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4 Abstract

The linear quadratic optimal control method
is used today to solve many complex systems
problems. As system complexity increases, and
as linear quadratic optimal control is used in
more demanding situations, the extension of the
design methodology to cover system failures,
robustness and reliability is of crucial impor-
tance. This paper documents the progress toward
a theory which incorporates reliability in the
performance index; a linear quadratic control
problem is formulated which accounts for system
effectiveness and gives an offline procedure for
comparing two linear quadratic control systems
on the basis of both reliability and performance.

1. Introduction

This paper deals with the formulation of
and a suboptimal solution to an optimal control
problem over a system with randomly varying
structure. The first objective of this research
is to create a procedure which can be used in
offline design tradeoff studies of various
system designs using different numbers of actua-
tors with varying failure rates and which judges
a given design on the basis of both performance
and reliability. Secondly, we wish to establish
a dividing line between reliable and unreliable
systems.

Whenever one considers the optimal control
of systems with varying structure, the complexity
of the solution, even when it exists, is enormous.
In any design technique involving these systems,
there is a tradeoff between the complexity of the
technique and the amount of information it pro-
duces. The approach taken in this research is to
simplify the procedure as much as possible while
retaining its ability to weigh system designs on
the basis of both performance and reliability.

The solution presented herein serves a
second purpose: It allows the researcher to
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study the effect of various actuator configurations
and failure modes on system performance and to gain
a better understanding of the relationship between
reliability and control theory. This is perhaps
the more important aspect of this research.

Previously, several authors have studied the
optimal control of systems with randomly varying
structure. Most notable among these is Wonham in
[7], where he develops a solution to the linear
regulator problem with randomly jumping parameters.
This solution, however, assumes a priori that the
controller has perfect information about the present
state of the random process. Thus, the control
depends on the random parameter. In reality, one
could not expect to have perfect information, how-
ever, and a noisy observation of the random process
leads to the dual control problem. Wonham made a
major contribution, however, in deriving the form
of the coupled Riccati equations to which this type
of problem leads. Sworder has used this informa-
tion in some specific cases [4,5], as have Ratner
and Luenberger [3]. Bar-Shalom and Sivan [1] pre-
sented a variation of Wonham's work by using the
optimal open loop controller at each step of a
discrete-time linear system with random structure.
Willner [6] developed a suboptimal control scheme,
which allowed for imperfect observation of the
random parameters, known as multiple-model adaptive R
control. In this method, the parameters could only
take a discrete set of values, a cause of recent
disfavor, as MMAC does not work well when the
parameters vary continuously and are approximated
by the mathematics. Similar work has been done
by Pierce and Sworder in [2].

2. Motivation

To illustrate the dual control problem, and to
motivate this work, consider the following simple
example. Let the system be one dimensional with
one control variable.

x(t+l) = ax(t) + byu(t) 1)
The value of the control multiplier (by) is a

random variable which takes on one of two discrete
values at each time t. )
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The random process is governed by the Markov chain
represented by

T(E41) = PE(E) 3)
where
m(t) e R? (4)
Py, P
i {11 12] o pinE &
P21 P2

At any given time t, the following sequence of
events occurs:

I) x(t) is observed exactly, bk(t-l) is
computed, and k(t) is set to O or 1
depending on by (t-1), where k(t) is the
variable representing the Markov chain;

II) by may change values to by (t);
III) u(t) is applied.

For any given sample path, the performance index
is given by

4 2 2

Lax®(t) + ru®(t)) (6)

t=0
where {0,1,...,T} is the time set over which the
system is to be controlled. The objective of the
control problem is to minimize the expected cost-
to-go at t, given by

vix(t), k(t),u(t),t)
T
= E( ] (gx2(1) + ru2(1))|x(t)) (7)
=t
where the expectation is taken over all possible
sample paths of k(T), t<T<T. Using dynamic
programming, we wish to minimize
v(x(t) ,k(t),u(t),t)

= E(@x?(t) + ru?(t) (8)
+ V* (ax(t) +by (t)u(t) k(t+1) ,t+1) |x(t))

where V*(°*,k(t+l),t+l) represents the minimum cost-
to-go, given k(t+l) at time t+l.

This minimization can be carried out because

x(t) is known exactly at time t. Given x(t),
x(t)-ax(t=-1)
if ———————oo =D
me) = [ ] i ©)
x(t)-ax(t-1) _
[ ] o Tule-1) .

and k(t) = 0 if w(t)=[1 0]' or 1 if mw(t)=[0 1]'.
The control u(t) is computed from

0= g2 [ @’ (&) + ru’ ()
# T (E+1)V* (ax (£) +bu (£) k=0, t+1)
+ Ty (EH)VH (ax (£) #Ru(8) k=1, £41) (10)

and the assumption that

V*(x(t) k=i,t) = x2(t)s; () 1)
Thus,

u(t) (12)

_ [mp(t+l)absg (t+l) + m; (t+1)a/bSy (t+1))x(t)

r + Ty (t+1)b2S, (t41) + m) (£41)1/b%S) (t+1)

where

2(E+1) = [170 (t+1)

So(t) and S; (t) are propagated backward in time by
the following equations:

Assuming k=0 at time t, then mW(t+l) = [Pn 921] ' and

r [p1abSq (t+1) +pp1a/bS) (t+1) 12

So(t) =q + 2
[r+p;1b2S, (t+1) +p,11/b2S) (£+1) ]
b abSg (t+1) + Sy (t+1
+py; |a - (P11 - o (£+L) pzla‘/bzl( 1)? Sg (t+1)
r+p11b2S (t+1)+p,, 1/b%S) (t+1) |

+p21 [a - sl (t+1)
(14)

Assuming k=1 at time t, then m(t+l) = [p;, p,,]" and

P11abS (t+1) +p,;a/bs, (t+1)
blr+p, b25q (t+1)+p;) S (t+1) /b?]

r [p) yabSq (£+1) +py,a/bS, (£41)]12

S e T [r+p; ,b?S0 (t+1) +p21/b28S) (t+1)]2
*912[ - blpyabSy (£+1)+py,a/bs,) (£+1)1)2 So(E41)
r+p) 2b2S (t+1) +py,1/b2Sy(t+1) |
+p22[a _ P12abSq (t+1)+pypa/bs; (t+1) 5, (+1)

blrep b5 (t+1)+p) 8, (+1) /b)) © o)

Note that u(t) switches from one form to
another, depending on the value of x(t) -- thus,
this solution depends on an exact knowledge of x(t).
If knowledge of x(t) is corrupted by measurement
noise (or, if u(t) is corrupted by control noise),
then this becomes a dual control problem.

To be specific, suppose

y(t) = x(¢t) (16)
x(t+l) = ax(t) + beu(t) + £(t)
where and k are as before. The control noise
E(t) is applied simultaneously with u(t) and is
gaussian white noise with E[£(t)]=0, E[E(t)E(T))
=26 (t-T), E[E(t)x(t)])=0, and E[E(t)k(t)]=0. The
optimal solution of this problem requires order of
Riccati equations at any time t because exact
knowledge of T(t+l) is not given and the control
affects the optimal estimation process for x(t) and
7(t). A suboptimal controller would likely separate
the estimation function of mW(t) and x(t) from the
control gain calculation and ignore the dual
control effect.

If measurement noise is present; i.e.,

y(t) = x(t) + 6(t)
x(t+l) = ax(t) + bpu(t)

a7
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a similar effect is noted.

A different approach is taken in this paper;
here, it is assumed that the controller has no
information about the current state of the random
parameters, and that it can obtain none through
observation of x(t). Therefore, the control law
is independent of these parameters and x(t), and
the problems of dual control do not arise. The
formulation also allows a steady-state solution
under certain conditions (which the optimal solu-
tion in general does not) which is structurally
identical to the normal linear time invariant
optimal control law. This approach is taken
because the complexity of the optimal solution,
when it exists, is too great to allow a numerical
comparison between systems and is not constant,
but depends on where various noise terms appear in
the system description. The control solution pre-
sented here is still extremely complex (k coupled
Riccati equations, where k is the number of possi~
ble system configurations and can be very difficult
to solve in even the simplest of situations. The
information presented here is in the context of
reliability and, more specifically, actuator
failure. The concept is applicable to a much
broader range of problems.

3. Problem Formulation

A linear quadratic control problem in discrete
time which accounts for system effectiveness under
possible actuator failure is formulated. The
steady-state solution to this problem, when it
exists, yields a direct comparison of two linear
systems. The comparison is based on system reli-
ability and performance.

This paper is conéérned with the discrete

-time linear system

x(t+1) = Ax(t) + Bou(t) (18)
where

x(t) €R", u(t) eR™ and Ac RN XN (19)
The matrix B €RP XM jis assumed to be of the form

Bo=(b1|balb3l. . .|bn) (20)
with

bj €R? (21)
corresponding to the control variable u; of

u = [“1 uy uz . . . um]' (22)
The system is assumed to run over the time set

T = {-17,-T1+1,-T142,...,T2-2,T5-1,T3}

Given any trajectory (x(t),u(t)),c¢, the cost is
defined as

T2-1
J = f (x* (£)@x(t)+u’ () Ru(t))+x" (T2)Qex (T)
t=-T1 (23)

4. Actuator Failures

It is assumed in this paper that each actuator
may fail to zero, and may be repaired at a later
time. All failures are assumed to occur after x(t)
is measured and before the control input is applied.
Therefore, if actuator bj fails, then

Bp* By (24)

where

By = by byl e.fbi-1f0fbisr] ... | bml(25)

Let B = {B;} 50 be the set of possible actuator
configurations. Assuming the probability of fail-
ure of any set of actuators at t+l, given that they
are operational at t, is constant for all t, then
the vector m(t) is defined

m(t) e Rk (26)

m; (t) = the probability that the actuator
configuration is Bj at time t, (27)
i=0,...,k.

If the probability of failure of every set of actua-
tors is known, then T(t) is propagated in time as
follows, assuming independence of T and x:

m(t+l) = Pw(t) (28)

P = (p J') € RKtl x k+l (29)

pij = {prob. of actuator configuration (30)
B; at time t+l | actuator configura-
tion By at time t}

The P matrix captures at a general level all
failure rates, repair rates, and reconfiguration
rates.

5. Objective

We wish our optimization problem to take into
account the probabilities of transfer between var-
ious structural states [in this case, actuator
configurations]}. A sufficiently abstract framework
is found, by using T(t), so that reliability can be
abstracted in the context of a control problem.

One system can then be ranked as more reliable than
another from a control systems viewpoint. We thus
understand failure by tying it to the performance
index, and "more reliable" is equated with a smaller
expectad cost.

This framework involves open loop system
design, by ranking offline various system configura-
tions, such as redundant sensors or functional
redundancy; system failures, reconfiguration and
repair are represented in the objective function.

In this paper are presented the first types of
problems which can be handled using this procedure.

6. The Optimization Problem

We wish to find the closed-loop non-switching,
non-dual feedback gain Go such that the control
u = Gox minimizes the expected cost-to-go, given
that the actuator configuration at time -T) is Bo,
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i.e., that m(-Ty) = (L 00 . . . 0]\
We first define Ci(t)u,x as

'

Ci(ﬂu,x - E(th(i' (T)@x(T)+u' (T)Ru(T))

+ X' (T2)Qex(T3) | By (£) ,u,x,T(t]x(t))=m(t))

(31)

where the expectation is taken over all possible
sequences of actuator configurations, given that
the configuration at t is B;j(t), u and x are the
sequences of control and state variables respec-
tively, and the last condition is the assumption
that m(t) is independent of x(t). Defining Clt)y,x
as the vector over all i=0,1,...,k of these
expectations, then by theorem 1 (see Appendix),

Cle) o = PTC(EH]) + J(x(t),u(t)) (32)
where

I = (x'gx + u'Rwk_o (33)

C(Ty) = (x'(T2)Qex(To)) %o (34)

The expected cost-to-go at time t, given x(t), u(t)
and m(t), is thus

<1(t).g(t)u'x> (35)
The problem is to minimize (35) w.r.t. u(t). I.e.,
defining C*(t+l), as the vector C(t+l) resulting
from the application of the minimizing control
over the time interval starting at t+l,

<m(t),C*(t)y> = min {<m(t),P’ C'(t+1)+J(x,u)>}

u 36)
where
Cr(e+1) = (Ch(e+1) | Ax + Bywk (37
If we assume
g;(t) = x'(t)S; (t)x(t) (38)

then we obtain

ur(t) = -[R + Xwi(t)tip,,_j'gd(m)n i

Zvr (t) lan,,g,gﬂ(mnu(e) (39)
l-o

(t) =A' [ [S (t+1)
=0 P31 | 24
k
i [{nl(e)up‘lgn(ul)g‘]]
k -1
[‘E ﬂz(t)[ ) pxn!«— n (tH1B ] + n]
0

(t+l) - sj(t«'-l)sj [R +

LHED
k k T -1
,Eo"z [_Zo’-zi. in‘“”!-] ]

A
R (t)l: P B S (t+l):]
g=o * meo * 0T
[Heef |
+f Iw (c)[ P S (t+1)B ]]
220 L I mi~m m
X k . =
[ae dmpe Tegelsyenn,]]
T
[ +ByS (t+1)Bj]
k =1
. m, (£) P B s (t+1)B
[2+ Fref Do H
i )
™ (t)[ P s 8 (c+1)]]] (40)
L ml
2=0

S,(T)) =0, (41)

I”

Note that u*(t) is structurally like the usual
linear quadratic optimal control law; however, the
control law takes account of the different possible
actuator configurations using a weighted sum of
forms containing the solutions to a set of coupled
Riccati equations (40). The control law does not
account for the information in x(t) about m(t),
and therefore does not have switching gains which
are dependent on a function of x(t).

7. The Steady-State Solution

We conjecture in this section sufficient condi-
tions for the existence of a steady-state solution.
The existence of a solution depends on I) the
existence of a steady-state value T, i.e., such
that T = PT, and II) the stabilizability of the
system [A B ], i=0,...,k. It is interesting to
note that condition I is necessary, whereas condi-
tion II is not.

Conjecture

[A] A steady-state solution to equations (39)-(41)
exists if
I) there exists a T such that ™ = PT and
T(t)*T as t+,
II) The systems [A,B ] are stabilizable for
all i=0,...,k.

[B] T of part I exists iff one of the following
three conditions is satisfied for each ele-
ment &; of the Jordon normal form A of P,

where
p=rATt (42)
a
o
01.
A= i (43)
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For each i,
i) oyl <1
ii) a; =1
iid) oyl =1, o5 # 1, (g'lwr_o)i =0

If the steady-state solution exists, then §i @
i=0,1,...,k satisfy the following set of equations.

b3
T
g~ le [§-[Zﬂ§§]
i Lylo 3t L237 Lghy =2 =2
k =1
| Ingises, +x] 2]s
2=0 i
k -1 k
T T
'.S_JEJ[B+LZO"£§£§2§1] [&0"15152]
(3 MR
+ ﬂgg][y "_3_55]
2=0 L=2=2 220 L=2=2=2
k =1
T T
[5353'-3-1 +5] (5* &o"mazszﬁz]
[ hreet
. ngg]” A+Q (44)
L=02 =2

The corresponding steady-state control is

x T =) 5 T

* = -

w=-R+ [mB S B IT(]mBIS JAX (45)
i=0 i=0

The steady-state cost-to-go at time t, given x(t),

is

<m,C(x(t))> (46)
where

cx(t) = (xT(v)g, x(eN 47)

== - =i= i=0

8. A Method for Comparing Two Linear
Feedback Control Laws

In the last section, the equations were given
for the steady-state optimal cost-to-go as a func-
tion of x. In this section, these equations are
extended for the case of the control law

g™ -gx (48)
The solution of these equations yields a valid
comparison between two linear feedback control laws

when it exists. The cost of control u = -Gx is
defined as a function of x

V(g) » <II£(_G'I£)> (49)

where C now depends on G, as well as x.
is of the form

Assuming C

cex = x'sp@x| . . . | x's@x)T (50

where Si depends on G, then if a steady state solu-
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tion exists, s, for i=0,1,...,k satisfy the follow-
ing set of equations.
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9. Conclusion

This paper reports on a class of linear quadra-
tic control problems in discrete-time, where actua-
tor failure may occur. The major contribution of
this work is that a steady-state, structure-indepen-
dent control law can be defined, along with its
associated cost. This allows a numerical comparison
of different control methodologies to be performed.

The case for a suboptimal solution to be used
for comparisons is made by the decrease in complex-
ity over any optimal solution which might exist.
Although this solution is still quite complex, it
is solvable and easier conceptually than the dual
control problem, whose solution has little applica-
tion due to the increased complexity and non-
existence of a steady-state solution.

The concept behind this paper is much broader
in scope than is shown here. The special structure
of the B-matrix allows one to tie together the
concepts of stabilizability of individual structures
and of existence of a solution. This cannot be
done in general. There are very simple examples
that clearly demonstrate, for instance, the
uncertainty threshold principle.

10. Appendix
Theorem 1:

For the system given in section (3), if ci(t) is

the cost-to-go, given the structu*e_i (B-matrix =
Bj) as a function of {(x(%),u()) 2t ,x(T2) }, then
ci(t) can be computed recursively as -

k
cy () = J probability(i+3j at t)c, (t+1)+)(t)
3=0 E A 1)
where
x'(£)Qx(t) +u' (E)Ru(t); &<T
x' (T5)Qex (T,)

and, if C(8) = (cy(8)} g, J(8) = ((EN] ), then

2
i t=1T, (A.2)

j(t) (EIE‘) -

ct) = pTcresn) + 3(t) (a.3)
Proof
cy(t) is the expectation of J({(x(%),u(2))j2p x(1h

where J(¢) = ] j(t) () as in equation (8), given
teT

that the structure is i at time t.

expectation is a sum of sums, d since the space

of sequences {i, € {0,1,...,k}},2, is countable,

then Fubini's t&oor‘n applies E:&

Since this

k P —




ci(t) = [cost over [t,t+l)]
k

+ ] prob. (structure j at time t+l)
j=0 ¢ [cost-to-go at time t+l1,
given structure j) (A.4)

which is exactly (A.l). Q.E.D.
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