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Abstract

The Barnes Model 14-WP transmissometer is one of the
principle optical path calibration instruments of the Air
Force Avionics Laboratory's Targeting Systems Characterization
Facility. A simple test based on LOWTRAN IIIB was devised to
certify system calibration while installed on an eight kilo-
meter optical path. In addition, an optical path anomaly
was investigated. Results are discussed and recommendations

for additional calibration tests and new procedures are made.
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LONG PATH, VISIBLE AND INFRARED
TRANSMISSOMETER: CALIBRATION AND USE

I. Introduction

Background

During the war in Southeast Asia, it became more ob-
vious than ever before that our forces must have the ability
to prevent the enemy from taking advantage of darkness and
adverse weather to move troops and supplies. One of the more
successful sensors to be developed to satisfy this require-
ment was the Forward Looking Infrared set (FLIR). Although
the FLIR concept had been demonstrated in the mid- 1950'53
the electronics technology was not sufficiently developed to
permit developing a useful, airborne FLIR until 1965 when the
first exploratory development FLIR was tested in Southeast
Asia. From then until 1974, over sixty different types of
FLIR's were developed and several hundred were produced (Ref
11:5).

Throughout this period, the emphasis was on improving
infrared (IR) detectors as well as the associated signal pro-
cessing electronics and optics. However, by the end of this
period, as cost increases began to exceed performance in-
creases, the emphasis shifted toward better understanding of
the physics of thermal imaging. Such improved understanding

lead to computer modeling of the FLIR and its military appli-
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cation. These models are intended to determine the extent to
which FLIR performance must imporve, if at all, in order to
satisfy future military requirements. For instance, a major
question to be answered prior to developing the next genera-
tion Air Force FLIR is what is the optimum spectral window for
its operation? Does it fall within the 3 to 5 or 8 to 12
micrometer atmospheric windows? The models should answer this
question. Unfortunately, there is 1ittle confidence in cer-
tain parts of the models; two particularly poor areas involve
atmospheric propagation under very low visibility conditions
and dynamic (search) modeling (Ref 23:2). This thesis will

address the atmospheric propagation issue.

Atmospheric Transmission. The importance of atmos-

pheric effects on the IR energy emitted by a target and re-
ceived by a FLIR is well documented (Refs 1; 11:30-52; 12; 15;
22:10-16; 23: chap 3; 25: chap 6). The most important effects
are (1) attenuation of the target energy by molecular absorp-
tion and by scattering out of the path, (2) scattering of back-
ground energy into the path, (3) the IR radiance of the air
mass in the path, and (4) optical turbulence along the path.
The first three effects have been under study both
in the laboratory and in the field since the late 1950's. In
fact, in 1957, T. L. Altshuler (Ref 4) published a set of
curves which may be used with reasonable confidence whenever

the total transmission is greater than 20 percent. More

recently, the laboratory and field data have been complied

and made available in the Air Force Geophysics Laboratory
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computer program LOWTRAN (Refs 13; 17; 18; 19). It is
generally agreed that the most recent version of LOWTRAN,
LOWTRAN IIIB (Ref 19), provides quite accurate transmission
values when the total path transmission is greater than 10

per cent and scattering losses are low (Ref 23:1-13); however,
when scattering losses are high, LOWTRAN departs from measured
data by as much as a factor of three (Ref 16).

The fourth effect, optical turbulence, is the subject
of current research (Refs 1; 2:31-35). As a result, only
quasi-empirical mathematical models are available for engi-
neering estimates of the degradation due to optical turbu-
lence; these estimates do agree favorably with the limited
experimental data that exist at this time (Ref 2:4).

This thesis wili be concerned primarily with the first
effect, attenuation by absorption and scattering. An overview
of atmospheric transmission theory is provided in chapter II.
Appendix A contains a computer listing of the modified LOWTRAN

program developed for this thesis.

Atmospherics Effects Measurement Program. Because of

the need to validate electro-optical sensor mathematical mo-
dels and because of the lack of reliable atmospheric trans-
mission data (Ref 11:31), particularly under low transmission/
high scattering conditions, the Air Force Avionics Laboratory
(AFAL) has established an Atmospheric Effects Measurement
Program within its Targeting Systems Characterization Facility.
This facility consists of electro-optical imaging sensors,

including FLIR's, and test equipment, targets and mete-
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orological instrumentation. The intent is to provide a fully
characterized, eight kilometer, optical path between the sen-
sors and the targets. To accomplish this, standard meteor-
ological instruments as well as aerosol particle counting and
sizing instruments are located at the zero, four and eight
kilometer positions along the optical path. In addition, a
Barnes Model 14-WP transmissometer (0.5 to 14 micrometers) is
located so as to measure the spectralt transmission along the
eight kilometer path. The data from the transmissometer and
the other instrumentation will provide the optical path cal-
ibration and will also be available to validate or to provide
corrections to LOWTRAN. In the latter case, the transmisso-
meter is the most important instrument; its calibration is
one of the first tasks in the Atmospheric Effects Program and
is the primary concern of this thesis. A summary of trans-

missometer theory is contained in chapter III.

Transmissometer Calibration. An IR transmissometer

consists of a standard source of thermal radiation and a
projector for that energy (somewhat like a searchlight) and
a receiver that collects the energy after it has been atten-
uated by the atmosphere. The receiver electronics then con-
vert the energy into a recordable output.

No standard procedure exists for calibrating a trans-
missometer; however, those procedures that do exist have sev-
eral features in common. The receiver is first set up in the
laboratory looking into its own source or at another black-

body reference source. The electronics are tnen adjusted so
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that a known relationship exists between this measurement
and, based upon geometric arguments, that which would be ex-
pected on the test range. Then the transmissometer is in-
stalied and, if possible, some simple test is devised to ver-
ify the calibration in situ. This test usually consists of
comparing the measured data to LOWTRAN predictions during
periods of high transmission with low scattering (Refs 7:7).
In addition to transmissometer theory, chapter 1I1
also contains a description of the Barnes Model 14-WP trans-
missometer and of its installation in the AFAL Targeting
Systems Characterization Facility. Chapter IV contains a
description of the experiments performed with the transmis-
someter and the results. Chapter V contains a summary of the
work under this thesis and recommendations for additional
calibration testing. Appendix B is a draft calibration hand-

book for the transmissometer.

Objectives

The objectives of the work described on this thesis
were as follows:

a. develop an understanding of the principles of
operation of the transmissometer,

b. devise a simple test to verify the transmis-
someter calibration while installed on the eight kilometer
range,

c. identify those areas which require additional
calibration testing,

d. conduct the initial transmission measurements
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prior to the transmissometer's being interfaced with the
facility's automatic data processing equipment.

The last objective was not fulfilled partly because of equip-
ment malfunction and partly because of visibilities that were

too low to permit alignment and calibration.

s LT |
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II. Atmospheric Effects

The atmosphere is important to all living creatures
on this world not only because of the gases that are breathed
and the rain and heat retention that are provided but also
because of the protection from harmful solar radiation. None
of these things bou]d be provided if the atmosphere did not
absorb electromagnetic radiation. As desirable as this fea-
ture is, it is undesirable to people or sensors that need to
see through the atmosphere for long distances. Consequently,
it is necessary to identify and quantify the atmospheric
effects on electromagnetic radiation so that they at least
might be corrected for. This chapter provides an overview
of atmospheric attenuation mechanisms, a brief description of
the most commonly accepted atmospheric transmission model and
a brief description of a modification that was accomplished
on that model for this thesis. Samples of the output of the

model are included in the fourth chapter.

Atmospheric Attenuation Mechanisms

As it propagates through the atmosphere, visible and
infrared radiation are selectively absorbed by several atmos-
pheric gases and scattered away from the direction of propaga-
tion by aerosol particles suspended in the atmosphcre. Excel-
lent summaries of these effects have been written by Hudson
(Ref 9: chap. 4). Lloyd (Ref 11: chap. 2), and Wolfe (Ref 25:
chap. 6). Middleton (Ref 15) has written an excellent reference

text on seeing through the atmosphere and McCartney (Ref 12) has
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discussed the scattering processes in great detail. The fol-
lowing discussion is drawn primarily from these sources.

The general process of attenuation of radiation as it
passes through the atmosphere is called extinction. For mono-
chromatic radiation, the transmittance along a path may be

expressed by the Lambert-Beer law

T = exp(-oR) (1)

where T 1is the transmittance, o 1is the extinction coef-
ficient and R is the length of the path. The extinction

coefficient may be further separated into

o = aty (2)

where a is the absorption coefficient and y 1is the scat-
tering coefficient; both:zof these coefficients vary with
wavelenath. Absorption is primarily a function of molecular
excitation and affects the infrared more than the visible
spectral region. On the other hand, scattering is a function
of particle size and, under most weather conditions, can cause
greater attenuation in the visible than in the IR.

Visible and Near-IR Spectral Region. Extinction in

this region is primarily caused by scattering by gas mole-
cules (Rayleigh scattering) and haze (Mie scattering); how-
ever, water vapor molecular absorption does become important
in the near-IR region. Energy scattered out of the path and
then back again could also have an effect on transmission

measurements. Such an effect should be very small if the
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transmissometer receiver has a very small field of view.
Stewart and Curcio (Ref 20:804) derived an equation for

this effect

Ty =T+ 0.5(1-T)(1-e"%) (3)

where Te is the transmittance measured by an instrument having
hafiadd of view of @ radians and T is the transmittance that
would have been measured in the absence of scattered light.
For fields of view smaller than one degree, Te and T are
the same except under conditions of very low transmission;

i.e., less than three per cent.

Far-IR Spectral Region. Extinction in this region is

primarily caused by molecular absorption. The most important
absorbers are water vapor and carbon dioxide. Water vapor has
both a discrete and a continuum absorption in this region.

The latter is not well understood but has been measured.
Scattering becomes the dominant extinction mechanism only for
low visibility or for low temperature, low absolute humidity
conditions.

Middle-IR Spectral Region. Extinction is this region

is caused by both molecular absorption and scattering; however,
there are discrete spectral regions (around 2.2 and 3.8 micro-
meters) in which transmission through haze is better than in
the visible and transmission through water vapor is better than

in the far-IR (Ref 2:6).

LOWTRAN IIIB

Because of the widely varying value of the extinction

coefficient as a function of wavelength and even more so as a

9
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function of atmospheric conditions (Pressure, temperature and
absolute humidity), many attempts have been made to develop
useable models for estimating atmospheric transmittance.
Altshuler wrote one of the best early models (Ref 4); however,
it was too cumbersome because of the use of scaled graphs.
McClatchey et al, of the Air Force Geophysics Laboratory
(formerly the Air Force Cambridge Research Laboratory),
followed Altshuler's approach, added a lot of curve fitted
empirical data (both laboratory and field measurements) and
developed a very flexible computer model, which in its latest
version, is called LOWTRAN IIIB (Ref 19). The code permits
calculating atmospheric transmittance in the spectral region
from 0.25 to 28.5 micrometers along arbitrary, slant paths.
Any one of six standard atmospheric models may be used or
meteorological or radiosonde data may be inserted. Five dif-
ferent aerosol models are also available; however, only the
maritime model is said to compare favorably with measurements
over the European continent during conditions of low visibility
(Ref 16). In the absence of aerosol scattering, LOWTRANS's
accuracy is stated to be within a few per cent (Ref 7).
LOWTRAN predicts atmospheric transmission by calculating

the attenuation for each of the following contributors:

a. water vapor line absorption (350-14500cm'])

b. uniformly mixed gases (C02, N,O, CHys CO, Ny,
and 02) line absorption (500-806Q0 and 12970-13190 cm‘])

c. ozone line absorption (575-3270 cm'])

d. nitrogen continuum (2080-2740 cm")

10
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e. water vapor continuum (670-1400 cm'])
f. molecular scattering (2740-4Q000 cm'])
g. aerosol scattering and absorption (35Q0-40000
cm'])
h. ozone absorption (13000-23400 cm‘])

The total transmittance for a 20 cm”]

frequency interval is
then obtained by multiplying the individual transmittances
obtained from the above attenuations. This procedure is
repeated throughout the spectral region of interest in incre-

ments of 5 cm” !

or greater, as specified by the user. This

approach has been shown to be valid for transmissions greater
than about 30 per cent (Ref 23:24) and is probably valid down
to about 10 per cent (Ref 23:1-14) provided that aerosol scat-
tering is not the primary loss mechanism. Very little experi-

mental data exists with which to correct or to validate LOWTRAN

under Tow transmission/high scattering conditions.

Modified LOWTRAN IIIB

A substantial portion of the LOWTRAN IIIB program is
concerned with computing transmission along slant paths.
Since the optical path for this thesis is practically hori-
zontal, these cards were removed. In order to increase the
program's flexibility, several DO loops were added to permit
iterating the temperature, dew point and visibility and plot-
ting transmission as a function of the iterated variable or
as a function of wavelength, A source listing is contained

in appendix A.

11
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III. The Transmissometer

As mentioned in the first chapter, a transmissometer
consists of a standard radiation source, a projector for that
radiation and a receiver that collects the radiation after it
has propagated through the atmosphere. This chapter provides
a general description of an IR transmissometer, a brief des-
cription of the theory of its operation and a specific descrip-
tion of the transmissometer used for the work reported in this
thesis, the Barnes Model 14-WP, and of its installation and
calibration in the AFAL Targeting Systems Characterization

Facility.

General Description

An IR transmissometer uses a high temperature black
body as the source of its radiation. The source is usually

maintained at a constant temperature by constant current elec-
tronics and its own thermal inertia. The radiation from the

source floods an aperture which is located at the focal plane

af the projector. In order to provide background discrimin-
ation, the energy is usually chopped at 1000Hz or more just

in front of the aperture.

The projector is best compared to a searchlight, al-
though, in essence, it is a collimator. The energy entering
the aperture is collected by an off-axis paraboloid or by an

on-axis paraboloid in a Newtonian configuration. The energy
is then projected into the atmosphere in a highly collimated

beam; the smaller the aperture, the greater the collimation.

12
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For a true point source, the beam would be perfectly colli-
mated.

After propagation through the atmosphere over a speci-
fied range, the beam is incident upon the receiver. The re-

ceiver optics, usually Cassegrainean, then focus the radiation
upon a detector which is sensitive to IR energy in the wave-

length region of interest. The wavelength region is normally
defined by inserting a spectral filter in the optical path

in front of the detector. The detector converts the IR energy
into an electrical signal which is amplified and processed and

then presented to the experimenter either as an irradiance
value or as a transmission value. In the latter case, the

transmission is defined to be the ratio of the IR energy act-
ually collected to that IR energy which would have been col-
lected if there were no intervening atmosphere. The next
section details the procedure for calculating the energy that

would have been collected in the absence of an atmosphere.

Theory

One of the most comprehensive articles on beam pro-
jectors was written by Frank Benford in 1945 (Ref 5). Unfor-
tunately, this article was only concerned with aspheric op-
tics ( the transmissometer used for this work had a spherical
mirror). Klein (Ref 10:136-138) provides a reasonably detailed
description of a searchlight using a spherical mirror as does
Hudson (Ref 9:227-228). The following discussion is drawn
from these sources.

Figure 1 shows a single mirror collimator/searchlight

(source size and angles are exaggerated for clarity). The

13
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Fig. 1. Searchiight Ray Trace

limiting rays are depicted for bund]es‘originating at the
center and at one edge of the source. The angular beamwidth
is equal to the ratio of the size of the source to the focal
length of the mirror. The irradiance in the beam is indepen-
dent of the distance from the mirror at all points in the
central cone to the right of the crossover point. This occurs
when the field point is close enough that the source aperture
is the aperture stop. Beyond the crossover point, the
irradiance in the beam falls off inversely with the square of
the distance from the mirror provided that the field point is
still in the central cone. In this case, the mirror is the
aperture stop and increasing the source aperture size does
not change the irradiance at the field point, only the beam
diameter. The equations governing the irradiance at a field

point in the central cone are, from Klein (Ref 10:137)

SRR
Bisir  WORET <D AR b (4)

14
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= 2 2
Efar = LnR1 / D s D> R]f/ re (5)
where

E = idrradiance (before or after crossover)

L = radiance of the source

r_. = radius of the source aperture

f

s

= focal length of the mirror
R] = radius of the mirror
D = distance to the field point

Note that the distance from the mirror to the crossover point
is R]f/rS and that the beam angular width is 2RS/f . ATl
of these equations are small angle approximations; this is
justifiable since the angles involved typically range from a
fraction to a few milliradians.

In prSCtice, a source aperture should be selected such
that the central cone diameter at the field point is large
enough to compensate for beam wander induced by atmospheric
turbulence/scintillation. Also, a very much smaller aperture,

R ,Should be selected for calibrating the receiver at zero

cal
range. This assures that the receiver electronics are not
saturated as well as that the receiver is precisely aligned
with the beam projector's optical axis. Then, usi.g equations
(4) and (5), the ratio of the calibration irradiance to the
irradiance at the field point in the absence of the atmosphere

is

cal factor = (R, 0/ R f)2 (6)

cal

Barnes Model 14-WP Transmissometer

Transmitter Assembly. The beam projector ,f the trans-

15
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missometer used for this thesis consists of a Newtonian tele-
scope, a Barnes 1000°C black body source and a -tungsten foil
2820°K color temperature visible light source. Figure 2 is a
layout drawing of these components. The radiation from the
two sources is combined by a germanium beam splitter and is
chopped by a gold plated mechanical chopper (1180Hz) prior

to illuminating the aperture plate. The aperture plate is
located at the focus of the telescope mirror and contains
eight apertures ranging in size from 0.0048 inches in diameter
(CAl) to 0.2560 inches in diameter. The telescope mirror has
a focal length of 49.5 inches. Its diameter is 16.5 inches,
but, allowing for obscuration, the effective diameter is

14.95 inches.

4

)

LERRRE R

aperture wheel mirror }
—— -;_—/chopper

beam
splitter S\

black

body

Fig. 2. Transmitter Assembly Layout
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Receiver Assembly. The receiver assembly consists of

a Cassegrainean telescope, a continuously variable filter (CVF)

wheel, a detector and signal processing electronics. Figure 3
is a layout drawing of those components in the receiver head.

Three different receiver assemblies are used to cover the
spectral region from 0.5 to 14 micrometers; a silicon detector
is used for the spectral region from 0.5 to 1.2 micrometers,
an indium antimonide detector for 1.5 to 5.65 micrometers and
a mercury cadmium telluride detector for 7.6 to 14.3 micro-
meters. The field of view of the receiver is 5 mrad for the
visible receiver and 2.5 mrad for the IR receivers. The
electrical signal from each receiver head is carried by cable
to a separate electronics unit. Each electronics unit con-

tains signal amplifiers, a narrow band filter assembly to
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Fig. 3. Receiver Optical Layout
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extract only the 1180Hz signal coming from the telescope, a
phase lock loop to synchronize the receiver electronics with
the telescope chopper, a digital meter and an analog meter
to display the transmission reading, the filter wheel drive
control and a binary coded digital output to provide trans-
mission and filter wheel position data for computer input.
During very low visibility conditions, synchronization may
be acheived by telephone modem or by radio transmission and

input of the synch signal generated by the telescope chopper.

Installation

The AFAL Targeting Systems Characterization Facility
consists of laboratory rooms on the eleventh and twelfth floors
of building 620 and a test area, the Trebein site, located
five miles east of building 620. The transmitter assembly
is installed in a building on the roof (fourteenth floor) of
building 620. The receiver assemblies are located in a sim-
ilar building at the Trebein site. The optical path is 7.944
kilometers long with an average elevation of 318 meters.
Meteorological instrumentation is installed at building 620,
at the Trebein site and on a tower located at the mid point
of the optical path. During the course of the experiment,
it was discovered that the weather tower interfered with the
optical 1ine of sight between the transmitter and receiver
assemblies, and an additional objective of this thesis be-
came to determine the effect of the weather tower on the beam.

Calibration

The transmissometer manufacturer providied the calibra-

18
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tion data which is found herein in appendix B. Because of
time constraints, it was necessary to accept this data and

to install the transmissometer for test. Using the manu-
facturer's data and equations (4), (5) and (6), it is possible
to determine the telescope's beam divergence, the distance to
crossover, the size of the central cone at the Trebein site

and the calibration factor. These are listed in Table I

Table I

Transmissometer Beam Calculation Results

Source Aperture Divergence Crossover Central Cone
Diameter (inch) (mrad) Distance (km) Diameter (m)
0.0048(CAL) 0.097 4.32 0.35
.0081 .164 2.56 0.88
.0141 « 285 1.47 1.85
.0256 «5E7 0.810 3.69
.0444 0.897 .467 6.71
.0810 1.636 .256 12.86

0.1410 2.848 0.147 22 &

Calibration factor: 3.73 (range= 7.944 km)

The manufacturer sent an engineer to Wright-Patterson
to accomplish the initial calibration prior to installation.
The calibration procedure detailed in appendix B was used
with the calibration factor of 3.73 (value for 8km) for the
peak response filter wheel position. Al1 responses at other
filter wheel positions were then determined and filter fac-
tors were calculated to normalize all readings to the peak

response. The value of this technique is that no absolute

19
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radiometric calibration is required. The limitations are

the source output stability and optical transmission changes
owing to dust deposits. As a result, periodic recalibration
is required. Because of the difficulty of bringing the re-
ceiver assemblies to the transmitter assembly, an additional
test is required to determine when recalibration is required.
Developing this test is the principle objective of this thesis.

It is discussed in the next chapter.

20
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IV. The Experiment

As stated in chapter I, equipment malfunctions and
uncooperative weather prevented satisfying the objective of
conducting the initial transmission measurements as part of
the Targeting Systems Characterization Facility program.
Consequently, only the weather tower effects and the <n situ
calibration verification procedure/test were accomplished for
this thesis. The work and the results are described in this
chapter. Note: The transmissometer manufacturer refers to
the InSB receiver as the near-Ir receiver; this erroneous
labelling is also used in this thesis in order to avoid con-

fusion.

Weather Tower Effects

Results. Initial alignment of the transmitter assem-
bly could not be accomplished until 4 August 1977. Alignment
was accomplished by removing the IR source and beam splitter
(see figure 1) and looking through a microscope at the image
in the plane of the source aperture. No alignment fixture
was available; as a result, on-axis alignment was determined
by lTack of parallax and coma. The azimuth and elevation
settings were then adjusted until the appropriate window of
the Trebein building was in the center of the field of view;
the receivers were located hehind the second window from the
north corner of the building; the transmitter was located
behind the farthest south window of the small building on the

top of the building 620 tower (see figure 5). Since electrical

21




GEP/PH/77-14

‘abuey 3say 4vj8woty 34ybry ¢ "b6i4

0299

D

& WY —m8>

NETY
Jddyjeap

uotL3ed07
d933LWsSued]

o

< Wiy —p

.

3316 42_

uL3qgau]

uoL1ed07 7 IN
FETNELEN fﬁi&
LRwaoN 7 N\,

22




GEP/PH/77-14

power could not be applied to the transmitter assembly at
that time, no tests were conducted until 11 and 12 August.
Only the visible receiyer could be used and it could not
maintain phase lock with the incoming beam. After several
days of troubleshooting, it became possible to conduct the
following test on 18 and 19 August 1977.

The transmitter assembly was visually aligned with the
appropriate window of the building at the Trebein site, and
the receiver was then aligned by manually adjusting its line-
of-sight until a maximum transmission reading was obtained.
Then, the size of the transmitter's source aperture was varied.
For each position of the aperture wheel, the transmission
reading was recorded; since the readings were fluctuating
rapidly, maximum and minimum values were estimated visually.
Only the 0.68um position of the receiver filter wheel was used
during this test. Next, the receiver was placed on a tripod
in front of the next window (2) to the south, the transmitter
assembly was aligned to that window and the experiment was
repeated. A third set of measurements were also made for the
last window to the south. The same sets of measurements were
repeated the next day. The mean values of the data are
depicted on figure 6 where the numbers 1, 2, and 3 refer to
the receiver being located behind its normal window, the next
one to the south and the last one to the south, respectively.
The transmission readings were better on the first day because
the visibility was about 20 miles on the first day and only 15

miles on the second day. Image boil (scintillation) hamoered
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the visual alignment and was greater on the first day than on
the second day.

The higher transmission readings as the receiver was
moved farther south were quire disturbing because the weather
tower obstructed the line-of-sight to the normal window (1)
only! Consequently, it was decided to repeat the experiments
at night when atmospheric optical turbulence would be less and
a more precise alignment could be assured. The experiment was
repeated the night of 24 August 1977; this time a fourth test
position was included, the stairs outside the south side of
the building. The data are depicted in figure 7 and listed in
table II. A flashlight located at the receiver was used to
assure precise alignment of the transmitter assembly. This
time the lowest transmission readings are those for the farthest
south window (3) and the stairs (4) while the highest readings
are still for the southern window (2) adjacent to the normal
window (1). As a final check, these measurements were repeated
the night of 22 September 1977. Since the visible receiver was
not functioning this time, the near IR receiver was used; the
filter wheel was stationary at 2.19um. These data are also
included in table II; this time the northern window (5) adja-
cent to the normal window (1) was included. The measurements
at the adjacent southern window (2) are still higher than for
the other windows.

Additional information noted during these two tests:

1. As would be expected, based on the field of view plots in

the manufacturer's calibration data, the transmission reading
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Table II. Weather Tower Effect Transmission Measurements

Source Aperture Visible Transmission Reading 24 Aug 77

Diameter (inch) Pos'n 1 Pos'n 2 Pos'n 3 Pos'n 4
0.1405 51.5x5.4**% §1.9+4 .5** 45,5+3,5 43.5+2.8
.0810 50.0%5.9 61.5%4.9 43.72.6 43.8+2.7

.0444 50.7+4.1 61.7%4.6 42.9%2.5 42.7+1.9

.0256 45.5+4.8 54.05.0 38.5+2.8 36.4:3.4

.0141 33.8%6.8 39.2:2.0 29.3%2.5 28.2%1.7
0.0081 29.2%2.2 31.7¢2.0 22.1%¢1.8 17.0£3.0

Near IR Transmission Reading 22 Sep 77

0.1405 19.8%22.4 37.2%4.8%* 19.123.3 P
.0810 19.3:1.8 36.2:4.1 19.522.5 ©
.0444 19.121.8 35.3+3.1 18.72.3 5
.0256 14.6:2.0 31.4:4.0 14.9:2.3 N

0.0141 9.0¢1.4 23.0+2.6 8.7¢2.0 5

** Scintillation was high during these measurements.

is extremely sensitive to receiver misalignment. According

to that data, over 35 per cent is lost in transmission reading
by angular displacements as small as *1 mrad. Consequently,
any flexing in the floor support of the receiver would cause
the transmission reading to change when the person accomplish-
ing the receiver alignment moved away from the receiver. This
applies to positions 3 and 4.

2. The peak sensitivity position is not necessaryily in the
center of the circle superimposed in the optical viewfinder
image.

3. Changing the near IR electronics drawer position can change

the transmission reading by as much as 10 to 15 per cent.
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4. Turning the visible 1ight source off reduced the near IR
transmission reading from over 4Q per cent down to 10 per cent.
5. If the receiver is at one window and the transmitter
assembly is aligned with the adjacent window, the transmission
readings are substantially lower than would be predicted for
the larger source apertures and vary substantially less as a
function of source aperture size. Representative data are
shown in table III including an indication as to whether or
not the central spot size should overlap the adjacent window.
6. Scintillation increases the spread in the data even for

the largest aperture.

Table III. Adjacent Window Measurements

Source Aperture Transmission Spot Size
Diameter (inch) Reading Overlap ?
0.1405 12.0 yes

.0810 12.2 yes
.0444 10.7 yes
.0256 9.1 marginal
.0141 8.6 no

0.0081 8.6 no

NOTE: The readings increased to 19.0 when the transmitter
assembly was aligned to this window.

Discussion. The results of the weather tower tests do
not demonstrate conclusively that the tower does or does not
have an effect on transmission measurements made at windows
one or five. However, the data do permit one general conclu-
sion to be drawn; that the beam profile is not as predicted

from theory (see Table I) but has a smaller central cone. The
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justification for this conclusion is contained in the follow-
ing paragraphs.

Consider the slopes of the data plotted in figure 5.
Variable alignment would explain the crossover on the 19 August
data while different amounts of scintillation would account for
the difference in slopes with the lower scintillation yielding
the shallower slope on 20 August. The latter point is con-
firmed by the fact that the spread between the maximum and
minimum readings was also reduced for less scintillation.

Since using a flashlight at night helped eliminate the possi-
bility of misalignment, the remainder of this discussion will
be concerned only with the 24 August and 22 September data
(figure 6 and table II).

At night, scintillation was quite a bit less than
during the day and precise alignment of the transmitter
assembly was assured by using a flashlight located at the
receiver at the Trebein site. Although the slopes are even
flatter, they still exist; the first aperture showing marked
fall-off is the 0.256 aperture. Also, the difference between
maximum and minimum readings is as great during the maximum
scintillation period at night as during the day even though
the scintillation appeared to be less visually; i.e., although
the image of the flashlight sometimes moved out of the .0081
in. aperture atnight, during the day the whole scene "crawled",
and the image of the window sometimes moved most of the way out
of the .0256 id.aperture. Since the diameter of the uniformly

irradiated cen'ral cone is 3,69m for the 0.256 in. aperture,
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nighttime scintillation should not reduce the transmission
reading unless the central cone is smaller than predicted or
is not uniform. Since the diameter of the central cone is
only 0.88m for the 0.0081 in. aperture and 1.85m for the
0.01471 in. aperture, the transmission reading should be
reduced by scintillation and the spread from maximum to mini-
“mum should be increased because the receiver would more often
be illuminated by the energy from outside the central cone.
The reading is reduced, but the spread is not increased; in
fact, the spread is reduced. This also is explicable if the
central cone is smaller than predicted. Finally, consider
table III. If the central cone were as large as predicted,
whenever the transmitter is aligned with one window, the
transmission reading should be the same at the adjacent window
as long as the central cone covers both windows. This is not
the case; and, in fact, the transmission reading is still

37 per cent lower even when the central cone should be 22m
(G.141 in. aperture).

The above comments are applicable to the data from
each window considered by itself. When the data from the
windows are compared to each other, it is obvious that at
night, window two consistently provided higher transmission
readings than the other positions. This can be traced to ease
of alighment; at the southernmost window (3) and on the stairs
(4), the flexibility of the floor is such that when the indi-
vidual aligning the receiver moves away from it, its boresight

is shifted. Also, at the normal window (1), the receiver
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mounts were such that it was very difficult to "tweak" the
boresight to within + 0.5 mrad to assure maximum transmission

readings.

Calibration Test

Results. The modified LOWTRAN program was run to plot
transmission as a function of wavelength and dew point and
visibility. Samples of the three spectral region runs using
the rural aerosol model are shown in figures 7 through 11.
These plots were used in conjunction with the manufacturer's
spectral calibration data to select the wavelengths to be used
for the calibration tests. The tests were not run until the
night of 24 September because, at first, gaseous nitrogen was
not available and then the weather was too hazy; recall, the
tests must be accomplished when scattering is not the principle
attenuation mechanism. Only the near IR was available the
night of the test. The results of the measurements are
included in table V along with the LOWTRAN predictions using
the rural, urban, and maritime aerosol models. The meteoro-

logical conditions during the test are listed in table IV.

Table IV. Meteorological Conditions During Cal Test

Parameter B620 Trebein Model
Temperature (°C) 18 15 16
Dew Point (°C) 13 14 14
Visibility (stat. mi) 12 (base wx) 8.5 8.8, 18, 12
Pressure (millibars) 985 985
30
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After the Zn situ tests were completed, the near IR
receiver and the electronics unit were brought to building
620. The dust coyer was removed from the transmitter assembly,
and the receiver was installed on an adjustable mount looking
directly into the transmitter assembly. The calibration pro-
cedure of Appendix B was followed. Precision control of
azimuth and elevation pointing angles was not possible; conse-
quently, a great deal of time was required for each alignment,
and the final alignment was still questionable. The tempera-
ture of the IR blackbody is not monitored by the control
electronics; it did not look as deep red as during the in situ
tests. The highest transmission reading for the CAL aperture,
with the 10X attenuator in place, was 7.8 per cent. Moving
the electronics drawer never caused the reading to exceed 20
per cent.

Discussion. With one exception (1.73um) the measured
transmission values in table V are within 0.1 of the predicted
values using the base weather visibility and the rural aerosol
model in LOWTRAN III B; the lower 1o limit for that one wave-
length interval is also within 0.1. Consequently, the calibra-
tion check in building 620 should have confirmed that no
recalibration was required; this was not the case. Unfortu-
nately, the adjustable mount was too difficult to use and an
accurate alignment could not be proven. In addition, the
variable transmission reading as a function of electronics
drawer position caused much uncertainty in the procedure.

Insufficient time remained to procure another mount and to
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repeat the experiment to demonstrate the efficacy of the
in aitu calibration check, The drawer position problem was

subsequently traced to a faulty ground.
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V. Qbservations and Recommendations

Observations

Using the Transmissometer, Because the transmitter

beam central cone is not as large as expected, both the trans-
mitter assembly and the receivers should be aligned prior to
each test. Unfortunately, this will restrict test operations
to days in which the visibility is five miles or greater. If
the present transmitter mount proves to be sufficiently stable
so that the realignment is not required, test days will still
be restricted to those on which the transmission is greater
than three per cent. This is because over half of the visible
and almost half of the near IR channels have such Tow filter
factors that the indicated transmission will be less than one
per cent and the receiver will lose synch.

Also, scintillation appears to have a strong effect
on the measurements. The frequency and amplitude of its
effects are such that single point, instantaneous sampling
could lead to an incorrect value.

Calibration. Although the current through the visible

source is monitored and is constant, the radiation output will
still change as the source ages. This leads to the need to
recalibrate all three receivers, not just the visible receiver.
The temperature, dew point and visibility values at
building 620, the Trebein site and Patterson field differ
enough that more samples should be used, and the LOWTRAN
calculation should be accomplished by steps between the

sampling points.
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Recommendations

1. Use receiyer mounts with precision azimuth and
elevation controls similar to those for small astronomical
telescopes.

2. Use a rotary table with the same kind of mounts
for calibration.

3. Permanently mount and boresight a high power tele-
scope on top of the transmitter assembly. This will permit
alignment without removing the IR source and beam splitter.

4. After three is accomplished, conduct a beam uni-
formity test and repeat the tower test.

5. Monitor the IR source temperature.

6. Provide an external synch for the receiver elec-
tronics.

7. Monitor temperature, dew point and visibility at
all three meteorological instrumentation positions and, when
using LOWTRAN, calculate the path transmission incrementally.

8. Determine the temperature/dew point variance along
the path to determine if additional weather towers are required.

9. Verify the manufacturer's filter wheel spectral
calibration and spectral resolution.

10. Conduct Zn situ calibration tests every time the
visibility is greater than 15 km; use the data to select the
most appropriate aerosol model; rural, urban or none; to use

for the calibration graphs in Appendix 8.
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Appendix A

Source Listing: Modified LOWTRAN IIIB
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Appendix B

Draft Calibration Handbook

for

Barnes Model 14-WP Transmissometer
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As designed, the Barnes transmissometer is expected
to require recalibration at three month intervals. Because
of the difficulty of bringing the receiver and electronics
to the transmitter assembly for calibration, it is desirable
to use the transmission measurements themselves to determine
when recalibration is required. This appendix discusses a
technique for accomplishing this and then provides a step by
step description of the calibration procedure.

Determine When Calibration is Required

The transmission measured by the Barnes Transmisso-
meter can be separated into the transmissions of 3 different
constituents of the atmosphere, the aerosols, the water

vapor, and the remaining molecular absorption.

"Total - TAerosol * THZO X T™Mo1

The aerosol transmission, is a function of visi-

TAerosol’

bility, VIS. The water vapor transmission, TH.0° is primarily
2

a function of the dew point temperature, TDew’ with a minor
temperature dependence. The transmission by the other
molecular absorbers can be considered a constant with a very
weak temperature dependence. Given a knowledge of the
visibility, dew point temperature, and the air temperature,
it is possible to predict, within a few percent, the expected
values of the transmission for each of the receivers of the
Barnes Transmissometer. Figures B-1 through B-18 permit

making these predictions. Figures B-1 through B-6 are for

the yisible receiver, B-7 through B-12 are for the near-IR
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receiver and B-13 through B-18 are for the far-IR receiver.
The following steps should be accomplished for each spectral
band as indicated on the figures.

1. Using the visibility figure, find the predicted

aerosol transmission, t .. c01.

2. Using the dew point figure, select the temperature
curve closest to the ambient temperature and find the

predicted water vapor transmission, TH.0°
2
3. Using the curve labelled Mol ° find the
predicted molecular transmission.
4. The expected transmission for the appropriate
wavelength is then the product of the three constituent

transmissions.
TExpected = TAerosol (VIS) x TH20 (Thew) X Tyor (T)

5. If the measured transmissions are more than 0.1
lower than the expected transmissions for good visibilities
(10 to 20 kilometers or better), the Barnes Transmissometer
should be recalibrated.

Calibration Procedure

1. Remove the dust cover from the transmitter assembly

2. Mount the receiver to be calibrated onto a small
rotary table and place the assembly on the telescope bed.
CAUTION. Do not bump the spider mirror.

3. Assure that the receiver optics are looking
entirely into the telescope mirror. Use a sheet of white

paper in front of the entrance aperture to confirm this.
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4. Install the 10X attenuator in connector J2 on
the mother board of the electronics unit for the receiver
being calibrated.

5. Place the system in normal operation and use the
JOG button to select the filter wheel position to the maximum
response position as indicated in the manufacturer's cali-
bration data book.

6. Select the 0.1405 inch aperture.

7. Rotate the receiver slowly in azimuth and
elevation to produce the highest indication first on the
ANALOG ALIGNMENT meter and then on the PERCENT TRANSMISSION
digital readout indicator.

8. Lock the position settings on the Receiver
Assembly.

9. Set the aperture wheel on the source to the
next smaller setting and repeat Steps 4 through 8. Continue
to repeat this procedure with smaller and smaller aperture
settings until the one marked CAL is in position, then lock
the rotary table.

10. On the Receiver, adjust the PHASE CONTROL knob
to produce the maximum reading on the ANALOG ALIGNMENT Meter.

11. Observe the indication on the PERCENT TRANS-
MISSION display. If it is not 37.3, proceed to Step 12.

12. Unlatch the lower right panel in the receiver
electronics unit and slide the chassis forward. Locate the
calibration screwdriver adjustment at the upper right of the

circuit board as seen from the component side. Rotate this
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adjustment to produce a reading of 37.3 on the PERCENT
TRANSMISSION digital display. Approach the 37.3 indication
slowly by going up through lower indications and stopping as
soon as 37.3 appears on the display.
At this point, the receiver is calibrated
for the wavelength of maximum signal "Thru-put”.
Next, a printer is interfaced to the computer output
conrnector. At each stopping position (wavelength),
the BCD position is recorded along with the voltage
displayed on the panel meter. The filter drive must
be in AUTO mode. From this printout the factors are
determined which will be used to normalize the data
at each wavelength for a 37.3 reading with no path
attenuation.
13. Recalibrate the other two receivers by using
the same procedure.
14. The Atmospheric Transmissometer System is now
recalibrated and can be placed back into normal use once the
radiation source aperture wheel is returned to its initial

position.
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optical path calibration instruments of the Air Force Avionics
Laboratory's Targeting Systems Characterization Facility. A
simple test based on LOWTRAN IIIB was devised to certify system
calibration while installed on an eight kilometer optical path.

In addition, an optical path anomaly was investigated. Results
are discussed and recommendations for additional calibration tests

and new procedures are made.
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