Ternus’ configuration. If a bistable
dista nces of the match are both equal to d. In the neighbor configuration has two equally probable matches in and in’, then
mode. one of the distances isO , the other Is 2d. The convexity of lq , — Eq’,. where Eq , is the tota l cost of in and lq’, of in’. In
q(v) implies that: the Ternus configuration. when the transition between the modes

(22) q(0) . q(2d) > 2q(d) occurs , then:
Hence, the coherent mode minimizes I q ,. (23) 4(0) • Q(2v 5) — 4(v 1) 4(v 1)

The concave region of g(v) Let us arbitrarily set 4(0) to 0, and 4(vi) to I. Consequently,
At high velocities p(v) decreases and q(v) is no longer necessarily 4(2v a) — 2. The notation 4(v) rather than q(v) has been used to
convex. Existing data suggest that at the high velocity region draw a distinction between the function 4(v) (which is
q(v) is concave. The function q(v) thus assume a sigmoid shape, determined by the bistable configurations with 4(0) — 0 and
as diagrammed in figure tO . 4(v 1) — I) and the true function q(v) that we are after.

implication to Ternus’ configuration:
The sigmoid shape of q(v) implies that when v is sufficiently We ca
large, the ml method will prefer the neighbor o’,er the coherent 

n now use v 1 and v 2 — 2v 1 to determine new va lues of

mode. Figure Sc depicts the transition point between the two 4(v). In Figure 7 we can change v3 selectively while maintainin g

modes, where q(0) . q(2d) — 2q(d). Note that if the elemen t B i~ 
v 1 and v 2 fixed, until a bistable configuration is reached (i.e.,

displaced by a distance h to the left between presentations, the Al — 81, 42 -, Dl , and Al -, 2, 42 -, Di , are equally probable).
total distance of the coherent mode decreases (by 2h) while the Whe n this condition is reached , then 4(v 1) . 4(v1) — 4(v3) •

tota l distance of the neighbor mode remains unchanged. As 4(v 3). Hence, 4(v 3) is a lso determined (Figure 7b). Theoretically,
predicted by the ml mapping. In this version of t he Ternus this method can be extended to determine q(v) on a dense set of
configuration the preference for the coherent mode increases values (i.e. between any to known values it is possible to get
with h. another value). The function 4(v) can therefore be measured.

We no w come back to our original function q(v), which Is a
The “non-crossing paths” rule re-examined linear function of 4(v), that is q — aQ . b. To determine the

In section 6 we have suggested that the rule of non-crossing additive constant we can use bistabie configurations in which the
trajectories Is merely a reflection of minimizing I q, under low total number of paired elements is different in the two possible
velocity conditions. If this v iew is correct . and in the light of t he matches. Figure 7 Is an example of such a configuration. By
shape of q(v), one can expect the rule to break under specified graduall y increasing the distance y while keeping all the other
conditions. In Figure 4 the match,A1 — 81, A2 -. 82 , mInImizes distances constant, a blstable situation will be reached in which:
the total distance I d 1 and Is therefore ex pected to prevail under (24) q(v 1) * q(v~) * q(v 1) . q(v ,) — q(v 1) . q(v~) . q(v 3)
low ve locity conditions. However , at high velocities (e.g. short Substitutin g q — a4 . b, we get aQ(v 1) . b . a4(v ,) — a4(v 3) . b
ISI conditions), t he slgmoid shape of q(v) implies that the other
match, In which 42 -. 81, should prevail. This Is Indeed the Q(v~) and 4(v3) a re alread y known , so b/a is determined as well.
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Since q can be determIned only up to a scaling factor , we ContInuot4~ motiot,
conclude that q — c(Q + b/a) where c Is an arbitrary constant. The goal of this section is to extend the anal ysis from the

discrete presentation of two frames to continuous motion. We
shall see that the optimal solution can be established in the

8. Ext ensions continuous case as well by a simp le, local process . The network
The discussion thus far has concentrated on the correpondence that carries out this computation is a simple extension of the one
between two frames, containing points of equal intensity. In this described in sectIon 4, and reduces to It In the case of discrete
section the notion of seeking the most likely match between presentation.
elements via a simple local process, will be extended to include
various types of elements and continuous motion. In the continuous case time varies continuously, but we assume

that the location of the elements does not. Namely, elements can
Extending the set of elements be detected at discrete locations in the image. Unlike the discrete

As mentioned in t he introduction , the set of basic elements case , the a ppearance and disappearance of the eler,~ents at

matched by the correspondence process includes such units as different locations is no longer synchronized. We shall consider
edge fragments , line segments , and blobs. The main novelty the case of n elements moving about between times t — to and t —

introduced by extending the set of basic elements is that the T. As an Introduction to the general case we shall make the
optimal mapping is no longer determined by time intervals and assumption that at t — to and t — T  all n elements are present in
distances alone. The likelihood of a match between two elements t he image.
is influenced in the general case by other parameters . such as
orientation, length, and contrast. These parameters influence the The legal matches in this case are the following. Each of the n
likelihood of the match between two given elements , and elements at t — to has one link connecting it to a later element
therefore they enter the correspondence process via the “cost ” (i.e., an element that appears at a later time). Each of the n
function q. However the optimal mapping still minIm izes elements a t - T has one link connecting It to an earlier element.

+ k)x ,~, and can be determined by the local network Each intermediate element has two links, one to an earlier, the
discussed in section 4. other to a later element. By the independence hypothesis, the

optimal match is the one that minimizes Eq , over the legal
Some empirical evidence supports the view that the match matches (where i ranges over all the links in the match).
selected by the human correspondence process can Indeed be
predicted on t he basis a “cost function” with the following In the two frames situation the correspondence was equivalent to
properties: (I) It Is weighed by orientation, length, and Intensit y a cover prob lem on a bipartite grap h, with the bipart i te
as well as by distance. (2) The relative effect of the various structure playing an important role. We shall now formulate the
parameters is consistent with likelihood considerations. continuous corres pondence as we lt in terms of covering a
Examp les of (I): bipartite grap h. We shall view each element as a pair, composed
The lik elihood of crossing trajectories (section 6) increases if the of a “source ” and a “sink”. The sources are responsible for
elements across the diagona l, but not along the sides , a r e  establishing connections with later elements , the sinks with
identical. Similarly, one can favor selectively the neighbor or the earlier elements. Each source has as its initial candidates all the
coherent mode in Ternus’ configuration by mainipulating the later sinks within a certain spatial neighborhood. The graph of
similarit y (in terms of orientation , length, and Intensit y) of the possible pairings now becomes bipartite. the set of all sources
participating elements. being one component , and the set of all sinks the other. As
Exam ple of (2): before the optimal match can be found by:
Changes in length arid orientation of small line segments In the (25)

image are induced primarily by rotation in space (perspective Minimize Iq, x ,~
effects are of secondary Importance for small segments and short Subject to la ,3 a I for every I. where I ranges over all the
time interva ls). When a segment rotates In the image-plane Its sources. and to
length remains unaltered. If It rotates In depth, its orientation is Ix ,

~ 
a I for every j, where j ranges over all the sinks.

unchanged but its length decreases. If a Is the angle of rotation, As before the problem so formulated Is equivalent to the optimal
th~ ratio of final-to-ori ginal length In this last case Is cos (a). If correspondence problem provIded that x~ — I If the I”’ source Is
matches are selected on the basis of likelihood, and given space matc hed with the j ” sink , and x 1~ — 0 otherwise. Since on a
isotro py (I e., rotations in ever y direction are equally probable), bipartite graph x ,~ are guaranteed to be binary, the formulations
t he effect on the preferred match of a degrees orientation are equivalent. It Is also possible to bIas the optimal match
difference and cos (a) length ratio should be comparable. The towards a minimal number of connections by replacing q ,3 by
data in UlIman (l977aJ are In close agreement w ith this (q,~ • k) as was done previously. The problem so formulated Is
prediction. formally identical to that of section 4. Hence, the local process (in

equations 8 and 9) will converge to the optImal match.
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In the continuous motion correspondence the cost function q Uliman, S. 1977a. The Interpretation of visual motion. Ph.D.
depends not only on the elemen ts and their spatial separation, Thesis , M.I.T., Dep art ment of Electr i cal Eng. and Corn/ s .
bu t also on their separation in time. As might be expected, for Science.
the visual system q ,

~ 
(the cost of the link between elements i and

J) increases with the time interval that separates them. Other Ullman , S. 1977b. Transformabillty and object identltiy.
parameters (including velocity) being equal, the match which Perception & Psychoph y sics , Vol. 22. (4), 414-415.
minimizes separation in time will be preferred . The likelihood
of a matc h between a pair of elements, which Is Inversely related UlIman , S. 1978. Simple networks In visual information
to the cost q, decrease wit h the time interval separating the processing. In preparation.
elements. If this time interval exceeds some upper limit r, the
two elements are no longer considered candidates for a match. Warren, H. W. 1977. Visual Information for object identity in
Rather t han having a common time interval within which apparent motion. Perception & Psychoph ysics , 2! . 264-268.
corres pondence is established (the interval to - T in the previous
examp le>, each elemen t has  as po ten ti al ma tches onl y the
elements within a time interva l r In such a network there Is no
“first ” or “final ” sna pshots; the optimal correspondence is
computed continuously as the input elements are streaming in.
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standing prob l em wilt be described in detail.
Abstract Then the results of a two—dimensional problem

We apply semantic grammar to image under— involvi ng creation will be presented. However,
standing and creation. Understanding refers to the details of this second example are omitted
the problem of recognizing a given pattern , because of the tack of space.
C rea ti on refers to the search ing for a pattern
amid a chaos of primitives. 

~~ A ONE—DIMENSIONAL EXAMPLE
Two exam pl es are g ive n. — 

We use semantic grammar to recognize high-
ways and edges in aerial photos. The grey 1 ev—

!~ 
INT RODUCTION el distribution along a straight line segment

We propose the injection of semantic crossing the highway or edge is obtained by a
features into a context free grammar [1,2] for film scanner.
the purpose of image analysis. The a priori knowledge about the signal is

A feature vector is assigned to each termi— that it looks like one of the four paradigms
nat and to each nonterminal . A feature a, 8, y, a in Fig. 1. a, B are paradigms for
transfer function (which can be algorithmic) ~ the ideal edges. y, a are the paradigms for
attached to each production rule. The feature highways.
transfer function transfers features at the The grammar describing the ideal paradigms
right hand side of the production rule to the
lef t hand side nontermina l . Following Knuth
(1], we call his augmented grammar a semantic
grammar. It is very similar but not identical 1 : 0 • A B F
to the attribute grammar [3] [5]• 2 : 0 • D B A ; Fl

We have applied the semantic grammar to two
image analysis tasks: understanding and crea— 3 : 0 • D A F7
tion. By understanding we mean the recognition 4 : 0 • ~ B ; F7
of a given pattern. By creation we mean the 

• F2searching for patterns amid a chaos of prim i— 5 . A • ~ X
tives. 6 : X * D ; F3

The task of pattern understanding is accom-
plished as follows . After syntactic parsing, 7 : X • D A F
the feature vector associated with the root of 8 : B • b V ; F2
the derivation tree is sent to a discrimination 

Ffunction to determine the semantic well— 9 : V
formedness of the sentence. More generally , at 10 : y •~~~ B ; F6
any intermediate parsing stag e the feature vec— 

F8tor of a nonterminal can be checked and the 11 . ~ * a
pattern rejected if the feature vector does not 12 : B • b ; F8,
meet a prespecified criterion — in particular ,
we can im pose selection restrictions (6]. The 0 is the start symbo l , a, b, D are termi—
acceptance of an input signal is thus based on na l s, A, B, X, Y are nonterminals.
not only its syntactic structure but also its
semantic contents. The transformation , which brings the ideal

To do crea tion, the seetantic grammar is used paradigms to the realistic level , i s to rep lace
as a guide to control the searching processs. each occurrence of the symbol ~b by a sentence
For exam p le, we may want to search for long generated by the grammar:
strai ght l ine segments amid a chaos of edge
points detected by some local operator. To do i i : D • f D ; F4
that, we firs t dayelop a semantic grammar for
long straight tine segments. Fhen this grammar 1 2 : D • c B1 ; F4
is used to aid the search. At any stage of the
search, which edge point to look at next is 1 3 : D * d B ; F4
suggested by the appropriate production rules 2
of the grammar. T 4 : D • f ; F5

In this paper, the application of semantic
grammar to a one—dimensional pattern under— T S : B • c ; F5
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1 6 :  D •d ; F5 F 5 : A  .9

T 7 : B1 * d B2 ; F4 C (A) 0

T 8 :  D1 •d ; F5

1 9 :  D1 • f D  ; F4 W (i ) = W ( B )

Tl0 : B
2 

* c B
1 
; F4 F6 : A • B C

Til : B2 • c ; F5 A (A) = A (C)

11 2:  B
2 • fD  ; F4 W (A )=W (

113 : B
1 • f ; F5 R1(A) = R1(C)

114 : B
2 * f ; F5 R2(A) = 0 if W (B) > t

D is the start symbol , and c, d, f are ter— —
R2 (C), otherw i sem inals. —

E (A) = E (C)The transfer functions associated with the pro— —

duction rules are def ined as: 
F7 : A * B CF l :  A * B C D  — — —

RiCA) = Max (Ri (C), A (!~/W 
~~w c & = C ~~~? — C c ~

) — —

E (A) = C (C)C (A) = C (C) — —

W (A) = W ( C )
~2(A ) 2 i f ~~2 C C ) # O a n d R2 ( D ) * 0  — —

0 otherw ile 
R2CA) = 1 if R2 (C) � 0

— 0 otherwiTe

F8 : A •BRiCA) = Max (Max (R1(C) • RiCO)) , A (9) 1 W — —
E (A) = C (B)F2 : A . B C  — —
W (A) = U (A)A C A ) = A ( !)+A (C) — —
A (A) = A (B)

U = W + U (C)  — —

R2(A) = 1.E 
~& = E (~~) if C (~~.) = 0 

The u~derscored symbols like A are formal
parameters. Symbols with a~op designate(~ (B) + E (C)) /2 if C (C) # 0 features assoc i ated with the formal parame ters

RiCA) = Ri
~n parentheses, e.g ~ (A) is the C feature at-
tached to A.R2(~) = R2 

~? There aie five terminals , a, b, c, d, f. To
eac h terminal , there are three features at—F3 : * 
tached. Literally a, b, c, d, and f are five
tendencies in the input signal . a and cA (~) = A 
represent the tendency of going—up. b and d are
for going— down. f is for flatness. The extentU (~) = 
of going—up differentiates a from c. a stands
for long going—up. c stands for short going —

~lC~) = A C!)/w 
~~ up. Simi larly b Is tong going—down and d is

short going— down.R2(A) = U The three feature attached to the terminals

C (A) = 0 are ~~, ~~, and E. E refers to the center of the
F4 : ! 

~
. tendency. ~ refers to width of the tendency.

A C~) Max (A 
~~ 

A 
~ is a measre of the opposition (long/short).

U (~) 
z 

~ + U 
~ (a) = 1 or ~ (b) = means absol utely long.
Mor e specifically, let L() denote the heightC (A) • 0 • of the tendency. Then for a. b. we have

I N. 

—— -— —.- — . - — -  — — .—
~ 

—

p
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A (S) = (I(S)/N — t)1 (i—t) . 2. K. S. Fu, Syntac tic Methods in Pattern
1 Recog nit ion, Acade mic Press, 197~t

For c, d, we have
- 

3. P. N. Lewi s, B. J. Rosenkrantz, and R. Z.
A CS) = CL(S)/N

1 — t)/t] + 1. Sterns, Compiler Design Theory, Prentice
Ha l l , 1976.

N is the maximum height. t N is the thres-

hold for discriminati ng between ‘long ” and 4. 6. V. T,ang and T. S. Huang, A Semantic—
“short”. Syntactic Approach to Image Understanding

For nonterminals, there are two more and Creation, Technical Report, Sc hoo l of
features. These two features are defined by the Elec trical Engineering , Purdue Unive rsity,

transfer functions. 8.

The final semantic well—formedness test is:
5. 6. V. Bochmann, Semantic Evaluation from

U (0) > t A (0) < ~ 
Left to Right , Comm. of ACM, Vol. 19, No.

— 1 ‘ — 3 2, Feb. 1976.

Ri (0) > t 2 
6. 6. Leech, Semanti cs, Penguin books, 1976,— pp. 141—143.

R2 (0) ‘ 0.

C (0) is the location of the edge or the

leading edg e of the highway. U (0) is the

width . R (0) 1 indicates edges. R (0) = 2
indicates highways. t1, t, and t~ are prese t,
thresholds.

Exper imental Resu lt s
An aeri~T photograph is shown in Fig. 2.

The gray l evel along the white straight line
segments are used as the input s ignals. Each of
the 5 input signals Cone for each segment) is
parsed with the grammar described above to
determine whether it contains a hi ghway (a sin-
gle edge will be rejected).

Co r rec t answe rs were obta ined for a l l  f i ve
cases. Two exam ples are shown in Figs. 3 and 4.
Fig. 3 shows the gray l evel variation along
segment #3 of Fig. 2. A highway is recognized.
Fi g. 4 shows the gray l evel on variation along
segment # 5 of Fig. 2. No highway is found
here.

III. A TWO—DIMENSIONAL EXAMPLE
We use semantic grammar to look for air-

planes in the photo shown In Fig. 5. The task
is accomplished in three steps.

~i~rat, a local edge detector was used to ob-
tain edge points as shown in Fig. 6. Then, se-
man tic grammar for long straight line segments
was used to search for such items in the edge—
point picture. Finally, a semantic grammar for
air planes was used to search for airplanes.
The airplane is found as shown in FIg. 7. Note
tha t because the semantic grammar was developed
for complete airpl anes, the partial airp lane in
Fig. 5 was not detected. The details øf the
grammars used In this example can be found in a
forthcoming technical report [4].

REFERENCES

1. B. E. Knuth, Semant ics of Context Free
Languages, Math . Syst. Theo . Vo l .  2, pp.
127—146 , 1968.
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TL LT
Fig. 1 Four paradgms. a, B, represent edges.

y, a, represent highways.

-

Cl  . 
.

Fig. ‘ An aerial photograph.

___________  ~~~~~~~ 
1.~~~~~t
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Fi g. 3 Highway is bounded by the two vertical
lines. Its width is 26 pixels.

Fig. 4 No highway is found. 
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SYMBOLIC MATCHING AND ANALYSIS WITH SUBSTANTIAL CHANGES IN ORIENTATION

Keith Price

Image Processing Institute
University of Southern California
Los Angeles , California 90007

Abstract point is to show that symbolic techniques
Most previous image matching work has can be applied when there are substantial

assumed that the two images being matched global changes in addition to the normal
are already in close alignment or that local changes which occur between two

views of one scene.transformations are given which will close-
ly align the images. This paper shows how We will first discuss the images
symbolic matching techniques can be applied which will be used for this experiment and
to pairs of images to accurately locate the describe the results which are desired.
corresponding objects in the two views when Then we will present an outline of the
the required transformations are not known symbolic matching procedure [4] and some
a priori. We present two scenes where initial results using this method. The
there are major orientation differences results suggest some modifications which
between the two views and show the results are then described , followed by more
of the matching procedure on these scenes, extensive results using the modified

procedure .

Tasks for Matching

The pairs of images which we will useIntroduction here have beer. used earlier [7], but in
Several methods have been developed the previous analyses there were no sub-

which can be used to find correspondences stantial global changes. We start with a
in pairs of images of a changing scene pair of images of a scene taken from
[1-6]. But , for various reasons, these slightly different positions , and generate
systems did not operate on images which had the orientation changes by rotating the
major changes in orientation - unless an digital representations of the second image
approximate value for the difference was of the pair. The original first image and
known a priori. Image based methods [1-3] the rotated second images are then proc-
were not used to attempt a solution to this essed to generate symbolic descriptions (a
problem because of the complexity of segmentation into distinct parts plus a
searching for corresponding points. Other description of the segments) which are used
work [5 ,6] assumes that the views are close by the matching procedures. The details
- in time and position - so that major of the segmentation and description are
changes in the point of view are not p05- given elsewhere and are not important for
sible. But in a more general image match- this paper [4,7,8].
ing and analysis system [4], this type of The basic task to be executed for theproblem must be considered, images presented here is to find the cor-

We have undertaken a series of responding regions in the two images when
experiments to examine whether the matching there is a large , but unknown , orientation
techniques described in [4] can be easily difference. A by-product of this matching
applied to pairs of images which have should be some indication of the actual
substantial global differences, In this orientation difference. The orientation-
paper , we present the results of applying dependent features are not used even if they
this basic technique on pairs of images are independent of the rotations used in the
with orientation differences of 450 , 900 experiment (e.g. ratio of area and area
and 180°. These orientation changes are of minimum bounding rectangle).
in addition to other , less drastic , changes The first pair of images , a house , iswhich may occur between the two views. The shown in Figure 1. These are color images,
*This research was supported by the Ad- shown here in black and white , so there are
vanced Research Projects Agency of the several spectral features available for use

in the segmentation , description , and match-Department of Defense and was monitored by
the Wright Patterson Air Force Base under ing operations . Figure 2 gives the segment-

ations of the original first view and theContract F-33615-76-C-l203 ARPA Order No . three rotated second views . There are some3119.

_____________ _____ — .- .~~ 
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differences between the regions segmented different values.
in the first view and each of the second
views , and a few differences among the Known global changes between the two
three second views. The images are not images can be used to adjust some feature
square so the display program puts a white values, such as size , position , and
band on the right or bottom , depending on orientation . But , these changes are not
which dimension is smaller. Additionally given a priori and must be computed from

a few initial pairs of matching regions.unsegmented areas are displayed as white Thus , the very clearly defined regionsareas. should be matched first so that they may
The second pair of images is shown in be used for calculating some global changes.

Figure 3. These are side looking radar In this context , clearly defined regions
views and there is only one spectral input , are regions with extreme values for some
so that a good segmentation is more dif- feature , e.g. largest , brightest , longest ,
ficult and the description is less detailed etc.
than the preceding house scene . The We will now present results of apply-important changes in this scene are in
objects which are too small to be segmented ing this procedure to the rotatnd images
by our general segmentation techniques but and discuss what changes are necessary to

achieve accurate results.might be easily located by special methods .
Figure 4 gives the four segmentations which Initial Resultswill be used. There are a few large
regions segmented in the first view which Figures 5 and 6 show the results ob-
are not segmented in the second views , tam ed with the above matching procedure
These differently textured regions vary in for the house scene (90° and 180°). In
size and appearance between the two views these, and all other figures , the cor-
and would not be used in the matching, responding regions are displayed at the
therefore they were not segmented in the same intensity in the pair of outp’Jt
second views . The regions which are seg- pictures. Similar results are obtained
mented are the untextured areas , all for 45° and for matching the second image
uniformly dark , some of which appear the to the first , but the point here is to
same in both views. The locations of these show some of the problems . The orienta-
few regions can be used to determine the tion feature adjustment was computed , using
global changes and could aid another system the sky or roof, and was also used to get
in locating the detailed changes. these results , but there are still many

errors. Most of the unmatched regions
Matching Procedure Outline would match to an incorrect corresponding

A more detailed description of the region if a match is attempted.
matching procedure has been presented else- The major problem is that the location
where [4] and will only be outlined here. of the region is needed to correctly lo-
This matching procedure uses a feature cate matches for many of the smaller
based , symbolic , description of the images. regions . This is especially the case when
The basic unit in this description is an there are size and shape changes due to
individual segment generated by an automat- segmentation differences , such as in the
ic segmentation procedure [8]. These bush , window , and door regions. If exact
segments are usually regions in the images, camera transformations are known then the
but linear features can be described , too , locations in one image can be mapped exact-
Features which characterize properties such ly into locations in the other , but this
as color , texture , size , shape , position , transformation is not known . We are using
and adjacencies are used, many features other than position so an

The matching procedure is also given appropriate mapping is sufficient to allow
an indication of which features are avail- the use of the absolute position features.
able for matching the current pair of Given 3 pairs of corresponding regions we
images , and what strength to give to the can compute a transformation which will
mismatch using each of these features . For map coordinates in one image to coordinates

in the other by solving 2 sets of 3 equa-example , some features are not always corn- tions and 3 unknowns. This transformationputed , red and green in a black and white is not optimal for all regions in thepicture , and some are given as more likely image and only accounts for rigid , globalto change than others and are thus given
less weight in the matching operation . The changes - e.g. rotations and translations .
match procedure computes a rating for the But this transformation does make the
match between two differences of feature position features usable when there are
values. The weights used in the stan are large global orientation changes.
composed of a normalization factor to make 

Final Resultsthe contribution from each feature approx-
imately equal and a strength factor to Figures 7-9 show the results for the
account for the different strengths assigned house matching using the computed location
each feature . There is only a small set of transformations - a different transforma-
possible strength values , currently 3 tion is computed for each image pair.
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Results are given for matching regions in symbolic technique can be used to find
image 1 with image 2. The results for corresponding areas in pairs of images
regions in image 2 with image 1 are similar , even when there are major global changes.
In this set of images the sky, lawn , and We would expec t similar , or better , results
one of the wall sections are the initial 3 for pairs of images with global scale,
regions used for the transformation corn- position , and color changes. We expect
putation . The transformations do not less reliable results for scenes with
rotate the coordinates precisely 45°, 90°, major global changes in all four (orient-
or 180° because of differences in segment- ation , scale , color , and position) because
ations (the sky and lawn are adjacent to so few features are invariant to all these
the edge and this causes some changes in changes (e.g. relative size , shape measures ,
size and shape) and a small orientation and neighbors). But if a controlling sys-
difference which existed before the large tern could provide proper guidance , cor-
rotations were added. But , the adjustment responding regions might be located which
is accurate enough to use the location would account for each of the global
feature in the match operation. The changes , separately. For example , scale
results at 450 are less accurate than for changes could be based on matching the
the other two, but most of the extra mis- largest regions , orientation changes might
takes are accounted for by the greater be based on regions with distinctive shape ,
differences in segmentations (see Figure 2). and so on. But , primary regions with Un-
When two regions in one image correspond usual , or extreme , feature values could be
to one region in the second image, such as used when there are many global changes.
the 2 “bushes” on the right side nf the In conclusion , symbolic matching methods
house in the second image appearing as one can work with major global differences ,
region in the first image , only one cor- these differences can be detected , and
respondence appears in the output . they can be used to great advantage in

later analysis.Figures 10 and 11 present the results
for the radar images. There are very few Acknowledgements(i.e. 6) corresponding regions in these
two Images and two of the pairs have very The author is at the Image Processing
large size changes. The results for 180° Institute , University of Southern Calif-
are identical to those for 90° and are not ornia, Los Angeles , Cali .,rnia 90007.
presented. Two of the corresponding pairs This work was supported in part by the
may be difficult to see since they are Advanced Research Projects Agency of the
nearly white in the results picture - one Department of Defense and was monitored by
is a correct match (the reversed “C” shape the Wright Patterson Air Force Base under
in the lower left), and the other is in- Contract F-336l5-76-C-l2O3 , ARPA Order No .
correct (a blob near the top right). The 3119.
reverse “C” region , the river (lower right)
and the blob above the river are the three References
regions used to compute the transformation [1] G.R. Allen , L.O. Bonrud , .1.3. Cosgrove ,in this set of images. This scene shows and R.M. Stone, “The Design and Usethat when these symbolic techniques are of Special Purpose Processors for theapplied to scenes with a reduced feature Machine Processing of Remotely Sensedset - no colors and no neighboring regions , Data ,” IEEE Symposium on Machineaccurate results are possible. ProcessThjThf Remotely’~~ensed DataPurdue Univ~~sity, October 197~

T”
Summary

The complete symbolic registration [2] L.H . Quasi, “Computer Con.parison of
Pictures ,” Ph.D. Thesis , AIM-144,system presented here has the following Stanford University , Stanford ,basic steps: California , May 1971.

1. Segment both images of the scene. [3] H.P. Moravec , “Towards Automatic Vis-2. Generate a feature based descrip- ual Obstacle Avoidance ,” in Proceed-tion of the segmented images.
3. Find corresponding regions for the ings IJCAI-77 , Cambridge , Massachusetts ,

1977, p. 584.most obvious regions.
4. Set orientation and size correction [4] K. Price and R. Reddy, “Matching

factors , if necessary . Segments of Images ,” submitted for
5. Find several corresponding region publication IEEE-TC .

pairs. CS] W.K. Chow and .J.K Aggarwal , “Computer6. Compute art approximate coordinate Analysis of Planar Curvilinear Movingtransformation , if necessary ,
7. Using transformed positions , find Images ,” IEEE-TC 26, 1977, pp . 179-

185.all corresponding region pairs ,

The matching results depend somewhat on [6] H.H. Nagel , “Formation of an Object
Concept by Analysis of Systematic Timethe auality ~f the segmentation , but the Variations in the Optically Perceptibleresufts of these experiments show that this Environment ,” Computer Graphics and
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SOME RECENT RESULTS USING

RELAXATION-LIKE PROCESSES

Azriel Rosenfeld

Computer Science Center
University of Maryland
College Park , MD 20742

ABSTRACT in Figure 1. The image was hand seg-
mented into five regions as shown in

This paper describes a number of re— Figure 2. The Mahalanobis distance from
cent experiments involving the use of each pixel to each of these clusters was
synchronous iterative processes in low— computed . The initial classification was
level computer ~~~~~~~~~ 

based on smallest Mahalanobis distance.
Figure 3 shows this initial classifica-
tion. The error rate was 5.6%.

In the postprocessing approach , if a
INTRODUCTION pixel P had six or more neighbors that

Synchronous iterative processes (“re— belonged to class C, P was reclassified
laxation methods”) have many potential as C , and this process was iterated .
applications in low—level computer vision. Figure 4 shows the results of the first
A review of many of these applications can and sixth iterations. The error rates
be found in (11, and some further work ~~ 

are 5.2% and 5.03% , respectively.
sunurarized in [2]. This paper briefly do- In the probabilistic approach , class
scribes several recent developments, probabilities were assigned to each pixel

P ; these were defined by
MULTISPECTRAL PIXEL CLASSIFICATION

Classification of image pixels based d.
1P. = — -on their spectral signatures is commonly 1

used in the analysis of remote sensor
imagery, and has also been used to segment
other types of color images [3, 43. The where d. is the Mahala nobis distance to
results of this classification are often the ith1cluster mean . These probabilities
noisy , since the pixels are classified in- were then adjusted using the “relaxation ”
dependen tly of one another. To reduce formula of [1-21 , with the compatibility
the noise , a postprocessing technique can coefficients defined by mutual informa—
be used; e.g., if most of the neighbors of tion as in [2). The errors after eight
pixel P have been classified as belonging iterations of the probability adjustment
to class C, then P itself is reclassif ied process are shown in Figure 5; the error
a~- class C. rate is 1.9% , a major reduction.

This postprocessing approach is based For comparison purposes , an iterative
on very little information about the preprocessing technique was also used on
pixels ; it makes use only of the (most the same data . This technique is a
probable) classes to which they were multispectral analog of one of the noise
assigned, but not of how close they came cleaning schemes described in [1].
to being assigned to other classes. A Specifically, each pixel’s (red, green ,
better informed approach might be to blue) color vector was averaged with six
classify each pixel P probabilistically, of the color vectors of its neighbors —-
i.e., to estimate the probability p1 that namely, those six that were closest to it

in color space. After this averaging stepP belongs to each class C1, and then to (which could be iterated), the pixel was
adjust these probabilities based on the classified using closest Mahalanobis dis-
class probabilities of the points adjacent tance , as above. The results of this
to P. classification , after one and two iter-

ations of the averaging process , are
Preliminary experiments have been shown in Figure 6. The error rates areconducted to compare this prbbabilistic 5.35% and 5.04%.approach with the simple postprocessing

approach described earlier. These experi- The results of this experiment
ments made use of red , green, and blue suggest that the relaxation approach may
color separations of the house image shown be more useful than simple pre- or post-
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processing in improving the results of c) In matching two relational
multispectral pixel classification, structures, nodes can be prob—
Similar results have also been obtained by abilistically paired of f based
E. Riseman. Further experiments using on their similarity . These prob—
LANDSAT data are in progress. abilities can then be adjusted ,

depending on whether or not other
DETERMINATION OF COEFFICIENTS corresponding pairs appear to

In [2] it was shown that reasonable satisfy the proper relations with
coefficients for a curve enhancement re- respect to the given pair.

laxation process can be defined by comput— Results on these applications will be re-
ing the mutual information between peirs ported in a subsequent paper.
of initial curve probability estimates (at
various slopes) at pairs of neighboring
points. These initial estLt.mates could be
obtained from the given image, or from any REFERENCES
image having a reasonable distribution of
curve slopes. More recent experiments in- 1. A. Rosenfeld , Iterative methods in
dicate that usable coefficients can ewen image analysis , Proc. IEEE Conf. on
be obtained by applying curve detectors to Pattern Recogi tion and Image Process-
a pure noise image. This is because when ing , June 197’,, 14—18.
a detector responds , the probability of a .,
response at a neighboring point, corres- . . osen e e axation me~~o S. re-

ponding to a smooth extension of the cent developments, Proc. Image Under—

curve, is far above chance, since the de- standing Workshop, October 1977 , 28—

tectors at neighboring points overlap 30.

greatly. 3. R. Ohlander, Analysis of natural

this way is shown in Figure 7 and results 

Ph;D. Thesis, carnegie-Mellon

of using them for curve enhancement are
shown in Figure 8. These results confirm 4. B. J. Schachter , L. S. Davis, and A.
the idea that the coefficients that should Rosenfeld , Scene segmentation by
be used to enhance the output of the de— cluster detection in color space ,
t~ ctor depend on the definition of the de- SIGART Newsletter , No. 58, June 1976,
tector itself , and not on the statistics 16—17.
of any particular type of input data.

OTHER APPLICATIONS

A number of other experiments using
relaxation-like processes are in progress;
they are described briefly in the follow-
ing paragraphs.

a) In the recognition of mechanical
par ts , pieces of object boundary
extracted by a segmentation pro-
cess can be classified probabil—
istically as belonging to various
portions of a given mechanical
part. The class probabilities
can then be adjusted , depending
on whether or not other portions
of the given part appear to be
present in the correct (approxi-
mate) relative positions .

b) In matching two sketches of a
given scene (or in matching a
sketch against a segmented image
of the scene), feature points on
the sketches can be probabilisti-
cally paired off based on their
similarity. These probabilities
can then be adjusted , depending
on w.~ether or not other corres-
ponding pairs appear to be pre-
sent in the correct (approximate)
relative positions.

____ p .
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Figure 1. Red , green, and blue components of house picture.

Figure 2. Results of hand segmentation . Figure 3. Results of initial classifica-
tion.

~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Figure 4. Results of iterations 1 and 6 of nostprocessing.

1~1?
Figure 5. Results of eight Figure 6. Results of ~.terations 1 and 2iterations of relaxation, of preprocessing .

. . . 

.
~~~~~~~ . ~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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Figure 7. Mutual information coefficients
obtained by applying line detec-
tore to noise.
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Figure 8. Results of using the coefficients of Figure 7
in a curve enhancement relaxation process.
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A SYNTACTIC APPROACH TO SHAPE RECOGNITION

K. C. You and K. S. Fu
School of Electrical Eng ineering

Purdue University
West Lafayette, Indiana 47907

picture enhancement, boundary detection, tracing,
approximation , etc. [11—13]. In this paper, we as—

ABSTRACT sume that the image is clear and the shape pattern
Syntactic method is used to describe the struc can be easily extracted , since our interest is in

ture of a shape by grammatical rules and the local the latter two steps.
detai ls by primitives. Four attributes are pro— Usually, the primitive set has a small number of
posed to describe an open curve segment, and the elemer .ts, which are quite different from one anoth—
angle between two consecutive curve segments is er [1,9]. This ki nd of primitive set is not suffi—
used to describe the connection. The property of cient to describe the shapes which are similar , but
the attributes and the recognition capability are slightly different in details for different
stud ied. Two algorithms which util ize the semantic classes. In our method, the primitives are defined
and syntactic information to perform the primitive wi th four attributes, which allow a large number of
extraction and syntax parsing at the same time are possible primitives. The attributed grammar [15]
implemented . This approach attempts to develop a has a value part and a symbo l part for each primi—
more general method for shape recognition. tive or nontermina l . The value part may have

several values called attributes. There are rules
for processing the attributes corresponding to each
symbo l ic production rule. If the attributes are
considered carrying semantic information about the
shape [1], we actually process both semantic and
syntactic information at the same time.

1. INTRODUCTION The primitive—extraction procedure somehow imi—
In the past years, syntactic techniques have tates the human recognition process. In general ,

been used for shape recognition in many applica the human recognition of primitives is very corn—
tions. The general treatment of syntac tic approach ple x, it utilizes both local and global informa—
and a review of earlier literatures and applica tion . Since the local information is usually used
tions can be found in the book by Fu El]. Recent— in step 2 for extraction , and the globaL informa—
ly, a number of papers have reported various new tion is used in step 3 for parsing [14], we there—
results of this approach (2—10]. The syntactic tore combine the two steps into one to obtain an
method is capable of using the primitives to opt 2~al solution. That is, we use the production
describe the local details and the production rules rites to guide the primitive extraction , or say,
to describe the global structure. The extraction the extraction is embeded in the parsing .
of primitives and the construction of production Our approach started from the geometrical
rules have been problems for research. If the analysis of the general shape patterns, and we did
primitives are very simple curve segments with not add any restriction for special applications in
fixed l ength, then we may have to use context— the development. Hopefully, the proposed method is
sensitive grammars to take care of the size prob— general enough for a broader cla:s of problems. Of
1cm. In fac t, the complexities of primitives and course, fur ther generalization or modification is
production rules are flexible. We may use sophis— possible.
ticated production rules for simple primitives or
v ice versa. In this paper, we propose a set of 2. ATTRIBUTED SHAPE GRAMMAR
more sophisticated primitives , so that we could In this section we propose a new descriptive
hopefully solve the shape recognition problem method for curve segments and the connections of
w ithout requiring context—sensitive grammars . the segments. Then, the grammars used are cx—

In the following paragraphs, we would refer to a plained.
shape, or a shape pattern, as the outer boundary of
an object In the two—dimensional image. Conven— Definition 1: A curve segment, X 1 X2, Is a direc—
tional ty, the syntactic recognition of a shape con— tional line with a starting point and an ending

first traced out from a two—dimensionaL Image. point X2. The curve segment has a curvature func—
Secondly, the shape pattern is passed through a tion f(S) I th d~ I ‘ 0 5primit ive—extraction procedure, so that It can b: where L is the total length of the curve segment. ’

representation is processed by a syntax analyzer Definit ion 2: A simple curve segment is a curve
with the knowledge of grammars. For the first segment wiTh either f(S) > 0, or f(s) < 0, for
step, many authors have reported the techniques for o £ <1. 

—
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See Figure 1 for illustrations. Definition 7: If a curve segment N is broken into
two curve segments, N1 and P42, with a connection

To charac terize a simple curve segment, we found
that four attributes are sufficient. They are dc- angle primitive a, then there is a production rule,
fined as follows. N * N1aN2.

Definition 3: The C—descr iptor of a curve segment The descr iptors of them have an interesting addi-
tive property.

p = )(
1X2 has four attributes , ~, L, A, and S, i.e.

Theorem A: Add itivity.
D(p) = (t, L, A, 5). If N N

1aN2 wi th descriptors D(N) (~ , L, A,S) ,

L L D(N
1) = 

~~~~~ 
L1, A 1, 

~~~ 
D(N2) = 

~~2’ 
L2, A2, S2)Where ~ = X

1x2, L =f ds, A =4
~ 
f( L)dt 

and D(a) = a then

1 s 
~~~~~~~~ 

+~~2, L L 1 + L 2,A A 1 + a + A 2 and
and S f  Cf f(L)dL —

0 0
S = S

1 + S2 + ~[(Ai+a) 12 — (A 2+a) Li]
~ is the vector pointing from to X2, L is the

The proof can be found in [16].total Length of the curve, A is the totaL angular
change, and S measures the symmetry. Fi gure 2 iL-
lustrates the function of S. When p is symmetric , Definition 8: D(N ) + D(N

2) denotes the above addi—S = 0. If p is not symmetric , then S > 0 when p is — 1 a
declined to the left, and $ < 0 when p is declined tivity.
to the right. Somehow, S measures the degree of
declinat ion. But S measurement becomes Less mean— Corollary A.!: If N * N1aN2 t hen
ingful, when the curve segment is not simple. The
four a ttributes do not uniqueLy define a curve seg— D(N) D(N1) ~ D(N2).

ment unless more restrictions are added. For exam— Theorem 8: The addition, is associative.
pie , S = 0, A = 0, 1 = ~~ , the curve segment is a If N -

~ N1a1N2a2N3, thenstrai ght line vector, ~~.
If a shape pattern is broken into shorter curve D(N) = D(N

1) ~~ 
D(N2) ~ D(N3)segments, each curve segment can be characterized i 2

by a C—descriptor , we need a primitive to describe = (D (N1) • D(N2)) 
~2 

D(N3)the connections between curve segments.
D (N

Definition 4: An angle primitive is a primitive 1 
~~ 

ED(N2) e2 D (N3)]
wh ich specifies the connection between two consecu— The proof is obvious.
tive curve segments.

Because of Theorems A and B, the rules for at—
Definition 5: The a—descriptor of an angle primi— tributes are obtained for each symbo lic production
tive, a, i~as onl y one attribute, D(a) A, wh ich rules in the att ribu ted grammar [15]. Since a
specifies the angular change at the concatenating shape is a closed curve, we can def ine the point,
point of two consecutive curve segments. which is first found in tracing as the starting and

end i ng poin t. Thus, a shape is described by a
Definition 6: A curve primitive is a curve segment curve segment with the same starti ng and ending
which is nol broken into shorter curve segments . point, and the angle primitive which specifies the

angular change at the point. A general form of the
Remark: A curve primitive Is not necessarily a sim— attributed shape grammar is G5 

= (V 5, T5, 
P
5, S~

)
p Ie curve segment. where S~ is the starti ng symbo l with special •ttri—

Example 1: If a curve segment N is broken at bute 5, which is the label of the pattern.

p oint X3, we ma y define curve segments X1X3, X3X2 = 

~~~ 
N 1 S)

corres pondingly as curve primitives p 1 and p2, with
an angle primitive , a, be tween them. (See Figure T5 = (F’s, A’ s I F: curve primitive ,

3.) Thei r descriptors are: A: angle primitive >

D (p1) (~~ , L~, A1, ~~ ~ ~~~ P5: S 1 • (XA )*XA (Answer
c
) ; c • &

D(p 2) ~~2’ L2, A2, 
~~ 

e2 N .  (XA)*X ; D (N) * (D (X) •)*D (x)
AD(a) a

~~
N. LN, AN? ~~ ‘ 

= where X c cN’ s,F’s}

— -r— , ,
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(Answer
c> and c * & mean that if the parsing is as primitives to reduce the number of primitives,

and consequently reduce the problem of extractingsuccessful , the shape pattern is recognized as the primitives from the noisy shapes. The assignmentclass l abeled by c.
Since the attribute rules can be directly ob— of primitives is very fLexibLe.

tam ed from the production rules, they are omitted
in the following example. The correspondent di— 3. COMPUTATION OF C—DESCRIPTORS IN DISCRETE CASE
agrams are shown in Figures 4 and 5. The curvature function f(S) in discrete case is

a summation of pulse functions. It is much easier
Example 2: The shape grammar for airplane 8AC 1—11 , if the descriptors can be computed by additions and
6 = (V , T , P , S ) multiplications instead of integrations. By apply—
c c c c c ing additiv,ty, we can obtain very efficient compu—

= ~~~ ,N . 1 < tations. We first derive two more corollaries from
c c ci — — Theorem A.

T = -CF ., A I 1 < j < 15, 1 < k < ?‘} Corollary A.2: If N2, in theorem A is a stra ightc c j  ck — — — —
P
c : line vec tor, i.e. A = 0, S2 = 0, then

(1) S * N 1A 1N 2A 2F 1A 2N 3A 1N 4A 3 = + , L = Li + L2 , A = A 1 + a,C c

(2) S • N A F A N 3A 1N 4A 3N 1A 1 and S = S
~ 

+ AL2 + -~~
. A~L1 

— ~~
. ALc c2 c2 ci c2 c

(3) S • F l A c2 NC3AclNc4 A c3NCl Aci Nc2 A c2 Corollary A.3: If N1 is also a straight line vec—c c
(4) S * N 3A 1N 4A 3N 1A 1N 2A 2F 1A 2 

tor, i’.e. A 1 = 0, 
~i 

= 0, then
c c

(5) S • N A N A N 2A 2F 1A 2N 3A 1 
= 
~1 

+ , L = L1 + L2 , A = a, and
c c4 c3 ci ci c

(6) S • N 6A 2F 1A 2N 7A 4N 8A 3N 5A 4 
S = aL2 — -~~ a(L1 + 1

2
) = AL2 — .

~~ AL
c c

Th~orem C: Rec ur sive Equat ions for Descr iptors
c c8 c3 c5 c4 c6 c(7) 5 • N A N A N A 

2F 1A 2N 7A 4 N = (v 1v2 ~~ 
vm) Is a vec tor chain. Let M~ denote

(8) N • F A F Cv v.)1 i.e. N = N, a
~ 

is the angle betveenci c2 c5 c3 I

(9) N * F 2A cS Fc4 v
~ 

and v 1~ 1, D(v.) (~~, L1, 0,0), i < i <m.c5 c
(iO) N * F SA c6F c6 A c? FcT Then D(M~) ~ Mj ’ LNi.. AN)~ 5Mj~’ 

1 < j < m, wherec2 c

(11) N
~o
.. F 8A 6F 6A 7F 7

~Mj 
= 
~N(j—1 ) 

+ 
~j 

= 

~t ~i ‘(12) N • F 9A 7F 10A 6F 11c3 c

c7 c(13) N -. F 
9

A
7

F 10A
6

F 12 
= “

~~
‘ L1Mj 

= LM (j_l) + I.~ 
~~~~(14) N - ‘F A Fc4 c13 c5 c14

(15) N • F i5~c5 Fci4c8 c
In Exam pl e 2, th e S product ion rules cove r the mos t 

AM. = A . + a. = a. ~] Me—i ) j—1 f-’. i1= I
possible starting points of the boundary. Due to
the rotation of the object, the starting point may = — .

~
. A

~~
LMibe any of the convex points. Instead of looking

through the whole boundary chain for a fixed start-
ing point, we use the S production rules to take 6Mj = 6M(~—i) 

+ ANi Lj + A~q~L~ = j~ ~ a5L1care of these most possible starting points so that
we onl y need to look over a short portion of the
boundary chain for a sharp convex point, that would
be the starting point. Because of the noise, some— Theorem C can be proved inductively using corollary
times the breaking points can not be found in ex A.2 and A.3. With this theorem, the attribute can
tracting primitives. For instance, i f the corner be computed exactLy instead of approximately in theof angle primitive A d in Figure 4, i s smeared so discrete case. For a boundary chain of m vectors,
that F 5 and F 3 can not be extracted then we can if there is enough memory to store all the c—

descriptors calcula ted for later processing, weavoid this trouble by finding Ac4 to extract F~8 need to compute m(m+i)12 possible c—descriptors in
and F . With this idea, the noise problem at the the worst case. According to Theorem C, each c—c4 descr iptor needs 2 muLtip lications, S add itions,breaking points can be taken care of by employing
different segmentation. This example has essen— and i shift. That implies, it takes about m2 mul—
tially two sets of segmentation, Figures 4 and 5. tip lication time to compute all the possible c—
The non—simple curve segment, F 6 and Fc lO are used descriptors.

I—

-p
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4. RECOGNITION OF PRIMITIVES 5. PARSING SCHEMES
As men tioned previously, a curve segment can be We have developed two recognition algorithms,

descr ibed by four attributes. But the translation , wh i ch acce pt the shape pattern i n form of vec to
sca ling and rotation of the obi ect may cause dif— chains, and perform the primitive recognition and
ferent values of the attributes, and also introduce parsing . The first one is a modifi ed Earley ’s at—
different noise in digitization. Fortunately, the gorithm . Earley ’s parsing aLgorithm [14] consists
attributes can be transformed into a multi— of two parts: parsi ng table generation and parse
dimensional space, in which the transformed extraction from the table. For classificati on pur—
descr iptors are theoreticaLLy invariant under above pose, onl y the first part is sufficient. There—
operations if it is noise—free. fore, we have onl y modified the first part of the

al gorithm. The fLow—chart of the modified algo—
Definition 9: Transformation T:D(p) • T(p), or rithm is shown in Figure 6. The grammars used are

in context—tree form as described in Section 2.
T:(~, L, A, 5) • (f., ~~

._, A, ~-), V
i 

v~ is the unknown vector chain. 1(X)

denotes the transformed descriptor of a curve seg—

where C = I~ I ,  L0 is a normalization factor, which 
ment, X £ (V5 U T 5) — $~, T(i,j) denotes the

transformed descriptor of the subchain
could be the total L ength of the shape pattern.

The proof of the invariance of the transformed 
V
i
V
I,i ~~‘ V

)
~ I~ •

~~~~ 
are the parse lists.

c—desc riptor is omitted here. Because of the in— For items [A * a B, i] in ~~ 1 < i < j, (1) iff
variant property, the recognition of the primi 

*tives, and hence the whole shape, are based on the a � A (empty string), then a * v. v., (2) if
transformed descriptors. If two curve segments are a = A, then i = 

~
. 1(X)  T ( k ,j) imp lies thatmi rror images of each other, their transformed

descr iptors are only different in the sign of S/L. 
Vk ~~~~ 

v~ is recognized as X, or say,

Consequently, if it is necessary, the storage for £ X. Readers may refer to [17] for de—
transformed descritors of the bisymmetric shape, 

Vk ~~~~ v~
e.g. top view of airplanes , can be ha lft y reduced tails.
by storing them in pairs. We studied the distribu-
tion of the values in the transformed space under The Modified Earl ey ’s Algor it hm
var ious rotations to help us understand the noise Input: A context—free shape grammar and an unknown
effec t on the transformed descriptors , cha in of m vectors.

The details of this study and a relevant experi
ment can be found in [17]. For each curve priie i Output: “Accep t” or ‘~Reiec t’~
tive, the transformed descriptors under various ro-
tations form a cluster in the multi—dimensional (1) Add [S • a,i] to Ii for all S * a in P5
space. The distribution of each cluster is consid . —

erab ly close together and any two clusters are well (2) (a) If [N • a . BB,i] is in I. and B * y in P5separated . We also noticed that the noise at the 3
breaking points has much bi gger effect on the at— then add [B • y,j] to I.

)tributes than that at the middle of the curve seg— (b) If (N * a ,i] is in I.
ments. From above study, we suggest to recognize a
cu rve primitive by means of a distance measure in then for al [B * B • N y,k] in
the 4—dimensional transformed attribute space. add [B * SN y,kJ to I
Without losing generality, we assume each curve
primitive , Q, has a referenced point, 1(Q), in the (3) 1 =

4—dimensional transformed space. If there is a if j > n+1 goto (4)
curve segment, q, whose transformed c—descriptor , For all [N • a • XB,i] in 1k’ 1 < k < i
1(q), is considerably close to 1(Q) in the 4—dimen— X £s ional space, q is recognized as Q. In other (a) If ~ A and T(X)’ T(k,j)words, there is a recognition function R~, if then add [N * aX’B,i] to I .
R~(q) < ~~ t~~ is a threshold , q .C Q. In general ,

(b) If B = A, 1(X) T(k,j) and 1(N) T(j,i)
can be a di s tance, similarity, or probability then add [N • aX’,i] to I.

3func tion dependent on Q. If it is also a function (4) If [S • a ,i] in for some a,of Q, we could rewr ite it as R(Q,q).
The recogni tion of the angle primitive is simi then “Accept”, otherw i se “Rejec t”

lar, but simpler. For an angle primitive A, there
is a function RA. If any angle a, RA(a) < t~, then In some reco9nition problem s, only finite state

grammars are used. Therefore, we also developed a
a r A. If it is a function of A, It can be rewrit— , fini te automaton which embeds the primitive extrac—
ten as R (A,a). Theoretica lly, the angle primitive tion. Since we always can find an angle primitive
has no length. Since sharp corners are often foLLowing a curve primitive , we consider that each
smoothed by noise, we allow a short Length for an— time the input contains a curve primitive and an
gle primitives as called ‘corner tolerance ”. Of angle primitive. Figure 7 shows the storage of a
course, it is possible to employ the concept of finite state grammar In a structural form. The
partial recognition, or recogni tion with probabi li— recognition, with its flow—chart shown in Figure 8,
ty p, 0 < p < 1, ins tead of “yes” and “no~ for both uses a STACK. Each element In the STACK contains
curve and anile primitives, two fields, state and ~~~~, a state and a vector

. - -_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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pointer , wh ich means the first vtpt— 1 vectors of a case, the finite automaton has no advantage o~ier
the unknown shape have been accepted through the the Earley ’s parser. The computational cost of the
state. FS is a set of fina l states. parsing algorithms increases rapidly with n, where

n is the number of vectors in the boundary chain.
The Finite State Automaton The refor e, we try to smooth the boundary and reduce
T~~ut: A fTi~Ti~—state shape grammar in tabular the number of vectors before parsing if the smooth—
form (Figure 7) and an unknown chain of m vectors. ing does not distort the boundary very much.

Both of our parsing algorithms have been imple—
Output : ~‘Accept ” or “Reject” mented on a DCD 6500 computer in FORTRAN l anguage.

They are used to cLassify the airpLane shapes in
Method: Figures 9 and 10. It took about 0.35 secnd per
Ci) kp • 1 grammar for a boundary chain of 60 vectors.

STACK (kp) (S~~1)

(2) If kp = 0 then terminates with “Reject ’ Refere nces
otherwise s * state (STACK (kp))

p •~~
‘€
~~~(STACK (kp)) [1] Fu, K. S., Syntactic Methods in Patternkp •• ~~~~ 1 Recogn iti on, Academic Press, 1974.

t~ * PTR (~~ [2] Fu, K. S. (ed.), Syntactic Patter Recognition(3) If tp = 0 6010 (2) AppLications , Springer—Verlag, 1977.(4) nxp .nxpt (TABLE (tp)) [3] Stockham , G. C., L. N. Kanal , and N. C. Ky le,F • curve (TABLE (tp)) “Des i gn of a Waveform Parsing System,’ Proc.A • ig le (TABLE (tp)) of First Int ’l Joint Conf, on Pattern Recog—
nxs * nxst (TABLE (tp)) nit ion, (Oct. i973), pp. 236—243.(5) For alT~iy, p < x C y ~ m+1 [4] Feng, H. 1. and 1. Pavlidis , “Decom positionIf (T(p,x) 1(T) and T(x,y) 1(A)) then of Polygons into Simpler Components: Feature

if nxs € FS and y = m+1 then GOTO (7~ Extraction for Syntactic Pattern Recogni—
otherwise kp * kp+1, STACK (kp) * (nxs,y) tion,” IEEE Trans. on Computers, Vol. C—24,(6) If nxp 0 then 6010 (2) (June 19’735 p~~~636—~~0.otherwise tp nxp, 6010 (~~ [5] Moayer, B. and K. S. Fu, “A Syntactic Ap—

(7) Terminates with “Accept ” proach to Fingerprint Pattern Recognition ,”
Pattern Recognition, Vol. 7, (1975), pp.The modi f i ed Earle y ’s algor ithm basicalLy imple 1—23.

ments a breadth—f irst search, whi le the automaton [6] Moayer, B. and K. S. Fu, “A Tree System Ap—
implements a depth—first search. The y bo th search proach for Fingerprint Pattern Recognition ,”for feasible primitives which satisfy the produc IEEE Trans. on Computers, Vol. C—25, (1976),tion rules. The automaton recognizes the primi —
tives, while the Earley ’s algorithm recognizes the 

~~ Pavl id i s, 1., “Syntactic Feature Extraction
nonter .’nina ls as well as the primitives. If we for Shape Recognition,” Proc. of Third Int ’l
abandon the recognition of nonterminals in the Jo int Conf. of Pattern Recognition , Co ronado,
Earle y ’s algorithm , the two algorithms will end up CA, Nov. i976), pp. 95—99.
with the same classification result. But, the au— 

~~ Pavl idis, 1., “Syntactic Pattern Recognition
tomaton wou l d be fas ter, because it stops at the on the Basis of Functional Approximation ,” in
first feasible set of primitives found. The recog Pattern Recognition and Artificial
nit ion of nonterminals upgrades the discriminating Intell igence (C. H. [he n, Ed.), Academic
power of the Earley ’s al gorithm. Press, 1976, pp. 389—398.Fi gure 9 has 3 views of 2 airplane models. V, 

~~ Pav (idis , 1. and F. Ali , “A General SyntacticU, I indicate different angle views, they ar e all Shape Analyzer ,” Tech. Rep. No. 221, Computerclose to the top view. (a) is different from (b), 
Science Lab., Pr ince ton Univers ity, December(c) by two small missile—tails and a machine gun on 1976.the right wing. But the machine gun may not appear [10] Pavlidis , 1., “A Rev i ew of Algor it hm s fo r

in the digital picture. We can construct a gram— Shape Analysis ,” Tech. Rep. No. 218, Comput—
mar, 6F86,T’ to distinguish it from M1G 15. GF86,T er Science Lab., Princeton University, Sep—
can be in context—free form or in finite—state tember 1976.
form, and both algorithms are applicable. If we [ii] Pavtidi s, 1. and S. L. Horowitz, “Segmenta—
want to distinguish the two views of M IG— 1 5, we can t ion of Pla ne Curves,’ IEEE Trans. on
cons truc t a g rammar 6MIG,U to dis tinguish them . Computers, Vol. C—23, (Au g 197~Y~~ pp.

860—370.Since the major difference between the two views is [12] Sidhu, 6. 5. and R. T. Bonte, “Property En—the width of the fuselage closed to the tail and coding: Application in Binary Picture Encod—the whole tail is not designed as a primitive , we ing and Boundary Following, ” IEEE Trans. onneed to check the nonterminal which represents the Computers, Vol. C—2i , No. i1 ’FEv. T~7~, p~~whole tail or the whole shape excluding the tai l . 1206—1216.
In such a case, the Earle y ’s aLgor ithm can disc rim— [13] RosenfeLd, A., “Survey: Picture Processing
m a te better than the automaton. 1975,” Computer Graphics and ~~ ProcessingIf a partial recognition or probab ilistic recog— 5, (1976), pp. 215—�37. 

— __________

nition is used for primitives , the above two algo— (14] Aho, A. V. and J. D. Ullman , The Theory of
rithms can be further modified to exhaust all the Parsi~~, Translation and Cos~~Tlng, Vol . Iicases and selec t the best acceptable one, or the Pars4~g, Pren tice—Hall ,’1~?2.most probable one, among all the classes. In such
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(15) Lewis, P. N., B. J. Rosenkrantz, and R. E.
Stearns, Compi ler Desi gn Theory, 1972. a

(16] You, K. C. and K. S. Fu, “Syntactic Shape P~ ~~~~~~~ 
,

Recognition,” 
~~~~~~~~ 

Understand ing and J ,‘

Information Extraction, Quarterly Report ~ T ~ ....-‘ ,‘
Research, Nov. !, 1976 — Jan. 31, 1977, CT. ( / C C “

S. Huang and K. S. Fu), TR—EE 7F16, (March 1 2
1977), Purdue University, pp. 72—83 . — — — ~~~~, -

(17] Fu, K. S. and K. C. You, “Syntactic Shape X 1 __

Recogni ti on,” ~~~~~ Understand ing and N x
Information Extraction, Semiannual Summary . 2

Report of Research, April 1, 1977 — Sept. 30, Figure 3

19)7, (T S. Huang and K. S. Fu), TR.’EE
77~~i, (Nov. 1977), Purdue University, pp.
52—64. 
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A POSTERIORI IMAGE RESTORATION

John B. Morton
1-larry C . Arsdrews

Image Processing Institute
University of Southern California
Los Angeles , California 90007

Two algorithms are developed which G
~

(u,v) 
~ 

H(u ,v)Fi(u,v)
address the problem of estimating the
magnitude and phase of the optical transfer or equivalently
function associated with a blurred image .
The primary focus of the research is on G

~
(u ,v) = H(u,v)F

~
(u,v)+E

the estimate of the phase of the optical
transfer function . Once an estimate of where E is the error inherent in the above
the optical transfer function has been made , approximation . Forming the product we
the corresponding blurred image is Wiener obtain
fil tered to es t imate the original unblurred * *image (the object). Results are demon- G

~
(u,v)G

~ (u+Au ,v+~v)aH(u,v)H (u-i-,~u ,v+txv)
strated on computer simulated blurs and •F (u v)F*(u+~u v4-~v)also on real world blurred imagery . i ‘ i

The technique to be studied attempts If the product H(u,v)H*(u+,~u.v+l~v) can be
to remove degradations from an image using estimated and given that H(O ,0) = 1, we
a minimum of knowledge. The following obtain a recursive relationship where
assumptions will be made :

a) a blurred image is available H*(u+~u,v+~v) =
b) the PSF is spatially invariant , N
c) the extent of the PSF is small ,~ ~~G. (u.v)G.*(u+~u,v+~v)

compared to the extent of the ilimage .
d) the blurred image is relatively 1 ~~-. *

noise free (i.e. the dominant H(u,v)~ ~~
Fj(u,v)Fi(u+~u ,vI

~
v)

degradation is blur and not noise).
Now considering the phases and observing

The emphasis will be on estimating the that 0H(0 ,0)=0 , we have a recursive
complex OTF ; that is both magnitude and algorithm
phase of the OTF. Once the OTF has been
estimated , techniques known to be success- e~~(u+Au,v-4-~v) = OH(u,v) -

ful given knowledge of the OTF will be 
______________________

used to estimate the undegraded image . (o ,.. (u,v)_O
~ 

(u+~u,v+i~v)) +i i
The general philosophy will be to /

assume all quantities are continuous , and
any discretizations are a corruption of 1

the continuous process and introduce errors where the bar element denotes averaging in
into the system. For example the image , some sense.
f (x ,y), is assumed to represent a continuous
function . Since convolutions of continuous Techniques have been developed , based
functions are continuous functions , the upon the above equations to estimate the
blurred image , g(x,y), will also be assumed complete complex OTF from a blurred image,
to be continuous. Results on real world arbitrary blurs are

presented in figure 1. Here two original
Dividing the degraded image into scenes are partitioned into subregior~~,subimages, which may overlap 1 and indexing OTF ’ s calculated , and then Wiener filter

the subimages by i , restored.
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Target/Background Segmentation and
Classification in FLIR Imagery

0. R. Mitch e ll

Purdue University
West Lafayette , Indiana 47907

Abstract: Ongoing projects at Purdue are pro-
ducing results in the areas of real—time target
tracking and classification. This paper
presents some techniques which are being used
on di g itized images and their utility for seg—
,,entation and classification of targets in FLIR
imagery. The segmentation algorithm assumes
potential target objects are already located in
the image and the required operation is to pre-
cisel y separate the object from its background.
To accomplish segmentation , background features
are measured over a reg ion surrounding but not
including the object region . Then the features
of the object region are measured and compared
to those of the background. Pixels not match-
ing the background are Labeled as object
points. The features measured are grey leve l , Fig. 1 Original FLIR imagery selected by m i —
edges, and texture. A method of classification tial processing as poten tial targets.
of the segmented objects using projections is Numbered left—to—righ t , top—to—bottom
next presented and discussed, are : armored personnel carr ier (APC) —

1, 4, 8, 11; truck — 2, 3, 6, 13; tank
I. Segmentation : We have been collaborating — 5, 9, 12, 15; fa lse alarm — 7, 10,
with Honeywell System and Research Division in 14, 16. Each image is 128x128 with 6
developing a system to detect and recognize bits of grey l evel.
tactical targets in FLIR (forward looking in— so additional features are necessary for the
frared) imagery. Shown in Fig. 1 are 16 sample process. Hopefully, once the right features are
~LIR tactical targets. These images are ther— selected , any points that have different
mal and several characteristics apply to active features than the surrounding background points
vehicles: (1) the motor is sometimes visible as will be part of the target.
a hot (bright) spot, (2> edges can be detected
on the object/back ground boundary, and (3) the The two additional features are chosen to com—
average temperature (grey l evel) of the object plement the grey level image. These are tex—
is often different from the background. These tore and edges. The texture was chosen because
characteristics are presently used by a it seems probable that object and background
Hnneywe ll Autoscreener System to locate poten— textures would not be identical , assuming a
tial target areas. The images in Fig. 1 were good texture measure were available to dif—
selected by the Autoscreener as potential tar— ferentiate among textures. The edges were
gets. Note that four of these are false chosen as a feature due to the predominance of
alarms , edges along the target background interface and

the fact that grey leve l (temperature) and tex—
The techniques described here assume that the ture become ambiguous near the object boun—
location of each potential target is known . daries.
They attempt to separate the target and nontar—
get points based on features measured in the The edge feature is a gradient type measurement
bac kground and in the target reg ion, measured over a 7x7 window for each point. The

absolute difference between the upper 21 points
A. Segmentation Features: To accomplish target and the l ower 21 points is compared against the
legmentation , background features are collected absol ute difference between the left 21 points
over an annular region surrounding the poten— and the right 21 points. The center point is
tial target. Then the features of the target then replaced by the maximum of the absolute
region are compared to those of the background, values of these two differences. This process
the points not matching the background are la is repeated for each point in the origins) im—
be l ed as target points. As is evident from the age to produce the edge feature image. Fig. 2
sample images , grey level alone Is not always contains edge feature images based on the o n —
enough information for accurate segmentation , ginal images in Fig. 1.

IT~~~
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, .

Fig. 2 Edge features images as measured on Fig. 4 Texture feature images derived by
original images in Fig. 1. averag ing the number of extrema

over lQxlO windows.
The texture feature is derived from the max—m m
local extrema described elsewhere [1—2]. Local The background annu lar region must be large

grey level extrema are measured in hysteresis enough to allow a sufficient background sample

smoothed versions of the original image using to be collected but it must not include target

three smoothing thresholds. The l owest l evel points or be so large that irrelevant bac k—

extrema correspond mostly to noise in the is— ground obscures the background /target differ—

age, whereas the highest correspond mostly to ences.

edges. The remaining medium level extrema are The present background statistics gathering
a measure pri sanily of the texture in the is— program generates a three—dimensional histogram
age. The medium level extrema locations for over the original and two features for all
the targets in Fig. 1 are shown in Fig. 3, background points. The quantizat ion selected

allows for 32 original grey levels , 8 edge
values , and 16 texture values. This back ground

________ histogram is therefore composed of 4096 bins.
Once the background 3—D histogram is completed ,

_______ each potential target point (3—B vector) is
compared against its background bin. If that
feature combination occurs often in the back—

~~~I.iiI:
ground, the point is considered another back-

______ 
________ ground point. If the feature combination does

not occur in the background , that point is la-
beled a target point.

instead of just the inner circle to g ive us an______ 
The target test was done over the whole image

idea of the background rejection of our pro-
cess. Segmentations using this process are

________ ______ shown in Fig. 5.

Fi g. 3 Medium l evel extrema Locations foi~ the
targets in Fi g. 1.

The texture feature image is created from the
ex trema by averaging the number of medium level
extrema in every aJ xlO window in the image and
replacing the center point of the window with
the average. Texture feature images are shown

U

in Fig. 4.

B. Segmentation Procedures: Once the feature
images are produced two concentric cir cles are
centered at each potential target as derived
from the Honeyw ell preprocessing system . The
inner circle represents the potenti al target
area and the annular region between the two
circles represents the background region. In Fig. 5 Segmentation results on the originals
an automated system these circle s4 zes wou ld be in Fig. 1 using grey level , edges, and
adaptive since approximate target size and texture. The detected target points
back ground context will also be available from are left at their orig inal grey l evel
prior processing stages. In our implementation and the detected background points are
of thô system here , the inner radius was fixed turned off.
at 40 pixels and the outer radius at 64 pixels.H_~. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~
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(2) Truck — A bright body area, a smal I dip
II. Classification By Projections: The segmen— repre’-:.iting the windshield , and a smal lenb~ e met t~ d previously region representing the front , at I visible
described produce results which are sometimes in the wide projecti on ,
fragmented and contain drop—out and extraneous (3) Tank — A predomir int bright motor in bothpoints. A classification scheme which is some— projections and a dip in the wide direction
what insensitive to these variations would be due to vent holes.
appropriate. We are presentl y investigating (4) False alarm — Hi ghl y varing projections due
the use of projections through the segmented to disjoint points; non—symmetrical narrow
object to derive classification features. A projecti cn; often a small total number of
similar type of structure recognition method is points.
being developed by New Mexico State University These characteristics can best be measured byfor missile tracking at the White Sands Missile the location and size of local extrema along
Range [3). It has the advantage that the in— the narrow and wide projections.tegration process of the projections averages
out many of the noise prob l2m s inherent in
thermal images and our segmentation method.

~~~~~
A l’ CShown in Fig. 6 are eight projections through a 

‘ 66 ~~~~~segmented object (background points set to 
~

‘Ii 2I -i-i •,-i -

zero, target points remain that their original

the 11th image in Fig. 5. The small circles
along the horizontal axes represent 10% area

grey l evel ), the object is the APC which is

increments along the projections . The numbers
printed be l ow are the distances between the 10% ~~~~ ix ~~ 241

1$ 1? 3, 18 419 34 35 34 34 501area increments normalized so that the total
distance (representing 65 pixels horizontally)
is 1000. The narrowest and widest projections
are then selected by mea sunir .~ the distance oc— ~ ~cupied by the center 60% of the area. This ap— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ Tank

63 15210proximately removes the rotation dependence of 31 4? 97 62 379 62 4? 62 i? 297the projections. Classification is made on the
remaining two projections.

~~~~~~~ 9 l%)’19x~~~~”
False
Al  ~rt ’— ~~ 35 22”

34 52 52 34 609 34 52 35 39 35 7

Fig. 7 Narrowest (left) and widest (right)
projections throug h four sample ob-
jects. Labels for each pair of projec-
tions indicate the type of target and
its numerical position in Fig. 5.

Refere nces:

1. 0. R. Mitche l l , C. R. Meyers, and W. A.
Fig. 6 Eight projections through the eleventh Boyrie, “A Max—M m Measure for Image Texture

segmented target (APC) in Fi g. 6. The Analysis ,” IEEE Transactions on Computer ,
sm al l c ir c l es be l ow the horizo nta l axes Vo l . C—26, ~~ Tl 1977, pp. 408—414.
are 10% area increments. The numbers
indicate normalized distance s between 2. S. G. Carlton and 0. R. Mitchel l , “Im age
ci rcles. Segmentation Using Textures and Grey Level ,”

Proceedings of the IEEE Conference on
Process ing ~~d~~~a~~~~n Recognition , Tro y,
N.Y., June 6~~ 1977, pp. 387—391 .

Fig. 7 includes the narrowest and widest pro-
jections for one sample of each type target. 3. 6. M. Flachs , W. E. Thompson, and Yee—Hsuun
Distinguishing characteristics of the projec— Ii, “A ReaL—T ime Structural Tracking Algo—
tions for these particular categories are: rithm ,” NAECO N 1976 Record, pp. 161—168.

(1) APC — A significant dip in the center of
the wide projection representing the seat-
ing area; the temperature (brightness) on
either side of the dip is comparable ; the
d ip often shows in the narrow projection as
well.
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RESULTS IN FLIR TARGET DETECTION AND CLASSIFICATION

0. L. Milgram

Computer Science Center
University of Maryland
College Park , MD 20742

fication , rather than a very crudeABSTRACT statistical classification , because the
particular criteria used have been chosenThis paper describes experiments in to distinguish the targets on the basis ofthe detection and classification of tactic- physical characteristics of true targetal targets (tanks, trucks , APC ’s) in images . A statistical classifier , even ifforward-looking infrared (FLIR) imagery, it arrived at the same scheme , would be
assessing discriminatory ability on the
sample of classified regions provided for
training , and could reflect any peculiari-1. Introduction 
ties which happened to distinguish the

The objects to be classified are categories in that sample. (In the NVL
connected regions of an input picture , ex- data, APC’s often exhibit an asymmetry
tracted by thresholding the image . More which is due to the fact that most of
than one threshold may have been used on those in the sample appear in only a
any given picture , so the regions need not single aspect. An apparently good statis-
be disjoint; rather,one may be entirely tical classifier could be formed which
contained in another. For each region, a would unhesitatingly identify any APC in
feature vector containing information some other aspect as a tank .)
about shape and brightness is used as the This pre-classification examinessole source of information about the re- individual features to determine whethergion for classification. The extraction they could be reasonably associated withprocedure has somewhat preselected these true targets , and discards ridiculous”regions, so that every region examined has cases. A side-effect of this sorting isat least minimal correspon~~nce (20%) ~~~~ to assure that feature values seen by theits perimeter and the high-edge points, subsequent statistical classifier arehas at least minimal contrast (.2 gray never very far from their characteristiclevel), and is of roughly appropriate size values. This makes the classifier much(between 20 and 1000 pixels). For a de- better-behaved than one which accepts non-scription of the Superslice region extrac- normally distributed features (as most do)tion process, see [1-2). that have not been “critiqued .”

2. Stage 1: Preclassification 3. Stage 2: Statistical Classifica—
The classification can be thought tion

of as a two—stage procass (shown schemati— Once the set of extracted regionscally as Figure 1). The first stage is a has been reduced to a set of bright , corn-crude “semantic” classifier which identi~ pact , reasonably uniform regions , statis-fies some regions as having properties tical classification is used to assign awhich indicate that they are not targets. class to each particular combination ofThus , all targets have relatively similar features (or rather , to its associated re-height and width , seen at any aspect gion). A great many kinds of statisticalangle. Any region with h/w greater than ~ decision rules exist. Access to theor less than 1/3, then, may be confidently MIPACS [3] interactive system allowed usrejected from further consideration , to design a decision tree (each node ofSimilarly, targets “should” show some which is a standard classifier) forminimal contrast at their perimeters, a efficient classification. The systemgood edge-perimeter overlap, and small allows individual decision functions to betargets should be of nearly uniform either linear (e.g., Fisher), quadratic ,brightness. All these criteria are set by or maximum likelihood , and provided aestablishing numerical thresholds such convenient mechanism for selecting which
that at least 95% of the sample targets decisions to make , and just which featuressatisfy the criteria, to use at each decision point.

This is called “semantic ” classi— The basic structure selected is 
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shown in Figure 2. The first node By merging the truck and APC
actually represents a non—statistical classes , we allow comfortable use of a
selection . Because of the wide range of quadratic classifier on five or six
apparent sizes of the target images ( f rom fe atures at the main decision node, while
25 to 1000 pixels) and the consequent wide the smaller sam ples make a linear classi-
range in visible comp lex ity of detail , it fier or a three (or four) feature quadra-
was qu ickly determined tha t statistical tic cla ssif ie r  more reasonable at the
classifiers would not provide good dis- lower node. The “smal l”  node could
crimination over the entire size range . utilize five or six features -- but one is
(Almost every feature measured showed hard-pressed to find even that many which
substantial cor re la tion wi th apparent size, provide any discriminatory power at all.
and since the various sample classes
happened to have rather different image 4. Experimental Results
size distributions, our earliest classi— 4.1 Fea ture selectionfiers used that factor as a main classifi-
cation indicator.) Therefore the first As in any classification
step in the classification is a simple problem , much of the initial fea ture
spli t  on image area -- with all regions of selection for the vehicle recognition task
less than 95 pixels going to the “small” was carried out informally. This phase is
sub tree , and the remainder passing into largely introspective , determining
the “large ’ subtrees. For several reasons, characterist ics of the images tha t seem
principally a presumed lesser urgency for helpful for human judgment, then identify-
detailed identification of small or distant ing some features that should suitably re-
objects and the fac t  that  in the smallest f l ec t  these characteris tics. This ini tial
images no si gnificant differences between feature set (conveying “shape ” and “rela-
the various target classes are apparent , tive brightness ”)  is listed in Table 1.
the small regions are simply sent to a All of these features seem appropriate
node which classifies them as (small) “tar- for use with linear or quadratic classi-
get” or “non-target” —— the specific type fiers.
of target is left unspecified . For the The fea tures were examinedlarge regions, a two—stage process follow— in several ways . First, histograms fored. As neither APC ’s nor trucks are par— each feature were produced for everyticular ly well character ized by the sample class. These histograms were ex-features used and their distributions are amined to see whether the sample distri-very s imilar , they were merged into a bu tions sat isf ied the cr iteria noted incomposite “truck—like ” class. Any region the last  section . The d i f f e r e n t i a t i o nf ound to be in this class is then ass igned tha t appeared was interpreted as toas APC or truck by a Fisher d iscr iminant . whether it was a true difference between(A major reason for this breakdown is that classes, or simply a sampling anomaly .it  permits f a i r l y  large samples to be used (At this stage too , particular featuresat an important decision point and rele-
ga tes use of the sparsely sampled truck might be replaced by similar features of

slight ly  d i f f e r e nt funct ional  form , toclass to a relatively inconsequential dis— better satisfy the requirements of auto—crimination.) The principal decision was matic classification.) Second , thosetherefore between the “tank” and “truck- fea tures that seemed to have some meri tlike” classes and the “ non—target” class, were ranked for classification power atOur approach applied the maximum likeli- each node of the decision tree . Thehood cr iteria directly to the tank , truck- “Automask” method , available wi thinlike , and non-target classes. MIPACS, was used . Briefly, Automask
Given the true structure for the finds , for each feature , its “share ” of

c l a s s i f i cation , the kind of classifier and the total dispersion both between and
the set of features at each node were de- within sets , and finds the single feature
termineci. The number of features which which produced the greatest comparative
can reliably be used depends on the size variance between sets. This feature is
of the sample set u~ed for training , then deleted from consideration , and the
Assuming tha t the fea tures  are chosen so other features reexamined to find the next
as to avoid apparent vagaries in the set best feature , and so on. The relative
of exemplars , one can confidently use one merits of the features for each node are
feature for each ten samples in the small- shown below.
est group up to a limit of one-third the Node Good features Usable featuressample number for a linear classifier. As
quadratic classifiers utilize more detail Small E&P (h/w)’, (h*w)/A ,
of the presumed distribution one is re— (h+w)/P , diff ,
st ricted to the conservative end of that skewness , asymmetry
range . These rules of thumb , while not
universally valid , are nonetheless useful Large E&P, diff (h/w) ’, (h*w)/A ,

skewness , asymmetry,guides. E~

p
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75 Tanks
Trucklike E , asymmetry (h/w)’ , 34 Trucks

(h+w)/P, skew- _~~~~ APC ’5
ness, E&P 164 Target windows

10 Non-target windows
Shape features: —

In the first stage, the (h/w)’ height— 174 Total windows
to—width feature was useful in identifying
small bright streaks as non-targets. In Associated wi th  each window was
the statistical classifier for small tar- a liberal threshold range extending from
gets, shape features were individually the shoulder of the background peak gray
very weak in distinguishing targets from level to the highest gray level at which
non-targets. For large targets, diff was there was significant sensor response.
the best shape feature at node LARGE; all Although these ranges were manually
others but asymmetry were also of some selected , this is not a significant inter-
use. At node TRUCK—LIKE , on the other ference with the automatic nature of the
hand , asymmetry was the best shape feature, algorithm since the gray level ranges can
with the remainder of no value, be chosen by a simple scheme which identi-

fies the background peak and proposes
Brightness-related features: every threshold above the peak . (If a

coarse temperature calibration is avail—
Edge—border coincidence (E&P) was by able , this task is even simpler.)

far the strongest single feature for both
nodes involving target/non—target dis- The Superslice algorithm was run

crimination (OBJ and LARGE). For small on these windows using the selected gray
targets, it provides nearly all the dis- level ranges. Connected components whose
crimination in the second stage . For contrast , edge-perimeter match score and
large targets, it provides evidence which size were within tolerance were retained.
is well complemented by shape information The resulting sets of regions of a window
—- both must be included for adequate may be described by containment forests.
performance. Also very useful , particu- Within each containment tree , Superslice

selects for the candidate object regionlar ly at stage 1, is E~ . which provides 
its best exemplar(s) based on edge match .

substantially different information from Thus, every tree has one or more best ex—
E&P. Gray level variance is used to some emplars associated with it.
effect in the first classifier stage, but
is not effective in the second stage. Each containment tree is manually
Perimeter contrast information appears to labelled as either “target—related” (con—

be much more effectively conveyed through tam ing regions associated with the

1. target) or noise (spatially apart from athan dg 
target region) so that false dismissals

These rankings , while not dependable can be determined.
when taken alone , have been very helpful
in suggesting which features could usefully Of the 164 target windows , two

be included in decisions at each node and windows had containment forests with no
which should be omitted . Thia was target-related regions present. At this

especially helpful in the case of the stage , the false dismissal rate is 2/164
shape fea tures , for which estimates of re- or 1% for Superslice. Determination of a

lative merit were not obtainable, fa l se  alarm rate is inappropriate since
the discrimination performed by Superslice

The final stage of feature testing was is “object vs. non-object” , not “target
experimental. Features suggested either vs. non-target” , and there is no ground
by Automask or by the problem definition truth for the number of objects (including
were included in decision functions, and targets, hot rocks , trees , etc.) in the
self-classification attempted. In many frames.
cases , the results were not satisfactory
and one or more features were added or de- The next stage - preclassificatkm

leted until “good” results were obtained. - performs possible-target vs. non-target
If too many features were present in this screening . [For the purpose of building

classif ier, features were removed until the the screening criteria and subsequent

best classification obtained with an classif ier , a single exemplar per target
acceptable number of features was found . was hand—chosen. All noise regions , how-

ever , were retained.] Of the 162 target

4.2 Classification windows , the preclassifier retained 161
for a false dismissal rate of 1%. In

The NVL data base as addition , 44 noise exemplars also sur-
windowed for classification purposes con- vived as possible targets. The false dig-
sists of: missal was small and very faint.

After preclassification , 150

- - -  - ~
- 

~
-
~~4- -
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selected target exemplars and all noise ex- dows. No window contained more than one
emplars were split into a training set false alarm cue . Figure 3 displays  the 6
(74 targets and 22 no~se regions) and a (total) false dismissals. Masks of the
test set (76 targets and 22 noise re- false alarms along with their gray level
gions). The training set was used to de— windows are shown in Figure 4.
sign the optimum decision rule. It was The question of how target identif i-
felt that similar results in classifying cations can be made in this environment of
both sets would then indicate that the multiple exemplars , while secondary to the
classifie r had utilized robust character- task of detection , is an interesting one.
istics of the target class and thus could For each containimmt tree containing at
be expected to give similar results on least one exemplar classified as a targe4.,
further data of the same type . we chose the target type of the exemplar

A linear discriminant is used at two with the best edge—match (E&P) score in
nodes: for the small target/non—target the tree and used that target type to
and for the truck/APC discriminations , designate the region. In the event that
Five fea tu res  were used at both nodes , of the best” exemplar was not described as
which four were the same: (h *w )/A , a target , we labelled the object reg ion
(h+w)/P , asymmetry , E&P . The f if t h  “unknown target. Only large targets
fea ture was d i f f , for the small target were considered , since small targets while
discrim inant, and skewness, for the detectable were not considered identif i-
truck/APC discriminant. The large targets able .
are divided into three classes (tank , In a test which classified all best
truck/APC , other) by a quadratic maximum exemplars Cf large targets (55 tanks , 21
likelihood discriminant using six trucks, 36 APC5) the between—types con-
fea tures : (h/w )’ , (h*w)/A , dif f , skewness , fus ion matrix was :
E&P and Ep Classified as

The detection results of the fixed
class classifier on the 150 selected tar-
get exemplars are summarized by :

Large 53/53 53/55 106/108 A priori Tr 6 8 7 0

Train Test Total 

{T 

40 5 6 4

Small 20/2 1 2 0/21 4 0/42  
A 9 5 20 2

Total 73/74 73/76 146/150 —

where “M/N” means “M successes ou t of N where “UT” is the “unknown-target” type .
tries.” The classifier thus appeared to The 8 false alarms were c lassif ied as 1
be robust, truck , 2 APC5, and 5 small targets. Be-

tween-class confusion is high , with tanks
We say that a false dismissal for a being the most successful class. Trucks

window containing a target has occurred and APC5 were often confused with tanks.
when no target exemplar (at any of the A number of reasons can be advanced for
thresholds) is classified as a target this performance . First , tanks were the
(i.e., classified as tank , truck or APC). most numerous target and therefore could
Similarly, a false alarm is any noise ex- be identified most confidently . Second ,
emplar (i.e., not associated spatially large APC5 appeared with the wooden wave
with a target reg ion) classified as a tar— deflection board in view , produc ing a
get. However , multiple exemplars for  the characteristic “c” shape . No attempt was
same noise region are counted only once , made to utilize this special knowledge.
In e f f e ct, we are counting the image re- Third , the large targets appeared in only
gions (as opposed to exemplars) which are a single aspect and no generalized shape
classified as target regions by at least descriptors separating the different
one exemplar . If a region is, in fact, a types could be extracted reliably. It
target region and some exemplar of it is seems most sensible to model the target
called a target, that is a success. If no types as three-dimensional objects , and to
exemplar is so called , then a fa l se  dis derive discriminators from their inherent
missal has occurred . Finally, if the so— shape and size differences from all
called target region does not, in fact , aspects.
contain a target then a false alarm has
occurred. 5. Summary

The overall classifier results con- We may summarize the principal
gist of 6 false alarms and 3 false dis class i f ica t ion  results as follows : The
missals from the 162 target windows and 2 false dismissal rate of the system is less
more false alarms from 10 non—target win- than 4% , giving a system detection rate of

- 
- — - -p - —-- — - _________________________________________________
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96%. The false alarm rate, based on the
number of false alarm regions per unit
area, is 8 false alarms in 174 (l28xl28)
windows. Assuming there are 500x800
pixels per frame and that a target
occupies about 1/10 of a window , we COfl Imageelude that the total processed area corres-
ponds to about 6 frames. Thus the false
alarm rate is 8/6 or 1.3 per frame. A I Thresholdingseparate test of the false alarm rate was l and connected Imade using a set of four 512x5l2 pixel I componentframes. All available targets were de— 

labellingtected. In addition, 4 large false alarms _______________

and 8 small false alarms were detected. Image regions However , 5 of the 8 small false alarms
corresponded to fiducial marks. Moreover , 

I 5upe~
shice ~—.Noise regionsone large ”false alarm” (in Fl) appears to ___________

be a target. In any case, 7 false alarms Candidatein 4 frames agrees well with the previous object regions
festimate of the false alarm rate .

I Semantic L-.Non-targetsStage 1 tpre-classifier
~

REFERENCES Candidate

______________

target re—1. D. L. Milgram , Region extraction using gionsconvergent evidence, Proc. Image
Understanding Workshop , April 1977 , I Statistical LNori—targets58— 64. Stage 2 classifier

2. D. L. Milgram, Progress report on seg-
mentation using convergent evidence ,
ibid., Oct. 1977, 104—108. Targets

3. G. C. Stockman , Maryland Interactive
Pattern Analysis and Classification
System , Univ. of Maryland Computer
Science Center , Technical Report 408 , 

-

Sept., 1975. 
Small targets Tanks Trucks APCs

Figure 1. The classification process.
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a. Accumulatable features per connected component

Symbol Meaning

1. N Area

2—3. SX ,SY ~X ,EY — first moments
4-6. 5X 2 ,SY 2 ,SXY EX 2,EY 2 , XY - second moments
7. P Perimeter point Count

8. E High edge point count

9. SPE Total edge value on the perimeter

10, SIG Total interior gray value

11. SPG Total border gray value

12—13. SG,SG2 Total gray level , total squared gray level

b. Intermediate quantities

1. XAVE 4* ~~~~~~~~~

2. TAVE 4* .lJ;:;;i

3. R2 SX2 + SY2

4. V ‘/N — (SG) 2N2

c. Recognition features

h/w YAVE/XAVE

(h/w)’

(h*w) /A XAVE YAVE/N

(h+w)/P (XAvE+YAvE~
4)/P shape

diff (SX2-SY2)/R 2

skewness I SXY~/R
2

asymmetry ((SXY ) 2-SX2SY2) /R4

SDEV

Gray level SIG(N—P) - SPG/P
difference

brightness
E&P (Number of perimeter points at

high edge local maxima)!?

SPE/P

Table 1. Features

—.- -— —— ———— - r-~~~ 
- - —  -
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IMAGE SEGMENTATION FOR SYNTACTIC CLASSIFICATION OF LARGE IMAGES

Raj. K. Aggarwal

HONEYWELL INC .
Systems & Research Center

2600 Ridgway Parkway
Minneapolis, Minnesota 55413

ABSTRACT syntactic approach to tactical target recognition
problem is shown in Figure 3.

A segmentation scheme for component extract-
ion for syntactic classification of “large” images The assumption in the syntactic approach to
of tactical targets is described here. It in— tactical target recognition is that the images of
volves using pro to type  s imila r i ty  technique i t e r— tact ical  targets  are “) a rge ” enough to show
ativelv , first , for target/background segmen— structure.
t a t ion  on the fu l l  frame at a low resolution and
then for  component extract ion at a high resolution.  In the fo l lowing sections , a br ief  descr i p t —
Experimental results on FLIR images of tactical ion of the p ro to type  similar 4 t y  t r a n s f o r m a ti o n  and
targets are included , its adaptation for component extraction is given.

Experimental results on FLIR imagec of tactical
targets are also included .

INTRODUCTION SCENE ANALYSIS USING PROTOTYPE SIMILARITY

In p ic tu re  recognition problems , the number The image segmentation scheme using prototype
of featur~ s required is often very large , which similarity transformation can be divided into the
makes the idea of describing complex patterns in following major steps 121:
terms of a (hierarchical) composition of simpler
si~bpatterns very attractive I U  Also , if the • Attributes
number of poss ible descriptions is very large , it • Prototype Generation
is impractical to regard each description as de— • Threshold Selection
fining a class. Consequently , the requ iremen t of • Prototype Inference
recognition can only be sa tisf i ed by a description • Cell Inference
of each class rather than by its classification. • Similarity Relation
For example , the image of a tank is shown in
Figure 1. Attributes

The first step in carrying out image segmen—
Suppose it is possible to recognize the tation by the prototype similarity transformation

component par ts of th is tank such as motor , hot is to decide which attributes characterize a cell.
vents , barrel , etc., using statistical proper ties A cell can be a pixel or a certain collection of
of each componen t and their spa tial rela t ionship, pixels depending upon the required resoli. ~ion in
The hierarchical (tree—like) structural information the segmented scene . Some of the commonly used
in this tank can be represented by a tree as shown attributes are average intensity, edge fea ture ,
in Figure 2. texture, etc. Suppose X X~ are the N

attributes characterizin~ each cell . These
N atrributes may be N independent measurements

The basic assumption in this approach is that on each cell or may be N functions of M (M~~4)
It is easier to recognize the components instead independent measurements.
of the tank itself. Grammatical rules can then
be used to describe these trees. The grai~~atical Pro to type Genera ti on
rules for this example are :

F~r each of these N attributes characterizing
TANK — RECTANGLE , HOTSPOTS, BARREL a cell , a two—dimensional distribution function
RECTANGLE —~ TREAD , MOTOR , VENTS f (J,I) is calculated as follows: ~Jppose the

attribute value of a cell is I. Count ‘-he number
Since different components may be seen at dif- of cells in some experimentally chosen neighbor-

ferent target aspect angles, one could infer a hood (depending upon the resolution , size of the
general se t of rules by training the classifier target , etc.,) that have attribute value J. Accuin-
by tree—structures of targets viewed from different ulate this sum for all the celLs in the picture
aspect angles. The general block diagram of that have atrribute value I. This sum gives
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f(J,I). Do this for all values of I and j, intervals and consequently fewer number of proto-
types, whereas too large a threshold will lead to

The next step is to determine ini t ial  back— smaller intervals and larger number f prototypes.
ground and target prototypes using some a priori  In the extreme cases , one one hand , we may have
information about the scene. This can be done by only two prototypes which will give rise to too
locating typical background and target cells or many edge elements as we will see later ; and on the
by using some attribute information about the other hand , we may have many prototypes so that
background/target. For example , a running motor  each cell Is similar to only one prototype giving
may be the brightest part of tactical FLIR ~mages. rise to too many different objects in the scene.
This information can be used to locate a target
cue. For FLIR images, a typical value for the num-

ber of prototypes for each attribute is somewhere
Let the target cell attribute value be A and between 10 — 15. So , the thresholds can be adiust—

background cell attribute value be A . Bases on ed to give the right number of prototypes.
these two values A

T 
and ~ two inter~als [A.~

T
A
, A.~

/TA I andIA5 
‘ TA ,A~~

TAI are calculated , where
Prototype InferenceT Is an empirically chosen threshold on the value

o~ attribute A. The choice of this threshold will Let P0.. . .  ‘TN be the set of prototypes gener—be discussed later. These two intervals are
ated using one attribute. Each one of these proto—

assumed to be disjoint. The case of overlapping
intervals implies either a bad choice of target,’ types has an interval on the attribute axis assoc-

iated with it, Each cell in the picture is labeledback—round cues or a low value of threshold TA . by a string of prototypes it is similar to. A
cell can be similar to more than one prototype asThese two disjoint intervals define the f irst
the prototype intervals can overlap. During the

two pro totypes P0 and P
~
. For generating addition— labeling process , a co—occurrence matrix is con—al pro totypes , consldei the two—dimensional dis— 

structed , Each element Aij In the co—occurrencetribution function shown in Figure 4. All the 
matrix , i — o N; 3 = O,.,N, corresponds to thecells tha : belong to pro totypes P or P are

zeroed (shown by hatched areas). 0Suppo~e the freq uency tha t the pro totypes P1 and P~ occur
together in labels.modified distribution function is f’(J,I). Then

for each att ribu te value I , we have an a ttribu te The fac t tha t the pro totype P
0 
was generatedprofile of neighbors. By considering each value by a target cue and P1 was generated by a back—I in the Intervals A.,

~
TA ,AT/

’T
A ] 

and [A
B
T%, A~ /TA 1, ground cue is used to infer meaning for other

the accumulative attribute profiles f~0 
an prototypes. The co—occurrence matrix is used tof are calculated as follows:

ximum forp 1 guide the inference. Suppnse A01 is 
D e d i gI 

~i 
and A13 is maximum b r  j  = j

= I f ’  (J,I) (1) upon which one of A0i 1 and A131 is treater, either
I C [A~J~T~ , AT

/TA ] prototype P11 or “.n is considered for Inferr ing
its meaning. The following rules are used to

f~ = I f ’  (J ,l) (2) 
infer meaning for a prototype:

I t[A
5
T~ , As/TA] • A prototype whose interva l overlaps a

target interval and does no t overlap
a background interval is a target pro—

An example of these profiles Is shown in totype.
Figure 5. A maximum is located in each of these
profiles . The maximum of these maxima gives the • A prototype whose interval overlaps a
location of the next prototype interval. This background interval and does not overlap
corresponds to maximizing the probability of find— a target interval is a background ro—
ing a neighbor that has a t t r i b u t e  value outside the totype.
attribute intervals of previous prototypes. Sup-
pose the attribute value is A This gives rise • A prototype whose ~ntervaI overlaps bothto an interval I A2’AT,A2/ATI ~or the prototype target and background intervals is an
P At this stage, there are three prototypes edge prototype.
P~~, P1 and P 2 .

• A prototype w’ ,e interval does not over—
Now there are three accumulative profiles lap target or backgr ur interval is

for the three intervals. The whole sequence of aesigned the “meaning unkij own ” .
operations is repeated until no more prototypes
can be generated. One point to remember is that
the subsequent prototype intervals may overlap. Cell Inference

Each prototype in a cell label is replaced by
Threshold Se1ec~~ o~ Its inferred meaning . The following string gram-

mar is used to reduce string to a character:
A numerical value between 0 and 1 needs to be

chosen for each atrribute for defining prototype TT —= T
in’-ervals.  Too small a threshold leads to larger E~ —= E
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S B — B  the cell. A threshold of 0.85 was used to d e f i n e
TB ~..E* the prototype intervals . Approximately the same
TE —. T number of prototype (-‘- 10) were ob tained for  both
BE —.- B cases.
E* a.....E* , c*c~T, R~ E , E*~

The results are shown in Figures 7 — 10.
where In each set of three pho tographs , the top pic ture

shows the original , the middle one the target!
T -~>target cell background segmentation on full frames and the
B ~ ‘background cell bottom one, the extracted components.
E*=>strong edge cell
E =>weak ed ge cell
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CO~~ ONENT EXTRACTION

The general block diagram for  component ex-
traction of tactical targets through the iterative
application of prototype similarity is shown in
Figure 6. FIrst target/background segmentation
is performed on a full frame at low resolution
using prototype similarity transformation. Any
a priori inform.i fon about the scene is passed

- on to the segmen ta tion scheme in the fo ii of
cues. ~ sin coding 3j is then used to isolate
the target region of interest. The prototype
sim i la r i transforma tion is used on this region
at an in reased resolution for component extractioa.

EXPERIMENTAL RESULTS

The prot~ type similarity transfr~rmation was
tried on FLIR images of tactical targets. The
technique was first tried on full frames (520 pels
x 480 pels) and on the isolated targets to extract
comprnents. The target center -md  its approximate
size were recorded during digitization. The 8—bit
digi tized data was scaled down to 100 grey levels
to cut the computer memory requirements for storing
joint distributi on function.

A cell was d fin ed ;‘s 2 pela x 2 pels f3r
component extraction and as 4 pel~. x 4 pels for
target/background segmentation. A neighborhood
of 3 cr ’tls x 3 cells was used in both cases for
calculating the joint distribution function. The
only a t t r i b u t e  used was the average intenaity over
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VENTS

BARRELMOTOR
HOT SPOTS

TREA D

Figure 1. Image of a tank .

TANK

/
~~~~\RECTANGL.E HOT SPOTS BARREL/ /\

TREA D MOTOR HOT VENTS

Figure 2. Hierarchical structural description of
the tank shown in figure 1.
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Figure 3. Syntactic approach for tactical target recognition .
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FOR THE INTERVAL (AT TA’ AT/TA)
FOR THE

A B AT

~~~ 
‘
I
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Figure 5. Accumulative attribute profiles f~ &
0 1
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‘I
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Component extraction of tactical targets through
iterative use of prototype similarity .

Figure 6.
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I

(A)  (A)

,1’

(B )

4

(C)  (C)

F ig u r e  9. (A)  A t a n k  1~ t he open .  FI gu re  10. (A)  A t r u c k  in the  open .( H )  1/B s e g me n t a t i o n  on f u l l  f r a m e . ( B )  T/ B s e g men t a t i o n  in t h e  f u l l  f r a m e .(C) Extrac ted componen t s .  (C)  E x t r a c t e d  c o m p o n e n t s .
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ADAPTIVE TFIRESIjOLD FOR AN IMAGE RECOGNITION SYSTEM -
- IIACK GROUND RESULTS AND CONCLUSIONS

0. Serreyn and R . Larson

Honeywe ll Inc.
Systems & Research Center

2600 Ridgwa y Parkway
Mi n n � a ’~o l i s , ‘linnesota 55413

fi l ter determines the background levei and is a
basis for determining the bright threshold. The.,stract BRIGHT signal is also a logical signal which is
used by the Autoscreener for further processing ofThis paper augments the paper entitled ‘Adap- man—made objects.tive Threshold for an Image Recognition System’*

gi ven at the DARPA workshop October 1977. The
purpose is to provide additional information about
the simulation studies that were performed as
well as the results obtained with the Autoscreener
(ATSS) with autothreshold. This paper consists
of the back lround and concept of the auto-
threshold , specific examples and relationships
used in the simulation studies , the hardware re-
suits , and the performance evaluation .

.Autothreshold Coflc~2.~ Fi gure 1. Functional Block Diagram -

Autothreshol d
Prior to Incorporating an automati c thresh-

olding feature , the ATSS had eighteen dials and
switches that were requi red to be set by the Simulation Studies
operator. Some were set once but others depend
upon the input image and had to be adjusted The autothreshold was simulated as shown in
periodic ally, If not continuously. This was Figure 1. The low pass smoothing filter limits the
done by the operator using the first level fea- bandwidth of the noise that enters into the edae
ture display as a feedback mechanism to optimize and bright filters . The smoothing filter was a
the threshold levels. The basic purpose of auto- weighted average based upon the following equationS
threshold is  to eliminate the need for all the
manual adjustment such that the operator can per-
form other duties encountered on a tactical mis— A 1~ = .

~~- (I(i—l ,j—l) + 2 I(i—l ,j) + I(i-1,j+l)]
S ion .

The basic concept behind autothreshold is + 21(i,j 1) + 41(i,j) + 21(I,j+l)
that it makes the autoscreener adaptive to changing
scene intensity and contrast l evels. It does this + I(i+l,j-l) + 2I(i+l,j) + I(i+l ,~+I)]
automatically be determining the threshold for
edge and high/low intensities on a ccan line basis . 

where I is the video Intensity, This filteredThe overall concept for autothreshola i s shown video is then the input to the edge fi l ter and toin Figure 1. Each box wil l be discussed in greater the bright filter. Figure 2 Is a sample of fivedetail later; but briefly , the function of each box scan lines of FLIR video over a tank. Figure 3 Is
Is as follows : Raw video Is oassetl throurmb a low the resultant smooth data.
pass smoothing fi l ter. This limits the bandwidth
of the noise. The smooth data is an input to both
the edge filter and the brigh t filter . The edge The two dimensional SOBEL edge filter was sim—
filter generates the magnitude of an edge In an ulated as follows:image from which an edge threshold Is determined.
The output EDGE is a logical signal used the the
Autoscreener and Is obtained by comparing the ana- H~_ 1 = I (i-l ,i-1) + 2I(l ,j 1) + I(i+l ,j l)

log edge signal with its threshold. The bright Hj+1 — I( l— l ,j +l) + 21 (l ,j+l) + I(i+l ,j+l)
* “Adaptj ve Threshold for an Image Recognition Sys- V 1_ 1 = I(i-1 ,j- l) + 2 I( 1— l ,j) + I (i—l ,j+l)tern , 0. Serreyn and R. Larson , DARPA Image Under-
standing Workshop Proceedings , October 20-2 1, 1977 , V i+l I (i+l ,j—l) + 21 (l+l ,j) + I(l+l ,j+l)
pp. 73-73.

• -
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liaw
Video El

where El is the threshold , t~~~ is the previous
scan line edge average and K Is an optimum con-
stant statistically determi ned. Figure 5 is the
IDGE output for a tank scene.

t (n 0)

-J~~~~~~~--

o 100 200 300

50 150 250
Posi tion in Scan line

Figure 2. Five Scan Lines of Raw Video ________________________
Over a Tank
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Figure 4. Edge with Threshold of Data in
Figure 3
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where H and V are the horizontal and vert4cal com-
ponents. Then , the edge value associa ted ~ith Figure 5. EDGE Output for the Tank Scene
(i ,j)th pi xel Is

As was mentioned previously, the smoothed
v ideo Is fed into the bright filter. A prima ry

E ( l ,j) = JH 1 j + function of the bright filter Is to estimate the
background In each frame . This background must
be continually updated as the image Is scanned

= H~+1 
_H
~~1 J + 1v 1+1 - v~_~ by a recursive filter and filter updating logic.

The ffrst decisi on we make is to determi ne If
there is large con tras t between sca n lines on a

Figure 4 is the Sobel edge for the data pixel by pixel basis. This is compared to a
shown In Figure 3. SuperImposed on the edge data threshold TLIM. TLIM is an average absolute di f—
is the adaptive threshold. The edge threshold Is ference between the present and previous scan line

multiplied by a constant, that Is:

S 

-
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aEk~+1 ~~~~~~~~~TLIM = Num 
______

= constan t
Num = nun~er of pixels In one scan line I 1111l11111111011111J
The backgro und esti mate J is built up over

several scan lines . The background is updated
throughout most of the scan l ine and is defined as

= BJ~_1 ,5 
+ (1—8) 1 i ,3 f~

1~JII IIj~

We do not update the background estimate over , ~~~~~
areas of large contrast. When not updating, J~ = 

—~~
Ji-l j• The value of I~ . — 

~i-l j I s compared ’
~o

a value SLIM where SLIM I~ def1ne~ by
Figure 6. Pixel classificati on (High is Don ’t

/5 - Update)
SLIM =

he background estimate for the smoothed video
/5 (Figure 3) is shown in Figure 7. The resultant

where 
~i ,3 

is Ji ,~ 
filtered by a Harming window, video , to be thresholded , is shown in Fi gure 8.

Figure 9 is the BRIGHT output for the sample tank
In suninary, this pixel classification scheme image. The EDGE and BRIGHT data are logically corn-

is as follows : bined to produce features used by the autoscreener
for the detection of man-made objects.

if II~~ - Ill  j i > TLIM 
Hardware

or The edge and bright filters were implemented
as part of the contr~il unit. The smoothing fi l ter
is accomp lished by using the scan converter in an

if 
~~~ 

- J1,~I >SLIM integrating or averaging mode. The edge fi l ter
block diagram implementation is shown in Figure 10.

don ’t update the background filter. ~Each scan line delay consists of 2 Fairchild CCD32I
(455—910 element) del ay lines . The pixel delays

Also , when updating are obta i ned from selected taps of a Reticon TAD-32
(a 32 tapped analog delay line). The low pass
filter smooths the edge output.= ~~~~~~ + (1—8) ~~~

The threshold value El is determined by inte-
grating the edge over the previous scan line .

otherwise , J 1,~ J1_ 1 ,J

El = K*~~~—j
The pixel classification for the five scans shown
in Figure 3 is shown in Figure 6. where El is the threshold , K is a constant and

En l  is the previous scan line edge data. En is
Once the background Jj j Is determined, compared to a threshold. When En exceeds E1,

It is subtracted from I
~ ,j to giv~ a zero refer- the logical EDGE signal is created which is used

is data with zero by the rest of the autoscreener.ence . Hence, Zi ,j Ii
reference that must be f.~reshot~ed. Zi i Is com-
pared to a variability threshold EPSI. ‘~PSI Is A block ~1lagram of the background estimatedefined as and bright threshold lmplemented is shown in

Ficure 11. The background estimate is a re-
EPSI = ~~ VARJ 

~~~~~~~~~~ ~IJ 1,~-J 1_ 1 I cursive filter whose time constant depends upon
the parameter 8.

The low pass filter limits the clock noise
coming Out of the CCI) line de1~y.p: a constant determined during simulation

- -—— ---— .e— - , • - - - . -  -- a. - .
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250 

Dat:
in Fi gure 3 Figure 10. Autothreshoid Edge Hardware

.
• Implementation

_

Figure 11. Autothreshold Bright Hardware
Implementat ion

300 200 300

Posit l e y l  Sca n Line 
250 The threshold EPSI is based upon the abso—

Figure 8. Video-Back ground” of Data i n lute difference between bac¼~’round estimate ,
Fi gure 3 that is

EPSI = K*!Jfl,k
_J

fl_ l ,kI
where K is a constant and 

~n k and J~_ 1 are
background estimates . The t~reshold is ’~ased
upon the previous scan line.

In addition to the clock noise , the
chosen CCD’s generated periodic noise due to
dark current. The period of the noise was
approximately equal to one-eight (1/8) of
the 455 elements. Two of the 455.910 line
delays were used to make up the 1820 pix el

~~~~ ~ - •, • line delay and the noise was in all the- 4 ‘ devices . We discovered that the delay line
serpentine implementation was the cause of

41 * the noise. The corners exhibited excessive- 
,. dark current noise that is especiall y notice—

able when the clock Is stopped for a period• • 0~ 
. 

of time. A new device is being designed by
I - the vendor whi ch Is anticipated to elimin ate

Figure 9. BRIGHT Output for the Tank this problem.
Scene

_ _ _ _ _ _  - - - --n - 
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Performanc e Evalua ti on 3 .00

The performance of the autoscreener/
FLIR system with autothreshold to detect
man-made objects was evaluated utilizing

- 

,
,
,_

./
iIII” 

~~(‘~‘ ‘. FUR sits sototh,e,hold

about 1150 frames of FLIR imagery.

trained using 164 frames which contained 2023
Prior to testing the classifier was o.oo

candidate objects (158 man—made and 1864
nuisances). SAD-S SCANII ER

0.70 -

The scoring consisted of playing back
the video frames from a video disc. A symbol
was generated if a sector (1/16 of a frame)
contained one or more objects classified as 06 0  -

targets , these symbols were superimposed on
the image and d i splayed on the mon itor and at
t he same t ime were recor ded and then scored

0 .50in order to evaluate the performance. If a
sector contained one or more MMO ’s and they
were not detected (no symbol was displ ayed)
this represented a missed MMO s sector. •
On the other hand, i f a sector conta ined no 0 too 004 0.06 0.08 0.10
MMO ’s and a symbol was displayed, this was 

P80606 1 11 OF FALSE ALARIconsidered a sector with a false alarm.
Figure 17. Autoscreener/Autothreshold’~The probability of MMO detectic~n ~D Perfomanc~ Sector Ba s isis the ratio of the number of detected

sector with MMO ’s to the total number of Conclus ions
sectors wi th lIMO. The probability of a - - 

- -miss is P - 1-P0. The probability of At the comple ti on of th i s prog ram,
false a la~m ~FA is the ratio of the the following add iti onal conclus ions arenumber of sec~ors with false alarms to the made:
total number of sectors without lIMO’s.
This result Is shown in Table 2. 1. We have established the feasibility in

in detecting man-made objects with an
Autoscreener with autothreshold. We
achieve a 91.2% detection probability
and 4.3% false alarm probability .

TABLE 2 2. The scan line delays needed for two
dimensional processing must be madeTotal Number of Sectors 18496 to operate In a start/stop mode of

Number of Sectors with MMO ’S 99 operation wi th little degradation
Missed in signal .

Oetecte’d Sectors with lIMO’s 1027
Sectors with False Alarms 747 3. A more robust classifier which wouldSectors wi th MMO’ s 1126 screen out objects based upon addi-
Sectors without lIMO’s 17370 tional shape and size feature will

reduce the number of fal se alarms.P 1027 = 91.2% This concept called secondary screeningD 1’T~
• 

would look at only those objects classi-
fied as ~‘V’1O’s by the present classifier.p = 747 4.3%FA 17370 4. The false alarm probability and scoring
should be chan ged to include time or

99 • 8.8% rate such as the average number of falseTT’2~ alarm/frame processed or false alarms
per second.

This point Is plotted in Figure 17.
The result of 91 .2% probability of detection -

and 4.3 probabilIty of false alarm is very
nearly the same as FUR wI thout auto-
threshold.



SESSION V

PROGRAM REVIEWS

BY

PRINCIPAL INVESTIGATORS 

- - ..

- -
a’ 

—_ —- ~~i~
_ .w 

- - 
S.- - - • ,  . . 

-~~~~~~~~~~~~ -~~~~~~ - - .—
.-, —-



139

MIT PROGRESS IN UNDERSTANDING IMAG ES

Patrick H, W inston

The Art ificial Intelli gence Laboratory
Massach usetts Institute of Technology

In ‘Ac ~ireViOUJ p roceed i ngs , we s t ressed  the ke y i s s ue  of First , corrections to satellite images must be made to
rep resen t atic ’n. In part icular , we described research of Horn and account for differences in the transfer functions of the severa l
his collaborators us ing the ‘.flectance map as a tool for working Sensors used. The paper of Horn and Woodham. elsewhere in
ruitA cq tellste image s , and a.e describ ed wor k of Marr and his the proceedings, gives the results of their work on the problem.
collaborators usin g the primal sketch . t he 2 I/? 13 sketch, and The paper describes a method that uses statistics obtained from
generalized cones to work toward a comprehens ive theo ry of the sensors themselves, together with an assumption that the
recognit ion, probability distribution of the scene radiance seen by each image

H ere , we cite some of th e problems hiavz ng to do with using sensor is the same. Using the method , the y have sucess lully
real sate lli te ima ges we report on the development of a machine removed the striping effects seen commonl y In satellite
for rapid pr imal- sketch corn pusation. and we take note of sonic new photographs.
work on depth vision and representation Next, coord ina te transformation is necessary In order to do

proper registration of satellite photographs against earth surface
Registering Im ages And M klng Mbedo Maps models. (The surface models considered are In the form of

surface elevat ions on a grid of points. ) Consequentl y, Horn and
Horn has demonstrated a method for re gistering aerial W oodham have develop ed an affine transfor nm at lon between the
photograp hs with terrain models that potent ial ly yie lds coordinates of Mult ispectra l Scanner Images produced by the
reg istration accurac y in the sub pix el range . The method works LANDSAT satellites a~sd the coordinates of a system lyin g In a
by comparision of the given photograp h with a synthetic image plane tanget to the earth’ s surface near the subsatel li te point.
produced usin g the corresponding terrain model , Given Finall y, as Horn has stre ssed in his papers , the appearance
registration . it then becomes possible to do several things star ting of a surface depends dramatically on how It Is illuminated. In
with the same reflectance-ma p based technolog y. For examp le. order to Inter pret satellite and aerial imagery properly , It is
we have made some Images in which the hue reflects the ratio of therefore necessary to know the position of the sun in the sk y.
real ima ge intensity to synthe tic image Intens ity, and we believe Horn has dev eloped relatively straightforward methods for
these images provide a good Index to ground cover. This ratio doing so w i th  more than enou gh accuracy for Image
does not depend much on sun position . un like other measures understand ing purposes.
used up to now . We call an Ima ge made up of these ratios an
albed o ma p. Primal Sketch Hardware

To make really useful albedo maps , however , we have
found it necessa ry to solve several sub prob lems. Dealing with Much of Marr ’s ima ge understanding work requires the
real satellite Images requires the solution of several problems of computation of a so-called primal sketch. The primal sketch is a
the sort that esca pe notice when thinking is done in terms of rich symbolic description of the Important features exhibited by
Idea lized domains. One of these Is the problem of IntroducIng an Image , ed ges and blobs In particular. Creatin g such a
cast shadows into the synthetic Image. This has been done. symbolIc description requires a great deal of convolution.

Consequently, there has been a need for fast Image convolution

Destri ping. Transforming Coordinates And Finding Where hardware. We have just comp leted and have begun to test
The Sun Is ICON , a first prot otype of such a convolver.

ICON combines a pipelined VLS I multi plier with a fast

Ot her problems Inherent in the use of real satellite Images bipolar Image cache. ApproxImate ly 120 Schottky MSI and LSI

inclu de those Introduced by the characteristic flaws of satellite IC’s are used. The device is connected as a peripheral to the
ima ges , by the need for care in dealing with coordina te LISP Machine and Is driven by microcode.
transformat ions , and by the need to know accuratel y where the ICON can convolve a 16 x 16 mask against an Image point
sun Is. in 50 microseconds. An entire 512 by 512 image mask convolution



140

can be done In less that IS seconds. This represents more than ‘
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an order of Imagn itude speedup over PDP~lO performance. 
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Local image Structure

Kent Stevens has completed a study of textures that Invo lve a -

sense of f Iow or tou gh parall elism. Locall y parallel dot .. , ..., . : . 
pat terns were used exte nsively In testing his Ideas. Such dot , , ,. .‘ . , ,,

patterns are transformed by primal-sketch machinery Into a ‘
,. - .

~~ :‘ .‘ .~ 
“

co llection of place tokens. Stevens ’ parallel ism algorithm then ‘
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constructs virtual lines. tha t radiate from each place token in the 
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“ David Marr in conjunction wi th Tomaso Pogglo (of the Max: :‘ “ ‘•
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- 
.. Planck Institute for Biol ogical Cybernetics ) comp leted a new

: , ‘ • s, ‘. ,, ~--  - stud y of stereo VISIOn. The resulting algorIthm consists of five
- 

, i ‘ ~ 
‘.
‘

~ 
‘
~ 
-- - :- ‘ steps: (I) Each image is filtered with bar masks of fou r sizes

~~ 
. ‘ .

“~ - -
. 

“ 
•
‘
::~ 

- - t hat vary with eccentr icity; the equivalent filters are about one
I • •S  - - -- octave wide. (2) Zero-cro ssings of the filter outputs are localized,

and positIons that correspond to terminations are found; (~) For
each mask size , matching takes place between pairs of
zero-crossings or terminations of the same sign in the two
Images, for a range of disparities up to about the width of the
mask’ s central regIon; (4) Wide mask s control vergence
movemen t s, t hus causIng small masks to come Into

In the figure. we show Input dots on the left and the correspondence; (5) When a correspondence Is achieved, It Is
virtual lines corres pondin g to derived local parallelism on the written Into a dynamic buffer, the 2 112 D sketch. In addItion to
right. The algorithm handles place tokens derived from edge being satisfying f rom the automatic image understanding point
features as well as from dots, as Is required in work ing wIth of view , Mart has shown that the algo rit hlm provides a
natural images.
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theoretical framework for most existing psychological data about References
stereo.

Eric Crimson has finished a computer Implementation of Bert hold K. P. Horn and Brett L. Bachman , “ Usin g Synthetic
the algorithm that Is hig hl y succesful in computing dis parity Images to Register Real Images with Surface Models .” A IM-437,
from a stereo pair of photograp hs taken of natural scenes. The The Artif icial Intelligence Laboratory. Massachusetts Institute of
imp lementation has been found to be an important research tool Technology. Cambrid ge, Massachusetts, 1977.
in revealing phenomena concerning the convolution of natural
images with bar masks. Berthold K. P. Horn and Robert J. Woodham , “ LANDSAT

Currentl y, we are busy testing the algori~hm , as well as MSS Coordinate Transformstions,” AIM-465, The Artificial
turning towards issues concerning the “filling in ” of depth Intelligence Laboratory, Massachusetts Institute of Technology.
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image. These Issues interface with more general issues
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ALGORITHMS AND HARDWARE TECHNOLOGY FOR IMAGE RECOGNITION

Computer Science Center Systems Development Division
University of Maryland Westinghouse Corporation
College Park , MD 20742 Baltimore , MD 21203

8, A study of shrink/expand noise clean-ABSTRACT
ing schemes, including a local mm /max

This report lists the principal method which cleans the image prior to
accomplishments on Contract DAAG53-76—C— thresholding.
0138 (DARPA Order 3206), covering the

9. Evaluation of a variety of edge detec—period 1 May 1976 through 28 February 1978.
This research was monitored by the U, ~ , tors and the development of a reliable

method for edge thinning .army Night Vision Laboratory , Ft. Belvoir ,

~
TA; project monitors were Mr. John S. 10. Construction of a “ f u z z y ” thinning
Dehne and Dr. George R, Jones, algorithm which allows thinning to

occur in gray level images prior to
thresholding.

11, Development of methods for threshold
selection based on gray level and

1. Design and implementation of a compre- gradient value ,

hensive algorithm for object recogni— 12. Generalization of thresholding to the
tion in FLIR imagery with a detection multiple object class environment with
rate above 95% and a false alarm rate the ability to predict appropriate
between 1 and 2 false alarms per (gray level , gradient value) segmenta-
frame . tion regions for the object classes

2. Fabrication and testing of a C-CD present,

sorter chip capable of operating at 3 13. A variable thresholding scheme which
megapixels/sec. The sorter function produces a binary (or ternary) repre-
is a crucial step in several image sentation of an image.
operations including histogramming, 14. An extension of threshold selectionmedian filtering , non-maximum suppres— for sequences of images.
sion and connected component coloring .

15. Simplification of the logic of the3. Investigation of the cost, performance standard connected component coloring
and constraint tradeoff in implement- algorithm and its extension to produce
ing a target cueing algorithm in CCD 

a chain encoding of the component(charge-coupled device) technology , 
boundary in a single pass.The resulting design is within specifi-

cations for usage in smart sensors . 16. Implementation of Hyperslice : a re-
cursive segmentation which improves4. Development of the “Superslice” al- the Ohiander region extraction method.gorithm for reliable region extraction

based on the cooccurrence of border 17. An algorithm for region tracking in
points of reg ions with locally maximum image sequences using dynamic program-
edge detector responses. This is an ming .
important example of the use of conver- 18. Comparison of features for target re-gent evidence to strengthen assertions, cognition.

5. Design and analysis of statistical 19. Construction of a hierarchical classi-models for threshold selection , image fier for target detection and recogni-operation response prediction , and tion.optimal edge detection .

6. A new method for adaptive quantization 20. Development of Viewmaster — a software

aid to assist in the construction ofof an image which reduces the number
of gray levels present using only the image processing programs.
histogram.

7. Comparison of image smoothing methods ,
including median filtering.
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IMAGE UNDERSTANDING RESEARCH AT CMU: world). The world models for these tasks are expected to
A Pr ogress Report be generated incrementally over the next few years.

Raj Reddy KNOWLEDGE REPRESENTATION AND SEARCH
Department of Computer Science

Carnegie—Mellon Universi ty At present we are developing Die following
Pittsburgh , Pa. 15213 knowledge sources for the downtown Pitt s burg h task ; a 3-

April 1978 D model of the downtown Pittsburgh area , knowledge about
building structures and textures , know l edge about local

INTRODUCTION refin ements g iven coarse recognition (e.g., detecting cars in
roads and trees and bushes next to roads), knowledge about

The primary objective of our resear ch effort is to sha dows occlusions and highlights, and so on. Given our
develop techniques and systems which wi ll lead to basic approach of iterative refinement of knowledge, we will
successful demonstration of image understanding concepts start with simple versions of these knowledge sources, and
over a wide variety of tasks , using all the available sources refine them as we observe their limitations when applied to
of knowledge. We are focusing our attention on three areas different scenes.
of research, First , we are developing an integrated concept
demonstration of an image understanding system. The long- Since the last Workshop the ARGOS Image
term goal of this research is to understand how knowledge Understanding System has become fully operational. A Ph.D.
can be used in the image interpretation process to produce thesis on this system by Steve Rubin is expected within the
systems which are 2 to 3 Orders of magnitude more cost- next few months (Rubin, 1978). The system has an internal
effective than current systems. Over the next three years ~hree-dimensional model of the city of Pittsburgh which
we expect to investigate how knowledge of maps, size and contains over fifty buildings, rivers, bridges, and other
shape of landmarks such as buildings and rivers , and geographic features. Using this model, ARGOS has been
contextual relationships can be used in the interpretation of trained to recognize five common views of the cit y from the
satellite images of th~ Washing ton, D.C. area and color north-west , north-east , south-west , due west , and
scenes of downtown Pittsburgh. downtown at the intersection of the three rivers. Seven

di gitized images of the cit y were used for training of the
The second area of research is the development and spectral characteristics. Another eight were reserved for

validation of concepts for computer architectures used in test purposes. ARGOS was able to label all ei ght with 60Z
Image understanding. The long-term objective of this accuracy on a pixel basis. Further , 201. of the pixels are
research is to develop new computer archi tectures wh ich unlabeled and approximatel y 2O1~ are incorrectl y labeled.
will make low-cost image processing a serious possibility. These resul ts are expected to be significantly improved wi th
We plan to evaluate the desirability of new processor systematic error analysis.
designs and new instruction sets for image processing
applications. Much of the error is attributable to inflexibility in the

training data. For example , the recognition of building
The third area is the development of intelli gent reflections in the river was considered erroneous labeling.

interactive aids for tasks such as photo interpretation and Also , the identification of a known building (such as the
map generation. Many of the same techniques which are Fulton Building) as a “miscellaneous building” was considered
useful in automatic interpretation are applicable in this area, an error since the system failed to obtain the most accurate
except that in this case the human being provides the goal label, A good measure of the recognition quality is the
direction. The availability of intelli gent assistants capable of system’s ability to identify the viewpoint. In 801. of the
examining large image data bases and retrieving desired images key objects were labeled that demonstrated a
information is expected to significantly improve human recognition of the correct view. For example , identification
productivity in tasks such as photo interpretation and of the correct rivers, bridges, and roads indicates an
cartography, unders tanding of the viewpoint whereas identification of

buildings does not since they are discernible from all angles.
The following is a brief summary of our work over the

last six months. Another proposed development is the use of
knowledge hierarchies for improved labeling. As a first-
pass, the system will extract viewpoint informetion from one

SYSTEMS AND TASKS run of ARGOS and then construct view-specific knowledge
for more accurate re-evaluation of the image.

The image understanding research at CUU uses a DEC
System 10/80, C.mmp (a 16 processor multi-mini computer
system), Cmi a large asynchronous multiprocessor (50 LSI- IMAGE FEATURE ANALYSIS
11 processors), and a dedicated MIPS (Multi-sensor Image
Processing System) computer, Kanade is developing techniques for identifying task-

independent knowledge sources. One of the recent
Our present plans are to attempt to interpret developments in this area is a generalization of Huff man-

uncontrived arbitrary images representing different v~~~s Clowes-Wa ltz techniques for line labeling (Kanade , 1978b) in
of the downtown Pittsburgh area (a 3-D world), and aerial this workshop. This g.ner.lization is more flexible than the
and satellite views of the Washingt on, D.C. area (a 2~D conventional trih dral world, where solid objects are the

- p. ~~~~~~~ ‘ -  — - .— r- — - —~~
--- - -
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basic components , since it accepts a larger class of drawings mac hine should great ly facili tate much of our low-level
which are usually obtained by processing real-world images. processing operations.
Various local cues extracted from the image (e.g. edge
cross-section profile , collinearity, etc.) can be exploited to With the availability of writab le control stores , it has
constrain the possible interpretations. This method allows become possible to modify and add to the instructional set
one to incorporate structural (junction types and definitions of current computer systems. Experiments
connections), geometrical (line direction and collinear ity), and performed on our PDP-11/40E processors indicate that a 10
spectral (color and intensi ty characteristics at the edges) to 30 percent improvement in performance can be expected
information for determining the 3-D configuration of an for certain image processing tasks. We are currently
object in an image. A more detailed description of this work engaged in a study of the design of special instruction sets
is given in Kanade (1978a). for image processing applications. We should expect to

have architectures which execute as primitive instructions
certain high level Operations on images. An analysis of the

INTERACTIVE AIDS costs associated with certain operations, including frequency
and localit y of memory accesses, parame ter passing

We have continued our work on the MIDAS sensor schemes, and arithmetic complexity is underway.
databa~e. We have concentrated our eff orts on bringing up
an image browsing facility on MIPS. This facility is
operational and has the capability of display ing color or CONCLUSION
color mapped images in a variety of resolutions. A user can
quickly browse through a collection of images and zoom in While the primary emphasis continues to be in
on particular areas of interest by displaying windows of the effective use of knowledge in the image interpretation
image in different levels of resolution. Using symbolic process , the research at CMU is tempered by the realizatio,a
region descriptions (McKeown and Reddy, 1977) it is that we must also pay adequate attention to other relevant
possible to symbolicall y address any portion of the image. aspects such as computer architecture , software design,
A simple query system allows users to point at the display image databases , performance analysis and perceptual
and retrieve pre-segmented region information, psychology. We continue to have modest efforts in each of

these areas.
We plan to expand the utility of this system by

increasing the variety of images available for these types of REFERENCES
queries (currently 20) and investigating methods for
responding to queries where responses must be generated Kanade, 1. (1978a). “Oi’igami Understanding” CMU Technical
from the signal data. Preliminary work has begun in Report , Department of Computer Science. 1978. (in
acquiring map data and associated aeria photography for preparation).
our Washington D.C. task. We have begun work on
evaluating map representations and their suitability for Kanade, 1. (1978b). “Task Independent Aspects of Image
photo interpretation tasks. Understanding”, in this volume,

McKeown, 0. U. and Reddy, D. P. (1977). “A Hierarchical
ARCHITECTURES FOR IMAGE PROCESSING Symbolic Representation for an Image Database ”

Proceeding of IEEE Workshop on Picture DaSa
We are beginning wOrk on algorithm decomposition Descr~pti.on arid Marsragensesst, April, 1977.

for parallel processors , an area in which we are for tunate to
have two working systems: Cmi and C.mmp. Cmi is an Rubin, S. U. (1978). “The ARGUS Image Understanding
examp le of an asynchronous parallel processors organized System”, Ph.D Thesis Department of Computer Science,
as a network of clusters of processors (Swan, 1976). Carnegie—Mellon University.
Currentl y there are 10 LSI-11 microprocessors in the
system. Over the next two years we expect to have a 50 Swan, R. J. at aL (1976). “Cms: A Modular, Multi-
processor system and evaluate its effectiveness in a real- Microprocessor ,~ AFIPS Conference Proceeding. Vol.
time image understanding task. This organization provides 46, 1977 National Computer Conference, pp. 645-655.
significant flexibility, allowing each processor to execute
different operations and perf orm different computations.
One important question is how do we organize algorithms to
effectively use asynchronous parallelism of this type?
Preliminary explorations indicate that by careful
organization in a parallel pipeline, modular algorithm
decomposition will permit the full realization of the
parallelism potential.

Our joint research effort with CDC continues to be
the development of a low cost high-speed processor
element with special functional unils for image and symbol
manipulation operations. We currentl y believe that the
processor should be ready f or testing and validation within
the next year. The addition of these processors to the MIPS
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AUTOMATIC IMAGE RECOGNITION SYS ~ ~ i

Program Status , March 1978

R. Larson

HONEYWELL INC .
Systems and Research

Minneapolis , Minnesota 55413

This program is focused on tactical ap pli- Interframe Analysis - In tactical imagery we can
cations of image understanding . The constraints expect the unobscured , high contrast target image
on a tactical system , autonomous , mission directed , to be a rare event. The target objects will be
real time operation in an unknown environment , moving across a background of varying intensity
place some severe limits on the methods that can and background objects will frequently obscure
be used and tend to make the solutions problem parts of the target. Even when we are close
dependent. Thus , while tactical solutions can enough to the target to be able to resolve its corn-
be applied to intelligence and strategic problems , ponent parts , the contrast and obscuration effects
the converse is not generally true. will make it difficult or impossible to obtain a

complete target image from any single frame. It
The program goal is to develop and simulate is , therefore, necessary to be able to track

algorithms needed in the system diagram shown objects from frame to frame and to construct a
on page 135 of the September 1977 IU Workshop composite image from the separate frame approxi-
proceedings. Our recent work has been on the mations . In this we are also studying both numer-
target recognition part of the system , in par- ical and symbolic methods . At the last workshop
ticular the secondary screening of man-made we reported on interframe tracking experiments
objects and syntactic classif icat ion of large done by passing prototypes from frame to frame.
images. The paper by Panda at this workshop reports our

initial numerical results. We are studying ways
CURRENT IMAGE UNDERSTANDING EFFORT to use the resulting data sequence to increase  the

recognition accuracy.
~~~~ Image Classifier - We define a large image

as one that is observed at sufficiently high Configuration Analysis - Th is  t a s k  d e a l s  w i t h  the

resolution that object structure can be seen , final step in the image understanding problem ;
Statistical recognition is very difficult for obtaining a description of the scene from the list
large images of three dimensional objects be- of recognized objects. Scene description in the
cause of the large numbe r of viewing angles that sense of describin g a scene in terms of recognized
must be treated . We have , therefore, concen- target and background objects and their relative
trated on methods that refer the analysis back to locations is important in a number of multi-warhead
the structure of the object in either a numerical autonomous system concepts . It is also significant
or a symbolic way. The numerical methods were in intelligence , navigation and certain terminal
studied at Purdue and reported by them . The homing concepts. For the system we have defined
symbolic methods are being studied by Honeywell the scene description /configuration analysis is to
using the prototype similarity transformation, be used only to identify complex targets that are
Both approaches begin by having a potential targets ’ composed of a number of individua l, recognizable
position in the frame and its approximate size objects (e.g. a convoy of vehicles or a power
designated to the algorithm (the results of the plant ). Two problems that must be solved in con-
man-made object detection and secondary screen- figuration analysis are 1) how to represent the
ing). The algorithm then segments the part of information , and 2) how to generate the desired
the frame near the designated position Into target kind of description. A review of existing methods
and non-target pixels and extracts features or has led us to select a rule-based network (pro-
orimatives from the target part. In the Honey— duction rules linked as a network) as the data
well approach the subimage Is transformed into low representation and a bottom up analyser as the
level symbols and the segmentation Is done on the control structure for generating descriptions. A
symbolic Image. The target image components are part of the rationale for these choices Is that
then obtained by using prototype similarity again they will allow the representation of both re-
with ftner resolution . Work on recognizing the latlonships and properties in the same structure
components and , from them , the target Is just and we feel that this is a necessary capability .
beginning. Statistical classification will be
Investigated for recognizing the unresol ved compo-
nents and syntactic methods will be used for
object recognition .

______________ - -- - _______________________________
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Secondary Screening - Target classification is pre-
ceded by a number of data bandwidth reduction steps
that also serve to direct the attention of the
classification activities. Target cuelng is done
upon image characteristics. In our system we
follow the cueing by a screening based upon object
dimensions. These are deduced from the image , the
sensor resolution and the sensor to object range.
The dimensions are compared with known target
dimensions and accepted objects are passed to the
appropriate classifier, This function has been
implemented as a software modification to the Honey-
well Autoscreener and tested against FLIR imagery
recorded in television format. As expected , the
secondary screening decreases the number of poten-
tial targets that must be processed by the classi-
fier. We have found that rejection of targets
by the secondary screening is determined by the
accuracy of our range estimate , which , in our
experiments , was determined by estimating the
depression angle of the sensor.

Autothresho ld - The Autothresho ld is an image seg-
mentation method based on thresholding an image
relative to an estimate of the scan line intensi-
ties derived from the previous scan lines . The
method adapts well to the varying intensities
found in tactical imagery (both Interframe and
intraframe variations are significant), and the
method is readily implemented in either analog or
digital hardware. Since the last workshop report
a similar method of background estimation has been
incorporated in an image enhancement circuit using
discrete CCD’s.

— - - — . 
.
- . -  - — ,
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IMAGE UNDERSTANDING AND INFORMATION EXTRACTION
T. S. Huang and K. S. Fu

School of Electrical Engineering
Purdue University

West Lafayette , Indiana 47907

Picture Sour~ ding (Mitchell , Delp, Carlton )
OVERV I EW We have be~ ~~~~ by Rome Air Development

Center to investigate compression techniques
The objective of our research is to achieve for image transmission systems where a human

better understanding of image structure and to ana l yst is the ultimate receiver of the pic—
improve the capability of image processing sys— ture. This has led to a comparison of many cx—
tees to extract information from imagery and to - isting techniques and the development of a new
convey that information in a useful form. The spatial coding technique which is highly
results of this research are expected to pro— matched to the human observer , is simple to im—
vide the basis for technology development rela— plernent , and is comparable to much more compu—
tive to military applications of machine cx— tat iona ll y intensive coding methods.
traction of information from aircraft and sa—
tell ite imagery. Binary Array Process ing and Image Registrat ion

We are carrying out ba~ ic and applied (Reeves)
research in the following four overlapping Research nas been conducted in two main
areas: preprocessing, image segmentation , im— areas. First , a computer system for testing
age attr ibutes (espec ia l ly  texture and shape image process ing algorithms has been imp lement—
analysis ), and image structural analysis. The ed. Then this system has been used to test a
long—range goal of our research is to find good novel scheme for image registration. A general
symbolic representations for images, and tech— purpose, For t ran based, array processing sys—
niques for transforming raw image data into tern, APS, has been implemented on the PDP—1 1
such representations. In the immediate future, computer.
the emphasis of our research will be on one or The system is designed to simplify the pro—
more of the following : 1) combining syntactic gramming and testing of image processing algo—
methods with statistical pattern classification rithms . The data structure for image uses a
techniques. 2) Understand ing moving images, bit—plane format rather than the more conven—
3) Efficient computer implementation of image tional sequential file. To assist with the
understanding algorithms , processing of large arrays, APS features in-

clude dynamic array storage allocation end a
virtual memory for arrays .

SUMMARY OF RESEARCH PROGRESS This system was originally designed to simu-
late a binary array processor called BASE. As

Preprocessing (Huang, O’Conner , Yang) a consequence of this , programs written in APS
We have initiated a basic research project are well structured for parallel array process—

in nonlinear image enhancement techniques. Of ing.
particular interest is the problem of reducing APS is written in Fortran for portability
noise in images without blurring the sharp but contains some assembly code sections. The
edges contained therein. Our approach is to present version runs on a PDP 11 computer under
decompose the image into several components in the UNIX operating system. A l ibrary of image
such a way tha t the no i se ch a rec teri~ ti cs in processing subrout ines is being developed which
the components are more amenable to nonlinear is compl etely portable with respect to any
filtering methods. One particular class of machine which runs APS.
nonlinear techniques under study is median The system has been coupled with a high 1 ev—
filtering and its extensions . A fast two— el language interpreter so that both high level
dimensional median filtering algorithm has been interactive programming and efficient execution
developed and programmed on our PDP 11/45 corn— can be achieved.
puter. It is several orders of magnitude fas— A scheme has been developed for the rapid
tar than the most efficient sorting methods , reg istration of a sequence of images. This

Another area we are investigating is the scheme is suitable for applications Involving a
comparison of three phase unwrapping techniques F u R  or a conventional TV system . Each image
in regard to estimating the point spread fijnc— is converted into a binary feature image.
tion of image degrading systems. Preliminary Feature images may be rapidly registered and
resu lts indicate that they c oinlement each othe r also any movements of si gnificant objec ts
and perhaps should be combined in some manner , wi th in the image can be detected .

D
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An image is first processed to remove arti— our whole procedure shoul d result in an algo—
facts caused by the imaging equipment. In the rithm which can detect part of an object even
case of FLIP images a 3 bit wide median filter when the division is only very roughly
is first applied along each line to remove straight. A more quantitative statement
noise pixels and then adjacent lines are added depends on the ratio of perimeter belonging to
together to remove banding effects. The binary the object to perimeter belonging to the divid—
feature image is then computed from the prepro— ing “line. ” The in terpolation algorithm would
cessed image according to the equation be applicable to this situation , bu t a f i r s t

practical implementation of this would not in—
F = ,~ 1, if (P—MIN) > (MAX—P) d ude three—dimensiona l capabilities.

0, otherwise Since our Fourier descriptor algorithms have
been successful ly tested, we pl an to apply them

Where P is the pixel value , MAX is the local to more real data . We also plan to continue
max imum and MIN is the local minimum . The size theoretical investigation of FD theory in an
of the area over which the local maximum and attempt to both improve present methods and de—
minimum are computed is a system variable, fine their Limits.

Th is scheme has been tested on the APS sys-
tem. All stages of processing may be rapidly FLIP Image Segmentation and Target Tracking
executed on a parallel binary array processor. ~WiTchell , Carlton , Ward)

During the past months , research in texture

~~~~~ 
Segmentation by Edge Detection (Huang, and segmentation has been advancing especia lly

Sa lah i, Tang) in the applications to FLIR imagery target
Image segmentation by edge detection con— recognition and real time video target track—

sists of two steps. First , edge points are ing. We have been studying methods of automat—
detected. Then, these edge points are connect— ing the texture extremal thresholds to make the
ed to form curves. We have developed a method more adaptive. Our use of texture meas—
syntax—semantics guided technique for accom— ures is centering in two primary areas: (1)
plishing the second step. The resulting edge texture edge detection and texture region grow—
strings are generally disconnected. Currently, ing to segment an object from its background
we are investigating target classification and (2) classification of background reg ions
techniques which do not require closed boun— for use in the higher—level global recognition
dar ies. system . the data sets we are using primari ly

are the FUR large target data Set from
Use of Fourier Boundary Descriptors to Classify Honeywel l (120 images wi th identified tact ica l
Three—Dimensional Aircra fts (Wintz , Wallace) targets) and the White Sands Missi le Range TV

As described in our last progress report, data set (20 digitized images——an additional
our work recently has dealt with the app lica— 150 images are soon to be added).
tion of Fourier descriptors to recognition of The method of projections is being investi—
three—dimensional aircraft recognition. Since gated for structure analysis of the segmented
our last report , we have achieved results corn— images as wel L as boundary descriptions for
parable to those of Dudani [1] using a projec— tracking the changing shape of an object as it
tion density nine times lower than he used, and moves and as the sensor moves.
considering a much larger sector of three—
space. The property of frequency domain inter-
polation of FDs was exploited in our algorithm , Syntactic Algorithms for .~!Q! 

Segmentation ~~~
enabling the reduction in projection density. a Special Computer Architecture for Image

This algorithm is of considerable interest Processing (K.S. Fu and J. Keng)
in its own right , but it also suggests a possi— Several efficient algorithms for image
ble approach to the problem of recognition of recognition and segmentation and a new computer
partial shapes extracted from photographic architecture for image processing are proposed.
area. One weakness of FDs, as presently used The algorithms are “syntactic ” in that they
by our algorithms is the fact that the entire perform structural or spatial analysis rather
object must be roughly extracted from the pic— than statistical anaLysis , and a “grammar ” is
ture for classification to be successful . An inferred for describing the structures of pat—
aircraft with one wing missing due to shadow terns in an image, Depending on the require—
will not have similar Fourier descriptors to ments of the problem , an appropriate grammati—
one which is intact. This is because the FD is cal approach is used by the syntactic algo—
a frequency domain expansin of the entire out— rithm .
line of the shape being analyzed. A finite—state string grammar is applied to

Our three—dimensional algorithm defines a the image recognition of highways , r ivers,
natural projection space of two—dimensional bridges , and commercial/industrial areas from
projections taken at successive rotations about LANDSAT Images. There are two major methods In
the a and y axes. We can define a space of FDs the string grammar approach for image recogni—
parameterized by the equation of a line wh ich tion; namely, the syntax—directed method and
may cut off part of the desired object due to suntax-contro lled method. For the syntax—
shadow, noise, or any other obstacle to obtain— directed method, syntactic analysis is per—
ing the complete outline. While a straight formed by a template matchi ng which Is directed
l ine might not exactly model the division of by the syntactic rules. For the syntax—
the object, the noise—rejection properties of controlled method an automaton which Is direct—

- ~~~~~, -
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ly controlled by the syntactic rules is used noise into the picture after any of the above
for the syntactic analysis . operations. The effect is investigated. Some

A tree grammar is applied to the image seg— interesting properties and efficient computa—
mentation of terrain and tactical targets from tion in discrete case of the descriptors are
LANDSAT and infrared images respectively. The studied.
tree grammar approach utilizes a tree automaton The shape , after proper segmentation , can be
to extract the boundaries of the homogeneous described by an attributed grammar [3], in
region segments of the image. The homogeneity which each primitive or nonterminal has a
of the region segment is obtained through tex— descriptor as its attributes. The descriptors
ture feature measurements of the image, are computed when the recognition is performed.

The computer architecture proposed is a spe— The primitive extraction from noisy pattern
cial purpose system in that it can perform an is usually very difficult. The grammatical in—
image processing task on several picture—points formation and Looking ahead techniques can be
of an image at the same time , and thus takes used to optimize the extraction. The Earley ’s
advantage of the fact that image processing algorithm is modified to embody the primitive
tasks usually exhibit “parallelism. ” This ar— extra ction into the parse list generation , so
chitecture uses a distributed computing ap— that the input of the algorithm is a vector
proach. Two major features are the reconfigur— chain instead of a primitive string .
able capability, and the method of computer ex— The shape grammar can be converted from a
ploitat ion of task paralleLism. Finally, a context—free grammar to a finite—state grammar ,
paral l el parsing scheme for tree grammar is which is more efficient in processing. The
used to demonstrate the higher e f f ic iency of primitive extraction can also be embedded in
the proposed computer architecture than the the corresponding finite—state recognizer. Re—
conventional parsing scheme , cursive expressions for computing the descrip-

tors are develnped to speed up the process.
Syntactic Shape Recognition Using Attributed Grammatical inference directly from the noisy
Grammar (K.S. Fu and K.C. You)~~~~~ patterns can also be implemented automatically

Syntactic method has been studied in pattern or interactively.
recognition and image processing [2], our ap-
proach attempts to develop a more general REFERENCES
method for shape recognition. By shape, we
mean the outer boundary of the two dimensional Cl] S.A. Dudani , et. at., “Aircraft Identifica—
image of an object. Being the most intelligent tion by Moment Invariants,” IEEE Trans. on
rmcognizer , humans recognize the shape by Computers, Vol . C—26, pp. 39—46, January
analyzing its structure by grammatical rules 1977.
and the local details by primitives.

Four attributes , or feature values , are pro— [2] K.S. Fu, Syntactic Method in Pattern
posed to describe an open curve segment, and Recognition , Academic Press, 1974.
the angle between two consecutive curve seg-
ments is used as the attribute to describe the [3] P.M. Lewis , II, D.J. Rosenkrantz, and R.E.
connection. Any connection angle is called an Stearns, Compiler Design Theory, Prentice—
angle pr mit ive , while a curve primitive is an Hall , 1976.
open curve segment with a curvature function
which is either positive or negative throughout

the curve segment. The four attributes are C,

L, A and S. C, L are the vector from one end
to the other , and l ength of the curve respec-
tively.

A ‘f0 f (1) dl , S J’0 (J’~ f (1) dl —
~~~ ) ds.

Where f(l) is the curvature function of length
L from one end. That is , A is the total angle
of the curve , wh i l e  S somehow i ndica tes the
symmetry of the curve. The four attributes are
def iined as the C—descriptor of a curve segment
(not of a curve primitive only) and the connec-
tion angle the A—descriptor of an angle primi-
tive.

The C—descr iptor , af ter a t rans forma ti on

T = (C, L, A, A) = (IC (/L , A , S/L ,

in w h i c h  I.~ is the total length of the shape,

and the A—descriptor are theoretically invari-
ant under rotation , translation and scaling.
Unfortunatel y, the digitization introduces
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PROGRESS AT THE
ROCHESTER IMAGE UNDERSTANDING PROJECT

C. N. Brown
J. A. Feldman

The University of Rochester
Rochester , New York 14627

i~. ~~d~ ions j~ i&Q!~~icifleIL ~~~~ ~~~~~~~~~~~~~~ 
— -

1.1. Procedural Descr iption me model-directed finding of ribs
i n  chest radioqraphs ( [Ballard , 1978]

One important goal of the Rochest er provides an illustration of the use of
Vision Project is to investigate a the Rochester Vision System ,
generalized form of procedural incorporating procedure description ,
invocation in which an e x e c u t i v e  u tili t y measu re s, and tops—down ,
procedure chooses worke r procedures to model- directed perception. The object
perfor m a lob not lust on the basis of here is to cope with large amounts of
in put/ output behavior (as traditional possibly low-quality data without undue
pattern- directed invocation does) , bu t  processing time by depending on a
also ta king into account cost/ benefit declarative model of anatomical
estimates and perhaps other information structures, described procedura l
as well. This scheme is motivated by knowledge about how to locate them , and
the desire to have the advantages of an executive which uses decision theory
declara tive knowledge about what is to control the image— understanding
doa b le (the descript ions ) along with the process .
a dvantages of procedural knowledge about
how to do it (the workers) . The A novel and unifor . method of
dec larat ive , des cript ive component will describing arbitrary functions on the
allow conviences such as the modula r unit sphere (which define “museum—
ad dition of procedural lcnovledqe . The vievable” volu.es) is under
main research issue is to decide what inve stigation, wi th i m m e d i a t e
ex actly needs to be known about worker application to anatomical structures
procedures , and how to express that in a [schudy 19781 . The idea is related to
useful and uniform manner , The most the well— known Fourier description s of
recen t a n d  p resen t ly  con temp la ted work two— dimensional shape. Volumes are
at Rochester explores aspects of these modelled and described as the leading
issues (e.g. Lantz , Ballard , a n d  Brown , coefficients in certain spherical
1978) harmonic expansions of the volume

func tions. This •ethod also allows
least squared error fit ting of volumes1.2. Decision Theory in coefficient space, which interfaces
nicely  wi th rou t ines  w h i c h  loca te theThe use of decision th e o r y  not on l y  three- dimensional boundaries of volum~ sas an abstract model of intelligent in image da ta.perception hut as a practica l tool to

maximiz e computational benefit/ cost is
being investigated in the context of ~1. p522 ~A2fl ill A~~idI. L!d~~
procedural invocation , This work A na j~ sj~scon t inues  in the tr a d i t i o n  of Bolles,
.Sprou ll , and Garvey, and ul timatel y we The three—level orqanization of
hope to extend some of their results to image analysis (strategist , executive ,
dea l wi th formal proble ms that more worker l and a further exploration of

useful procedural description mechani smsc losely approx imate t he sorts of vi s io n are the obj~~~ts of study in automaticprob lems encountere d in our particular photo— inte pretation work (f Lantz
applica tions. Balla rd (see Section 2)
uses decimion theory techniques to 1978)). ‘rho objec t is to use the sorts
choose the •ost economical meth od of knowledge- based inferenc ing used by
(assuring adequate accuracy ) of locating skilled pho tointerpre ters , a lon g wi t h
ana tomica l structures in large-format motlels inspired by photointerpret ation
im ages , keys for identifying small industries ,

to do reliable and flexible
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identification of a few typ es of s.all At Rochester, the RIG message is the
indus trial installations. Imagery has lingua franca that allows processes on
been acquired from a Rochester , ~,y . remote machines to command the GMR—26 ,
nap ping firm and from RA DC in Rome , N.!, perf orm file manipu lations, etc. While
We plan to digitize the images in at SrI Int~ r na t ional f o r  the sun.er , IC.
cooperation with other DARPA contractors Larttz wrote systems code for the
(Maryland or USC). In the meantime , •ultiple process HAWICET E system [Barrow
modelling issues are being addressed. et ml. 19771. Some student projects in

our Computer Vision course are aimed at
~~~ ~~ 2i~pi~i ~~ ~~~~~~ Pol Iheira producing useful system software for

vision, and the common departmental
The descriptions of 3—D vector data interest in distributed computing

his toqra.s .entio~ ed i’t previous reports assures that new and co—operative
are  only an ins tance of a genera l class efforts using the distributed
of polyhedra for which unusually guick computation and communications packages
solutions exist to the hidden line/ will be launched frequently. A
surface problem. In the last six co.prehensive library of vision routines
•on ths, the conditions guaranteeing ((Sloan 1977-781) has been developed,
quick displayability have become centralized ,, documen ted , and
understood , and display programs written incorporated into the NEXUS system.
to use the resulting algorithms ((Brown They allow interactive user.; a wide
19781). Also recently the original range of image—processing and display
statistical motivation for the work has (qraphics , h a l f tone , color and BP~W TV)received more attention ([Weliner capabilities.
1978 1).

~~~. fi2ti~n ~! a n ~ja~~,. cQ! !i~~R.t ~i~i1~An95.1.  Hardware Understanding •otion pictures has
always presen ted an unusually difficultThe Grinne ll GMR- 2 6 display device 
problem to computer vision efforts. Theis on si te and DNA—interfaced to the

second (Vision) Eclipse computer. 32K compelling gestal t induced in huma ns by
of cor e has been added to the  Vision movin g objects is not well understood,
Eclipse , which is also used for research and so there  is li tt le leverage  on the
in distributed computing (see Section im mediate problems resulting from tk~
5.2). The original 80MB disk has been large mass of data in multi— frame
replaced with a 300MB one , and another ima ges. We are hoping to make progress
300MB disk is on order , to a r r i v e in f i r st on a pared—down version of the
April 1978. We are acquiring terminals proble . which nevertheless offers an
and inv estigating how to meet our interesting set of perc eptual phenomena
everyda y computing needs by co.aercia l, to model. The doma in is mult i— frame
hone—buil t, or combination intellig ent ima ges of animal motion ; initial
ter.inal systems. A cguisition of a research is beinq carried out on
frame—ra te TV—based digitizing device is sequential images of points of light
still proceeding. Cons truction of a attached to joints . This data can give
fas t (50 KB ) l i n k  to the PDP—KL1O is humans a strong perception of coheren t
nearly com plete . motion , and present work is aimed at

unde rstanding how we correctly ide ntify
5.2. Software points (about 13 in all in present data)

fro. frame to frame , and bow we segment
Advanced system software support is the resulting moving points into

now used rout inely, and more is un der meaningful body parts . Ultimately, the
development . Coumunications protocol s resul t s w i l l  be applied to multi—frame
and distribu ted computing packages gre y—scale images . Data presently comes
(rnovn er 1978 , Feldm a n 1978 , Shei tsinger from a program wh ich simulates a range
and Sabbah 1978, Solfridge 1978 , Sloan of human walkin g motion in 3 D .  The
19781) have bee n developed to  a l l ow  progra . is a useful theoretical tool,
access to the GMR-26 through the local since it allows direct access (not
ALTO computers or the remote PUP-lO , to mediated by vision) to movement
ac hieve reliabl e transmission between parameters , point loca tions , etc. It is
distributed processes , to produce also a useful psycholo gical research
graph ics and halftone images Ofl ~LT0 tool, since w i t h  it one can
screens f ro. t he PO P—lO , and to ~llov inexp ensively inves tigate limits in
file transfer and telnet to the Arp anet. huma n performance .
Th e IPC? in the TOPS- iD opera ting system
is the basis for communicatio n between
POP- iD jobs , a nd these lobs may now
create RIG messages and send them to th e
local operatin g system for dispo sition .

S — -
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flS~R~~2~~ Q~~~ 12Qi!~ii~ Lantz, K.A ., 8allard~ 0.8., and Brown ,C.M. General invocation through
The Smart Compiler and Distributed procedure descriptions: two

Computation research groups are applications in image analysis , to
cooperating on a language for r’~search appear in 22nd International
i nto bo th these fields ([Ball 19781). Symposium of the Society of
It will contain the ideas of PLITS, Photo—optica l Instrumentation
together with improvements and Engineers, San Diego, CA ., August
extens ions  gleaned from the SAIL—PLITS 1978.
implementat ions of the past. Th e re are
several separate ways in which the Rasbid, R.F. Motion understanding,
programming language developments are Thesis proposal, University of
affecting Image Understanding research Rochester , in preparation 1978.
in our labora tory and elsewhere [Feldman
n Williams 1977]. An overview of th i s  R ovner, P.D . Flow control and reliable
work is presented in the companion paper transmission in a system for
in this volume [Feldman 19781. distributed computing, T R22 ,

Computer Science Department ,
REFERENCPS Unive r s i ty of Rochester , October

197 7.
Sail, J.E., et al., ZENO: a langtage

for smart comp iler research ,
In te r n a l  M emo , Computer Science Rovner, P.O. Automatic representation

Department , University of selection for associative data

Rochester, (in pre paration) 1978. s t ructures, to appear in
Proceedinqs of the National
Computer Conference, A n a h e i m , CA.,

Ba l l a r d , D.H., Model-directed detection June 1978. Sabbah , D. Imageof ribs in chest radioqraphs , TR 11 , calibra tion , In t e r n a l  Memo ,
Computer Sc ience Department , Computer Sc ience Department ,
University of Rochester , M arch Un ive r s i ty of Rochester , in1978. preparat ion 1978.

Barrow , H . G . ,  e~ 51., Interact ive aids sche in inger , U., and Sabbah , D., Thefor car tog raphy and photo display process , Inter na l Memo ,
in terpretation , Semiannua l Compu ter Science Department
!e ~hnica l Report , Artifici al University of Rochester , DecemberIn telliqence Center, SRI 1977.I n t e r n a t i onal , November 1977.

Schudy, P., A mode l forB rown, C.M.. , Past display of certain echocar diogra phy, T R 12 , Computer
mu seu s—vi ewab le polyhedra, TR23 , Science Depa rtment, Univers it y of
Computer Science Department , Rochester, (in preparation) 1978.
University of Rochester, March
1978. Selfridqe , P., Name - value pai r s  in the

Rochester vision header. In terna lF e l d m a n , J .A., Synchronizing d i s t a n t Memo , Computer Science Department ,
coopera ting processes, T826 , U n i v e r s i t y  of Rochester , January
Computer Science Department , 1978.
Un iversity of Rochester , October ,
1977. Sloan , (.8., Rochester vision library

documen ta t ion, Internal Memos,
Feldman , J.A., Systems support for Computer Science Department ,

advanced image unders tanding. Universi ty of Rochester , 1977 —

D A R P A  Semiannual Technical Repo rt , 1978.
May 1978.

W eliner , J.A ., Two—sample tests for a
Feldman, J.A .,  and Williams , G. Some class of distributions on the

comments on datatypes , ‘r828 , sphere, sub.itted for publication ,
Computer Science Department , February 1978.
University of Rochester , December
1977.

Lant!, K.A. , Procedura l knowledge and
control, in a •odel — driven vision
system , Thes is proposal , Universit y
of Pochestet , February 1978.

__________



153

SPATIAL UN DERSTANDING

Thomas 0. Binford

Artificial Intelligence Laboratory, Computer Science Department
Stanford University, Stanford, California 94$05

Abstract
A second research objective is to build a system which

This report discusses research in two areas. The first is locates airfields in aerial photographs. It must do this from a
spatial interpretation of stereo images and use of context In dialog with a P1 and a set of examples. The system should be
stereo mapping. The second Is the design and construction of a generic. That is, the same system will be used to locate oil tanks ,
model-based system for finding airfields and other objects from based on another dialog and a set of examples. The same system
generic models, will be used for aircraft and vehicle Identification. An

Important consideration in a dialog is the language in which it
will be carried out. In this case, a language common to users and
to our vision system was chosen, a language of object models.

Introduction
Stereo Vision

A major objective of this research is to solve scientific
problems encountered in using stereo vision and motion Arnold (I) describes results obtained with photos of San
parallax for photointerpreta sion. mapping, and guidance. Stereo Francisco Airport, an apartment buildin g, and a parking lot.
ranging is attractive because it Is passive , has high depth The system requires one minute of machine time to make a
accuracy, high spatial resolution, and makes use of images from depth map of edges of surfaces. The edge map appears easily
visible, SAR , and r’her well-developed sensors. Several systems adequate for identification. Edge maps are relatively continuous
have partial success with automated stereo terrain mapping. with few errors; they are improved near corners and along edges
They have problems around buildings (surface discontinulties) which are nearly parallel to the stereo axis. The system has been
and on surfaces which are uniform or have repetitive markings rebuilt, with memory maueagement to work with very large
1the ambiguity problem) The chief problems to be solved arr Images, and is now being tested. Some of the weaknesses of
automating the process of matching corresponding parts of current edge operators show up under the close scrutiny of
Images, particularl y at surface discontinuities; resolving image matching.
ambiguities by using more global correspondence; designing
algorithms and machine architectures to meet time objectives This research aims at high resolution of surface

boundaries to make measurement of dimensions and angles. It is
We have taken the approach of building spatial models about a factor of 10 more accurate for such measurements than

of surfaces in order to make use of a priori knowledge about Cenner y’s system [2). It Is thought effective with thin objects
objects , and to construct a consistent context with in the scene. such as poles, although no examp les have been demonstrated
Knowledge from outside the scene and from within the scene An essential part of the rese~srch Is the use of context in
are used to reduce ambiguity. We have used both feature matching. The system currently uses local context of edge
corres pondence and small area correlation. The two are continuit y, and the context of the ground plane. The system is
complementary. Edge correspondence is useful at discontinulties being extended to use context of locally planar surfaces, with
of uniform surfaces. Area correlation is useful with textured successive approximation modeling. The addition of greater
surfaces. For identification , we match three.dimensional context is ex pected to produce effective depth mapping.
structures, rather than two-dimensional Images. To make stereo
mapping fast we have developed coarse-to-fine search strategies A model for stereo vision is emerging. The mode) Is based
and utilized edge.based matching. These are combined wIth on surface Interpretation of edge and area correspondence, with
successive approximation modeling, which concentrates effort at a coarse-to-fine search strategy, and so-. ~essIve approximation ~ifany stage on large unmatched areas, surface models.
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Model-Based Vision The system Is largely not probabilistic. It does not have
distributions of expected pictures or objects, but it does have a

In order to make a system which an expert P1 can use to partial ordering among perceptual operations in terms of
locate airfields, it is necessary to provide means for the expert to expected cost and effectiveness. It has models of what it expects
ex press the task and his knowledge. This knowledge is ~ 

to find, but not models of the rest of the im age. Thus, it does
combination of geometric and symbolic. We have taken the not have a good way of distinguishing desired objects based on
approach of building a high level language for object modeling “cry simple discriminations such as color. Instead, to make
to ex press spatial structures and relations iii. effective selection of Initial candidates It must use local shape

and context. To match , it must require strong reinforcing
The system uses that knowledge by building a structure structural evidence, not discount known alternatives. Only in

for what it ex pects to see in the picture. Some of the expectation this wa y can it function in a complex visual environment.
is generic, I.e. widely applicable, some specific to the task at
hand. It determines symbolic observables and relations and links The system is partially implemented. We ex pect to use it
them to their interpretations in the object models, to identify aircraft from stereo maps produced by the

edge-based stereo system.
A model-matching program uses multi-level relaxation in

the form of coarse matching and detailed matching. References

The system can be driven in the ot,,er direction. I. Arnold, R D.; ‘Local Context in Matching Edges for Stereo
Structures from the picture can be mapped to generalized cones VIsion’; In these proceedings.
and three-dimensional object interpretations. It can thus build 2. Gennery, D.B.; ‘A Stereo Vision System’; Proceedings ARPA
scene descriptions guided by object knowledge. Thit level of Image Understanding Workshop, October 1977.
generality is very promising. ~~. Brooks, R.A., Crelner, R., Binford , TO.; ‘A Model.Based

Vision System’; In these proceedings.
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AN EXPERT SYSTEM FOR DETECTING AND INTERPRETING ROAD EVENTS
DEPICTED IN AERIAL IMAGE RY

H.G. Barrow
M .A. Fischler

SRI International
Menlo Park, California

ABSTRACT APPROACH

This paper presents an overview of SRI To achieve the above capabilities , we are
International’s effort to construct a “Road Expert” developing two “expert” subsystems: the “Road
whose purpose is to monitor and interpret road Expert” and the “Vehicle Expert.” The Road Expert
events in aerial imagery. Goals, approach , and the knows mainly about roads , how to find them (in
current state of this research are described, imagery), and what things belong on them . It works

at low to intermediate resolution (say from 1 to 20
feet of ground distance per image pixel) arid has

INTRODUCTION the ability to distinguish vehicles from other road
detail. The Vehicle Expert works on higher—
resolution imagery and can identify vehicles as toResearch in Image Understanding at SRI type . We are concentrating our initial efforts onInternational was initiated in 1975 to investigate the Road Expert, and therefore will limit ourways in which diverse sources of knowledge might be discussion to this component of our system .brought to bear on the problem of analyzing and

interpreting images. The initial phase of research Among the specific tasks to be performed by the
was exploratory in nature , and identified various Road Expert are the following:
means for exploiting knowledge in processing aerial ( 1)  Place the image intophotographs for such military applications as correspondence with the map datacartography, intelligence , weapon guidance, and basetargeting . A key concept is the use of a
generalized digital map to guide the process of (2) Determine the precise location of
image analysis. known roads in the image

The results of this earlier work were integrated (3) Determine the visibility of the
in an interactive computer system called “Hawkeye” located road segments
(see Ref. 1). Research has now focused on a

(Ii ) Mark the road center—line and lanespecific task domain: road monitoring. The boundariesfollowing sections of this report present an
overview of this new effort. (5) Detect anomalous regions on and

along the road pavement

(6) Determine which anomalies areOBJECTIVE potential vehicles.

The image/map correspondence task will beThe primary objective in this research is to accomplished primarily by using roads as landmarks;build a computer system that “understands” the thus, Tasks 1 through 3 will interact strongly withnature of roads and road events. It should be each other. These tasks will be performed atcapable of performing such tasks as: approximately 20 feet/pixel resolution so that a
(a) Finding roads in aerial imagery reasonably wide field of view (10 to 100 square

miles) can be processed at one time.(b) Distinguishing vehicles on roads
from shadows , signposts, road Having located visible portions of roads,
markings , etc. individual sections will be selected for detailed

(c) Comparing multiple images and analysis. Increasing resolution to approxlaately
1—3 feet/pixel , the road center—line and lanesymbolic information pertaining to boundar ies will be found starting with the initialthe same road segment , and estimate obtained in the low—resolution step. Wedeciding if significant changes will then detect anomalous regions on anc~ along th&’have occurred. road pavement , and finally decide which of these

It should be capable of performing the above regions are vehicles. Since road anomalies will
tasks even when the roads are partially occluded by cause problems in tracking a nominally homogeneous
clouds or terrain features , or viewed from road surface , Tasks U through 6 will be integrated
arbitrary angles and dimtances , or pass through a to some extent.
variety of terrains.
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The above tasks will be supported by information CONCLUDING CO144ENTS
about road condition and general structure from a
symbolic data base. For example , if prior We see the military relevance of our workphotographic coverage of the area being analyzed ~ extending well beyond the specific road—monitoringavailable , the problem of anomaly classification scenario presented above. In particular , a Roadcan be simplified by determining if a similarily Expert can be applied to such problems asshaped anomaly was found in the same general
location over some extended period of time . (1) Intelligence: monitoring roads for
Additional examples of how data—base knowledge and movement of military forces
stored m odels can aid in the analysis process (2) Weapon Guidance: use of roads asinclude : the use of time of day in discriminating landmarks for “Map—Matching ”shadows from objects of interest; the general shape
and width of the road (as obtained from a map) to 5)’mtems

aid in road tracking; and the expected size, shape, (3) Targeting: detection of vehicles
and road orientation of potential vehicles , for interdiction of road traffic

A central theme of this effort is to consider (14) Cartography: compilation and
Roads as a knowledge domain. In particular , we updating of maps with respect to
plan to address the question of how a—priori roads and other linear features.
knowledge can be directly invoked by the image In accord with our generalized view of theprocessing modules (what type of knowledge; how applicability of the Road Expert we areshould it be represented; what are mechanisms for constructing, we will attempt to achieve a level ofits use). To achieve our goal of building a very— performance and understanding in each of thehigh—performance system , we plan to develop functional tasks that far exceeds that required forexplicit models of the image structures we will be dealing with the road monitoring scenario alone .dealing with and , additionally, models of the
decision procedures embedded in the image—
processing algorithms so that the algorithms can REFERENCESevaluate their own performance. Finally, we must
develop an overall control structure, which will be
concerned with the problems of coordinating 1. H.G. Barrow, et al., “Interactive Aids for
analysis across a number of levels of resolution, Cartography and Photo Interpretation: Progress
and with integrating multisource information . Report, October 1977,” PBOCEEDINGS: IMAGE

UNDERSTANDING WORKSHOP , October 1977, pp 111—127

2. L. Quam “Road Tracking and AnomalyPROGRESS Detection ,” PROCEEDINGS: IMAGE UNDERSTANDING
WORKSHOP” , May 1978. In Press.

Working programs exist that are capable of
performing each of the major tasks to be performed
by the Road Expert; however , these programs are
low—level in the sense that they still cannot
communicate with each other, or modify their
performance based on context or self—evaluation .
In almost all cases, the level of performance is
expected to improve substantially as we integrate
the individual modules and modify them to accept
data—base support.

We are currently placing major emphasis on Tasks
3 through 6, and some of this work is described in
a companion paper by Lynn Quam (Ref. 2). Using a
road model that. assumes segments exhibiting
relatively smooth/slow changes in direction and
also in the intensity profile normal to road
direction , we have been able to achieve
surprisingly robust the performance in tracking the
road center—line . In many cases, roads that have
almost no discernible contrast at their edges can
be reliably followed .

In order to support our experimental work, we
have acquired multiple photographic coverage of
five distinct sites scattered around the San
Francisco Bay Area. This imagery (most of it still
to be scanned) shows road detail at the resolutions
mentioned earlier——i.e., 1 to 20 feet of ground
distance per Image pixel.
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USCIPI SIX MONTHS OVERVIEW

Harry C. Andrews

Image Processing Institute
University of Southern California
Los Angeles , California 90007

The past six months have been quite TABLE OF CONTENTS
produc tive on a variety of research and
development fronts. The image under- 1. Research Overview
standing projects are maturing with symbo-
lit’ matching, structure location , edge 2. Image Understanding Projects
fl cing, stochastic texture analysis and 2.1 Matching Segments of Images
SVD feature selection , all being reported - Keith Price
upon in some detail. The image processing 2.2 Symbolic Matching and Analysis
projects present both new and concluding with Substantial Changes in
projects. New projects include double Orientation - Keith Price
phase binary computer generated holograms 2.3 Locating Structures in Aerial
and turntable radar imaging via coherent Images - Ramakant Nevatia and

multi-frequency radar return processing. Keith Price
Older projects resulting in successful 2.4 A New Edge Fitting Algorithm
theoretic and experimental work include a - Ikram Abdou
posteriori restoration and perceptual model 2.5 Stochastic Texture Analysis
color image coding. Our on-going smart - William K. Pratt
sensor project is expanding rapidly with 2.6 Singular Value Decomposition
old circuits being driven at near real time Feature Extraction - Benham
TV rates and new circuits being designed Ashjari and William K. Pratt
for 7 x 7 area processing for both enhance-
ment and texture development. The Institute 3. Image Processing Projects
has recently acquired a high precision 3.1 Double Phase Holograms , A New Way
hardcopy color device for improved output of Generating Binary Holograms
capability and has installed a real time TV - Chung-Kai Hsueh and
solid state refresh monitor and display at Alexander A. Sawchuk
ARPA headquarters . This allows recent 3.2 A Technique of A Posteriori
pic torial results to be made available over Restoration -- Results of a
the ARPANET . Any and all contractors can Computer Simulation - John Morton
make use of this device with software 3.3 Turntable Radar Imaging -

devices available from the Institute . Chung-Ching Chen and
Finally this past six months have witnessed Harry C. Andrews
the graduation of one Ph.D. student and 3.4 Perceptual Model Coding -

ntmserous Institute personnel publications . Charles Hall and Harry C. Andrews
The Table of Contents of our up coming semi- 4. Smart Sensor Projects
annual report is listed below and provides 4 .1 Charge Coupled Device Technology
insight into current projects. Interested For Smart Sensors-Graham R. Nudd
readers are directed to that report 4.2 Statement of Work For Follow on
(USCIPI No . 800). CCD Circuitry - Harry C. Andrews

5. Hardware Activities
5.1 Hardcopy Acquisition

- Harry C. Andrews
5.2 The RTTV at ARPA - Harry C. Andrews

6. Recent Ph.D. Dissertations
6.1 Digital Color Image Compression

in a Perceptual Space
- Charles Hall

7. Recent Institute Personnel Publications
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SYMBOLIC PROCESSING A1~GORITF1M RESEARCH COMPUTER
A Progress Report

Walling R. Cyre , Gale R. Allen , Pete G. Juetten

Control Data Corporation
Minneapolis , Minnesota

INTRODUCTION particularly in the area of Functional Unit
This repor t summarizes the progress on a high— operation sets.

per f o r mance , m icroprogrammed compu ter called SPARC
(Symbolic Processing Algorithm Research Computer),
which was started by ARPA in 1977. Although a gap RESULTS
in funding occurred , this work has been con t inued Firs t , the need for a general—reg ister File
by CDC in conjunction with Carnegie-Mellon Univer- Unit was identified. One of the original specifi-
sity under an internal research and development cations on the SPARC was that it perform well at
program. ARPA funding has now been reestablished, both the signal and symbol levels. In signal-
The primary effor t has been focused on the develop- level image processing tasks , the machine can be
ment of a set of design specifications from the used to considerable advantage by cascading
system of desired architectural features reported Functional Units to form pipelines. The File Unit
earl ier  El]. is used to realize the small delays necessary in

The machine organization of SPARC is based on programming tight pipes .
the concept of a set of specialized Functional A second major result of the study was the
Units which communicate via a high-bandwidth , integration of the Shift/Mask Unit and the Boolean
multiport switch. From the machine organization Unit. This integration allows a higher utiliza-
point of view, all Func tional Units , including the tion of the hardware, and was determ ined to be
Control Unit and I/O Units , are indistinguishable , feasible through gate-level simulation. In addi-
except for the number of input and output ports tion to these modifications in the machine organi-
which each presents to the Switch. The activit ies zations, a number of improvements in the operation
of the cosputer are governed by a Program Memory sets of the other Functional Units were made.
and a Connect Memory, both of which are located in These changes ranged from an addit iona l mu l t i p l i —
the Control Unit. Two Program Memory instruction cation mode in the Multiply Unit to a restructur-
formats are defined. One instruction type has ing of the addressing mechanism of the Data Memory
seven fields. The first field is used to issue Units. Other modifications tending to improve
activity or enable signals to the Functional Units , performance were found, but were not adopted
and the second field is a data or emit field. The because they led to marginal timing situations or
next four fields may be used to select the opera— were not cost effective.
t ion s to be performed by any four of the Functional
Units, including the Control Unit. The final field
specifies an address in the Connect Memory. The CONCIAJSION
second instruction type is used to overlay the This effort is continu inC with emphasis on
Connect Memory. The Connect Memory is used to optimizing the mapping from Functional Unit inputs
store patterns of switch closures for interconnect- to Switch outputs for conflict minimization, and
ing the Functional Units, on defining the mapping between detectable machine

status signals and the conditions on which branch-
ing may be programmed. This method of benchmarking

METHODOLOGY and simulation has been found to be a powerfu l
The primary problems addressed in the effort tool for progressing from the preliminary archi—

reported here have been the specification of tectural specifications to the hardware design
Functional Unit operation sets and the mapping of specifications.
Functional Unit input ports onto Switch output
ports. The tools which are being used to aolve
these problem s include benchmarking and gate—level REFERENCES
simulation. The approach has been to program a [1] P. Juetten , G. Allen, R . Non , and
number of algorithms against the preliminary design R. Reddy, “An Image Processor Architecture ”.
(which included prelimi lary operation sets for each Proc. Image Understanding Workshop, Palo Alto , CA
Functional Unit) and identify desirable changes in October 20—21, pg. 12—18.
the design. In closely coupled efforts , the design
feasibility and coat ol each desired design modi-
fication was evaluated us ing gate-leve l simulation
methods, Although these studies are incomplete at
this time , significant results have been obtained,
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