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SECTION 1

SUMMARY

The problem addressed in this study is the estimation of

ship track parameters from a set of observations on differences
in acoustic arrival time between bottom mounted hydrophones.

The studied model of this problem consisted of the following
features :

i’he ship track is assumed to be a straight
line which is described by the closest
point of approach (CPA) to a reference
hydrophone , time of CPA , ship ’s velocity ,

and the angle between the track and a
line passing through the hydroPhones~.

• ~‘he hydrophones are arrayed in a straight- 

line at known locations.

-
. ~he acoustic path between the ship and

each hydrophone is assumed to be a straight

line . ~~S$ 
/ 

I

• Dhe error between a measured value of the
time difference of arrival and the true
value is due to limitations in sensor and
processing capabi1ity.~~~

The primary goal of the study was to determine the error
in the estimated track parameters due to the measurement errors.
In this error or sensitivity analysis , the true track parameters

are used in appropriate calculations , so the error results are

indicative of the “best” accuracy available from the system.

An additional goal was to determine which subsets of the entire

set of observations have sufficiently accurate results. (That

is, which subsets gave estimate errors nearly as small as those
obtained from all observations.)
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This method of analysis is based on the generalized least
squares error theory . This theory was extended to treat the
non—linear problem represented by the estimation of the track
parameter . The extension provided not only the formalism for
the error analysis, but a technique for estimating the track
parameters for a given data set. The error analysis formalism
was implemented by constructing appropriate computer codes.

Several cases of ship tracks, data sampling ~nd hydrophone
spacing were studied . The technique for estimating the track

parameters from a real data set is not , as yet , implemented
in a computer code form . However , issues concerning that im-
plementation were addressed and resolved to the point of in-
dicating what features of the present code must be modified .

In this initial study , a limited number of track parameter
cases were examined to determine the salient features of para-
meter variation on error estimation . Numerical calculations
were based on a measurement “error” (standard deviation) of
i0 2 see, corresponding to a measurement bandwidth of 100 Hz.

In most cases “data” out to slant ranges of 5 n.mi . were used
in the results presented here.

Results of two structured sets of cases are noteworthy .
One set involved varying the CPA from 1 n.mi. to 4 n.mi. in
increments of 1 n.mi. keeping all other parameters fixed .

Results , using nearly the same number of observations in each

case , showed slight degradation of the ratio of CPA standard

deviation to true CPA (from nearly 2.5% to nearly 6%). In

another set of cases , the CPA and other parameters were held

fixed while the track—array angle was varied through 0°, 100,

300, 600 and 900. Results indicated severe impairment of

CPA estimation capability for the parallel (0° case) track.

Detailed studies of the 10° case showed that observations

corresponding to track locations on both sides of array endf ire
are required for good CPA estimation accuracy . Furthermore ,
observations near endf ire may be particularly important .

1—2
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Typical results for cases not involving this array endfire

c phenomenon show that the CPA standard deviation decreases with
the number of samples (N) as N~~ so long as N is larger than
about 10 (at one-minute intervals). For smaller sample numbers,
the standard deviation is sensitive to the particulars (i.e.,
ship position , interval between samples, and the particular
case parameters) of the sample set. This result suggests that
if the data acquisition system is sample number limited (to
few numbers of samples), judicious choice of the sample set

can result in better CPA estimation accuracy than a random
sample set .

The remaining sections of this report are organized as
follows:

• Section 2 outlines the mathematical

formalism of generalized least squares
theory as applied to linear and non—linear
problems .

• Section 3 presents the application of
the extended non—linear theory to the
problem of estimating the ship track
parameters.

• Section 4 presents the cases studied and
their results.

• Section 5 concludes the report with an
identification of the issues involved
with the treatment of real data for ship

track parameter estimat ion .
4
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SECTION 2

AN OUTLINE OF THE MATHEMATICAL METHOD

Linear System

The method may be called a generalized least squares esti-

mation and may best be described with an initial discussion of
a linear problem) Consider a set of linear relationships,

M
E A1 .X. 1 = 1  N
3=1 ~~~3

or in matrix form ,

Y = A X , (2 )

where Y is a column vector of length N of quantities to be

measured , A is a N x M matrix of known parameters, and X is
a column vector of length M of quantities to be estimated .
The constraint M<N indicates an overdetermined system for the
estimations of X.

An observation of the Y~ variable , call it y1, in general ,

contains an error e1, for which we can write ,

i = 1 ,...N (3)

or e = Y — y , (4)

or e = AX—y, (5)

where the last two expressions are matrix form equivalents of

the first . Consider the scalar function

c N
S~~~e

Te =  E e~ (6)
k~1

2— ] .
f i

_ _ _ _ _ _ _ _  _ _ _ _ _ _ _



where eT is the transpose of e and is the row vector composed
of the set (e1}. Clearly S is the sum of the squared errors
and minimizing it with respect to the X1’s gives a set of
equations which can be solved for 

~~~~~~~~

, i.e., the vector which
minimizes S. Expanding on this discussion , we have

L N 2

S =E  EA kJ X
J

_ Y k, (7)
k=l j=l

which we minimize by taking

as -— 0 1 = 1. .M (8)

Solving the system of equations in (8), we obtain

= (A
T
A) 

1 AT y (9)

Recall that A is known and y is observed , so with this composite
of numbers , equation (9) gives the procedure by which the esti-
,s. /~ ].mate X is obtained. For reasons not indicated here , X as given
in (9) is the best linear unbiased estimator (BLUE) of the
parameters X.

We backtrack for a moment to discuss an important point .

If the variances of the measurements y are known , either by a
series of trials or error estimates based on sensor resolution

capabilities , the function S in (6) does not fully exploit this

information . For example , if the measurement y1, carries a
large var iance , a~ , with respect to y2, a1

2 
> a2 ,  then it

would be reasonable to weigh y2 more than y1 in arriving at
an estimate ‘~~~~. Consider then a covariance matrix C on the

measurements y. The diagonal elements of C are the variances
of y1, y2. . The off-diagonal terms represent correlations

among the y ’s, e.g.,

2—2
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= Coy (y1 y1)

< i-
~1~ ~~ 

- 

~J~>’ (10)

where < >denotes the expected value or “average ” . For
r convenience , let

W = C~~~, (11)

for which we note that if

C1~ = a1
2 t5~~~ (diagonal) ,  (12)

then

= 1/ac ~~~ (also diagonal).  (13)

C Now we modify (6) to read

S = e T W e . (14)

C This form “weighs” in a consistent manner the variance infor-
mat ion on the observat ions y.  Note that C and W are N x N
matrices . Note further that for diagonal W , S reduces to

= 

k~~L 
e

~~/ak
2 

, (15)

indicating a simple weighing case. Carrying out the minimization
(8) on the form (14), we obtain the weighted BLUE estimator

T -1 TX = (A W A) (A W y)  (16)

0 = D y  , (17)

2—3
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where

D (AT W A)~~ (A
TW) . (18)

Again , everything in D is known , so (16) is the prescription
for obtaining the estimator from the observations y. We

shall continue to work with the forms (16) through (18).

The discussion , so far , is focused on obtaining the

estimator of a set of parameters X. Note that is, in fact ,

a random variable . In particular , has a mean value and a

covariance matrix associated with i t.  By the structure given

above , but not explicitly shown there , the mean of is equal

to the population mean and is not of particular concern here

However , we are interested in the covariance matrix since it
C

relates how “errors” (variances) in the observations are

propagated to “errors” in the estimator.  This is the Law of

Covarlance Propagation which we now demonstrate.
r

Consider the linear form

V = AZ

where Z is the vector of observed random var iables , A is the
matrix of known coefficients and V is the vector of dependent
random variables. Let P be the covarlance matrix of the ob-

servations ,

(
= Coy (z 1z~ )

=<Zj  Z
i>

assuming zero mean for convenience .

2-4(
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Forming

Coy (v
~v~

) =

= ~~~ A ik Zk E A~1z1)~
k 1

= 

~ E A jk A~ 1 <Z kZ)

= EE A ik A .l Pkl
k l

hen def in ing  = Coy (v~ v~
)
~ 

we have

Q = A P A T (19)

This is the Law of Covariance Propagation and relates the
“errors ” in Z to the “errors” in V.

Applyi ng (19) to the form (17) with (18) ,  we obtain the
covariance matrix , Q,  of the estimator to be

Q = D C D T

= (AT WA)~~ (20)

where W C = 1, and standard matrix algebra is used .
(.

Several important points about (20) should be recognized :

• Q is not dependent on a particular set
of observations , y, on ly on covar iances
of the observations . The elements of
C may be selected from a priori estimates

2-5
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of basic sensing system resolution
capabilities . Thus, (20) can be used

to propagate these irreducible errors

to the errors in the estimator .

• If C is diagonal , indicating that the
measurements y. are uncorrelated , so
that C~~ = a1

2 
~~~ then

W1~ = ( 1/a 1
2 ) 

~ij ~ 
This implies that

- - 1  — l
ij ‘j~

’
~~
’ A~1 Wkl A1~ (21)

_
k Aki Akj (1/a k

2). (22)

Thus , even if ak = a = constant , the Q

matrix is not diagonal , indicating that

the elements of the estimator , X1, are

not independent .

• Let f be a linear scalar function of

the parameters X , viz.,

f~~’Eb. X. (23)
i

l l

where the {b.} are known .

Then the variance of f is given by

a 
~ =<E b 

~ 
X~ E b~ X~>

= 

~~ ~~~b 1 b~ Q~~~~~~ , (2 4)

which relates how the covariance of

the estimator is propagated to the

variance of a scalar random variable.

2-6 

—~~~~~~
-. - — — - — - — —~~—,— , — - —— 



— 

= T~TiT ~ 
- ____

Non-Linear System
U Consider a non—linear system of the form

Y1 = g (a11 a~~ ; X1 XM) (25)

i = l ,...N ,

where there are N quantities Y1 to be observed , and M quanti-
ties X. to be estimated . There are ii known parameters a, each
of which may take on a different value depending on the obser-
vation index , i, hence , the double subscript . The function
g is assumed to be the same for each observation . The form
(25) is called the condition equation .

We shall linearize the system in the following way .2

Select a point X’ (i.e., known values for X) and expand the
function g in a Taylor series about that point ,

4-
g ( {a} ; Xl . . X M ) = g ( {a} ; X1’ ,... X’ M)

M
(Xk

_X’
k) + ~~~ , (26)

k=l k X’
C

where c contains the higher order terms.

Define

f.
Y = g (a 1~~. . . .a~~ , X’~~. . .X’~~)

A. =~~~~~~~i j  ax 4 
~ = (27)

(

( 2—7
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so when we have a set of observations y
~ , we form

— ~~~~~ E ~~~ (X. — X ’~~) + e. , (28)

which is a linear system for the differencesU
Vi 

= yi 
- Y

Z~ = X~ — X’~ (29
’
)

In words , V~ is the difference between the observed value y1
and the value obtained from the condition equation evaluated
at the assumed point X’ ; Z is the difference between the point
X to be estimated and the assumed point X’ . Thus, (28) is in
the form

V = A Z + e. (30)

This is the same form as (5) and the whole linear analysis
discussed above follows through . Interpretations , however ,

of the derived equations differ somewhat from the purely linear
case. In particular , consider (20). Since C is the covariance
matrix of the observations y~ and the Y are not random van -

- 

- 
ables, then C is also the covariance matrix on V. The A in

equation (5) corresponds to the A in (30), but of course , the

later is evaluated at X’ . The Q matrix in (20) is the covariance
on the BLUE estimator t but since X’ is not random , the matrix
is also the covariance of the estimated point X.

Now (20) propagates measurement errors to the errors in
the estimate X , for a given assumed point X’ . If in fact X’

is chosen to be the true point , as is done in our specific
( problem discussed below , the resulting covariance matrix Q

represents the best accuracy possible .

2—8(
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One last point requires discussion . If we are interested

not only in an error or sensitivity analysis, but also a way
to estimate X , then the above mathematical structure must be

used in the following way :

• Assume a point X’ and evaluate the
partials of (27) at X’.

• Constn~ct or assume a covariance
matrix on the observations.

. Calculate Q in (20) .

• Apply (17) to obtain

= D V , where (31)

D = Q ATW ( and is completely known
for given X ’ ) .

• Use the result (31) in (29) to find

X = #2
~ + X ’  (32)

where everything on the right-hand
side is known .

• The X given in (32) is used as X” ,
a second approximation to the assumed

point .

• Repeat the above procedure until some
convergence criterion (as yet unde—

fined) is satisfied.

2-9
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SECTION 3

4--
APPLICATION OF THE METHODOLOGY TO A SPECIFIC CASE

We shall consider the problems of estimating ship track

parameters from a time sequence of time delay measurements for
an ocean bottom line of hydrophones. Figure 3—1 illustrates
the geometry , which is not drawn to relative scale. For sim-
plicity, we consider 3 phones, one defining the origin and
the other two along the y—axis at y1 and y2. The surface ship
track (assumed to be a straight line) is characterized by 4
parameters,

• r , the horizontal CPA to the
C Co

phone (one at origin)

• t0, the time of CPA

• V , the speed of ship

• b , the angle between the array of -

hydrophones and the ship track.

The track parameters are to be estimated (phone positions are

assumed known) from measurements of the time delays , which we
now define . Let T1(t) be the difference in arrival time be-

tween the phone at 
~l 

(1st phone) and the zeroth phone . T2(2)

is the arrival t ime difference between the phone at y2 and
the zeroth phone . Since the ship moves along the track, the

delays are functions of time . Taking time to be a discrete set

of points t 1, . .  .t~ , we have measurements of the form

T1 (t1)

T
2 

(t
1

) Y
2

T1 (t2) Y3
T
2

( t
2
)

T2 (tN) ‘
~2N 3—1 (33)

_____ 
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Figure 3-1. Ship Track and Array Geometry
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where we have also defined the vector Y.

We now relate Ti(t) to the track parameters and known
quantities. Let the ocean depth be d and the surface hori-
zontal range variables be defined on Figure 3-1; they are
lower case Roman symbols . The corresponding 3—D ranges are
defined as upper case symbols, e.g.,

Rc~ 
= 

~~~ + d2 . (34 )

Here, 
~~~ 

is the horizontal CPA to phone i. Let r1(t) be 
-‘

the instantaneous horizontal distance from ship to phone I

at time t. We see that

r~
2 (t) = r0~ + {V(t-t 0 )_ y 1 cos b 2

= r~ 0 + y 1 sin b (35)

then

R1
2 (t) = d

2 + r~
2 ( t )

= d
2 + (r

~0 
+ y.  sin b)21 1 2

+ [~~~t t0) - y~ cos 
bj  . 

(36)

Finally,

( t )  — R
0 

( t )  (37)

= td
2 + (r

~0 
+ y

~ 
sin b)2 

2 ~
C + ~ V (t-t

0
) - y~ cos b] }

— td
2 + r

00
2 + V2 (t_ t

0
)
2
~~ ~ (38)

where c is the speed of sound (assumed known and constant).

3—3
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Equation (38) is the condition equation we set out to
obtain . It is in the form of (25) where the ~~ correspond
to d, y1, y2, t

and

- L 
X1 r~0
X2 = b

x3 = V

X4 = t 0 (39)

We need the partials indicated in (27). These are:
r

T

c = (r
~ 0 + y.  sin b ) / R 1(t )  - r~ 0/ R ( t )

L i  CO

= V
2
(t—t

0
) / R

0
( t )  —

V ~V(t...t~~~) — y1 cos tJ/ R j ( t )

c fri. = (t—t
0
) {V (t_ t

0
) — y~ cos b i /R 1(t)

—V (t—t
0
)
2/R

0
(t )

c = 

~~ (r ~~ cos b + V (t—t 0) sin b) /R1(t) (40)

In order to set up the problem in the form (20),where Y
is given by (33) and X by (39), we must define the components
of A a s

T

= ~~ (t a ) i = 1,2 , j  = l ,...4

n 1, . .  .N (41)

3-4
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where k goes from 1 to 2N and is given by

k = 2n — ~ ~~il (42)

Thus, A is a 2N (rows) by 4 (columns) matrix .

Finally,

= E Akj X~ k = 1, . . . 2N . (43)

We shall base our computations on the true track parameters,
which we specify for each case we examine . That is, the partials
in (41) are evaluated at the true values of the parameters in
(39). The time set {t~ } is selected in a way to be described
later , so the components of A are known . We can then use (20)
for the error propagation analysis where we specify C, the co-
variance matrix on the o-bservations of time delay . In the cal-
culations to be described , we have chosen

2
= a I, j=1,...2N (44)

where a2 = lO~~ sec
2, thus , all measurements are uncorrelated

with respect to each other and the standard deviation is given ,
say, by the time resolution in a 100 Hz bandwidth.

Let P = for convenience . Then from (22)  we have

= 1~. E Aki Akj , i ,j = 1,4 (45)

k 1

In the computer code a matrix

2N
~~~ — 

~~ 
A.Ad A~~ , i ,j  = 1,4 (46)

C k 1

( 3—5
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is computed . Thus

Q a2 c2 B 1, (47)

from which we note that the covariance on the BLUE of the track
parameters scale in proportion to the variance on the t ime de—
lay observations.

Equation (20) is the focu s of what has been done to date.
One other set of calculations is also made. Using (24), we
propagate the covariances in the track parameters to the variinces
of the following quantities :

• Ship ’s x coordinate at each time step ,

x (t) r~0 cos b + v (t—t 0) sin b (48)

• Ship ’s y coordinate ,

y(t) _r
~0 

sin b + v (t-t 0) cos b (49)

• Aspect angle from bow t.o zeroth phone

e ( t )  = II - ~~~~~ rco/[rco
2 + (V (t_t0))2J~~} (50)

• Depression angle

+ ( t )  = tan~~ 1d/ ro (t )
~ 

(51)

• Two transmission loss expressions ,
single path:

TL1( t )  = 20 log R ( t )  + 66 (52)

single path from a surface dipole :

TL
2

( t )  = 20 log (R(t)/sin +(t)) +66, (53)

3-6
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where

R ( t )  = ~d
2 + r 2 + [v (t_t o)J 2J~ (54)

is the slant range from the ship to
the zeroth phone .

In order to use (24) to calculate the variances of these
parameters, each of the above expressions must be linearized
by the Taylor series ’ expansion about the true (input) track
parameters. The resultant linearization gives the coefficients
{b1} in (24).

The computer code , developed to carry out the required

calculations of the covariance matrix in (48) and other para-
meters (e.g., Equations 48 through 54), is discussed in the
Appendix .

Some of the features of the present formulation include :

(1) We have implemented (46), which assumes

diagonal C. The track parameters , rco ,
b , v , and to, are specified as input

parameters.

(2) The time points t . are selected by first

choosing a maximum ship—to—zeroth—sensor

range which is feasible under physical

conditions . Using the input value of

b , and V , the total track length
of interest is determined , which is

then divided by V
~
Tinc~ 

where Tj~~ 
is

the selected time increment between the

observations. The time points with

respect to to are then calculated .

(3) On the first run of a new set of track

parameters , a f i le  is created which
stores the t ime steps and partial

3—7 
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derivatives (evaluated at those time
steps). The covariance matrix Q is
evaluated for all the time steps.

(4) Upon subsequent runs , the user can
call the file , just described , and
specify, upon input , which time steps
are to be used in the calculation . -

‘

Thus , the procedure in (2) is not a
limitation but simply a convenience.
That is, the user can look at any
subset of times (to approximate a
physical condition) for evaluating

the appropriate covariance matrix

on the track parameter estimator.

It is noted that with 2 sensors a
minimum of 2 time steps is required

for a well posed solution (there are

4 4 track parameters).

3—8
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SECTION 4

CASES AND PARTIAL RESULTS

Cases

The track parameters examined so far are summarized in
Table 4—1. Figure 3—1 identifies the geometrical parameters.
This limited set of cases does not represent a complete vari-
ation of track parameters. In the first look , we wanted only
some representative cases. Note , however , two structured
sets:

( i )  Cases 4 , 10 , 11, 9 represent a cross—

array track for which the surface CPA
• varies from 1 to 4 n.mi . All other

track parameters are equal .

(ii) Cases 5, 8, 6, 7, 4 represent a set
C for which the CPA is constant at

1 n.mi., but the track angle with
respect to the array line varies.

One primary interest in these initial data was to deter—
mine how the variances of the estimator , for a given case ,
change with respect to the number of time steps and the par-
ticular time steps. Cases 1, 4, and 8 were so analyzed .

All calculated quantities have used a measurement variance
of l0~~ sec2, consistent with an error of .01 sec corresponding
to a measurement bandwidth of 100 Hz.

4
.
’
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Some Results

The results of the cross track set wi th  varying CPA item
(i), are summarized in Table 4—2(a). Results of item (ii) are
summarized in Table 4 — 2 ( b ) .  Note , for  case 5 , where the ship
traverses parallel to the array , the standard deviation on the
CPA estimator is larger than the known CPA. The indicated
dramatic reduction in standard deviation with increasing angle
suggests that a significan t reduction in track error can be
obtained by including some measurements with ship near array

“endf ire. ”

This feature is supported by a study of Case 8. Here ,
several sets of time steps were chosen and the standard

- 4 - deviation of the CPA estimate was plotted versus the number of

samples in a set . Figure 4-1 summarizes the results. The

crosses correspond to sets where the points near end—fire are

eliminated . The dots represent sets which extend the same range

(which crosses end—fire) but with fewer number of time steps in

that range. Based on an assumed law

the crosses have ci~ = 1.69 and the dots ~~ = .50. Figure 4—1
may be interpreted in the following way : Start at the top of

the solid line where the number of samples is high , giving a
low standard deviation . If one decreases the sample size ,
moving downward along the solid line , by removing samples in
a way which preserves those samples at or near endfire , the
solid line is traversed. If , however , the sample removal
systematically eliminates the steps at endfire , the transition
to the dashed line occurs. Thus, for a given standard devia-
tion on the CPA estimate , say .5 N.mi . , sets of points which

discriminate against endf i re  or crossarray t ime steps require
larger numbers of time steps than those sets that do not

discriminate .
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Figure 4—2 illustrates a property which may exist for

most tracks and data sets which include sufficiently large
numbers of observations for the ship on both sides of the

array line . On this figure , data points were removed while

keeping the track end points fixed. The relationship between
the CPA standard deviation and the sample size

x

appears to have a. .5, which is expected from standard sta-
tistical theory for uncorrelated samples. However , for small
sample sizes (say, under 10), the standard deviation appears
to be strongly dependent on the particulars (i.e., ship loca—
tion of the sample , sample interval , and specific case param—
eters) of the sample set. -
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SECTION 5

ISSUES ON EXTENDING THE PROGRAM CAPABILITY

The present computer code represents a capability to
study the effect  of observational errors on track estimator
errors. The estimate of the track parameters (CPA , time of
CPA , ship velocity, and the array-track angle) is not con-
structed from the time delay measurements. In the following
discussion , we outline some issues in implementing such a
capability, especially as an extension of the present code
configuration . In Section 2, an iterative methodology was
outlined (discussion near Equation (31) ff), which can be
adapted for the purpose of track parameter estimation . Be-

— 
- sides the implementation of this methodology in code , there

are two other factors which must be addressed . These are
data preparation and convergence criteria selection .

Data Preparation

Data may be supplied in a “raw” form . Not knowing the
exact form of much data at this point , we assume that a
processor can be constructed to supply a set of time delay
observat ions between each of M phones and a reference on
zeroth phone at each of N times. The times need not be

equally spaced.

Some processing of these time delays may be desired

to calculate the covariance matrix C of these observations .

If such calculations turn out to be infeasible , C may be

estimated from bandwidth considerations. If a non-diagonal
C is calculated or assumed , the present code must be modified

(easily) to accommodate the calculation of equation (20)

rather than the present use of Equation (22) with ak = constant .

The data processor is a iterative scheme requiring a
first guess for the track parameters . An adequate first

5—1 
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4.

guess may be constructed by examination of the display from
4. one be am when the ship crosses endfire and the beam center-

line. The times of these events plus range estimates from

broadband correlation will uniquely determine an initial set

of track parameters. For ships not crossing endfire .in
4. 

direct—path range, two beam—center crossings are required.

This technique has not yet been applied, and its convergence
criteria remain to be determined.

t Iteration and Convergence

The iteration scheme is described earlier (cf. equations

(31), ff.). The required calculations in equation (31) are

z presently carried out in TRACK and subroutine COM ’ . These
codes contain I/O functions which should be omitted when the

iteration is carried out. The iterative step (32) involving

the construction of the next guess to the track par ameters
Z may be easily implemented. The issue is, however, how to

condense the essential calculations in TRACK and COM to
efficiently cycle through the successive guesses. The present

code configuration may be modified with sufficient “flags” to
accomplish, this cycling. The resultant add-ons to the present
configuration may be unduly complicated. It is suggested that

the essential calculations of the present code may be incor-

porated into a new structure which is more “tuned” to the
cycling function and the method of deciding convergence .

Convergence may be determined in the following way:

• Let ~1~~~ CPL 
-

X2 ~ Time of ~PA

~ Velocity -

X4~~~ Angle

*These routines are described in Appendix A.
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. Let be the value of X~ after the ~
th

iteration .

• Compose the index

4 (n) 
— x (

~~ 1) l 2
I Xk k

‘n~~~~~_1~ 
Wk (n-l)

k=l

where Wk is an assigned weighting factor .
For example , if CPA accuracy is more im-
portant than that of other track parameters ,
one may choose W4 4, W3 = W2 = W1 = 1.

• Compare I with a predetermined “tolerance”
£ , that is, the first n for which I~ < c turns

z off the iteration .

Modifications to this criterion are possible. One can ,
for example , use only the CPA parameter and check if

x(n1) 11 1 <

~
(n_l)
1

It Is suggested that the required accuracies for the track
parameters be based on the physical problem .

Li
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________—- ——

APPENDIX

AN OUTLINE OF THE PRESENT COMPUTER CODE CAPABILITY

Two separate programs ( TRACK and MIN) with their associated
subroutines and functions , constitute the present computing
capability implemented on a CDC 6600 machine . Table A—l
illustrates the structure of TRACK and its subprograms.
This program is used for a first calculation of a new TRACK
parameter case. Basic results are put on a file and saved
for subsequent use by program MIN and its subprograms .

The following comments apply to calculations carried
out in TRACK :

• Calculations are performed in Hrs-NMi
units until printout stage where some
conversions are performed. Thus , in-
put values of parameters are converted
to these units.

• Immediately , the horizontal CPA variable
name is changed to RT and RCO is used ,
thereafter  for the slant CPA given by

RCO = SQRT(D*D + RT*RT~

• The number of time steps is calculated

from

NTMS 2*SQRT(RMAX *RMAX - RCO*RCO)
V*TINC

where now RCO is the slant CPA and TINC
is in hours.

A-i
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• A data file “TAPE 7” is made containing
pertinent input and the results of the
derivatives evaluated at each time step .
TAPE 7 must be categorized by the appro—
priate Scope demand.

The input parameters for TRACK are indicated in Table
A-2. -

A-2
-C 
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Table A-2. TRACK Input Parameters

( I

Algebraic Computer
Card # Variable Units Symbol Symbol

1 Horizontal CPA N.MI r
~0 

RCO

1 Ship Velocity KNOTS V V

1 Time of CPA HRS. to TO

1 Angle between DEGREES b B
array and track
lines

1 Ocean depth N.MI d D

2 Number of sensors - — NSS
(excluding the -

implied one at
the origin)

3 Locations along FEET y~ 
Y(I)

Y axis of the
sensors

4 Maximum slant N. MI 
~m RMAX

range of interest

4 Time increment MIN ~~~~ TINC
between samples

5 Flag for pr int ing — — IFL
time step infor-
mation (—1 printing

(. is suppressed)

5 Flag (No longer - - JFL
functional -
leave blank )
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The structure of program MIN is outlined in Table A-3.
The following comments apply to the running of MIN:

• Only one of the above options can be
performed during a single execution .

• Tape 7, the data file made by TRACK ,
must be attached . The header infor-

mation on TAPE 7 identifying the case
under consideration is printed so that
handy reference is contained on the
output of MIN runs.

MIN requires input in either of two forms . These two

input options are:

• The user can select the set of time
steps to be used in the covariance
matrix calculations . The user supplies
the number of time steps , JFL , then the
indices of the time steps, NS(l),———NS
( JFL) . The program can cycle through
any number of sets by setting NJFL. A

sample input deck is illustrated in
Table A-4 .

• The user can select a sequence of time

steps by identifying IBEG, the time

L step index of the beginning of the

desired sequence , lEND , the time step

of the end , and INC , the index incre-
ment . This option is activated by set-

ting a flag INTNL ~ 0. The actual

value of INTNL causes program cycling
using multiple IBEG , lEND , INC values.
An illustration is shown in Table A-5.

A-5
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Table A—3. Structure of MIN

MIN

• Read file of stored information on case at hand.

o Read cards for processing parameters.

• If a f lag is set for special time step selection ,
call SORT.

• Call COM , which performed the same functions as
in the TRACK program package , but uses only the
time step information provided to MIN.

• COM calls VAR , which performs as in the TRACK
package , again using only the provided time step
information.

Table A—4. Option 1 for MIN

CARD SAMPLE
NO. FORMAT VARIABLES CONTENTS COMMENTS

215 NJFL , INTNL 3 (Blavk) Three sets of time
steps will be used .
INTNL must be blank
or zero.

2 15 JFL 4 Four time steps are
used in the first
pass.

3 1615 NS(I); 1,14,16,20 Time steps whose
1 l ,...4 indices are 1,14,

16,20 are used in
the calculation .

4 15 JFL 6 Six time steps are
used in the second
pass .

5 1615 NS(I) 1,2,3,4,5,6 Indices of time, steps
1=1,. ..6

6 15 JFL 2 Third pass has
2 time steps.

7 1615 NS(l)NS(L) 1, 40 Time steps 1 and
40 are used .
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Table A-5. Option 2 for MIN

CARD SAMPLE
NO. FORMAT VARIABLES CONTENTS COMMENTS

— 

1 215 NJFL ,INTNL ( BLANK), 3 Any value for NJFL is
ignored . Three
passes will be per—
formed .

2 315 IBEG ,IEND, 1,6,1 All time steps bet—
INC ween indices 1 and

6 (inclusive) are
used . (This is
another way of doing
the second pass in
Option 1 example.)

3 315 IBEG, lEND , 1,6,2 Time steps 1,3,5 are
INC used . Note trun-

cation .

4 315 IBEG ,IEND, 1,18,5 Time steps 1,6,11,
- INC 16 are used .

-
I
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