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FORWARD

P

With the convening of the Seventh Image Understanding Workshop in Cambridge,
Massachusetts on 3-4 May 1978, the planned five year Defense Research Projects Agency
program reached its temporal mid-point. It is interesting to note that this program
was initiated by the calling of a preliminary workshop in March 1975 which attempted
to set out goals for both the research effort as well as the areas in which the results
might make significant impacts in the military user community.\ At that initial work-
shop, Dr. J. C. R. Licklider, then the Director of the InformaéiQ: Processing Tech-
niques Office which sponsors the program, made this observation:

"The objective (of the Image Understanding Program) will be
to develop the technology which can be exploited by the DoD com-
ponents to solve their specific problems. Thus, the activities
that will be supported in the program will not be the engineer-
ing of specific solutions to specific problems. The philosophy
in the program will be to develop generalized technology by
driving the research in particular directions. However, at
the end of the five year period the technology developed must
be in a state in which it can be utilized by thé DoD components
to solve their specific problems without requiring a significant
research effort to figure out how to apply the technology to
the specific problems. For this reason, the program must result
in a demonstration at the end of the five year period that an
important DoD problem has been solved."

Also at the initial meeting, LTC Carlstrom, the Program Manager for the
Irage Understanding Program, presented a list of potential problem areas of interest
to Image Understanding as follows:

1. Photo Intelligence /
2. Geophysical (ERTS, LANDSAT) /
3. Cartography

4. Meteorology

5. Remotely Piloted Vehicles (Robotics, Guidance)

6. Surveillance

In the two and a half years of its existence, the DAPRA Iﬁzge Understanding
Program has attempted to follow the philosophy enumerated at its fouhding as cited
above. The original meeting was attended by 31 representatives, while workshops

during the first year of research attracted 50 attendees. At the end of the second
year the size of the Image Understandiny Workshops had growr to 72 interested personnel
with many more receiving copies of the workshop proceedings. It is hpped that this
increase in interest is a reflection of the emphasis that the program Wanager and the
research personnel have placed on demonstrable and real world results. ®rhe close in-
teraction of the user community by attendence and participation at these workshops is
much appreciated by all concered with the program.

This document contains technical reports presented by those research organiza-
tions active in the Image Understanding Program. Also, outlines of the semi-annual
progress reports as presented by the Principal Investigators are included for reference
The University and Industrial companies currently working on the DARPA program are:

WY s
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University of Southern California

University of Maryland

Purdue Universityv

Carnegie-Mellon University

Massachusetts Institute of Technology

Stanford University

University of Rochester

SRI International \
Hughes Research Laboratories
Westinghouse, Incorporated \
Honeywell, Incorporated

Control Data Corporation \

Lockheed Missiles and Space Company

The seventh workshop was hosted by Dr. Patrick H. Winston, D&rector of the
Artificial Intelligence Laboratory at the Massachusetts Institute of Téchnology. The
meetings were conducted at the Howard Johnson's Motor Lodge, Cambridge, Massachusetts,
on 3-4 May 1978. Representatives of various Army, Navy, Air Force, and DoD and other
Government Agencies as well as members of the research organizations cqncerned were

in attendence. Thus the two primary objectives of the workshop - the dross-fertiliza-
tion of research results among the various investigative groups and an &xchange of
ideas between the users and the research personnel - were accomplished. § It is par-
ticularly gratifying to note that several demonstrations of achieved research results
were presented at this workshop in addition to the descriptive technical papers. -f_

The cover design of this volume attempts to carry forward the hierarchical \\
processing theme and the multiple technologies theme of the past two proceedings by \
indicating a possible direction for the final utilization of the products of this
research program, i.e., actual technology transfer from the laboratory to the field. \
Although DARPA does not concern itself with the fielding of systems - it is vitally
c¢oncerned that its research efforts be ready for use by service or DoD agencies. The
artwork for the cover was created by David E. Badura and Thomas G. Dickerson of
Science Applications, Inc. from ideas supplied by LTC Carlstrom.

e ————————"

The Conference Organizer wishes to thank the moderators of the technical
sessions for keeping the program on schedule and Dr. Winston of MIT for hosting the
workshop and arranging tours and demonstrations of the MIT-AI Laboratory. Ms. Suzin
Jabari of the MIT staff was instrumental in making the arrangements for the workshop
in the Boston area. Mrs. Kristin G. Johncox of Science Applications, Inc. provided
typing support for mailings and the collection and arrangement of the conference
proceedings.

Lee S. Baumann
Science Applications, Inc.
Workshop Organizer

Reference:
1. Minutes of the 6-7 March 1975 Meeting of the ARPA Image Understanding Workshop,
Page 3, Page 10. "
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HARDWARE IMPLEMENTATION OF A SMART SENSOR: A REVIEW

Thomas J. Willett
Glenn E. Tisdale

ABSTRACT

This paper summarizes the results of a 21-
month program to investigate the design and imple-
mentation of automatic target cueing logic. The
work was performed for the University of Maryland
Computer Science Center, under DARPA sponsorship,
and monitored by the Army's Night Vision Labora-
tory.

During the conception and test by Maryland
of the cueing algorithms, Westinghouse carried out
an investigation of techniques for their imple-
mentation, with particular emphasis on charge
transfer devices. When processing functions were
specified, a detailed analysis was then carried
out so as to provide them in CCD's. This process
continued throughout the first year of the program.

During the final nine months, a specific
circuit was chosen for the fabrication of a demon-
stration unit. A sorter function was selected be-
cause of its occurrence in several cueing oper-
ations. Chips were fabricated and tested at the
Westinghouse Advanced Technology Laboratories,
and a demonstration unit was assembled and shown
at the Image Understanding Workshop in October,
1977. The unit rearranges a random series of
pulses in ascending order by magnitude.

An estimate was also made of the area in
monolithic silicon required to implement the cuer
function in CCD's. The algorithm presently pro-
posed by Maryland would require an area of 11-1/4
inches by 7-1/2 inches. If 3-inch by 3-inch
modules were employed with 1/2-inch centers, an
equivalent volume would be 3 inches by 3 inches
by 6 inches.

N

INTRODUCTION

Although the sensors used in reconnaissance
and target acquisition continue to improve in reso-
lution,speed, and dynamic range, the location of
targets still depends on the ability of a human
operator to search images in real time. The
concept of the "Smart Sensor" assumes that much,
if not all of the human effort in target acqui-
sition can ultimately be performed better by
automatic recognition logic. An initial step in
the development of the Smart Sensor would provide
rachine assistance to the human in evaluating his
displays, by providing audible and visual cues

Westinghouse Systems Development Division, Baltimore, Maryland 21203

regarding target location and identity. Develop-
ment and implementation of automatic target cueing
algorithms was the subject of a 21-month program
performed with the University of Maryland Computer
Science Center. The program contained three phases,
as follows:

Phase I: Task and Technology Review (3
months)

Phase II: Algorithm Selection and Test (9
months)

Phase III: Hardware Development (9 months)

All phases of the program were completed during
the prescribed period, including the construction
and demonstration of an important recognition
function using charge-coupled devices.

The success of the program is due, in large
part, to the close coordination between members of
the government-university-industry team. The team
was assembled in 1976 by Lt. Col. David Carlstrom
of DARPA. The principle team members from the
government were Mr. John Dehne and Dr. George
Jones of NVL. For the University of Maryland,
principle members were Profs. Azriel Rosenfeld
and David Milgram. The Westinghouse team included
Dr. Glenn Tisdale, Program Manager, Mr. Thomas
Willett, project engineer, Dr. Nathan Bluzer,
and Dr. Gerald Borsuk.

The design of an automatic target cueing
system must begin with a statement of system
design goals. Next, the algorithms and data flow
can be established. Finally, hardware fabrication
can be considered. Thie paper will summarize the
effort in each area.

SYSTEM DESIGN GOALS

As shown by Fig. 1, automatic cueing is
achieved by an image processor, which serves as
an information filter on the image, alerting the
human to the presence of potential targets, possi-
bly by audible signals initially, and then by
providing visual cues or overlays on his display.
Automatic cueing can be carried out either in
airborne or ground locations. In the airborne
situation, the operator views a CRT-type display
for acquisition of targets on a real-time basis.
His determination may result in action in a matter
of seconds, either offensive or defensive. On the
ground, interpretation may be required in real-
time, or on a more relaxed basis. In the proposed

e 1i s




operation of remotely piloted vehicles (RPV's),

for example, a video link may be used to obtain a
CRT presentation at a ground station of the output
of a sensor located on the vehicle. The problems
for the operator are somewhat similar to the air-
borne situation; however, his appraisal of the
sensor image is entirely limited to the CRT output.
He can't look at the target area directly. On the
other hand, he is not distracted by problems such
as vehicle operation and personal security.

Key considerations in the design of an
automatic target cueing system are its performance,
physical characteristics, and allowable cost. A
quantitative determination of design parameters
will depend on the manner in which the mission is
implemented. Such implementation will be discussed
first.

As explained above, the target cueing
function might be performed aboard a vehicle, or
at a ground station if imagery is relayed for
analysis. In either case, the performance goals
will tend to be comparable. As regards physical
characteristics and cost, however, the vehicle
location will demand much tighter restrictions.
Cur discussion will proceed on the basis of the
vehicular application. Both helicopters and high-
speed aircraft are airborne candidates. The RPV
image, on the other hand, will be analyzed at a
ground station; therefore, the physical limitations
within the RPV are not a problem. As the state-
of-the-art in automatic target recognition develops,
and high levels of performance are attained, it is
anticipated that the human observer will eventually
be eliminated in some applications. For example,
recognition equipment might be placed aboard a
missile for unaided terminal guidance. The re-
quirement for high performance, small size and
weight, low power consumption, and low cost will
all apply in this case.

Performance Goals

Rey performance parameters are the detection
and recognition rates for targets of interest, the
false alarm rate, and the speed of operation of
the cueing system. Detection occurs when a target
of any kind is indicated by the cueing system,
while recognition occurs when the correct target
class is selected from among several possible
classes. Detection and recognition performance is
expressed as a percentage of the targets which are
actually available. A false alarm occurs when a
target is indicated even though none is present.
The false alarm rate is expressed on the basis of
a unit of elapsed time or area of coverage. The
required speed of operation is determined by the
time available to the operator to make decisions,
the search area to be covered by the sensor, and
the sensor frame rate. It depends heavily on human
factors considerations, such as decision times and
reaction times, and the choice of prioritization
ground-rules.

A detailed examination of the trade-offs
between the required cuer processing rate and the
allowable false alarm rates was presented recently

by Dehne et. al. of NVLI. For a set of mission
parameters which relate primarily to the helicopter
scenario, it was found for processing rates between
3 and 10 frames per second, false alarms could be
accommodated increasing from 0.5 to 1.8 per frame.
These results assumed that 20 seconds were availa-
ble to cover a large search window, resulting in
about 0.7 seconds to handle each frame. This
figure includes the frame processing time, the

time to slew the sensor, the operation decision
time per false alarm (0.2 seconds) and his reaction
time to advance to the next frame (0.2 seconds).
The report considers sequential as well as com-
bined processing and slew, with the former pre-
ferred.

A separate consideration with the above
processing rates is that the cueing symbols super-
imposed on the display must appear in the correct
location even after the processing delay. With a
frame rate of 30 per second, the delay covers 3 to
10 frames (0.1 to 0.3 seconds). Misregistration
of target and symbol could be caused by target
motion relative to the terrain, or the changes in
the field of view due to aircraft motion. Broad-
side motion of the target is generally the worst
case. Suppose the cueing window subtends twice
the extent of the target on the display in both
the horizontal and vertical dimensions, and is
located at the point of the target center in the
processed frame. It can move by half its di-
mension in any direction and still be contained
within the cueing window. For a vehicle 20 feet
in length which subtends 20 pixels in the display,
motion of 10 feet must be accommodated over a
worst case period of 0.3 seconds, with a corres-
ponding allowable broadside speed of 30 feet per
second (43 mph). This result is independent of
range if the window is porportional to target
size.

The report also considers the use of a wide
sensor field of view for cueing, followed by
operator confirmation with the narrow field of
view. It is assumed in this case, that the
capability of the cuer for recognition exceeds
that of the operator by an amount sufficient to
compensate for the increased field of view. Under
these conditions, one false alarm per frame could
be accommodated with a processing rate of 0.54
frames per second (about a 10:1 reduction over
the previous case). However, at the present state
of the art, this improved cuer performance rela-
tive to the operator has not been demonstrated.

In that regard, it is noted that because of the
eye integration time of 0.2 seconds, the operator
gains a signal-to-noise improvement over the cuer
of, perhaps, 2.5.

A final avproach considered a sensor with
an expanded, high resolution scan area equivalent
to the target search window. Due to display
limitations, the operator sees either a low
1.Dehne, J.S., Van Atta, P. and Raimondi, P,
Specifying Image Processing Systems for Thermal
Imagers, paper presented to the Seventh Annual
Symposium of the EIA-AIPR Committee, College Park,
Md. 24-24 May 1977.




resolution version of the entire window, or a small
segment containing potential targets as selected by
the cuer. The cuer processing rate is not greatly
affected by r'is mechanization.

For the assumed frame size of 375 by 500
pixels, the processing rates of 3 to 10 frames
per second correspond to data handling rates of
0.6 to 1.9 megapixels per second.

The foregoing discussion was addressed to
the helicopter scenario. For the high-speed
aircraft, the available search time will tend to
be lower, but the required search window will
probably also be reduced. The reduced search
window can be achieved by reliance on navigation
aids for the acquisition of predesignated targets.
At the high speeds and possible low altitudes, it
appears that the single-seat operator, because of
the burden of aircraft navigation, will be as-
sisted significantly by the cueing system. Frame
rates which are comparable to his reaction time,
or somewhat lower, in the vicinity of two per
Semnd should be tolerable from the point of view
cf overall processing time. However, from the
point of view of increased detection and recog-
nition rates, as well as reduced false alarm
rates, it appears useful to consider the inte-
gration of results from successive frames. The
assignment of a priority weighting to target cues
will improve the probability that important targets
will be considered when a number of opportunities
occur.

Physical Characteristics

The significant physical characteristics of
the cueing system for aircraft or missile use in-
clude size, weight and power consumption.

The increased availability of general-
purpose MSI circuits has made it possible to offer
existing cuer algorithms, using conventional
packaging techniques, in packages which should be
acceptable for aircraft use. A total system,
excluding displays, might be expected to occupy
a volume of 0.5 to 1.0 cubic feet, and to weigh
10 to 30 1bs., including power supply. Power in
the neighborhood of 200 to 300 watts will be
required.

For missile applications, conventional
packaging can be improved upon by use of flat packs,
or bare chip packaging, and by the introduction of
some specially designed chips.

One thrust of the present Westinghouse
program, however, has been to determine the neces-
sary area of silicon substrate required to provide
cuer functions. As will be described later, the
fabrication of special CCD LSI circuits appears
feasible, and would reduce the cuer to an overall
chip area measured in square inches. On this basis,
introduction of cueing functions into an artillery
shell, for "fire-and-target" performance, becomes
feasible.

Allowable Cost

Since the cueing system is a digital pro-
cessor, its production cost using conventional
packaging techniques can be estimated reasonably
well. For helicopter or aircraft use, a figure
of $20K to $50K per unit is suggested. Reductions
in size by increased use of LSI will tend to
reduce the recurring cost for each unit, but at
the expense of a significant nonrecurring cost
for initial development.

Implementation of a complete cueing system,
using CCD circuits on a small number of silicon
chips, takes this sequence one step further. The
final unit recurring cost, in production, might
range from $1K to $5K, including test, but the
development program would be a multimillion
dollar affair. Before such an investment could
be considered, a number of hurdles would have to
be overcome. First, the satisfactory opera:icn
of the system would have to be established. Next,
an attempt should be made to compare the per-
tormance of competitive approaches, since only
one design can probably be initiated. F¥inally, a
variety of applications should be considered, so
that the development cost can be divided as much
as possible.

A practical approach to this dilemma, which
has been initiated in the present program, consists
of the selection and implementation of key circuit
functions in CCD form. These circuits can hope-
fully be used in hybrid arrangements to reduce
the size, weight, and power of early cuer designs.
With the growing availability of new chips, these
values will continually decrease. At the same
time, the solution of a variety of application
problems will be possible from the library of
available chip designs.

ALGORITHM IMPLEMENTATION

We now turn to a preferred set of algorithms
developed by the University of Maryland which com-
prise the first portion of a cueing system. A
system flow chart is shown in Fig. 2. 1In general,
the Median Filter acts to suppress noise. The
Gradient Operator extracts edges which are then
thinned by the Non-Maximum Suppression Algorithm.
At the same time a set of gray levels is determined
and the filtered image is thresholded at each gray
level. A Connected Components Alzorithm partitions
each of the thresholded images into potential
object regions. The Super Slice Algorithm corre-
lates perimeter points formed independently by
the Non-Maximum Suppression and Connected Com-
ponents Algorithms and a score is obtained for
each gray scale threshold. These scores and
several other algorithms form a set of Classifi-
cation Logic.

The Median Filter is the first algorithm
performed and acts to extract the median gray
level from a 5 x 5 array of pixels and to place
that median value in the center of the 5 x 5. The
¥ilter quantizes each of the 25 analog signals
into a number of discrete units and then sorts




the quantized signals by arranging them in de-
cending order by magnitude. The Filter acts as a
moving 5 x 5 window across the image in that
having obtained a median value, the first column
is dropped and a sixth column is added.

The silicon substrate forming the Median
Filter Quantizer is shown in Fig. 3. Din is the
diffusion diode through which charge is injected
into the chip and into the holding well, HW. DC
blocks the charge from leaving via Din. An amount
of charge, Q, proportional to S, the signal
voltage, is removed from HW via the transfer pate,
TG, and placed in the signal well, SW. Via the
blocking gate, BG, and the thimble well, TW, a
descrete amount of charge, q, is removed and
placed in well gl. Another quantum q is removed
from SW and placed in gl while the first charge
has been shifted to g2. This process is repeated
until SW is empty and all the charge has been
placed in a number of discrete wells gl, g2, ...
gn.

Recall that the contents of wells gl, g2,
... gn of the Quantizer each contain, at most, an
amount of charge q. The content of each well is
parallel shifted into its corresponding channel
of the Sorter (Fig. 4) so that if there were q
charge in g3, there 1s now q charge in I3 and so
on. Forming traps with wells Pgl, Pg2, and Pg3,
the charge in each channel is shifted intc the
large holding well (LHW). The large holding
well is partitioned into N channels also which
are pulsed simultaneously in charge removal.
This means that the numbers are removed from the
large holding well in a descending order by
magnitude.

The Gradient Operator Algorithm computes
edges based on an image of median values; it
comprites an operator, OP = max {!A—B|, {]C—D|}
based on four overlapping regions A, B, C, D each
of which consists of 4 x 4 pixels and are arranged
in the shape of a cross. The quantities A, B, C,
D in the expression represent the sum of all
sixteen pixels within each region. The operator
OP also works as a moving window and the compu-
tational result is placed in the center pixel
location. The key arithmetic operation in GRAD
OP is the formation of the difference

0 if [A| < |B]
A-B 1f |A| > |B|

A-B =

which is realized on a silicon substrate with the
configuration shown in Fig. 5. Din is a diffusion
diode through which charge is injected into the
chip; A and B are gates whose potentials are
controlled by voltages representing the sums A and
B respectively. These gates will form a trap to
retain some of the injected charge. The trapped
charge 1s equal to A-B and is removed by the
transfer gate. The algorithm

0 1if |B| < |A|
B-A 1if |B| > [A|

B-A =

requires another silicon substrate in which the
gate positions of A and B are reversed. The block
diagram of the absolute difference operator [A-Bl
is shown in Fig. 6. A similar block can be formed
for |C-D| and then the two connected in a straight
forward manner to form GRAD OP = max {|A-B|,|C-D|}.

The Gradient Operator extracts edges in
either the horizontal or vertical direction; the
Non-Maximum Suppression Algorithm then looks in
a direction perpendicular to the edge for a larger
gradient value. If a larger edge cannot be found,
the edge under consideration is retained; the
edge is removed if a larger value is found. Em-
bodiment of the Non-Maximum Suppression Algorithm
requires several operations with CCD structures.
A key part of NMS is extracting the largest, Xm,
gradient value in the neighborhood surrounding
the ;1:el of interest, y . Xm is then compared
to the gradient value yg representing the yth
pixel. Sorting the X values to obtain Xm can be
accomplished by the sorting operation described
earlier. Comparing Xm and yg can be done by the
subtraction module also described before. Then
the block diagram appears in Fig. 7. This time
the subtraction module outputs an enable signal
to the CCD shift register instead of the actual
difference. A blocking gate is used to block
(enable) yg from entering the register.

Moving to the right side of the System
Flowchart (Fig. 2) we now discuss Threshold
Determination. The philosophy here is not to
attempt to find a single threshold but rather a
set of thresholds which span the range of gray
scale. For the NVL FLIR data, fifteen (15) levels
represented the gray scale range and selecting
every third (3rd) level as a threshold was deemed
to give satisfactory target aetections by the
University of Maryland. Implementation of this
type of algorithm requires a sorter which arranges
the gray levels in descending order. The first
number (the largest) leaving the sorter, and
corresponding to the first threshold, sets a
counter to 1. The second exiting number is then
compared with the first and the counter is updated
to 2 if they are different. If it is the same,
the counter remains at 1. In general, each
number is compared with the previous one to
determine if the counter should be updated. When
the counter goes to 4, the second threshold has
been determined. In this manner every third gray
scale is selected and used as a threshold. A
block diagram of the implementation is shown in
Fig. 8.

The purpose of the Connected Components
Algorithm is to segment an image into object
regions; these object regions are potential shapes
of interest and features are extracted from them
for classification purposes. The Operator moves
along an image line, with the previous line in
memory, determining which pixels are in a specific
object region or if a new object region is starting.
Each pixel can be examined with respect to its
neighbors to the left and above. No diagonal
connections are permitted under this convention,
and adjacent (horizontal or vertical) pixels must
be occupied in order to make a connection. No




skips or gaps are allowed. If we are to extract
features from each object region, there must be a
means for distinguishing between different object
regions. One approach to the problem is to paint
(assign an analog voltage level) each object with
a different color (analog voltage level) and then
have a feature extractor assigned to each color
(voltage level). Where an object has several
colors, the feature extractors corresponding to
those colors cummulate their features, dump them
in a scratch feature extractor to combine them,
and reassign the results to one of the two feature
extractors.

The system block diagram is shown in Fig. 9.
The delay line is represented by twenty (20) SI/SO
CCD delay lines which are coded to obtain 100
colors (analog voltages) and obviate transfer
efficiency problems. There are 20 levels of. color
comparisons for horizontal and vertical connections
in the Coloring Operator shown in Fig.l0. The
Equivalence Box notes horizontal and connections
between different colors, recolors a pixel if
necessary, and notes when a color is no longer
used thus activating the equivalence statement
between two different colors. The switching
matrix and latches for the Equivalence Operator
are shown in Figures lla and 11b. The column
clock is actually fed to all the Feature Extractors
and they indicate when a color is no longer used.
The Feature Extractors which accumulate the object
features such as area and perimeter as well as
the Scratch Feature Extractor form the basis for
classification decisions. The Feature Extractors
are visualized as a many channeled, large holding
well which follows along the line of the histo-
grammer-sorter. Each channel would correspond to
a particular feature and since the features are
cummulative, they would simply add in the Scratch
Feature Extractor.

DATA FLOW

The Median Filter, Gradient, and Non-Maxi-
mum Suppression Operators are calculated for small
windows which move over the entire frame. These
windows are formed by parallel shifting one line
of image from the TDI array into a parallel inm,
serial out shift register. This register and
others then form a serpentine delay through which
the pixels are shifted. Non-destructive readouts
form the regions comprising the appropriate window.
It appears that the computation speed of the Median
Filter, Gradient, and Non-Maximum Suppression
Operators is conservatively estimated at 50-10C
KHZ, hence a parallel organization of the focal
plane 1s necessary for a 1 megapdxel/sec. rate.
Appropriately, we divide the focal plane into 20
vertical sections each with 1its own set of Oper-
ators (see Fig. 12), to avoid numerical integrity
problems. Such a division, however, 1is unde-
sirable in the Connected Components case because
image reconstruction becomes very difficult.
Further, the imput data is binary so numerical
integrity problems are not present and the CCD
implementation of the Connected Components Algo-
rithm can operate at 1 megapixel/sec. Hence,
there are five Connected Component Modules
corresponding to each of five thresholds.

FOCAL PLANE AREA

Here, we present a preliminary estimate of
the focal plane area occupied by the cueing system
described. That is, the image has been smoothed
(Median Filter), edges obtained (Gradient Operator),
edge with reduced (Non-Maximum Suppression), the
image has been segmented in object regions (Con-
nected Components), a best threshold selected
(Super Slice), and features extracted (area, height,
width, perimeter extent, average gray level). The
estimate is preliminary in the sense that none of
the clocking circuitry has been included in the
estimates for the operators. The estimates do
not include the Classifiers, although their area
contribution will be quite small.

Assuming that the focal plane is divided
into 20 columns Fig. 13 shows the number of pro-
cessors required for a system data rate of 1
megapixel per second. It also shows the geometric
area required for each processor and an estimate
of the area as defined above. The area is 11 1/4
inches by 7 1/2 inches which is equivalent to a
3 x 3 x 6 inch volume.

CHIP DEVELOPMENT

Figure 14 shows the algorithms developed by
the University of Maryland and the functions which
are required by each algorithm. A perusal shows
that the sorter function occurs in four out of
the five algorithms and is the one we selected.
Several versions (buried channel and surface
channel CCD) of the sorter were put in production
runs of the Westinghouse Advanced Technology Labo-
ratory. Figure 15 shows a wafer of the buried
channel devices. One portion of the demonstration
unit is shown in Figure 16, with the device mounted
in place. The ten thumbwheels represent the un-
sorted numbers which the sorter must rearrange in
ascending . order. The observer may dial in any
arrangement of numbers which he wishes. The out-
puts and inputs, i.e., the unsorted and sorted
arrangements are shown on a two trace oscilloscope.
Westinghouse IR&D accounted for 70 cents of every
dollar spent on the Smart Sensor Project.

The demonstration unit and a two-trace
oscilloscope were exhibited at the DARPA Symposium
in September of 1977 at Stanford University in
Palo Alto, California. The symposium participants
were encouraged to dial in their own set of random
numbers on the thumbwheel switches and
observe the ordered results. Figure 17 is a
typical trace; the random sequence is shown in the
left half of the trace and the ordered sequence
on the right. The unit was also demonstrated at
the Night Vision Laboratory, Ft. Belvoir, Virginia
on November 28, 1977.

CONCLUSIONS AND RECOMMENDATIONS

This work has shown that the Smart Sensor
can be implemented with CCD technology in a smaller
package than implementation with digital techniques.
Further, higher level operators (segmentors),
normally thought to be only implementable with
conventional digital techniques, can be implemented

b
:




in CCD.

The total area estimate is 11 1/4 inches by
7 1/2 inches. If 3 inch by 3 inch boards were
employed with 1/2 inch centers, the volume di-
mensions would be 3 inches by 3 inches by 6 inches.

The next step in proving feasibility in-
volves building some of the modules and checking
them for numerical integrity, size, speed, and
power consumption. These modules, e.g., Median
Filter would probably be hybrid packages in the
first build, and the clocking circuitry included
on the chip. Other items of particular interest
are the Connected Components Algorithm with the
switching matrix and peripheral control logic
and a histogrammer which is derivable from the
sorter. Estimates of ultimate size for the
monolithic elements would be necessary as well
as estimates on the groupings of elements within
the monolithic packages.
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SPOTLIGHT IMAGING OF RADAR TURNTABLE DATA
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ABSTRACT

In recent years synthetic aperture
radars (SAR) have proven very useful two
dimensional imaging tools in various
fields. Based on the synthetic aperture
concepts, different imaging modes are
possible with various operating charac-
teristics. In this paper we describe a
special case where the circular projection
radar data are coherently processed to
yield both azimuth and range resolutions.
The Degree of Freedom (DOF) of such a
system is derived as a means of measuring
data redundancy for storage and computat-
ional requirements. The underlying radar
imaging system is compared to a computer
aided tomographic (CAT) system to show
mathematical similaritites as well as
physical differences. Experiments are
performed using data obtained from the
RAT SCAT radar cross section facility.
Fairly good results are obtained which
illustrate the versatility of coherent
synthetic aperture processing of pulse to
pulse high range resolution radar returns.

INTRODUCTION

In the 2-D radar imaging system, the
two geometrical coordinates associated with
the radar of objects are usually called
range and azimuth. (In 3-D, there is one
more called elevation). Range is the
direction along which the signal is trans-
mitted, reflected and received. Azimuth
is the direction orthogonal to range in the
surface of interest. The elevation is the
direction normal to the surface of range
and azimuth. The range resolution is
usually obtained from timing information
of the signal returns.

Depending on the requirements there
are several modes of SAR: the stripping
model, doppler beam sharpening mode (DBS)
and the spotlight mode. 1In this paper a
situation closely related to the spotlight
mode is studied in which the relative
motion between the radar and target is a
circle, as in the tomography system.

Unfortunately, aspect-angle-dependence of
the reflectivities of the target and the
shadowing efiect from 3-D obscuration
discourage one from applying a tomography-
like reconstruction algorithm to the
reflected signals. Hence, instead the SAR
principles will be applied directly to
small angle looks and several looks will
then be registered and incoherently summed
to give the full reconstruction of the
object reflectivity function. A DOF as
well as Nyquist rate analysis in the
frequency domain will be derived to give
tlhie minimum number of data points required
under specified physical constraints and
requirements. Basic relations between
bandwidth and resolution also will be
discussed.

Finally, several experimental image
results will be shown to support the
theoretical work developed.

TURNTABLE DATA

In operation, the target (say a model
airplaneg is placed on a rotator at a
distance ry from the radar to its rotation
center as shown in Fig. 1. A reference
sphere S is sitting at distances rj from
the radar R and rj from the rotation center
C. The angle between line RS and the
target line of sight RC is a. Let (&,n),
(x,y) be two rectangular coordinate systems
with origins at C. Let (£,n) be associated
with the target and (x,y) be with the
ground of target system at an angle 6 from
the former coordinates, as depicted in

Fig. 2. At discrete angle 63 the radar
radiates energy at a single %requency fk.
The local oscillator defined to be the
reference sphere S takes the signal
directly from R to S as a reference and
beats the signal reflected from the target
and the resultant in-phase and quadrature
phase components become the data. This
process continues for different fj and 0
to form a 2-D data array. For simplicity
we shall assume that at each aspect angle
the radar radiates the same set of step
frequency waves, with M frequencies at

the same frequency Af. We shall also
assume that the step angle A6 is constant




as one advances the aspect orientation.
HYPOTHETICAL TARGET REFLECTIVITY FUNCTION

Referring to Fig. 2, let f(£,n) be the
reflectivity function of the target, where
by reflectivity function f(£,n) we mean the
ratio of the received signal due to point
target at (£,n) and the radiating signal.
At wavelengths A small compared with the
curvature of the target body the target
looks specular to the radar so that only
those surfaces normal to the radiation path
reflect strong energy back to the radar
receiver. In addition, whenever a point
(£,n) is blocked by some other points or
surfaces in the line of signt to the radar,
shadowing occurs. In other words, the
shadowing effect occurs because of the non
convexity of the surface of the target.
Thus f(£,n) is actually a function of
aspect angle 6. Nevertheless, for ease of
analysis we assume that f(£,n) is independ-
ent of 6 and we shall see a close resem-
blance of ths imaging system to that of
tomography. A great deal of insight can
thus be obtained by this theoretical assump-
tion. Even if we release this assumption,
as we shall do later, the DOF analysis
based on fixed f(&,n) is still valid in the
real situation.

ACTUAL RECONSTRUCTION METHOD

Physically the radar imaging system
has lots of differences from the tomography
projection system because of widely differ-
ent imaging characteristics and limitations.

In the radar imaging system two kinds
of information are sought: range and
azimuth. Range resolution is obtained by
the timing of the signal return from the
target point. Ideally, the relative motion
between the target points and the radar
should be zero to obtain range resolution
with any high degree of precision desired.
On the other hand, the azimuthal resolution
is obtained by creating different doppler:
histories to different azimuthal points by
way of relative motion between the target
points and the radar. This seeming conflict
is resolved in the Turntable system in
which different frequency components at an
aspect angle 6 are obtained during which
there is no relative motion, to give purely
range information corresponding to the
specific angle ©. Azimuthal information is
then provided by the phase differences of
the same frequency components at different
0's, which is due to the change of range of
target points induced by the target motion.

In summary, the reasons we take the
discrete Fourier transform on small angle
data are:

1. The reflectivity function is a

function of aspect angle.
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Satisfactory phase compensation for
the propagation between the radar
and the target center is extremely
difficult, if not impossible.
However, the reflectivity function
can be assumed constant over small
aspect angle ¢ during which the
azimuth and range processing can be
separated and fast FFT techniques
can be employed.

The shadowing effect can be reduced |
to minimum by adopting this tech-

nique with coherent processing over

small angles and then incoherent

summing over large angles, as

described in the next section.

' EXPERIMENTAL RESULTS

Utilizing the principles outlined
above actual radar returns were processed
to verify the imaging potential of the I,Q
components for pulse to pulse high range
resolution signatures. A coherence angle
of 6.4° was assumed (equalling 32 pulses
in azimuth) and a cross range (azimuthal)
Fourier transform is taken over these
pulses. The resulting range cross-range
images are presented in figure 3 for various
angles of rotation. The '"nose", "broadside"
and '"tail" aspects are intuitively correct
although very low quality imagery exists
at this point.

To improve the image quality noncoherent
integration is performed with the range
cross-range images as in figure 3. With
only 7 looks noncoherently summed (at 30°
angle intervals) the image of figure 4a
results. This is a considerable improve-
ment and clearly shows the outline of the
characteristic delta wing of the F102
aircraft. By noncoherently integrating
28 looks one obtains the results of
figure 4b in which a more clear image
results. To investigate the degree of
coherence necessary (and allowable before
"range walking' occurs) figures 4c and 4d
present result for 3.2° coherence angles
and 12.8° coherence angles. In both cases
the aircraft is still clearly visible
although a certain amount of degradation
is beginning to be apparent in both cases.

A second aircraft was imaged using the
same parameters as developed above. This
aircraft was an F5E and is shorter with
stubby wings and wingtip pontoons. The
final figure (figure 5) presents a summary
of photographs for the F5E and F102 air-
frames for both azimuth and elevation
plots. Because all parameters are fixed
for these images, scales are preserved.
Consequently it is clear that the F5E is a
smaller aircraft and naturally has a
different azimuth and elevation projection
than does the F102.




11

CONCLUSION

This paper has attempted to present
the theory of high range resolution radar
imaging from both a radar systems view-
point and a degrees of freedom or numerical
analysis viewpoint. Similarity with the
computer aided tomographic scanner imaging
technology is pointed out. However the
differences between the two systems are
emphasized and a radar unique reconstruction
algorithm is developed for combined coherent
and noncoherent imaging. The actual recon-
struction method is explained and experi-
mental results developed to illustrate the
theories presented. The pictorial images
resulting from the computational procedures
are surprisingly recognizable and suggest
that these techniques may have some practi-
cal application in the future.
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a) 4 looks 0°-25.6° b) 4 looks 76.8°-102.4°
(nose) (broadside)

¢) 4 looks 128°-153.6° d) 4 looks 153.6°-179.2°
(tail)

(The Radar is positioned on the right)

Figure 3. 6.4° coherence in Azimuth at various
positions of rotation.
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a) 7 looks (8.40 coherence) b) 28 looks (6.4° coherence)
spaced 30 apart spaced 6.4° apart

¢) 56 looks ( 29 coherence) d) 14 looks (12.8° coherence)
spaced 3.2 apart spaced 12.8" apart

Figure 4. F102 Imaged for various parameters
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a) F102 Azimuth Image b) F1l02 Elevation Image
(28 looks) (56 looks) (1/2 scale)

c) FSE Azimuth Image d) F5E Elevation Image
(28 looks) (56 looks) (1/2 scale)

Figure 5. F1l02 and F5E Azimuth and Elevation
Images (6.4° Coherence)
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ABSTRACT

This paper describes our continuing work1 to
design, fabricate, and test charge-coupled device
(CCD) circuits for image preprocessing. Two test
chips containing six processing algorithms have
been fat ‘cated and tested. The processing func-
tions are described together with the circuit
implementation and a performance evaluation.

PROCESSOR DEVELOPMENT

We have completed the design and fabrication
of two test chips, as shown in Figures 1 and 2.
These circuits are two-phase surface channel devices
with 8 um gate lengths. N-type silicon is used to
achieve maximum speed. The algorithms implemented
are

b Figure 2. Photomicrograph of Test Circuit II
' [} Sobel edge detection:
‘B £ =1/8 {|(a + 2b + c)
u - (g + 2h + 1) + (a + +
m (c + + i)
|
w0 X
i! ® Local averaging
f 1/9 (a + b + 4
m
+ + h + 1) )

. e " i ¢ D
Figure 1. Photomicrograph of CCD Sobel Circuit “‘r fn > €
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L[] Adaptive stretching:

2 min|e, r/2|
1‘\5 =

2 max|e, r/2,0] for > r/2.

for < r/2 -

(5)

Each of these is tased on a 3 x 3 array of picture
elements, which are illustrated in Figure 3.

3 x 3 Array

—
a b e
d e &
g h i

Figure 3. Kernel of pixels
used in the calculations,
illustrating the notations
used in Eqs. 1 through 5.

The first circuit, Figure 1, performs the Sobel
operator detecting edges in two dimensions. The
processor architecture is arranged in the form of a
two-dimensional transversal filter with impulse
response for the two edge components:

1/8 1/4 1/8
W= 0 0 0 (6a)
~-1/8 -1/4 -1/8
and
1/8 0 -1/8
wy = 1/4 0 -1/4 (6b)
1/8 0 -1/8

Using these two components, both the absolute mag-
nitude of the operator (Eq. 1) and the edge direc-
tion (tan O = Sy/S,) is directly available. The
effectiveness of the weighting techniques is shown
in Figure 4. The two edge components, Sy and Sy,
then are applied directly to a CCD absolute magni-
tude operator and a charge summer.

The performance of the CCD edge detector is
illustrated in Figure 5, where an original black
and white test pattern, the computer simulated
Sobel (5b), and the output of the CCD processor (5¢)
can be compared. The clock rate for this demonstra-
tion was 15 kHz, limited primarily by the test facil-
ities. For comparison, the CCD Sobel operation of
other optical images is given in Figures 6 through
8. Our evaluations indicate that, at these clock
rates, the operation has an accuracy and dynamic
range equivalent to four bits.2 We are currently
unable to examine a larger gray scale because of
the access time of the processed data from the
commercial refresh memory we are using.

We have spent considerahle effort developing a
real-time processing capability to operate the CCD
processor from a commercial vidicon camera, the
Cohu Model No. 7120.3 The basic data rate required

(Not to same scale)
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(b)

(b)




(b)

Figure 9. Example of the operation of the
CCD Sobel processor operating
in real time from a commercial

vidicon.

these rates with a variety of images, and our inten-
tion is to increase the effective data rate in the
next phase of the program to achieve truly sym-
metrical operation.

The edge detection circuit described abovye is
basically an important demonstration of two-
dimensional nonlinear processing. Our second test
chip, which performs the operations described in
Eqs. 1 through 5, is aimed at demonstrating adap-
tive functions based on the local mean or average.
As such, the prime operators are the edge detection,
local averaging, and the delayed original images.
Each of the other algorithms (the unsharp masking,
the binarizer, and the adaptive stretch) are arith-
metic combinations of these. The original image,
the Sobel, and the 3 x 3 mean derived from the sec-
ond chip are illustrated in Figure 10 for a regular
test pattern. Examples of the operation on a true
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optical image is shown in Figure 11. Each function
described in Eqs. 1 through 6 (and included in Test
Chip II) has been tested, and we estimate the over-
all performance to be equivalent to approximately

4 bits. Testing of linear combinations of the
operators described in Eqs. 4 through 6 has not been
completed at the full video rates, and this effort
is currently proceeding. We anticipate no signifi-
cant problems in this area.

NEW CONCEPT DEVELOPMENT

In addition to the above work, we have started
concept development and analysis of a third test
chip to perform statistics, including a 5 x 5 median
filter, an analog histogrammer (including a mode and
standard deviation filter, a 5 x 5 programmable
processor, and several bipolar fixed filters). This
work will continue into the next phase of the pro-
gram when the detailed design, simulation, and ini-
tial processing will be undertaken.

DEVELOPMENT OF A REAL-TIME DEMONSTRATION UNIT

As part of our effort to interface the cur-
rently developed processors with a commercial video
camera, we are pursuing the development of a small
real-time demonstration unit that will include the
necessary analog CCD delays, the clocks and drivers
for our processor, the CCD processors themselves,
and a small video display unit. This work is well
under way (most of the interface circuitry has been
designed), and we plan to have the complete unit
available in the next phase.

CONCLUSIONS

During the previous phase of this precgram, we
developed CCD integrated circuit processors that
perform two-dimensional, nonlinear and adaptive
operations at speeds in excess of two orders of
magnitude higher than general-purpose computers.

Our evaluations of this circuit to date indicate
that it will perform as predicted4 and can be inter-
faced directly to the optical sensors; this will
lead directly to the development of truly smart
sensors.

REFERENCES

G.R. Nudd, "CCD Image Processing Circuitry,"
University of Southern California, Semiannual
Report, 31 March 1977, pp. 142-173.

2. G.R. Nudd and P.A. Nygaard, "Demonstration of
a CCD Image Processor for Two-Dimensional Edge
Detection," Electronics Letters, Vol. 14, No. 4,
16 Fzbruary 1978, pp. 83-85.

"Chip Helps Detect Targets Automatically,"
Electronics Magazine, March 16, 1978, pp. 41-42.

4. G.R. Nudd, "CCD Image Processing Circuitry,"
Proc. Image Understanding Workshop,
Minneapolis, Minnesota, April 1977, pp. 89-94.




21

10

Figure



TARGET SCREENER SYSTEM NOISE REMOVAL
BY INTERFRAME ANALYSIS

Durga P. Panda

Honeywell Inc.
Systems and Research Center
Minneapolis, Minnesota 55413

ABSTRACT

System noise in an automatic target screener
may affect the performance of the system in two
ways. Firstly, the target may fail to meet the
segmentation criteria of the system, resulting in
a missed target. Secondly, the feature values of
the segmented objects may be erroneous, resulting
in missed targets as well as false alarms. Improv-
ed false alarm and detection may be achieved by
accumulating information regarding the locations
and the feature values of the objects from frame
to frame.

INTRODUCTION

An automatic target screener system, such as
Honeywell's Autoscreener, usually operates on TV
compatible tactical image frames, extracts objects
in a frame and optimally classifies these objects
into targets and nontargets based on their stat-
istical features. The performance of the system
(probabilities of false alarm and detection) de-
pends on the quality of data, and the image seg-
mentor and the classifier used by the system. But
the full potential of the segmentor and the classi-
fier is often not achieved due to severe system
noise.

False alarm may be reduced by examining the
extracted objects and the classifier decisions on
these objects over a sequence of image frames.

This approach is useful and effective when noise

in the screening system results in random noise in
the processed image or random error in the feature
values of the extracted objects, and the noise or
the error is uncorrelated from frame to frame.

When the image is noisy an object may fail to meet
the segmentation criteria of the system resulting
in a missed target. When the feature values of the
extracted objects are erroneous there may be missed
targets as well as false alarms. By accumulating
information from cne frame to the next regarding
the locations and the feature values of the ex-
tracted objects improved false alarm and detection
can be achieved. In the following we discuss and
demonstrate this approach. In the proposed method,
we first determine an interframe sequence of ex-~
tracted objects containing a given candidate target
in the present frame. We then determine if the
classifier result on the candidate target, in the
present frame, is consistent in certain manner

with the classifier results on other objects, from
the past frames, in the sequence. An inconsistent
classifier result is modified in some prespecified
manner that yields better classification result.

This method of "smoothing'" the classifier result

consists of three distinct steps, frame alignment,
interframe object matching, and decision smoothing.

FRAME ALIGNMENT

When the sensor is in motion the stationary
objects in the frames will have a relative dis-
placement with respect to the frame coordinates.
To find a match for an object in a frame, a search
has to be made over all the objects in the other
frame. The neighborhood of search can be reduced
if the two frame coordinate systems are adjusted
with respect to each other to correct for the sen-
sor motion. This adjustment is performed by the
frame alignment function.

The frame alignment is based on the assumption
that most of the objects in the frame are station~
ary. The alignment is performed by using the
locational information of each object in a frame.
In general, the rectification due to sensor motion
may require translation, rotation, and scale change
of a frame. We assume that the sensor motion
between the two frames to be matched is small
enough so that translation alone may give adequate
frame alignement for our purposes. For example,
if the frames are successive or near successive the
sensor motion may be assumed to be translation
only.

The method of frame alignment, called the
translation histogram method, conceptually works as
follows. The difference in the coordinates of an
object in one frame, cay F,, and an object in the
other frame, say Fl, is computed. Keeping the
object in Fy fixed, this computation is repeated
for every object in F;. This process is then re-
peated for all other objects in F,. Every computed
coordinate difference corresponds to a frame trans-
lation that will match an object pair in the two
frames. A two-dimensional histogram of all the
computed coordinate differences is made. The
mode of the histogram corresponds to a frame
translation that will match the largest number of
object pairs in the two frames. This mode is the
estimated translation necessary for the frame
alignment. In order to achieve strong and robust
modes the histogram is smoothed by a block filter.
The frame-to-frame displacement is assumed to be
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less than certain fraction, f (say 1/8th), of the
frame dimensions in each of the two directions in
the image. Consequently, all translations greater
than f/2 (1/16th) or less than -f/2 (-1/16th) of
the frame dimensions are ignored in the translation
histogram.

The translation histogram method uses segmen-
ted images rather than original intensities as in-
put. In the present context, the segmented image
is a sparse binary image with zero almost every-
where and unity at the location (e.g. centroid) of
each extracted object. Computing the tramslation
histogram of two frames then precisely corresponds
to cross-correlating the two corresponding sparse
binary images or computing the Hamming distance
between the two binary images. The mode of the
histogram corresponds to the peak of the cross-
correaltion.

Conventional methods of frame alignment use
the intensities, the edge values or certain other
property at pixel level in matching the two frames
to be aligned. This may make the method sensitive
to noise. Our method uses the objects extracted
from the two frames in matching the frames. Noise
sensitivity of the method is reduced since the
chance of getting false match at object level is
much smaller than that at pixel level. The data
rate at object level is much smaller than that at
the pixel level. These make the translation his-
togram method potentially much faster, cheaper,
more accurate, more reliable, and more immune to
noise than conventional methods.

INTERFRAME SYMBOLIC OBJECT MATCHING

A major task in interframe object matching is
the selection of a suitable set of attributes or
features of the objects that should be used in
matching. Another major task is the matching
procedure itself. Features usually used in symbol-
ic object matching are [1,2] size, shape, color,
texture, and location. The speed restriction in
real time application may allow only a few and
simple features to be extracted. Other consider-
ations in extracting the features are the compu-
tational cost and the effectiveness of the features
for the specific applications and image qualities
in mind.

In the following we discuss Honeywell's 'or-
dered-static-cost" method of matching the objects.
The cost of matching may be of two kinds. The
first, the static cost, arises due to mismatch in
the features of the two objects under consideration.
The second, the dynamic cost, is due to mismatch
or inconsistency in the interobject structural
relationships [3]. 1In our application the static
cost is the absolute difference in the feature
values of the two objects being matched. Since the
objects, e.g., targets, may be moving with respect
to each other, there is no constraint on the struc-
tural relationship. The only interobject constraint
is that no two different objects in one frame may
be matched with the same object in a second frame.
This dictates the dynamic cost. Specifically, in
matching the ith object in Fo with the kth object

in F;, and matching the jth (j # i) object in Fy
with the mth object in F; the dynamic cost =

’ £ j d ' .
{ : £ or all object indices i an

An optimum matching procedure should minimize
the total cost of matching all objects in a frame.
This may be done by computing all possible static
and dynamic costs and selecting theparticular set
of object matches that has the lowest total cost.
However, the storage and the computational require-
ments are too high for this procedure. If we know
the maximum distance a target may have moved be-
tween two frames, then we can restrict our search
for a match to a neighborhood of corresponding
size. In this regard the frame alignment helps
save search time by cutting down the neighborhood
size. Even then, the storage and computational
requirements for finding the optimum matches for
all objects in the frame may be very high. The
Linear Embedding Algorithm of Fischler and
Elschlager [3] is aimed at cutting down computat-
ional reauirements by trading it off with the
global optimality of matching. In particular, the
method may fail to find the globally optimum match
if the objects with low indices in F, incur a high
static cost when matched with their optimal object
matches in F,. The ordered-static-cost method is
a similar matching procedure that is computationally
more suited for our application. The procedure is
independent of object indices but depends on the
relative magnitudes of the static costs.

The matching procedure works as follows. Let
the ith object in Fj have Ki objects in Fl in its
neighborhood of search. We shall call these K;
object indices in F; the possible K, "labels" of
the ith object. The static costs for all possible
labels are computed for each of the N objects in
F.. In total there are K_ different static costs,
wgere N 4

Ko o K
T g ok

Each of these K_ costs corresponds to an object-
label match. We arrange these costs in in-
creasing order. We accept at the most N of these
static costs and corresponding object-label pairs
as matched objects. The lowest of the costs is
first accepted. We then proceed to the next
higher cost. If the label corresponding to this
cost has already been taken by previously accepted
object-label pairs, then we discard this object-
label (infinite dynamic cost). If, instead, the
object corresponding to this cost has already been
taken, then this object-label pair has a higher
static cost; hence, we discard this object-label
pair and proceed to the next higher cost. If cer-
tain cost did not get discarded by the above two
methods then the corresponding object-label pair
is accepted as the next matching object-label pair.
This process continues until all the K; static
costs are exhausted.

This algorithm will not give the globally opti-
mum match if the static cost corresponding to an
optim:m object-label pair is higher than that of
auother object-label pair having the same label.

},lx
-
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Consider, for example, two objects, A and B, being
matched with two labels, a and b, with the follow-
ing static costs:

a b
A 3 7
B L 1n

The object-label pairs arranged in increasing order
of static cost are: Aa, Ba, Ab, and Bb. The pairs
that will get accepted are Aa and Bb, even though
the optimum pairs are Ab and Ba. It is possible
that several iterations of a similar procedure in
some suitable manner, e.g., by relaxation labelling
[ 4] will asymptotically yield the global optimum
match.

DECISION SMOOTHING

The classifier decision made on a candidate
target in the present frame, F_, may be modified
based on the decisions made on”the same object in
the immediate past frames. Here, by ''same object"
we mean the object in a past frame that matches
with the candidate target in F_. The process of
modifying the classifier decis?on in the aforesaid
manner 1is called decision smoothing. Consider the
sequence of values of a certain classifier feature
of a given object from frame to frame. This
sequence of values constitutes a time-series.

The error due to system noise in the fea-
ture time-series may be corrected by conventional
time-series smoothing techniques. The smoothed
feature values of an object may then be used to
obtain a modified classifier decision on the object.
A faster and simpler method of obtaining a modified
classifier decision would be to treat the classi-
fier decision itself as a binary feature time-
series. One method of smoothing this binary
feature is to modify the feature value in the
present frame according to majority vote of the
decisions on the object in the previous frames.

A problem that may be encountered in decision
smoothing is an incomplete sequence. This occurs
when, due to noise in the system or in the data,
the segmentation method fails to extract certain
object in a frame. The problem also occurs when
inaccuracy in the interframe object matching process
causes an object in a frame not to have any match-
ing object in the previous frame. Thus, the
binary decision time-series for the object abruptly
ends at the frame when the object did not find a
match. An approach to solving this problem is to
skip the frame where a match was not found and
proceed to finding an object match in the next
frame.

EXPERIMENTAL RESULT

A sequence of five FLIR frames was processed
by the Autoscreener. Figures la-le show the frame
sequence in increasing order of time and Figure
2a-2e shows the "objects" extracted by the Auto=
screener as candidate targets. Figure 2 also shows
the ground truth and the Autoscreener classifier

result in every frame. The symbol "T" next to

a candidate target denotes an actual target, and
the symbol "C" denotes that the classifier decision
was target. The test frames are numbered 1 through
5, in increasing order of time. Each frame was
aligned with the previous frame using the trans-
lation histogram method. Figures 3a and 3b show
the original and the smoothed translation histo-
grams, respectively, for aligning frames 1 and 2.
Table 1 shows the result of matching the candidate
targets in the frame sequence by using location as
the feature for matching. In the table the number
following the # sign is the frame number. The
table shows the object indices in the present
frame, F_, and the corresponding object numbers or
labels ifl the previous fr A label of "O0"
implies no match and an inc lete sequence.

Table 1. Interframe OLject Matching
\
\

5 #“ " #3 L 2 #2 0
Fy LABEL | Fy LABEL | Fo | LANeL | ¥y | tABEL
1 g L% L ol G 0
2 | Gili 2 T 2
3 g 18 35 5| 3 4
4 3. F 4 4| 4 6| 4 3
5 . 6] 5 7| s 5
6 o | 6 e | 6 ol s 8
7 T 10| 7 g 2 9
8 7 |8 of 8 of 8 0
9 o | 9 121 9 of 9 11
10 10 |10 1| 10 9| 10 12
11 9 |1 T 10| 1 14
12 iy |12 0| 12 o] 12 0
13 o |13 1“3 of 13 16
14 13 14 o 14 13 14 17
15 0o |15 17 | 15 15| 15 0
16 o |16 18 | 16 16| 16 18
17 o |17 0| 17 0| 17 0
18 o |18 o 18 18| 18 0
19 19 19 0
20 20 | 20 20
21 (]

The most recent frame, Frame 5, contains two
objects, Object 10 and Object 12, for which the
classifier decision is "target". Beginning with
Frame 5, the object sequence corresponding to
Object 10 is 10, 10, 11, 10, 12. The sequence is
easily obtained from Table 1. The binary decision
sequence corresponding to this object sequence is
obtained from Figure 2 and is T, N, N, N, N, where
T implies target and N implies nontarget. Thus,
using majority vote on the binary decisions, the
modified decision on the Object 10 in Frame 5 is
N; implying that the object was a false alarm and
should be classified as nontarget.

Similar object sequence for Object 12, is 12,
11, 13, 0, ?, where Object 0 in Frame 2 indicates
an incomplete sequence. We now need to continue
the sequence by skipping Frame 2 and finding in
Frame 1 a match for Object 13 in Frame 3. Table 2
shows the result of interframe object matching
between Frames 3 and 1. From this we obtain the




required object sequence as 12, 11, 13, 0, 13 and
the corresponding binary decision sequence as T, N,
T,?, T. Using majority vote the modified decision
on Object 12 in Frame 5 is T implying that the
object is a detected target.

Table 2. Object Matching in
Frames 1 and 3

#3 '3l

F_ Label

0

1 1

2 2

3 6

4 8

5 9

6 0

7 0

8 0

q 0
10 11
11 12
12 0
13 13
14 16
15 19
16 18
17 0
18 0
19 )
20 20

DISCUSSIONS

From the above experimental results,
pears that interframe decision smoothing
potentially an effective way of combating the
system noise and improving the probabilities of
detection and false ala™m in an autom.tic target
screening system. The interframe object

method may alsc be used in predic th

daptive segmentation me impro
segmentation. The effectiveness and accuracy

the interframe analysis would depend on the features
used in matching objects.
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REPRESENTATION COMPLEXITY OF
IMAGE DATA STRUCTURES

Raj Reddy and Greg Gill
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INTRODUCTION

Analysis of algorithms is an important source for
improving the performance of a given system. Traditionally
some measure of arithmetic complexity, such as the number
of multiplications required, has been used as a measure of
algorithmic complexity. Limitations of this type of measure
have been known for some time and other measures such as
representation complexity and control complexity of
algorithms have been proposed (Reddy, 1973). In this short
note, we illustrate how different assumptions about the
representation of image data structures significantly affect
the computational effort associated with the access and
storage of data.

ALTERNATIVE REPRESENTATIONS

The choice of a representation for image data usually
depends on the size of the picture, number of bits per pixel,
processor speed, and size of the primary memory. In this
section we will present several alternative representations
that have been used to satisfy the size and speed
requirements and discuss the computational cost of
accessing a random pixel using a given representation.

c tional R tati

A two dimensional (image) array is usually stored in
memory as a linear sequence by row (or column). If we
assume one pixel per word and the entire picture is in
memory, a picture element (i,j) is accessed by multiplying i
by the number of columns, adding j, and adding the location
of pixel (0,0). The access usually takes five instructions: get
row, multiply the number of columns, add column, add
location of pixel (0,0), and get pixel vaiuve.

Dope Vector Representation

The expensive multiplication step of the conventional
representation can be avoided if the address of the first
pixel in each row can be stored in a dope vector (Fig. 1).
The location of pixel (i,j) can be found by adding j to the ith
element of the dope vector. The six instructions required
for this operation are:

1. pick up row address 4
pick up the row number
shift to convert to byte addressing(optional)
add the dope vector location
pick up the row address
2. add j to get the pixel address 1

28

3. pick up the pixel i

On a word address machine the shift instruction would be
omitted.

Packed Representation

Since pixels are generally small numbers, space can
be saved by packing more than cne pixel into one word. In
order to access a given pixel, the word containing the pixel
must be retrieved and shifted to right justify the pixel
within the word. Bits outside the pixel size must then be
masked out. In addition to having a dope vector for row
addresses, a second vector can be employed to hold both
the word offset from beginning of row and the amount of
shift required (Fig. 1). A picture header would be needed to
hold the location of both vectors and the mask value. The
13 instructions required for accessing a pixel are as folows:

1. pick up header 1

2. get the row address 4
(as in dope vector representation)

3. add word offset 4
(similar to row address calculation)

4. extract pixel 4

pick up word containing pixel

pick up shift amount from j-dope vector
shift to right justify pixel

perform the mask operation

If an image is too large to fit in primary memory some
form of paging from secondary memory will be required.
Row-paging representation treats each row as a separate
page. In this scheme a test is made to see if the desired
row is already in primary memory. If not, a disk access
sequence is activated. A slightly modified version of the
dope vector representation given in Figure 1 is used. In
this version a zero in the row dope vector indicates that
row is not resident in memory. Also the low-order bit is
used to indicate if the row in memory has been modified and
therefore must be written back onto the disk. The cost to
access a pixel already in memory is only two extra
instructions to the packed representation; one to test if the
row is in memory, and the other to clear the low-order bit
in the row address. The total cost is therefore 15
instructions, if the desired row is already in core.

Block-paged Representation

An alternate method of storing pixels would be by
sub-images (blocks). The size of the sub-image block is
usually chosen to be the same as the sector (or track) size
on the disk. Row and column sizes of blocks are usually
chosen to be powers of two. For example, a sub-image
block might include eight rows and 32 words for each row.
Thus a region of pixels could be read into memory without
having to retrieve entire rows. The table of row addresses
in Figure 1 would be replaced by a page address table as in
figure 2. A zero would indicate a page not in memory and
the low order bit would indicate if the page had been
modified.

#




In general, calculating the page number for element
(i,j) would require two divisions and a multiply. However,
they could be replaced by shift instructions by choosing the
page dimensions to be powers of two and disallowing byte
sizes of three and five. This would force the number of
pixels packed in one word to be a power of two. As a
consequence, pages starting at the first column will be
numbered from a power of 2 (e.g., as shown in Figure 2, if
there were five pages across a picture, they would be
numbered 0-4, 8-12, 16-20, etc). The total cost of 24
instructions breaks down as follows:

1. retrieve header 1
2. calculate page number 6
get row

divide rows per page (or shift)
multiply pages across picture (or shift)
get column
divide columns per page (or shift)
add
3. get page address 3
shift page number once
add page table address
pick up page address

4. check for page in memory 1
5. clear modify bit 1
6. get row address 4
get row number
modulo rows per page (mask)
multiply by bytes across page (shift)
add to page address
7. get pixel address 4
(as in packed representation)
8. get pixel 4
(as in dope vector representation)
Hash Tables

Usually for very large pictures only a small number of
pages need to be in memory at one time. Therefore, most
entries in the page table (or row dope vector) would be
zeros. The size of these tables can be reduced by mapping
pages into a hash table modulo its length. If the hash table
length were a power of 2, this operation could be done in
one mask instruction.

Each non-zero table entry would point to a link list of
all pages in memory which map to that table index.
However, these pages should be sufficiently far from each
other that the probability of any two being in memory at
the same time is very small. The hash table would add 5
instructions to the cost of either row-paged or block-paged
methods assuming the pixel was in the first page linked to
the table entry.

The additonal instructions are:

save page number for comparison

mask the page number

get the corresponding entry from the hash table
do the compare

branch.

apwN -
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Column Calculations

The column dope vector can be completely eliminated
by calculating the word offset and shift amount. Assuming
the number of pixels packed per word is a power of two,
the word offset can be calculated in four instructions (the
same number as using the dope vector). Five instructions
are required to calculate the shift amount instead of one
(incrementing the dope vector). The total cost for row-
paged method with hash table and column calculations would
be 24 instructions. The cost for block-paged method would
be 33 instructions.

1. get pixel address 4
get column
divide by pixels per word (or shift)
multiply by 2 (or shift)
add to row address
2. get shift amount S
get column
modulo pixels per word (mask)
add 1
multiply by byte size (or shift)
subtract word size

ubroutine Call

The instructions shown for each of these
representations assume the code was written in-line. The
added expense of invoking a subroutine call would be about
eight instructions. Each representation would have three
arguments to pass, the row and column plus the address of
either the image array or a header. Putting these arguments
on the stack would take three instructions. Invoking the
subroutine, returning, and re-adjusting the stack would add
three more. Furthermore, for all but the unpacked
representations, two more instructions would be required to
save and restore a register.

DISCUSSION

In the preceeding section we considered several
alternative representation decisions and their computational
cost. Tabel 1 shows the incremental cost of individual
representation decisions. Table 2 shows the cumulative cost
of increasingly complex representations for both in-line
code and subroutine call. Note that it costs only 6
instructions to access a pixel from an unpacked image
entirely in primary memory using an in-line macro call. This
cost increases dramatically to a total of 41 instructions for a
subroutine call to access a packed, block-paged image using
a hash coded page table.

Conventional Representation 5
Dope Vector Representation +1
Packed Representation +7
Row-Paged Representation +2
Block-Paged Representation +11
Hash Table Representation +5
Column Calculation +4
Subroutine Call +8

TABLE 1. INCREMENTAL COST BY FUNCTION.
(instructions executed per call)




sub-
in-line routine
Whole Picture in Memory
unpacked pixels,dope vector 6 12

Whole pictures in Memory
packed 13 21

Paged from Disk by Row
packed 15 23

Paged from Disk by Block
packed 24 32

Paged from Disk by Row
packed, dope vector hashed
calculate column offset 24 32

Paged from Disk by Block
packed, pagetable hashed
calculate column offset 33 41

TABLE 2. ACCESS BY REPRESENTATION
(instructions executed per call)

The implication of these results to image analysis can
be summarized in one word: "simplify”. Although a general
research system must permit flexible representations to
handle a wide variety of image data, a high performance
operational system must use the simplest possible
representation for that task and explore other architectural
alternatives to random address memories sucl ; pipe-line
access or parallel array access.

FIG 1: PACKED REPRESENTATION
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Fig 2: block-paged representation
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ABSTRACT

As the level of sophistication in image under-
standing projects increases, so do the demands on
the supporting languages and systems. We will
describe a set of language and system facilities
that have been of significant importance to our
work and other DARPA efforts.

1. Introduction

There are two important reasons for investi-
gating message-based support systems for Image
Understanding. It is clearly preferable to allow
distant sites to communicate about images without
transmitting entire images. Appropriate conven-
tions and protocols for this have wide-spread
applications. Even within a single system, complex
control and resource allocation problems arise in
advanced Image Understanding tasks. The facilities
described below seem to provide a uniform solution
to both sets of problems.

2. PLITS, a Language for Distributed Computing

The PLITS project originally had no direct
relation to distributed computing, but was con-
cerned with developing a non-trivially new program-
ming language. -There were two basic underlying
assumptions: (1) that programming languages had
changed 1little in the previous decade despite ad-
vances in many related areas, and (2) that one
could hypothesize compilers of the sophistication
of the best current Artificial Intelligence
programs. We began by trying to isolate the most
important concepts currently available in
programming systems and to see where they were
compatible and incompatible. The project was
called PLITS (Programming Language in the Sky) and,
although it has come down a little closer to the
ground, the name has stuck.

The two fundamental building blocks underlying
any PLITS system are modules and messages. A
module is a self-contained entity, something like
a Simula or Smalltalk class, a SAIL process, or a
CLU module. It is not important for the moment
which programming language is used to encode the

body of a module; we wish explicitly to account
for the case in which various modules are coded
in different languages on a variety of machines.
For now, let's consider modules to be programmed
in Algol-60 and also assume that there are some
modules available for input, output, and file
manipulation.

Modules communicate with one another solely
through messages. In order to have communication,
there must be something that is understood by both
comnunicating modules. The common element in
PLITS is a name which may be thought of as an un-
interpreted string of characters. A message is a
set of (name~value) pairs called slots. The
value portion of a slot will be an element of
some primitive domain (think of integers) whose
representation is also generally understood.

The modules of any PLITS system will have to
be able to compose, send, receive, and decompose
messages. For this purpose, we must add some
data types and operations to ALGOL or any other
body language. In this case the primitive data
types of ALGOL will have to be extended to include
module and message. Each module will also contain
an explicit declaration (Public) of every slot
name that it can deal with along with the data type
of that slot. There is a process analogous to
link-editing that insures that public slot names
are used consistently.

For a first example, suppose there were a
module, Fibonacci, which provided the service of
supplying consecutive positive Fibonacci numbers,
and a module, George, which wanted to make use
of this service. The code for this would be
something 1ike that shown in Example 1.

We see that George and Fibonacci both know
the slot names "Object" and "Recipient" and thus
can communicate. At the appropriate time, George
composes a message with one slot, having as a
value the system identifier for the module George
itself. After sending the message to Fibonacci,
this is essentially a subroutine call. The
Fibonacci module simply waits for a request and
fulfills it. The syntax for accessing and modi-
fying messages treats them like the records of,
e.g., Pascal.
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Starting from a survey of the "powerful ideas"
of programming systems, we attempted to see if
there were inherent incompatibilities among them.
It was immediately clear that one could not com-
bine all the useful language primitives in a
consistent way--so PLITS had to include different
languages. Networking was clearly here to stay
and had to be accounted for. Structured Program-
ming seemed to be attacking the right problem
with unreasonable methods. Messages were known to
be a very good control primitive and were the
coin of networking. The experience with RIG
convinced us that messages also seemed to be a
good mechanism for producing reliable yet still
flexible software.

The message-module paradigm became established
quickly as the fundamental solution for PLITS.

The decision to have public names as the
basis of communication seems obvious in retrospect,
but was difficult to arrive at. By sharing names
rather than variables or sequential position in
some structure, modules could be written in a way
that was clear, but did not have the problems of
shared storage.

It was apparent from work in automatic pro-
gramming and verification that more declarative
information was needed--hence we included the
general notion of assertions. Although many
difficult questions remain, enough clean solutions
have been found to convince us that there is some-
thing fundamentally sound in the PLITS world view.

Example 1 is basically bad PLITS code; the
module Fibonacci contains no error checking. Let
us consider an expanded, but still weak, version
which will not cause integer overflow (Example 2).

The first new notion occurs on line 4, where

a public slot name of type "problem type" is
declared. The type problem type is a fixed se-
quence of uninterpreted symbols exactly like the
Pascal "enumeration" type. There will be several
public enumerations inaPLITS system. In lines
9-11, a prepackaged message is assembled and
stored in the message variable, My Complaint. The
other new code is in lines 21-27; the Recipient
slot of My Complaint is filled in from the Request.
If there is a Complaint _Dept slot in this request,
the module which is its value will be sent the
complaint. Otherwise, some default complaint
handler, City _Hall, will hear about it. The name
of the Recipient module (which may have been
awaiting an answer) is passed along to the Com-
plaint_Dept, because there might be some appro-
priate response to the problem. For example,
there could be some double precision Fibonacci
module which would be able to return an appropriate
value if George were prepared to accept it. This
would require that George hen-ile double size
integers; that is not hard to ariange, for example
by an extra slot for the high order part.

“There is a more interesting problem in the
control discipline used in the coding of the
module George given in Example 1. The statement
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on line 8 is:
Mess2 « Receive from Fibonacci.

But we saw in the expanded Fibonacci module of
Example 2 that there might be an error recovery
module that would supply the answer if Fibonacci
could not. The coding style of line 8 requires
that the answer be conveyed back to Fibonacci and
then to George, but there is nothing to be gained
by retracing our steps. To solve this and a num-
ber of other control problems, we will add one
more construct, transaction, to PLITS. In-
tuitively, a transaction is a key which can be
used in the regulation of message traffic. We
could replace 8 with

8' Mess2 «Receive about Keyd ;

where Key4 is a transaction which is identified
with the generation of this sequence of Fibonacci
numbers. Selective receives based on transaction
keys allow a receiving module to be programmed
without regard to which module will ultimately
send it the message. Yet the receiving module

is still able to keep separate "conversations"
distinct.

3. DSYS--A Distributed System

With the PLITS style of programming
as background and a source of examples,
we are developing an experimental system
(DSYS) to support high-level distributed
computing. DSYS will run on the seven
computers in our laboratory: four
ALTOs, two Eclipses, and a PDP/10. It
will provide facilities for defining and
running PLITS distributed jobs (DJOBs).

Even on a single machine, there
will have to be some underlying programss
vhich handle messages., We will call
this collection of programs the Kernel
for a PLITS site. The Kernel is a
conventional multi-programming monitor
vhich sequences through the modules on
its %Yready" queue. The Kerrel also
maintains data structures describing
modules which are "suspended" waiting to
Recejve a message of a specified sort.
These data structures,. together with
analogous ones for messages which result
from Send statements, suffice to
implement the PLITS message primitives,

A problem arises if the modules are
written in different body langquages. It
may be the case that languages differ in
their representation of primitive data
types (e.g., real). We require that the
representation of primitive data types
be uniform within a site. This, as well
as other considerations, may give rise
to the situation where there is more
than one site on a given gachine
involved in an individual distributed
job (Djob). Pigure 1 is a gravhic
representation of the breakdown of
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1 Begin "George" in "Fi it
gin " - Begin "Fibonacci
2 EUEJTC Integer Obgegt; Public Integer Object;
3 ublic Module Recipient; PubTic Module Recipient;
4  Begin Comment George's thing; Message Re s
+ ~Onent 5 g quest;
5 nteger I,J,Next Fib; Integer This, Last, Previous;
6 Message Messl, Mess2; Last<0; This«1; ;
Nhi]eitrue do
. P ; Begin
7 Send {Recipient~Me} to Fibonacci; Receive Request
8 Receive Mess2 from Fibonacci; Previous«Last;
] ] Last«This;
9 Next_Fib«Mess2.0bject; This+Last+Previous;
Send {Object~This} to Request-Recipient;
10 End End
11 End "George" End "Fibonacci”
Example 1

Begin "Fibonacci"

1
2 TPublic integer Object;
3 Public moauie Recipient, Complaint_Dept, Complainer;
4  Public problem type Problem;

w

message Request, My Complaint;
6 module Comp]ainée;
7 integer This, Last, Previous, Biggest;

8  Last<0; Thisel; Biggeste2’' -1;

9 My_Complaint«{Problem~Overflow,

10 Complainer~Me

11 }

12 While True do

13 Begin

14 Receive Requast

15 Previous«Last;

16 Last«This;

17 If Biggest - Last > Previous

18 then Begin This<Last+Previous;

19 Send {Object~This} to Request-Recipient

20 End

21 else Begin

22 Put (Recipient~Request-Recipient) in My Complaint;

23 Complainee«If Present Request-Complaint_Dept then
B Request-CompTaint_Dept else City Hall;

24 Send My Complaint to Complainee

25

En
26 End WhiTe Loop
27 End"Fibonacci”

Example 2

corm T T ———




functions and terminoloqy which we have
adopted. It is convenient to divide the
PLITS support functions into two subsets
carried out by the site kernel and by
the DSYS Host Control Program (DHCP)
respectively. In the example, there are
tvo Djobs, A and B, which have no
connection but happen to be both

distributed over Machines 1 and 2. Dijob
A consists of three sites: 511 and S12
on Machine 1 and S21 on Machine 2. Each

site has a kernel associated with it as
described above. The kernel performs
the following functions:

(1) distributes messages within
the site;

(2) forvards messages to and from
other sites;

(3) carries out needed
representation shifts for
inter-site messages;

(4) allocates resources within the
site;

(5) generates unique (world-wide)
names;

(6) checks for errors and
assertion violations.

We have briefly discussed the first
three functions. The fourthk function,
resource allocation within the site, is
concerned with storage allocation and
reclamation, scheduling of ready
modules, etc. The fifth function is the
generation of unique names for modules
and transaction keys. Error and
assertion checking is discussed below,

HCP1 ink DHCP
. T =T 3 B e ot - s b ozl
£ \
% @ Djob B @ 7
Machine 1 Machine 2
Figure 1

Each DHCP is an extension of its
machine's operating system. It performs
four main functions:

(1) distributes messages among

sites local to this machine;

(2) forwvards messages to and from

other machines;
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(3) starts and stops Djobs, and
provides access to other
operating system services;

(4) checks for errors and
assertion violations.

Let us first consider the problem
of setting up a Djob. If there are two
sites on the same machine with the same
representations, the DHCP only has to
check that the use of public slot names
is compatible -- essentially the same
process as combining the externals of
tvo load modules. If there are several
machines involved and there is an
incompatibility in representation of a
primitive data type, then some
conversion routines will have to be
automatically invoked. The ARPA network
voice protocol presents a good model of
a scheme in which a dialogue between
machines is used to reconcile
representation differences before
messages containing data are sent. All
of this is fairly messy, but should only
be necessary when a new PLITS lanquage
processor is brought up on a machine.

In the usuval case, the standard
conversions between sites will have been
established and the negotiations between
machines will be simple.

When a PLITS message is sent by a
module in a site, its destination is

checked. If it is within a site, the
site kerrel handles it; if not, it is
given to the local DHCP. If the

destination is within another site on
the same machine, it is given to the
kernel for that site; if not, the DHCP
has it forwarded to the appropriate
machine. This is the job of DHCP
functions 1 and 2 above. To do this
effectively requires quite a lot of
mechanism beneath the surface. Problems
faced include reliable transmission,
flow control, error handling, and
providing user services in a distributed
operating system.

The present DSYS design provides
"emergency" messages as the mechanisa
that the system uses to report
asynchronous errors to a module. If a
module has an emergency message on its
input gueue, the system will include a
notice that there is a pending emergency
message as part of the normal response

to any call that sends or receives a
message. This is only an initial )
attempt at providing a uniform mechanism
for errors and other asynchronous
conditions.

An experimental version of DSYS is
up and vorking in our local network.
There are experimental DHCP's for the
ALTOs and for the PDP-10, and the




Eclipse DHCP is in the final stages of
debugging. Each DHCP has most of a
Communications Manager, a name server,
and a rudimentary Job Manager (presently
a Request Fielder that provides file
service).

There is a rapidly growing
avareness [Hoare 77) that the paradigm
of a collection of communicating
sequential processes is a useful and
povwerful concept for solving problems
and for developing computer systems. 1In
the usual vay, progress requires the
development of concrete systems which
both test ideas and lead to new ones.

Our work on DSYS is motivated by
the requirements of PLITS and by our
experience with RIG. Our desire to
provide flexible communication
facilities for user jobs in a
distributed operating system has led us
to take a fresh look at some of the
problems of distributed computing. 1In
particular, we are developing a scheme
that provides both a uniform user view
of inter-module communication and a
flexible system view of resource
management.

Further, ve are developing the idea
of a distributed user job, and designing
mechanisms for handling errors and
exceptional conditions in distributed
systems. At the low level, we are
working on communication protocols that
use end-to-end flow control and reliable
transmission, allow fine control over
buffer space allotments for arriving
messages, and provide detailed feedback
for intelligent flow control when such
information is available.

To help quide the work on DSYS, we
find it useful to express design goals
as questions. The present collection of
such questions is outlined below.

What kind of a system is required
to support a programming methodology in
vhich sequential processes ("modules")
communicate via messages? How can such
a system be designed to present a
uniform user view of intermodule
communication, independent of whether
the communicating modules run on the
same computer?

What can be done to provide
systematic conventions for dealing with
the errors and exceptional conditions
that occur in distributed computations?
In particular, how can such a system be
made robust? What can bhe done to
maintain the integrity of a distributed
system (and of innocent user jobhs) when
either a user job or a parcrt of the
systea fails?
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How should "user job" be defined?
What services should the distributed
systen.provide, and how should user jobs
deal with the distributed system? What
are the special problems of user jobs in
such an envirorment, and how can the
distributed systea help?

How can performance be monitored
and distributed computations (and
systems) tuned? In general, how should
the programmer think about an execution
of his computation? What tools can the
System provide to help in this regard?
Such tcols should also be helpful to the
system designer.

Hov can such a system be made
reliable? Are there practical
descriptive techniques for the protocols
of real distributed computations? How
can such a description be used
effectively to uncover design probleas
or generate tests? How much of this can
be automated?
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A MODEL BASED VISION SYSTEM

Rodney A. Brooks, Russell Greiner, and Thomas O. Binford

Artificial Intelligence Laboratory, Computer Science Department
Stanford University, Stanford, California 94305

Abstract

We describe a partially implemented system called
ACRONYM which is designed to recognize instances of generic
and specific models in photographs. The system is being built
with airfields, oiltanks and aircraft as examples. It is intended to
be easily extended to other ob jects. This interactive system will
be taught by photo interpretation experts to locate specific
classes of objects. The user communicates with the system in
terms of object models. The system has a high level language
for building ob ject models with graphics support for the user.
To make use of the models in a general way, the system derives
descriptions of observable properties from three dimensional
models and matches these against the image in a relaxation
process.

Introduction

This research addresses the problems of identifying
ob jects based on generic descriptions, and of providing tools for
users to specify vision tasks in a natural way. In a typical
scenario, a photointerpreter will give a brief symbolic
description of a typical airfield, and describe some specific
airfields. He will show some examples of airfields, from which
both specific and generic properties will be inferred. The system
can infer statistical distributions, but that is not very interesting.
It is now reasonable to expect only simple inferences. Rich
inference of generic properties depends on broad world
knowledge. For example, to infer reasonably about lengths of
runways requires knowledge about their function for takeoff
and landing of aircraft, and the distance required for these
operations.

Ob jects are modeled in a high level language based on a
"generalized cone” representation of ob jects. The representations
of most objects are very compact; they are segmented into
volume elements which seem quite natural to the user. This
geometric language provides, graphic aids for the user for
modeling generic ob jects and scenes, as well as specific instances.

For a specific task, an Observability Graph is determined
which contains task-specific and quasi-invariant observables
and relations. Task-specific information is based on knowledge
such as sun angle and camera position. Observables are those
features and relations which are detectable, ie. that are easily
found by operators; they are expected to have reasonable
contrast and be large enough to find. Quasi-invariants are those
features which remain nearly invariant over a large range of

viewing angles.

The program matches these models against images which
have been processed from the pixel level to higher level ribbon
primitives. The data is thus already structured into natural
components. Matching is carried out by a relaxation process.
The conditions which go into detailed verification vary
enormously in their cost and effectiveness. A general structuring
of the matching process into coarse and detailed phases reflects
an ordering of priorities.

The system is being implemented in MACLISP.
The Knowledge Base

The model base for this system has a variety of sources
and uses multiple interconnected representations. The primary
representation is in terms of three dimensional generalized cones
(Binford 1971) for voiume elements. Logically there are three
principal graphs; the three dimensional Ob ject graph, the two
dimensional Appearance graph and the Observability graph
which has 2d and 3d features. The contents of the latter two of
these graphs are derived from the first, and may change over
the course of recognition and display tasks. One of the most
important features of these derived: graphs is that they always
contain back pointers to the ob ject graph (and possibly to each
other) so that routines can refer back to the original three
dimensional model. See figure 1.

The Object graph contains both generic and specific
hierarchical models. At the highest level there are SCENES (for
instance an airport). SCENES are made up of OBJECTS (eg.
airplanes, oil tanks or runways) with spatial inter-relationships.
OBJECTS are graphs (usually trees) of attached PARTS,
which are graphs whose primitives are represented as
generalized cones. Both generic descriptions of scenes and
ob jects, and detailed descriptions of specific instances of them,
are included in these graphs. Scenes and objects are both
grouped into classes, such as airport-scenes, airplanes, oil tanks
etc. Properties common to members of these classes can be given
specifically in a high level description language, or can be
inferred from specific examples already included in the ob ject
graph. Specific examples can be specified in the same high level
language, either by complete description or by making more
specific the properties of the general model. Eventually,
instances extracted from processed images may also be
incorporated into the object graph. This will be useful as a
method for initially training the system, and as a means for the
system to become more familiar with particular classes of scenes
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or ob jects through experience.

cone representation for three”dimensional objects was first
described by Binford (1971). Restricted versions of this
representation have been used by Agin (1973) (circular cross
sections) and Nevatia and Binford (1977). in visual recognition
systems. Marr and Nishihara (1976) restrict themselves to
circular cross sections, straight spines and constant sweeping
rules to determine the spatial relationship of an ob ject and an
observer. Miyamoto and Binford (1975) have used polygonal
cross sections, straight spines and piecewise linear sweeping rules
for ob ject modeling.

As in Marr and Nishihara (1976) and Miyamoto and
Binford (1975), each cone has its own coordinate system and the
arcs of the OBJECT graph are transformations between the
coordinate systems at each node. In our representation not all
arcs require an explicit coordinate transform (the default is the
identity). Eventually we may want to include other information
in the 'OBJECT graph such as explicit mention that the
OB JECT is symmetric about some plane.

Single PARTS have a cross section, a spine and a
sweeping rule. The cross section is swept along usually
perpendicular to the spine, a space curve. The cross section
varies according to the sweeping rule and thus defines a three
dimensional volume. Certain minimal conditions on the three
descriptors of a PART have been assumed throughout the code
written so far. We have not yet implemented the full generality
which these conditions permit. Incremental additions to the code
can push towards that level of generality without any obvious
impediment. These assumed conditions are given in the
following paragraph.

The spine is a continuous space curve parameterized
between zero and one (0ss<l), with continuous tangent function.
In the canonical cocrdinate system assumed for a PART, the
spine starts in the positive x direction from the origin with the
tangent lying along the x-axis. For each value of the spine
parameter we need to calculate the orientation of the plane
normal to the spine. This may be done explicitly by some
function associated with a particular spine or tplicitly by say, a
declaration that the spine is a straight line. The cross section is
defined in the y-z plane, ie at s=0. In its most general form a
cross section is a collection of 2-d specializations of generalized
cones, called ribbons, each labeled as positive or negative. One
can think of all the positive ribbons being pasted together in
their correct positions and the negative ones are cut out of the
area defined by the positive ones. Thus a cross section can have
many regions, perhaps with holes in them. In the same way that
3-d generalized cones more natuarally represent volumes than
do the surfaces which enclose them, so do 2-d ribbons represent
an area more naturally then does a list of line segments. For the
applications we are currently considering a single ribbon
defining a simple area without holes should suffice. Usually
cross sections are described in our system by special case terms
such as circle (which does not readily fit a ribbon description),
square, rectangle etc. The sweeping rule must be defined for
each value of the spine parameter as a two dimensional linear
transformation (note that this does not mean the transformations
are linear in the spine parameter). Thus the cross section at any
point along the spine can be calculated by applying the
sweeping rule to the cross section at s=0, followed by the rotation
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given by the spine.

Returning now to the high level input language, models
of scenes, ob jects and parts can be named and described in the
input language, edited interactively with display graphics (if the
model is sufficiently explicit to fully specify an appearance
graph) and stored in data bases along with derived
observability information (to be described later). Some examples
of the current version of the input language are shown in figure
2. Tree structures can be naturally described using nesting of
S-expressions within an object description. The coordinate
transforms can be specified by including "with position” and
‘'with rotation” clauses. The outputs of the parser are the tree
structures at the various levels of description, with those slots
which have had values specified filled in at the nodes. Any item
can be given an optional name and later be referred to in one
of two ways. If referred to simply by name a pointer directly to
the item is used as the tree node or slot filler. If referred to in a
"just-like" phrase, a copy of the item is made using the same slot
fillers and sub-trees the original used. By specifying further
qualifications of this copy the contents of specific slots can be
altered while retaining most of the structure derived from the
prototype. In many places (such as position specification) the
parser uses the LISP EVAL function to allow the use of
arbitrary S-expressions and bound variables.

Generic descriptions of a scene, for example an airfield
with the ground plane in the x-y plane of the coordinate system,
can be input in this specification language. Descriptions can
include a description of the range of the number of each type of
ob ject to be found in a typical airfield scene, along with generic
descriptions of those objects and their component parts. For
instance a generic description of an OIL-TANK is given in fig
2a. When describing a specific scene this can be used as a
prototype if desired as in fig 2b. This ob ject specification would
then appear nested in some description of a scene. The position
value gives the position of the ob ject coordinates relative to the
scene coordinates.. A rotation specification for the whole ob ject
could also be included, but for this example the necessary
rotation to transform from the canonical coordinate system of
generalized cones to the scene coordinates has been inherited by
the single part from the prototype part TANK-BODY. New
copies of the cross section and spine are made using the
“just-like” construct as the numeric values need to be made
specific. The other slots of these two specifications are inherited
from the prototype, but since in this case they are aiready
completely specific, no modifications need be made.

Rather than input a generic description it can be inferred
from examples in the manner of Winston (1975). Between these
extremes some properties can be described directly by the user,
while others can be inferred by the program from its known
examples. It is not yet clear exactly when these inferences should
be made by the program and so far this decision is not made
automatically but only when the user specifically invokes the
necessary functions. It is intended that this question be
examined in much more detail.

The Appearance graph has a variety of possible uses.
Since this is intended to be an interactive system for
photo-interpretation it is an important advantage to maintain a
representation which is intuitively natural for the user. The
Appearance graph is used to produce a two dimensional image
for display to the user during the model building and learning
phases (fig 8 for example). This gives the user some feedback
from the model building process; she can see what the data base




thinks the models look like. Similarly when the program has
built up a three dimensional model from an actual image the
user can get a much clearer idea of what the program is “seeing”
by looking at a display picture generated from that cone
representation. In the current system this is the only function of
the Appearance graph.

Baumgart (1974) suggested that such a graph could be
used to produce a synthetic image which would be matched at
the pixel level against images normalized to a standard point of
view using recurcive windowing techniques. Thus an area could
be monitored by comparing new pictures against a synthetic
noise free image. When a picture is examined which has
significant differences the information about what part of the
three dimensional model is no longer valid will be extracted
from back pointers attached to the Appearance graph. The
model based recognition system can then be invoked to decide
wha; has been added or removed from the monitored site.

This graph might also be used to extract observable
features which are dependent on a particular camera and sun
position, such as occlusion and shadow information It would be
used in this guise for features which do not have the invariance
with respect to camera and sun that is common to the features
extracted from the three dimensional graphs.

An Appearance graph can be produced from any scene
whose graph arcs, nodes and value slots all have specific values.
The surfaces of the ob jects and their positions in space must be
extracted from the generalized cone description. These can then
be converted to camera coordinates and projected onto a plane.
It must be decided for each surface whether it faces the camera
and so is potentially visible, and if so whether it is obscured by
other surfaces. The initial culling of surfaces, ie. discarding
those which wholly face away from the camera, has been
implemented for planar surfaces and a small class of curved
surfaces. The discussion that follows describes how to produce
the appearance graph for a single convex part. It seems clear
how to extend many of these techniques to handle a class of
non-convex parts but it is not yet clear whether it is necessary to
do so for the domain of images which are being investigated.
Thus far we have stressed building up other capabilities, but it
is intended to extend the hidden surface algorithms to handle
parts partially or wholly occluded by others.

Most traditional hidden surface algorithms rely on the
fact that ob jects have polygonal surface representations and the
surfaces are planar; eg. see the survey of Sutherland, Sproull
and Schumaker (1973). Braid (1973) includes sections of
elliptical cylinders but relies on special case solutions for pairs of
six primitive volume elements. Extensions to more general
curved surfaces would not fit easily into his system. In the
system to be described here, the surfaces are extracted from the
generalized cone representations of the parts. In general these
surfaces are not planar polygons and they are not approximated
by such. The task of producing the outlines of each surface and
then the back surface culling technique used will be described.

The cross section is produced for spine parameter s=0 in
terms of two dimensional curve primitives. The cross section slot
in a part description points to one or more cross section
descriptions. These are handled independently and then merged
to produce a cross section, possibly non-convex and with holes
in it. For instance a cross shaped cross section might be
described by two elongated rectangles at right angles to each
other with a common center. The merging process would
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eliminate the internal lines leaving the outline of a cross. For the
current applications this generality seems unnecessary and so the
merging is not done. The cross sections are usuallv limited to a
single cross section description. The “type” slot in the cross
section description of a cone is used to invoke a function of the
same name, which uses the rest of the slots as arguments. New
routines which produce cross sections can be added
independently of the rest of the code as long as they describe the
cross section with those primitives supported by the rest of the
program. The implementation currently includes straight line
segments, circular segments and (partially) elliptical segments as
two dimensional curve primitives. To introduce a new primitive
cross section element it is only necessary to include a few
functions to handle such things as the final drawing stage, the
production of the corresponding surface element when it is
swept out by the sweeping rule and the rules to translate, rotate
and deform it using a two dimensional linear transformation. A
circular segment for instance is represented as a center, a radius,
the orientation of the plane in which it lies and two angles
which delimit the end points of the segment. This is the
representation used throughout the production of the
appearance graph and in that graph itself. It is not
approximated by straight line segments until it comes time to
place a line drawing in some output buffer. The program then
calculates the size of the image and based on the output device
(e.g. display terminal or Xerox Graphics Printer) decides how
many straight line segments to use. The cross section routines
also have to mark which points in the cross section will be swept
out as visible lines along the sides of the generalized cones.

Logically the information provided by the spine and the
sweeping rule could be obtained independently of cach other so
that new spine and sweeping rule types can be added
independently. New types can be added in the current
implementation without regard to their interactions but some of
the pairings of simple cases are handled specially when
substantial computation savings can be made. In the general
case each given type of spine provides a position vector and
orientation matrix for any requested value of the spine
parameter. The sweeping rule provides a two dimensional linear
transformation for any given value of the spine parameter.
These two transformations are combined to give a single
transformation which (for spine parameter s=1) can be used on
the whole cross section to get the face at the other end of the
generalized cone, or (with intermediate spine parameter values)
it can be used on the sweeping points to locate points on lines
which lie on the swept surfaces of the cone. However in the case
of a straight spine and a constant sweeping rule, this
transformation is merely a translation and all lines swept out are
straight lines. Thus considerable savings in the number of
arithmetic operations can be made for such a simple case. In the
domain being investigated many ob jects can be modeled using
precisely these simple cases.

When carrying out the back surface culling it is not as
clear how it should be done independently of the combination
of the primitives for cross section, spine and sweeping rule
which were used in producing a particular surface. So far the
culling routines have been implemented only for planar faces,
and surfaces where a circular segment has been swept along a
straight spine with either a constant or linear sweeping rule. For
the case of a planar surface one need merely examine the
direction of the outward pointing normal attached during the
first phase of the construction. In the second case an analytic
solution is calculated for the extremes of visibility of the cross
section at the s=0 end of the cone and using the transformation
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calculated earlier for s=1, the visibility limits at the other end of
the cone are obtained. This determines what part of the edge of
the end face pointing away from the camera is visible. The
limbs (lines joining the extremes of visibility) can then be
inserted. This same strategy can be used for more general
sweeping rules and will need no modification for them. It should
also work for other two dimensional primitives besides circular
segments as long as functions are provided to find the extremes
of visibility. However when the spine is no longer straight, extra
complications arise and lines which are not merely swept along
by the sweeping rule are introduced (see fig. 4 for an example,
where a square has been swept along a circular spine and
linearly halved in size along the way). This area will be
investigated later.

Usually detailed information about sun angle and
observer position will be available. The Observability Graph
contains information which makes use of such special case
information. It contains information which is not
quasi-invariant. For example, sun angle and observer viewpuint
information enable prediction of shadows of vertical edges;
ob ject dimensions can be inferred from single views. Much of
the Observability Graph contains quasi-invariants which are
deduced by the modeling program from the generalized cone
representation, from the cones themselves, from their cross
sections, from their limbs, and from relations between cones,
between cross sections and between limbs.

i. Cones: Elongated cones appear as elongated ribbons from most
viewpoints (over most of the solid angle of the observer
hemisphere). Thus, aircraft fuselages and runways appear as
elongated ribbons.

ii. Cross Sections: Cross sections at either end of generalized
cones are typically planar. That is, cones are terminated by
planes in many cases. From most viewpoints, cross sections are
simply related to ob ject cross sections. For example, circles map
into ellipses and rectangles map into special quadrilaterals.
Concavities are preserved. From a large range of viewpoints,
circles appear nearly circular and rectangles appear nearly
rectangular, because foreshortening is a cosine effect. Symmetries
are nearly preserved. Alternatively, some parts are terminated by
hemispheres. All projections have circular and elliptic arc
segments.

ili. Limbs: Limbs of generalized cones are frequently straight
lines. Straight lines map into straight lines. In other cases, they
may be roughly circular (the limb of a donut).

iv. Relations: Relations between cones, cross sections, and limbs
provide other quasi-invariants. Often airfields have a pair of
parallel runways. Engines are parallel to the fuselage of an
aircraft. Colinearity and cotermination are common relationships
which are invariants. Front/behind are quasi-invariant relations.
Symmetry of parts such as engines are quasi-invariant. Most
parts are generated by straight spines, cylinder or cone sweeping
rules, and planar termination. For them, cross sections at
opposite ends of a part are related by simple plane
transformations. Cross sections at opposite ends of a part are
often identical, that is when a generalized cylinder is terminated
by parallel planes. Limbs of generalized cylinders are parallel.

These invariants and quasi-invariants are used to map
from ob ject structures (generalized cones) to picture structures
(ribbons). Each can be used to map the other way, that is from
picture structures to object structures. They can be used in a

descriptive way (data-driven) as well as in a goal-driven way.
The system promises an interesting generality. There are more
ambiguities in this direction of mapping, however techniques
for resolution of ambiguities by enforcing global consistency are
being developed.

The Model Matcher

The goal of the Model-Matcher is to find members of a
class of ob jects given a generic description of that class. That is,
it is designed to describe and locate any of a class of airfields, as
opposed to matching a specific one. Generic ob ject models are
matched against features and relations obtained from a picture,
organized into a Picture Graph. A matching process such as this
faces familiar problems: in particular, errors caused by decisions
made on evidence which is too local, and a combinatorial
number of searches for global decisions. A familiar solution is
relaxation graph matching. In our case, there is an enormous
range in cost and benefit of perceptual operations. For example,
runways and aircraft both indicate airfields. Runways are 50
times longer than aircraft, and have simpler shapes. Thus, they
are much less expensive and more reliable to locate. Once the
system finds candidates for runways, it can search for parked
aircraft in a small area. The relaxation process is structured into
coarse matching and detailed matching. Coarse matching uses
the Observability Graph to match local properties such as shape
to select initial candidates and a correspondence to the Ob ject
Graph. The next phase uses more global contextual
information, as well as more detailed features to establish
globally consistent matches from these screened candidates.

This scheme of coarse matching followed by detailed
matching has been used in other systems. Here, a more powerful
means of selection of candidate matches will be used than in
previous approaches. In order to succeed in complex real-world
scenes, this research seeks mechanisms for using two-dimensional
shape for initial selection of candidates. It also seeks ways of
using local three-dimensional interpretations of shape to limit
search, by interpreting two-dimensional features as generalized
cones, or cross sections or limbs of generalized cones. Garvey
(1975) selected candidates by designing filters of pointwise
properties such as color. Bolles (1976) used correlation of small
patches to match features of a known ob ject in approximately
known position and orientation. It appears that pointwise
properties are not sufficiently selective for harder problems.
Similarly, correlation patches are not appropriate for generic
descriptions.

Initial candidates are selected using local features and
relations which have been determined to be observable by the
program which utilizes the Knowledge Base. Those features and
relations are organized into an Observability Graph, (OG).
Both its nodes and their relations are linked to both the
Appearance and Ob ject Graphs. The nodes in the OG may be
other Observability Graphs -- observables for an object may
still be observable when that ob ject is part of a larger context.
Locating instances of a node is only the first part of the
selection of candidates. The contextual information provided by
related parts or ob jects of the scene will be encoded in the arcs
extending from this node. Each primitive node in an OG will
represent a single class of ribbons, that is, it may be viewed as a
predicate which accepts any ribbon which has a certain set of
attributes.

The arcs of the OG represent structural or spatial




relations expected to hold between a pair of these nodes --
examples include “intersection”, "parallel”, and "same-length”
predicates. Assume on-1 and on-2 are nodes in an OG
connected by the arc oa-1. Assume further that pn-1 and pn-2
are nodes in the Picture Graph, which will be defined soon. It is
then oa-1's function to examine each pn-1 and pn-2 pair found
acceptable by on-1 and on-2 to determine whether they satisfy a
prescribed set of relations. For example, oa-1 may represent (that
is, returns True when) an intersection at which “"the
instantiation of on-1" terminates while “the instantiation of on-2"
does not.

In addition, it is possible to represent n-ary relations, (for
arbitrary n) in an OG. An example might be “connectivity”,
defined as the transitive closure of intersection. To provide the
scope and versatility desired, all three of these components
(nodes, arcs and relations) will be implemented as general LISP
functions. This format allows any component tc glean
information from some other part of this OG, or from any other
source it wishes. Further, it allows the Knowledge Base to store
only the information considered significant, sidestepping the
limitations which would arise if one could only fill in a standard
attribute list every time.

Throughout the following discussion, (a simplified version
of) an Airport will be the canonical example of a scene. Its
Ob ject Graph can be briefly described as a collection of several
runways and taxiways, close to some terminal and hanger
buildings. There will probably be airplanes in the vicinity as
well. The system of runways and taxiways should be connected
and all these constituent pasts of an airport should be in close
proximity.

There are both parallel and intersection arcs between
runways in the Airport Ob ject Graph. Intersections are usually
planar, not overpass intersections. Several runways may be
parallel. There will usually be runways in several directions to
accomodate wind changes. Further, there is often an underlying
equilateral triangle pattern dating back to the time before jets,
when runways were much shorter. The glide path will be free of
obstructions. Runways are connected by taxiways to terminals or
storage areas. A taxiway may be curved, relatively short or
hard-to-see.

At the next lower level, these parts must be defined.
Informally, runways must be straight, long, level, narrow and
highly visible. In addition, they commonly have markings and a
dotted line running down their center, and appear as roads
which lead nowhere. (That is, they do not connect into the
highway system.) The runway node is itself a graph. Its two
nodes are both primitive. The first is the “outline” of the
runway, which is a straight ribbon highly contrasting along the
edges, and long. Here more specific information can used, as the
range of acceptable lengths and widths are approximately
known. The second ribbon is the dotted line which runs down
the length of the other ribbon. The sole arc in the runway
graph specifies that the dotted-line ribbon must be contained in
the main ribbon and that their axes coincide.

Aircraft are described in terms of graphs whose nodes are
volume parts (fuselage, wings, tail, engines) and whose
primitives are generalized cones.

There are two types of nodes in the Airport Observability
Graph, runways and aircraft. From almost any angle, runways
appear as long, straight ribbons with constant width. They
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usually have markings and boundaries with high contrast. Thus
their boundaries or markings are likely to be found by edge
finding routines. Runways are more easily found than aircraft
for this reason, as well as their length and simple shape. Thus,
strategies derived from the Observability Graph are expected to
focus attention on runways.

In typical examples, there will be accurate observer
altitude, location and orientation and ground elevation. This
will enable good approximate estimates for length and width to
be made directly from the image. Under these circumstances,
typical length and width are observables. In many cases, the
images could be registered with familiar observables. For
example, in photos of the San Francisco Bay Area, the shore
can be registered, to provide a measurement scale over the
whole image. Even in other situations, when these quantities
could not be included in the Observability Graph, the length to
width ratio could be used, as it would be large in almost any
viewing situstion; and this qualifies it as an observable. In
stereo viewing, measurements can be made of flatness and
levelness. They would not be observables in monocular viewing.
With accurate observer location and information, parallelism is
accurately determined. Otherwise, in almost all cases parallelism
is nearly preserved. Intersection is invariant. In stereo images,
planar intersection can be determined, otherwise it can
sometimes be inferred.

It is assumed that an effective edge-finding process will be
combined with a spatial organization process to obtain a graph
whose nodes are edges of the image and whose arcs represent
spatial relations between pairs (or n-tuples) of these edges. Some
particularly relevant relations between edges are: l. colinear
continuation (binary); 2. opposite, especially parallel-opposite
(binary) 3. extended intersection, noting which edges terminate
at this junction (binary); 4._extended coincident (n-ary star); and
5. same-length (n-ary). (See Figuge 5) There is not yet an
effective edge-finding and desciipthgl stép such as assumed, yet
there is reasonable progress in this djrection with recent work
by Nevatia(1977) at USC, Rosenfeld(1977) at Maryland, Barrow
at SRI, as well as earlier work of Ohlander(1975), Marr(1975),
and Binford-Horn(1973} Whether this process is performed
uniformly or is controﬁed by strategies calculated from the
Observability Graph will not be discussed here. Ribbons
correspond to parallel-opposite and opposite relations between
colinear clusters of edge fragments. These will be the primitive
nodes of the "Picture Graph". Each ribbon node will aiso
contain other information, such as internal shading and
intensity contrast across its boundaries.

A Spatial Graph is constructed from stereo and 3-D cues
detected in the Picture Graph. Marr calls this the 2 1/2-D
sketch. Because both camera position and orientation are
known, exact lengths and angles can be computed and stored in
the Spatial Graph. This graph, together with the Picture Graph
and the Observability Graph, will be given to the Model
Matcher. From them, the Matcher will screen sub-graphs of the
Picture Graph and Spatial Graph which are initial candidates
for detailed matching with the Object Graph. It is essential to
the coarse selection that local context be used. This means that
initial selection relies not only on nodes but uses the arcs as well.
Termination is a powerful cue; runways are roads that don't go
anywhere. Length, width, and straightness are additional
constraints. While parallelism and intersection are not required,
they are unlikely as accidents; they strengthen the runway
interpretation.




Each match of ON-PN subgraphs can be viewed as an
interpretation of that observability subgraph in the picture. It is
useful to make the interpretation by mapping from
Observability Graph to Picture Graph. Typically, there will be
multiple spatial relations between edges and ribbons in the
Picture Graph, only some of which are consistent with the
observability subgraph. It is, however, a local mapping. The
goal now is to determine the best overall interpretation, one
which uses the full model. Global considerations, (particularly
structural or spatial relations,) will be used to determine whether
a pair of ON-PN mappings is consistent -- that is, if both can
be realized simultaneously. This concept is well illuminated by
Escher’s "Belvedre". (Escher 1967) By inspection, each of the
pillars joining the upper story to the base is acceptable, when
taken by itself. It is only by considering global properties, in
particular how the position at the base of each support
compares with its position at its top, that the architectural "flaw”
can be detected. The iinpossibility of the total structure emerges
from the fact that there is no consistent way of realizing all the
pillars at the same time when the apparent relative locations of
their end points is considered.

The consistency-finding algorithm now invoked regacds
each ON-PN correspondence as a node in the "Pairing Graph”.
Its first task is to use the arcs and relations of the OG to link
together consistent pairs of these pairing nodes. It then removes
the more isolated nodes from this graph, to leave a large and
self-consistent sub-graph.

In the airfield example, the global context primarily
involves distinguishing runways from portions of highways
among candidate ribbons. Because there are detailed
expectations for each interpretation, it is useful to consider each.
Locating taxiways, storage a eas, and aircraft, nearby large flat
areas, and clear flight path along alleged runways supports an
airfield interpretation. On the othe hand, locating connecting
highways, car traffic, buildings and obstructions along the path,
supports a highway interpretation.

Thus far, the edge detection and subsequent ribbon
finding process, have been simulated by hand. Also, the
interfaces between the Matcher and the Knowledge Base have
yet to be finalized. The matching process sketched above refers
to the driver routines -- the real work will be done by the actual
observability functions; that is, the arc and relation predicates,
and organizing the features of a ribbon which should be used.
Finally, the extensibility of this part of the system should also be
noted -- new functions can be added anytime to incrementally
improve the pairing evaluation process.
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Figure |

(define-object GENERIC-OIL-TANK of-class OIL-TANK
(having-part TANK-BODY
With rotation n/2 about y-hat
With cross-section TANK-CROSS having
(type circle
radius (range (98.8 . 118.9)))
with spine TANK-SPINE having
(type straight
length (range (70.8 . 188.8)))
With sueeping-rule having
(type constant)

Figure 2a

(define-object of-class OIL-TANK
Hith position (vector 1508 1700 @)
(having-part just-|ike TANK-BODY
With cross-section just-like TANK-CROSS having
(radius 95.8)
uith spine just-like TANK-SPINE having
(tength 85.8)

))

Figure 2b




Figure 3

Figure 4




1. Colinear continuation
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2. Opposite
Parallel-Opposite

5. Same-length

\

Parallel but not Opposite

Figure 5

3. Extended intersection

4. Extended coincident

or




Task Independent Aspects of Image Understanding
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Abstract

The problem of transforming picture domain cues to
scene domain cues is addressed as an important task
independent aspect of Image Understanding. There are
several sources of task independent information, such as
structural, spectral, and g trical k ledge, that can
relate the image domain cues to the scene domain cues. In
this paper we present a methodology for integrated
exploitation of those knowledge sources.

I Introduction

An Image Understanding System can be roughly
divided into two parts: a task dependent part and a task
independent part. Although Image Understanding is
characterized by an effective use of knowledge of the task
domain, the performance of task independent part is in fact
very critical to the final performance of the system. This
paper focuses on the task independent aspects of
transforming picture domain cues into scene domain cues.
After discussing what kind of information (structural,
spectral, and geometrical) is exploitable for this purpose, we
propose to use the "Origami” world as an appropriate space
for the integrated use of all the information.

II. From Picture Domain Cues to Scene Domain Cues

The term "task independent” in Image Understanding
often refers to low-level image processing such as line
extraction, region segmentation, etc. However, in this paper
we will try to separate out the more crucial parts of the
task independent aspects of Image Understanding.

It is somewhat standard ir. Al problem solving to
employ schemes with the nature of the hypothesis-and-test
paradigm; schemes which involve some "positive” feedback
loop among input, cues, models, and hypotheses. One
possible scheme of Image Understanding is depicted in
Figure 1. Several points should be noted here. First, there
is a distinction between the picture domain and the scene
domain ([Clowes, 1971], [Kanade, 1977])). In short, the
picture domain cues are the features observed in the
picture, such as line segments, homogeneous regions,
intensity gradient, etc. The scene domain cues are the
features which cause the picture domain cues, such as edge
configurations, surface orientation, reflectivity, lighting
conditions, etc. This distinction prevents one from confusing
features in the picture domain with those in the scene
domain. For example, the "above" or "next-to" relationship
between regions in the picture does not necessarily
correspond to the "on" or “touching” relation between
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objects. The most basic and important scene domain cues
are spatial three-dimensional configurations.

The second point is that general models of concepts
are usually represented in terms of scene domain cues.
See [Winston, 1970] for example. An "arch” is described by
using orientation ("lying" and "standing”), spatial relation
("supported-by", "left-of", etc.) and object kinds ("brick"), all
of which are terms in the scene domain.

The third point is that the right half cycle (from image
to model) of our hypothesis-and-test loop in Figure 1 is
more crucial to the final success of the total system. The
first iteration in the loop is especially important since it
provides our initial guess. Once we get a good initial guess,
things work better and better. Most of the existing
successful systems obtain this initial guess either by
assumptions about the task environment (e.g., the boundary
lines with the dark background for the Shirai’s Line
Finder[Shirai, 1974)), or by cooperative use of range data
which simplifies the problem of obtaining scene cues (e.g.,
[Nitzan, Brain and Duda, 1977]).

In the context of Figure 1, the process of going from
image to picture domain cues has been traditionally viewed
as the task independent part of Image Understanding. In
our opinion, however, the process of going from picture
domain cues to scene domain cues is the more important and
relevant aspect of task independent analysis. The initial
hypothesis generation greatly depends on what can be done
task independently in this process. We ought to obtain the
basic understanding of this process before developing task
specific solutions,

In the succeeding szctions we will discuss what kind
of knowledge, theories, and heuristics are usable for going
from picture domain cues to scene domain cues, particularly
for guessing the 3-D configurations of the scene, and how
they can be integratedly used.

Image

Picture Domain

PICTURE
DOMAIN

Cues

Instantiated Scene Domain

Model Cues

T e

Model

Figure 1. A Scheme of Image Understanding.




IIL. Structural Information

By structural information we mean the line
connections and junction types of a line drawing of the
scene. The Huffman-Clowes-Waltz scheme provides a
method of finding the three-dimensional configurations of a
line drawing of the trihedral world [Waltz, 1972]. It assigrs
to lines the labels which represent the 3-D meaning of the
line such as + (convex), - (concave), and « or - (occluding
boundary). This method has various good features: (1)
clear-cut definition of the objective world, which resulted in
incorporating knowledge in a systematic way as well as
eliminating vague heuristics, (2) compiled knowledge
representation in the form of junction dictionary, and (3)
efficient labeling procedure by filtering.

However, the scheme has serious limitations for being
applied to real-world images. Besides the problems of how
to accommodate missing and extra lines, the world itself is
too limited. For example, the carton box of Figure 2 is an
"impossible" figure. Recently I have developed a labeling

L1

LS
L2

L3
L4

Figure 2. A Line Drawing of a Carton Box.

scheme for the worid called "Origami® world
[Note 1] [Kanade, 1978], which parallels Waltz’s labeling
scheme for the trihedral world. The key difference is that in
the Origami world the plane surfaces themselves are the
stand-alone objects, whereas in the conventional world for
computer vision, such as trihedral world, the solid objects
bounded by planes were the basic stand-alone components.
This difference makes the box shape of Figure 2 either
"possible” or “impossible” [Note 2]

The method of developing the Origami world theory
almost parallels that of the Waltz labeling theory. For the
time being, only + (convex), - (concave), and
T or 1 (occluding) are used as the line labels. The direction
of the arrow of the occluding edge is given in such a way
that the region on the right hand side is occluding the left
hand side. The size of the dictionary shown in Table 1
gives an idea of the degree of constraints imposed by the
Origami world compared with the Huffman-Clowes world.

[Note 1): Origami is a Japanese traditional manual art of
making various shapes by folding a sheet of paper. Note
that our Origami world is confined with only plane surfaces.
In this sense it is not the paper surface (i.e., developable
surface) world investigated in [Huffman, 1976]

[Note 2): We can regard Figure 2 as a case where the
thickness of the carton paper is not shown. It is then an
imperfect drawing in the trihedral solid-object world.
However, it is more reasonable and practical to regard it as
a perfect drawing in the Origami world.

Junction Huffman-Clowes | Origami World
Type Dictionary Dictionary
L 6 8
ARROW 3 o 12
FORK 3 9
T 4 16
Table 1. Comparison of Dictionary Size between the

Huffman-Clowes World and the Origami World.

+

Figure 3.  Some legal junctions in the Origami world.

Figure 3 shows some of the junction labels which are legal
in the Origami world, but not legal in the Huffman-Clowes
world. The labeling procedure is also similar except that
some global check concerning surface orientation is
necessary. This check can be done systematically by using
the gradient space rep.esentation of surface orientation
together with the compiled knowledge contained in th2
Origami junction dictionary (see [Kanade, 1978] for the
detail). The picture of Figure 2, for example, can have 37
different interpretations in the Origami world.

The Origami world corresponds well to the way in
which we would interpret a picture which has been
segmented into regions. The meaning of this statement is
understood by thinking why we get perfectly satisfied with
the pictures like Figure 4(a) and Figure 4(b) when they are
obtained as results of region segmentation of a "chair” and a
"door" scene. Needless to say, the Origami world includes
the solid-object world as its subset. We feel that it is rich
enough to accept a much larger class of line drawings and at
the same time it has enough structure to impose constraints

(a) (b)

Region segmented pictures we think perfect:
(a) chair and (b) door.

Figure 4.




on the possible label combinations. In addition, some classes
of line drawings with noise (missing or extra lines) and those
of curved objects become manageable in ihe sense that the
interpretations in the Origami world can be regarded as
approximated configurations.

Iv. Spectral Information

By spectral information we mean intensity and color
information of image. As was shown by Horn [Horn, 1977],
the image intensities carry information about three-
dimensional shape; they should be used for more than just
picking up line segments or segmenting a picture into
regions. One convenient technique for the exploitation of
this information in connection with labeling line
characteristics is to examine an intensity (more generally
color) profile taken across an edge. Figure S5 shows the
typical types of intensity edge profiles. The use of this
information can be done in two ways: absolute and relative.

The absolute method exploits the properties which
give direct cues about identity of line labels. The simple
rules given by Horn [Horn, 1977] are:

(Rule H-1) An edge profile with a peak shape or step
with a peak superimposed suggests a convex

edge.

(Rule H-2) A roof-shaped profile suggests a concave
edge.

(Rule H-3) A negative peak or a step with a

superimposed negative peak strongly suggests
obscuration.

The relative method is based on the fact that if the
two lines have the same edge profile, it suggests that they
will likely take the same label, even though the label identity
itself is not known. The classical matched T configuration is
a good example. In Figure 6(2) if the edge profiles of the
line L1 and L2 are similar (and preferably if the edge
profiles of the lines L3 through L6 are also similar), then the
labels of L1 and L2 are likely the same and the lines L3
through L6 are obscuring edges in such a way that the
region R is obscuring L1 and L2. It should be noted that the
geometrical information (line collinearities between L1 and
L2, between L3 and L4 and between L5 and L6)) has also
been used here. The matched Pi configuration of Figure
6(b) is another example which gives similar constraints. Use
of color data expands possibilities of exploiting this type of
constraints.

One problem with spectral information is that the
constraints are often local, fragmentary, and uncertain; in
some places strong evidences exist, while in others there is
none. In fact, as is pointed out in [Horn, 1977], those rules
(H-1) to (H-3) are not strictly necessary and sufficient
conditions. Also the rule (H-3) about an obscuring edge rule

e 2 G %~ WO

(a) (b) (c)

Typical types of intensity edge profile: (a) peak,
(b) step, and (c) roof.

Figure 5.
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L6
L4
L1 L2 / /
L3
LS
(@ (b)

(a) Matched T Configuration, and (b) Matched Pi
Configuration.

Figure 6.

does not tell which side is obscuring which. In the actual
image, edge profiles may or may not show clear evidence
depending on various conditions. Thus we need a scheme
which integrates this partial, noisy information. It is
noteworthy that the relative way of using spectral
information is more -eliable because it is based on the
comparison of edge profiles rather than the identification of
particular properties.

V. Geometrical Information

By geometrical information we mean exact values of
such properties as col'inearity, angle, length, etc. They do
not seem to tell much about scene cues directly. Rather
they have to be cambined with other information. The global
check concerning suriace orientation mentioned in section Il
is combined with structural information, and the matched T
and matched Pi configurations in the preceding section are
combined with spectral information.

Although much is not known, two things should be
mentioned here. First, most of the geometrical properties in
the picture domain begin to make sense only after the
spatial configuraticns are known or hypothesized. The
gradient space by Mackworth [Mackworth, 1973] is a
powerful tool for relating geometry in the picture with
surface orientations in the scene. Use of it together with the
labeling procedure (which is essentially a gross 3-D
configuration hypothesizer relying on the structural
information) of the Origami world led us to an interesting
algorithm for establishing reletions among the “actual®
orientations of the surfaces involved in the scene (see
[Kanade, 1978] for the detail).

Second, it is interesting to note the following
observations. Guzman’s SEE program [Guzman, 1968]
introduced a bunch of heuristics involving geometrical
properties such as matched 1 and parallel background
boundaries. The Waltz theory which systematically realized
the Guzman's goal does not explicitly use much of
geometrical information to find a unique 3-D configuration.
Then why is it that computer vision researchers dealing with
actual image data feel that geometrical information should be
playing an important role?

One plausible explanation about these observations is
the following. The Guzman's SEE used the picture domain
cues and scene domain cues in a mixed way. The Waltz
world, basically the trihedral solid-object world, is so
constrzined that it does not need to directly use most of
geometrical information. However, {1¢ world in which vision
researchers try to interpret real world images should be
much richer than the trihedral solid-object world.




VL How to Integrate All the Information

What we have discussed so far can be summarized as
follows:

(1) How we obtain the scene domain cues (particularly the
3-D configurations) is one of the most crucial parts of
an Image Understanding System. More research is
required to learn how to obtain the scene domain cues
in a task independent manner.

(2) The traditional trihedral solid-object world is too
constrained to work with real world images. The
Origami model is a good candidate for a richer world
which still has a well-behaved structure.

() The increase of ambiguity by extending the working
world to the Origami world car. be offset by the
integrated exploitation of spectral and geometrical
information.

(4) Spectral information together with some geometrical
information can be converted into constraints on the
possible labels and/or label combinations for lines.

In this section we propose a method of integrating all
the structural, spectral, and geometrical information in order
to obtain the 3-D configurations of the scene from an image.
Figure 7 shows a basic idea. An image is first segmented
into regions and represented as a line drawing. Edge profile
analysis is performed to obtain a setl of constraints on line
labels. This can be done locally for each line and as many
constraints as possible should be extracted. Each constraint
obtained can be represented in the form of

(<constraint-name> <constraint-body> <confidence-value>).

For example, when the (Rule H-1) about convex edges cited
in section IV is applied to a line L, it will yield a constraint
expression like

(IDENT ((L) (+)) .8)

which means that the label IDENTIty of the line L may be
+ (convex) with confidence .8. The (Rule H-3) would yield an
expression like

(OR (IDENT
(IDENT

) (1) .9) )
) «n 9 ),

[Note 3]

which means that the line L may be an occluding edge in one
OR the other direction; i.e. though the occlusion appears to
occur at the line L, it is not known which side is occluding
which. As another example, the matched T configuration of
Figure 6(a) will yield constraint expressions like

(SAME (L1 L2) .9)
(IDENT ((L3 L4 L5 L6) (T T L 1) .9).

The first expression means that the line L1 and L2 may have
the SAME label and the second one means that a set of lines

[Note 3): Actually, the OR is the fuzzy logical OR operator
of the constraint expressions. The fuzzy NOT is also
possible. Since a set of constraints mean their conjunctions,
AND is not necessary.
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L3 through L6 will take such a combination of labels that the
middle region occludes the rest.

The confidence value may be determined by the kind
of rule used for deriving the constraints and the degree of
matching of the edge profile characteristics. How to give
the confidence value is not fully investigated yet.

Then the search process in Figure 7 takes the line
drawing, the set of of constraint expressions, and the
Origami junction dictionary as input. It searches for the
“best" interpretations in the sense of the best constraint
satisfaction in the space of the possible interpretations in
the Origami world. In the present implementation, if a
constraint is not satisfied a penalty as much as' the
confidence value of that constraint is added to that
interpretation. Thus the best interpretaion means the one
with the least penalty. Some additional sequential
mechanisms might be needed in the future for error
correction. For instance, use very confident spectral
evidences first, and if a junction is an impossible one, then
try to locate missed lines in the image so that the junction
becomes a possible one. However, the important point is
that we could convert the problem of finding the 3-D

Image
Segmentation
Region Edge
Description Profile
by Lines Analysis
sStructural
Knowledge A Set of
Constraints
*Spectral &
' ) 4 Geometrical
Origomi [ Search for | oo
Interpretations

#World Knowledge

Plausible
3-DConfigu-
rations

Figure 7. A Method of Integrating Structural, Spectral,
and Geometrical Information to Obtain 3-D
Configurations.




configurations of the scene to a problem of searching in the
space of the Origami world, so that all the local, noisy,
absolute, and relative evidences are exploited in a well-
understood manner togethier with the global structure of the
scene.

As a simple example, let us take a case that an image
of a carton box is given, and let us explain how the
proposed method would work for guessing the box shape
from that image. The region segmentation process produces
(hopefully) a segmentation which is represented as a line
drawing of Figure 2. The edge profile analysis would yield
the following set of constraint expressions:. (The confidence
values are given provisionally here, because they are not
the central issue at this point.)

(OR  (IDENT ((L1) (1)) .9)
(IDENT ((L1) (1)) .9) )

(OR  (IDENT ((L2) (1) .9)
(IDENT ((L2) (1)) .9) )

(OR  (IDENT ((L3) (1)) .9)
(IDENT ((L3) (i)) .9) )

! These are obtained by the rule (Rule H-3) applied to
L1, L2, and L3.

(OR  (IDENT ((L4) (+)) .7)
(IDENT ((L4) (<)) .6) )
(OR (IDENT ((LS) (+)) .7)

(IDENT ((LS) (-)) .7) )

! These correspond to the case where the edge
profiles of L4 and L5 are found not to have a
negative peak property but it is not clear whether
they are a peak shape or roof shape.

If we search for the interpretations which satisfies these
constraints among the possible interpretations in the Crigami
world, then the configurations of Figure 8 are obtained as
the first two most plausible ones. Figure 8(a) is in fact the
box shape configuration we wanted. Note that the above
constraints obtained by the spectral information alone did
not tell the directions of the obscuration at L1, L2, and L3,
nor the definite identities of the line characteristics of L4
and L5, and that the line drawing of Figure 2 alone can have
37  different configurations. However, if they are
integratedly used the desired 3-D configuration (box shape)
of the object is discovered as one of the most plausible
ones.

Some people might question about the significance of
these results of labeling to the total Image Understanding
process. First, they tell which surfaces are related to which
surfaces. For example, a simple algorithm can show that the
labeling of Figure 8(a) means that the surface orientations
of S1, S2, S3, and S4 should have the relations in the
gradient space as shown in Figure 9(a). The gradient space
is in short a parameter space of plane surfaces and a point
in it represents the orientation of the plane relative to the
viewer. If we assume that the lines L4, L5, L6 and L7 are
parallel in the picture, the gradients (surface orientations) of
S1 through S4 should be on a line and the ordering relations
between the surfaces connected by arcs should exist as
shown. Therefore the effect of partially knowing or
hypothesizing about the surface orientations has been
explicitly represented in the diagram. For example, a
hypothesis that the surface S1 and S3 are parallel (i.e.
gradient points of these two overlap) results in the ordering
between S2 and S4 as shown in Figure 9(b).
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(a) (b)

Some Plausible 3-D Configurations of Figure 1.
(See text about the given constraints.)

Figure 8.

Second, the labelings are the cues to access the
models of concepts. Consider the "simplest” (thought not
so) task about the image of the above example; to know
that the object in the scene is generally called a "box". In
order to know that the object can be named a "box", it must
be known, at least partially, that the image can have the
box shape, which has been done in Figure 8(a). In fact, this
is the point emphasized in section Il by saying that the
process of going from image domain cues to scene domain
cues is the important task independent aspect.

VIL Conclusion

This paper presents a methodology of how the
structural, spectral, and geometrical information can be
integrated to obtain the 3-D configurations of the scene
from the image. One major claim is that the Origami world
provides useful constraints in integrating the above
information from real images, because it accepts a large
class of line drawings and still has enough structure. In fact
it corresponds the manner in which we interpret the region
segmented picture.

The complete theory of Origami World is presented
elsewhere [Kanade, 1978). The search program in Figure 7
with a simple set of constraints is working. This is a report
of work in progress, and we plan to apply the proposed
method to real images as well as investigating various kinds
of constraints extractable from images.
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(a) (b)

Gradient space representations of the relations
among surface orientations: (a) Relations
corresponding to Figure 8(a) (b) Relations after
hypothesizing that S1 and S3 are parallel.

Figure 9.
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ROAD TRACKING AND ANOMALY DETECTION IN AERIAL IMAGERY

Lynn H. Quam
SRI International
Menlo Park, California

ABSTRACT

This report describes a new procedure for
tracking road segments and finding potential
vehicles in imagery of approximately 1 to 3 feet
per pixel ground resolution. This work is part of
a larger effort by SRI International to construct
an image understanding system for monitoring roads
in aerial imagery.

INTRODUCTION

This report describes a new procedure for
tracking road segments and finding potential
vehicles in imagery of approximately 1 to 3 feet
per pixel ground resolution. This research is part
of a larger effort by SRI International to build a
"knowledge based road expert," described by Barrow
and Fischler elsewhere in these proceedings.

The overall effort is directed towards specific
problems that arise in processing aerial
photographs for such military applications as
cartography, intelligence, weapon guidance, and
targeting. A key concept is the use of a
generalized digital map data base to aid in the
interpretation of imagery.

OBJECTIVES

The primary objectives of the overall "road
expert system" are to analyze images to:

(a) Find road fragments in low- to
med ium-resolution images

(b) Track roads in medium- to high-
resolution images

(¢) Find anomalies on roads

(d) Interpret anomalies as vehicles,

shadows, signposts, surface
markings, etc.

The road tracking algorithm discussed here is
started with the position of the center and
direction of a road fragment found by part a). The
nominal road width is supplied either from the data
base or by an image analysis function that can
determine the width of a road fragment. The road
tracker produces two forms of output: a point list
describing the track of the road center and a
binary image of all points in the road that are
anomalous and might belong to vehicles. 1In the

complete road-expert system, this image will then
be analyzed by part d) to screen false alarms and
interpret the remaining anomalies.

ALGORITHM DESCRIPTION

Figure 1a shows a representative road scene
containing segments of a multilane freeway, with a
few vehicles and road surface markings (painted
arrows and words in the leftmost lane). The wear
patterns in the lanes correspond linearly with the
road. The vehicles and other anomalies stand out
as being quite different from the pattern of the
road.

The basic road-tracking algorithm exploits the
above observations. Successive road intensity
cross-sections (RCS) taken perpendicular to the
direction of the road showed a high degree of
correlation, which suggested that road tracking
could be accomplished by using cross-correlation.
The location of the correlation peak was used to
maintain alignment with the road center and to
generate a model for the road trajectory. However,
this approach turned out to be unsatisfactory
because small alignment errors accumulated and
anomalies perturbed the correlation peak.

To overcome these problems, four refinements
were introduced:

(a) Cumulative road cross-section
model

(b) Trajectory extrapolation

(c¢) Anomaly detection

(d) Masked correlation.

Instead of aligning consecutive RCSs, each RCS
is aligned with a cumulative RCS model, based on an
exponentially weighted history of previously
aligned RCSs. Parabolic extrapolation of past
correlation peaks is used to predict the future
road trajectory. The predicted trajectory is used
to guide the tracker past areas where the
correlation peak is unsatisfactory. Anomalies are
detected by comparing the aligned RCS with the RCS
model. Corresponding pixels that significantly
disagree are marked as potential anomalies. The
cross-correlation is then repeated, masking out the
anomalous pixels to obtain a more accurate
alignment.

Steps for the refined tracking algorithm are
given below:




(1) Based on past road center points
and directions, extrapolate the
position of the road center K feet
ahead.

(2) Extract the road cross section
(RCS) intensities along a line
perpendicular to the direction of
the road at the extrapolated
center point.

(3) Use cross-correlation to find
displacement of the current RCS
with respect to a model (RCS
model) that is dynamically
constructed by the road tracker.

(4) Generate a mask indicating the
positions of anomalous pixels that
deviate from the RCS model.

(5) Recorrelate over the unmasked
pixels.

(6) Update the RCS model using only
the valid points of the current
RCS at the best alignment. Update
is done using an exponentially
decaying average.

(7) Adjust the position of the road
center according to the location
of the correlation peak.

(8) Detect anomalies as being
significant deviations from the
RCS model.

(9) Repeat steps 1-8 until the edge of
the image is encountered or the
RCS model becomes invalid.

EXPERIMENTAL RESULTS

In the experiments shown here, the road tracker
was interactively started by indicating the
following information for each road segment:

<X0,Y0> center of road lane
theta0 direction of road at <XO0,Y0>
w nominal width of road

The freeway example in Figure 1 conforms well
to the above model, as shown by the overlay results
in Figure 1b. The bright lines indicate the road
trajectory and the bright blobs indicate potential
anomalies.

The simplistic model that a road consists of
well-correlated intensity cross-sections clearly
breaks down in the example shown in Figure 2a,
where the road surface changes from concrete to
asphalt on the overpass. Certainly the RCS model
generated for the asphalt will not match the
intensities in this globally changed road surface.

When the tracker encounters the surface change a
high percentage of the pixels in the RCS will be

anomalous (Figure 2b). When this occurs, the
tracker extrapolates ahead and tries to reacquire
the road. If the road is not reacquired within the
length of the longest expected anocmaly, the tracker
then assumes that a pavement transition has
occurred and establishes a new RCS model.

Most of the anomalies marked in Figure 2b are
due to road surface changes. All four vehicles
were found also. A later section will discuss
basic changes to the control structure of the
current program to eliminate the false alarms
occurring from the surface changes.

Figures 3a and 3b show results for a freeway
interchange on-ramp loop. This example is
interesting since the road curves rather tightly,
and the road surface changes at approximately the
same place where the road trajectory changes from a
circular arc to a straight line.

Figures 4a and 4b show a very complicated
example of road forks, changes in lane width, and
intersections. For the lanes tracked, all vehicles
and at least portions of the road surface marks
(arrows and words) were found. In a developed road
expert system, the data base should help
significantly in handling the complexities of this
image by knowing the locations of forks,
intersections, lane-width changes, etc. This
information will help in interpreting the cause of
RCS model changes.

In marked contrast with the situation in most of
the previous figures, figure 5a shows a rather
poorly defined dirt road with little evidence of
wear patterns. Figure 5b shows the successful
results of the rcad tracker. Most of the anomalies
marked were due to shadows cast by sparsely
foliated trees.

DISCUSSION

The preceding examples demonstrate the
capabilities and limitations of the present
tracking algorithm. The algorithm has shown
surprising ability to contend with a wide variety
of road situations, including total change in the
road surface. The use of masked cross-correlation
techniques eliminates the potential perturbances to
the road track by anomalies. Trajectory
extrapolation enables the tracker to reacquire the
road after detecting that the road surface has
changed. All results were obtained using the same
program and the same detection and threshold
criteria; no attempt was made to "fine-tune" the
parameters individually for each example.

One defect of the present algorithm is the
attempt to do too much in one pass along the road.
In particular, in the present system, anomaly
marking begins before road-surface changes have
been detected. The false alarms created by this
defect can be eliminated either by backtracking
when a road transition is found, or by performing
the detailed anomaly detection as a second pass
along the road, using the road-course and surface-
change knowledge produced by the tracker.
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The road tracker presently operates as an
independent module. As a component of a larger
road-expert system, it will be started from the
output of a map-guided road-detection algorithm
operating on lower-resolution imagery. Data-base
knowledge can also be used in the tracking
algorithm to increase reliability and reduce false
alarms in anomaly detection. Such knowledge might
consist of previous imagery of the same area or
geometric knowledge about locations of road forks,
intersections, overpasses, surface changes, lane-
width changes, etc. To exploit such knowledge, it
is necessary to establish geometric correspondence
between the image and the data base coordinate
system. If, for example, a road anomaly
corresponds to a known surface marking on the map
or appears in the same place in previous images,
then it is probably a surface marking rather than a
vehicle. Similarly, the use of an illumination
model can help to distinguish objects casting
shadows from surface markings.

We plan to acquire and digitize images taken
under diverse viewing conditions such as partial
cloud coverage, snow cover, oblique viewing angles,
and seasonal variations. This will introduce a new
set of problems for the tracking algorithm such as
non visibility of road segments due to clouds or
occluding objects and major photometric differences
between images of the same area. The use of a map
data base and sources of knowledge will be
essential to guide the interpretation of such
images.

With the planned enhancements and improvements,
it should be possible to detect potential vehicles
with very high hit rates and low false alarm rates
in difficult imagery. This capability is a central
component of an overall road-monitoring system.
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DESTRIPING SATELLITE IMAGES

B. K. P. Horn and R. J. Woodham

Artificial Intelligence Laboratory, Massachusetts Institute of Technology,
545 Technology Square, Cambridge, Massachusetts 02139

Abstract. Before satellite images obtained with
multiple image sensors can be used in image analy-
sis, corrections must be introduced for the dif-
ferences in transfer functions of these sensors.
Methods are here presented for obtaining the re-
quired information directly from the statistics
of the sensor outputs. The assumption is made
that the probability distribution of the scene
radiance seen by each image sensor is the same.
Successful destriping of LANDSAT images is demon-
strated.

1. Destriping of images obtained using multiple
sensors.

An image sensing device using a single photo-
electric sensor which is mechanically scanned
across the scene produces outstanding digitized
images since sensitivity, resolution and transfer
functions are the same for all points in the image.
Unfortunately, such a device is limited in speed
by the mechanical movement. More importantly, it
is Timited in speed by the fact that an accurate
measurement of scene radiance requires the collec-
tion of an adequate number of photons. This ex~
plains the preponderance of linear arrays of sen-
sors and area sensors such as vidicons which are
otherwise deficient because of geometric distor-
tions, non-uniform response, non-uniformresolution,
and so on.

A compromise can be struck, where a small set
of sensors is mechanically scanned to collect the
image. In the system used aboard LANDSAT, for ex-
ample, each spectral band is scanned using six
sensors at the same time. Thus, six lines of the
image are produced during a single sweep of the
mirror. On the next sweep, the satellite has ad-
vanced its orbit by an amount which allows the
same set of sensors to pick up the next six lines
of the image.

Unfortunately, the sensors do not have identi-
cal transfer functions. As a result, images pro-
duced in this fashion show undesirable, regular
"striping". This effect can be removed if the
transfer functions are accurately known, since one
could then compute scene radiance from the sensor
output using the inverses of these transfer func-
tions. The sensors used in the older equipment in
particular have time-varying behavior. Photomulti-
pliers, for example, show a drift in both gain and

offset (dark current) due to small changes in the
material of the dynodes used in the electron multi-
plier stages and temperature variations.

If a reference object containing all scene
radiances of interest were in the scene, one could"
recalibrate the sensors continuously. This isdiff-
icult to arrange. An alternative is the scanning
of a gray wedge placed over a light source at the
end of every scan line. This, in fact, is what is
done aboard LANDSAT. The results are used to esti-
mate the gains and offsets of the sensors. Thedigi-
tal data produced from the raw satellite signals
is corrected using this information.

Unfortunately, one finds that the striping ef-
fect is not removed in this fashion; the reasons
for this are not entirely clear. One cause appears
to be the use of the calibration data as a means of
adjusting gain and offset so that each sensor is re-
lated to its preflight condition. Slight changes
in the 1ight source, the gray wedge and the geomet-
ry of imaging introduce drifts which are not com-
pensated for. Another reason is related to the
fact that photomultipliers are somewhat nonlinear
and have a response which depends on their expos-
ure history. Modern devices using solid state
photodiodes do not suffer from these problems.

The methods explored here for destriping images
are based on the assumption that each sensor is ex-
posed to scene radiances with approximately the same
probability distribution. The sensor values can
then be modified so that each one is related in the
same way to the actual scene radiance. The inform-
ation required to perform this modification is ex-
tracted from statistics of the observed sensor out-
puts.

2. A simple method for linear transducers.

If the image sensors are linear and time in-
variant, a simple method can be used to reduce
striping. The sensor output, x', can be written as
a function of the scene radiance, x, as follows:

x'=f(x)=a+b.x
Each sensor has its own, fixed values of offset, a,
and gain, b. If these are known, the scene radiance

can be calculated using the inverse of the transfer
function,

x =g(x') = (x' - a)/b

#




If this is done for each sensor in turn, striping
effects will be removed.

The required constants for each sensor can be
determined if a calibration object containing two
or more known scene radiance values is available in
the scanned scene. If such a calibration object is
not available one can estimate the (relative) values
of gain and offset using simple statistics of ob-
served sensor values. Each sensor sees a subimage
consisting of every nth line (when n sensors are
used). The complete image is formed by interlacing
these subimages. It seems reasonable to suppose
that, for a large enough image, each subimage has
approximately the same probability distribution of
scene radiance values. One would not expect a
particular subimage to contain many more values in
a particular range of scene radiance than another
subimage.

If this assumption is correct, then the gain
and offset constants can be estimated from the mean
and standard deviation of the measured sensor out-
put values. If the mean of the scene radiance is
p and the standard deviation is o, then the mean of
the sensor output will be u' = a + b u and the
standard deviation of the sensor output ¢' = b o.
Then,

a'/o
and

a=(u'o-ud')lo

Clearly, it is not reasonable to assume that one
can find the absolute values of the mean and stan-
dard deviation of the actual scene radiance. For-
tunately, for destriping purposes only relative
values are important. That is, one can use the
mean and standard deviation of the sensor outputs
for the whole image in place of the mean and stan-
dard deviation of the scene radiance. Naturally,
now the results will not be scene radiance values.
The striping however will be removed since each
subimage now has the same mean and standard devia-
tion, and, if the assumption introduced earlier
applies, the same linear relationship to scene
radiance.

Note that one can relax the assumption about
the relationship of the subimages. Here it is not
necessary that they have the same probability dis-
tribution of scene radiance, only that their means
and standard deviations be the same.

3. Shortcomings of the simple method.

We have found this method to be only partially
successful in destriping LANDSAT images. One rea-
son for this may be that out of a range of 128 pos-
sible sensor outputs a range of only around 30 val-
ues correspond to normal scene radiance values.

Low values are not found in short wavelength bands
because of 1ight scatter in the air. Conversely,
large values correspond to cloud, snow and ice, and
scene radiance values of such areas often exceed
the highest available sensor output values and so
result in clippin This nonlinear effect will
skew the ca|cuiatson of means and standard devia-
tions. (Low value clipping also occurs because of
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NASA's destriping and possible other reasons.)

One may eliminate such areas by removing sensor
values above a certain level from consideration.
Slightly better results are obtained in this fash-
ion. Naturally the arbitrarily selected threshold
will tend to introduce inaccuracies of its own.

One way around this problem is to eliminate the
same fraction of high values from the output of
each sensor. The fraction to be removed can be
estimated by guessing the fraction of the image
which is covered with cloud, snow or ice. This is
certainly better than using a fixed threshold di-
rectly on the sensor outputs.

Even with this refinement, results are not en-
tirely satisfactory. Superficially, it appears that
different gains and offsets are appropriate for
different scene radiance ranges. That is, the sen-
sor transfer curves are somewhat nonlinear. We
thus devised a method which deals with this problem
directly.

4. Preliminary considerations.

Consider a random variable X with probability
density function p(x). The function p(x) is non-
negative and satisfies

/a,p(x) dx = 1

-00

The probability density function p(x) can be esti-
mated from a large number N of observations of the
random variable X. If n of these measurements fall
in the interval [x, x + 6x], then n/N tends to
p(x) 6x as N becomes very large and éx small (in
a fashion which allows N 6x, and thus n, to become
large also).

The cumulative probability density function
P(x) is defined as

P = [ p(t) at

This function is monotonically non-decreasing since
p(x) is non-negative. P(x) represents the proba-
bility that the random variable X takes on a value
less than or equal to x.

Now consider observing the random variable X
by means of a transducer with transfer function
f(x). Its output can be thought of as a new random
variable X', say, with a probability density func-
tion p'(x'). This function is related to the prob-
ability density function p(x) of the original ran-
dom variable X, in a fashion which depends on the
transfer function x' = f(x). It is easiest to de-
velop this relationship in terms of the cumulative

distribution functions P(x) and P'(x') where

Prie) = [ (e at

If x' lies in a range R' when x lies in the
range R, then clearly,




/ p'(x') dx' = [ p(x) dx
R' R

Now assume that f(x) is monotonically non-decreas-
ing. Then the range x < xo is mapped into the
range x' < f(xq)

P'[f(x)] = P(x)

As a result one can determine the transfer function
f(x) if the cumulative probability density functions
P(x) and P'(x) are known and if the latter has an
inverse. Then,

f(x) = (P)7! P(x)

If P' is monotonically increasing, the required in-
verse will exist. Difficulties will be encountered
only when P'(x) is constant over a certain range.
That is, if P'(x') = ¢ [and hence p'(x') = 0] for
x"¢e[xy, x3]. Then, if P(x) = c, one can say only
that £(x) & [x}, x3].

There are two possible cause. of this problem.
First it may be that f(x) actually has a discontin-
uity. In this case, one correctly finds a jump from
x; to x; in the solution. The other possibility iz
more serious. If p'(x') = 0 because p(x) = 0 [where
x' = f(x) as before], then the transfer function
f(x) cannot be found in the specified range because
in essence no inputs are available to test it in
this range. The information to recover f(x) there
is thus not available.

Note, however that if the inputs to the trans-
ducer are in far  characterized by the given proba-
biiity density function, then our lack of knowledge
of the transfer function in the specified range is
of no consequence since there are no inputs falling
in this range anyway.

To calculate scene radiance from sensor values,
we actually need the inverse g(x') of the transfer
function. This can be found just as easily. If,

PH(x') = P [g(x)]
Then,
g(x') = p™! p'(x")

The same considerations regarding the existence of
the inverse p " apply here as those discussed re-
garding the existence of the inverse (P')"1l. All
these special case problems are avoided if the
cumulative probability distribution functions are
monotonically increasing.

The method shown here for finding the transfer
function of a transducer (or its inverse) is based
on the same analysis as that used to design a gen-
erator of pseudo-random numbers with a desired
probability distribution function p'(x) when a
generator is available which produces pseudo-random
numbers with known probability distribution func-
tion p(x).

5. Transducer with discrete output values.

Essentially the same method may be used if the
transducer produces discrete outputs. Consider,
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for example, a case where the input range can be

broken up into a number of intervals such that
f(x) =i if x e [xi, s . ])

The probability density function of the output of

the transducer is then discrete and,

el e

p(x) dx

Tim
pi T ey

Clearly, p% 2 0 and

The cumulative probability density function can be
defined as follows,

If f(x) is monotonically non-decreasing, then the
same argument applied in the continuous case, leads
again to

Pt [f(x)] = P(x)

If P' can be inverted, the transfer function can be
found using

f(x) = (P')7' P(x)

The only difference is that here f(x) is a function
from a continuous range to a discrete domain.
Naturally, when one finds the inverse of the trans-
fer function, g(x'), using these methods, one has
to accept the fact that the actual value of x can-
not be recavered, only a range [xi, X 4 ]).

6. Estimation from a finite number of samples.

To apply this method to determine the trans-
fer function of a real transducer, the cumulative
probability density functions must be determined
from a model of the underlying process generating
the random variables or estimated from frequencies
of observed occurrence using a finite number of
samples. In the latter case an uncertainty (i.e.,
sample deviation) will be found in the estimation
of the probabilities which will be inversely pro-
portional to the square root of the number of
samples falling in a particular interval.

Clearly, then, the transfer function can be
estimated with limited accuracy. Accuracy will be
least for ranges which happen to contain fewest
samples. Thus the largest errors in determining
f(x) will tend to occur where p(x) is small. In
fact, as we have seen before when p(x) becomes
zero over a range of values of x, then f(x) cannot
be determined uniquely for this range.

The largest errors in pinning down g(x') will
occur where p'(x') is small.
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7. Application to satellite images.

To use this method of determining arbitrary
monotonic non-decreasing sensor transfer functions
to satellite images obtained using multiple sensors,
one has to make the assumption that the subimages
have similar statistical properties. This seems
reasonable, at least if the whole image is large
enough. - One also has to assume that the sensor
transfer functions are constant at least for the
time taken to scan one scene.

The probability distribution function of the
actual scene radiance is not available and so only
relative adjustments can be made. That is, instead
of this function, one uses the probability distri-
bution function of the sensor outputs for the whole
image as a reference. The result will be that each
processed subimage has the same probability distri-
bution function. If the assumption that all sensors
are exposed to the same distribution of scene ra-
diance holds, then this implies that the same mono-
tonic non-decreasing functional relationship holds
between scene radiances and image values. That is,
striping will have been removed.

8. Details of the algorithms.

The first step is the determination of a cumu-
lative histogram of sensor values for the whole
image as a reference. Let there be H(x) occurrences
of sensor outputs less than or equal to x out of a
total of N values. Now for the subimage produced
by sensor i, one calculates a similar cumulative
histogram. Let Hj(x') be the number of sensor out-
puts less than or equal to x', produced by sensor

i, out of a total of N; values. Here,
n
N= 3> N,
=18

where n is the number of sensors.

A lookup table g(x') is now constructed by ap-
plying the inverse of the function H(x) to Hi(x').
This lookup table is then used to modify all the
sensor values produced by sensor i. The inverse
can be calculated relatively easily since H(x) is
a monotonically non-decreasing function. The look-
up table value g(x') is the smallest number x such
that

N, H(x) 2 N Hi(x')

This process is repeated for each sensor in turn,
until all image values have been modified by the
lookup table appropriate to the sensor with which
they were measured.

9. Results and Conclusion.

This method has been applied to part of a
LANDSAT image extracted from CCT (Computer Compati-
ble Tape). Some of the bands showed rather heavy
striping. In figure 1, for example, is shown Band
6 (.7 to .8y in the near infrared). Applying the
method described here considerably reduces the reg-
ular striping. The overall effect is that each
subimage is related in the same way to the underly-

ing scene radiance. At the same time, the overall
distributions of tones is not disturbed. The re-
sult is shown in figure 2. Some localized striping
is still apparent, but the regular pattern has been
removed.

It is instructive to inspect the inverse trans-
fer function for each sensor. These are shown as
six subfigures of figure 3. The short horizontal
sections in the transfer function correspond to
sensor values which do not occur because of a par-
ticular data compression algorithm used on LANDSAT.
It will be apparent from inspection of these in-
verse transfer functions that the sensors are some-
what nonlinear. This explains why the simple de-
striping technique described earlier fails.

One channel (band 7) on LANDSAT is equipped
with silicon photodiodes instead of photomultipli-
ers. Striping is apparent in data of this band
(.8u to 1.1u) as well, as shown in figure 4, and
can be removed by the technique presented here as
shown in figure 5. The differences in transfer
function in this case however appear to be simple
gain differences as shown by the six subfigures of
figure 6. So for this band the simple destriping
method which assumes linear transfer functions
works equally well.
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LOCAL CONTEXT IN MATCHING EDGES FOR STEREO VISION

R. David Arnold

Computer Science Department
Stanford University
Stanford, California 94305

ABSTRACT

This paper describes a stereo vision system based on edge
matching. Depth maps of edges have been obtained with
sequences of aerial photographs of aircraft, buildings and cars,
allowing accurate measurement of heights, dimensions, and
angles of surfaces of ob jects. The edge-based approach enables
accurate determination of boundaries of ob jects, is effective with
thin ob jects such as poles, and offers advantages in speed. Total
computation time was 90 seconds with 128 x 128 images, with
no effort at optimization.

INTRODUCTION

Sterea vision has long been important in photo
interpretation and mapping and has potential applications in
guidance. This research seeks mechanisms to automate stereo
vision to interpret stereo images and provide three dimensional
measurements of ob jects from those images. The ob jective is to
demonstrate these capabilities in potentially practical
implementations. The method should be fast, accurate, make full
use of the resolution of images, and be able to handle a wide
variety of data from either stereo or motion parallax.

The system matches corresponding features in pairs of
images, rather than matching small corresponding areas by cross
correlation. The features are edge elements (edgels) produced by
the Hueckel edge operator. This approach offers advantages in
speed and accuracy and avoids some fundamental problems of
area correlation.

In an edge-based system, computation effort can be
concentrated on the edges and depth information about planar
surfaces inferred from boundaries. If high speed, specialized
processors are used for edge operators (1], overall computation
can be cut significantly. The proportions and size measurements
of the boundaries are also useful for subsequent identification.

Typically, edge-based techniques offer a factor of 10
improvement in accuracy over correlation methods. In
correlation, accuracy near a boundary is limited to a fraction of
the width of the correlation window (typically 8x8). The
Hueckel edge operator, however, provides measurements to a
fraction of a pixel, even for weak or noisy edges. Edge-based
systems also have an advantage with small objects. Poles and
other long, thin ob jects are prominent features, but are too small
for correlation windows.

A serious deficiency of area correlation is failure at

surface discontinuities. Simple area correlation techniques
inherently fail in the vicinity of surface discontinuities because
the edge of an object appears against a different background
area in each view of the stereo pair. It is important to locate
surface discontinuities, since it is precisely the boundaries of
objects where accurate measurements are most important.
However, edge operators are ineffective in the presence of
texture and smooth shading. In those cases, edge-based
techniques encounter problems, while correlation is effective.
Thus, edge-based and area-correlation approaches are
complementary.

In any stereo system, ambiguity is a major problem. Edges
in one view may match with multiple edges in the other view.
For example, in the parking lot scenes, edges of cars, pavement
markings and shadow edges are all parallel and are easily
confused. There are few techniques that can reduce such
ambiguity when matching individual edgels. Direction,
brightness and contrast measurements extracted by the edge
operator can guide the matching , but are not strong conditions.

However, ambiguity can often be eliminated by
considering a local context which is larger than a single edgel. If
a scene edge has continuity in three dimensions, then we expect
ad jacent, matching edgels along that edge to be continuous in
both direction and disparity. Furthermore, intensities and colors
on one or the other side of the edge should be consistent. Edge
continuity and consistency are strong conditions that
significantly affect ambiguity.

The context of the ground surface is also important in
this matching process. Techniques of Moravec [2] and Gennery
(3] are used for automatic determination of the camera model
parameters and ground surface equation directly from the
pictures. The knowledge of tne camera model imposes the strong
limitation of matching features in only one dimension. A priori
constraints may be used during matching to limit the disparity
range to that of ob jects above the ground within a reasonable
height.

IMPLEMENTATION

The data are 512 x 512, 8 bit image pairs digitized from
a small (3 cm square) region on each of two 9x9 inch black and
white aerial photograph negatives. Sub jects include commercial
aircraft at a terminal in San Francisco airport (see Fig. 1), cars
in a parking lot, and an apartment building complex, To date,
most work has been on 128x 128 images, either averaged 4:1 or
selected as a window from the larger pictures. This has allowed
smaller memory requirements and simpler debugging, but
memory management has been implemented to allow the




techniques to work on much larger images. Execution times
given below refer to the KL-10 processor at the Stanford
Artificial Intelligence Laboratory.

A camera model and ground plane are calculated from
the data in the images in a process which is entirely automated.
An Interest Operator [2] is applied to the left view to select
approximately 50 “interesting" points. A point is "interesting” if
it promises to be easily locatable in two dimensions (ie. corners
and intersections). A fast binary search correlator [2] produces
an initial match for each point, searching the entire right image
each time. These matches are refined with a high resolution
area correlator [3] and passed to a camera model solver [3].
This camera model program solves for four parameters:

1) direction of the stereo axis

2) relative rotation between left and right views
3) scale factor between left and right views

4) translation perpendicular to the stereo axis

(The usual camera solver determines 5 parameters. This form is
useful in the degenerate case in which scene heights are small
with respect to distance from the film plane) The relative
positions (disparities) of each matched pair along the stereo axis
provide information on heights relative to the film plane. At
this stage, about half the original 50 points have been
automatically rejected for various reasons, and we rely on the
remainder to be evenly distributed in the scene. The points and
their heights are given to a ground plane finder [3] which
attempts to fit a plane to a subset of them such that few points
are assigned heights below the plane, some may be above the
plane, and as many as possible lie on the plane. Total processing
for camera model and ground plane is about 8 seconds.(See Fig.
2)

The next step is to raster-scan an edge operator over the
two pictures to extract all usable edges. We use the Hueckel
operator, with an operator radius of 3.19 (32 pixels area). The
Hueckel operator produces several accurate measurements which
can be useful in discriminating matches, including a
measurement of angle that is more accurate than other
operators. Information retained for each edgel includes x-y
position, angle of edge, and brightness of minus and plus sides.
About 1200 edgels are produced from a 128x128 picture in
about 18 seconds. (See Fig. 3.) At this point, all information is
contained in the edge files, and the original images are set aside.
The edges from the left and right pictures are then ad justed
with the camera model and ground plane parameters, to a
standard coordinate system with the stereo axis in the X
direction and disparity shifts due to the tilt of the ground plane
cancelled. Thus all points lying on the ground plane will have
identical x-y coordinates in the two views.

We now proceed to match edges in the left (master) with
those in the right, and extract a local context for each edge in
the left. A grid of 8x8 cells is set up for the left and right
pictures, each cell being the head of a iinked list. Edge records
are read in and linked to an appropriate cell based on the x-y
coordinates of the edgel. For these pictures, the linked lists have
an average length of about 4. For each edgel in the left picture,
we want to find a list of possible matching edgels in the right
picture. The search is constrained to those edgels within a
narrow band, about 6 pixels wide in the y direction. The band
starts at the x coordinate of the left edgel (zero disparity) and
extends to the a priori disparity limit in the x direction. The
differences in brightness and angle are thresholded to determine
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whether to accept or reject a paotential match. If the match is
accepted, a disparity is calculated by projecting the right edgel
to the y coordinate of the left edgel. On the average, this search
produces 8 ambiguous matches for each edgel, that is, 8 edgels
that agree in position, angle and brightness. Most of these
ambiguous matches are actually multiple edgels from the same
scene edge, with slight deviations in disparity due to noise. From
this point on, no further information is obtained from the right
edge file.

For local context, we want a list of edgels in the left
picture that probably lie on the same physical edge of the
ob ject. Again, a scan runs through all edgels on the left, and a
search is made for each one, this time in the left grid. Two
edgels are linked if certain loose conditions are met:

1) x and y coordinates match within 3 pixels

2) their angles match within 90 degrees

3) the angle of a line connecting edgel centers lies
between the individual edgel angles

4) brightnesses are consistent on at least one side
of the edgels

Typically, this produces 3 or 4 links per edgel, and linked edgels
tend to follow edges of low to moderate curvature. (See Fig. 5.)
Time for the matching and linking is 33 seconds.

We now have for each edgel in the left picture a list of
possible disparities and a list of neighboring edgels which are
linked to it. The problem is to choose a disparity for each edgel
in such a way that disparities are consistent along linked edges.
We have implemented an ad hoc "voting" scheme whereby each
disparity on the edgel's list is a candidate, and only those
neighbors which are linked can vote. (See Fig. 6.) Let E be an
edgel and L an edgel linked to E. Let dL be a disparity on L's
disparity list and dE a disparity on E's disparity list. If dL and
dE are equal or nearly equal (within .125 pixel disparity) then
dE gets two votes. If dL and dE are close (within .375 pixel
disparity) then dE gets | vote. Otherwise, there are no votes.
This loose condition for voting compensates for quantization
error in the recording of disparities and allows multiple edgels
from a single edge to reinforce. After all the voting, a
bell-shaped distribution usually results about the best disparity,
with wild or inconsistent matches out on the tails of the curve.
The maximum of the distribution is taken as the disparity for
E. This processing takes 8 seconds. We can now output a file of
edgels with their three dimensional locations.

PROBLEMS

The method outlined above suffers from some serious
problems. It relies heavily on the edge operator. While the
Hueckel may be one of the best choices available, it is deficient
in several respects. First, it is susceptible to slow gradients,
finding a multitude of parallel edges that tend to match at every
possible disparity (see Fig. 4). Second, it is a least squares
process, and so is easily led astray by a few bad points. For
example, the direction returned for the edge becomes very
innaccurate as soon as a corner enters the operator window.
Finally, strong texture confuses most edge operators and could
prevent the operation of this system in many regions. Assuming
we can detect these conditions and avoid false matches, we are
still left with many places where boundaries will have gaps that
must be filled by other techniques.




Ambiguity is a fundamental problem that must be solved
by any stereo system. While many ambiguities can be resolved
within a given context, there will always remain some that
require still wider contexts. For example, a checkerboard
presents an ambiguity problem that cannot be solved until the
context includes the boundaries of the pattern. We are in the
process of designing several improvements, including a more
extensive surface context, and a relaxation network to extend
the use of context in a controlled way. It is possible to consider
the voting mechanism of the current implementation as the first
iteration of such a relaxation, with each successive iteration
extending the context and reducing the remaining ambiguity.

The type of scene is a crucial factor in evaluating the
performance of a stereo technique. In general, this system will
work well in scenes of man-made ob jects and poorly in natural
scenes. For area correiation, the situation is just the opposite.
The reason is that man-made ob jects (cars, buildings) tend to
have planar surfaces of uniform intensity and well defined
linear edges. Natural surfaces (clouds, trees, hills), on the other
hand, are often curved with strong texture and indistinct or
irregular boundaries. A general purpose vision system would
need to employ both types of techniques, perhaps even within a
single scene.

RESULTS

Results are illustrated in the photographs below (see Figs.
7-10). The technique seems fairly successful, and there is strong
reason to believe that with the additional context now being
designed very effective stereo modeling will result.
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Figure 1. A 128x128x8 bit image pair. The scene is San Francisco
Airport and the aircraft is an L-10Il.

Stereo axis: 3.71 degrees
Relative rotation: -1.86 degrees
Scale factor: . 988
Translation: 8.4]1 pixels

Ground plane: z =6.80 - .80925x -.0125y

Figure 2. Camera model and ground plane parameters for the
aircraft images.
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Figure 3. Results of the Hueckel edge operator. There are
approximately 1200 edgels from each view.
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Figure 4. An intensity profile from the left view of the aircraft. The
cut is taken along the stereo axis at y coordinate 73. Edgels that
intersect the cut are plotted as vertical lines, with their direction
indicated by the small line segments below. The cut is taken
through the right wing, just grazing the fuselage. Note the multiple
edgels on several of the edges.
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Figure 5. A plot of edgels from the left view of the aircraft images,
near the left stabilizer and its shadow. X and Y axes are in units of
pixels (octal), and dotted lines represent the links between edgels
used for local context.

Edge: 345; Disparities: 34,408,54,60;
Links: 333,365,484,412,334,362;
Edge: 365; Disparities: 48,44,46,65,76;
Links: 333,345,412;
Edge: 412; Disparities: 41,41,42,45,75;
Links: 345,365,454;
Edge: 454; Disparities: 42,42,42,46,50,64,112;
Links: 412;
Voting tally for 412:
Disp. 345 365 454 Total
41 I 1 I 11x
42 | ] e 8
45 I L 1e
75 I 2

Figure 6. A portion of the data structure produced by the matching
program, and a sample voting. The edgels are selected from those
in figure 5. (All numbers are in octal.)
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Figure 7. Results of the stereo system on the aircraft images. Edgels
are shown superimposed on the video of the left image. The plot on
the left shows all edgels whose disparities were determined to lie
between -1 and | (pixels) (edgels on the ground surface). On the
right is a plot of edgels between 2 and 3.5 pixels disparity (main
wings).

Figure 8. Edgels between 3.5 and 6 are plotted on the left (fuselage
and stabilizers), and between 6 and 9 on the right (boarding ramps).
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Figure 9. Results with parking lot scene. Disparity ranges of -] to |
and 3 to 12 include edges on the ground and on the cars,
respectively.

Figure 10. Results with building scene. Disparity ranges of -l to 2
and 6 to 17 separate the ground from the roof.




THE CORRESPONDENCE PROCESS IN MOTION PERCEPTION
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1. The correspondence problem

The visual perception.of motion requires the establishment of
correspondence between elements in the scene [Ullman 1977a). To
be seen in motion, a moving element has to be perceived first at
one location, then at another. The two images of the element, at
the two locations, have to be identified as representing the same
element in motion, and this identification is termed the
correspondence process. In this paper the correspondence
problem will be approached from a computational point of view,
asking how might motion correspondence be successfully
established.

The range of possible correspondence strategies is determined, to
a large degree, by the level at which the matching process is
carried out. That is to say, the correspondence strategies to be
considered depend on whether the correspondence is performed
by matching high-level constructs such as perceived objects
[Warren, 1977, Ullman, 1977b], or by matching low-level units,
such as primal sketch elements [Marr, 1976), or even individual
intensity points as suggested by Anstis [1970). The evidence in
Uliman [1977a) supports the view that motion correspondence is
established primarily between low-level units such as points,
blobs, edge-fragments, line segments, and certain groups thereof.
If this view is correct, the understanding of the correspondence
process between such elements should provide an adequate basis
for the theory of motion correspondence in general.

We shall start by addressing the correspondence problem in a
smplified version, in which two “frames” are presented in
weesssion resulting 1in “apparent” motion. We further assume
bt smeh (rame consts only of isolated points of equal intensitiy.
Wasquently we hall extend the analysis to other types of
ety and o conGINUOUS Motion
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2. The Optimal (independent) correspondence strategy
Given the two frames, the problem we face is how to establish a
correspondence between their elements. Assuming there are n
elements in each frame, there are n! different one-to-one
mappings between them. Hence we face an ambiguity problem
common to various aspects of visual analysis (e.g., the stereo
match problem [Marr and Poggio, 1976], the analysis of
occluding contours, [Marr 1977), the interpretation of structure
from motion, [Ullman 1977a)). Namely, that the visual input
admits more than a single interpretation. In the face of such an
ambiguity no method is guaranteed to always yield the correct
interpretation. However, if the structure of the task domain
renders some interpretations more likely than others, it becomes
possible to select the most likely solution, thus maximizing the
probability of interpreting the input correctly. We shall
therefore look for a correspondence scheme that will maximize
the probability of yielding a correct interpretation.

The selection of the most plausible correspondence requires the
utilization of information concerning the plausibility of different
matches. Such additional information can belong to one of two
categories: general or particular. In using particular
information, one brings to bear knowledge applicable to a
specific situation, e.g. assuming that the black blob on the desk
in one’s office is a telephone. Examples of general knowledge
are the rigidity constraint in the interpretation of structure from
motion, [Ullman, 1977a) which is based on properties of rigid
objects in general, or the two constraints governing the stereo
match [Marr and Poggio, 1976). If motion correspondence is
established at a low level, then information of the general kind
should be applied. In the following section properties of moving
elements in general will be used to guide the matching problem.

The independence hypothesis
The selection of the most likely correspondence requires a way of
comparing the likelihood of different possible matches. To
determine the likelihood of a match, one needs to know what
dependencies are assumed to hold between the motions of
individual elements. For example: if X and ) are neighboring
points and X moves to the right, is ¥ more likely to move to the
right than to the left? Since our prime objective is the
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investigation of human motion perception, we want our
underlying assumptions to be consistent with the correspondence
process as carried out by the human visual system. When the
human correspondence process is examined using simple displays
containing a small numkter of elements [Uliman, 1977a), no such
biases are apparent.

Consider, for example, the configuration in Figure | where
points X1 and X2 are presented in apparent motion with V1, V2
and Y 3. (In all the figures unfilled circles will denote the first
presentation and filled circles the second. A filled circle inside
an unfilled one means that this element participated in both the
first and the second frame.) If only X1, VY1 and Y2 are presented,
X1 moves to the right or to the left with equal probabilities. It
will usually split and move in both directions at once. When X2
and V7 are presented as well, X2 is seen to move to the right
and match ¥ 3. Will this motion increase the likelihood of seeing
X1 as moving to the right to match ¥2? The answer is that
(provided that fixation is maintained at the center) no such
preference is apparent.

We will generalizing from this observation and additional
evidence from [Ullman, 1977b), and accept the hypothesis that the
elements are treated as moving independently of each other.
Given this independence hypothesis, we shall next turn to
develop the optimal correspondence strategy. It will subsequently
be shown that the emerging method remains optimal under
conditions which violate the independence hypothesis, and that
the incorporation of dependencies between directions would be
redundant,

The maximum likelihood correspondence
Suppose that n elements are moving in space independently of
each other, at various speeds, and in different directions. Two
"snapshots” of the moving elements are taken, and a match is to
be established between the “input elements” in the first image
and the “output elements” is the second. Let p(v) denote the
probability density of the velocity distribution of the elements.
That is to say, if a moving element is selected at random, the
probability that its velocity v lies between values a and b is:
1% o) dv.

Assuming spatial isotropy (i.e, that the elements have equal
probabilities of moving in any direction in space), then the most
likely match is determined by the function p(v) in the following
way. Let d denote the distance (in the image plane) covered by a
given element during some time interval t. If no depth
information is used at this stage, we can only conclude that the
average velocity of the element in space was at least v, = d/t.
(This expression holds for parallel projection. The change
required for perspective projection is insignificant.) If the
element moved parallel to the picture plane, its velocity must
have equalled v , otherwise it was higher than Yy The
probability of an element covering a distance d in time interval t
Jis therfore given by its probability of traveling at a speed v or

higher, which is given by the "tail integral” p(v):
M plv}= { “ p(v)dv
0

Given the independence hypothesis, the probability of having a
collection of n elements, with the i'" element (1 < i <n) covering a
distance d  in time interval t is given by the product:

(2) Il p(v)) v,=dt
The most likely match will therefore be found by maximizing (2)
over all the legal matches (the one-to-one mappings in this case).
In what follows it will be convenient to transform the product in
(2) into a sum. Since the Logarithmic function is monotonic, and
since all the p(v ) are positive, the most likely match can
equivalently be found by:

(3 minZgq(v)
where the minimum is taken over al. the legal matches, and q(v)
= -log p(v). Since 0 < p(v) <1, q(v) is a non-negative function. If
q(v) is thought of as a “cost” function, then the optimal mapping
minimizes the cost over all the legal matches.

Mappings which are not one-to-one

If the number of input and output elements is not equal the
mapping between them cannot be one-to-one. The simplest
example of this situation is depicted in figure 2 where A is
presented in apparent motion with both Bl and B2. The
one-to-one condition has to be violated in this case, and this can
happen in one of two ways. Either 4 is mapped with a single
element, leaving the other without a "partner”, or 4 can split and
match both B/ and B2 (Or, if Bl and B2 precede 4, the two
elements might both match 4, a situation we shall call “fusion")
Perceptually, the latter possibility is preferred (unless one of the
distances is much larger then the other, [Ullman, 1977a)).

We shall therefore assume that legal matches are required to be
covers. A cover is defined as a match in which every input
element is paired with at least one output element, and every
output element is paired with at least one input element. How
should the optimal match be determined in these non one-to-one
cases? The independence hypothesis as formulated above does
not apply directly to situations in which elements split and fuse.
For the sake of simplicity, we shall extend the independence
hypothesis to include covers as well. Some further modifications
of the optimal mapping will be introduced after a method for
computing optimal matches has been presented. For the present.
the optimal match will be determined, as before, by minimizing
Z q(v,) over all the legal matches. The only change is that the
set of legal matches is extended to include all covers. In graph
theoretical terms the optimal match defined in this way is called
the "minimum weighted cover of a bipartite graph™. (In a
bipartite graph the set of vertices V « V uV,, V aV, = 0, and
each arc connects a vertex in V, to a vertex in V) However, for
brevity's sake, we shall refer to the match determined by minZ
q(v ) as the "mZ mapping".

We next turn to examine the constraints from "below”, namely
computational problems associated with determining the optimal
match.

T,



3. Computational feasibility

The mZ solution is obviously computable. For instance, by
enumeration: the sum Z q(v ) can be computed for all the legal
matches, and then a minimum can be selected. However, due to
its inefficiency, such an algorithm would be unreasonable. Is
there a feasible method of computing the mZ mapping? The
feasibility of a computation depends, to a large extent, on
properties of the processor which carries it out, and therefore the
question cannot be settled without making some assumption
about the way the computation is carried out. Without
committing ourselves to a particular model, we shall make three
general assumption about the way the correspondence process is
carried out by the human visual system. We shall then
investigate whether the computation of the mZ method is
feasible given these assumptions. The three assumptions are
parallelism, simplicity, and locality.

Parallelism: Since the correspondence process operates on
low-level elements and since there might be a large number of
those in a given image, the pairing of corresponding elements is
probably carried out to a large extent in parallel.

Locality: 1f the number of "processors” is large, it becomes
unfeasible to connect each one of them to all the others. It will
threfore be assumed that there are only local connection between
the processors, e.g., each processor is connected only to its k
nearest neighboring processors. The number k will be called the
"radius of the computation”.

Simplicity: If there is a large number of processors, it seems
reasonable to assume that each of the individual processors is a
rather simple computing device. We shall not attempt here to
define simplicity precisely, but will only assume that the
processors have no memory.

We shall combine the above assumptions in the notion of a
network of simple processors. All the processors are identical, and
each one is connected to k of its neighbors. In the
correspondence computation, each processor is "assigned” to an
element in the image, and its task is to find a match for this
element.

We have listed some theoretical reasons for assuming that
motion correspondence is carried out by a simple, local process.
A further reason for considering such a computation is that the
analysis in [Ullman, 1977a) supports the view that the
correspondence process used by the human visual system is
indeed simple and local.

General issues such as computability, efficiency and locality in
simple networks of this kind are yet little understood. However,
rather then addressing them directly, we shall restrict our
discussion to their relation to the correspondence process. Since
the mZ method had been advanced as an optimal matching
strategy, and simple networks as a plausible computational
model, the main problem addressed in this section is: can the mZ
method be computed by a simple network? (It should be noted that
such simple networks are not, in general, equivalent to a
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universal computing machine.)

The prospects of performing the mZ computation with a simple
network might seem dubious due to the discrete, combinatorial
character of the problem. However, we shall see that the
computation can be carried out if the problem is changed
somewhat. Instead of the set of all covers we consider a subset of
local covers. For each element there are N neighbors which are
the initial candidates for a legal match. A legal match is one
where each element is paired with (at least) one of its initial
candidates. Of these legal matches, the one that minimizes
Zq(v ) is sought. We shall verify in the following section that in
this formulation the optimal match is computable by a simple
local process. We shall also determine the radius of the
computation, that is, to how many neighbors must each processor
connect to make the mZ computation possible. As it turns out, it
is sufficient that each processor be connected only to its initial
candidates (ie., r = N).

4. Computing mZ by a simple, local, network.
In this section we shall present a method by which a simple
network can compute the most likely match. The development
involves two stages:
I. Reformulating the computation of mZ as a Linear
Programming (LP) problem. A theorem from Integer
Programming (IP) ensures the equivalence of the original
problem and the LP formulation.
2. Employing a method devised by Arrow et al [Arrow,
Hurwicz & Uzawa; 1958) to solve the resulting LP problem
by a simple, local, process.

Reformulating mZ as a LP problem.

Linear Programming (LP) is the study of optimizing linear
functions subject to linear constraints. In vector notation, an LP
problem is:

(4) Minimize cix

Subject to: Ax2b

x20
Where A = (au) is an n:m matrix, X and ¢ are n-dimensional
vectors, and b an m-dimensional vector. In a more explicit form,
find a vector x = (x‘. L x“) that will minimize 7'2 ¢ x, subject

to m constraints on the x 's. The j*" constraint is: Ta , x, 2 b,
k

and x 20fori=I. .n

To recast the mZ problem in terms of LP we shall introduce the
variables x 1 <i < n (if there are n input elements) | < j < k (if
there are k output elements). If an input element i is paired with
an output element j, then X, = I, otherwise Koy ™ 0. In a cover,

E X, 2 | for every i, and 2' X,, 2 1 for all j. We shall therefore

formulate the following LP problem:




(6) MinimizeZx, q, X,
Subjectto: Zx, 21 forl<isn
]

E‘x”zl forlsjsk

x 20forlcicn I<sj<k
Comments: 1) The total number of variables x,  is nN, since
there are n input elements, each having N neighboring output
elements. 2) q, is the cost of the link between input element i
and output element j.

Is this LP problem equivalent to the original mZ problem? It
would be, if we add the restriction that each x  can assume
binary values only (i.e. X, =lorx = 0). The additional
restriction cannot be expressed in the LP formalism, but
fortunately it is redundant. A theorem from Integer
Programming states that there exists an optimal solutions to the
above LP problem in which all all the x,  are integers.
[Garfinkel & Nemhauser; 1972. Note that the constraints matrix
is unimodular.] It is straightforward to verify that the integer
condition implies that the only possible values for the x , in the
optimal solution are 0 or I. Consequently, if the optimal solution
is unique, any algorithm that solves the LP problem is also
guaranteed to solve the original mZ problem. If the optimal
soution is not unique, then there are at least two different
optimal integer solutions, and also non-integer solutions. For the
present, we shall assume that the optimal solution is unique.
The non-unique case is examined in section 6.

We shall next describe a method of solving the LP problem
which can be carried out by a simpie local network.

Computing mZ in a simple network

A method of optimizing functions in which the computation is
distributed between simple, locally connected processors, was
introduced by Arrcw et al {Arrow, Hurwicz & Uzawa; 1958).
This method is based on a theorem by Kuhn and Tucker [1951)
which states the equivalence between optimal soluticns to the
constrained problem, and saddle points of the associated
Lagrangian.

Consider the problem of maximizing a function f(x) subject to m
constraints g (x) 2 0, i = f.. ..m. The Lagrangian associated
with the problem is defined as:

(6) L(x,u) = f(x) + Zu g
Where x is n-dimensional vector and u is m-dimensional vector.
A non-negative saddle point of the above Lagrangian is a
non-negative point (x',u’) satisfying:

(7) L{xu") < L(x'w') < L(x'u) foreveryx 20,ux0.
Theorem: (Kuhn - Tucker) If (i) f(x) and g (x) are concave, and
(it) there exists a vector x| 2 0 such that g (x) > 0 (1 < i <m), then
a vector X’ is a solution to the maximization problem if and only
if there exists a vector u’ such that (x'v") is a saddle point of the
associated Lagrangian.

(In the above formulation the conditions are slightly different
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from those in the original Kuhn-Tucker theorem. For proof, see
Arrow, Hurwicz and Uzawa, ch. 3)

The Lagrangian gradient method

The Kuhn - Tucker theorem which is an extension of the
classical Lagrange Multipliers theory, transforms the problem of
optimizing a constrained function to the determination of a
saddle-point of the associa: d Lagrangian. Arrow et al [1958)
investigated the possibility of computing saddle points using
gradient methods. A gradient method searches for a
saddle-point of L{x,u) by moving in the direction of the local
gradients ("uphill” in x, "downhill” in u), without violating the
non-negativity conditions on the variables. This search is
defined in terms of the Arrow-Hurwicz differential equations (p.
18 ):

(8)

x() = Lx,

il‘x'>0

x(t)=0 ifx =0andLx, <0

l](l)--Lu' ifu >0

ut) =0 ifu =0and Lu >0

Where Lx | is the partial derivative of the Lagrangian with
respect to x , and Lu  with respect tou .
An approximation to the Arrow-Hurwicz equation can be
defined by the following iterations: [Marr and Poggio, 1976]
9)

x"‘“ =max [0, x] + p Lx ]

u*t = max [0, u}-p Lu )
where p is a selected step size.
If L in the formulae is the Lagrangian as defined in the
Kuhn-Tucker theorem, the method is called the "naive”
Lagrangian method. The main point to notice is that the naive
gradient computation of the mZ problem is simple and local.
The reason fur the locality is that the values of Lx and Lu are

given in terms of the values of x and u in the i'" processor and
its N immediate neighbors only. More specifically, the
Lagrangian is:
(10) L(x,u) = Z QX" 2' u(l- ? x.) -?u,(l - !': x,)

If there are n input and k output elements then i = 1,. .,n and
j =1. .k. The derivatives take the simple form:

Lx  =q, +u +u

Lu = !E LI

Lu, - ,,: X,
Since the derivatives are local, the process defined by (9) is
simple and local.

Convergence:
The Arrow-Hurwicz method is said to converge to a solution if

(x(t), u(t)) approach a saddle point of L(x,u) as t -+ . The naive
gradient method as defined above is not guaranteed to converge
to a sofution. If L{(xu) ts linear in both x and u, the solution
might go instead into a limit-cycle. However, the naive

#




Lagrangian method can be modified in a way that will ensure
the convergence of the Arrow-Hurwicz equations to a
saddle-point (of both the modified and the original Lagrangian),
and hence to an optimal solution.

The modified Lagrangian LM is defined as [Arrow et al, p. 137):
(1) LM(x,u) = f(x) + Zu ¥ [g (x)]

where the functions ¥l| are strictly increasing, strictly concave

analytic functions with UQ(O) = 0 (An example of such a function

isW(z) =1-e? forr>0)

Note that the gradient method applied to the modified
Lagrangian still yields a local computation, similar to the naive
gradient case.

If the iterative procedure in (9) is applied to this modified
Lagrangian, the iteration will usually converge to a solution as
well. Furthermore, it is also possible to modify the original
Lagrangian in such a way, as to guarantee the global
convergence of the iterative procedure to a solution provided
that the step-size p 1s sufficiently small, while maintaining the
locality property of the procedure. As before, the gradients LMx
and LMu computed for the i*" component will depend only on
the i*" processor and its N immediate neighbors.

Cenclusions

The optimal match mZ can be determined by a simple, local
computation. One can envision a network of simple processing
elements which accepts two “snapshots” of elements in motion,
and finds the most likely correspondence between them via local
interactions. The above conclusion can be applied to other
problems of constrained optimization, for details see [Uliman,
1978).

5. Preference for one-to-one mappings

The mZ method as presented above does not "penalize™ matches
for deviating from the one-to-one mapping. Such a
simplification is unsatisfactory on both theoretical and empirical
grounds

On the theoretical side, splits and fusions of elements in real
images are unlikely, though not impossible, e.g. in the case of one
element occluding another in one of the snapshots. Let 8 denote
the probability of such an occlusion. That is, the probability of
a simple split (an input element splitting to link with two output
elements) or a simple fusion (two input elements converging onto
the same output element) is 8. The probability of an element
having three links ("double occlusior”) is 82. In general, the
probability of a split with s + | links is 8%, and the probability of
a fusion with f + | links is 8'. The probability of a match
containing k splits with sisl,. sl links, and n fusions with

f1,. ..fn, is given by:
(12) IT p(v ) 8°1. .8
By taking the -log of the above expression we get that the "cost”

of the match is (where @ = -log 8):
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(13) Zg(v ) + o(Zs, + EfJ) i=l. .k j=L. .
The optimal match is found by minimizing (13). The larger the
o in this last expression (that is, the smaller the probability of
splits and fusions), the higher will be the preference for
one-tc-one mappings.

There are empirical grounds as well for associating additional
penalty with splits and fusions. Figure 3 provides an example.
The match in figure 3a (41-Bl«A2, B2»A3«B3) minimizes Z qi
(this statement holds for high ISI, see section 6) but the
one-to-one match in figure 3b (AI-BIl, A2+B2, A3-B3) is
perceptually preferred.

We shall next see how to modify the mZ method so that it
minimizes the penalized sum in (13).

The modified mZ method

Rather than minimizing Eq”x \p let us now minimize
unx” . k!:xU (= Z(k + q”)x”),
As before, in the optimal solution the x,  will be binary, hence
the “penalty function” kZx  is simply k times the total number
of links in the match. By making k larger, mappings with
smaller number of links will be preferred. Furthermore, the next
proposition shows that for the appropriate choice ot k we can
minimize the required sum in (13).
Proposition: Minimizing Zq, x  + 202x  (subject to the usual
constraints Tx, > 1) is equivalent to minimizing }.3q.J +0(Zs, +
Zf ) over all covers.
Proof: First note that chains of corresponding elements are
precluded. For examine the chain: Al » Bl «A2 +B2. The link
Bl « A2 can be removed without violating the constraints hence
this chain cannot be a part of the optimal solution. Let m be the
number of one-to-one links in a given match. The total number
of links in this match is:

(14) Tx ol E(s' s 1)+ Z(fJ + 1) where i ranges over the
splits and j over the fusions.
The number of input elements I is given by:

(1) T = m « Zis| « Z(f, + 1) where [s] is the total number of
splits. The number of output elements O is given by:

(16) O = m « Z(s + 1)+ Ifl where [f] is the total number of
fusions.
We now subtract (I + O) from the objective function. This
quantity does not depend on the match, therefore it does not
alter the minimization problem (a match minimizes the penalized
sum Eq”x” + 2¢Ex“ if and only if it minimizes EquxU .
20Zx,, - o(l + O)). By substituting for Zx , I, and O, the
penalty 20Zx, - (I + O) becomes:

(17) o(Zs  + EFJ)
Minimizing Zq, x  + 20Zx  is therefore equivalent to
minimizing Zq, x  + @(Zs + Zf). Since the x , are binary,

(and constrained by Zx 2 1) this is equivalent to minimizing
Zq,, + o(Zs Zf ) over all covers. B

Note that optimizing the penalized sum does not affect the
computation. The cost q, can subsume the constant k, so that
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the optimal solution is still found by minimizing Z q,%,, The
computation thus remains simple and local while exhibiting the
required degree of preference for one-to-one mappings.

6. Properties of the mZ mapping

So far we have characterized the optimal correspondence strategy
by a certain mathematical condition, namely minimizing a cost
function over all the local covers. In this section we turn to
examine some of the properties of the mZ mapping and to
compare them, when possible, to properties of the correspondence
established by the human visual system.

Minimizing the total distance
As the iter-stimulus interval (ISI) between successive frames
increases, the mZ mapping is expected to minimize the total
distance covered by all the elements in the image. If d is the

distance traveled by the i'" input element, then the mZ method
will minimize the quantity Z d, over the legal matches.

Proof:

We shall make the further assumption that the probability of
low velacities is approximately constant. This assumption seems
reasonable: while very high velocities are unlikely, there is no
reason to assume that a velocity of, say | deg/second is
considerably more (or less) frequent than a velocity of, say, 0.5
deg/second. Near the origin, the function p(v) can therefore be
described as p(v) = k for some constant k. In the region where
this approximation holds, the functions p(v) and q(v) assume the
form:

(18) p(v) = .‘I,'a"" p(u)du =1 - kv

q(v) = -log (v) ~ kv (since kv << 1)
Minimizing Z q, is hence equivalent in the case of low velocities
(or high ISI between the frames) to minimizing £ v
equivalently, (since v,=d « IS1) to minimizing d. 8

. or.

The rule of non-crossing trajectories

It has been noticed [Kolers, 1972; Attneave, 1974; Navon, 1976]
that the paths of elements in apparent motion seldom cross. If
Al, A2, are shown in apparent motion with Bl, B2, in a
configuration where the paths Al » B2, A2 - Bl cross but Al -
Bl, A2 »B2 do not (see figure 4), then the latter match is
preferred (provided that the ISI is sufficiently large).

The rule of non-crossing trajectories is implied by the minimum
distance principle. The triangle inequality implies that (d1 + d2)
< (c1 + c2) (in figure 4). That is, the non-crossing trjectories
always minimize the total distance and therfore, for high ISI,
also minimize Zq,.

Flow detection
Suppose that two snapshots (S and S2) are taken of a collection
of elements moving parallel to each other. We shall refer to such
a parallel motion as a flow of the elements. The visual system
seems capable of detecting flows: when the two snapshots Sl and
S2 are presented in succession, the flow motion will usually be
perceived (provided that the ISI is not too short). This holds

true even when the average distance traveled by the elements
between the two snapshots is considerably larger than the mean
inter-elements distances, in which case most of the elements are
not paired with their nearest neighbors.

This flow detection capacity deserves a closer examination
since it appears not to be consistent with the independence
hypothesis made in section 2. It seems to indicate that each
element “prefers” a match whose direction is consistent with the
direction of neighboring elements. The independence
hypothesis, on the other hand, excluded interactions based on
direction similarity. The flow detection phenomenon might also
suggest the existence of some global measurements, which do not
belong to any single processor in the simple network discussed in
section 4. The prevailing orientation can be discovered by a
global measurement and can then affect the match assigned to
the individual elements. However, such a suggestion concerning
interactions between local and global processes runs contrary to
the simple network model. The flow detection phenomenon
therefore raises the following problem: In a simple network
model, the correspondence between collections of elements is
governed completely by the local interactions. According to the
independence hypothesis, these local interactions do not include
positive interactions between matches of similar directions. Yet,
when a common direction does exist it seems to affect the
correspondence process, as indicated by the flow detection
phenemenon.

To resolve this difficulty, we shall turn to examine the flow
detection in the light of the mZ mapping. The conclusion we
shall reach is that flow detection is not at odds with either the
independence assumption or the simple network model. In fact,
it supports them since, as we shall see, the mZ method actually
implies flow detection.

Recall that S2 is obtained from Sl by translating all the elements
along a common direction. The correct match between Sl and
S2 is the one in which each element in Sl is paired with its
translated image in S2. We now wish to establish:

Claim (the flow-detection lemma):

The correct match minimizes the total distance T d, (over all the
one-to-one mappings).

Proof:

Let (x, y,) denote the position (in the image plane) of the i'"
input element, and (x', y') its position in the second snapshot.
If the X-axis is chosen to coincide with the direction of the flow,
then y' = y,and x' 2 X, A match between the snapshots is a
function m which assigns an output element to every input
element. Thus j = m(i) means that the j*" output element is
paired with the i'" input element.

The total distance Dc of the correct match is given by:

(19 Dc=Z(x' -x)=Zx' -Tx,

For another match m, the total distance Dm is given by:

(20) Dm = ZL(x' - x ) ey’ -y I dele n ) mli).
@ODmzZT K -x12ZK -x)=T (' -x)=Dc i=l.
W o= mi).
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Since Dm > D¢, Dc is minimal, and the correct match is optimal.
]

It can also be seen that Dm will be strictly greater than D¢ unless
m is also a flow, namely y’J =Y, x', 2 x,. Outside some special
situations the optimal match will therefore be unique.

The flow-detection lemma can also be proven for the case of
radial motion. Suppose that each element moves (in the image
plane) along the line which connects it to a certain fixed point o.
(Such radial flow can arise from an approaching objects, as well
as from the perspective projection of pure translation in space).
Then, the correct radial correspondence minimizes the total
distance.
Proof: Let o be the origin, and describe the position of each
element by its polar coordinates (r, 8. If d” is the distance
between input element i and output element j,
d o > |r| - r’I. For a given match m,

(22)Dm=2d,, 2Zlr -1 )2Z(r -7)=Dr

(i=1. .m j=m))
Where Dr is the total distance of the correct (radial)
correspondence. B

The independence hypothesis revisited

The optimal correspondence strategy mZ has been developed for
independently moving elements. The independence assumption
might be questioned .on the ground that proximate elements in
the image are likely to move in similar directions. It can be
argued, therefore, that if a "locally parallel” match (i.e, a match
in which the motion of proximate elements is nearly parallel)
exists it should be preferred. While there is probably some truth
to this, the flow detection analysis suggests that the explicit
incorporation of such a preference might be redundant, since
parallel motions also minimize £ d . The mZ mapping is thus a
plausible method whether or not the motion of the elements is
indeed independent. It should also be noted that the mZ
methods requires only the measurement of distances between
elements but not of directions, a property that might have an
advantage in terms of economical implementation. Since the
number of elements in a scene can be large. a computation of the
optimal correspondence based on a minimal number of
parameters, and with a minimal number of interactions, might
offer an important advantage.

Symmetry

One property of the human correspondence process is "a
preference for symmetrical movement, more important things
being equal” [Attneave, 1974, p. 118). Such a symmetry property is
to be expected in any simple, local network as defined in section
4. Furthermore, if there is a symmetry in the input, then there
must be a symmetric optimal match. Symmetry is defined as a
permutation  that "does not alter the problem”. That is to say,
1f g, is the cost of the link between input element i and output
element j, and q', is the cost of the link between (i) and m(j),
then for all i and j, q, = q'u If such a symmetry exists, then:

1). There exists a symmetrical optimal match, ie, a match in
which x, = = x' . This holds because if (x, ) (a sequence of I's
and 0') is an optimal solution, then so is (x', ). The solution
(y,,) defined by y = (x  + x', )2 is also optimal, and
symmetric.

2). The iterative procedure (9) will converge to a symmetric
optimal solution. Since the input is symmetric, the first stage in
the iteration is symmetric. Since all the processors are identical,
the next stage, and by induction all stages, will be symmetric too.
The symmetric configurations cap be divided into two categories:
integer and non-integer. Figure 5 exemplifies a non-integer
symmetric configuration. Figure 5a shows one optimal mapping
and figure 5b another. The mapping in Figure 5¢ is a
combination of the two, and is both optimal and symmetric. As
has been noted in section 4, when (and only when) the optimal
solution is not unique, there exist also non-integer optimal
solutions, of which figure 5c is an example. The mapping in
figure 5c is expected to be unstable, since it relies on the exact
equality of the distances A2-BI, and A2-B2. Any deviation from
the strict equality between these distances will cause either figure
5a or figure 5b to be optimal. It is not surprising, therefore, that
the perception associated with this configuration is unstable and
alternates between the two [Kolers, 1972; Attneave, 1974; Uliman,
1977a).

Figure 6 shows an optimal, symmetric, integer mapping. Unlike
the non-integer mappings, these are perceptually stable. This
stability is not completely predictable from the mZ method since
it depends on properties of the algorithm by which the method
is carried out. It can be verified that if a row of n elements is
shown in alternation with a row comprising n+l elements, then
whenever n is even the symmetric solution is non-integer, and
whenever n is odd there exists a symmetric, optimal, integer
solution. It is therefore reasonable to expect that in the first case
the perceived match will be unstable and asymmetric, and in the
second symmetric and stable. This prediction is consistent with
the observations of Kolers [1972] and of Attneave [1974).

Symmetry in the order of presentation

When two frames fl and f2 are shown in apparent motion, the
perceived correspondence does not depend on the order of
presentation. That is, the pairing of elements remains the same
whether fl precedes or follows 2 [Uliman 1977a] This symmetry
is shared by the mZ correspondence process. The optimal
solution to the matching problem remains invariant when the
input and output elements switch roles.

The minimal cover property
The mZ mapping is a minimal cover in the sense that it does
not contain superfluous links. The removal of any link from the
match will result in one input or output element "uncovered” (i,
without a counterpart). This property implies the phenomena of
split and fusion competition discussed in Ullman [1977a). Figure
7 explains the split competition. In figure 7a, element Al is
presented followed by a pair of flanking elements Bl and B2. Al




is perceived as splitting and matching both B! and B2. In figure
7b, a second element, A2, is added to the first frame. The
resulting correspondence is Al » Bl, A2 » B2, while the link Al
- B2 disappears. It is as if 42, by taking over B2, competes
with Al and prevents it from matching B2. In the mZ mapping
the three links A/ - Bl, Al » B2, A2 » B2, cannot co-exist since
this maping will not be a minimal cover (41 » B2 is removable).
Similarly, Attneave [1974) described configurations in apparent
motion where the number of links is kept to the minimum
required to supply each element with a partner. Observing this
minimal cover property as well as such properties as symmetry
and non-crossing paths, Attneave [1974] commented:

"It would appear that the system is exhibiting foresight, and
one is strongly tempted to invoke some deus ex machina, some
superordinate, ratiomorphic control system that makes everything
come out neatly” [Attneave, 1974, p. 116]

The discussion in the preceeding sections suggests that no such
global planning is required. A simple, local process can possess
all the discussed properties, and is in fact expected to exhibit
them if it computes the mZ mapping.

Monotonicity in the rate of sampling
Roughly speaking, if the minZ d | mapping yields the correct
correspondence when the second view is separated by time
interval t from the first, then for every t' < t the match will also
be correct.

To prove the claim, we shall assume that the elements are
moving along straight lines (an assumption which will hold for
short time intervals). Two snapshots of the moving elements are
separated by time interval t are given. Suppose that the correct
match (i.e, the match in which each input element is paired with
the same element after the time interval t) minimizes Z d .
Then, for every t’ < t, the correct correspondence will also
minimize 2 d .

Let v be the velocity of the i'" element, @ will denote the total
distance T d of the correct match at time t, and o' the total
distance at time t'. Let u’ be the total distance Z d, of some
one-to-one match m' at time interval t'. We wish to establish
that ¢’ < u'. From the match m’ at time t' one can obtain a
match m at time t: If a point x is paired by m with some point
y(t') (i.e,, point y at time t'), then m is obtained by pairing x with
y(t). The correct match is y(0) - y(t) -+ y(t). In m’ x(0) - y(t'),
and in m x(0) -+ y(t). We shall denote by s the total distance of
the new match m. From the assumption that the correct match
minimizes 2 d, at timet, ¢ < p. To prove our claim, it is
therefore sufficient to show that ¢ - ¢' 2 u - u'. The
contribution of element y to @ is vt and its contribution to o' is
vyt‘. Let the difference between the two contributions be r =
v (t-t). In match m x » y(t) and in m’ x - y(t'). The difference
between the two contributions of y is (d - d’), and (d - d') < r (the
triangle inequality). Similar inequalities hold for all the
elements, hence pu - ' < ¢ - ¢'. Combined with the known
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inequality ¢ < u, the implication is that ¢’ < ', that is, @' is
minimal. B

The monotonicity property has possible application for the
correspondence computation. For example, in eliminating wrong
matches by checking for consistency with intermediate matches.
Suppose that an element x in Sl is matched with y in a
subsequent frame S2, and z in a third frame S3. If the
correspondence is correct, the matches must be consistent, i.e., y -
z. By accepting only consistent matches, the correspondence
process can reduce the number of wrong matches. Such a
consistency check can be performed for any correspondence
scheme, regardless of monotonicity. However the monotonicity
implies that "false alarms” in which x - z is correct but the
match is rejected, are highly unlikely. Observations of the
human coorrespondence process suggest that the human visual
system does not use such consistency verifications. However, it
seems that, in accordance with the monotonicity property, the
performance of the human correspondence apparatus improves
monotonically with the rate of sampling.

The shape of q(v) and some of its implications

The preference for nearest neighbors:

It has been frequently noted that the human correspondence
process tends to match each element with its nearest neighbor,
whenever such a choice is possible without violating other
conditions. For example, in figure 8a, element Z can be paired
with either Y[ or V2. Both matches will be legal, since in both
each of the input elements (X, V, Z) is paired with at least one
output element, and each of the output elements (Y1, ¥2) is
paired with at least one input elements. In such a situation the
matching of Z with its nearest neighbor will always be preferred.
That is, if dl < d2 in figure 8a, the match Z » V1 will be
preferred over Z » ¥ 2. In figure 8b, on the other hand, Z will
match V2, since a match with its nearest neighbor VI will
produce an illegal match.

The preference for the nearest neighbor might seem to suggest
that the correspondence method incorporates the assumption that
lower velocities are more prabable than higher ones. We have
noted, on the other hand, that in the low velocity range a more
plausible expectation is that all velocities are about equally
probable. If this latter view is correct, what might account for
the strong preference for nearest neighbors at all velocities?

The answer is that, in the framework of the mZ method, the
nearest neighbor should be preferred regardless of the
probability distribution of velocities in the environment. Recall
that q(v), the function to be minimized by the correspondence
process, was defined as -log p(v), where p(v) is the “tail" integral
s ® plu)du.

Since p(u) 2 0, p(v) is monotonically decreasing in v regardless of
the shape of p. A correspondence process which minimizes q(v)
should therefore prefer nearest neighbors even if, for example,




high velocities were actually more probable than low ones.

The convex region of q(v)
The following relation holds between the shapes of q(v) and the
underlying distribution p(v). Where p(v) is either constant of
increasing, q(v) is convex. Where p(v) decreases, q(v) can
assume any shape: convex, concave or linear. (for p(v) = ke™*",
q(v) is linear). It has been assumed (section 6) that for low
velocities p(v) is roughly constant. In this region q(v) is
therefore convex.
Implication to Ternus’ configuration:
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Ternus’ configuration in apparent motion [Ternus, 1926; Pantle _

& Picciano, 1976; Ullman, 1977a) is composed of two dots (4 and
B) presented in brief succession with a second pair (B, C). Dots
A, B, and C lie on the same horizontal row (figure 9).
Depending on various conditions, the perceived correspondence
can be in one of two modes. In the “coherent™ mode the pair (4,
B) moves as a unit to the right (i.e, the perceived correspondence
is A+ B, B~ C). In the "neighbor” mode B -+ B, while 4 often
"jumps over” to match C.

In the convex region of q(v) the mZ mapping implies the
coherent mode of correspondence. In the coherent mode the
distances of the match are both equal to d. In the neighbor
mode, one of the distances is 0, the other is 2d. The convexity of
q(v) implies that:

(22) q(0) + q(2d) > 2q(d)
Hence, the coherent mode minimizes Z q,.

The concave region of q(v)

At high velacities p(v) decreases and q(v) is no longer necessarily
convex. Existing data suggest that at the high velocity region
q(v) is concave. The function q(v) thus assume a sigmoid shape,
as diagrammed in figure 10.

Implication to Ternus’ configuration:

The sigmoid shape of q(v} implies that when v is sufficiently
large, the mZ method will prefer the neighbor over the coherent
mode. Figure 5c depicts the transition point between the two
modes, where q(0) + q(2d) = 2q(d). Note that if the element B is
displaced by a distance h to the left between presentations, the
total distance of the coherent mode decreases (by 2h) while the
total distance of the neighbor mode remains unchanged. As
predicted by the mZ mapping, in this version of the Ternus
configuration the preference for the coherent mode increases
with h.

The "non-crossing paths” rule re-examined
In section 6 we have suggested that the rule of non-crossing
trajectories is merely a reflection of minimizing Z q, under low
velocity conditions. If this view is correct, and in the light of the
shape of q(v), one can expect the rule to break under specified
conditions. In Figure 4 the match Al » BIl, A2 » B2, minimizes
the total distance Z d  and is therefore expected to prevail under
low velocity conditions. However, at high velocities (eg. short
IS1 conditions), the sigmoid shape of q(v) implies that the other
match, in which A2 - BI, should prevail. This is indeed the

case, in contrast to the rule of non-crossing paths.

7. The experimental determination of q(v)
The optimal match between two collections of points is by the
functions q(v). (q(v) can include the constant k of the modified
mZ method.) If the visual system incorporates a correspondence
method similar to the mZ mapping, can we discover
experimentally the function q(v) used by the visual system?
Before outlining a way of investigating q(v), we shall examine
the following question: can q(v) be determined uniquely by
examining the matches established by the visual system?
Suppose that a function q'(v) exists, which always predicts the
same matches as q(v) (ie, Z ¢, is minimal whenever Z q, is).
Such a function q'(v) would be indistinguishable from q(v).
However, it is possible to show that, q(v) can in principle be
determined up to a scaling factor. If only one-to-one mappings
are examined, q'(v) is indistinguishable from q(v) if and only if
q'(v) = cq(v) + b for some constants b and c. That is, by
examining one-to-one matches, q(v) can be determined up to a
linear function. The following procedure is an example of how
q(v) can be so determined. We shall make use of bistable
displays, similar to the Ternus’ configuration. If a bistable
configuration has two equally probable matches m and m’, then
Zq, = Zq',, where Zq, is the total cost of m and Zq', of m". In
the Ternus configuration, when the transition between the modes
occurs, then:

(23) §(9) + §(2v,) = §(v ) + §(v)
Let us arbitrarily set §(0) to 0, and §(v1) to 1. Consequently,
§(2v1) = 2. The notation §(v) rather than q(v) has been used to
draw a distinction between the function Q(v) (which is
determined by the bistable configurations with §(0) = 0 and
Q(v‘) = 1) and the true function q(v) that we are after.

We can now use v, and v, = 2"; to determine new values of

§(v). In Figure 7 we can change v, selectively while maintaining
v, and v, fixed, until a bistable configuration is reached (ie,
Al » Bl, A2 » Bl, and Al » 2, A2 » BI, are equally probable).
When this condition is reached, then Q(v,) + Q(vl) = §(v,)

(v,). Hence, §(v,) is also determined (Figure 7b). Theoretically,
this method can be extended to determine q(v) on a dense set of
values (i.e. between any to known values it is possible to get
another value). The function Q(v) can therefore be measured.
We now come back to our original function q(v), which is a
linear function of §(v), that is q = a§ + b. To determine the
additive constant we can use bistable configurations in which the
total number of paired elements is different in the two possible
matches. Figure 7 is an example of such a configuration. By
gradually increasing the distance y while keeping all the other
distances constant, a bistable situation will be reached in which:
(24) q(v,) + q(v,) + q(v,) + q(v ) = q(v,) + q(v,) + g(v,)

Substituting q = aff + b, we get:  af(v,) + b + af(v) = af(v) + b
§(v,) and §(v ) are already known, so b/a is determined as well.




Since q can be determined only up to a scaling factor, we
conclude that q = c(§ + b/a) where c is an arbitrary constant.

8. Extensions

The discussion thus far has concentrated on the correpondence
between two frames, containing points of equal intensity. In this
section the notion of seeking the most likely match between
elements via a simple local process, will be extended to include
various types of elements and continuous motion.

Extending the set of elements

As mentioned in the introduction, the set of basic elements
matched by the correspondence process includes such units as
edge fragments, line segments, and blobs. The main novelty
introduced by extending the set of basic elements is that the
optimal mapping is no longer determined by time intervals and
distances alone. The likelihood of a match between two elements
is influenced in the general case by other parameters, such as
orientation, length, and contrast. These parameters influence the
likelihood of the match between two given elements, and
therefore they enter the correspondence process via the "cost”
function q. However the optimal mapping still minimizes
E(qu +k)x, ., and can be determined by the local network
discussed in section 4.

Some empirical evidence supports the view that the match
selected by the human correspondence process can indeed be
predicted on the basis a "cost function” with the following
properties: (1) It is weighed by orientation, length, and intensity
as well as by distance. (2) The relative effect of the various
parameters is consistent with likelihood considerations.

Examples of (1):

The likelihood of crossing trajectories (section 6) increases if the
elements across the diagonal, but not along the sides, are
identical. Similarly, one can favor selectively the neighbor or the
coherent mode in Ternus’ configuration by mainipulating the
similarity (in terms of orientation, length, and intensity) of the
participating elements.

Example of (2):

Changes in length and orientation of small line segments in the
image are induced primarily by rotation in space (perspective
effects are of secondary importance for small segments and short
time intervals). When a segment rotates in the image-plane its
length remains unaltered. If it rotates in depth, its orientation is
unchanged but its length decreases. If a is the angle of rotation,
the ratio of final-to-original length in this last case is cos (a). If
matches are selected on the basis of likelihood, and given space
isotropy (i.e, rotations in every direction are equally probable),
the effect on the preferred match of « degrees orientation
difference and cos («) length ratio should be comparable. The
data in Ullman [1977a] are in close agreement with this
prediction.
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Continuol_xé motiori

The goal of this section is to extend the analysis from the
discrete presentation of two frames to continuous motion. We
shall see that the optimal solution can be established in the
continuous case as well by a simple, local process. The network
that carries out this computation is a simple extension of the one
described in section 4, and reduces to it in the case of discrete
presentation.

In the continuous case time varies continuously, but we assume
that the location of the elements does not. Namely, elements can
be detected at discrete locations in the image. Unlike the discrete
case, the appearance and disappearance of the eleraents at
different locations is no longer synchronized. We shall consider
the case of n elements moving about between times t = to and t =
T. As an introduction to the general case we shall make the
assumption that at t =to and t = T all n elements are present in
the image.

The legal matches in this case are the following. Each of the n
elements at t = to has one link connecting it to a later element
(i.e., an element that appears at a later time). Each of the n
elements a t = T has one link connecting it to an earlier element.
Each intermediate element has two links, one to an earlier, the
other to a later element. By the independence hypothesis, the
optimal match is the one that minimizes Zq, over the legal
matches (where i ranges over all the links in the match).

In the two frames situation the correspondence was equivalent to
a cover problem on a bipartite graph, with the bipartite
structure playing an important role. We shall now formulate the
continuous correspondence as wel! in terms of covering a
bipartite graph. We shall view each element as a pair, composed
of a "source” and a "sink". The sources are responsible for
establishing connections with later elements, the sinks with
earlier elements. Each source has as its initial candidates all the
later sinks within a certain spatial neighborhood. The graph of
possible pairings now becomes bipartite, the set of all sources
being one component, and the set of all sinks the other. As
before the optimal match can be found by:
(25)

Minimize Zq x

Subject to Ex” 2 | for every i, where i ranges over all the
sources, and to

Zx,, 2 | for every j, where j ranges over all the sinks.
As before the problem so formulated is equivalent to the optimal
correspondence problem provided that x, = 1 if the i'" source is

matched with the j'" sink, and x, = 0 otherwise. Since on a
bipartite graph x  are guaranteed to be binary, the formulations
are equivalent. It is also possible to bias the optimal match
towards a minimal number of connections by replacing q, by
(q, 5 * k) as was done previously. The problem so formulated is
formally identical to that of section 4. Hence, the local process (in
equations 8 and 9) will converge to the optimal match.




In the continuous motion correspondence the cost function q
depends not only on the elements and their spatial separation,
but also on their separation in time. As might be expected, for
the visual system q,  (the cost of the link between elements i and
J) increases with the time interval that separates them. Other
parameters (including velocity) being equal, the match which
minimizes separation in time will be preferred. The likelihood
of a match between a pair of elements, which is inversely related
to the cost q, decrease with the time interval separating the
elements. If this time interval exceeds some upper limit 7, the
two elements are no longer considered candidates for a match.
Rather than having a common time interval within which
correspondence is established (the interval to - T in the previous
example), each element has as potential matches only the
elements within a time interval 7 In such a network there is no
"first” or "final" snapshots; the optimal correspondence is
computed continuously as the input elements are streaming in.

REFERENCES

Anstis, S. M. 1972. Phi movement as a subtraction process.
Vision Research, 10, 1411-1430.

Arrow, K. J., Hurwicz, L., and Uzawa, H. 1958. Studies in Linear
and Non-linear Programming. Stanford: Stanford University
Press.

Attneave, F. 1974. Apparent motion and the what-where
connection. Psychologia, 17, 108-120.

Garfinkel, R. S. and Nemhauser, G. l: 1972. Integer
Programming. New York: Wiley & Sons.

Kolers, P. A. 1972. Aspects of Motion Perception. New York:
Pergamon Press.

Kuhn, H. W. and Tucker, A. W. 195]. Nonlinear Programming.
In J. Neyman (ed.) Proc. of the Second Berkeley Symp. on Math.
Stat. and Prob. Berkeley and Los Angeles: University of
California Press, 481-492.

Marr, D. 1976. Early processing of visual information. PAhil.
Trans. of the Roy. Soc of Lond. B, 275 (942), 483-524.

Marr, D. and Poggio, T. 1976. Cooperative computation of stereo
disparity. Science 194, 283-287.

Marr, D. 1977. Analysis of occluding contour. Proc. R. Soc.
Lond. B, 197, 441-475.

Navon, D. 1976. Irrelevance of Figural Identity for Resolving
Ambiguities in Apparent Motion. /. of Exp. Psychol. Vol 2,(1)
130-138

83

Ullman, S. 1977a. The interpretation of visual motion. Ph.D.

Thesis, M.I.T., Department of Electrical Eng. and Comp.
Science.

Ullman, S. 1977b. Transfdrmability and object identitiy,
Perception & Psychophysics, Vol. 22.(4), 414-415.

Ullman, S. 1978. Simple networks in visual information
processing. In preparation.

Warren, H. W. 1977. Visual information for object identity in
apparent motion. Perception & Psychophysics, 21, 264-268.




84

FIGURE 2

3 3b
FIGURE 3
b
)
€1
A2O " > 4:H
FIGURE 4




85

O
L \ 1 1 / ! 1] /’2/ "2 Y
X X & r -
B, B, o e & s
A, A, As
P X A
p 4 X X X
B, By Bs B
A, o
B, B, B, B,

FIGURE 7




86

i ‘ s,

FIGURE 8

d 2d

FIGURE 9 FIGURE 10




87

A Semantic-Syntactic Approach to Image
Understanding And Creation

G. Y. Tang and T. S. Huang
School of Electrical Engineering
Purdue University
West Lafayette, Indiana 47907

U.S.A.
standing problem will be described in detail.
Abstract \ : Then the results of a two-dimensional problem
We apply semantic grammar to image under- involving creation will be presented. However,
standing and creation. Understanding refers to the details of this second example are omitted
the problem of recognizing a given pattern. because of the lack of space.
Creation refers to the searching for a pattern
amid a chaos of primitives. I11. A ONE-DIMENSIONAL EXAMPLE
Two examples are given. T We use semantic grammar to recognize high-
ways and edges in aerial photos. The grey lev-
1. INTRODUCTION o i 3 el distribution along a straight line segment
We propose the injection of semantic crossing the highway or edge is obtained by a
features into a context free grammar [1,2] for film scanner.
the purpose of image analysis. 3 The a priori knowledge about the signal is
A feature vector is assigned to each termi- that it looks like one of the four paradigms
nal and to each nonterminal. A feature a, 8, Y, o in Fig. 1. a, B are paradigms for
transfer function (which can be algorithmic) is the ideal edges. v, o are the paradigms for
attached to each production rule. The feature highways.
transfer function transfers features at the The grammar describing the ideal paradigms
right hand side of the production rule to the ise
left hand side nonterminal. Following Knuth
11, we call his augmented grammar a semantic
grammar. It is very similar but not identical 1 :0+0AB ;F1
to the attribute grammar (3] (5]. 2 :0+DBA ;F1
We have applied the semantic grammar to two &
image analysis tasks: understanding and crea- 3 :0+DA ; F7
tion. By understanding we mean the recognition 4 :0+D8 ; F7
of a given pattern. By creation we mean the
searching for patterns amid a chaos of primi- 5 tA+ax ; F2
tives. 6 : X +D ; F3
The task of pattern understanding is accom- -
plished as follows. After syntactic parsing, 7 :X*DA ; Fé
the feature vector associated with the root of 8 :B+by ; F2
the derivation tree is sent to a discrimination
function to determine the semantic well~- % 3%+D ; F3
formedness of the sentence. More generally, at 10:Y+D58 ; F6
any intermediate parsing stage the feature vec-
tor of a nonterminal can be checked and the TR ; F8
pattern rejected if the feature vector does not 12 : B +b ; F8,
meet a prespecified criterion - in particular,
we can impose selection restrictions [6]. The 0 is the start symbol, a, b, D are termi-
acceptance of an input signal is thus based on nals, A, B, X, Y are nonterminals.
not only its syntactic structure but also its
semantic contents. The transformation, which brings the ideal
To do creation, the semantic grammar is used paradigms to the realistic level, is to replace
as a guide to control the searching processs. each occurrence of the symbol D by a sentence
For example, we may want to search for long generated by the grammar:
straight line segments amid a chaos of edge
points detected by some local operator. To do T1: 0 +f0D ; F&
that, we first deyelop a semantic grammar for
long straight line segments. Then this grammar T2: 0 +¢0, ; F&
is wused to aid the search. At any stage of the 1
search, which edge point to look at next is T3: p +dbd, ; F&
suggested by the appropriate production rules 2
of the grammar. Tk p ot ; FS
In this paper, the application of semantic
grammar to a one-dimensional pattern under- TS: 0D =+¢ s S
e 4T —

.
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T6: D =+d 2 B
TPz 01 +d D2 s F&
T8 : D1 +d s F5
T9: b, » fo ; Fé
T10 : D2 +C D1 ; F4
T : D2 +C 2 FS
712 = D2 >fD ; F&4
13 2 D1 » f S RES
Te: D, »f ; FS

D is the start symbol, and ¢, d, f are ter-

minals.

The transfer functions associated with the pro-
duction rules are defined as:
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FS : A +B
tw =0
A =Rk ®

W) =W (B

F6 : A

A =4 (@

WA =W (O

R1C(A) = RI(D

R2(A) = 0 if W (B) > t
R2 (C), otherwise

¢ =C¢W©

Fref +~BC
R1CA) = Max (R1 (C), A (B)/W (B))
¢ =¢(©
"ROERN
R2(A) =1 if R2 () # 0
0 otherwise
FB:A +B
¢ W =C(®
W =W
A=A (®
R2¢n) = 1.

The underscored symbols lige A are formal
parameters. Symbols with atop designate

features associated with the formal parameters

in parentheses, e.g € (A) is the { feature at-
tached to A.

There are five terminals, a, b, ¢, d, f. To
each terminal, there are three features at-
tached. Literally a, b, c, d, and f are five
tendencies in the input signal. a and ¢
represent the tendency of going-up. b and d are
for going-down. f is for flatness. The extent
of going-up differentiates a from c. a stands
for long going-up. c¢ stands for short going-
up. Similarty b is tong going-down and d is
short going-down.

The three feature attached to the terminals
are A, W, and C. C refers to the center of the
tendency. W refers to width of the tendency.

K is

A(a=10r A (D) =1 means absolutely long.
More specifically, let 2(*) denote the height
of the tendency. Then for a, b, we have

a measre of the opposition (long/short).




A (S) = (l(S)/H1 - t)/(1-t).

For c, d, we have

R (S) = [a(S)/M, - £)/t] + 1.

1
H1 is the maximum height. t n1 is the thres-
hold for discriminating between "long" and
"short".

For nonterminals, there are two more
features. These two features are defined by the
transfer functions.

The final semantic well-formedness test is:

W >t

>t , A <t

3

R1 (O > t,

R2 (0) > 0.
€ (0) is the location of the edge or the
leading edge of the highway. W (0) is the

width. R (0) = 1 indicates edges. R (0) = 2
indicates highways. t1, t and t, are preset

& 3
thresholds.

Experimental Results

An aerial photograph is shown in Fig. 2.
The gray level along the white straight line
segments are used as the input signals. Each of
the 5 input signals (one for each segment) is
parsed with the grammar described above to
determine whether it contains a highway (a sin-
gle edge will be rejected).

Correct answers were obtained for all five
cases. Two examples are shown in Figs. 3 and &.
Fig. 3 shows the gray level variation along
segment #3 of Fig. 2. A highway is recognized.
Fig. 4 shows the gray level on variation along
segment #5 of Fig. 2. No highway is found
here.

III. A I!Q-DIHENSIONAL EXAMPLE

We use semantic grammar to look for air-
planes in the photo shown in Fig. 5. The task
is accomplished in three steps.

PiTst, a local edge detector was used to ob-
tain edge points as shown in Fig. 6. Then, se-
mantic grammar for long straight line segments
was used to search for such items in the edge-
point picture. Finally, a semantic grammar for
airplanes was used to search for airplanes.
The airplane is found as shown in Fig. 7. Note
that because the semantic grammar was developed
for complete airplanes, the partial airplane in
Fig. 5 was not detected. The details of the
grammars used in this example can be found in a
forthcoming technical report [4].
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Fig. 1 Four paradgms. a, B, represent
Y, 0, represent highways.

Fig. ? An aerial photograph.

edges.
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Highway
2.0

Fig. 3 Highway is bounded by the two vertical
lines. 1Its width is 26 pixels.

Fig. 4 No highway is found.
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Fig. 5 An aerial photo containing airplanes.

Fig. 6 Edge points of Fig. 5 detected by a lo-
cal operator.

Fig. 7 Airplane recognized.
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SYMBOLIC MATCHING AND ANALYSIS WITH SUBSTANTIAL CHANGES IN ORIENTATION

Keith Price

Image Processing Institute
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Abstract

Most previous image matching work has
assumed that the two images being matched
are already in close alignment or that
transformations are given which will close-
ly align the images. This paper shows how
symbolic matching techniques can be applied
to pairs of images to accurately locate the
corresponding objects in the two views when
the required transformaticns are not known
a priori. We present two scenes where
there are major orientation differences
between the two views and show the results
of the matching procedure on these scenes.,

Introduction

Several methods have been developed
which can be used to find correspondences
in pairs of images of a changing scene
[1-6]. But, for various reasons, these
systems did not operate on images which had
major changes in orientation - unless an
approximate value for the difference was
known a priori. Image based methods [1-3]
were not used to attempt a solution to this
problem because of the complexity of
searching for corresponding points. Other
work [5,6] assumes that the views are close
- in time and position - so that major
changes in the point of view are not pos-
sible. But in a more general image match-
ing and analysis system [4], this type of
problem must be considered.

We have undertaken a series of
experiments to examine whether the matching
techniques described in [4] can be easily
applied to pairs of images which have
substantial global differences. In this
paper, we present the results of applying
this basic technique on pairs of images
with orientation gifferences of 45°, 90°
and 180°. These orientation changes are
in addition to other, less drastic, changes
which may occur between the two views. The

*This research was supported by the Ad-
vanced Research Projects Agency of the
Department of Defense and was monitored by
the Wright Patterson Air Force Base under
antract F-33615-76-C-1203 ARPA Order No.
3119.

point is to show that symbolic techniques
can be applied when there are substantial
global changes in addition to the normal
local changes which occur between two
views of one scene.

We will first discuss the images
which will be used for this experiment and
describe the results which are desired.
Then we will present an outline of the
symbolic matching procedure [4] and some
initial results using this method. The
results suggest some modifications which
are then described, followed by more
extensive results using the modified
procedure.

Tasks for Matching

The pairs of images which we will use
here have been used earlier [7], but in
the previous analyses there were no sub-
stantial global changes. We start with a
pair of images of a scene taken from
slightly different positions, and generate
the orientation changes by rotating the
digital representations of the second image
of the pair. The original first image and
the rotated second images are then proc-
essed to generate symbolic descriptions (a
segmentation into distinct parts plus a
description of the segments) which are used
by the matching procedures. The details
of the segmentation and description are
given elsewhere and are not important for
this paper [4,7,8].

The basic task to be executed for the
images presented here is to find the cor-
responding regions in the two images when
there is a large, but unknown, orientation
difference. A by-product of this matching
should be some indication of the actual
orientation difference. The orientation-
dependent features are not used even if they
are independent of the rotations used in the
experiment (e.g. ratio of area and area
of minimum bounding rectangle).

The first pair of images, a house, is
shown in Figure 1. These are color images,
shown here in black and white, so there are
several spectral features available for use
in the segmentation, description, and match-
ing operations. Figure 2 gives the segment-
ations of the original first view and the
three rotated second views. There are some
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differences between the regions segmented
in the first view and each of the second
views, and a few differences among the
three second views. The images are not
square so the display program puts a white
band on the right or bottom, depending on
which dimension is smaller. Additionally
unsegmented areas are displayed as white
areas.

The second pair of images is shown in
Figure 3. These are side looking radar
views and there is only one spectral input,
so that a good segmentation is more dif-
ficult and the description is less detailed
than the preceding house scene. The
important changes in this scene are in
objects which are too small to be segmented
by our general segmentation techniques but
might be easily located by special methods.
Figure 4 gives the four segmentations which
will be used. There are a few large
regions segmented in the first view which
are not segmented in the second views.
These differently textured regions vary in
size and appearance between the two views
and would not be used in the matching,
therefore they were not segmented in the
second views. The regions which are seg-
mented are the untextured areas, all
uniformly dark, some of which appear the
same in both views. The locations of these
few regions can be used to determine the
global changes and could aid another system
in locating the detailed changes.

Matching Procedure Outline

A more detailed description of the
matching procedure has been presented else-
where [4] and will only be outlined here.
This matching procedure uses a feature
based, symbolic, description of the images.
The basic unit in this description is an
individual segment generated by an automat-
ic segmentation procedure [8]. These
segments are usually regions in the images,
but linear features can be described, too.
Features which characterize properties such
as color, texture, size, shape, position,
and adjacencies are used.

The matching procedure is also given
an indication of which features are avail-
able for matching the current pair of
images, and what strength to give to the
mismatch using each of these features, For
example, some features are not always com-
puted, red and green in a black and white
picture, and some are given as more likely
to change than others and are thus given
less weight in the matching operation. The
match procedure computes a rating for the
match between two differences of feature
values. The weights used in the sum are
composed of a normalization factor to make
the contribution from each feature approx-
imately equal and a strength factor to
account for the different strengths assigned
each feature. There is only a small set of
possible strength values, currently 3

different values.

Known global changes between the two
images can be used to adjust some feature
values, such as size, position, and
orientation. But, these changes are not
given a priori and must be computed from
a few initial pairs of matching regions.
Thus, the very clearly defined regions
should be matched first so that they may
be used for calculating some global changes.
In this context, clearly defined regions
are regions with extreme values for some
feature, e.g. largest, brightest, longest,
etc.

We will now present results of apply-
ing this procedure to the rotated images
and discuss what changes are necessary to
achieve accurate results.

Initial Results

Figures 5 and 6 show the results ob-
tained with the above matching procedure
for the house scene (90° and %80°). In
these, and all other figures, the cor-
responding regions are displayed at the
same intensity in the pair of output
pictures. Similar results are obtained
for 45° and for matching the second image
to the first, but the point here is to
show some of the problems. The orienta-
tion feature adjustment was computed, using
the sky or roof, and was also used to get
these results, but there are still many
errors. Most of the unmatched regions
would match to an incorrect corresponding
region if a match is attempted.

The major problem is that the location
of the region is needed to correctly lo-
cate matches for many of the smaller
regions. This is especially the case when
there are size and shape changes due to
segmentation differences, such as in the
bush, window, and door regions. If exact
camera transformations are known then the
locations in one image can be mapped exact-
ly into locations in the other, but this
transformation is not known. We are using
many features other than position so an
appropriate mapping is sufficient to allow
the use of the absolute position features.
Given 3 pairs of corresponding regions we
can compute a transformation which will
map coordinates in one image to coordinates
in the other by solving 2 sets of 3 equa-
tions and 3 unknowns. This transformation
is not optimal for all regions in the
image and only accounts for rigid, globel
changes - e.g. rotations and translations.
But this transformation does make the
position features usable when there are
large global orientation changes.

Final Results

Figures 7-9 show the results for the
house matching using the computed location
transformations - a different transforma-
tion is computed for each image pair.
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Results are given for matching regions in
image 1 with image 2. The results for
regions in image 2 with image 1 are similar.
In this set of images the sky, lawn, and
one of the wall sections are the initial 3
regions used for the transformation com-~
putation. The transformations do not
rotate the coordinates precisely 45°, 90°,
or 180° because of differences in segment-
ations (the sky and lawn are adjacent to
the edge and this causes some changes in
size and shape) and a small orientation
difference which existed before the large
rotations were added. But, the adjustment
is accurate enough to use the location
feature in the match operation. The
results at 45° are less accurate than for
the other two, but most of the extra mis-
takes are accounted for by the greater
differences in segmentations (see Figure 2).
When two regions in one image correspond

to one region in the second image, such as
the 2 "bushes" on the right side of the
house in the second image appearing as one
region in the first image, only one cor-
respondence appears in the output,

Figures 10 and 11 present the results
for the radar images. There are very few
(i.e. 6) corresponding regions in these
two images and two of the pairs have very
large size changes. The results for 180°
are identical to those for 90° and are not
presented. Two of the corresponding pairs
may be difficult to see since they are
nearly white in the results picture - one
is a correct match (the reversed '"C'" shape
in the lower left), and the other is in-
correct (a blob near the top right). The
reverse ''C" region, the river (lower right)
and the blob above the river are the three
regions used to compute the transformation
in this set of images. This scene shows
that when these symbolic techniques are
applied to scenes with a reduced feature
set - no colors and no neighboring regions,
accurate results are possible.

Summary

The complete symbolic registration
system presented here has the following
basic steps:

Segment both images of the scene.
Generate a feature based descrip-
tion of the segmented images.

Find corresponding regions for the
most obvious regions.

Set orientation and size correction
factors, if necessary.

Find several corresponding region
pairs.

Compute an approximate coordinate
transformation, if necessary,
Using transformed positions, find
all corresponding region pairs,

N N B NN

The matching results depend somewhat on
the quality nf the segmentation, but the
results of these experiments show that this

symbolic technique can be used to find
corresponding areas in pairs of images
even when there are major global changes.
We would expect similar, or better, results
for pairs of images with global scale,
position, and color changes. We expect
less reliable results for scenes with
major global changes in all four (orient-
ation, scale, color, and position) because
so few features are invariant to all these
changes (e.g. relative size, shape measures,
and neighbors). But if a controlling sys-
tem could provide proper guidance, cor-
responding regions might be located which
would account for each of the global
changes, separately. For example, scale
changes could be based on matching the
largest regions, orientation changes might
be based on regions with distinctive shape,
and so on. But, primary regions with un-
usual, or extreme, feature values could be
used when there are many global changes.

In conclusion, symbolic matching methods
can work with major global differences,
these differences can be detected, and
they can be used to great advantage in
later analysis.
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Figure 4. Segmentations of Radar Images.
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Figure 6. 1Initial Matching Regions for House First View (lefr) and House Second View
Rotated 180° (right).

7 House 1

Figure 8. House 1 with House 2 Rotated 9
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Figure 9. House 1 with House 2 Rotated 180

Figure 10. adar 1 with Radar 2
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ABSTRACT

This paper describes a number of re-
cent experiments involving the use of
synchronous iterative processes in low-
level computer vision.

INTRODUCTION

Synchronous iterative processes ("re-
laxation methods") have many potential
applications in low-level computer vision.
A review of many of these applications can
be found in [l1], and some further work is
summarized in [2]. This paper briefly de-
scribes several recent developments.

MULTISPECTRAL PIXEL CLASSIFICATION

Classification of image pixels based
on their spectral signatures is commonly
used in the analysis of remote sensor
imagery, and has also been used to segment
other types of color images [3, 4]. The
results of this classification are often
noisy, since the pixels are classified in-
dependently of one another. To reduce
the noise, a postprocessing technique can
be used; e.g., if most of the neighbors of
pixel P have been classified as belonging
to class C, then P itself is reclassified
ac class C.

This postprocessing approach is based
on very little information about the
pixels; it makes use only of the (most
probable) classes to which they were
assigned, but not of how close they came
to being assigned to other classes. A
better informed approach might be to
classify each pixel P probabilistically,
i.e., to estimate the probability Py that

P belongs to each class Ci, and then to

adjust these probabilities based on the
class probabilities of the points adjacent
to P.

Preliminary experiments have been
conducted to compare this probabilistic
approach with the simple postprocessing
approach described earlier. These experi-
ments made use of red, green, and blue
color separations of the house image shown

in Figure 1. The image was hand seg-
mented into five regions as shown in
Figure 2. The Mahalanobis distance from
each pixel to each of these clusters was
computed. The initial classification was
based on smallest Mahalanobis distance.
Figure 3 shows this initial classifica-
tion. The error rate was 5.6%.

In the postprocessing approach, if a
pixel P had six or more neighbors that
belonged to class C, P was reclassified
as C, and this process was iterated.
Figure 4 shows the results of the first
and sixth iterations. The error rates
are 5.2% and 5.03%, respectively.

In the probabilistic approach, class
probabilities were assigned to each pixel
P; these were defined by

where d. is the Mahalanobis distance to
the ith cluster mean. These probabilities
were then adjusted using the "relaxation"
formula of [1-2], with *he compatibility
coefficients defined by mutual informa-
tion as in [2). The errors after eight
iterations of the probability adjustment
process are shown in Figure 5; the error
rate is 1.9%, a major reduction.

For comparison purposes, an iterative
preprocessing technique was also used on
the same data. This technique is a
multispectral analog of one of the noise
cleaning schemes described in [1].
Specifically, each pixel's (red, green,
blue) color vector was averaged with six
of the color vectors of its neighbors --
namely, those six that were closest to it
in color space. After this averaging step
(which could be iterated), the pixel was
classified using closest Mahalanobis dis-
tance, as above. The results of this
classification, after one and two iter-
ations of the averaging process, are
shown in Figure 6. The error rates
5.35% and 5.04%.

The results of this experiment
suggest that the relaxation approach may
be more useful than simple pre- or post-

are




processing in improving the results of
multispectral pixel classification.
Similar results have also been obtained by
E. Riseman. Further experiments using
LANDSAT data are in progress.

DETERMINATION OF COEFFICIENTS

In [2] it was shown that reasonable
coefficients for a curve enhancement re-
laxation process can be defined by comput-
ing the mutual information between pairs
of initial curve probability estimates (at
various slopes) at pairs of neighboring
points. These initial estimates could be
obtained from the given image, or from any
image having a reasonable distribution of
curve slopes. More recent experiments in-
dicate that usable coefficients can even
be obtained by applying curve detectors to
a pure noise image. This is because when
a detector responds, the probability of a
response at a neighboring point, corres-
ponding to a smooth extension of the
curve, is far above chance, since the de-
tectors at neighboring points overlap
greatly.

A set of coefficients obtained in
this way is shown in Figure 7, and results
of using them for curve enhancement are
shown in Figure 8. These results confirm
the idea that the coefficients that should
be used to enhance the output of the de-
tactor depend on the definition of the de-
tector itself, and not on the statistics
of any particular type of input data.

OTHER APPLICATIONS

A number of other experiments using
relaxation-like processes are in progress;
they are described briefly in the follow-
ing paragraphs.

a) In the recognition of mechanical
parts, pieces of object boundary
extracted by a segmentation pro-
cess can be classified probabil-
istically as belonging to various
portions of a given mechanical
part. The class probabilities
can then be adjusted, depending
on whether or not other portions
of the given part appear to be
present in the correct (approxi-
mate) relative positions.

b) In matching two sketches of a
given scene (or in matching a
sketch against a segmented image
of the scene), feature points on
the sketches can be probabilisti-
cally paired off based on their
similarity. These probabilities
can then be adjusted, depending
on wianether or not other corres-~
ponding pairs appear to be pre-~
sent in the correct (approximate)
relative positions.
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c) In matching two relational
structures, nodes can be prob-
abilistically paired off based
on their similarity. These prob-
abilities can then be adjusted,
depending on whether or not other
corresponding pairs appear to
satisfy the proper relations with
respect to the given pair.

Results on these applications will be re-
ported in a subsequent paper.
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Figure 1. Red, green, and blue components of house picture.
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Figure 2. Results of hand segmentation. Figure 3. Results of initial classifica-
tion.

Figure 4. Results of iterations 1 and 6 of postprocessing.
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Figure 5. Results of eight Figure 6. Results of ‘terations 1 and 2
iterations of relaxation. of preprocessing.
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Figure 7. Mutual information coefficients
obtained by applying line detec-
tore to noise.
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A SYNTACTIC APPROACH TO SHAPE RECOGNITION

K. C. You and K. S. Fu
School of Electrical Engineering
Purdue University
West Lafayette, Indiana 47907

ABSTRACT

Syntactic method is used to describe the struc-
ture of a shape by grammatical rules and the local
details by primitives. Four attributes are pro-
posed to describe an open curve segment, and the
angle between two consecutive curve segments 1S
used to describe the connection. The property of
the attributes and the recognition capability are
studied. Two algorithms which utilize the semantic
and syntactic information to perform the primitive
extraction and syntax parsing at the same time are
implemented. This approach attempts to develop a
more general method for shape recognition.

1. INTRODUCTION

In the past years, syntactic techniques have
been used for shape recognition in many applica~
tions. The general treatment of syntactic approach
and a review of earlier literatures and aoplica-
tions can be found in the book by Fu [11]. Recent-
ly, a number of papers have reported various new
results of this approach [2-101. The syntactic
method is capable of wusing the primitives to
describe the local details and the production rules
to describe the global structure. The extraction
of primitives and the construction of production
rules have been problems for research. If the
primitives are very simple curve segments with
fixed length, then we may have to use context-
sensitive grammars to take care of the size prob-
lem. In fact, the complexities of primitives and
production rules are flexible. We may use sophis-
ticated production rules for simple primitives or
vice versa. In this paper, we propose a set of
more sophisticated primitives, so that we could
hopefully solve the shape recognition problem
without requiring context-sensitive grammars.

In the following paragraphs, we would refer to a
shape, or a shape pattern, as the outer boundary of
an object in the two-dimensional image. Conven-
tionally, the syntactic recognition of a shape con-
sists of three major steps. The shape pattern is
first traced out from a two-dimensional image.
Secondly, the shape pattern is passed through a
primitive-extraction procedure, so that it can be
represented in terms of primitives. Then, the
representation is processed by a syntax analyzer
with the knowledge of grammars. For the first
step, many authors have reported the techniques for

-~
Definition 1: A curve segment, x1x2,

Definition 2: A simple curve segment is a

picture enhancement, boundary detection, tracing,
approximation, etc. [11-13]. 1In this paper, we as-
sume that the image is clear and the shape pattern
can be easily extracted, since our interest is in
the latter two steps.

Usually, the primitive set has a small number of
elements, which are quite different from one anoth-
er [1,9]. This kind of primitive set is not suffi-
cient to describe the shapes which are similar, but
slightly different in details for different
classes. In our method, the primitives are defined
with four attributes, which allow a large number of
possible primitives. The attributed grammar [15]
has a value part and a symbol part for each primi-
tive or nonterminal. The value part may have
several values called attributes. There are rules
for processing the attributes corresponding to each
symbolic production rule. If the attributes are
considered carrying semantic information about the
shape [1], we actually process both semantic and
syntactic information at the same time.

The primitive-extraction procedure somehow imi-
tates the human recognition process. In general,
the human recognition of primitives is very com-
plex, it wutilizes both local and global informa-
tion. Since the local information is usually used
in step 2 for extraction, and the global informa-
tion is used in step 3 for parsing [14], we there-
fore combine the two steps into one to obtain an
optimal solution. That is, we use the production
rules to guide the primitive extraction, or say,
the extraction is embeded in the parsing.

OQur approach started from the geometrical
analysis of the general shape patterns, and we did
not add any restriction for special applications in
the development. Hopefully, the proposed method is
general enough for a broader cla:s of problems. Of
course, further generalization or modification is
possible.

2. ATTRIBUTED SHAPE GRAMMAR

In this section we propose a new descriptive
method for curve segments and the connections of
the segments. Then, the grammars used are ex-
plained.

is a direc~

tional Lline with a starting point x1 and an ending

point XZ' The curve segment has a curvature func-

tion, f(L), along the direction with 0 < & <L,
where L is the total length of the curve segment.

curve

segment with either f(2) <0, for

f(v) >0, or
0 <8<,




See Figure 1 for illustrations.

To characterize a simple curve segment, we found
that four attributes are sufficient. They are de-
fined as follows.

Definition 3: The C-descriptor of a curve segment

Ly :
p = X1x2 has four attributes, t, L, A, and §, i.e.

D(p) = (L, L, A, $).

L L
Where T = X4 X, L=J; de, A =j; f(ode ,

L S
and S =f (f fcde - Byas .
o o z

¢ is the vector pointing from Xy to X5, L is the

total Llength of the curve, A is the total angular
change, and S measures the symmetry. Figure 2 il-
lustrates the function of S. When p is symmetric,
S = 0. If p is not symmetric, then S > 0 when p is
declined to the left, and S < 0 when p is declined
to the right. Somehow, S measures the degree of
declination. But S measurement becomes less mean-
ingful, when the curve segment is not simple. The
four attributes do not uniquely define a curve seg-
ment unless more restrictions are added. For exam-

ple, $s=0,A=0,L= {C\, the curve segment s a2

straight line vector, ¢,

1f a shape pattern is broken into shorter curve
segments, each curve segment can be characterized
by a C-descriptor, we need a primitive to describe
the connections between curve segments.

Definition 4: An angle primitive is a primitive
which specifies the connection between two consecu-
tive curve segments.

Definition 5: The a-descriptor of an angle primi-
tive, a, has only one attribute, D(a) = A, which
specifies the angular change at the concatenating
point of two consecutive curve segments.

Definition 6: A curve primitive is a curve segment
which is not broken into shorter curve segments.

Remark: A curve primitive is not necessarily a sim=
ple curve segment.

Example 1: If a curve segment N = i;}z is br°k92.ft

point Xs, we may define curve segments X1X3, X3X2
correspondingly as curve primitives Py and Py with

an angle primitive, a, between them.
3.) Their descriptors are:

(See Figure

dpy) = By, Ly, Ay, S, By = XKy
Doy =y Ly Ay S 4 = X5K,

D(a) = a
—y

N = o by A 8 & Ey = X%y

o

-

Definition 7: If a curve segment N is broken into
two curve segments, N1 and NZ' with a connection

angle primitive a, then there is a production rule,
N + N.aN,.

1972
The descriptors of them have an interesting addi-
tive property.
Theorem A: Additivity.

If N+ N.aN, with descriptors DIN) = @&, L, A9,

ony = (&, Lir A S, DN = (€5, Ly, Ay, s
and D(a) = a then

t

C1+ZZ,L=L1+L2,A=A1+a+A2and

E 1
S = S1 + S2 +-Z[(A1fa) L - (A2+a) L1]

The proof can be found in [161].

Definition 8: D(N1) ; D(Nz) denotes the above addi-
tivity.

Corollary A.1: If N -+ N1aN2 then
D(N) = D(N1) ? D(NZ).

Theorem B: The addition, ?' is associative.

If N » N1a1N2a2N3, then
D(N)

DIN,) @ DN, @ D(N)
o e d M

[D(N1) ?1 D(NZ)J 22 D(NS)

D(N1) 21 [D(Nz) ?2 D(N3)]
The proof is obvious.

Because of Theorems A and B, the rules for at-
tributes are obtained for ‘each symbolic production
rules in the attributed grammar ([15]. Since a
shape 1is a closed curve, we can define the point,
which is first found in tracing as the starting and
ending point. Thus, a shape is described by a
curve segment with the same starting and ending
point, and the angle primitive which specifies the

angular change at the point. A general form of the
attributed shape grammar is Gt = (Vl, Tt' Pz' S‘)

where Sl is the starting symbol with special attri-
bute &, which is the label of the pattern.
- .
Vl = (s‘, N's}
Tt = {F's, A's | F: curve primitive,
A: angle primitive)
e (xA)"xA(Ansuerc} ;e

N+ R 0N« () ® D00
A

where X € {N's,F's)




(Ansuerc} and ¢ « & mean that if the parsing is

successful, the shape pattern is recognized as the
class labeled by c.

Since the attribute rules can be directly ob-
tained from the production rules, they are omitted
in the following example. The correspondent di-
agrams are shown in Figures 4 and 5.

Example 2: The shape grammar for airplane BAC 1-11,
Gc = (vc, Tc' Pc, Sc)

Vo= SN 1< <8

-
Ll

S KTV 5,1 SR 4D

c cj

B

Cc

(1) S oo NeqAaNeaAcoF 1A aNc3AC NG 4A s

(@) Sc+ NoA oF c1hcaNesAciN4A N 1Ay

(3) Sc0 F N A N

c1heaVezPcaMesles c2hc2
(4) So» NeghoqNeaheaNeqheiNehcaf che2

(5) Sc‘ NckACSNﬂAc1Nc2Ac2Fc1Ac2Nc3Ac1

clct

(6) sc’ Ncé‘cZFc1AcZNc7Ac4Nc8Ac3Nc5Ac4

(7) S + N A _N.A N_ A_F A

¢ €8 ¢3chichic6c2 ¢l c2Nc7Ac4

(8) + F A F

Nc1 c2'c5c3

(9) N .+

¢S5 Fc2AcSFc4

L NcZ’ FCSAchcéAc7Fc7
A1) N Feahesf coler’cr
$hes Nc3’ Fc9Ac7Fc10Ac6Fc11
(3) N7 FeoherFerotesfer2
(4 N4> FeqshesFers

13 Nc8’ Fc15AcSFc1lo

In Example 2, the S production rules cover the most
possible starting points of the boundary. Due to
the rotation of the object, the starting point may
be any of the convex points. Instead of looking
through the whole boundary chain for a fixed start-
ing point, we wuse the S production rules to take
care of these most possible starting points so that
we only need to look over a short portion of the
boundary chain for a sharp convex point, that would
be the starting point. Because of the noise, some-
times the breaking points can not be found in ex=
tracting primitives. For instance, if the corner
of angle primitive Ac1 in Figure 4, is smeared so
that ch and Fc3 can not be extracted then we can
avoid this trouble by finding Ack to extract Fc8
and Fck' With this idea, the noise problem at the

breaking points can be taken care of by employing
different segmentation. This example has essen~
tially two sets of segmentation, Figures 4 and 5.
The non=simple curve segment, Fc6 and Fc10 are used
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as primitives to reduce the number of primitives,
and consequently reduce the problem of extracting
primitives from the noisy shapes. The assignment
of primitives is very flexible.

3. COMPUTATION OF C-DESCRIPTORS IN DISCRETE CASE

The curvature function f(L) in discrete case is
a summation of pulse functions. It is much easier
if the descriptors can be computed by additions and
multiplications instead of integrations. By apply-
ing additivity, we can obtain very efficient compu-
tations. We first derive two more corollaries from
Theorem A.

Corollary A.2: If N5, in theorem A is a straight
line vector, i.e. A =0, 82 = 0, then

t=t1+tz P L=l , A=Ay ta,

% 1 'y
and S = S1 + ALZ + 2-A1L1 i AL

Corollary A.3: If N1 is also a straight Lline vec-
tor, iue. A1 =0, S1 = 0, then
E=Cosly ', L=Ly*+L, , A=a, and

s =al, - 3a, +Ly) = AL, - 3 AL
Thsorem C: Recursive Equations for Descriptors
= (v1v2 i vm) is a vector chain. Let Hi denote
(v1 CRA Vi)' Vel "m =M, 3, is the angle between

viand vi e, 0v) = &, L,0,0, i<ig<m

Then D(M,) = (Enj' Luj+ Awss Sujds 1< 3 < m, where

o=l

Mi - ‘m-n t Ej = & .

buj = b=y *4 = 1; by
=1
0 T TS T UM T P PR

1
Swi = Gmj ~ 7 Amilm;
’ gt
Gj = Gmcj-1) * Awjlj * ,; Awil; = ; J‘; a,L;

Theorem C can be proved inductively using corollary
A.2 and A.3. With this theorem, the attribute can
be computed exactly instead of approximately in the
discrete case. For a boundary chain of m vectors,
if there is enough memory to store all the c-
descriptors calculated for later processing, we
need to compute m(m+1)/2 possible c-descriptors in
the worst case. According to Theorem C, each c-
descriptor needs 2 multiplications, S additions,
and 1 shift. That implies, it takes about .2 mul =
tiplication time to compute all the possible c-
descriptors.
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4. RECOGNITION OF PRIMITIVES

As mentioned previously, a curve segment can be
described by four attributes. But the translation,
scaling and rotation of the object may cause dif-
ferent values of the attributes, and also introduce
different noise in digitization. Fortunately, the
attributes can be transformed into a multi-
dimensional space, in which the transformed
descriptors are theoretically invariant under above
operations if it is noise-free.

Definition 9: Transformation T:D(p) + T(p), or

1, L, A 9 > A D
]

where C = Ifl, L, is a normal ization factor, which

could be the total length of the shape pattern.

The proof of the invariance of the transformed
c-descriptor 1is omitted here. Because of the in-
variant property, the recognition of the primi-
tives, and hence the whole shape, are based on the
transformed descriptors. If two curve segments are
mirror 1images of each other, their transformed
descriptors are only different in the sign of S/L.
Consequently, if it is necessary, the storage for
transformed descritors of the bisymmetric shape,
e.g. top view of airplanes, can be halfly reduced
by storing them in pairs. We studied the distribu-
tion of the values in the transformed space under
various rotations to help us understand the noise
effect on the transformed descriptors.

The details of this study and a relevant experi-
ment can be found in [17]. For each curve primi=
tive, the transformed descriptors under various ro-
tations form a cluster in the multi-dimensional
space. The distribution of each cluster is consid-
erably close together and any two clusters are well
separated. We also noticed that the noise at the
breaking points has much bigger effect on the at-
tributes than that at the middle of the curve seg-
ments. From above study, we suggest to recognize a
curve primitive by means of a distance measure in
the 4-dimensional transformed attribute space.
Without losing generality, we assume each curve
primitive, 4, has a referenced point, T(Q), in the
4~-dimensional transformed space. If there is a
curve segment, g, whose transformed c-descriptor,
T(q), is considerably close to T(Q) in the 4-dimen-
sional space, q 1is recognized as Q. In other
words, there is a recognition function Ry, if

Ro(q) <tge tg is a threshold, q L£a. In general ,

Rq can be a distance, similarity, or probability

function dependent on Q. If it is also a function
of @, we could rewrite it as R(Q,q).

The recognition of the angle primitive is simi=
lar, but simpler. For an angle primitive A, there
is a function RA' If any angle a, R“(a) < tA' then

a " A. If it is a function of A, it can be rewrit-
ten as R(A,a). Theoretically, the angle primitive
has no length. Since sharp corners are often
smoothed by noise, we allow a short length for an-
gle primitives as called "corner tolerance". Of
course, it is possible to employ the concept of
partial recognition, or recognition with probabil i=-
ty p, 0 < p <1, instead of "yes" and "no" for both
curve and angle primitives.

5. PARSING SCHEMES

We have developed two recognition algorithms,
which accept the shape pattern in form of vector
chains, and perform the primitive recognition and
parsing. The first one is a modified Earley's al-
gorithm. Earley's parsing algorithm [14] consists
of two parts: parsing table generation and parse
extraction from the table. For classification pur-
pose, only the first part is sufficient. There-
fore, we have only modified the first part of the
algorithm. The flow-chart of the modified algo-
rithm is shown in Figure 6. The grammars used are
in context-tree form as described in Section 2.
Vai St is the unknown vector chain. TX)

denotes the transformed descriptor of a curve seg-
ment, X € (vl u Tl) - Sl, TG,j5) denotes the

transformed descriptor of the

Vivi+1 oo vj' I1 see Im+1 are the parse

For items (A ~a * 8, i) in 1, 1< <j, (1) iff

subchain
lists.

a # A (empty string), then a 3 NViisee Vj' (2) if
a=1), then i = j. T(X) = T(k,j) implies that
Vi o= vj is recognized as X, or say,

ases vj Livpy Readers may refer to [17] for de-

tails.
The Modified Earley's Algorithm

Input: A context-free shape grammar and an unknown
chain of m vectors.

Output: "Accept" or "Reject"

(1) Add LS » * a,1] to l1 for all S + a in PL
=
(2) (a) If [N + a * BB,i] is in Ij and B + vy in Pt
then add [B + * v,j] to Ij
(b) If N *+ a * ,i] is in I,
then for ail [B + B8 * N v,k] in Ij
add [B + BN * y,k] to Ij
3) j = i+
if j > nt1 goto (4)
For all [N +a * X8,i3 in I, 1 <k <j

X ¢ {F's,A's)
(a) If 6 # A and T(X) = T(k,j)
then add [N * aX*8,i] to Ij

(b) If 8 = X, T(X) = T(k,j) and T(N) = T(j,i)
then add [N + aX*,i] to Ij

) 1f (S » a *,1] in In*1 for some a,
then "Accept", otherwise "Reject"

In some recognition problems, only finite state
grammars are used. Therefore, we also developed a
finite automaton which embeds the primitive extrac-
tion. Since we always can find an angle primitive
following a curve primitive, we consider that each
time the input contains a curve primitive and an
angle primitive. Figure 7 shows the storage of a
finite state grammar in a structural form. The
recognition, with its flow-chart shown in Figure 8,
uses a STACK. Each element in the STACK contains
two fields, state and vtpt, a state and a vector
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pointer, which means the first vtpt-1 vectors of
the unknown shape have been accepted through the
state. FS is a set of final states.

The Finite State Automaton
Input: A finite-state shape grammar in tabular
form (Figure 7) and an unknown chain of m vectors.

OQutput: "Accept' or "Reject"

Method:
(1) kp «1
STACK (kp) « (51,1)

(2) If kp = 0 then terminates with "Reject"
otherwise s « state (STACK (kp))
p « vtpt (STACK (kp))
kp «kp = 1
tp « PTR (s)
(3) If tp =0 GOTO (2)
(4) nxp « nxpt (TABLE (tp))
F « curve (TABLE (tp))
A « angle (TABLE (tp))
nxs + nxst (TABLE (tp))
(5) For all x,y, p < x <y < mt
If (T(p,x) = T(F) and T(x,y) = T(A)) then
if nxs ¢ FS and y = m+1 then GOTO (7)
otherwise kp + kp+1, STACK (kp) <+ (nxs,y)
(6) If nxp = 0 then GOTO (2)
otherwise tp + nxp, GOTO (4)
(7) Terminates with "Accept"

The modified Earley's algorithm basically imple-
ments a breadth-first search, while the automaton
implements a depth-first search. They both search
for feasible primitives which satisfy the produc-
tion rules. The automaton recognizes the primi=
tives, while the Earley's algorithm recognizes the
nonterminals as well as the primitives. If we
abandon the recognition of nonterminals in the
Earley's algorithm, the two algorithms will end up
with the same classification result. But, the au-
tomaton would be faster, because it stops at the
first feasible set of primitives found. The recog-
nition of nonterminals upgrades the discriminating
power of the Earley's algorithm.

Figure 9 has 3 views of 2 airplane models. V,
U, T indicate different angle views, they are all
close to the top view. (a) is different from (b),
(c) by two small missile-tails and a machine gun on
the right wing. But the machine gun may not appear
in the digital picture. We can construct a gram-
mar, GF86,T' to distinguish it from MIG-15. GF86 T

can be 1in context-free form or in f1n1te-state
form, and both algorithms are applicable. If we
want to distinguish the two views of MIG-15, we can
construct a grammar Gms,u to distinguish them.

Since the major difference between the two views is
the width of the fuselage closed to the tail and
the whole tail is not designed as a primitive, we
need to check the nonterminal which represents the
whole tail or the whole shape excluding the tail.
In such a case, the Earley's algorithm can discrim=
inate better than the automaton.

I1f a partial recognition or probabilistic recog=
nition is used for primitives, the above two algo-
rithms can be further modified to exhaust all the
cases and select the best acceptable one, or the
most probable one, among all the classes. In such

a case, the finite automaton has no advantage over
the Earley's parser. The computational cost of the
parsing algorithms increases rapidly with n, where
n is the number of vectors in the boundary chain.
Therefore, we try to smooth the boundary and reduce
the number of vectors before parsing if the smooth-
ing does not distort the boundary very much.

Both of our parsing algorithms have been imple-
mented on a DCD 6500 computer in FORTRAN language.
They are used to classify the airplane shapes in
Figures 9 and 10. It took about 0.35 secnd per
grammar for a boundary chain of 60 vectors.
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A POSTERIORI IMAGE RESTORATION

John B. Morton
Harry C. Andrews

Image Processing Institute
University of Southern California
Los Angeles, California 90007

Two algorithms are developed which
address the problem of estimating the
magnitude and phase of the optical transfer
function associated with a blurred image.
The primary focus of the research is on
the estimate of the phase of the optical
transfer function. Once an estimate of

the optical transfer function has been made,

the corresponding blurred image is Wiener
filtered to estimate the original unblurred
image (the object). Results are demon-
strated on computer simulated blurs and
also on real world blurred imagery.

The technique to be studied attempts
to remove degradations from an image using
a minimum of knowledge. The following
assumptions will be made:

a) a blurred image is available

b) the PSF is spatially invariant

c) the extent of the PSF is small

compared to the extent of the
image.

d) the blurred image is relatively

noise free (i.e. the dominant

degradation is blur and not noise).

The emphasis will be on estimating the
complex OTF; that is both magnitude and
phase of the OTF. Once the OTF has been
estimated, techniques known to be success-
ful given knowledge of the OTF will be
used to estimate the undegraded image.

The general philosophy will be to
assume all quantities are continuous, and
any discretizations are a corruption of
the continuous process and introduce errors
into the system. For example the image,

f(x,y), is assumed to represent a continuous

function. Since convolutions of continuous
functions are continuous functions, the
blurred image, g(x,y), will also be assumed
to be continuous.

Dividing the degraded image into
subimages, which may overlap, and indexing
the subimages by i,

Gi(u,v) = H(u,v)Fi(u,v)

or equivalently

Gi(u,v) = H(u,v)Fi(u,v)+E
where E is the error inherent in the above
approximation. Forming the product we
obtain

* : *
Gi(u,v)Gi(u+Au,v+Av)5H(u,le (utAu, v+Av)

'Fi(u,v)Fi(u+Au,v+Av)

*

If the product H(u,v)H (utAu,v+Av) can be
estimated and given that H(0,0) = 1, we
obtain a recursive relationship where

H* (u+Au, v+Av) =
N

é E:Gi(u,v)Gi*(u+Au,v+Av)
i=1

1 N *
H(u,v)§ ;ElFi(u,v)Fi(u+Au,v+Av)
=

Now considering the phases and observing
that 8y(0,0)=0, we have a recursive
algorithm

BH(u+Au,v+Av) = SH(u,v) -

(eci(u,v)-eGi(u+Au,v+Av)) +

(nglu.V)-BFiIu+Au,v+Av)>

where the bar element denotes averaging in
some sense.

Techniques have been developed, based
upon the above equations to estimate the
complete complex OTF from a blurred image,
Results on real world arbtitrary blurs are
presented in figure 1. Here two original
scenes are partitioned into subregiors,
OTF's calculated, and then Wiener filter
restored.
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Figure 1. A Posteriori Blind Restoration
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Target/Background Segmentation and
Classification in FLIR Imagery

0. R. Mitchell

Purdue University

West Lafayette, Indiana 47907

Abstract: Ongoing projects at Purdue are pro-
ducing results in the areas of real-time target
tracking and classification. This paper
presents some techniques which are being used
on digitized images and their utility for seg-
mentation and classification of targets in FLIR
imagery. The segmentation algorithm assumes
potential target objects are already located in
the image and the required operation is tc pre-
cisely separate the object from its background.
To accompl ish segmentation, background features
are measured over a region surrounding but not
including the object region. Then the features
of the object region are measured and compared
to those of the background. Pixels not match-
ing the background are labeled as object
points. The features measured are grey level,
edges, and texture. A method of classification
of the segmented objects using projections is
next presented and discussed.

I. Segmentation: We have been collaborating
with Honeywell System and Research Division in
developing a system to detect and recognize
tactical targets in FLIR (forward looking in-
frared) imagery. Shown in Fig. 1 are 16 sample
FLIR tactical targets. These images are ther-
mal and several characteristics apply to active
vehicles: (1) the motor is sometimes visible as
a hot (bright) spot, (2) edges can be detected
on the object/background boundary, and (3) the
average temperature (grey level) of the object
is often different from the background. These
characteristics are presently used by a
Honeywel | Autoscreener System to locate poten-
tial target areas. The images in Fig. 1 were
selected by the Autoscreener as potential tar-
gets. Note that four of these are false
alarms.

The techniques described here assume that the
location of each potential target is known.
They attempt to separate the target and nontar-
get points based on features measured in the
background and in the target region.

A. Segmentation Features: To accomplish target
segmentation, background features are collected
over an annular region surrounding the rpoten-
tial target. Then the features of the target
region are compared to those of the background,
the points not matching the background are la-
beled as target points. As is evident from the
sample 1images, grey level alone is not always
enough information for accurate segmentation,

Fig. 1 Original FLIR imagery selected by ini-
tial processing as potential targets.
Numbered left-to-right, top-to-bottom
are: armored personnel carrier (APC) -
1, 458, 1; truck'- 2, 3, 6, 13; tank
- 5, 9, 12, 15; false alarm - 7, 10,
14, 16. Each image is 128x128 with 6
bits of grey level.

so additional features are necessary for the

process. Hopefully, once the right features are

selected, any points that have different
features than the surrounding background points
will be part of the target.

The two additional features are chosen to com-
plement the grey level image. These are tex-
ture and edges. The texture was chosen because
it seems probable that object and background
textures would not be identical, assuming a
good texture measure were available to dif-
ferentiate among textures. The edges were
chosen as a feature due to the predominance of
edges along the target background interface and
the fact that grey level (temperature) and tex-
ture become ambiguous near the object boun-
daries.

The edge feature is a gradient type measurement
measured over a 7x7 window for each point. The
absolute difference between the upper 21 points
and the lower 21 points is compared against the
absolute difference between the left 21 points
and the right 21 points. The center point is
then replaced by the maximum of the absolute
values of these two differences. This process
is repeated for each point in the original im=-
age to produce the edge feature image. Fig. 2
contains edge feature images based on the ori-
ginal images in Fig. 1.




Fig. 2 Edge features images as measured on

original images in Fig. 1.

The texture feature is derived from the max-min
local extrema described elsewhere [1-2]. Local
grey level extrema are measured in hysteresis
smoothed versions of the original image using
three smoothing thresholds. The lowest level
extrema correspond mostly to noise in the im-
age, whereas the highest correspond mostly to
edges. The remaining medium level extrema are
a measure primarily of the texture in the im-
age. The medium level extrema locations for
the targets in Fig. 1 are shown in Fig. 3.

Fig. 3 Medium level extrema Locations for” the
targets in Fig. 1.

The texture feature image is created from the

extrema by averaging the number of medium level

extrema in every 10x10 window in the image and

replacing the center point of the window with

the average. Texture feature images are shown
in Fig. 4.
B. Segmentation Procedures: Once the feature

images are produced two concentric circles are
centered at each potential target as derived
from the Honeywell preprocessing system. The
inner circle represents the potential target
area and the annular region between the two
circles represents the background region. In
an automated system these circle sizes would be
adaptive since approximate target size and
background context will also be available from
prior processing stages. In our implementation
of the system here, the inner radius was fixed
at 40 pixels and the outer radius at 64 pixels.
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Fig. 4 Texture feature images derived by
averaging the number of extrema
over 10x10 windows.

The background annular region must be large
enough to allow a sufficient background sample
to be collected but it must not include target
points or be so large that irrelevant back-
ground obscures the background/target differ-
ences.

The present background statistics gathering
program generates a three-dimensional histogram
over the original and two features for all
background points. The quantization selected

allows for 32 original grey levels, 8 edge
values, and 16 texture values. This background
histogram is therefore composed of 4096 bins.

Once the background 3-D histogram is completed,
each potential target point (3-D vector) is
compared against its background bin. If that
feature combination occurs often in the back=-
ground, the point is considered another back-
ground point. If the feature combination does
not occur in the background, that point is la-
beled a target point.

The target test was done over the whole 1image
instead of just the inner circle to give us an
idea of the background rejection of our pro-
cess. Segmentations wusing this process are
shown in Fig. 5.

the
in Fig. 1 using grey level, edges, and

Fig. 5 Segmentation results on originals
The detected target points
at their original grey level

are

texture.
are left
and the detected background points
turned off.




II. Classification By Projections: The segmen-
tTations produced by the method previously
described produce results which are sometimes
fragmented and contain drop-out and extraneous
points. A classification scheme which is some-
what insensitive to these variations would be
appropriate. We are presently investigating
the use of projections through the segmented
object to derive classification features. A
similar type of structure recognition method is
being developed by New Mexico State University
for missile tracking at the White Sands Missile
Range [3]. It has the advantage that the in-
tegration process of the projections averages
out many of the noise problems inherent in
thermal images and our segmentation method.

Shown in Fig. 6 are eight projections through a
segmented object (background points set to
zero, target points remain that their originat
grey level). the object is the APC which is
the 11th image in Fig. S. The small circles
along the horizontal axes represent 10% area
increments along the projections. The numbers
printed below are the distances between the 10%
area increments normalized so that the total
distance (representing 65 pixels horizontally)
is 1000. The narrowest and widest projections
are then selected by measurirng the distance oc-
cupied by the center 60% of the area. This ap-
proximately removes the rotation dependence of
the projections. Classification is made on the
remaining two projections.

Fig. 6 Eight projections through the eleventh
segmented target (APC) in Fig. 6. The
small circles below the horizontal axes
are 10% area increments. The numbers
indicate normalized distances between
circles.

Fig. 7 includes the narrowest and widest pro-
jections for one sample of each type target.
Distinguishing characteristics of the projec-
tions for these particular categories are:

(1) APC - A significant dip in the center of
the wide projection representing the seat-
ing area; the temperature (brightness) on
either side of the dip is comparable; the
dip often shows in the narrow projection as
well.
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(2) Truck - A bright body area, a small dip
repres2nting the windshield, and a smaller
region representing the front, all visible
in the wide projection.

(3) Tank - A predominint bright motor in both
projections and a dip in the wide direction
due to vent holes.

(4) False alarm - Highly varing projections due
to disjoint points; non-symmetrical narrow
projecticn; often a small total number of
points.

These characteristics can best be measured by

the location and size of local extrema along

the narrow and wide projections.
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Fig. 7 Narrowest (left) and widest (right)
projections through four sample ob-
jects. Labels for each pair of projec-
tions indicate the type of target and
its numerical position in Fig. S.
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RESULTS IN FLIR TARGET DETECTION AND CLASSIFICATION

D. L. Milgram

Computer Science Center
University of Maryland
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ABSTRACT

This paper describes experiments in
the detection and classification of tactic
al targets (tanks, trucks, APC's) in
forward-looking infrared (FLIR) imagery.

1. Introduction

The objects to be classified are
connected regions of an input picture, ex-
tracted by thresholding the image. More
than one threshold may have been used on
any given picture, so the regions need not
be disjoint; rather,one may be entirely
contained in another. For each region, a
feature vector containing information
about shape and brightness is used as the
sole source of information about the re-
gion for classification. The extraction
procedure has somewhat preselected these
regions, so that every region examined has
at least minimal correspondence (20%) between
its perimeter and the high-edge points,
has at least minimal contrast (.2 gray
level), and is of roughly appropriate size
(between 20 and 1000 pixels). For a de-
scription of the Superslice region extrac-
tion process, see [1-2].

2. Stage 1l: Preclassification

The classification can be thought
of as a two-stage process (shown schemati-
cally as Figure 1). The first stage is a
crude “semantic" classifier which identi-
fies some regions as having properties
which indicate that they are not targets.
Thueg, all targets have relatively similar
height and width, seen at any aspect
angle. Any region with h/w greater than 3
or less than 1/3, then, may be confidently
rejected from further consideration.
Similarly, targets "should" show some
minimal contrast at their perimeters, a
good edge-perimeter overlap, and small
targets should be of nearly uniform
brightness. All these criteria are set by
establishing numerical thresholds such
that at least 95% of the sample targets
satisfy the criteria.

This is called "semantic" classi~

fication, rather than a very crude
statistical classification, because the
particular criteria used have been chosen
to distinguish the targets on the basis of
physical characteristics of true target
images. A statistical classifier, even if
it arrived at the same scheme, would be
assessing discriminatory ability on the
sample of classified regions provided for
training, and could reflect any peculiari-
ties which happened to distinguish the
categories in that sample. (In the NVL
data, APC's often exhibit an asymmetry
which is due to the fact that most of
those in the sample appear in only a
single aspect. An apparently good statis-
tical classiiier could be formed which
would unhesitatingly identify any APC in
some other aspect as a tank.)

This pre-classification examines
individual features to determine whether
they could be reasonably associated with
true targets, and discards "ridiculous"
cases. A side-effect of this sorting is
to assure that feature values seen by the
subsequent statistical classifier are
never very far from their characteristic
values. This makes the classifier much
better-behaved than one which accepts non-
normally distributed features (as most do)
that have not been "critiqued."

Statistical Classifica-
tion

3. Stage 2:

Once the set of extracted regions
has been reduced to a set of bright, com-
pact, reasonably uniform regions, statis-
tical classification is used to assign a
class to each particular combination of
features (or rather, to its associated re-
gion). A great many kinds of statistical
decision rules exist. Access to the
MIPACS [3] interactive system allowed us
to design a decision tree (each node of
which is a standard classifier) for
efficient classification. The system
allows individual decision functions to be
either linear (e.g., Fisher), quadratic,
or maximum likelihood, and provided a
convenient mechanism for selecting which
decisions to make, and just which features
to use at each decision point.

The basic structure selected is
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shown in Figure 2. The first node
actually represents a non-statistical
selection. Because of the wide range of
apparent sizes of the target images (from
25 to 1000 pixels) and the consequent wide
range in visible complexity of detail, it
was quickly determined that statistical
classifiers would not provide good dis-
crimination over the entire size range.
(Almost every feature measured showed
substantial correlation with apparent size,
and since the various sample classes
happened to have rather different image
size distributions, our earliest classi-
fiers used that factor as a main classifi-
cation indicator.) Therefore the first
step in the classification is a simple
split on image area -- with all regions of
less than 95 pixels going to the "small"
subtree, and the remainder passing into
the "large" subtrees. For several reasons,
principally a presumed lesser urgency for
detailed identification of small or distant
objects and the fact that in the smallest
images no significant differences between
the various target classes are apparent,
the small regions are simply sent to a
node which classifies them as (small) "tar-
get" or "non-target" -- the specific type
of target is left unspecified. For the
large regions, a two-stage process follow-
ed. As neither APC's nor trucks are par-
ticularly well characterized by the
features used and their distributions are
very similar, they were merged into a
composite "truck-like" class. Any region
found to be in this class is then assigned
as APC or truck by a Fisher discriminant.
(A major reason for this breakdown is that
it permits fairly large samples to be used
at an important decision point and rele-
gates use of the sparsely sampled truck
class to a relatively inconsequential dis-
crimination.) The principal decision was
therefore between the "tank" and "truck-
like" classes and the "non-target" class.
Our approach applied the maximum likeli-
hood criteria directly to the tank, truck-
like, and non-target classes.

Given the true structure for the
classification, the kind of classifier and
the set of features at each node were de-
termined. The number of features which
can reliably be used depends on the size
of the sample set used for training.
Assuming that the features are chosen so
as to avoid apparent vagaries in the set
of exemplars, one can confidently use one
feature for each ten samples in the small-
est group up to a limit of one-third the
sample number for a linear classifier. As
gquadratic classifiers utilize more detail
of the presumed distribution one is re-
stricted to the conservative end of that
range. These rules of thumb, while not
universally valid, are nonetheless useful
guides.

By merging the truck and APC
classes, we allow comfortable use of a
quadratic classifier on five or six
features at the main decision node, while
the smaller samples make a linear classi-
fier or a three (or four) feature quadra-
tic classifier more reasonable at the
lower node. The "small" node could
utilize five or six features -- but one is
hard-pressed to find even that many which
provide any discriminatory power at all.

4. Experimental Results
4.1 Feature selection

As in any classification
problem, much of the initial feature
selection for the vehicle recognition task
was carried out informally. This phase is
largely introspective, determining
characteristics of the images that seem
helpful for human judgment, then identify-
ing some features that should suitably re-
flect these characteristics. This initial
feature set (conveying "shape" and "rela-
tive brightness") is listed in Table 1.
All of these features seem appropriate
for use with linear or quadratic classi-
fiers.

The features were examined
in several ways. First, histograms for
each feature were produced for every
sample class. These histograms were ex-
amined to see whether the sample distri-
butions satisfied the criteria noted in
the last section. The differentiation
that appeared was interpreted as to
whether it was a true difference between
classes, or simply a sampling anomaly.
(At this stage too, particular features
might be replaced by similar features of
slightly different functional form, to
better satisfy the requirements of auto-
matic classification.) Second, those
features that seemed to have some merit
were ranked for classification power at
each node of the decision tree. The
"Automask" method, available within
MIPACS, was used. Briefly, Automask
finds, for each feature, its "share" of
the total dispersion both between and
within sets, and finds the single feature
which produced the greatest comparative
variance between sets. This feature is
then deleted from consideration, and the
other features reexamined to find the next
best feature, and so on. The relative
merits of the features for each node are
shown below.

Usable features

Node Good features

Small E&P (h/w) ', (h*w)/A,
(h+w) /P, diff,
skewness, asymmetry

Large E&P, diff (h/w)', (h*w)/A,
skewness, asymmetry,
E
P

i o - -
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Trucklike E , asymmetry (h/w)"',
P (h+w) /P, skew
ness, E&P

Shape features:

In the first stage, the (h/w)' height-
to-width feature was useful in identifying
small bright streaks as non-targets. In
the statistical classifier for small tar-
gets, shape features were individually
very weak in distinguishing targets from
non-targets. For large targets, diff was
the best shape feature at node LARGE; all
others but asymmetry were also of some
use. At node TRUCK-LIKE, on the other
hand, asymmetry was the best shape feature,
with the remainder of no value.

Brightness-related features:

Edge-border coincidence (E&P) was by
far the strongest single feature for both
nodes involving target/non-target dis-
crimination (OBJ and LARGE). For small
targets, it provides nearly all the dis-
crimination in the second stage. For
large targets, it provides evidence which
is well complemented by shape information
-- both must be included for adequate
performance. Also very useful, particu-
larly at stage 1, is E_, which provides

substantially different information from
E&P. Gray level variance is used to some
effect in the first classifier stage, but
is not effective in the second stage.
Perimeter contrast information appears to
be much more effectively conveyed through
Ep than dgl.

These rankings, while not dependable
when taken alone, have been very helpful
in suggesting which features could usefully
be included in decisions at each node and
which should be omitted. This was
especially helpful in the case of the
shape features, for which estimates of re-
lative merit were not obtainable.

The final stage of feature testing was
experimental. Features suggested either
by Automask or by the problem definition
were included in decision functions, and
self-classification attempted. In many
cases, the results were not satisfactory
and one or more features were added or de-
leted until "good" results were obtained.
If too many features were present in this
classifier, features were removed until the
best classification obtained with an
acceptable number of features was found.

4.2 Classification

The NVL data base as
windowed for classification purposes con-
sists of:

75 Tanks
34 Trucks
55 APC's

164 Target windows
10 Non-target windows

174 Total windows

Associated with each window was
a liberal threshold range extending from
the shoulder of the background peak gray
level to the highest gray level at which
there was significant sensor response.
Although these ranges were manually
selected, this is not a significant inter-
ference with the automatic nature of the
algorithm since the gray level ranges can
be chosen by a simple scheme which identi-
fies the background peak and proposes
every threshold above the peak. (If a
coarse temperature calibration is avail-
able, this task is even simpler.)

The Superslice algorithm was run
on these windows using the selected gray
level ranges. Connected components whose
contrast, edge-perimeter match score and
size were within tolerance were retained.
The resulting sets of regions of a window
may be described by containment forests.
Within each containment tree, Superslice
selects for the candidate object region
its best exemplar(s) based on edge match.
Thus, every tree has one or more best ex-
emplars associated with it.

Each containment tree is manually
labelled as either "target-related" (con-
taining regions associated with the
target) or noise (spatially apart from a
target region) so that false dismissals
can be determined.

Of the 164 target windows, two
windows had containment forests with no
target-related regions present. At this
stage, the false dismissal rate is 2/164
or 1% for Superslice. Determination of a
false alarm rate is inappropriate since
the discrimination performed by Superslice
is "object vs. non-object", not "target
vs. non-target", and there is no ground
truth for the number of objects (including
targets, hot rocks, trees, etc.) in the
frames.

The next stage - preclassification
- performs possible-target vs. non-target
screening. [For the purpose of building
the screening criteria and subsequent
classifier, a single exemplar per target
was hand-chosen. All noise regions, how-
ever, were retained.] Of the 162 target
windows, the preclassifier retained 161
for a false dismissal rate of 1%. 1In
addition, 44 noise exemplars also sur-
vived as possible targets. The false dis-
missal was small and very faint.

After preclassification, 150

1.
7 o




selected target exemplars and all noise ex-
emplars were split into a training set
(74 targets and 22 noise regions) and a
test set (76 targets and 22 noise re-
gions). The training set was used to de-
sign the optimum decision rule. It was
felt that similar results in classifying
both sets would then indicate that the
classifier had utilized robust character-
istics of the target class and thus could
be expected to give similar results on
further data of the same type.

A linear discriminant is used at two
nodes: for the small target /non-target
and for the truck/APC discriminations.
Five features were used at both nodes, of
which four were the same: (h*w) /A,

(h+w) /P, asymmetry, E&P. The fifth
feature was diff, for the small target
discriminant, and skewness, for the
truck/APC discriminant. The large targets
are divided into three classes (tank,
truck/APC, other) by a quadratic maximum
likelihood discriminant using six
features: (h/w)', (h*w)/A, diff, skewness,
E&P and Ep‘

The detection results of the fixed
class classifier on the 150 selected tar-
get exemplars are summarized by:

Train Test Total
Large 53/53 53/55 106/108
Small 20/21 20/21 40/42
Totalk 73/74 73/76 146/150

where "M/N" means "M successes out of N
tries." The classifier thus appeared to
be robust.

We say that a false dismissal for a
window containing a target has occurred
when no target exemplar (at any of the
thresholds) is classified as a target
(i.e., classified as tank, truck or APC).
Similarly, a false alarm is any noise ex-
emplar (i.e., not associated spatially
with a target region) classified as a tar-
get. However, multiple exemplars for the
same noise region are counted only once.
In effect, we are counting the image re-
gions (as opposed to exemplars) which are
classified as target regions by at least
one exemplar. If a region is, in fact, a
target region and some exemplar of it is
called a target, that is a success. If no
exemplar is so called, then a false dis-
missal has occurred. Finally, if the so-
called target region does not, in fact,
contain a target then a false alarm has
occurred.

The overall classifier results con-
sist of 6 false alarms and 3 false dis-
missals from the 162 target windows and 2
more false alarms from 10 non-target win-
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dows. No window contained more than one
false alarm cue. Figure 3 displays the 6
(total) false dismissals. Masks of the
false alarms along with their gray level
windows are shown in Figure 4.

The question of how target identifi-
cations can be made in this environment of
multiple exemplars, while secondary to the
task of detection, is an interesting one.
For each containment tree containing at
least one exemplar classified as a target*.,
we chose the target type of the exemplar
with the best edge-match (E&P) score in
the tree and used that target type to
designate the region. In the event that
the "best" exemplar was not described as
a target, we labelled the object region
"unknown target." Only large targets
were considered, since small targets while
detectable were not considered identifi-
able.

In a test which classified all best
exemplars cf large targets (55 tanks, 21
trucks, 36 APCs) the between-types con-
fusion matrix was:

Classified as
N A R

S R

et AL AR TR

A priori{ Tr 6 8 7 0

A 9 5 20 2

where "UT" is the "unknown-target" type.
The 8 false alarms were classified as 1
truck, 2 APCs, and 5 small targets. Be-
tween-class confusion is high, with tanks
being the most successful class. Trucks
and APCs were often confused with tanks.
A number of reasons can be advanced for
this performance. First, tanks were the
most numerous target and therefore could
be identified most confidently. Second,
large APCs appeared with the wooden wave
deflection board in view, producing a
characteristic "c" shape. No attempt was
made to utilize this special knowledge.
Third, the large targets appeared in only
a single aspect and no generalized shape
descriptors separating the different
types could be extracted reliably. It
seems most sensible to model the target
types as three-dimensional objects, and to
derive discriminators from their inherent
shape and size differences from all
aspects.

5. Summary

We may summarize the principal
classification results as follows: The
false dismissal rate of the system is less
than 4%, giving a system detection rate of
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96%. The false alarm rate, based on the
number of false alarm regions per unit
area, is 8 false alarms in 174 (128x128)
windows. Assuming there are 500x800
pixels per frame and that a target
occupies about 1/10 of a window, we con-
clude that the total processed area corres-
ponds to about 6 frames. Thus the false
alarm rate is 8/6 or 1.3 per frame. A
separate test of the false alarm rate was
made using a set of four 512x512 pixel
frames. All available targets were de-
tected. 1In addition, 4 large false alarms
and 8 small false alarms were detected.
However, 5 of the 8 small false alarms
corresponded to fiducial marks. Moreover,
one large"false alarm" (in Fl) appears to
be a target. In any case, 7 false alarms
in 4 frames agrees well with the previous
estimate of the false alarm rate.
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a. Accumulatable features per connected component

Symbol Meaning
10 N Area
2-3. SX,SY IX,LY - first moments
4-6. SXZ,SYz,SXY sz,ZYz, XY - second moments
Te P Perimeter point count
8. E High edge point count
9. SPE Total edge value on the perimeter
105 SIG Total interior gray value
) ke SPG Total border gray value
12-13. SG,SG2 Total gray level, total squared gray level

b. Intermediate quantities

2
1. Kl 4* fsx
2. YavE ax Ysy?

2 SX2 i SY2

4. v ¢ /N - (56) 252

c. Recognition features

h/w Yave/Xave 3
(] - *

L IXave™ - 8*¥ave ! A/Xave* Yave

i i Xave*Yave/V

(h+w) /P (XAVE+YAVE—4)/P } shape
aiff (sx2-sv?) /R?

skewness ISXYI/R2

asymmetry ((SXY)Z-SXZSYZ)/R4

SDEV A
Gray level SIG(N-P) - SPG/P

difference

brightness
E&P (Number of perimeter points at
high edge local maxima) /P
E SPE/P
b /

Table 1. Features
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TMAGE SEGMENTATION FOR SYNTACTIC CLASSIFICATION OF LARGE IMAGES
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ABSTRACT

A segmentation scheme for component extract-
ion for syntactic classification of "large' images
of tactical targets is described here. It in-
volves using prototype similarity technique iter-
atively, first, for target/background segmen-
tation on the full frame at a low resolution and
then for component extraction at a high resolution.
Experimental results on FLIR images of tactical
targets are included.

INTRODUCTION

In picture recognition problems, the number
of features required is often very large, which
makes the idea of describing complex patterns in
terms of a (hierarchical) composition of simpler
subpatterns very attractive [1} Also, if the
number of possible descriptions is very large, it
is impractical to regard each description as de-
fining a class. Consequently, the requirement of
recognition can only be satisfied by a description
of each class rather than by its classification.
For example, the image of a tank is shown in
Figure 1.

Suppose it is possible to recognize the
component parts of this tank such as motor, hot
vents, barrel, etc., using statistical properties
of each component and their spatial relationship.
The hierarchical (tree-like) structural information
in this tank can bYe represented by a tree as shown
in Figure 2.

The basic assumption in this approach is that
it is easier to recognize the components instead
of the tank itself. Grammatical rules can then
be used to describe these trees. The grammatical
rules for this example are:

TANK —» RECTANGLE, HOTSPOTS, BARREL
RECTANGLE —= TREAD, MOTOR, VENTS

Since different components may be seen at dif-
ferent target aspect angles, one could infer a
general set of rules by training the classifier
by tree-structures of targets viewed from different
aspect angles. The general block diagram of

syntactic approach to tactical target recognition
problem is shown in Figure 3.

The assumption in the syntactic approach to
tactical target recognition is that the images of
tactical targets are '"Jlarge'" enough to show
structure.

In the following sections, a brief descript-
ion of the prototype similarity transformation and
its adaptation for component extraction is given.
Experimental results on FLIR images of tactical
targets are also included.

SCENE ANALYSIS USING PROTOTYPE SIMILARITY

The image segmentation scheme using prototype
similarity transformation can be divided into the
following major steps [2Fk

e Attributes

e Prototype Generation

e Threshold Selection

e Prototype Inference

e Cell Inference

e Similarity Relation
Attributes

The first step in carrying out image segmen-
tation by the prototype similarity transformation
is to decide which attributes characterize a cell.
A cell can be a pixel or a certain collection of
pixels depending upon the required resolv:ion in
the segmented scene. Some of the commonly used
attributes are average intensity, edge feature,
texture, etc. Suppose X ,..., are the N

attributes characterizing each = cell. These
N atrributes may be N independent measurements

on each cell or may be N functions of M (M2N)
independent measurements.

Prototype Generation

For each of these N attributes characterizing
a cell, a two-dimensional distribution function
f (J,I) is calculated as follows: Suppcse the
attribute value of a cell is I. Count the number
of cells in some experimentally chosen neighbor-
hood (depending upon the resolution, size of the
target, etc.,) that have attribute value J. Accum
ulate this sum for all the cells in the picture
that have atrribute value I. This sum gives

T e s . o
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£(J,I). Do this for all values of I and J.

The next step is to determine initial back-
ground and target prototypes using some a priori
information about the scene. This can be done by
locating typical background and target cells or
by using some attribute information about the
background/target. For example, a running motor
may be the brightest part of tactjcal FLIR images.
This information can be used to locate a target
cue.

Let the target cell attribute value be A_ and
background cell attribute value be A Bases on
these two values and A?, two intervals [AT

A’ A /TA] and[AB TA]are calculated, where

T, is an empirically chosen threshold on the value
of attribute A. The choice of this threshold will
be discussed later. These two intervals are
assumed to be disjoint. The case of overlapping
intervals implies either a bad choice of target/
back-round cues or a low value of threshold TA'

These two disjoint intervals define the first
two prototypes P, and P..
al prototypes, consider the two-dimensional dis-
tribution function shown in Figure 4. All the
cells that belong to prototypes P, or P_ are
zeroed (shown by hatched areas). Suppoée the
modified distribution function is f'(J,I). Then
for each attribute value I, we have an attribute
profile of neighbors. By considering each value
I in the intervals | ,AL/T,] and [ABTA,AH/TA],
the accumulative attr bute profiles fp “ani
EP are calculated as follows:

1

fgle PO A S W
I e[ApT,, AL/T,]
£, = IE D @

I E[ABT s Ap/Tyl

An example of these profiles is shown in
Figure 5. A maximum is located in each of these
profiles. The maximum of these maxima gives the
location of the next prototype interval. This
corresponds to maximizing the probability of find-
ing a neighbor that has attribute value outside the
attribute intervals of previous prototypes. Sup-
pose the attribute value is A,. This gives rise
to an interval [A 'AT,AZ/AT] ?or the prototype
P2. At this stage, there are three prototypes
Py, Py and Py.

Now there are three accumulative profiles
for the three intervals. The whole sequence of
operations is repeated until no more prototypes
can be generated. One point to remember is that
the subsequent prototype intervals may overlap.

Threshold Selection

A numerical value between 0 and 1 needs to be
chosen for each atrribute for defining prototype
intervals. Too small a threshold leads to larger

For generating addition-

intervals and consequently fewer number of proto-
types, whereas too large a threshold will lead to
smaller intervals and larger number «f prototypes.
In the extreme cases, one one hand, we may have
only two prototypes which will give rise to too
many edge elements as we will see later; and on the
other hand, we may have many prototypes so that
each cell is similar to only one prototype giving
rise to too many different objects in the scene.

For FLIR images, a typical value for the num-
ber of prototypes for each attribute is somewhere
between 10 - 15. So, the thresholds can be adjust-
ed to give the right number of prototypes.

Prototype Inference

Let P, .,PN be the set of prototypes gener-
ated using one attribute. Each one of these proto-
types has an interval on the attribute axis assoc-
iated with it. Each cell in the picture is labeled
by a string of prototypes it is similar to. A
cell can be similar to more than one prototype as
the prototype intervals can overlap. During the
labeling process, a co-occurrence matrix is con-
structed. Each element Ajj in the co-occurrence
matrix, I = 0,..., N; J = 0,.,N, corresponds to the
frequency that the prototypes PI and PJ occur
together in labels.

The fact that the prototype P, was generated
by a target cue and P, was generated by a back-
ground cue is used to infer meaning for other
prototypes. The co-occurrence matrix is used to
guide the inference. Suppose Agp is maximum for
I=1; and A1J is maximum ior J = J Depending
upon which one of Agy, and AIJ is greater, either
prototype Py, or PJ is considered for inferring
its meaning. The following rules are used to
infer meaning for a prototype:

e A prototype whose interval overlaps a
target interval and does not overlap
a background interval is a target pro-
totype.

® A prototype whose interval overlaps a
background interval and does not overlap
a target interval is a background pro-
totype.

e A prototype whose interval overlaps both
target and background intervals is an
edge prototype.

e A prototype whose interval does not over-
lap target or backgroun interval is
assigned the "meaning unknown'".

Cell Inference

Each prototype in a cell label is replaced by
its inferred meaning. The following string gram-
mar is used to reduce string to a character:

s DB ¥
ER —E




-

BB -~ B
TB — E*
TE—-T
BE - B
E* a-~E* . ae{T, B, E, E¥}
where

T =>target cell

B =background cell
E*=>strong edge cell
E =>weak edge cell

Similarity Relation

Based on each attribute, using the above des~
cribed procedure, a meaning can be assigned to
each cell of the picture. Thus, each cell has a
string of cell meanings, the length of the string
being equal to the number of attributes, In
order to assign a unique meaning to the cell, a
relationship between the various attributes is
needed. Here, this is called a similarity
relation, One simple example of a similarity
realtion is that even if a cell is different in one
attribute, it is different. This would mean that
a cell should be assigned the same meaning by all
the attributes before it is assigned that meaning.
Otherwise, the cell is classified as '"meaning un-
known'. A more complex relationship can be de-
vised depending upon the type of imagery, type
of attributes, etc.

COMPONENT EXTRACTION

The general block diagram for component ex-
traction of tactical targets through the iterative
application of prototype similarity is shown in
Figure 6. First target/background segmentation
is performed on a full frame at low resolution
using prototype similarity transformation. Any
a priori information about the scene is passed

.on to the segmentation scheme in the fo:n of

cues. Chain coding [ 3] is then used to isolate

the target region of interest. The prototype
similari transformation is used on this region

at an increased resolution for component extraction

EXPERIMENTAL RESULTS

The protygtype similarity transformation was
tried on FLIR images of tactical targets. The
technique was first tried on full frames (520 pels
x 480 pels) and on the isolated targets to extract
components. The target center and its approximate
size were recorded during digitization. The 8-bit
digitized data was scaled down to 100 grey levels
to cut the computer memory requirements for storing
joint distribution function.

A cell was defined as 2 pels x 2 pels for
component extraction and as 4 pels x 4 pels for
target/background segmentation. A neighborhood
of 3 cells x 3 cells was used in both cases for
calculating the joint distribution function. The
only attribute used was the average intensity over

ran

the cell. A threshold of 0.85 was used to define
the prototype intervals. Approximately the same
number of prototype (~ 10) were obtained for both
cases.

The results are shown in Figures 7 - 10.
In each set of three photographs, the top picture
shows the original, the middle one the target/
background segmentation on full frames and the
bottom one, the extracted components.
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VENTS

MOTOR
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Figure 1. Image of a tank.
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Figure 2. Hierarchical structural description of
the tank shown in figure 1.

BARREL




129

TANK

APC

TRUCK

UNKNOWN

TEST
SAMPLE
_.h A CLASSIFIER
TRAINING ALGORITHM INFERED (PARSER)
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Figure 3. Syntactic approach for tactical target recognition.
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(A) (A)

(B)

() (c)

Figure 9. (A) A tank in the open. Figure 10. (A) A truck
(B) T/B segmentation on full frame.
(C) Extracted components.

in the open.
(B) T/B segmentation in the full frame.
(C) Extracted components.
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Abstract

} This paper augments the paper entitled "Adap-
tive Threshold for an Image Recognition System"*
given at the DARPA workshop October 1977. The
purpose is to provide additional information about
the simulation studies that were performed as
well as the results obtained with the Autoscreener
(ATSS) with autothreshold. This paper consists
of the background and concept of the auto-
threshold, specific examples and relationships
used in the simulation studies, the hardware re-
sults, and the performance evaluation.

Autothreshold Concept

Prior to incorporating an automatic thresh-
olding feature, the ATSS had eighteen dials and
switches that were required to be set by the
operator. Some were set once but others depend
upon the input image and had to be adquted
periodically, if not continuously. This was
done by the operator using the first level fea-
ture display as a feedback mechanism to optimize
the threshold levels. The basic purpose of auto-
threshold is to eliminate the need for all the
manual adjustment such that the operator can per-
form other duties encountered on a tactical mis-
sion.

The basic concept behind autothreshold is
that it makes the autoscreener adaptive to changing
scene intensity and contrast levels. It does this
automatically be determining the threshold for
edge and high/low intensities on a scan 1ine basis.

The overall concept for autothreshola is shown
in Figure 1. Each box will be discussed in greater
detail later; but briefly, the function of each box
ijs as follows: Raw video is pnassed throuch a low
pass smoothing filter. This limits the bandwidth
of the noise. The smooth data is an input to both
the edge filter and the bright filter. The edge
filter generates the magnitude of an edge in an
image from which an edge threshold is determined.
The output EDGE is a logical signal used the the
Autoscreener and is obtained by comparing the ana-
log edge signal with its threshold. The bright

*"Adaptive Threshold for an Image Recognition Sys-
tem", D. Serreyn and R. Larson, DARPA Image Under-
stang;ng3workshop Proceedings, October 20-21, 1977,
pp. 73-73.

55413

filger determines the background levei and is a
basis for determining the bright threshold. The
BRIGHT signal is also a logical signal which is
used by the Autoscreener for further processing of
man-made objects.

Mideg | Smoothing Smgoth Edge
>
Threshold
-
Filter
Bright
e
Threshold
Figure 1. Functional Block Diagram -

Autothreshold

Simulation Studies

The autothreshold was simulated as shown in
Figure 1. The low pass smoothing filter limits the
bandwidth of the noise that enters into the edge
and bright filters. The smoothing filter was a
weighted average based upon the following equation:

A,

i3 = 160 10-1,3-1) + 2 1(1-1,5) + 1(4-1,3+1)]

+ 21(1,3-1) + 4I(i,3) + 21(1,j+1)
+ I(i+1,3-1) + 2I(i+1,j) + I(i+1,j+lﬂ

where I is the video intensity. This filtered
video is then the input to the edge filter and to
the bright filter. Figure 2 is a sample of five
scan lines of FLIR video over a tank. Figure 3 is
the resultant smooth data.

The two dimensional SOBEL edge filter was sim-
ulated as follows:

Hj-1 = 1(i-1,3-1) + 2I(i,3-1) + I(i+1,j-1)
Hiep = T(i=1,3+1) + 2I(4,3+1) + I(i+1,j+1)
Vioy = I(i=1,3-1) + 2I(i-1,3) + I(i-1,§+1)
Vit = I(i+1,3-1) + 21(i+1,3) + I(i+1,j+1)

TR o (Vo £t
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Figure 2. Five Scan Lines of Raw Video
Over a Tank
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Figure 3. Smooth Video of Data in
Figure 2
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where H and V are the horizontal and vertical com-

ponents. Then, the edge value associated with
(i,3)th pixel is

E(1d) = [yl + 1y

Hjey Hyal + Vi = Yyl
Figure 4 is the Sobel edge for the data

shown in Figure 3. Superimposed on the edge data
is the adaptive threshold. The edge threshold is

El =K*E

where E1 is the threshold, E, 1 is the previous
scan line edge average and K is an optimum con-
stant statistically determined. Figure 5 is the
EDGE output for a tank scene.

.

E(n.x)"

b

Positiuns?n Scan Li::) 150 o 250 aa
Figure 4. Edge with Threshold of Data in
Figure 3
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Figure 5. EDGE Output for the Tank Scene

As was menticned previously, the smoothed
video is fed into the bright filter. A primary
function of the bright filter is to estimate the
background in each frame. This background must
be continually updated as the image is scanned
by a recursive filter and filter updating logic.

The first decision we make is to determine if
there is large contrast between scan lines on a
pixel by pixel basis. This is compared to a
threshold TLIM. TLIM is an average absolute dif-
ference between the present and previous scan line
multiplied by a constant, that is:
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aZlly R -‘
- 148, J=-1,3
TLIM = e
a = constant
Num = number of pixels in one scan line

The background estimate J is built up over
several scan lines. The background is updated
throughout most of the scan line and is defined as

g™ B st B e

We do not update the background estimate over
areas of large contrast. When not updat1ng, Ji 5 =
Jj i The value of I Ji-1 j is compared to
a valbe SLIM where SLIM 1 defined’by

SLIM =

N
qY]I o= d o
’J 3
— B T

A
where Ji j is Ji,j filtered by a Hamming window.
In summary, this pixel classification scheme
is as follows:
if |11.,J. - 11-1,3" > TLIM

or

if IIi’j - Jm.l >SLIM
don't update the background filter.

Also, when updating

Yg Mg T SER R

otherwise, Jj‘j = J1-1'j

The pixel classification for the five scans shown
in Figure 3 is shown in Figure 6.

Once the background Jj, j is determined,
it is subtracted from Xi to give'a zero refer-
ence. Hence, Zj,j is data with zero
reference that must be fgresho 1ded. i, g is com-
pared to a variability threshold EPSI. EPSI is
defined as

EPST = u* VARY = iy ]9, IRIRL

u: a constant determined during simulation

¥
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Figure 5. Pixel classification (High is Don't
Update)

Ihe background estimate for the smoothed video
(Figure 3) is shown in Figure 7. The resultant
video, to be thresholded, is shown in Figure 8.
Figure 9 is the BRIGHT autput for the sample tank
image. The EDGE and BRIGHT data are logically com-
bined to produce features used by the autoscreener
for the detection of man-made objects.

Hardware

The edge and bright filters were implemented
as part of the control unit. The smoothing filter
is accomplished by using the scan converter in an
integrating or averaging mode. The edge filter
block diagram implementation is shown in Figure 1C.

YEach scan line delay consists of 2 Fairchild CCD321

(455-910 element) delay lines. The pixel delays
are obtained from selected taps of a Reticon TAD-32
(a 32 tapped analog delay 1ine). The low pass
filter smooths the edge output.

The threshold value E1 is determined by inte-
grating the edge over the previous scan line.

Elis KEEL s

where E1 is the threshold, K is a constant and
En-1 is the previous scan line edge data. E, is
compared to a threshold. When E, exceeds E1.
the Togical EDGE signal is created which is used
by the rest of the autoscreener.

A block diagram of the background estimate
and bright threshold implemented*is shown in
Figure 11. The background estimate is a re-
cursive filter whose time constant depends upon
the parameter g.

The Tow pass filter limits the clock noise
coming out of the CCD line delay.
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Figure 10. Autothreshold Edge Hardware
Implementation

Figure 11. Autothreshold Bright Hardware
Implementation

The threshold EPSI is based upon the abso-
lute difference between backaround estimate,
that is

EPSI = K*ldn.k'dn-l,kl
where K is a constant and Jn,k and Jn-1 ) are
background estimates. The tRAreshold is‘Based
upon the previous scan line.

In addition to the clock noise, the
chosen CCD's generated periodic noise due to
dark current. The period of the noise was
approximately equal to one-eight (1/8) of
the 455 elements. Two of the 455-910 line
delays were used to make up the 1820 pixel
line delay and the noise was in all the
devices. We discovered that the delay line
serpentine implementation was the cause of
the noise. The corners exhibited excessive
dark current noise that is especially notice-
able when the clock is stopped for a period
of time. A new device is being designed by
the vendor which is anticipated to eliminate
this problem.




A representative sample of the results
from the hardware is presented in the follow-
ing figures. The pictures were taken off the
first level displays which are a part of the
Autoscreener. Figure 12 is the raw video
with a symbol directly helow the target.

Figure 13 is the horizontal edge component.
Figure 14 is the pixel classifier output even
it is not in the feedback lwop of

though
the hardware.
intensi image. Figure 1€
+hich is the result of logically combining
the E signal.

igure 15 is the bright or high
is the F1 signal

JGE and BRI

Figure 14. Pix-1 Classif

er

Figure 12. Raw Video Scene

Figure 13. FEdge OQutput for Raw Video Scene




Performance Evaluation

The performance of the autoscreener/
FLIR system with autothreshold to detect
man-made objects was evaluated utilizing

about 1150 frames of FLIR imagery.

Prior to testing the classifier was
trained using 164 frames which contained 2023
candidate objects (158 man-made and 1864

nuisances).

The scoring consisted of playing back

the video frames from a video disc.

A symbol

was generated if a sector (1/16 of a frame)
contained one or more objects classified as
targets, these symbols were superimposed on

the image and displayed on the monitor and at

the same time were recorded and then scored

in order to evaluate the performance.

If a

sector contained one or more MMO's and the
were not detected (no symbol was displayed{
this represented a missed MMO's sector.
On the other hand, if a sector contained no
MMO's and a symbol was displayed, this was

considered a sector with a false alarm.

The probability of MMO detection Pp

is the ratio of the number of detected
sector with MMO's to the total number of
sectors with MMO. The probability of a
miss is Py - 1-Pg. The probability of

false a]aum P A is the ratio of the
Eors with false alarms to the

number of sec

total number of sectors without MMO's.

This result is shown in Table 2.

TABLE 2

Total Number of Sectors

Number of Sectors with MMO's

Missed
Detected Sectors with MMO's
Sectors with False Alarms
Sectors with MMO's
Sectors without MMO's

P, = 1027 = 91.2%
1126
P = 747 = 4.3%
FA 17370
Py = 99 = 8.8%

This point is plotted in Figure 17.
The result of 91.2% probability of detection

18496
99

1027
747
1126
17370

and 4.3 probability of false alarm is very
nearly the same as FLIR without auto-

threshold.

138

FLIR

AAD-5 SCANNER

PROBABILITY OF DETECTION
=)
3
T

0.60 [

. I A i " i = 1 4 J

0 0.02 0.04 0.06 0.08 0.10

PROBABILITY OF FALSE ALAR'

Figure 17. Autoscreener/Autothreshold:
Performance® Sector Basis

Conclusions

At the completion of this program,
the following additional conclusions are
made:

1. We have established the feasibility in
in detecting man-made objects with an
Autoscreener with autothreshold. We
achieve a 91.2% detection probability
and 4.3% false alarm probability.

2. The scan line delays needed for two
dimensional processing must be made
to operate in a start/stop mode of
operation with 1ittle degradation
in signal.

3. A more robust classifier which would
screen out objects based upon addi-
tional shape and size feature will
reduce the number of false alarms.

This concept called secondary screening
would look at only those objects classi-
fied as MMO's by the present classifier.

4. The false alarm probability and scoring
should be changed to include time or
rate such as the average number of false
alarm/frame processed or false alarms
per second.
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MIT PROGRESS IN UNDERSTANDING IMAGES

Patrick H. Winston

The Artificial Intelligence Laboratory
Massachusetts Institute of Technology

In the previous proceedings, we stressed the key issue of
representation. In particular, we described research of Horn and
his collaborators using the reflectance map as a tool for working
with satellite images, and we described work of Marr and his
collaborators using the primal sketch, the 2 1/2 D sketch, and
generalized cones fo work toward a comprehensive theory of
recognition.

Here, we cite some of the problems having to do with using
real satellite images, we report on the development of a machine
for rapid primal-sketch computation, and we take note of some new
work on depth vision and representation

Registering Images And Making Albedo Maps

Horn has demonstrated a method for registering aerial
photographs with terrain models that potentially yields
registration accuracy in the subpixel range. The method works
by comparision of the given photograph with a synthetic image
produced using the corresponding terrain model. Given
registration, it then becomes possible to do several things starting
with the same reflectance-map based technology. For example,
we have made some images in which the hue reflects the ratio of
real image intensity to synthetic image intensity, and we believe
these images provide a good index to ground cover. This ratio
does not depend much on sun position, unlike other measures
used up to now. We call an image made up of these ratios an
albedo map.

To make really useful albedo maps, however, we have
found it necessary to solve several subproblems. Dealing with
real satellite images requires the solution of several problems of
the sort that escape notice when thinking is done in terms of
idealized domains. One of these is the problem of introducing
cast shadows into the synthetic image. This has been done.

Destriping, Transforming Coordinates And Finding Where
The Sun Is

Other problems inherent in the use of real satellite images
include those introduced by the characteristic flaws of satellite
images, by the need for care in dealing with coordinate
transformations, and by the need to know accurately where the
sun is.

First, corrections to satellite images must be made to
account for differences in the transfer functions of the several
sensors used. The paper of Horn and Woodham, elsewhere in
the proceedings, gives the results of their work on the problem.
The paper describes a method that uses statistics obtained from
the sensors themselves, together with an assumption that the
probability distribution of the scene radiance seen by each image
sensor is the same. Using the method, they have sucessfully
removed the striping effects seen commonly in satellite
photographs.

Next, coordinate transformation is necessary in order to do
proper registration of satellite photographs against earth surface
models. (The surface models considered are in the form of
surface elevations on a grid of points.) Consequently, Horn and
Woodham have developed an affine transformation between the
coordinates of Multispectral Scanner images produced by the
LANDSAT satellites a:id the coordinates of a system lying in a
plane tanget to the earth's surface near the subsatellite point.

Finally, as Horn has stressed in his papers, the appearance
of a surface depends dramatically on how it is illuminated. In
order to interpret satellite and aerial imagery properly, it is
therefore necessary to know the position of the sun in the sky.
Horn has developed relatively straightforward methods for
doing so with more than enough accuracy for image
understanding purposes.

Primal Sketch Hardware

Much of Marr's image understanding work requires the
computation of a so-called primal sketch. The primal sketch is a
rich symbolic description of the important features exhibited by
an image, edges and blobs in particular. Creating such a
symbolic description requires a great deal of convolution.
Consequently, there has been a need for fast image convolution
hardware. We have just completed and have begun to test
ICON, a first prototype of such a convolver.

ICON combines a pipelined VLSI multiplier with a fast
bipolar image cache. Approximately 120 Schottky MSI and LSI
IC's are used. The device is connected as a peripheral to the
LISP Machine and is driven by microcode.

ICON can convolve a 16 x 16 mask against an image point
in 50 microseconds. An entire 512 by 512 image mask convolution
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can be done in less that 15 seconds. This represents more than
an order of Imagnitude speedup over PDP-10 performance.

Local Image Structure

Kent Stevens has completed a study of textures that involve a
sense of “flow” or rough “paralielism.” Locally parallel dot
patterns were used extensively in testing his ideas. Such dot
patterns are transformed by primal-sketch machinery into a
collection of place tokens. Stevens' parallelism algorithm then
constructs virtual lines that radiate from each place token in the
image to its neighbors. The orientations of these are
histogrammed, and the candidate virtual line that corresponds
most closely in orientation with the histogram’s maximum is
selected.

R L

In the figure, we show input dots on the left and the
virtual lines corresponding to derived local parallelism on the
right. The algorithm handles place tokens derived from edge
features as well as from dots, as is required in working with
natural images.
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Stereo

David Marr in conjunction with Tomaso Poggio (of the Max
Planck Institute for Biological Cybernetics) completed a new
study of stereo vision. The resulting algorithm consists of five
steps: (1) Each image is filtered with bar masks of four sizes
that vary with eccentricity; the equivalent filters are about one
octave wide. (2) Zero-crossings of the filter outputs are localized,
and positions that correspond to terminations are found; (3) For
each mask size, matching takes place between pairs of
zero-crossings or terminations of the same sign in the two
images, for a range of disparities up to about the width of the
mask's central region; (4) Wide masks control vergence
movements, thus causing small masks to come into
correspondence; (5) When a correspondence is achieved, it {s
written into a dynamic buffer, the 2 1/2 D sketch. In addition to
being satisfying from the automatic image understanding point
of view, Marr has shown that the algorithim provides a
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theoretical framework for most existing psychological data about
stereo.

Eric Grimson has finished a computer implementation of
the algorithm that is highly succesful in computing disparity
from a stereo pair of photographs taken of natural scenes. The
implementation has been found to be an important research tool
in revealing phenomena concerning the convolution of natural
images with bar masks.

Currently, we are busy testing the algorithm, as well as
turning towards issues concerning the “filling in" of depth
information where it cannot be recovered directly from the
image. These issues interface with more general issues
concerning the representation of spatial information.

2 1/2 D Representation

Shimon Ullman, Eric Grimson, and Kent Stevens have made
progress on three aspects of the problem of representing
information about surfaces. Ullman has tried to tie Horn’s work
on judging shape from shading to the portion of the 2 1/2 D
sketch that represents local surface orientation; Grimson has
worried about how local depth information can best be
represented in the sketch; and Stevens has addressed the
problem of inferring surface orientation from an ob ject’s
boundary contours. The 2 1/2 D sketch is proposed to be a
representation in which these various sources of information are
integrated into a single, coherent perception of visible surfaces.
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ALGORITHMS AND HARDWARE TECHNOLOGY FOR IMAGE RECOGNITION

Computer Science Center

University of Maryland

College Park, MD 20742
ABSTRACT

This report lists the principal

accomplishments on Contract. DAAG53-76-C-

0138

(DARPA Order 3206), covering the

period 1 May 1976 through 28 February 1978.
This research was monitored by the U. S.
Army Night Vision Laboratory, Ft. Belvoir,
A; project monitors were Mr. John S.

Dehne and Dr.

George R. Jones.

Design and implementation of a compre-
hensive algorithm for object recogni-
tion in FLIR imagery with a detection
rate above 95% and a false alarm rate
between 1 and 2 false alarms per
frame.

Fabrication and testing of a CCD
sorter chip capable of operating at 3
megapixels/sec. The sorter function
is a crucial step in several image
operations including histogramming,
median filtering, non-maximum suppres-
sion and connected component coloring.

Investigation of the cost, performance
and constraint tradeoff in implement-
ing a target cueing algorithm in CCD
(charge-coupled device) technology.

The resulting design is within specifi-
cations for usage in smart sensors.

Development of the “Superslice" al-
gorithm for reliable region extraction
based on the cooccurrence of border
points of regions with locally maximum
edge detector responses. This is an
important example of the use of conver-
gent evidence to strengthen assertions.

Design and analysis of statistical
models for threshold selection, image
operation response prediction, and
optimal edge detection.

A new method for adaptive quantization
of an image which reduces the number
of gray levels present using only the
histogram.

Comparison of image smoothing methods,
including median filtering.

Systems Development Division
Westinghouse Corporation
Baltimore, MD 21203

8.

L0

1k

12,

13.

14.

15.

16.

17,

18.

19,

20.

A study of shrink/expand noise clean-
ing schemes, including a local min/max
method which cleans the image prior to
thresholding.

Evaluation of a variety of edge detec-
tors and the development of a reliable
method for edge thinning.

Construction of a "fuzzy" thinning

algorithm which allows thinning to

occur in gray level images prior to
thresholding.

Development of methods for threshold
selection based on gray level and
gradient value.

Generalization of thresholding to the
multiple object class environment with
the ability to predict appropriate
(gray level, gradient value) segmenta-
tion regions for the object classes
present.

A variable thresholding scheme which
produces a binary (or ternary) repre-
sentation of an image.

An extension of threshold selection
for sequences of images.

Simplification of the logic of the
standard connected component coloring
algorithm and its extension to produce
a chain encoding of the component
boundary in a single pass.

Implementation of Hyperslice: a re-
cursive segmentation which improves
the Ohlander region extraction method.

An algorithm for region tracking in
image sequences using dynamic program-
ming.

Comparison of features for target re-
cognition.

Construction of a hierarchical classi-
fier for target detection and recogni-
tion.

Development of Viewmaster - a software
aid to assist in the construction of
image processing programs.




IMAGE UNDERSTANDING RESEARCH AT CMU:
A Progress Report

Raj Reddy
Department of Computer Science
Carnegie-Mellon University
Pittsburgh, Pa. 15213
April 1978

INTRODUCTION

The primary objective of our research effort is to
develop techniques and systems which will lead to
successful demonstration of image understanding concepts
over a wide variety of tasks, using all the available sources
of knowledge. We are focusing our attention on three areas
of research. First, we are developing an integrated concept
demonstration of an image understanding system. The long-
term goal of this research is to understand how knowledge
can be used in the image interpretation process to produce
systems which are 2 to 3 orders of magnitude more cost-
effective than current systems. Over the next three years
we expect to investigate how knowledge of maps, size and
shape of landmarks such as buildings and rivers, and
contextual relationships can be used in the interpretation of
satellite images of th® Washington, D.C. area and color
scenes of downtown Pittsburgh.

The second area of research is the development and
validation of concepts for computer architectures used in
image understanding. The long-term objective of this
research is to develop new computer architectures which
will make low-cost image processing a serious possibility.
We plan to evaluate the desirability of new processor
designs and new instruction sets for image processing
applications.

The third area is the development of intelligent
interactive aids for tasks such as photo interpretation and
map generation. Many of the same techniques which are
useful in automatic interpretation are applicable in this area,
except that in this case the human being provides the goal
direction. The availability of intelligent assistants capable of
examining large image data bases and retrieving desired
information is expected to significantly improve human
productivity in tasks such as photo interpretation and
cartography.

The following is a brief summary of our work over the
last six months,

SYSTEMS AND TASKS

The image understanding research at CMU uses a DEC
System 10/80, C.mmp (a 16 processor multi-mini computer
system), Cm* a large asynchronous multiprocessor (50 LSI-
11 processors), and a dedicated MIPS (Multi-sensor Image
Processing System) computer.

Our present plans are to attempt to interpret
uncontrived arbitrary images representing different views
of the downtown Pittsburgh area (a 3-D world), and aerial
and satellite views of the Washington, D.C. area (a 2-D
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world). The world models for these tasks are expected to
be generated incrementally over the next few years.

KNOWLEDGE REPRESENTATION AND SEARCH

At present we are developing fhe following
knowledge sources for the downtown Pittsburgh task: a 3-
D model of the downtown Pittsburgh area, knowledge about
building structures and textures, knowledge about local
refinements given coarse recognition (e.g., detecting cars in
roads and trees and bushes next to roads), knowledge about
shadows occlusions and highlights, and so on. Given our
basic approach of iterative refinement of knowledge, we will
start with simple versions of these knowledge sources, and
refine them as we observe their limitations when applied to
different scenes.

Since the last Workshop the ARGOS Image
Understanding System has become fully operational. A Ph.D.
thesis on this system by Steve Rubin is expected within the
next few months (Rubin, 1978). The system has an internal
{hree-dimensional model of the city of Pittsburgh which
contains over fifty buildings, rivers, bridges, and other
geographic features. Using this model, ARGOS has been
trained to recognize five common views of the city from the
north-west, north-east, south-west, due west, and
downtown at the intersection of the three rivers. Seven
digitized images of the city were used for training of the
spectral characteristics. Another eight were reserved for
test purposes. ARGOS was able to label all eight with 607
accuracy on a pixel basis. Further, 207 of the pixels are
unlabeled and approximately 207 are incorrectly labeled.
These results are expected to be significantly improved with
systematic error analysis.

Much of the error is attributable to inflexibility in the
training data. For example, the recognition of building
reflections in the river was considered erroneous labeling.
Also, the identification of a known building (such as the
Fulton Building) as a "miscellaneous building" was considered
an error since the system failed to obtain the most accurate
label. A good measure of the recognition quality is the
system’s ability to identify the viewpoint. In 807 of the
images key objects were labeled that demonstrated a
recognition of the correct view. For example, identification
of the correct rivers, bridges, and roads indicates an
understanding of the viewpoint whereas identification of
buildings does not since they are discernible from all angles.

Another proposed development is the wuse of
knowledge hierarchies for improved labeling. As a first-
pass, the system will extract viewpoint information from one
run of ARGOS and then construct view-specific knowledge
for more accurate re-evaluation of the image.

IMAGE FEATURE ANALYSIS

Kanade is developing techniques for identifying task-
independent knowledge sources. One of the recent
developments in this area is a generalization of Huffman-
Clowes-Waltz techniques for line labeling (Kanade, 1978b) in
this workshop. This generalization is more flexible than the
conventional trihedral world, where solid objects are the




basic components, since it accepts a larger class of drawings
which are usually obtained by processing real-world images.
Various local cues extracted from the image (e.g. edge
crass-section profile, collinearity, etc.) can be exploited to
constrain the possible interpretations. This method allows
one to incorporate structural (junction types and
connections), geometrical (line direction and collinearity), and
spectral (color and intensity characteristics at the edges)
information for determining the 3-D configuration of an
object in an image. A more detailed description of this work
is given in Kanade (1978a).

INTERACTIVE AIDS

We have continued our work on the MIDAS sensor
databage. We have concentrated our efforts on bringing up
an image browsing facility on MIPS. This facility is
operational and has the capability of displaying color or
color mapped images in a variety of resolutions. A user can
quickly browse through a collection of images and zoom in
on particular areas of interest by displaying windows of the
image in different levels of resolution. Using symbolic
region descriptions (McKeown and Reddy, 1977) it is
possible to symbolically address any portion of the image.
A simple query system allows users to point at the display
and retrieve pre-segmented region information.

We plan to expand the utility of this system by
increasing the variety of images available for these types of
queries {(currently 20) and investigating methods for
responding to queries where responses must be generated
from the signal data. Preliminary work has begun in
acquiring map data and associated aeriai photography for
our Washington D.C. task. We have begun work on
evaluating map representations and their suitability for
photo interpretation tasks.

ARCHITECTURES FOR IMAGE PROCESSING

We are beginning work on algorithm decomposition
for parallel processors, an area in which we are fortunate to
have two working systems: Cm* and C.mmp. Cms is an
example of an asynchronous parallel processors organized
as a network of clusters of processors (Swan, 1976).
Currently there are 10 LSI-11 microprocessors in the
system. Over the next two years we expect to have a 50
processor system and evaluate its effectiveness in a real-
time image understanding task. This organization provides
significant flexibility, allowing each processor to execute
different operations and perform different computations.
One important question is how do we organize algorithms to
effectively use asynchronous parallelism of this type?
Preliminary  explorations indicate that by careful
organization in a parallel pipeline, modular algorithm
decomposition will permit the full realization of the
parallelism potential.

Qur joint research effort with CDC continues to be
the development of a low cost high-speed processor
element with special functional units for image and symbol
manipulation operations. We currently believe that the
processor should be ready for testing and validation within
the next year. The addition of these processors to the MIPS
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machine should greatly facilitate much of our low-level
processing operations.

With the availability of writable control stores, it has
become possible to modify and add to the instructional set
definitions of current computer systems. Experiments
performed on our PDP-11/40E processors indicate that a 10
to 30 percent improvement in performance can be expected
for certain image processing tasks. We are currently
engaged in a study of the design of special instruction sets
for image processing applications. We should expect to
have architectures which execute as primitive instructions
certain high level operations on images. An analysis of the
costs associated with certain operations, including frequency
and locality of memory accesses, parameter passing
schemes, and arithmetic complexity is underway.

CONCLUSION

While the primary emphasis continues to be in
effective use of knowledge in the image interpretation
process, the research at CMU is tempered by the realization
that we must also pay adequate attention to other relevant
aspects such as computer architecture, software design,
image databases, performance analysis and perceptual
psychology. We continue to have modest efforts in each of
these areas.
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AUTOMATIC IMAGE RECOGNITION SYSTEM

Program Status, March 1978

R. Larson

HONEYWELL INC.
Systems and Research

Minneapolis, Minnesota

This program is focused on tactical appli-
cations of image understanding. The constraints
on a tactical system, autonomous, mission directed,
real time operation in an unknown environment,
place some severe limits on the methods that can
be used and tend to make the solutions problem
dependent. Thus, while tactical solutions can
be applied to intelligence and strategic problems,
the converse is not generally true.

The program goal is to develop and simulate

algorithms needed in the system diagram shown

on page 135 of the September 1977 IU Workshop
proceedings. Our recent work has been on the
target recognition part of the system, in par-
ticular the secondary screening of man-made
objects and syntactic classification of large
images.

CURRENT IMAGE UNDERSTANDING EFFORT

Large Image Classifier - We define a large image
as one that is observed at sufficiently high
resolution that object structure can be seen.
Statistical recognition is very difficult for
large images of three dimensional objects be-
cause of the large number of viewing angles that
must be treated. We have, therefore, concen-
trated on methods that refer the analysis back to
the structure of the object in either a numerical
or a symbolic way. The numerical methods were
studied at Purdue and reported by them. The
symbolic methods are being studied by Honeywell
using the prototype similarity transformation.
Both approaches begin by having a potential targets'
position in the frame and its approximate size
designated to the algorithm (the results of the
man-made object detection and secondary screen-
ing). The algorithm then segments the part of
the frame near the designated position into target
and non-target pixels and extracts features or
primatives from the target part. In the Honey-
well approach the subimage is transformed into Tow
level symbols and the segmentation is done on the
symbolic image. The target image components are
then obtained by using prototype similarity again
with finer resolution. Work on recognizing the
components and, from them, the target is just
beginning. Statistical classification will be
investigated for recognizing the unresolved compo-
nents and syntactic methods will be used for
object recognition.
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Interframe Analysis - In tactical imagery we can
expect the unobscured, high contrast target image
to be a rare event. The target objects will be
moving across a background of varying intensity
and background objects will frequently obscure
parts of the target. Even when we are close
enough to the target to be able to resolve its com-
ponent parts, the contrast and obscuration effects
will make it difficult or impossible to obtain a
complete target image from any single frame. It
is, therefore, necessary to be able to track
objects from frame to frame and to construct a
composite image from the separate frame approxi-
mations. In this we are also studying both numer-
ical and symbolic methods. At the last workshop
we reported on interframe tracking experiments
done by passing prototypes from frame to frame.
The paper by Panda at this workshop reports our
initial numerical results. We are studying ways
to use the resulting data sequence to increase the
recognition accuracy.

Configuration Analysis - This task deals with the
final step in the image understanding problem;
obtaining a description of the scene from the list
of recognized objects. Scene description in the
sense of describing a scene in terms of recognized
target and background objects and their relative
lTocations is important in a number of multi-warhead
autonomous system concepts. It is also significant
in intelligence, navigation and certain terminal
homing concepts. For the system we have defined
the scene description/configuration analysis is to
be used only to identify complex targets that are
composed of a number of individual, recognizable
objects (e.g. a convoy of vehicles or a power
plant). Two problems that must be solved in con-
figuration analysis are 1) how to represent the
information, and 2) how to generate the desired
kind of description. A review of existing methods
has led us to select a rule-based network (pro-
duction rules linked as a network) as the data
representation and a bottom up analyser as the
control structure for generating descriptions. A
part of the rationale for these choices is that
they will allow the representation of both re-
lationships and properties in the same structure
and we feel that this is a necessary capability.
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Secondary Screening - Target classification is pre-
ceded by a number of data bandwidth reduction steps
that also serve to direct the attention of the
classification activities. Target cueing is done
upon image characteristics. In our system we
follow the cueing by a screening based upon object
dimensions. These are deduced from the image, the
sensor resolution and the sensor to object range.
The dimensions are compared with known target
dimensions and accepted objects are passed to the
appropriate classifier. This function has been
implemented as a software modification to the Honey-
well Autoscreener and tested against FLIR imagery
recorded in television format. As expected, the
secondary screening decreases the number of poten-
tial targets that must be processed by the classi-
fier. We have found that rejection of targets

by the secondary screening is determined by the
accuracy of our range estimate, which, in our
experiments, was determined by estimating the
depression angle of the sensor.

Autothreshold - The Autothreshold is an image seg-
mentation method based on thresholding an image
relative to an estimate of the scan line intensi-
ties derived from the previous scan lines. The
method adapts well to the varying intensities
found in tactical imagery (both interframe and
intraframe variations are significant), and the
method is readily implemented in either analog or
digital hardware. Since the last workshop report
a similar method of background estimation has been
incorporated in an image enhancement circuit using
discrete CCD's.
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IMAGE UNDERSTANDING AND INFORMATION EXTRACTION
T. S. Huang and K. S. Fu
School of Electrical Engineering
Purdue University

West Lafayette, Indiana

OVERVIEW

The objective of our research is to achieve
better understanding of image structure and to
improve the capability of image processing sys-
tems to extract information from imagery and to
convey that information in a useful form. The
results of this research are expected to pro-
vide the basis for technology development rela-
tive to military applications of machine ex-
traction of information from aircraft and sa-
tellite imagery.

We are carrying out basic and appl ied
research in the following four overlapping
areas: preprocessing, image segmentation, im-
age attributes (especially texture and shape
analysis), and image structural analysis. The
long-range goal of our research is to find good
symbolic representations for images, and tech-
niques for transforming raw image data into
such representations. In the immediate future,
the emphasis of our research will be on one or
more of the following: 1) combining syntactic
methods with statistical pattern classification
techniques. 2) Understanding moving images.
3) Efficient computer implementation of image
understanding algorithms.

SUMMARY OF RESEARCH PROGRESS

Preprocessing (Huang, 0'Conner, Yang)

We have Initiated a basic research project
in nonlinear image enhancement techniques. Of
particular interest is the problem of reducing
noise 1in images without blurring the sharp
edges contained therein. Our approach is to
decompose the image into several components in
such a way that the noise characteristics in
the components are more amenable to nonlinear

filtering methods. One particular class of
nonl inear techniques under study 1is median
filtering and its extensions. A fast two-

dimensional median filtering algorithm has been
developed and programmed on our PDP 11/45 com-
puter. It is several orders of magnitude fas-
ter than the most efficient sorting methods.
Another area we are investigating is the
comparison of three phase unwrapping techniques
in regard to estimating the point spread func-
tion of image degrading systems. Preliminary
results indicate that they comlement each other
and perhaps should be combined in some manner.
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Picture Sour< ading (Mitchell, Delp, Carlton)

We have ber .sked by Rome Air Development
Center to investigate compression techniques
for image transmission systems where a human
analyst is the wultimate receiver of the pic-

ture. This has led to a comparison of many ex-
isting techniques and the development of a new
spatial coding technique which is highly

matched to the human observer, is simple to im-
plement, and is comparable. to much more compu-
tationally intensive coding methods.

Binary Array Processing and Image Registration
(Reeves)

Research has been conducted in two main
areas. First, a computer system for testing
image processing algorithms has been implement-
ed. Then this system has been used to test a
novel scheme for image registration. A general
purpose, Fortran based, array processing sys-
tem, APS, has been implemented on the PDP-11
computer.

The system is designed to simplify the pro-
gramming and testing of image processing algo-
rithms. The data structure for image uses a
bit-plane format rather than the more conven-
tional sequential file. To assist with the
processing of large arrays, APS features in-
clude dynamic array storage allocation and a
virtual memory for arrays.

This system was originally designed to simu-
late a binary array processor called BASE. As
a consequence of this, programs written in APS
are well structured for parallel array process-
ing.

APS is written in Fortran for portability
but contains some assembly code sections. The
present version runs on a PDP 11 computer under
the UNIX operating system. A library of image
processing subroutines is being developed which
is completely portable with respect to any
machine which runs APS.

The system has been coupled with a high lev-
el language interpreter so that both high level
interactive programming and efficient execution
can be achieved.

A scheme has been developed for the rapid
registration of a sequence of images. This
scheme is suitable for applications involving a
FLIR or a conventional TV system. Each image
is converted into a binary feature image.
Feature images may be rapidly registered and
also any movements of significant objects
within the image can be detected.
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An image is first processed to remove arti-
facts caused by the imaging equipment. In the
case of FLIR images a 3 bit wide median filter
is first applied along each line to remove
noise pixels and then adjacent lines are added
together to remove banding effects. The binary
feature image is then computed from the prepro-
cessed image according to the equation

E= { 1, if (P-MIN) > (MAX-P)
0, otherwise

wWhere P is the pixel value, MAX is the local
maximum and MIN is the local minimum. The size
of the area over which the local maximum and

minimum are computed is a system variable.

This scheme has been tested on the APS sys-
tem. All stages of processing may be rapidly
executed on a parallel binary array processor.
Image Segmentation by Edge Detection (Huang,
Salahi, Tang)

Image segmentation by

edge detection con-

sists of two steps. First, edge points are
detected. Then, these edge points are connect-
ed to form curves. We have developed a
syntax-semantics guided technique for accom-

plishing the second step. The resulting edge
strings are generally disconnected. Currently,

we are investigating target classification
techniques which do not require closed boun-
daries.

Use of Fourier Boundary Descriptors to Classify

Three-Dimensional Aircrafts (Wintz, Wallace)

As described in our Tlast progress report,
our work recently has dealt with the applica-
tion of Fourier descriptors to recognition of
three-dimensional aircraft recognition. Since
our last report, we have achieved results com-
parable to those of Dudani [1] using a projec-
tion density nine times lower than he used, and
considering a much larger sector of three-
space. The property of frequency domain inter-
polation of FDs was exploited in our algorithm,
enabling the reduction in projection density.

This atgorithm is of considerable interest
in its own right, but it also suggests a possi-
ble approach to the problem of recognition of

partial shapes extracted from photographic
area. One weakness of FDs, as presently used
by our algorithms is the fact that the entire

object must be roughly extracted from the pic-

ture for classification to be successful. An
aircraft with one wing missing due to shadow
will not have similar Fourier descriptors to

one which is intact. This is because the FD is
a frequency domain expansin of the entire out-
line of the shape being analyzed.

Our three-dimensional algorithm defines a
natural projection space of two-dimensional
projections taken at successive rotations about
the x and y axes. We can define a space of FDs
parameterized by the equation of a line which
may cut off part of the desired object due to
shadow, noise, or any other obstacle to obtain-
ing the complete outline. While a straight
line might not exactly model the division of
the object, the noise-rejection properties of
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our whole procedure should result in an algo-

rithm which can detect part of an object even
when the division is only very roughly
straight. A more quantitative statement

depends on the ratio of perimeter belonging to
the object to perimeter belonging to the divid-
ing "line." The interpolation algorithm would
be applicable to this situation, but a first
practical implementation of this would not in-
clude three-dimensional capabilities.

Since our Fourier descriptor algorithms have
been successfully tested, we plan to apply them
to more real data. We also plan to continue
theoretical investigation of FD theory in an
attempt to both improve present methods and de-
fine their limits.

FLIR Image Segmentation and Target Tracking
(Mitchell, Carlton, Ward)
During the past months, research in texture

and segmentation has been advancing especially
in the applications to FLIR imagery target
recognition and real time video target track-
ing. We have been studying methods of automat-
ing the texture extremal thresholds to make the
method more adaptive. Our use of texture meas-
ures 1is centering in two primary areas: (1)
texture edge detection and texture region grow-
ing to segment an object from its background
and (2) classification of background regions
for use in the higher-level global recognition
system. The data sets we are using primarily
are the FLIR large target data set from
Honeywell (120 images with identified tactical
targets) and the White Sands Missile Range TV
data set (20 digitized images--an additional
150 images are soon to be added).

The method of projections is being investi-
gated for structure analysis of the segmented
images as well as boundary descriptions for
tracking the changing shape of an object as it
moves and as the sensor moves.

Syntactic Algorithms 121 Image Segmentation ggg
a Special Computer Architecture for Image
Processing (K.S. Fu and J. Keng)

Several efficient algorithms for  image
recognition and segmentation and a new computer
architecture for image processing are proposed.
The algorithms are ‘'syntactic"” in that they
perform structural or spatial analysis rather
than statistical analysis, and a ''grammar" is
inferred for describing the structures of pat-
terns in an image. Depending on the require-
ments of the problem, an appropriate grammati-

cal approach is used by the syntactic algo-
rithm.

A finite-state string grammar is applied to
the image recognition of highways, rivers,

bridges, and commercial/industrial areas from
LANDSAT images. There are two major methods in
the string grammar approach for image recogni-

tion; namely, the syntax-directed method and
suntax-controlled method. For the syntax-
directed method, syntactic analysis is per-

formed by a template matching which is directed
by the syntactic rules. For the syntax-
controlled method an automaton which is direct-
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ly controlled by the syntactic rules is used
for the syntactic analysis.

A tree grammar is applied to the image seg-
mentation of terrain and tactical targets from
LANDSAT and infrared images respectively. The

tree grammar approach utilizes a tree automaton
to extract the boundaries of the homogeneous
region segments of the image. The homogeneity
of the region segment is obtained through tex-
ture feature measurements of the image.

The computer architecture proposed is a spe-
cial purpose system in that it can perform an
image processing task on several picture-points
of an image at the same time, and thus takes
advantage of the fact that 1image processing
tasks wusually exhibit "parallelism." This ar-
chitecture uses a distributed computing ap-
proach. Two major features are the reconfigur-
able capability, and the method of computer ex-
ploitation of task parallelism. Finally, a
parallel parsing scheme for tree grammar is
used to demonstrate the higher efficiency of
the proposed computer architecture than the
conventional parsing scheme.

Syntactic Shape Recognition Using Attributed

Grammar (K.S. Fu and K.C. You)
Syntactic method has been studied in pattern

recognition and image processing [2], our ap-
proach attempts to develop a more general
method for shape recognition. By shape, we

mean the outer boundary of the two dimensional
image of an object. Being the most intelligent
recognizer, humans recognize the shape by
analyzing its structure by grammatical rules
and the local details by primitives.

Four attributes, or feature values, are pro-
posed to describe an open curve segment, and
the angle between two consecutive curve seg-

ments s used as the attribute to describe the
connection. Any connection angle is called an
angle primitive, while a curve primitive is an

open curve segment with a curvature function
which is either positive or negative throughout
-

the curve segment. The four attributes are C,

L, A and S. C, L are the vector from one end
to the other, and length of the curve respec-
tively.

A=fof(1)d|, s = f, (Igf(ﬂdl-%) ds.

Where f(1) is the curvature function of length
L from one end. That is, A is the total angle
of the curve, while S somehow indicates the
symmetry of the curve. The four attributes are
defiined as the C-descriptor of a curve segment
(not of a curve primitive only) and the connec-
tion angle the A-descriptor of an angle primi=-
tive.
The C-descriptor, after a transformation

Ed *
T=(C L, A, A) = C|Cl/L, A, S/L, L/Lo),
the

in which L° is the total length of shape,
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noise into the picture after any of the above
operations. The effect is investigated. Some
interesting properties and efficient computa-
tion in discrete case of the descriptors are
studied.

The shape, after proper segmentation, can be
described by an attributed grammar [31, in
which each primitive or nonterminal has a
descriptor as its attributes. The descriptors
are computed when the recognition is performed.

The primitive extraction from noisy pattern
is usually very difficult. The grammatical in-
formation and looking ahead techniques can be
used to optimize the extraction. The Earley's
algorithm is modified to embody the primitive
extraction into the parse list generation, so
that the input of the algorithm is a vector
chain instead of a primitive string.

The shape grammar can be converted from a
context-free grammar to a finite-state grammar,
which is more efficient 1in processing. The
primitive extraction can also be embedded in
the corresponding finite-state recognizer. Re-
cursive expressions for computing the descrip-
tors are develnped to speed up the process.
Grammatical inference directly from the noisy
patterns can also be implemented automatically
or interactively.
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and the A-descriptor are theoretically invari-
ant under rotation, translation and scaling.
Unfortunately, the digitization introduces

" e

T




PROGRESS AT THE
ROCHESTER IMAGE UNDERSTANDING PROJECT

C. M. Brown
J. A. Feldman

The University of Rochester
Rochester, New York 14627

«1. Procedural Description

One important goal of the Rochester
Vision Project is to investigate a
generalized form of procedural
invocation in which an executive
procedure chooses worker procedures to
perform a job not just on the basis of
input/ output behavior (as traditional
pattern- directed invocation does), but
also taking into account cost/ benefit
estimates and perhaps other information
as well, This scheme is motivated by
the desire to have the advantages of
declarative knowledge abhout what is
doable (the descriptions) along with the
advantages of procedural knowledge about
how to do it (the workers). The
declarative, descriptive component will
allow conviences such as the modular
addition of procedural knowledge. The
main research issue is to decide what
exactly needs to be known ahout worker
procedures, and how to express that in a
useful and uniform manner. The most
recent and presently contemplated work
at Rochester explores aspects of these
issues (e.g. Lantz, Ballard, and Brown,
1978) .

1.2. Decision Theory

The use of decision theory not only
as an abstract model of intelligent
perception but as a practical tool to
maximize computational benefit/ cost is
being investigated in the context of
procedural invocation. This work
continues in the tradition of Bolles,
Sproull, and Garvey, and ultimately we
hope to extend some of their results to
deal with formal problems that more

closely approximate the sorts of vision
problems encountered in our particular
applications, Ballard (see Section 2)
uses decision theory techniques to
choose the most economical method
(assuring adequate accuracy) of locating
anatomical structures in large-format
images.

2. Applications in Biomedicine

The model-directed finding of ribs
in chest radiographs ( [Ballard, 19781 )
provides an illustration of the use of
the Rochester Vision Systea,
incorporating procedure description,
utility measures, and tops-down,
model-directed perception. The object
here is to cope with large amounts of
possibly low-quality data without undue
processing time by depending on a
declarative model of anatomical
structures, described procedural
knowledge about how to locate them, and
an executive which uses decision theory
to control the image- understanding
process.

A novel and uniform method of
describing arbitrary functions on the
unit sphere (which define "museunm-
viewable" volumes) is under
investigation, with immediate
application to anatomical structures
[ Schudy 1978). The idea is related to
the well- known Fourier descriptions of
tvo- dimensional shape. Volumes are
modelled and described as the leading
coefficients in certain spherical
harmonic expansions of the volume
functions. This method also allows
least squared error fitting of volumes
in coefficient space, which interfaces
nicely with routines which locate the
three- dimensional boundaries of volumes
in image data.

3, Application in Aerial Image
Analysis

The three-level organization of
image analysis (strategist, executive,
vorker) and a further exploration of
useful procedural description mechanisms
are the objects of study in automatic
photo- interpretation work ([ Lantz

19781). The object is to use the sorts
of knowledge- based inferencing used by
skilled photointerpreters, along wvith
models inspired by photointerpretation
kxeys for identifying small industries,
to do reliable and flexible
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identification of a few types of small
industrial installations. Imagery has
been acquired from a Rochester, N.Y.
mapping firm and from RADC in Rome, N.Y.
We plan to digitize the images in
cooperation with other DARPA contractors
(Maryland or USC). In the meantime,
modelling issues are beinqg addressed.

4. FPast Display of Certain Polyhedra

The descriptions of 3-D vector data
histograms mentioied 1n previous reports
are only an instance of a general class
of polyhedra for which unusually quick
solutions exist to the hidden line/
surface problem. In the last six
months, the conditions guaranteeing
quick displayability have become
understood, and display programs written
to use the resulting algorithms ([Brown
19781). Also recently the original
statistical motivation for the work has
received more attention ([Wellner
19781)) .

S. Component Building
5

The Grinnell GMR-26 display device
is on site and DMA-interfaced to the
second (Vision) Eclipse computer. 32K
of core has been added to the Vision
Eclipse, which is also used for research
in distributed computing (see Section
5.2). The original 80MB disk has been
replaced with a 300MB one, and another
390MB disk is on order, to arrive in
April 1978. We are acquiring terminals
and investigating how to meet our
everyday computing needs by commercial,
home-built, or combination intelligent
terminal systems. Acquisition of a
frame-rate TV-based digitizing device is
still proceeding. Construction of a
fast (50KB) link to the PDP-KL10 is
nearly complete.

5.2. Software

Advanced system software support is
now used routinely, and more is unier
development. Communications protocols
and distributed computing packages
({Rovner 1978, Feldman 1978, Sheininger
and Sabbah 1978, Selfridge 1978, Sloan
19781) have been developed to allow
access to the GMR-26 through the local
ALTO computers or the remote PDP-10, to
achieve reliable transmission between
distributed processes, to produce
graphics and halftone images on ALTO
screens froes the PDP-10, and to 21llow
file transfer and telnet to the Arpanet.
The IPCP in the TOPS-10 operating system
is the basis for communication between
pDP-10 jobs, and these jobs may now

create RIG messages and send them to the

local operating system for disposition.

At Rochester, the RIG message is the
iingua franca that allows processes on
remote machines to command the GMR-26,
perform file manipulations, etc. While
at SRI International for the summer, K.
Lantz vrote systems code for the
multiple process HAWKEYE system [ Barrow
et al. 1977). Some student projects in
our Computer Vision course are aimed at
producing useful system software for
vision, and the common departmental
interest in distributed computing
assures that new and co-operative
efforts using the distributed
computation and communications packages
will be launched frequently. A
comprehensive library of vision routines
({Sloan 1977-781)) has been developed,
centralized, documented, and
incorporated into the NEXUS systenm.
They allow interactive users a wide
range of image-processing and display
(graphics, halftone, color and B&W TV)
capabilities.
6. HMotion Understanding

Understanding motion pictures has
always presented an unusually difficult
problem to computer vision efforts. The
compelling gestalt induced in humans by
moving ohjects is not well understood,
and so there is little leverage on the
immediate problems resulting from thke
large mass of data in multi- frame
images, We are hoping to make progress

first on a pared-down version of the
problem which nevertheless offers an
interesting set of perceptual phenomena
to model. The domain is multi- frame
images of animal motion; initial
research is being carried out on
sequential images of points of light
attached to joints. This data can give
humans a strong perception of coherent
motion, and present work is aimed at
understanding hov we correctly identify
points (about 13 in all in present data)
from frame to frame, and how we segment
the resulting moving points into
meaningful body parts. Ultimately, the
results will bhe applied to multi-frame
grey-scale images. Data presently comes
from a program which simulates a range
of human walking motion in 3-D. The
program is a useful theoretical tool,
since it allows direct access (not
nediated by vision) to movement
parameters, point locations, etc. It is
also a useful psychological research
tool, since with it one can
inexpensively investigate limits in
human performance.
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Programming Language Development

The Smart Compiler and Distributed
Computation research groups are
cooperating on a language for research
into both these fields ([Ball 1973])).

It will contain the ideas of PLITS,
together with improvements and
extensions gleaned from the SAIL-PLITS
isplementations of the past. There are
several separate ways in which the
programming langquage developments are
affecting Image Understanding research
in our laboratory and elsewhere { Feldman
& Williams 1977]. An overview of this
vwork is presented in the companion paper
in this volume [ Feldman 1978].
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SPATIAL UNDERSTANDING

Thomas O. Binford

Atrtificial Intelligence Laboratory, Computer Science Department
Stanford University, Stanford, California 94305

Abstract

This report discusses research in two areas. The first is
spatial interpretation of stereo images and use of context in
stereo mapping. The second is the design and conistruction of a
model-based system for finding airfields and other ob jects from
generic models.

Introduction

A major objective of this research is to solve scientific
problems encountered in using stereo vision and motion
parallax for photointerpretation, mapping, and guidance. Stereo
ranging is attractive because it is passive, has high depth
accuracy, high spatial resolution, and makes use of images from
visible, SAR, and other well-developed sensors. Several systems
have partial success with automated stereo terrain mapping.
They have problems around buildings (surface discontinuities)
and on surfaces which are uniform or have repetitive markings
{the ambiguity problem). The chief problems to be solved are:
automating the process of matching corresponding parts of
images, particularly at surface discontinuities; resolving
ambiguities by using more global correspondence; designing
algorithms and machine architectures to meet time ob jectives.

We have taken the approach of building spatial models
of surfaces in order to make use of a priori knowledge about
ob jects, and to construct a consistent context within the scene.
Knowledge from outside the scene and from within the scene
are used to reduce ambiguity. We have used both feature
correspondence and small area correlation. The twe are
complementary. Edge correspondence is useful at discontinuities
of uniform surfaces. Area correlation is useful with textured
surfaces. For identification, we match three-dimensional
structures, rather than two-dimensional images. To make stereo
mapping fast we have developed coarse-to-fine search strategies
and utilized edge-based matching. These are combined with
successive approximation modeling, which concentrates effort at
any stage on large unmatched areas.

A second research ob jective is to build a system which
locates airfields in aerial photographs. It must do this from a
dialog with a PI and a set of examples. The system should be
generic. That is, the same system will be used to locate oil tanks,
based on another dialog and a set of examples. The same system
will be used for aircraft and vehicle identification. An
important consideration in a dialog is the language in which it
will be carried out. In this case, a language common to users and
to our vision system was chosen, a language of ob ject models.

Stereo Vision

Arnold [1] describes results obtained with photos of San
Francisco Airport, an apartment building, and a parking lot.
The system requires one minute of machine time to make a
depth map of edges of surfaces. The edge map appears easily
adequate for identification. Edge maps are relatively continuous
with few errors; they are improved near corners and along edges
which are nearly parallel to the stereo axis. The system has been
rebuilt, with memory maragement to work with very large
images, and is now being tested. Some of the weaknesses of
current edge operators show up under the close scrutiny of
image matching.

This research aims at high resolution of surface
boundaries to make measurement of dimensions and angles. It is
about a factor of 10 more accurate for such measurements than
Gennery’s system [2]. It is thought effective with thin ob jects
such as poles, although no examples have been demonstrated.
An essential part of the research is the use of context in
matching. The system currently uses local context of edge
continuity, and the context of the ground plane. The system is
being extended to use context of locally planar surfaces, with
successive approximation modeling. The addition of greater
context is expected to produce effective depth mapping.

A model for stereo vision is emerging. The model is based
on surface interpretation of edge and area correspondence, with
a coarse-to-fine search strategy, and successive approximation uf
surface models.
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Model-Based Vision

In order to make a system which an expert PI can use to
locate airfields, it is necessary to provide means for the expert to
express the task and his knowledge. This knowledge is a
combination of geometric and symbolic. We have taken the
approach of building a high level language for ob ject modeling
10 express spatial structures and relations [3).

The system uses that knowledge by building a structure
for what it expects to see in the picture. Some of the expectation
is generic, ie. widely applicable, some specific to the task at
hand. It determines symbolic observables and relations and links
them to their interpretations in the ob ject models.

A model-matching program uses multi-level relaxation in
the form of coarse matching and detailed matching.

The system can be driven in the otuer direction.
Structures from the picture can be mapped to generalized cones
and three-dimensional ob ject interpretations. It can thus build
scene descriptions guided by object knowledge. This level of
generality is very promising.

The system is largely not probabilistic. It does not have
distributions of expected pictures or ob jects, but it does have a
partial ordering among perceptual operations in terms of
expected cost and effectiveness. It has models of what’it expects
to find, but not models of the rest of the i‘nage. Thus, it does
not have a good way of distinguishing desired ob jects based on
very simple discriminations such as color. Instead, to make
effective selection of initial candidates it must use local shape
and context. To match, it must require strong reinforcing
structural evidence, not discount known alternatives. Only in
this way can it function in a complex visual environment.

The system is partially implemented. We expect to use it
to identify aircraft from stereo maps produced by the
edge-based stereo system.
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AN EXPERT SYSTEM FOR DETECTING AND INTERPRETING ROAD EVENTS
DEPICTED IN AERIAL IMAGERY

H.G. Barrow
M.A. Fischler
SRI International
Menlo Park, California

ABSTRACT

This paper presents an overview of SRI
International's effort to construct a "Road Expert"
whose purpose is to monitor and interpret road
events in aerial imagery. Goals, approach, and the
current state of this research are described.

INTRODUCTION

Research in Image Understanding at SRI
International was initiated in 1975 to investigate
ways in which diverse sources of knowledge might be
brought to bear on the problem of analyzing and
interpreting images. The initial phase of research
was exploratory in nature, and identified various
means for exploiting knowledge in processing aerial
photographs for such military applications as
cartography, intelligence, weapon guidance, and
targeting. A key concept is the use of a
generalized digital map to guide the process of
image analysis.

The results of this earlier work were integrated
in an interactive computer system called "Hawkeye"
(see Ref. 1). Research has now focused on a
specific task domain: road monitoring. The
following sections of this report present an
overview of this new effort.

OBJECTIVE

The primary objective in this research is to
build a computer system that "understands" the
nature of roads and road events. It should be
capable of performing such tasks as:

(a) Finding roads in aerial imagery

(b) Distinguishing vehicles on roads
from shadows, signposts, road
markings, etec.

(¢) Comparing multiple images and
symbolic information pertaining to
the same road segment, and
deciding if significant changes
have occurred.

It should be capable of performing the above
tasks even when the roads are partially occluded by
clouds or terrain features, or viewed from
arbitrary angles and distances, or pass through a
variety of terrains.

APPROACH

To achieve the above capabilities, we are
developing two "expert" subsystems: the "Road
Expert" and the "Vehicle Expert." The Road Expert
knows mainly about roads, how to find them (in
imagery), and what things belong on them. It works
at low to intermediate resolution (say from 1 to 20
feet of ground distance per image pixel) and has
the ability to distinguish vehicles from other road
detail. The Vehicle Expert works on higher-
resolution imagery and can identify vehicles as to
type. We are concentrating our initial efforts on
the Road Expert, and therefore will limit our
discussion to this component of our system.

Among the specific tasks to be performed by the
Road Expert are the following:

(1) Place the image into
correspondence with the map data
base

(2) Determine the precise location of
known roads in the image

(3) Determine the visibility of the
located road segments

(4) Mark the road center-line and lane
boundaries

(5) Detect anomalous regions on and
along the road pavement

(6) Determine which anomalies are
potential vehicles.

The image/map correspondence task will be
accomplished primarily by using roads as landmarks;
thus, Tasks 1 through 3 will interact strongly with
each other. These tasks will be performed at
approximately 20 feet/pixel resolution so that a
reasonably wide field of view (10 to 100 square
miles) can be processed at one time.

Having located visible portions of roads,
individual sections will be selected for detailed
analysis. Increasing resolution to approximately
1-3 feet/pixel, the road center-line and lane
boundaries will be found starting with the initial
estimate obtained in the low-resolution step. We
will then detect anomalous regions on anu along the
road pavement, and finally decide which of these
regions are vehicles. Since road anomalies will
cause problems in tracking a nominally homogeneous
road surface, Tasks 4 through 6 will be integrated
to some extent.
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The above tasks will be supported by information
about road condition and general structure from a
symbolic data base. For example, if prior
photographic coverage of the area being analyzed is
available, the problem of anomaly classification
can be simplified by determining if a similarily
shaped anomaly was found in the same general
location over some extended period of time.
Additional examples of how data-base knowledge and
stored models can aid in the analysis process
include: the use of time of day in discriminating
shadows from objects of interest; the general shape
and width of the road (as obtained from a map) to
aid in road tracking; and the expected size, shape,
and road orientation of potential vehicles.

A central theme of this effort is to consider
Roads as a knowledge domain. In particular, we
plan to address the question of how a-priori
knowledge can be directly invoked by the image
processing modules (what type of knowledge; how
should it be represented; what are mechanisms for
its use). To achieve our goal of building a very-
high-performance system, we plan to develop
explicit models of the image structures we will be
dealing with and, additionally, models of the
decision procedures embedded in the image-
processing algorithms so that the algorithms can
evaluate their own performance. Finally, we must
develop an overall control structure, which will be
concerned with the problems of coordinating
analysis across a number of levels of resolution,
and with integrating multisource information.

PROGRESS

Working programs exist that are capable of
performing each of the major tasks to be performed
by the Road Expert; however, these programs are
low-level in the sense that they still cannot
communicate with each other, or modify their
performance based on context or self-evaluation.
In almost all cases, the level of performance is
expected to improve substantially as we integrate
the individual modules and modify them to accept
data-base support.

We are currently placing major emphasis on Tasks
3 through 6, and some of this work is described in
a companion paper by Lynn Quam (Ref. 2). Using a
road model that assumes segments exhibiting
relatively smooth/slow changes in direction and
also in the intensity profile normal to road
direction, we have been able to achieve
surprisingly robust the performance in tracking the
road center-line. In many cases, roads that have
almost no discernible contrast at their edges can
be reliably followed.

In order to support our experimental work, we
have acquired multiple photographic coverage of
five distinct sites scattered around the San
Francisco Bay Area. This imagery (most of it still
to be scanned) shows road detail at the resolutions
mentioned earlier--i.e., 1 to 20 feet of ground
distance per image pixel.

CONCLUDING COMMENTS

We see the military relevance of our work
extending well beyond the specific road-monitoring
scenario presented above. In particular, a Road
Expert can be applied to such problems as

(1) Intelligence: monitoring roads for
movement of military forces

(2) Weapon Guidance: use of roads as
landmarks for "Map-Matching"
systems

(3) Targeting: detection of vehicles
for interdiction of road traffic

(4) Cartography: compilation and
updating of maps with respect to
roads and other linear features.

In accord with our generalized view of the
applicability of the Road Expert we are
constructing, we will attempt to achieve a level of
performance and understanding in each of the
functional tasks that far exceeds that required for
dealing with the road monitoring scenario alone.
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USCIPI SIX MONTHS OVERVIEW

Harry C. Andrews

Image Processing Institute
University of Southern California
Los Angeles, California 90007

The past six months have been quite
productive on a variety of research and
development fronts. The image under-
standing projects are maturing with symbo-
lir matching, structure location, edge
fi' cing, stochastic texture analysis and
SVD feature selection, all being reported
upon in some detail. The image processing
projects present both new and concluding
projects. New projects include double
phase binary computer generated holograms
and turntable radar imaging via coherent
multi-frequency radar return processing.
Older projects resulting in successful
theoretic and experimental work include a
posteriori restoration and perceptual model
color image coding. Our on-going smart
sensor project is expanding rapidly with
old circuits being driven at near real time
TV rates and new circuits being designed
for 7 x 7 area processing for both enhance-
ment and texture development. The Institute
has recently acquired a high precision
hardcopy color device for improved output
capability and has installed a real time TV
solid state refresh monitor and display at
ARPA headquarters. This allows recent
pictorial results to be made available over
the ARPANET. Any and all contractors can
make use of this device with software
devices available from the Institute.
Finally this past six months have witnessed
the graduation of one Ph.D. student and
numerous Institute personnel publications.
The Table of Contents of our up coming semi-
annual report is listed below and provides
insight into current projects. Interested
readers are directed to that report
(USCIPI No. 800).

TABLE OF CONTENTS

Research Overview

Image Understanding Projects

2.1 Matching Segments of Images
- Keith Price

2.2 Symbolic Matching and Analysis
with Substantial Changes in
Orientation - Keith Price

2.3 Locating Structures in Aerial
Images - Ramakant Nevatia and
Keith Price

2.4 A New Edge Fitting Algorithm
- Ikram Abdou

2.5 Stochastic Texture Analysis
- William K. Pratt

2.6 Singular Value Decomposition
Feature Extraction - Benham
Ashjari and William K. Pratt

Image Processing Projects
3.1 Double Phase Holograms, A New Way
of Generating Binary Holograms
- Chung-Kai Hsueh and
Alexander A. Sawchuk
3.2 A Technique of A Posteriori
Restoration -- Results of a
Computer Simulation - John Morton
3.3 Turntable Radar Imaging -
Chung-Ching Chen and
Harry C. Andrews
3.4 Perceptual Model Coding -
Charles Hall and Harry C. Andrews
Smart Sensor Projects
4.1 Charge Coupled Device Technology
For Smart Sensors-Graham R. Nudd
4.2 Statement of Work For Follow on
CCD Circuitry - Harry C. Andrews

Hardware Activities
5.1 Hardcopy Acquisition
- Farry C. Andrews
5.2 The RTTV at ARPA - Harry C. Andrews

Recent Ph.D. Dissertations

6.1 Digital Color Image Compression
in a Perceptual Space
- Charles Hall

Recent Institute Personnel Publications
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SYMBOLIC PROCESSING ALGORITHM RESEARCH COMPUTER
A Progress Report

Walling R. Cyre, Gale R, Allen, Pete G. Juetten

Control Data Corporation
Minneapolis, Minnesota

INTRODUCT ION

This report summarizes the progress on a high-
per formance, microprogrammed computer called SPARC
(Symbolic Processing Algorithm Research Computer),
which was started by ARPA in 1977. Although a gap
in funding occurred, this work has been continued
by CDC in conjunction with Carnegie-Mellon Univer=
sity under an internal research and development
program. ARPA funding has now been reestablished.
The primary effort has been focused on the develop-
ment of a set of design specifications from the
system of desired architectural features reported
earlier [1].

The machine organization of SPARC is based on
the concept of a set of specialized Functional
Units which communicate via a high-bandwidth,
multiport switch. From the machine organization
point of view, all Functional Units, including the
Control Unit and I/0 Units, are indistinguishable,
except for the number of input and output ports
which each presents to the Switch. The activities
of the computer are governed by a Program Memory
and a Connect Memory, both of which are located in
the Control Unit. Two Program Memory instruction
formats are defined. One instruction type has
seven fields. The first field is used to issue
activity or enable signals to the Functional Uaits,
and the second field is a data or emit field. The
next four fields may be used to select the opera-
tions to be performed by any four of the Functional
Units, including the Control Unit. The final field
specifies an address in the Connect Memory. The
second instruction type is used to overlay the
Connect Memory. The Connect Memory is used to
store patterns of switch closures for interconnect=-
ing the Functional Units.

METHODOLOGY

The primary problems addressed in the effort
reported here have been the specification of
Functional Unit operation sets and the mapping of
Functional Unit input ports onto Switch output
ports. The tools which are being used to solve
these problems include benchmarking and gate=level
simulation. The approach has been to program a
number of algorithms against the preliminary design
(which included preliminary operation sets for each
Functional Unit) and identify desirable changes in
the design. 1In closely coupled efforts, the design
feasibility and cost of each desired design modi=
fication was evaluated using gate-level simulation
methods. Although these studies are incomplete at
this time, significant results have been obtained,

particularly in the area of Functional Unit
operation sets.

RESULTS

First, the need for a general-register File
Unit was ideatified. One of the original specifi-
cations on the SPARC was that it perform well at
both the signal and symbol levels. In signal-
level image processing tasks, the machine can be
used to considerable advantage by cascading
Functional Units to form pipelines. The File Unit
is used to realize the small delays necessary in
programming tight pipes.

A second major result of the study was the
integration of the Shift/Mask Unit and the Boolean
Unit. This integration allows a higher utiliza-
tion of the hardware, and was determined to be
feasible through gate-level simulation. In addi=-
tion to these modifications in the machine organi=-
zations, a number of improvements in the operation
sets of the other Functional Uaits were made.
These changes ranged from an additional multipli-
cation mode in the Multiply Unit to a restructur=-
ing of the addressing mechanism of the Data Memory
Units., Other modifications tending to improve
performance were found, but were not adopted
because they led to marginal timing situations or
were not cost effective.

CONCLUSION

This effort is continuing with emphasis on
optimizing the mapping from Functional Unit inputs
to Switch outputs for conflict minimization, and
on defining the mapping between detectable machine
status signals and the conditions on which branch=-
ing may be programmed. This method of benchmarking
and simulation has been found to be a powerful
tool for progressing from the preliminary archi=
tectural specifications to the hardware design
specifications.

REFERENCES
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