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Abstract study the effect of various actuator configurations
and failure modes on system performance and to gain

The linear quadratic optimal control method a better understanding of the relationship between
is used today to solve many complex systems reliability and control theory . This is perhaps
problems. As system complexity increases, and the more important aspect of this research.
as linear quadratic optimal control is used in
more demanding situations, the extension of the Previously, several authors have studied the
design methodology to cover system failures, optimal control of systems with randomly varying
robustness and reliability is of crucial impor— structure. Most notable among these is Wonham in
tance. This paper documents the progress toward (7], where he develops a solution to the linear
a theory which incorporates reliability in the regulator problem with randomly jumping parameters.
performance index; a linear quadratic control This solution, however, assumes a priori that the
problem is formulated which accounts for system controller has perfect information about the present
effectiveness and gives an off line procedure for state of the random process. Thus, the control
comparing two linear quadratic control systems depends on the random parameter. In reality, one
on the basis of both reliability and performance. could not expect to have perfect information , how-

ever , and a noisy observation of the random process
leads to the dual control problem. Wonharn made a

1. Introduction major contribution , however , in deriving the form
of the coupled Riccati equations to which this type

This paper deals with the formulation of of problem leads. Sworder has used this informs —
and a suboptimal solution to an optimal control tion in some specific cases (4 ,5] , as have Ratner
problem over a system with randomly varying and Luenberger (3] . Bar-Shalom and Sivan (1] pre-
structure. The first objective of this research sented a variation of Wonhazn’s work by using the
is to create a procedure which can be used in optimal open loop controller at each step of a
of fine design tradeoff studies of various discrete-time linear system with random structure .

0.. ’ system designs using different numbers of actua— Wiliner (6) developed a suboptimal control scheme,
tors with varying failure rates and which judges which allowed for imperfect observation of the

C..) a given design on the basis of both performance random parameters , known as multiple—modal adaptive
and reliability. Secondly, we wish to establish control. In this method , the parameters could only

W a dividing line between reliable and unreliable take a discrete set of values, a cause of recent
systems. disfavor , as MMAC does not work well when the.—..J parameters vary continuously and are approximated

Whenever one considers the optimal control by the mathematics. Simi lax work has been done
of systems with varying structure, the complexity by Pierce and Swordar in ( 2 ] .
of the solution , even when it exists , is enormous.
In any design technique involving these systems,
there is a tradeoff between the complexity of the 2. Motivation
technique and the Smount of information it pro-
duces. The approach taken in this research is to To illustrate the dual control problem, and to
simplify the procedure as much as possible while motivate this work , consider the following simple
retaining its ability to weigh system designs on example. Let the system be one dimensional with
the basis of both performance and reliability, one control variable.

The solution presented herein serves a x (t+l) • ax(t)  + biau(t )  (1)
second purpose : It allows the researcher to

The value of the control multiplier (bi,~) is a
* random variable which takes on one of two discrete
This research was supported in part by the Fannie values at each t ime t.
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The random process is governed by the Markov chain V*(x(t),k=i,t) • x2(t)S~ (t) (11)
represented by

Thus,
1T(t+l) = P I T ( t )  (3) u(t) (12)

where — 
(7T0(t+l)abS0(t+l) + 7T1(t+l)a/bS1(t+l))x(t)

r + 110(t+l)b
2S0(t+l) + ir1(t+l)l/b 2S1(t+l)

11(t) C (4)

p ( I I  121 
~ R2 x 2  

where 
Iir0(t+l)~ P 11(t )  (13)

1p21 P22J 
11(t+i) — liii (t+l)J ——

At any given time t, the following sequence of
events occurs: S0 (t) and S1(t) are propagated backward in time by

the following equations:

I) x(t) is observed exactly, bk(t—l) is Assuming k—0 at time t, then !(t+l) — (p11 p21]’ andcomputed, and k(t) is set to 0 or 1
depending on b,(t—l), where k(t) is the
variable representing the Markov chain; S0(t) q + r(p11abS0 (t+l)+p21a/bS1(t+i)] 2

II) bk may change values to bk(t), (r+p11b2S0(t+l)+p21l/b2S1(t+lfl
2

III) u(t) is applied. 
- 
b(pllabSO (t+l)+p2la/bSl(t+l)112S (~+l)

For any given sample path, the performance index r+p11b2S0 (t+l)+p21l/b2Sl(t+l)J
is given by

+p21[a - 
p11abS0 (t+l) +p21a/bS1(t+l)

J — ~ (qu2 (t) + ru2 (t) ) (6) b( r+p11b2SO (t+l) +p2lSl (t+l)/b2 1l
(14)t—0

where {0,l,...,T} is the time set over which the Assuming k—i at time t, then 7T(t+l) — (p12 p22]’ andsystem is to be controlled. The objective of the
control problem is to minimize the expected cost—
to—go at t, given by S1(t) q + 

r(p12abS0(t+l)+p22a/bS1(t+l)]
2

(r+p12b5S~ (t+l) +p221/b2S1 (t+l) 12

T • ( S0 (t+l)V(x(t),k(t).,u(t),t) 
+P12[a 

— 
b(p12abS0(t+l)+p22a/bS1(t+l4 1~

2

= E( 
~ 

(qu2 (t) + ru2 ( T ) ) I x (t ) ) (7) r+pi2b2so(t+i)+p22l/b2sr(t+i)J
2

1 +p22[a — 0 2 2 1 1s1(t+l)where the expectation is taken over all possible brr+p12b
2s0(t+l)+p22s1

(t+l)/b21J (15)sample paths of k ( t ) ,  t < t < T .  Using dynamic
prograimsing, we wish to miii3.mize Note that u(t) switches from one form to

V(x(t),k(t),u(t),t) another, depending on the value gf x(t) -— thus,
this solution depends on an exact knowledge of x Ct).

— E(qx2 (t) + ru2 (t) (8) If knowledge of x ( t )  is corrupted by measurement
noise (or, if u(t) is corrupted by control noise),

+ V*(ax(t)+bk(t)u(t),k(t+l),t+1)Ix(t)) then this becomes a dual control problem.

where V*(.,k(t+l),t+i) represents the minimum cost— To be specific, suppose
to-go, given k(t+l) at time t+l.

y(t) — x (t) (16)This minimization can be carried out because x(t+l) — ax(t)  + bku(t )  + ~~(t)
x (t) is known exactly at time t. Given x (t),

where bk and k are as before. The control noise
x(t)—ax (t—l) 

— b ~(t) is applied simultaneously with u (t) and is
— I loJ u (t— 1) (9) gaussian white noise with E (C (t)1 0, E(~ (t)~~(t) )

—E 5(t—t ) , E(~~(t) x(t) ] —0 , and E(~ (t)k(t) J —0. The(o) 
if x (t)-ax (t-l) — optimal solution of this problem requires order of[iJ u Ct—i ) t’ Riccati equations at any time t because exact

and k(t) • 0 if ,1(t) (l 0) ’  or 1 if 7 1( t )—CO 11’ . knowledge of w (t+1) is not given and the control
affects the optimal estimation process for x(t) andThe control u (t) is computed from 11(t) . A euboptimal controller would likely separate

~ 1 2 t) + ru2 (t) the estimation function of 71(t) and x (t) from the0 - 
~~ 

q~c C control gain calculation and ignore th. dual
control effect.

+ 1T0 (t +l)V * (ax(t ) +bu(t) ,k .0, t+j)

+ T1(t+1)v ~ (ax(t)+ ~u ( t) ,k— 1,t+l) (10) If measurement noise is present; i.e.,

and the assumption that y( t) — x (t) + 0(t) (17)x(t+1) — ax(t)  + b1,~u( t )
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a similar effect is noted. 4. Actuator Failures

A different approach is taken in this paper; It is assumed in this paper that each actuator
here , it is assumed that the controller has no may fail to zero , and may be repaired at a later
information about the current state of the random time. All failures are assumed to occur after x(t)
parameters, and that it can obtain none through is measured and before the control input is applied.
observation of x(t). Therefore, the control law Therefore, if actuator 

~j fails, thenis independent of these parameters and x(t), and
the problems of dual control do not arise. The + !. ~, 

(24)
formulation also allows a steady-state solution
under certain conditions (which the optimal solu- where
tion in general does not) which is structurally
identical to the normal linear time invariant — (~~ I I ... 1 ~~—l I 0 ~i+l ... ~~ ] (25)
optimal control law. This approach is taken kbecause the complexity of the optimal solution , Let B — ~~ ~—o be the set of possible actuator
when it exists, is too great to allow a numerical configurations . Assuming the probability of fail-
comparison between systems and is not constant, ure of any set of actuators at t+l, given that they
but depends on where various noise terms appear in are operational at t, is constant for all t, then
the system description. The control solution pre- the vector ‘Ct) is defined
sented here is still extremely complex (k coupled
Riccati equations , where k is the number of possi— 11(t) C ?+l (26)
ble system configurations and can be very difficult 71i (t) — the probability that the actuator
to solve in even the simplest of situations. The configuration is 

~j at time t , (27)
information presented here is in the context of i 0 ,... ,k .
reliability and , more specifically, actuator
failure. The concept is applicable to a much If the probability of failure of every set of actua-
broader range of problems . tors is known , then 11(t) is propagated in time as

follows , assuming independence of 11 and x :

3. Problem Formulation 11(t+l) — P 71(t) (28)
P —  (pj~ ) c R k~~ x k+l (29)

A linear quadratic control problem in discrete tprob. of actuator configuration (30)
time which accounts for system effectiveness under at time t+l I actuator configura—
possible actuator failure is formulated. The tion at time t}
steady-state solution to this problem, when it
exists, yields a direct comparison of two linear The P matrix captures at a general level all
systems. The comparison is based on system reli— failure rates, repair rates , and reconfiguration
ability and performance. rates.

This paper is concerned with the discrete
time linear system 5. objective

x(t+l)  — Ax (t)  + ~~u( t )  (18) We wish our optimization problem to take into
account the probabilities of transfer between var-

where ious structural states (in this case , actuator
configurations]. A sufficiently abstract framework

x( t)  E R °, u(t) C~~ ” and A C R~~X fl (19) is found, by using ~1( t ) ,  so that reliability can be
abstracted in the context of a control problem.

The matrix ~~ € R~ 
X m is assumed to be of the form One system can then be ranked as more reliable than

another from a control systems viewpoint. We thus
— 

~~~j I I I . . . I (20) understand failure by tying it to the performance
index, and “more reliable” is equated with a smaller

with expected cost.

(21) This framework involves open loop system
design, by ranking of fline various system configura-

corresponding to the control variable Ui of tions , such as redundant sensors or functional
redundancy; system failures, reconfiguration and

u — (u1 u2 u3 . . . u.~J ’ (22) repair are represented in the objective function.
In this paper are presented the first types of

The system is assumed to run over the time sat problems which can be handled using this procedure.

T ~—T1, —T1+1,—T1+2 ,. .. ,T2—2 ,T2—l , T2 }
6. The Optimization Problem

Given any trajectory (x(t),u(t)) t€11, the cost is
defined as We wish to find the closed-loop non-switching.

T2-1 non-dual feedback gain ~o such that the control
.1 ~ (~~‘ (t)~~ (t)+u (t)Ru(t))+x’ (T~)~jx(T2) u — ~px minimizes the expected cost—to—go, given

t=—T l (23) that the actuator configuration at t ime -Ti is o,
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i.e., that W (—T1) — (1 0 0 . . . 0] ’. k r k T
~ 11~~(t)1 Z 

~m ~ m t4
~~We first define Ci(t)u x  ~~ £~~

Ci(t)u,x — Ed (~ ’ (t)~~ (t)+~.’ (T>~~~(t ) )  +[~~~
71

~~t [  ~~P~~~ j t+l
~~ m]]

+ x ’( T 2)Q~x(T 2 )I!i (t) ,u ,x ,1T(t I x (t) )_ 11(t) )  r k r k -•t i —l
(31) ‘ R + ~ 1Tt (t )I I Pmi~ m~ -m(t

~~~!mJ Jwhere the expectation is taken over all possible L ~~0 L_ m 0
sequences of actuator configurations, given that Tthe configuration at t is !j (t) , u and x are the . P + B 4 S 4(t+l)8
sequences of control and state variables respec— .‘ .‘ 

—
tively, and the last condition is the assumption rR + V 11 (t~E ~

‘ B T S (t+l)B ~~~~~~ 

1
that 71(t) is independent of aCt). Defining £(t)u,x L ~~o ~ L ~~01’m9~—m—m —m JJ
as the vector over all i—0 ,l,. .. ,k of these
expectations, then by theorem 1 (see Appendix) , 

• I11
~~~ )[ ~ P~~B~~s~~t+ l] ]}  A

T 
+ ~ (40)

£(t) u, x = P C(t+l) + J (x ( t ) ,u (t ) ) (32)

where S~ (T 2 ) — (41)

J (x ,u)  = (x~~~ + u ’Ru)~~~0 (33)
Note that u* (t) is structurally like the usual

C(T 2 ) = (x ’(T 2 )Q~~ (T 2 ) )~ .,0 (34) linear quadratic optimal control law; however , the
control law takes account of the different possible

The expected cost—to—go at time t, given aCt ) , u (t )  actuator configurations using a weighted sum of
and 11(t), is thus forms containing the solutions to a set of coupled

Riccati equations (40) . The control law does not
<1T (t) ,C(t) 

~
> (35) account for the information in x( t )  about 11(t) ,

and therefore does not have switching gains which
The problem is to minimize (35) w.r. t.  u (t ) . I.e., are dependent on a function of aCt).
defining C*(t+l)x as the vector C(t+l) resulting
f rom the application of the minimizing control
over the time interval starting at t+l, 7. The Steady—State Solution

= mm {<w(t) ,PTC*(t+l)+J(x,u)>} We conjecture in this section sufficient condi—
u (36) tions for the existence of a steady—state solution.

where The existence of a solution depends on I) the
existence of a steady—state value IT, i.e., such

C*(t+l) — (~~ (t+l) I pj~ + (37) that 71 — P11 , and II) the stabilizability of the
system (A, B~~ , i—0 ,..., k. It is interesting to

If we assume note that condition I is necessary , whereas condi-
tion II is not.

— a (t)~~~(t) x (t )  (38)
Conjecture

then we obtain
k k -l (AJ A steady—state solution to equations (39)—(41)

u*(t) — —(!
~~ 

I11i(t)(ZPjiE~~
(t+l)!j]1 exists if

i 0  j O  I) there exists a 11 such that w — p s  and
k k 7r (t ) +1T as t~~~.

(39) II) The systems (A,B~ are stabilizable for
L—0 m—0 all i—O,. . . ,k.

k r (BI 11 of part I exists iff one of the following
— A 

~ 
p4~ ~~(t+1) thre. conditions ii satisfied for each ale—

j o  L mant 8j of the Jordon normal f o r m A o f  P .

- ( I w & (t) ~~~~~~~~~ (t+1) ~]} 
~~_ ;~~!

_ 1 (42)

• 
[~~

t
~
(t 
[
~~~p~jg

T s (t+l)B m I + ]_l 
80 81

• B~~S~ (t+1) — S~ (t+l)B .~ + 
— 

• 
(~~ )

Z 7 1L(~~ P.t~~ s Ct+1)B )J
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For each i, tion exists, ~~~, 
for i—0,l,... ,k satisfy the follow-

ing set of equations.
i) Ia~l < l  k

ii) nj — 1 
= 

~~p1. 
!A S .  A + G ’B ’ . S B G — G B 5 A

1 )~~ ) i )  j j

iii) I~i1 = 1, 
~~ ~ 3 . (T 1

1 t )  = 0 — A S ~ B 1 
G] + 2 + (51)

If the steady—state solution exists, then S
i—0 , l,. . .,k satisfy the following set of eqJàtions. 9. Conclusion

k This paper reports on a class of linear quadra-

~.i
= A~”[ ~ ~~~~~~ [I 71

~
SL B .Q) tic control problems in discrete-time, where actus—

tor failure may occur. The major contribution ofj —0
k 

+ ~ l
1
a T this work is that a steady—state, structure-indepen-{ — J  —

~~—~ associated cost. This allows a numerical comparison
S dent control law can be defined, along with its

of different control methodologies to be performed.
‘ k )~~1 k

- 
~, ! I ~ + ~ L~~L~~R. Z ~~~~~~~~~ The case for a suboptimal solution to be used

~ ~~ L=o .~ 1 &=o
k 

~ B ) 
~ 

— for comparisons is made by the decrease in complex-

+ I ~ — — ~. + ~ 71

~~
8
~~

S
~~

B ,J  
1 ity over any optimal solution which might exist.

I. 
~~~~ L—0 — — — Although this solution is still quite complex, it

is solvable and easier conceptually than the dual

• I B~ S B + R} R + ~ ~‘r 
~ ~ 

-l control problem, whose solution has little applica-
tion due to the increased complexity and non-

~ — j—j I ~
. 

~~~~~ existence of a steady—state solution.k
• I I ~ &!~~!i }}  } ~ 

+ 2 The concept behind this paper is much broader
in scope than is shown here . The special structure
of the B-matrix allows one to tie together theThe corresponding steady-state control is concepts of stabilizability of individual structures
and of existence of a solution. This cannot be

— -(! + ~ ~~~~~~~~ ~-l~ ~ 7 1 B T S ~~ 
done in general. There are very simple examples
that clearly demonstrate , for instance , the

iO  i—0 uncertainty threshold principle.

The steady-state cost-to—go at time t, given aCt),
is 10. Appendix

<1T,C(z(t))> (46) Theorem 1:

where For the system given in section (3), if c~ (t) is
k the cost-to-go, given the structu~~_I (B-matrix =

C(x(t)) — (~
T(t)~~i~~Ct))i..o (47) 

~j) as a function of {x(&).u(&)~~~.~ 
,~~(T2 ) },  then

cj Ct) can be computed recursively as

8. A Method for Comparing Two Linear kFeedback Control Laws ci(t) — ~ probability (i+j at t)c1
(t+l)+j(t)

In the last section, the equations were given ~CA .l)
wherefor th. steady-state optimal cost-to-go as a func- x ’ (t)Q, x(t ) +u ’ (t ) R u (t ) ; t~<tion of x. In this section , these equations are j (t) (x , u) — I —

extended for the case of the control law 
I x ’(T ~)Q~~ (T2 ) t — T2 (A.2 )

~~.
— ~~~~ (48) and, if C(t) — (c~(t))~~,0. .1(t) — (j ( t ) )~~,0 , then

Th, solution of these equations yields a valid C(t) — PTC(t+l) + .7(t) (A.3)
comparison between two linear feedback control laws —
w h n  it exists. The cost of control u — -Gx is Proof:defined as a function of x

V(G) — <1T C(G x)> c~(t) is the expectation of

where .7(•) — I j ( t ) ( • )  as in equation (8) , given
wb.r. C now depends on G, as well as a. Assuming C tetis of the form that the structure is i at time t • Sinom this

— ~~~~~~ • . • I !‘~~(~)&~ (50) expectation is a sum of .me. , ~~d since the space
of sequences {i C {o,i,. . . ,k}) 2 i. countable,
than Pubini ’ a tAsorem applies

wher. f,j  depends on G, then if a steady stat. olu—
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cj (t) — (cost over [t,t+1)J
k

+ 
~ 
prob. (structure j at time t+l)

j ’O (cost-to-go at t ime t+l,
given structure jJ (A.4)

which is exactly (A.l). Q.E.D.
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