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Section 1

INTRODUCTION AND SUMMARY

1.1 Background

The parabolic—equation (PE) technique has proven

to be a powerful tool in modeling -propagation-loss under a

var iet y of circumstances . Its fundamental limitation resul ts
from the parabolic or small-angle approximation employed in

its derivation . While the approximation had been known for

some t ime ( Leontov ich and Fock , 1946 and Fock , 1946), it
became truly useful when integrated with the split-step FFT

algor ithm (Tappert and Hard in , 1973).

Strictly speaking , the approximation is not small-

angle , but narrow—band . That is, the solution will be accurate
for a small band of rays or modes with phase-velocities close

to a selectable reference (e.g., McDan iel , 1975 or Fitzgerald ,

1975). Since in underwater—sound applications small angles

are nearl y always of interest , this flexibility in selecting

the accurate band offered very minimal improvements. As

proposed by Fitzgerald (1975) one could solve a set of prob—

lems , each centered about dif f e ren t phase veloc ities , trans-
ferring energy between appropriate bands as indicated by a

modal decomposition. While elegant , this solution requires
solving for the normal-modes at each new environment and is

probably impractical for most applications.

A similar type of approach has been proposed by

Estes and Fain (1977) where each Fourier component is effec-

tively propagated with refraction and reflection . A number

1—1 
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of approximations and assumptions are made in arriving at
what appears to be a feasible implementation . The accuracy
of the technique remains to be evaluated , as well as its
practicality. It may , however , prove to be a useful ref er-
ence or standard for comparison with approximate techniques
even if it is found to be impractical for routine applications.

Other attempts at overcoming the small—angle limita-
tion have included direct integration of the elliptic wave
equation on very large , fast computers (e.g., Brock on NRL ’s
TI-ASC , unpublished), and modification of the parabolic
operator (Tappert , 1977). Brock ’s work is still in progress
and may prove feasible for limited domains of high angles
given such a powerful computer . Tappert has derived an
operator which will accurately treat large angles and weak
gradients , or small angles and strong gradients , but not
large angles and strong gradients. More precise limits for
this new operator have not been determined .

1.2 Approach and Summary

The work reported here represents an approximate
solution to this last problem——large angles in the presence
of strong gradients-—formulated in a way to utilize the
efficiency of the split-step FFT algorithm and hence to be
applicable over large ranges. It is similar to the approxi-
mate solution developed to remove the bulk of the parabolic
error for water-borne paths (Brock, Buchal , and Spof ford ,
1977). Their approach (“CHOD”) was to transform the initial
problem (specifically the sound—speed profiles) into a problem
whose solution using PE would be much closer to the desired
elliptic—equation solution of the original problem .

_ _ _  - 
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As is shown subsequently, this transformation
breaks down ( i . e . ,  becomes double—valued ) when applied to
the strong gradients found in the refracting sediments of
the ocean bottom . Fortunately, the principal CMOD objective——
convergence zone spacings—-is not relevant to the higher-
angle bottom—bounce paths. For these paths a more appropriate
constraint would be to preserve ray cycle distances or periods ,
thus ensuring that each ray would interact with the correct
portion of the bottom and accumulate the right number of
interactions at any given range.

It is possible to achieve this objective with con—
trollable , small, errors so long as the bottom interaction
process can be treated as refraction through strong-gradient
sediments. This is typically the case in areas where the
bottom is a good “reflector” such as abyssal plains . It would
not apply to steep slopes of exposed basalt where the inter-
action process is, in fact , reflection .

Hence the specific problem of interest isç,~propa_

gation of high angles over large distances where the energy
is refracted in the ocean—bottom sediments (rather than
reflected from a hard interface). The principal difficulty
with PE in such geometries is that a steep angle effectively
propagates with the period of a shallower angle since the
horizontal component of its phase velocity is less than it
should be. Hence the ray period, or cycle distance , is
too large. For water-borne paths this problem was largely
removed by CMOD . The relaxation of the CMOD convergence-
zone constraint permits certain liberties to be taken with
the sound—speed profile in the bottom which could not be
considered in the water column .

1-3 



For the bottom—interacting paths, a new algorithm ,

“BMOD ,” is proposed whose objective is to preserve ray periods
given the user-specified sound-speed structure in the bottom .
BMOD modifies the sound—speed profile in the bottom to compen-
sate for the ray—period error accumulated in the water column .
As a result , the impact of range—varying bathymetry and re-
flectivity is apparent on the correct rays , and mean levels
may be accurately modeled . The position of a ray within the
water column may , however , be in error at any one depth , but
the error does not grow with range. Multipath interference
effects in the field will have an inherent (but predictable)
error since the phase velocities of the high—angle paths will
still be incorrect.

The work reported here has focused on developing
and testing the feasibility of this algorithm. Its full—scale
implementation in a general PE code (with CMOD) was beyond
the scope of the present effort . Such an implementation
should present no major problems, and a number of associated
issues are discussed in the final section of this report .

S
In summary , an algorithm has been developed which

is able to modify ray periods in such a way that high-angle
paths may be propagated in PE (via the split-step FFT algorithm)
with sufficient accuracy to model many important bottom—
related aspects of propagation loss. The algorithm requires
no modifications to existing PE codes since it basically is
used as a pre—processor of the environmental inputs.

1.3 Acknowledgments
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• Section 2

THE ALGORITHM BMOD

In this section the basic algorithm , “BMOD ,” is

developed. The previously developed water-column modification ,

“CMOD ,” is shown to f ail when applied to the strong gradients
formed in the ocean bottom. While it approximately conserves
ray periods for water-borne paths , this was not its original
intent-—more emphasis being placed on mode turning points.
Since we are not generally interested in sources or receivers
deep in the bottom , the turning—point constraint can be removed ,

with ray periods becoming the principal concern .
I

2.1 Preserving Ray Periods

The CMOD algor ithm approx imate ly preserves the range var iation
of the true solution of the wave equation (WE), whereas PE
errors accumulate with range. This becomes clear if we inte-

grate the respect ive ray equations . Us ing Eqs. (C24) -

(C26) of Ref . 1, for c = c ( z )  we have
I

WE rays —

PECMOD rays &-= £(j _ 
~~~~~~~ ~~~~~~~~~~~~~ 

\ ( 2 )
dz v’T\ C~/ \

PE rays k— = .cL c(c~— C
I (3)

c~z C.
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First , cons ider an ocean of constan t sound speed gradien t g

and of infinite depth extending downward from z = 0. W ith

c(z ) = c0 + gz, g > 0, the ray passing through z = 0 at an

angle of 0 from the hor izon tal turns at the depth z .~ =

where c
~~

c0/cos0 is the sound speed at the turning point .

For WE the. range half-period is then

• A~(9)~~f~~~
dL — = (4)

whereas for PECMOD we f ind

A — 
J Ct(Ct-C~) 

- L F ~ ~~ C0
2~1i ~ ~~~~~ L v~ 

— v~ 
-

= 

~~~ ~~~ -

where s = secO = c.~/c0. Then the difference in range half—

periods is

O A (e ) ~~~o) - A~ e)

- - 

~J~~[j ~ :~~ J (6)

= ~~Jst-i -

I

— -- - ,— - 
—-— — — - — —

- 
~~~~~~~~~~~ ~~~~‘-~~~ ~~ ‘~~~‘- 4 ”~~~
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Expanding the in factor in terms of e v’( c t — c0)/c~ ,

+ (7)

Thus ~ (0) = 0, and for small c (small 0) it is clear that

~~0) > 0. For , consider the fuiiction

• _

( 3)

i i.O 1• ~C1 = 2.Jc+c~. 
— > 0 ~~~~~~ c >O

Since f(c
~~
) = 0, 0 < c0 < ct 

implies f ( c 0) > 0. 
-

Moreover , if we consider the rat io

O r (o) A~(8) = / ~ 
4~/~ +~~r] ‘9)

C 
A~~~(e) ~J z ( s ÷1)  Jz(~~— i )

then as B -
~~ ir/2 , r

~
(O) -~ i//~ 0.707 ( the  last term vanishes

O like ( l n x )/ x  as x = 4s -~~ c o) .  Thus , PECMOD underestima tes
the WE ray per iod by an increasing amount as B increases
from 0 to ~/2 , but never by more than 30%. For RR ray paths

in the water column , the maximum error is much less. For
p example , Eq. (8)  gives rc (16°) = 0.9967, i.e., an error of

only 0.3%.

2— 3
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On the other hand , the usual PE algorithm over-
estimates the WE ray period , and by a much larger amount than
PECMOD underestimates it. From Eq. (3), the PE ray period is

simply a factor of ct/c0 times the WE period ; thus ,

A~( 9 )  = ~~~j c_ c :  ~e~ 9 ~A~(O) (10)

The error in periods is

~~
(e )

~ A~(9) 
- A~ (O) 

= 
fJc~-c: (-

~~~~ 

- (11)

As c.~ -
~~ ~~ (B -

~~ ~/2), 
-
~~ ~ and the error is unbounded. For

~~~~ 
C0, the ratio of PECMOD error to PE error is (cf. Eq. (6))

~~
( o )  

~
‘
~-(‘ 

-f ~ ) (12)

where s = secO = c
~
/c0. Thus, as B -

~~ 0, E (O) -
~~ 1/4. For

very small angles , then , the PECMOD underestimate is about
1/4 of the PE overestimate , but this fraction rapidly
decreases as B increases. Returning to our earlier example ,

O at B 16° A~ (O) = l
~
O4OAw(B) and hence E(O) = 0.0033/ O.O4 O~~

0.08.

Next , consider the typical case of a water column

O given by a piecewise linear sound speed profile with small
gradients. The above analysis can be generalized to show
that RR and RSR rays confined to the water column have a
shorter period under PECHOD than under WE. This fact can

O now be used to our advantage .

2-4
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The approach of BMOD is to replace a given ocean
bottom and sound speed profile by a pseudo bottom composed
of layers and a modified , piecewise—linear profile such that
the period of the ray turn ing at the center depth of each
layer is preserved . Extending CMOD directly into the bottom
might appear to be an attractive solution . Since PECMOD
underestimates ray periods in the water column , this modified
bottom profile would , at least in the first few layers ,
actually have gradients weaker than the gradients at the same
depth in the given bottom profile.

Unfortunately, this method fails because of a
fundamen tal complication , name ly the essential depth dependence
of the CMOD algori thm . In fact , for  deep bottom layers and
large positive gradients , the CMOD depth transformation will

become double-valued The transformed depth coordinate ~ is

O — V1
Z — Z f l ( z ) (13)

where n ( z )  = c0/ c ( z)  is the refract ive index . For suff 1-

O cient ly  large gradients , n1’~
2 (z)  will decrease faster  than

z increases , and multiple values of z will be mapped to the
same ~~~. Consider a bottom layer beginning with sound speed

~ at depth ~ and sound speed gradient g, i.e., c(z)=~+g(z-~ ),

z > ~~~. If we solve the equa tion

.yI. \ ,
-
~~
--- = + -a- n (z,~~(~ ) O  (14)

p 
*we find that ~ will reach a maximum at z = z , where

z* == ~~~ -
•

~
))  (15)
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and then ~ will turn back on itself . Of course , only for
sufficiently large g, namely

Q~/ ~ ( 16)

S
* —does z > z exist , whi ch is why this problem never occurs

in the water column . However , it can easily happen if we
try to exten CMOD into the bottom . For example , consider
a bottom layer beginning at ~ 4,878 m with ~ = 1,524 m/

sec . Then if g > 5/8 sec~~ , which is of ten true of real
bottoms , CMOD fa ils. Thus , while CMOD is quite good for the
water column (n ~ 1), it canno t handle both steep angles and
n < < l.

Fortunately , the principal object ive of CMOD——
correct convergence—zone spacings-—is not relevant to steep
bottom— interacting paths. Our concern is to preserve ray

periods , and we can achieve this by annexing a well—chosen
bottom to the CMOD—transformed water column . The resulting

problem is then solved using PE . The ray period for a bottom-
interacting path is then found by integrating the PECMOD
ray equation (2) through the water column and then the PE
ray equation (3) through the bottom . For any given ray , the
contribution from the water column is predetermined by CMOD ,

but BMOD then recursively modifies the sound speed gradient

in each layer so that the period of the ray turning at the
midpoint of the layer is preserved.

I
2 .2  Formal Description of the Algorithm

Let the water column be composed of ( N — l )  layers
such that c(z) = c1 at the top z 

= z~ of the ~th layer and

2— 6
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c(z) = c1~ 1 at the bottom z = z1~ 1, f or i=l , . . .,  N— i. The

reference sound speed is st ill denoted by c0; in the follow ing
we assume c0 is also the minimum sound speed , so tha t c0 is
invariant under CMOD . Let g1 be the gradient in the 1

th layer ,
so that c1~1 = c

~ 
+ g1(z1~1 — z1). At the bottom of the water

column , z = ZN and c 
= eN. Let the bottom sound speed have

a given gradient g, so that c (z)  = eN + g(z - ZN) for z > ZN•
(The extension to a general piecewise linear bottom is straight-
forward.) Now applying CMOD to the water column yields 

~~ 
and

i l , . . .,  N. We extend this modified profile into the
bottom by defining layer boundaries 

~N+l’ ~N+2’ 
. . .  and grad-

ients 
~N’ ~N+l’ 

. . .  such that the period of the ray turning
at the midpoint of each layer is preserved when PE is used
to solve this pseudo problem .

The method of solution is recursive : first , 
~N 

is
found; then , 

~N+1 
is foun d given that steep rays must pass

C 
through the layer with 

~N’ 
and so on. Thus, assume 

~~~~
, i N ,

M—l have already been found. Let us reference rays in
untransformed (not CMOD) space by their angle B0 at the sound
channel axis z0, or equivalently, by the sound speed c.~ =

c0/cosB 0 at their turning depth. Then W,~, and Wb, the WE
contributions to the ray half-period from the water column

and bottom , respectively, are given by (cf. Eq. (4)).

~ 
- c~ J~~~~~ 

- C~ (17)

— -~—1’c :— c (18)

- - ~~~- - - - 
~~~~~~~~~~~~~~~~~ 

1_~.~~
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I

To compute the contribution C to the ray half—period from

I PECMOD , it is convenient to integrate in the untransformed

space with its piecewise—linear profile. Just as in going

from Eq . ( 2) to Eq. (5) , we find

1 
= 

~ f (Jc~- c~ - Jc~ - c~~) (19)

I 

~~~~ J~ ~~~ jc~-c~ • ____

~ 

.fv’( ,J~~ 
—[ce— c . ‘,/~ + JC~~ C4rt

I
To compute the PE contribut ion P from the bottom

layers previously def ined by BMOD , we integrate Eq. (3) but

in transformed space. With 
~~~~~~~ 

N < i < M, given by

S
~~=~~~~+ (2~

_z
~, ~~~~~~~~ 

(20)

we obtain

= JC~- ~ — J
~~~~~

- C~ (21)

but now we must define the turning point speed of the
transformed ray. Its initial angle e 0 at z0 may be found
from

2—8
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I

~an 9 — -
~~~~~~~ = = ~L .d~ . (22)

dr dr dz

where dz/dr is obtained from Eq. (2), and d~/dz from Eq. (14).

Thus ,

~an~ _ J~ ( i — ~~-)n 5 —‘JZc0 ( *  -
~~~~

) ( 23)

Then the turning point speed 
~~ 

is given by Snell’ s Law in
the transformed medium:

C., (24 )

Note that is not the same as the image of c
~ 

under CMOD .

The final Ingredient required to equate ray periods

is the contribution from the current (M
th) layer. Assuming

that > ~~~~ , the Mth layer with gradient 
~M 

will contribute
Lu

~~ 

— (25)

to the ray half-period . Then can be obtained by equating

half—periods :

(26)

or more explicitly,

• 2—9
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~-‘ 1 2 A~~~
Al / / -  C~~J~~ - C
3~

9Q 
c~~(~~ + ’~~-C-P)  

(27)

The problem now is to find the unique 
~~ 

and
such that Eq. (27) is satisfied and the turning depth

Z~ Z + (28)

9k’.

is also the midpoint “2
~~M 

+ ZM+l ) of the nex t bot tom layer .

That is, we want

t~z~~)— (29)

Th is transcendental equat ion for e 0 can be solved iterat ively
by the secant method . Let ~~~~ 1=1 , 2, . . .,  denote the

sequence of iterates ; corresponding anlges may be found

by solving Eq. (23) for c.~ and using Snell’s Law. We choose

41(1) _
~~/ C0 \

~0 — 
~~~ 

(30)

to be the initial angle of the ray which turns at the top

of the layer ; then ~z(6~~~~) = 0. Next , choose e~
2) to be

the initial angle of the ray which would turn at the midpoint

of the current layer If the previous gradi~ent were extended ;
i.e. ,

-ii C. 1 (31)
— ea~ L ~~ 

-i-. gL (;~~~~~ 
)~ 

]
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Then compute

A,

= 
C~ (O 0 ) — C , , ,  

(32)

using Eq . (24) to obtain 
~~~~

, and Eq . (27) for 
~~~~~~~ 

Now the
secant method cons ists of applying repeatedly the scheme

= 
[t ~~~ (e~~~~~~) — (33)

for 1=3, 4, . . .,  and with D given by Eq. (29). The iteration
terminates when

kz(&’
~) _ D 1  <ED (34)

for some tolerance factor c chosen in advance; ~ = 0. 01 worked
• well in practice , and typically at most five iterations (i < 5)

were required for convergence.

Finalily , 
~~ 

is taken to be the gradient found on

the last iteration . This algorithm could fail only if
W~ + Wb — C — P < 0 for all > ~~~~~~~ in which case It

would be impossible to find a positive 
~M 

from Eq. (27).
But in Section 2.1 we saw that W~ + Wb 

— C > 0 for all 80.
Also , as 80 

+ r r / 2  (~~ + ~ ) ,  P + 0 in Eq. (20). Thus, for
sufficiently large e 0, w~ + Wb — C — P > 0 and 

~~~~ 
> 0,

so there is no problem .

I
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I

As a pract ical matter , it is good that at the bottom

grazing angle , PECMOD underest imates the ray period. Thus ,

there is no initial angular gap (beyond the grazing angle)

where ray periods cannot by preserved . Then by including

enough bottom layers , the spacing of the angles where periods

are preserved is narrow enough so that period errors at

intermediate angles are small .

The generalization of the algorithm to the case of

• multiple bottom layers (gradients) in the given ocean is

immediate.

I

I
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Section 3
PE IMPLEMENTATION OF BMOD

In this section we present a PE implementation of
BMOD for a homogeneous ocean and show that good results were
obtained . We close with a discussion of some issues which

would have to be addressed in a full implementation of BMOD
in production PE codes.

3.1 Homogeneous Ocean

Although a full PE implementation of BMOD was

beyond the scope of this contract , it was feasible to examine

the simplest case of an isovelocity water column c(z) c0,
since then the CMOD transformation reduces to the identity

map . The following such case was tested numerically: c0 
=

1524 rn/see, bottom soun d speed gradien t g = 0.5 sec~~~,

source depth z~ = 12.2 m , water depth 3930 m , acoustic
frequency 25 Hz, and a source aperture of 300.

The new PE source function of Garon , Hanna , and

Rost (1977) was used to illuminate the desired angular
aperture , beyond which the intensity fell off rapidly enough

that , at least for the first ray period , the path of the

steepest ray could be fairly well identified . Thus the ray

period of the steepest ray could be well estimated from

contour plots of the acoustic intensity produced by the PE

runs.
S

The PE depth mesh interval was 45.7 m , and 2~
mesh points were required . The BMOD—modified bottom sound-

speed profile is shown in Table 1 at half-mesh intervals.P
3—1
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Table 1
MODIFIED BOTTOM SOUND SPEEDS ( BMOD )

Depth Sound Speed Angle Preserved Layer Gradient
(m) ( f t/ s ee ) ( deg ) ( sec 1)

3930.3 1524 .4
3953.2 1556.4 11.59° 1.402
3976.0 1588.5

3998.9 1637.2 21.39° 2.134

4021.7 1686.0

4044.6 1738.8 28.75° 2.312

4067 .4 1791.7

I

S
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S

The midpoint of each layer is identified by the angle (in
I the water column ) of the ray which turns there and whose per iod

is preserved . Below the last depth shown a la yer of constan t

sound speed was added to insure no steeper bottom re turns.
Now the WE per iod for a ray with angle O~ in the water column

is

I 
c ( e~) — z [ ~ ~

- f~ 
9~]~ (35)

where H is the depth of the water column . The PE per iod for
the same ray (unmodified profile) is then obtained merely by

a mult iplicat ion:

~ r~,(e~) = 

~~~ r’~(e~ ) (36)

I
Thus we f in d

I , I~3O°) = 17. 30 km , J7~, c~3o”) — 19.99 km

I -

ifl the actual PE run with BMOD, the 300 period appeared to

be about 17.6 km , or much closer to WE than to PE .

• 3.2 The General Inhomogeneous Case

The numerical testing of BMOD which fell within the
scope of this contract has indicated its applicability to a

• more general class of inhomogeneous problems. As bottom
gradients and water depths increase, however , we must expect
that BMOD will become less efficient . For example , as the
ratios of sound speeds at adjacent PE mesh points increase

p

3—3
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(i.e., as bottom gradients increase), the split—step Fourier

algorithm suffers more and more from aliasing; that is , the

fraction of total energy which is aliased will grow . The

only remedy for this problem is to increase the sampling in

depth , i.e., to increase the number of depth mesh points.
However , this doubl y reduces computat ional  eff iciency : not
onl y do the FFTs in depth take longer , but the range step ~r

- must be decreased .

Another possible limitation is that the PE depth

mesh spacing con trols the spacing of the angles of the rays
whose per iods are preserved . If that angular spac ing gets
too wide , signif ican t errors in per iod could occur for
intermediate angles .

If the modified gradients become too steep , the

rays of interest will want to turn back up in the bottom
almost instantaneously. Clearly, a ray wh ich spends a hor i-
zontal distance less than ~r in the bot tom canno t be treated
accura tely by PE. Tak ing E~r very small is computationall y

• ineff icient .

Finally, it appears feasible to extend BMOD to
slowly varying range—dependent environments , but again , care—

ful  numer ical testing would be required .
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Sect ion 4
CONCLUS ION

We have presented a new algorithm BMOD for use in

solving for acoustic pressure fields with significant energy

returned from the ocean bottom . When combined with the pre—

viosly introduced CMOD , BMOD creates a pseudo—problem which ,

when solved by PE , should be a good approx imat ion to the true
WE solution for a cer tain class of problems . This class
should be determined by a full PE implementation of BMOD ,

fo llowed by numer ical evaluation.
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