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ABSTRACT

Computation Techniques for Large Scale
Undiscounted Markov Decision

Processes

In this paper we consider computation techniques associated with the
optimization of large scale Markov decision processes. Markov decision
processes and the successive approximation procedure of White are described.
Then a procedure for scaling continuous time and renewal processes so that
they are amenable to the White procedure is discussed. The effect of the
scale factor value on the convergence rate of the procedure and insights
into proper scale factor selection are given. Finally, various methods of

achieving computational efficiency during execution of the optimization are

considered.
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Introduction

One of the most powerful modeling tools for the analysis of controlled
probabilistic systems is Markov decision processes. If the system can be
structured as a Markov process and the control decisions for the system can
be defined in terms of the relevant system costs and operational character-
istics (transition probabilities), then there exists a wealth of theory that
can be used to find the best (least cost, most profitable) set of decisions
for operating the system. As with many modeling techniques, real probabilistic
systems, when modelled as Markov processes, tend to have large numbers of system
states. The result is that for many interesting and important systems, the
computational aspects are overwhelming. In most cases, digital simulation is
the only viable alternative modelling tool. However, searching for "optimal"
control decisions for the system via digital simulation is -at best a trial and
error effort, and at worst a tedious, expensive, and confusing exercise in
experimental design and response surface techniques.

In many cases, the prospects of large scale optimization of Markov decision
processes as an alternative to digital simulation are quite good, if ome is
~willing to tackle the computational aspects. In this paper we first review
various forms of non-discounted Markov decision processes and transform each
to the form of a standard finite state and action Markov decision process.

This procedure was explicitly used by Schweitzer [20] for Markov remewal pro-
grams and involves choosing a parameter, b, for the transformation. As noted
by Schweitzer, the value of b influences the asymptotic convergence rate when
White's iterative procedure [25] is used to solve the transformed Markov
decision process. We present theoretical insights into the determination of

a b which yields the fastest asymptotic convergence. In practice, one cannot
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easily find this optimal b, so we also present heuristic rules for choosing
b. Computational results based upon the heuristics are given which appear
quite promising. Finally for completeness we briefly review several other

computational techniques used in solving large scale Markov decision processes.

Background and Problem Transformations

Consider a finite state, discrete time, completely ergodic Markov pro-
cess which is controlled by a decision maker. For each of the N states (i),
at each transition of the process, the decision maker chooses an action
k=1, caa Ki' This action results in transition probabilities p?j’ j=1, N,
and a reward (cost) q?. pij is defined as the probability that the process,
now in state i and under policy k will move to state j over the next
transition of the process. qki is defined as the
expected reward (cost) over the next transition for operating the system. The
problem is to find the optimal action for each state. Here optimality refers
to the maximization (minimization) of the expected reward (cost) rate for the
process in steady state. This quantity is referred to as g, the gain of the
process.

Howard [ 7] showed that for a given policy set, the simultaneous set of
linear equations,

A + g = q? + g pijvj 1% 1 Snes N

i=1
(1)

VN=0

could be solved to compute the gain g of the process. The vi's are the relative
rewards (costs) of starting the process in state i. Howard showed that the
optimal gain for the process could be obtained using a simple policy iterative

algorithm (Figure 1).
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Step A:

Set vi =0 1 m] ey N

Step B:

For each state i, choose

policy k such that

max Z
ljkjﬁi plj j

Is the new policy set

yes

the same as the old

N Done
policy set? i

Step C:

Solve the set of linear equations

: ok

k
v,+g=aq + Lo, Al ..,
: j=1 ijj

Figure 1

Policy Iterative Procedure for Solving Discrete Time,
Undiscounted, Markov Decision Processes.
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It should be noted that the Howard algorithm is essentially a dual approach
to the linear programming approaches developed by Wolfe and Dantzig [26],
Derman [ 1], Manne [12], and Fox [ 2] (for Semi Markov Decision Processes).
Computationally, the Howard approach is much more efficient than the L.P.
approach. As a consequence, the L.P. approach is not considered here.

We now briefly turn our attention to the continuous time Markov decision
process and the semi-Markov decision process (which itself subsumes both the
continuous and discrete time models as special cases.) H;wever, ultimately we

will reduce these latter two cases to the non-discounted Markov decision

‘process and so this diversion is provided only for completeness. Consider a
finite state, continuous times, completely ergodic Markov process which is con-

trolled by a decision maker. For each of the N states (i), at each tramsition

of the process, the decision maker chooses an action k = 1, ..., Ki' This
: ; k 2k k.
action results in a transition rate aij and a reward (cost) rate q;- aij is

defined as follows: In an increment of time dt, the process, now in state i
and under policy k, will move to state j with probability aijdt (i # j). The
probability of two or more state transitions is of the order dt2 or higher and
is assumed to be zero if dt is taken sufficiently small. q? is the expected
reward (cost) rate incurred over a residence in state i using action k.

Howard [7] showed that for a given policy set, the simultaneous set of

linear equationms,

N
k k
8'Q+Za Vs JomoTe oy N
1745 13
(2)

" 0
could be solved to compute the gain g of the process. Note that the vi's

are still relative state rewards (costs) and that

(3) a,, = - Z ak L% 1, vy No
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Howard also showed that the optimal gain for the process could be obtained using
a simple policy iterative algorithm. The algorithm is the same as that given in
Figure 1, except that equations (2) must be substituted for Step C, and Step B

must be appropriately modified.

1 ndad A

Finally, cons

process. This is essentially the same as the discrete time decision process
described earlier in that there is an underlying Markov process with transition
probabilities pij. However, the holding (transition) time (m) in going from

state i to j is described by the denmsity function h?j(m)’ 0 <m < ». The

expected holding (transition) time, given the System starts in state i is

N
k
T? = z p?. Iwmhi.(m)dm >0
j=1 4 do H

Jewell [ 8 ] showed under rather general assumptions that for a given policy
set, the simultaneous set of linear equations,

k

+ 2V,

N
k. _ K
v ok Tg gk j.Z.lle g

121y eovs B
(4)

could be solved to compute the gain g of the process. Jewell also showed that
the optimal gain for the process could be obtained using a
modified version of Howard's simple policy iterative algorithm by substituting

equations (4) for Step C and

qk g pk v v

(5) max - i=1 137 3
1<k<K k
-1 Ti

for the test function in Step B of Figure 1.
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White's Method and Problem Transformations

It is easy to see from Figure 1 that for each of the processes described
that the bulk of the computational effort in the algorithm lies in solving the
simultaneous set of linear equations (Step C). For large processes, straight

forward techniques, such as Gaussian Elimination, quickly become untenable.

o e e e

In an elegant paper, White [25] proposed a successive approximation approach
for the undiscounted, discrete time, Markov decision process. Odoni [16] added
bounds for g which are useful in termination decisions. We can also relax

the complete ergodicity requirements in line with those given in footnote 1.
The White-Odoni technique can be summarized as follows:

Assume we have computed sets of values Vi(n—l), vi(n—l), i=1l, c.., N and

a quantity 81" We then compute a r ~t
N
Vi(n) = max q? + Z p%,v.(n—l) >
1<ksK, jug 4
(6) g, = Vy(,

vi(n) = Vi(n) -8

L) = mix{vi(n) - vi(n-l)}
L'(n) = m%n{Vi(n) - vi(n—l)}

o

where M is a state of the process such that for all sets of policies and some
integer u > 0, the probability of reaching state M in u transitions, starting
in any state i, is nonzero for all states i. White showed that the repeated
application of equations (6) will converge.1 In other words,

lim vi(n) =i and

n>e

lim g = g, where
n->o

| &
3
-
-
%
H
&




vi and g are as deinfed for equations (1). Odoni showed that
L"(n) 2 L"(n+l) > g 2 L' (n+l) > L'(n)

In practice, White's alglorithm has proven to be very effective for large
scale systems. The iterative procedure is stable and self-correcting and, since
no new data are created (except for the working vectors), storage requirements
are fixed. Along these lines, it pays to take advantage of any supersparsity
[9] (the vast majority of large scale processes do have very sparse transition
matrices) so that the procedure can take place entirely in-core.

While straight forward application of White's approach does not, in general,
work for continuous time, and semi-Markov processes; these processes can be

transformed to a form compatible with White's approach. Consider equations (2)

with ¥y added to both sides of the equationm.

k. ot Kk k %
v, tg=4q 4+ '2 aijvj + (1 + aii)vi’ 0 (DR - 18
j#i
@))
i 0
Noting the definition of a?i (equation (3)), then if
k
(8) 0>a, =-)a, >-1, o Ty wons B
17

equation (7) is of the same form as equation (1). This is easily seen by noting

that if (7) holds, then

¥ a:j + (1 + a:i) =1 T AP
J#i
ak > 0 i+#3j, and
1] =
k
Wy ey W
l+aii>0 i=1

Substituting 1+al;i for a:i in the rate matrix, it is seen that the new matrix

{ak }, for each action set, has all the properties of a stochastic matrix.

ij
As a consequence, if (8) holds, it follows that White's method can indeed

be used to solve the continucus time Markov decision process. The procedure

P W T i s TN T - .
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S —_

Ao max {[a:il}
o i=1,...,N

k=l,...,1<i

1. [LEeE

(Note: Ao > 0)

2. Divide all ai and qi, T, = S N e e K

3 1

by b > a ax’ Condition (8) is now satisfied.

3. Using the new a:j

4. To express the results in terms of the original continuous process,

and q:, solve the problem using White's method.

multiply the gain g by b. The optimal policy and relative rewards

(costs), vy obtained are valid for the original process.

Figure 2

Scaling Procedure
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in Figure 2 will convert a suitable continuous time problem so that the consi-
tions of (8) will hold.

Note that the scaling of the problem really amounts to changing the time
frame of the problem. For instance, if the process is stated in terms of per
minute (aij) and dollars per minute (qi), and B 60 then the transformation
simply converts the time frame to hour units. It is readily seen that it is
necessary to divide by at least amax(amax> 1) to end with a stochastic {aij}
matrix. The question of interest is: Can the convergence rate of White's method
be improved by using a proper choice of b > amax? We consider that question
shortly; but first, let us address the semi-Markov decision process.

Consider equations (4) with the relative reward (cost) v, moved to the right

hand side of the equation and both sides divided by the expected holding

(transition) time Tk.

i
k k k
q P, .V (Pyqy = 1)
® g=— + ) . T N N
Ti j#i Ti Ti
vN =0
k k, k
Letting ai = ai/Ti s
k k k
aij pij/Ti , and
k k k

it is readily seen that equations (9) are of the same form as equations (2), the
continuous time Markov decision process. As a consequence, the transformation
can also be applied to equations (9) to facilitate solution of the semi-Markov
decision process. It should be noted that the transformation is equivalent to
one developed by Schweitzer [20].

We now turn our attention to the problem of speeding the convergence of

White's algorithm.




Convergence Facilitation

There are several procedures that have been used in accelerating convergence

in solving discounted Markov decision processes. By and large, though, these

have not been examined extensively in the non-discounted Markov decision pro-

cess context. Briefly, the acceleration techniques include (a) problem trans-
formation, (b) cheap iterations, (c) suboptimal activity elimination, and (d)

extrapolation procedures. We will discuss each of these, in turn, in the con-
text of the non~discounted Markov decision process.

(a) Problem Transformation

In solving (generalized)discdunted Markov decision processes, it is
well known that the largest spectral radius of the transition matrices (i.e.,
the process spectral radius) governs the asymptotic convergence rate. Porteus
[18], Totten [24] and others have devised problem transformations to reduce
the process spectral radius. Morton .and Wecker [14] have
shown that asymptotic relative values and policy
convergence are at least of order (aA)n where A is greater than the subdom-
inant eigenvalue2 and O<a<» is the discount factor. A reasonable question to
ask is whether the choice of b in Step 2 (Figure 2) can be made to reduce the
modulus of the subdominant eigenvalue of the transition matrix of the optimal
policy.

The transition matrix for policy § resulting from the procedure of Figure 2

is

17 - A where

| s

AS = P6 - I.
Let A and x be an eigenvalue and associated eigenvector, respectively, of the
starting transition matrix I + a]- AG' Then

max

qnax i 2 nax

(10) b A +—T
10




1 -
is an eigenvalue of I +-§ AS with x its associated eigenvector. Now clearly

b -a

max
> rel

a
max
b ==

relx +

where re) is the real part of A with -1l<rel<l and b>amax;p. However, it may

not be true that

a b a
(11) I nll)ax % + bmaxl ; ]>\I .

Suppose § indexes an optimal policy and A is a subdominant eigenvalue asso-
ciated with this policy. Expanding the square of the modulus of both sides of
(11) with A = A, + A,i gives that a reduction in the modulus of A requires

1 2

&g *nax 2
gk | ¥ —5n) 4%
max

If A2=O, then either A1=l and no reduction can be made or Alé(amax-b)/(amax+b)
and ll is necessary negative. In this case, it would appear that
any b>amax will yield a resultant benefit in asymptotic convergence. However,
this is not necessarily true, since we may "'bump' into another eigenvalue.

That is, increasing b to decrease the absolute value of the dominant (negative)
eigenvalue will eventually result in some other (positive) eigenvalue in-
creasing until it becomes the new subdominant eigenvalue. At that point
further increases in b will not improve the convergence rate.

The following example illustrates an extreme improvement from problem

transformation.
Let -.3 o3
A6 = amax - D
o -y
and
DA .6
I+ 1 A6 =
s R
11
- T —

o sty




with a spectrum of {1, -.6}. For b>.5 we have a spectrum {1, Eifg}.

we want b=.8 which gives a modulus of 0.0 for the subdominant eigenvalue of

Here

the transformed process.
As a further example, consider the Markov process whose transition matrix

is given as follows:

rjsl .13 +21L .05 .10 .20
.15 «12 .16 .20 .12 +25
.02 .01 .01 .01 .93 .02
12 .28 .09 .16 .04 .31

0 .01 .85 0 .09 .05
.11 .30 .10 .15 .14 .20

The eigenvalues are 1.0, -.8421, .6945, .2079, -.085 + .0116i, and
-.085 - .0116i. It would appear that problem transformation should be of value
in speeding convergence, since the subdominant éigenvalue is negative. From
the preceding &evelopment, it would be expected that the convergence rate of
the process would be maximized at the value of '"b" which results in the largest
negative eigenvalue being equal to the largest positive eigenvalue. Applying
equation (10), to equate the two eigenvalues of the tranformed matrix, we get

.99 b-.99 _ .99 b-.99
b (.8421) - o (.6945) + 5

Solving, we get b = 1.063. In other words, transforming the process using
b = 1.063 should achieve the "bestﬁ asymptotic convergence for the process.
As a test, White's Algorithm was run using costs of
q = (1.14, 2.27, 5.06, 2.97, 3.96, 4.90)
(only one policy per state). The problem was declared '"solved" when
L"(n) - L'(n) :_10-4. Runs were made for various values of b (see Figure 3).
The actual minimum number of iterations (30) cccurred for a value of b * 1.09,

whereas the number of iterations for b * 1.063 was slightly higher (31). The

12
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b

Number of
Iterations
to
Convergence
40

30

Figure 3
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inaccuracy in prediction is expected, since the method of prediction considers
only main effects and ignores the contribution of the smaller eigenvalues.

As one might expect, the straightforward application of the above
observations is not practical, since the determination of eigenvalues for
large processes is itself difficult. However, in practice it is usually
intuitively obvious to the analyst that a process may possess strong cyclic
tendencies, indicating that some eigenvalue has a large negative real com—
ponent. If the cyclic tendency is strong enough, this eigenvalue will be
the subdominant eigenvalue aﬁd the above development suggests that some b>amax
may decrease the resulting asymptotic convergence rate. In any event, ap-
plying White's method, using several values of b marginally larger than P
and noting the convergence rate of the process for various values of b can
many times be of value.

In testing the above we noted that if b was made successively slightly
larger than - that either .the convergence improved dramatically or the con-
vergence slightly deteriorated. To further test this observation, we ran-
domly generated Markov decision problems with a varied number of states.
Within each state ten different actions were available. White's method was

used to solve each using b values of

by = 8y + 107
b, = 1.05b,
b, = 1.10b,
by = L.1h,

Again, problems were declared "solved" at iteration n when L"(n) - L'(n) < 10~

If a problem was solved in fewer iterations for some b1 than b, with i>j,

b

then the problem transformation was declared beneficial. Otherwise the trans-

formation was classified as non-beneficial. Clearly a problem could be

4




NUMBER N TOTAL ITERATION COUNTS
OF n
states | M b0 By 5y By
6 67 73 79 85
3 4 79 61 51 43
7 159 166 175 183
4 2 51 43 36 31
7 150 157 166 174
5 3 49 42 40 40
34 36 38 40
6 212 160 141 133
4 60 63 67 71
7 95 82 77 76
114 121 129 136
8 8 185 145 137 120
3 50 52 56 58
9 11 430 260 210 193
6 134 139 146 152
10 10 313 238 212 199
2 63 67 70 74
15 8 692 277 222 217
65 68 71 74
20 8 266 212 194 189
Table 1: Total Iteration Counts
;
|
|
IS
- - - -y T —— T TA—— n - - " —
i B o s - e e e 'w -




N
n

N, 5 By by By
Total 46 896 942 997 1047
Across States 67 2372 1520 1310 1241
Problem 19.5 20.5 217 22.8
Averages 35.4 22.7 19.6 1855

Table 2: Summary of Table 1. 4
16
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mislabelled as non-beneficial using the grid given above but may in fact be
beneficial for some b>amax' The opposite is not the case.
Table 1 gives the total number cof iterations to solve the non-beneficial

and beneficial problem cases. Nn and N, stand for the number of problems

b
labelled non-beneficial and beneficial, respectively. For example, in the
randomly generated 8 state problems, 7 problems were labelled non-beneficial
and 8 were labelled beneficial. Table 2 summarizes Table 1 by providing totals
across states and then averages across states and over
problems.

If we can assume that the average performance of the set of randomly
generated problems used in this study is representative of the performance
of the set of real world problems, then the following observations can be
made. First, problems whose convergence can be improved by increases in b
above a .x are those problems that are hard to solve anyway (see Table 2,
19.5 versus 35.4 iterations). Second, when a problem does not show conver-
gence improvement when b is increased above - the deterioration in conver-
gence speed is not dramatic (see Tabie 2, 19.5 versus 22.8 iterations for a
15% increase in b above amax)' Finally, convergence improvements, when they
occur, are rather dramatic (see Table 2, 35.4 to 18.5 iteratioms for a 15%
change in b above amax)' These observations suggest using problem transfor-

mation can be of significant value in speeding convergoﬁce.

(b) Cheap Iterations

Cheap iterations were first noted by Morton [13] and discussed in detail
by Zaldivar and Hodgson [26]. '"Cheap Iterations" are accomplished simply by '
not performing policy maximization at every iteration of White's method. If

one does not perform a policy maximization the computational effort per iter-

ation is reduced considerably. This approach makes sense intuitively in that

17
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there are both policy sets, and relative values (Vi) and gain (g) converging
in the operation of White's meth;d. Using cheap iterations allows the rela-
tive values (vi) and gain (g) to converge sufficiently so that a new policy
set can be chosen which is significantly better than the old one. Clearly,
in practice, there is an optimum tradeoff between 'cheap" and "expensive'
iterations. In our experience, we have used from 5 to 30 cheap iterations

per policy maximization. The number being dependent on the convergence pro-

perties of the process.

(c) Suboptimal Activity Elimination

An extremely useful procedure in dynamic programming methodology is the
reduction of the policy space by determining actions that could never be part
of an optimal policy. These actions can be eliminated from further consideration.
Hence, the problem can actually shrink in size as the computations progress. The
idea of eliminating suboptimal activities was first given by MacQueen [11] in
the discounted Markov decision context and refined by others [4, 5, 18, 24].

The basic idea, cast in the non-discounted Markov decision process context,
is to first determine bounds on (;) at iteration n (call them 2™ and un) and
then test, for each activity k associated with state i, whether the system
(12) gy, qi + jglpijvj

n v n
$s ()i u
—8=

has a solution. If not, k cannot be part of an optimal policy and can be removed
from further consideration.
For the discounted Markov decision process, several researchers have pre-

sented bounds [10, 18, 19, 24]. However, even though w' + w and gn + g, no bounds

have been given for the non-discounted case.3

18
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Recently Hastings [ 3 ] has proposed a suboptimality test. His test identi-
fies non-optimal actions for state i at value iteration stage n. This does not
mean that the detected "non-optimal' actions are non-optimal for subsequent
stages.4 Thus, actions flagged at iteration n must be re-examined at some
later stage. Hasting's test can be thought of as an "intelligent" inter-
mediate to expensive and cheap iterations,

We might note here that any type of relaxed iteration (cheap or Hasting's)
will invalidate the bounds given by Odoni. That is, to be valid bounds,
L"(n) and L'(n) can only be determined from the unrelaxed iteration (i.e., the
expensive iteration). |

(d) Extrapolation Methods

Generally, the convergence of the relative values (Vi) to their respective
values takes place in an orderly fashion so that it is possible to make educated
guesses at the final values of the vi's, thereby speeding convergence of the
algorithm. Simple approaches such as linearly extrapolating each of the trends

of the progressions of the vi's seem to be most effective. For a more complete

discussion, see [27].
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FOOTNOTES

The assumptions used by White can be relaxed. Schweitzer [22] proved
convergence for the general single chain acyclic process while Su and
Deininger [23] extended this to the periodic case. Such conditions are
hard to test in practice. Recently Platzman [17] has given a weaker
condition that can be readily tested. Finally, Morton and Wecker [14]
have generalized most of the above plus have added some new dimensions

to the algorithm.

The largest eigenvalue is always 1.0. The subdominant eigenvalue is the

remaining eigenvalue having the largest modulus.

We warn the reader that the '"bounds"

u‘i‘ = V,(@) +L"() - L'(n)
z‘i‘ = V.(n) - L") +L'(n)

do not (in general) satisfy

n
> >
2 Vi(n) > Zi m

u

v
=]

n
5
All that can be shown for these bounds is that

ug 2V, (m 24 n-1 < m < n+l.

n n
i 5 2
Under fairly mild conditions, Hastings [ 3 ] shows that there is a stage

after which non-optimal actions will be properly identified.
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