AD-A052 874 UNIVERSITY OF SOUTHERN C/LIFORNIA LOS ANGELES DEPT O==ETC F/6 9/2
NONLINEAR FILTERING ALGOF.ITHMS “OR PARALLEL AND PIPELINE MACHIN==ETC (U) |
1977 R S BUCY,» K D SENNE AFOSR=76=3100

UNCLASSIFIED AFOSR=TR=78=0649 NL

END
‘) 1 DATE
Al FILMED
Ds287 c
. - B _78
= DX

\\

I b= 2 22

= . . liZ
o 4.

"m 1 £ L

- lieE

L2 Jis s

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

<
e
o
A\
Rlg
—
=T
oo
<<

\

RIERUTIR
APR 19 1978 m

!

CUPLITT:

Parallel Computers — Parallel Mathematics, M. Feilmeier, (ed.)

© International Association for Mathematics and Computers in Simulation, 1977

NONLINEAR FILTERING ALGORITHMS FOR PARALLEL AND PIPELINE MACHINES'

3
RS, Rucy2 and K. D. Senne

SUMMARY

The numerical resolutions of the important prob-
lem of the optimal processing of noisy observa-
tions to obtain optimal estimates of an underly-
ina stochastic process or signal process is con-
sidered. The associated mathematical problem
consists of the solution of a parabolic partial
differential equation driven by the stochastic
observations. The solution of this equation is
the conditional density of signal given the ob-
servations. The purpose of this paper is to
examine the impact of modern parallel and pipe-
1ine machines, such as CDC Star 100, Illiac IV,
Cray 1, and AP120B Array Processor on the solu-
tion time and on the algorithmic program
structure necessary to effectively use the
capabilities of each machine. The mathematical
problem suffers from the "curse of dimensional-
ity": For example, when the signal process has
state dimension two, the partial differential
equation has two spacial dimensions and taxes
the capabilities of third generation serial
machines. This is because our problem involves
hundreds of solutions of the partial differen-
tial equation for different observation
sequences, in order to determine error per-
formance. With the advent of parallel and
pipeline machines, higher state dimensional
oroblems became feasible.

This paper will detail the mathematical state-
ment of our problem and its general nature and
importance in view of its relationship with
partial differential equations. We will review
the special architectural features of the
various machines with emphasis on those which we
can exploit for our problem. Next, we will
describe the software algorithms developed for
each machine and describe how the machine
capabilities and Timitations influenced the
structure of the algorithm for each machine.
The speed of the various machines will then be
compared for our problem. Finally, we will
describe the machine structure which we feel
would be most effective for our problem both in
terms of speed and also compatibility with
natural algorithms for problems of higher

space dimension.

1. INTRODUCTION

We will be interested in solving the followina
partial differential equation;

dp = Apdt + (h-K)'R-'(dz-h dt)p (1.0)
with p: RMR*RY, h: R™SRS and 2 a stochastic

DDC
il

APR 19 1978

OGUU
B

process takina values in RS. The function h is
the intearal of h with respect to the condi-
tional probability density p. In general, A can
be any second order parabolic operator. Physical-
1y, A is the adioint of the infinitesimal
generator of the Markov diffusion vector process
which represents the signal process, x. The ob-
servation process z is aiven by dz = h(x)dt + dv
with v white noise with spectral matrix R, while
p is conditional probability density of the
signal at time t given the observations before
time t. Details and background on how (1.0)
arises can be found in [1]. In particular,
(1.0) must be interpreted via the Stochastic
Integral of Ito ([2].

For numerical purposes it is convenient to con-
sider a discrete version of the problem, where
we replace the continuous observations by a dis-
crete sequence sampled from the continuous pro-
cess at a rate high enough to insure that the
discrete problem is close to the continuous one.
In this case (1.0) becomes

Pn+l) =
Fat1 =

|

S*F(n) (1.1)
V¥ns1 Ppe1+Pns (1.2)

The first equation, the convolution of S with
Fn» is the density of the measure of signal pro-
cess A seconds later if signal process had
measure density F, at time zero with 4 being

the samplina rate. So P,y is the solution of
(1.0) at time A if at time zero p = F, and R is
infinite. Now (1.2) is approximately the
solution of (1.2) at time (n+1)a if at time na

D =Ppyp and A = 0. In terms of the discrete
problem, P,{Fn} represent the condition density
of xp aiven zn_* «eo 2olzZp, z"_]. coscs Zgks
respectively. 0f course, K,4+] 1s chosen so that
Fn+]1 has total mass one. We note that the rela-
tionship of (1.0) to (1.1) and (1.2) is
analogous to the Troller formula giving the semi-
group with infinitesimal aenerator A+B in terms
long products of alternate applications of the
semi-aroup of A and that of B, i.e., formally,

exo([A+BIn) = exp(A)exp(B)...n times...exp(A)
exp(B).

The representation (1.1) and (1.2) in fact has a
desirable property not shared by direct differ-
encing techniques apolied to (1.0), namely
solutions from non-neqative initial conditions
are non-negative. This property is of paramount
importance for our problem as we seek a
probability density solution of (1.0).
For the timina studies reported in this paper, a
particular model was chosen;

IThis research was supported at the University of Southern California in part by the United
States Air Force, Air Force Systems Command, under Grant AFOSR-76-3100 and Contract FE SO &
» and at the M.I1.T. Lincoln Laboratory under Air Force Contract F19628-76-C-0002. ¥
2Un1vers1i} of Southern California, Los Angeles, falifornia :
M.I1.T. Lincoln Laboratory, Lexington, Massachusetts.

93

Approved for public release;
Distribution Unlimited '

’ PPN

o R -

R RN I oy

94 R.S. BUCY AND K.D. SENNE

X1 cos x L)
a(>,h(x)=<]),R=<] >
X2 sin x; o)

2 2
A=q/23 /Jax, +x 3fax .
2 2 1

Further details concerning this problem can be
found in [3]and [4]. We chose to examine the
performance of the digital computers considered
here in the context of this problem because of
the wide experience we have had with this prob-
Tem on a wide variety of machines. Further,
because we used a machine independent (i.e.,
word-length independent) random number aenerator,
see [5], we could directly compare comouted
numerical values on every machine. This was
extremely useful for software development
purnoses. This random number aenerator produces
statistically more reliable random numbers than
those aenerators available as part of supplied
scientific subroutine packages.

2. MACHINE ARCHITECTIRF

The most common approach to speedina up the
computations in serial machines involves the use
of pipelines, or multistaae processina. Pipe-
linina involves the use of seamented functional
units, with registers between seaments, so that
many identical functions can be overlapped in
time at the maximum clocking rate, which is
determined by the speed of the loaic. Pioe-
Tinina beadan to appear in many third aeneration
machine architectures in the instruction
fetch-decode-execute cycles. Recently, the
pipelinina concept has been extended to include
arithmetic functions. The number of staaes in
an arithmetic pineline is determined bv the
basic speed of the arithmetic function unit in
relation to the memory minor-cycle time (the
interval between successive fetches to memory).
The combination of memory pagina and nipelined
arithmetic units has come to be known as a
"vector processor." This terminoloay reflects
the fact that ootimal machine efficiency is ob-
tained by streaming lona vectors of operands
through a single seamented arithmetic unit. The
first imolementation of this conceot on a larae
scale was introduced in the £NC Star.

Although pipelining permits speed-up of serial
onerations to a maximum by the use of partial
overlap, the results are not truly available in
parallel. The array processor, on the other
hand, contains a large number of identical
functional units which may be actuated in a
Tock-step fashion to produce computations in
parallel from different sets of data. Arrays
may involve primative functional units, such as
in array multinliers, or complete processing
elements, such as employed in the I1liac-IV.

A, Parallel and Array Processors

Nf the machines we consider, the I11iac-IV and
Array Processor AP-120B are examples of dif-
ferina parallel philosophy. The I11iac consists

of 64 processina elements (P.F.'s) which act
synchronously; each P.F. is in fact a C.P.U.

with 2K words of memory. Each P.E. is theoret-

ically capable of arithmetic speeds similar to a
CNC-6600. llsina I1liac at full capacity in-

volves makina every P.F. do something useful all

the time. 1In full overlap mode, only recently

achieved, see [3], I1liac can be doina memory

fetches, for examnle, while the P.E.'s are

operatina. I1liac has a disk memory of 24 mil-

lion 64-bit words, which must be exchanged with

local memory that is limited to 2K words for (]
each P.F. ’

The AP-120B Array Processor has an entirely dif-
ferent design philosophy. It is also a synchro-
nous machine but the elements that operate in
parallel have distinct functions: they are
table memory, TM, data memory, MD, data pad x,
nPX, data pad Y, NPY, S pad, SP, floating point
adder, FA, floatina point multiply, FM, and data
bus, NB. The multinlier is a 3-place pipeline,
the adder is a 2-place pipeline, while the
memories are 3-nlace nipeline and 2-place pipe-
line for the data and table memory, respectively.
The machine is synchronous with a 167-nanosecond
cycle time. Data memory reads and writes can
only be called every other cycle and reads and
writes are finished in 3 cvcles, while table
memory reads and writes are accomplished in 2
cycles. The X and Y data pads are each 32 words
and in one cycle reads from the last position of
various pipes and writes to the other elements
can be accomplished. Programs in the assembly
lanquage of the box, in order to be efficient,
should attempt to keeo all the elements
operatina on each cycle. The S pad does integer
arithmetic to set memory read and write ad-
dresses, to do index computations, and to set
memory pointers for DPX, DPY, SP and MD. The SP
consists of 16 reaisters. Data words are 32-bit
words. Effectively the box is capable of 12
million floatina point operations per second.
The major deficiency of the box is the date
memory access time, which often tends to be the
limiting factor in loop speed. Software devel-
opment is time-consuming, although there are
programs for the AP-120. The AP-120B is inter-
faced to a mini-comouter and, because of the
speed differential between the box and the host
mini (30-40 times faster in the case of the PDP-
11-55, for examnle), if soeed is the object,
very Tittle computation can be done in the host.
Reference [7] contains more details.

B. Vector Machines

The CNC Star-100 and the Cray 1 are examples of

vector processors with 64-bit words. In the t
case of the Star-100 speed is obtained by

streamina. A vector is located in consecutive

memory locations and memory pulls put the con-

secutive memory locations into a pipeline in o
sequential order. For example, in add V1 to V2

the outputs of the two memory pipelines are in-

serted into the add pioeline. Note, the add pipe

and the memory pipes operate concurrently with

the write pipe part of the time, so that memory

fetches and writes are not costly. The execution

NONLINEAR FILTERING ALGORITHMS FOR PARALLEL AND PIPELINE MACHINES 95

time for finding the vector sum is 100 + n/2
minor cycles where n is the vector dimension and
the minor cycle time is 40 nanoseconds. The 100
cycles is set up time. Immediately two limita-
tions are apparent to achieve maximum speed; n
must be large compared to 100; and secondly, the
components of the vector must be located in con-
secutive memory locations. The requirement of
obtaining vector operands from sequential

memory locations generates a significant data
selection and reorganization problem. DNata re-
oraanization alone accounted for 86 percent of
all identifiable cverhead, which in turn repre-
sented 36 percent of the running time for our
problem, Although a FORTRAN-based lanquage is
available for the Star, some of the more powerful
instructions for merging and compressing vectors
were only available by utilizing special in-line
subroutine-1ike 1inkages to the assembly
lanquage.

The fray 1 has a faster minor cycle time (12.5
nanoseconds) and the memory pipeline is con-
nected to 64-word vector registers, which are in
turn connected to the add pipeline, which out-
puts to another vector register. If the vector
lenath is more than 64, its elements are pro-
cessed by reading blocks of 64 into the eiaht
vector registers. This architecture is re-
sponsible for a nominal set-up time much lower
than that of the Star; so that the long vector
requirement is ameliorated for the Cray 1.
Speed is obtained by overlapping the memory to
vector reqister, reads, writes, functional unit
oneration pipelines, as well as by synchronous
operation of different function units when they
have different input streams.

3. ALGORITHMS FOR PARALLEL NONLINEAR FILTERS

The algorithms for all the machines can be
viewed in simple parts. Let us consider ex-
plicit forms of (1.1) and (1.2) as

N
p(n*!xis ¥3) ’kz1s(yj'yk)F("'[xi'Ayk]*yk) (3.1)

where x; 1=l ...M are subdivisions of(-m,r)
y; j=1N are subdivisions of(-/a,n/A) and
where F(n,;xq-Ayk]. Yi) = aF (nyxy,yg)+(1-a)
F(n,x_»,yx) and a is the interpolation constant,
x {xy} is_the nearest arid point to [x;j-ayy]

(xj-ayk) mod 27-m below {above}. The equa-
tion (1.*) takes the form (3.1) for the two
dimensional phase demoduiation problem, where
the densities have been approximated by point
masses of heiaht P(n+1, xj,y;) at point (xj,yj).
Numerical solving (3.1) consists of three majgr
parts;

Rearrangement: F(n,x1,yJ)+F(n,xL.yj) (3.2)

Interpolation: F(n,xL,yk)aF(n,[x1-Aykl,yk))
*3

Convolutation: F(n,[x1-Ayk].yk)*P(n+1,x1.y5)
4

Then, in order to complete cne iteration, the'
exnlicit form of (1.2), namely

F(n+1,%4,v§)= 9&%%%{§1l P(n+1,x4,v5) (3.5)

must be solved. This oneration leads to two other

narts:
Nata !'pdate:

P(n+1,%7,v§)>0(n+1,x7) - P(n+1,x4,v;) (3.6)
Mormalization: 2

D(n+1,x7) «P(n+1,x§,v3)>F(n+1,x4,xj) (3.7)

Fxplicit exnressions for S and D can be found in
[4], but they are not particularly useful here
excent for the fact they are periodic of period
2n/A and 27 respectively, and F and P are also
periodic in their first and second arguments of
periods 27 and 2v/4 resnectively. It is conveni-
ent to represent the matrix ai by a vector of
(M+1)N components such that:
V(i+(M+1)(1-1)) =335 1 <M (3.8)

= a1.~i i=M+]
If ajj = F(n,xj,xj), then there is a permutation
matrix P, so that

S=Py (3.9)
and S corresnonds to F(n,xL,xé) via (3.8), while
the shift of S, k where k(i)=S(i+1), corresponds
to F(n,xy,xj). Mow (3.9) accomplishes the rear-
rangement task. Interpolation can be accom-
plished by Star vector multinly, wherein the
component of the product is the product of the
components, i.e.,

I = S+W*(k-S) (3.10)
with W a vector of weights.
To prepare for the convolution the interpolated
vector 1 reduced by removal of every M+ist ele-
ment is periodically expanded as

E(i+M(3-1)) = I1(i+((j-14N/2) mod N)*M)

for i=1M, i=12N, N even, and Il being
the after surgery vector of every M+1st element
or the last element each row in the matrix re-
presentation removed of i. This expansion
eliminates the need for modular arithmetic in
the evaluation of (3.1) when S is symmetric and
has support contained within N arid points in y.

r Star the convoluation can be accomplished by
the followina sum: ‘e

S(O)IT + S(1)(I1(=1)+I1(+1))+
+S(N/2)(11(N/2) + 11(-N/2)) (3.11)

S(i) = S(yj) and I1(k) being a subvector of E of
dimension NM consisting of contiguous elements,
the first element being 1#M(N/2+k)st element of
E. Note that every element of I1 is called fram
memory N+1 times in forming (3.11). This method
is not time consuming on Star because of the
effective overlap in time of fetches from con-
secutive memory locations with the computation.

For both the I11iac and the AP-120B the convolu-
tion is performed by noting that for each fixed
i, after F(n,+) is rearranged,(3.1) represents
a one-dimensional convolution in k. So M one-

dimensional convolutions are performed. Further, .
each element of the interpolated vector I1 is
called from memory only once and each of §(i) @ Section

i=1 ...N/2 is multiolied by it and each is Section [
accumulated to produce the convolution. This o

method of convolution was the basis for develop-
ment of the I1liac-IV algorithm. In that case
the N=128 elements of each row of F(n,:) is

A A

BY SSLES S
DISTRBUTION YNLABLTY S|
Dist. AVAIL._andcrSPECIAL

wwm A :‘? P "—,W *f«."f’}ﬁ

96 R.S. BUCY AND K.D. SENNE

cyclically canvolvedwith S(+) to produce a row
of P(n+1,x,-). An adaptation of the same method
for the AP-120B was suggested to us by Randy Cole
of the U.S.C. Information Science Institute; the
software for the AP-120B was developed by Jack
Mallinkrodt of Communications Research.

One should note that our Star program represents
the matrix as a vector of constructed columns.
If one wished to do a convolution as above for
Star, one would have to either read nonconsecu-
tive memory locations or rearrange the interpo-
lated vector to represent concatenated rows. In
the former case, the memory pipeline would be
inefficient because of the calls to non-contiqu-
ous memory locations and in the latter case the
vector rearrangement would produce an equivalent
time penalty. This situation reveals an example
of the major architectural drawback of Star,
namely, algorithms which use both column and row
operation are not effective for Star. Note that
(3.6) is also a row-oriented operation and as
such will be accomplished differently on Star
than on the other machines.

On the Star, (3.5) is accomplished by construct-
ina a vector corresponding to D(n+1,:) with the
first through Mth components the value of D and
continued periodically, i.e.

d(i+M(j-1)) = D(n+i,x4) (3.12)

i=1....M j=1N. Now (3.6) is accom-
plished by a vector multiply of d by the vector
resulting from (3.11). Normalization is accom-
nlished by dividing the vector corresponding to
(3.6) into two vectors of the same dimension and
performing a vector add and repeating this is
the number K(n+1). This process is effective if
NM=2L; if this is not the case and a vector of
odd dimension arises at any stage of the process,
a zero is adjoined increasing the dimension by 1
and the process is continued.

In the case of the Cray each of the row vectors
which make up P(n,+) are multiplied by the scalsr
N(n+1,xj) for the appropriate i. The AP-120B
does the appropriate scalar version.

Because of the structure of I11iac with 64 in-
dependent P.E.'s, N=128 and M=32 were the arid
sizes chosen for all problems in order not to
penalize I11iac. The convolution and other row
oriented operations were performed in two parts
with a1l P.E.'s enabled. The rearrangement and
interpol: on were also used for the I11iac
software.

4, EXPERIMENTAL RESULTS

A. Lanquage Optimization

The code for the Star-100 was initially devel-
oped in Star FORTRAN, then each major piece of
the program was timed with hardware timers and
those pieces of code which were major contrib-
utors to the overall time were examined in
assembly lanquage. In particular, the rearrange-
ment was originally accomplished with an indexed
vector transfer instruction (vx to v), which had
two vector arguments, the first, 2, correspond-
ing to F(n,xj), Yj» and the second a vector of

integers JNS. The value of vx to v was the vector
corresponding to F(n,x; ,y;),i.e., (i) was ob-
tained from F indexed kv JINS(i). This instruction
was found to be quite slow and an assembly
lanquage modification employing a more powerful
version of vx to v, an indexed block transfer
(of lenath M, for exampnle), was used. Similarly,
a vector sum instruction (sum), which has domain
a vector and ranage the sum of its components,

was replaced by 2ode accomplishing normalization.
Vector descrintors were also employed in the pro-
gram. These optimization effoypts produced code
which executed 16.6 meaaflops or in other words,
about 36 percent of the time was devoted to
overhead operations rearranging, expanding, etc.
In particular, Star ran five times faster than
the 7600 on this problem, using the serial ver-
sion of the Star software with the OPT=2 FTN
level 410 compiler. Furtner, the performance of
Star was exactly predictable from individual
instruction time.

The I1liac-IV was coded in GLYPNIR and assembly
listings were used to speed uo the program. Our
program, runnina in full overlap mode, where the
array control unit (CU) can be operated simul-
taneously with arithmetic P.E. operations,
achieved 9 meqaflops. However, the Illiac is
currently operating with a 80-nanosecond minor
cycle time, rather than the design goal of 50
nanoseconds. Further, the actual time perform-
ance of our software suffers from inefficient
language optimization, resulting from using the
GLYPNIR lanauage. It is expected that use of
some assembly lanquage in-line code or a higher-
order language more sophisticated than GLYPNIR
would produce slightly better running time. We
will report more on this subject at a later date.

The AP-120B Array Processor was programmed in
assembly language and the code seems perhaps
within 10 percent of best possible code. Since
the machine is synchronous, the code can be run
on a digital simulator and theoretically timed
with the result that it operated at 3.58 mega-
flops and executed arithmetic operations about
30% of the time. In the near future, we will
have hardware benchmarks available. So far, we
are attemptina to benchmark the Cray 1 in the
following way: First, a very fast serial FORTRAN
program, developed on the basis of the Star code,
will be used with the Cray 1 compiler to produce
code. We have been assured that the Cray compiler
will vectorize scalar code. Secondly, another
FORTRAN program, which does the row-oriented
convolution, will be tested. Finally, an
assembly lanquage version of our program will be
prepared for the Cray 1. We hope to report on
some of these timing studies at the meeting,
potentially, the Cray could be 3 - 10 times
faster than Star. On the solution of a linear
system of eauations the Cray 1 achieved 140
megaflops--see [10] and see Table 1 for direct
machine comparisons. Finally, a 3-dimensional,
combined amplitude-phase demodulator has been
run on Star, with density represented by a 25K
dimensional vector (see [3)).

“Meaaf1ops = millions of floatina point operations per second.

1o

B o i

T —— T ——
AR R et SRS Y

NONLINEAR FILTERING ALGORITHMS FOR PARALLEL AND PIPELINE MACHINES 97

Ve hope to run the Cray 1 on the same problem
and to compare running time.

5. REFERENCES

[1] R. S. Bucy, P. D. Joseph, "Filtering for
stochastic processes with applications to
quidance," Interscience, New York, 1968.

[2] K. Ito, "On stochastic differential
equations," Memoirs Amer. Math. Soc., 4,
1951.

[3]1 R. S. Bucy, K. D. Senne, H. Youssef,
"Parallel, pipeline and serial realization
of optimal demodulators," Stochastic
Control, Roxin and Sternberg, Editors,
Marcel Delcker, New York, 1977.

[4] R. S. Bucy, C. Hecht, K. D. Senne, "An
engineer's guide to building nonlinear
filters," F. J. Seiler Lab. Report
#SRL-TR-720004, United States Air Force
Academy, Colorado Springs, Colorado, July

[5] K. D. Senne, "A machine independent random
number generator," Stochastics, 1, 3, 3-23,
1973

[6] System guide for the I1liac IV user.
Institute for Advanced Computation, Ames
Research Center, Moffett Field, Calif.
94035.

[7] AP-120B, Processor Handbook: Software
development packages; floating point
7259-02, B g

systems. -02, Beaverton, Oregon.

[8] Cray-] computer reference manual 220004.
Cray Research, Inc., Bloomington, Min.
1976.

[9] Star reference manual. NASA Langley Research
enter, Hampton, Va.

(101 D. A. Calahan, W. N. Joy, D. A. Orbits,
"Preliminary report on results of matrix
benchmarks on vector processors," Report
#94, System Engineering Laboratory,
University of Michigan, May 1976.

[11] R. S. Bucy, C. Hecht, K. D. Senne, "New
methods--nonlinear filtering," Revue Franc.

d'Automntigue de Rechearche Operacionale,
-1, Feb.73, 3-54.

TABLE 1

PERFORMANCE OF VECTOR PROCESSORS ON
THE PHASE MODULATION PROBLEM

Meqa- Meqa- Meoa- Time
floos/ floos/ flobs per
Nollar Machine Theor. Actual Iteration

- 1111acs 64 9 9 millisec.
3-5 Cray 1 80 - -

2-4 Star-100 50
16-32 AP-120R 12

- 6600 2 .630 130 msec.

16.6 4.9 msec.
3.57 22.7 msec.

t‘» e J—

- »’!W!UD‘Q sy

Yool muum OF THIS PAGE (When Datn Futered)

READ INSTRUCTIONS

OCUMENTATION PAGE BEFORE COMPLETING FORM
BE 7 GOVT ACCLSSION L0 3. RECIPIENT'S CATALOG NUMBER
W7s-geao| —T
mE . 5.//NPE OF REPORT & PERIOD COVERED
lp NLINEAR LTERING %GORITHMS FOR q
TARALLEL ATD PIPELINEMACHINES & O Interim e Blis
= = o Vi 6. PE g

y i S./i;uc)(- K. D.lSenne E 8’ AF&SHG-&}?’} (:)
o T\

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM EL w ROJ ASK

AREA & WORK!
University of Southern California /
Department of Aerospace Engineering
_Los Angeles, CA 90007

1. CONTROLLING OFFICE NAME AND ADDRESS

Air Force Office of Scientific Rsch/NM
Bolling AFB, DC 20332

14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) 15. SECURITY CLASY (of thi} repor

61102F

UNCLASSIFIED

15a. DECL ASSIFICATION/DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

PROCEEDINGS OF THE IMACS(AICA)-G1, SYMPOSIUM, March 14-16, 1977
Technical University of Munich, PARALLEL COMPUTERS-PARALLEL MATHEMATICS,
M. Feilmier Editor, pp 93-97.

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)
nonlinear filtering Star 100
phase demodulation
megaflops

software structure
AP120B
20. BSTRACT (Contlnue on reverse side 1f necessary and identily by block number)

Results are given for the timing of various supercomputers for the problem
of phase demodulation. The effect of computer architecture on software development

is detailed.

402019 alb

¢ DD , 5™, 1473 E0ITION OF 1 NOV 65 1S OBSOLETE

JAN 73
LINCLAS
SECURITY CLASSIFICATION OF Tnglé Ei‘&%ﬁ.m Data Entered)

T - —
TR -~ . \'%W’ T i P R e . v

e e

