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.~----:likely values of such negative intercorrelations, the effects of using
kncorrect'weights in multiattribute decision making on the correlation
between true and estimated evaluations and on the expected utility loss
due to use of incorrect weights are evaluated. Implications of the
theoretical results are discussed in relation to the precision with
which multiattribute methods must assess the weights. Suggestions are
included for how to use the theorems in this paper for determining the
required accuracy of weight estimation for any gived applied problem.
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Equal versus Differential Weighting for Multiattribute
Decisions: There are 'No Free Lunches

The task of evaluating several alternatives each varying on a number

of attributes or dimensions is a problem confronting anyone who makes

decisions. Such tasks are often referred to as multiattribute, multi-

dimensional or multiple-cue decision problems. Examples include

diagnoses by clinical psychologists, fund allocations by public officials,

and transportation mode choices by commuters. Economists, management

scientists, decision theorists, and psychologists have developed many

different techniques to aid decision makers faced with multiattribute

decision problems.

Although a wide diversity of techniques have been recommended for

resolving multiattribute decision problems, most are ultimately based

on a weighted linear model. The essential steps of this general technique

are (a) identifying the relevant attributes for evaluating the alternatives,

(b) locating each alternative on each attribute dimension, (c) scaling

the value or utility of those attribute locations, obtaining importance

weights for each attribute, and aggregating the importance weights and

attribute values into an overall evaluation of each alternative. The

decision is then easy: the alternative with the highest aggregate value

is selected.

The primary procedural difference among the various multiattribute

decision aids based on weighted linear models is in how the attribute

importance weights are determined. Thus, the question of which multi-

attribute decision aid to employ becomes a question of which procedure

produces the "best" attribute weights.

I .-
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A number of theoretical and empirical studies (Dawes & Corrigan,

1974; Einhorn & Hogarth, 1975; Schmidt, 1971; Wainer, 1976; and Wilks,

1938) have demonstrated that the problem of determining optimal

weights is in many instances moot because all possible sets of weights

must produce essentially the same results. Because, in Wainer's (1976)

words, "it don't make no nevermind" what weights are used, many authors

suggest using the simplest possible procedure: don't estimate weights,•

just give equal weight to each attribute.

While the conditions of the "equal weighting" theorems are quite

general, the argument that equal (or even arbitrary) weights can be

substituted without loss for optimal weights was developed within the

context of multiple regression analysis rather than multiattribute

decision making. Newman (Note 1) has shown that for at least some

multiattribute decision problems the specific weights used have a

substantial effect on the resulting evaluations. The present paper

includes (a) a demonstration that the major premise of the equal weights

argument is inappropriate for virtually all multiattribute decision

problems, (b) an investigation of the correlation between evaluations

based on optimal weights and those based on any other specified weights

(including equal weights), (c) an examination of the loss in utility or

value resulting from use of nonoptimal weights, and (d) a discussion of

the importance of accurate estimation of optimal weights under various

conditions.

Before the issue of the appropriateness of the equal weights argument

for multiattribute decisions is addressed, the argument itself is reviewed

briefly.
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The Case for Equal Weighting

In this section are presented the theoretical results underlying

the equal weights argument, its history, and its major limiting condition.

The notation to be used throughout the paper is presented first.

The multiattribute utility of an alternative i is given by

n
Yi= wjxi. (1)j=l

where xij is the utility of alternative i on attribute j, wj is the weight

accorded attribute _ in the overall evaluation, and yi is the aggregated

utility. When Equation 1 is actually used to compare alternatives in a

multiattribute decision problem, estimates of the attribute weights w. will

not in general exactly equal the true weights. Thus in practice estimated

weights wj are used to give yi, the estimated aggregate utility: 1

Yi = E wjxij. (2)

In two-attribute problems (more general problems are considered in a later

section) if we require the weights to sum to one (without loss of generality),

the true weights can be represented by w and 1 - w and the estimated we~ights

by w and 1 - w. The question of interest, then, is: what is the correlation

between y (using w) and y (using w)? The answer depends on the inter-

attribute correlation (i.e., the correlation between xi, and xi 2 across the

alternatives) and is given by the following theorem. (Proofs of the mathe-

matical results are outlined in the appendix.)

1$•
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Theorem 1 If xil and xi2 are standardized so that their variances

are equal, if pxl2 is their correlation, if y and y are as defined in

Equations 1 and 2, and if p represents their correlation, then

I + (2ww-w-w)(l-P x2)
"" 12 (3)

YY {[1_2(1_p xlx2 )W!0-w)][l 2(lPxlx2 )W(l-w)]}I2

The equal weights argument--that equal weights can be substituted for the true

weights without much loss in correlation--is easily derived from Equation 3
A A

by using w = .5. Let ye be the estimate of the aggregate utility using

equal weights. The correlation between y and ye is given by the following

corollary to Theorem 1.

Corollary 1.1. Given the conditions of Theorem 1 and if w = .5, then

^ 1/2

Ye = -2(l-pxY2)w l-w

Insert Figure 1 about here

A

Figure 1 shows Pyye as a function of the true weight w for selected

values of . It is clear from Figure 1 that p Y' is always relativelp
1 2* YYe

high (greater ihan vC• = .71) as long as pxx is not negative. Even when

PX.1 2 is zero, the true-weights must be very extreme (near 0 and 1) before
AYe is substantialiy reduced. For example, when Px equals zero and

one of the trve veights is three times larger than the other, using equal
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weights still produces a correlation between y and ye of 0.89; for a five

to one ratio of true weights, the equal weights correlation is 0.83.

Further, the equal weights correlation is substantial (> .60) even when

there is a large negative (< -. 75) correlation between the two attributes.

To summarize the equal weighting argument, if the correlation between

the attributes is nonnegative then the correlation between the true evalua-

tions of the alternatives and the estimated evaluations using equal

weights is at least .71. Further, this correlation is substantially higher

whenever the true weights are in the neighborhood of equal weights and/or

whenever the correlation between the attributes is large (and positive).

The equal weighting argument has a long history. Wilks (1938) proved

in the context of mental testing that given a set of reasonably general

conditions and a large number of intercorrelated var'iables, any linear

combination (i.e., arbitrary weights) has essentially the same value as

any other. Gulliksen (1950), also within a testing framework, provided a

more general formulation yielding the same ccnclusion. Einhorn and Hegarth

(1975) used a result due to Ghiselli (1964) to derive a lower bound for

PAe For two attributes, the Einhorn and Hogarth lower bound is easily

derived from Equation 3 (Corollary 1.1) by using w = 1 or 0. Because this

lower bound is surprisingly high for positive intercorrelations, Einhorn

and Hogarth suggest that for most regression problems--whenever scoring

of independent variables can be reversed so that all correlations with the

dependent variable are positive--it is not worth the computational time

or the loss of degrees of freedom in a statistical analysis to estimate

regression weights. Green (1977) and Wainer (1976) give a result equivalent

to Theorem 1, the only difference being that they constrain the weights by
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standardizing y and y to have unit variance rather than by requiring the

weights to sum to one. Wainer further shows that if the actual weights are

uniformly distributed over the interval [.25, .75] then the expected loss

in proportion of variance accounted for due to using equal weights in a

two-attribute problem is at most 2.1%.

The implication for multiattribute decision procedures from these

studies is clear. If the attributes are positively intercorrelated a

multiattribute model with equal weights will have a very high correlation

with a model based on the decision maker's actual weights no matter what

they might be. Thus if it is possible to formulate the decision problem

so that the attributes are positively intercorrelated, there is no need

to estimate weights. Only if the correlations are negative (and even

then in the two attribute case the correlation must be rather close to

-I) is it necessary to use estimated weights instead of equal weights.

Therefore, the important question becomes: Is it possible to formulate

a typical multiattribute decision problem so that there are no (large)

negative intercorrelations, or at least so that the average intercorrelation

is positive? This question is the topic of the next section.

Are Attribute Intercorrelations Positive in Multivariate Decision Problems?

In some decision problems the attributes do seem to be positively

correlated. For example, Dawes (1971) and many others have applied linear

models to the problem of selecting graduate students on the basis of scores

on the Graduate Record Exam (GRE) and undergraduate grade point average (GPA).

Because both GRE scores and GPA measure academic achievement and ability,

they tend to be highly correlated. As a consequence of Theorem 1, any two
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linear functions utilizing GRE scores and GPA will produce highly correlated

results (see Dawes & Corrigan, 1974, and Goldberg, 1977, for demonstrations

of this fact using actual admissions data).

However, such positive correlations among attributes are not characteristic

of typical multiattribute decision problems, and even in the case of the

graduate student selection problem discussed above the positive correlation

is only apparent and not reflective of the true decision problem. The

remainder of this section argues that attribute intercorrelations in

multiattribute decision problems are inherently negative and hence the

case for equal weights considered in the previous section does not apply.

The essence of a multiattribute decision problem is that the several

attribute dimensions considered are not simultaneously maximized in a

single alternative. In other words, the decision maker must make tradeoffs,

trading an improved standing on one attribute for a diminished standing on

others. Indeed, multiattribute utility analysis is oftEn referred to as

"tradeoff analysis." If it were not for the necessity of tradeoffs, there

would be no "problem" because anyone (and any linear model regardless of

its weights) would surely pick the alternative with maximum values on all

the attributes. For example, any graduate admissions committee knows whether

to admit a student with a 700 GRE score and a 3.8 GPA or a student with a

400 GRE score and a 2.5 GPA; it is the students with high GRE scores and

low GPA or vice versa who create a decision problem.

Tradeoffs among attributes inherently induce negative attribute

intercorrelations. Newman, Seaver, and Edwards (Note 2) cite two reasons-

why tradeoffs, and hence negative attribute intercorrelations, are to be

K expected in virtually every multiattribute decision problem. First, it is

a simple fact of life that one good thing must often be exchanged for
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another good thing. ("There's no such thing as a free lunch.") For

example, a person selecting a transportation mode from home to work who

desires to minimize both cost and travel time finds that these attributes

are negatively correlated within the set of available transportation

alternatives (e.g., walking, bicycle, mass transit, carpool, and private

car). In an applied problem of selecting handgun ammunition for the

Denver police department, Hammond and Adelman (1976) found that desirable

bullet attributes--stopping effectiveness and inability to produce

severe injury or death--were substantially (but not perfectly) negatively

correlated. Similar examples are typical in published accounts of

multiattribute decision problems.

Second, even if the environmental attribute intercorrelations are

not negative (as in the GRE-GPA example), these correlations will be

negative among the admissible (i.e., nondominated) alternatives. This

is illustrated for two attributes in Figure 2. Assuming that increasing

amounts of each attribute are desirable, only the alternatives connected

by the line segments are admissible; all other alternatives are dominated.

That is, for any alternative not on the boundary (often called the Pareto

frontier due to Pareto's £1907] use of the dominance principle in social

welfare economics) there exists an alternative on the boundary at least

as good on both attributes. Any rational decision maker would prefer ah

alternative on the Pareto frontier to any alternative in the interior of

Figure 2. While the case for three or more attributes is not as easily

depicted graphically, it is exactly analogous logically.

Insert Figure 2 about here
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Therefore, the answer to the question posed in this section--are attribute

intercorrelations positive in multiattribute decision problems--is no.

However, this does not mean that the equal weights argument is always

inapplicable for such problems, for the loss due to use of nonoptimal

weights is not substantial except when the interattribute correlations are

both negative and large.

In the preceding sections it has been established that (a) the correlation

between evaluations using optimal weights (y) and evaluations based on equal
AI

weights (y e) is a function of the interattribute corre~ation pxlx2 (Corollary

1.1) and (b) only those alternatives on the Pareto frontier are within the

admissible decision set. Given these two results, the question of the

applicability of the equal weights~argument for multiattribute decision

problems reduces to finding px1x2 for those alternatives on the boundary.

In two-attribute problems, x1 and x2 must have a rank-order correlation

of -1.0 among the nondominated alternatives. Even given this constraint,

sets of nondominated alternatives can be constructed in which pxlx2 ranges

from 0.0 to -1.0. In the next section it is demonstrated that pxlx2 actually

ranges only from -. 7 to -1.0 for typical or likely multiattribute problems,

and a set of prototypical Pareto frontiers is constructed for use in the

remainder of the paper.

Interattribute Correlations in Typical Multiattribute Decision Problems

The equation x1a + x2 a = 1 describes a set of curves which are

symmetric, relatively tractable, and fit the Pareto conditions. This

set will be used throughout the remainder of the paper to represent

prototypical Pareto frontiers or boundaries. Several curves from the
U
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set are illustrated in Figure 3. For convenience, the highest value of

xi is set equal to one, the lowest to zero.

Insert Figure 3 about here

When the exponent a equals 1, the Pareto frontier is a line representing

a severe tradeoff relationship: a gain in standing on one attribute is

accompanied by loss of an equivalent amount on the other attribute. ForV

large values of a (e.g., a = 8), the tradeoff relationship is very weak:

a low or moderate value for either attribute can be substantially improved

with only a small loss in the value of the other attribute. Curves with

large exponents are hardly typical of practical multiattribute decision

problems because in such cases an alternative exists with near maximum values

on both attributes (e.g., for a = 8, an alternative exists with a value of .92

on both attributes). If an alternative with almost maximum values on

both alternatives exists, there is no decision "problem" and none of the

various multiattribute decision aids would be used anyway. Thus, the

Pareto prototypical curve for a = 8 serves as an upper bound for the Pareto

curves likely to be encountered in practice.

The prototypical curve with a = I serves as a lower bound for similar

reasons. The concave curves produced by exponents less than one represent

extreme tradeoff relationships, in which a small improvement in standing0

on either attribute requires a major reduction in the other. If a linear

multiattribute function (i.e., Equation 1) is used to evaluate the alternatives

along such a curve, then, regardless of weights, the most desirable alternative

must have the maximum value on one attribute and the minimum value on the

other. That is, when a is less than one, the decision problem reduces to a

I
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choice between the two alternatives with a value of one on one alternative

and a value of zero on the other. Because the machinery of multiattribute

decision making does not seem particularly appropriate for aiding such

decisions, the curve for a = 1 serves as a lower bound for the types of

Pareto frontiers to which one is likely to apply the techniques of multi-

attribute decision aids.

The above argument indicates that prototype curves with exponents

between I and 8 can be used to represent most commonly encountered Pareto

frontiers. Given this, Pxlx2 can be calculated as a function of the

exponent a. Obviously for a = 1, pxx -1. Values of pxlx2 for other

exponents were estimated using Monte Carlo simulations with 5000 random

alternatives distributed uniformly along the Pareto boundary. For

moderate tradeoff relationships, a = 2 and 3, x2 .93 and -. 86,

respectively. 2  Even for a very weak tradeoff relationship, a = 8, the

interattribute correlation is -. 73 which (if these prototypical curves

are accepted as being representative of Pareto boundaries encountered

in practice) establishes a reasonable upper bound for in two-attributePxlx2

decision problems.

Two practical examples reinforce the notion that in typical two-attribute

decision problems the interattribute correlation ranges from -. 7 to -1.0. In

the Hammond and Adelman (1976) evaluation of handgun ammunition the correla-

tion between stopping effectiveness and probability of injury and death

was -. 98 (when both were coded to correlate positively with desirability).

Similarly, data assembled by Newman (Note 1) show automobile quality and

cost to be correlated -. 87 among the eight nondominated alternatives. The

reader is invited to attempt construction of a reasonable alternative set

with an interattribute correlation smaller than -. 7. Of course, in any
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actual example p can (and should) be computed precisely, making the

issue of "typical" interattribute correlations moot.

Effects of Large Negative Interattribute Correlations onn A

Equation 3 can be used to calculate the correlation between evaluations

based on any specified true weights and those based on any specified

estimated weights for a given p .2 Of special interest are the results

for estimations with w = .5 (equal weights) and w = 1 (extreme weights).

Figure 1 shows the effect on P^ of the interattribute correlation

P1xx2 as a function of the optimal weight w. The curve shown for

PxIx2 = -. 75--the reasonable upper bound on px1x2--approximates the

maximum attainable correlation between evaluations based on equal and

optimal weights in two-attribute decision problems. Clearly, when only

nondominated alternatives are considered even a slight deviation of the

true weights from equality causes a sharp reduction in the correlation
A

between y and ye" For example, for a = 2 (p = -. 93), the equal weights

model would account for only 12.4% of the variance in the evaluative ratings

of a decision maker whose true weights were .75 and .25. Using an equal

weighting scheme in such situations would be a serious mistake.

The unsuitability of equal weights can also be demonstrated by

examining how far the true weight w must deviate from .5 before it is
A A

better to use w = 1 instead of w = .5. That "breakpoint" weight is given

by the following additional coro'flary to Theorem 1.
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Corollary 1.2. Given the conditions of Theorem 1, if w is the

larger of the two weights, then p ^ for w = 1 is greater than p whenever

w > "pxlx2 + V(I + Pxlx2)/2(0 - Px2)
x12

This means, for example, that if the Pareto curve is approximately like

the one.for a = 2 (p = -. 93), then it is better (in terms of P v) to

estimate w as 1 than to use equal weights whenever the actual weight w is

greater than .58! In other words, Corollary 1.2 suggests that if the

rank order of the two weights can be determined, then for many two-attribute

decision problems it is better to use extreme weights (1 and 0) in the

weighted linear model than to use equal weights. This conclusion for

decision problems is the antithesis of the equal weights argument discussed

above.

Loss in Utility Due to Use of Nonoptimal Weights

The suitability of equal weighting in multiattribute decision problems

was evaluated in the preceding sections by reference to the correlation

P between sets of evaluations based on actual weights and those based
yy

on various estimated weights. This method was used in order to parallel

the arguments for equal weights made in earlier papers and to develop the

basic premises of this paper in a familiar context. However, because

the goal of a multiattribute decision procedure is a decision, not a

set of evaluations, the correlation py is not strictly adequate to assess

the suitability of equal weights in this context. In this section a more
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appropriate measure is developed and used to evaluate the equal

weighting model.

The goal in making a multiple attribute decision is not to predict

y with y for all nondominated alternatives. Rather, the goal is to

select the alternative (or at most a few alternatives) for which Y is

maximum. Unless w equals w, y will not generally attain its maximum

at the same alternative as will y, the true function. Consequently,

the decision maker will not obtain as great a total utility as would be

possible if the true weights were used to select the alternative. These

considerations lead to an appropriate, simple measure. If i is the

alternative for which y is maximum, then u (yý/max y) is the propor-
yy

tion of the maximum possible utility returned by using y. Thus, u y measures
yy

the adequacy of a given y as a solution to a multiattribute decision
problem for which the true weights are known. If u y is near one, then

Ay

use y is satisfactory because essentially the same aggregate utility is

obtained regardless of whether y and y select the same alternative. If

u is much below one, y is not a satisfactory substitute for y, and an
yy

attempt to estimate weights more accurately would be warranted.
The importance of a given u ^ is, of course, a function of the

yy
situation at hand: to the question "How low must u y be before

yy
rejecting YT" there can be no general answer. While values of uy

above .95 would probably be considered satisfactory in most cases, even"

a 5% loss in utility might be considered unacceptable in decisions involving

large amounts of time, great expense, or the health and safety of many

people. Expenditures of additional time and money to estimate the weights

more accurately would then be Justified. On the other hand, if the
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measures of the attribute values for each alternative were very unreliable,

there might be so much error in the model that even a 20% utility loss

would be inconsequential. Whatever, the purpose of this section is to

illustrate what happens to u y when equal or other nonoptimal weights are
yy

used. Individual users of multiattribute decision aids can decide for

themselves how much loss of utility can be tolerated in specific applica-

tions and then use the following information about u y to determine whether
yy

equal weighting (or any other scheme) is suitable for their decision

problems.

The values Yi and max y cannot be determined except in the context of

a specific set of nondominated alternatives or an explicitly described Pareto

boundary. Therefore, the set of prototypical Pareto frontiers described by

the function x + x = 1 is used to illustrate the effects on u y of various
1 2 yy

weight estimates. As above, the general result is presented first, followed by

the equal- and extreme- weights cases. An illustrative example precedes the

theoretical arguments.

A decision maker must choose an alternative from a large set of

alternatives described by two attributes. The attributes are constrained

so that all nondominated alternatives fall on a circular arc (i.e.,

x2 + x 2 = 1; see the curve for a= 2 in Figure 3). If the optimal or

true weights are .75 and .25, respectively, for attributes 1 and 2, ....e.

the alternative with The maximum utility is the alternative (.95, .32),

with (.75 • .95) + (.25 • .32) = .79. Use of equal weights would result in

selection of the alternative (.71, .71). In terms of the assumed optimal

or true weights, this alternative has utility (.75 - .71) + (.25 • .71) = .71.

Thus, use of equal weights in the selection procedure yields only .71/.79 = 90%

of the maximum possible utility. If the procedure used to estimate the weights

-
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erred so badly as to reverse the weights (i.e., estimate the first weight

as .25 and the second as .75), then the alternative (.32, .95) would be

chosen. Its utility (in terms of the true weights) is only .47--a loss

in utility of 40%. Thus when the task is to 'choose one alternative from

the Pareto set, use of nonoptimal weights can cause major losses in utility;

the utility obtained in a multiattribute decision problem is sensitive to

inaccurate estimates of the parameters (weights). The above illustration

is formalized in the following theorem.
a a te

Theorem 2. If the attributes are constrained so that xa + x2  1, then

A a ^ a

w[ (] )-x) + 1 -1/a + (l-w)[( w)a-T + 1]-I/a

uw l-w(6
Uyy a a (6)

1w a--- l]-1/a ( w)[ a-l I/a
w[(P ) + 11/ + 0_-w)[I + 1)-

Corollary 2.1. Given the same conditions as in Theorem 2, uy, the

proportion of the maximum possible utility obtained by using equal weights,

is given by

2- 1/a •

Uyye (7)
w ) l-I/a + 1w )[(_-)a+l + l]

Figure 4 shows u y as a function of w for selected values of a. For

weak tradeoff relationships (a near 8)., using equal weights to select the

____________
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alternative returns at least 91.7% of the maximum possible utility; when

the 'true weights are between .1 and .9, at least 95% of the maximum possible

utility is obtained. For severe tradeoffs (a near 1), using equal weights

to estimate true weights that are even slightly different from equality

results in substantial losses in utility. For example, if the true weights

are .4 and .6 and a = 1.1, an alternative with only 88.7% of the maximum

possible utility is selected when equal weights are used. For other true

weights as much as 46.7% of the utility may be lost by using equal weights.

Use of equal weights for selection in intermediate tradeoff relationshiRs

(a = 2 or 3) can also result in clear loss of utility.

Insert Figure 4 about here

The impact of these results is further demonstrated by determining the

"breakpoint" weight for which extreme weights (1 and 0) produce the same

value of u y as do equal weights. This breakpoint weight is given as a
yy

function of a by the following corollary.

Corollary 2.2. Given the conditions of Theorem 2, if w is the larger

of the two weights, then u y for w = 1 is greater than u A whenever
yy e

w > 2 "I/a (8)

Thus, when a = 1.1, it is better to use extreme weights than equal weights

unless the true weights are between .47 and .53. That is, for sharp trade-

off relationships, it is almost always better to estimate the larger weight
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as 1 and the smaller as 0 rather than to estimate both as .5. The

breakpoint weight for a = 2 is .71. For weak tradeoff relationships

(a = 8) the breakpoint is .92, indicating that in such cases equal

weights are generally better than extreme weights.

The results on loss of utility caused by using equal weights and

the superiority of extreme weights over equal weights for many tradeoff

relationships mean that routine use of equal weighting in multiattribute

decision problems is inadvisable. The question then becomes one of

specifying how close to the true weights the estimates need to be in order

to avoid substantial utility losses. The answer lies in Equation 6. The

utility obtained when using w rather than w to select the alternative is

plotted as a percent of maximum possible utility in Figures 5, 6, and 7

for a = 1.1, 2, and 8, respectively to illustrate the effect of inaccurate

estimates for different tradeoff relationships.

Insert Figures 5, 6, and 7 about here

The marked differences among Figures 5, 6, and 7 illustrate that

choice of a particular strategy for estimating weights in two-attribute

utility problems should be guided by the nature of the interattribute

relation. For very weak trade-offs (a ". 8), use of equal weights results

in utility losses of lass than 10% no matter what the true weights; here

use of equal weights is appropriate unless the true weights are thought to

be quite extreme and a high degree of accuracy is desired. For severe'4

tradeoff relationships (a"l 1.1), that the weights be in the correct rank

order is absolutely critical; given that, extreme weights (i.e., 0, 1)

result in losses of utility of less than 10% no matter what the true weights

are. For moderate tradeoff relationships (a 2, 2), use of neither equal

S i
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nor extreme weights is generally appropriate. Use of equal weights causes

a loss of utility of 10% or more if w < .25 (or w > .75), whereas use

of extreme weights does so if .33 < w < .67. It is with moderate tradeoff

relations, then, that accurate weight estimation is most important, and

moderate tradeoffs are probably the most likely to be encountered in

practice. However, as long as the rank order is correct, the estimates

still do not need to be very accurate. Any estimate between .1 and .4,

for example, produces at least 95% of the maximum possible utility for a

true weight of .25 when a = 2.

Generalization to Three or More Attributes

Although the discussion to this point has been restricted to decision

problems with two attributes, all formal results and theorems except for

the "breakpoirn" corollaries can be easily generalized to problems with

three or more attributes. For example, many mathematical statistics texts

present generalizations of Theorem 1 (e.g., Rao, 1965, p. 441; and Ghiselli

1964, pp. 306-309). However, such formal generalizations are not particularly

useful because systematic analyses (as in Figures 1 to 7) become impossibly

unwieldy when three or more attributes are considered. This section

includes (a) a demonstration that equal weighting is inappropriate for

general multiattribute decision problems because average interattribute

correlations are necessarily negative when the alternativ-s form a

Pareto surface, and (b) derivation of an upper bound for uy

Average interattribute correlations. When only nondominated
1z alternatives--those on the Pareto frontier--are considered, a gain in

standing on one attribute must be compensated by a reduced standing on
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other attributes, thereby inducing negative interattribute correlations.*

However, because the necessary compensation for a gain for one attribute

can be spread over many attributes, the interattribute correlations are not

of such great magnitude as those in two-attribute problems. For example,

if all interattribute correlations are equal, their value must lie in

the interval (0, -1/[k-l]) for k attributes. The nonzero boundary of

this interval ranges from -1.00 for two attributes to -. 14 for eight.

Likely values for the average interattribute correlation may be

estimated by examining protypical Pareto surfaces of the same type con-

sidered for two attributes. These surfaces are defined by Ex! = 1;

again a near 1 represent severe tradeoffs and large a represent weak

tradeoffs. Figure 8 depicts the average interattribute correlation

(determined by Monte Carlo simulation) as a function of the severity

of the tradeoff relationship (a) and the number of attributes (k).

Except for two attributes the degree of the tradeoff relationship has

surprisingly little effect on Pxixj: no matter what the value of a,

Pxixj is very near its boundary value for each k. That is, when the

alternatives are on a Pareto surface the average interattribute correla-

tion is likely to be as negative as possible given the number of attributes

k.

Insert Figure 8 about here

Einhorn and Hogarth (1975, p. 175) show that the minimum possible

squared correlation between y and Ye is given by

I
I
3
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2 = 1 + (k-l)p (9)
PYYe k

where p is the interattribute correlation for all attribute pairs. (Note

that p Y is a decreasing function of k.) Using the least negative value

of p from Figure 8 (p = -.11 for k = 8 and a = 8) gives a minimum value of

PYý of only .03. Clearly, it is possible for an equally weighted composite
YYe

of many attributes to be a very inaccurate estimator of the true aggregate

value of nondominated alternatives.

Data from an actual application of a multiattribute decision aid

demonstrate that the above problems are not merely hypothetical. Roche

(Note 3, also see summary in Keeney & Raiffa, 1976, pp. 365-376) presents

six alternative budget allocations considered by a Massachusetts school

board which must distribute a fixed budget among four program areas

(language arts, mathematics, science, and social studies). The set of

alternative allocations is described by the protypical Pareto surface

with a = 1. While the interattribute correlations are not all equal

(they vary from -. 96 to +.73), the average correlation is -. 33, as

predicted by Figure 8 (a = 1, k = 4).

The upper bound for uA Corollary 2.1 and Figure 4 define for

two attributes the proportioin of the maximum possible utility obtained by

using equal weights. Such a formal comparison of all possible combinations

of true weights to equal weights becomes impossible as the number of attributes

increases. However, examination of the special case in which all true and

estimated weights except one are equal is of interest; this case is

described by Theorem 3.

Theorem 3. Assume that w= w = w and that xý = 1. Then

using estimates w2 = w3 = ... wk = (l - W)/(k - 1) yields

1i
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A

U wlf(w1) + (I - wl)g(w)(
Uyy wlf(wI) + (U - wl)g(wl) (10)

where f(w)= {[(I l_ I/a]a-- 1+ }-1/a

and g(w) = [1 _ fa(w)]l/a
k - J

Theorem 3 gives the ratio between the utility obtained by estimating wI and
A 

ew and the maximum possible utility when all other weights are

correctly estimated as equal to one another. Because the unreasonable

assumption that weights w2 through wk are equal favors the equal weighting

model, an upper bound on uye is given by setting wI =

(and therefore w2 = w3 = ... wk = 1

Corollary3.1. If Exý = 1 describes the Pareto surface and ifI
w = 1 then

1 2wk=rthe

^ k-I/a
uyywf(w) + (k wl)g(w) (11)

Figure 9 shows the upper bound for a moderate tradeoff relationship (a = 2)
as a function of the true weight w1 for various values of k; Figure 10
illustrates the effect of various tradeoff relationships on the bound

for u A for k = 4. As Figure 9 demonstrates, the potential for utility
loss from using equal weights increases as k increases; these potential
losses are large even when all true weights but one actually are equal. •
Thus routine use of equal weights in multiattribute decision problems

is clearly not warranted.

Insert Figures 9 and 10 about here
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Newman (Note 1) presents a multiattribute decision problem which

demonstrates that the potential utility losses stemming from use of the

equal weighting model can actually occur. Newman's example concerns

an automobile evaluation system developed by the Automobile Club of

Southern California. The Auto Club identified and specified weights

for 11 automobile attributes. Newman applied the Auto Club weights and

equal weights to the 11 attribute values for 24 automobiles. Use of

equal weights results in selection of a car which (in terms of the Auto

Club weighting system) has a value of only 59 compared to the value of

68 for the car selected by the Auto Club weights. Thus, use of equal

weights results in a utility loss of 13%. Interestingly, use of rank

weights (the most important attribute is assigned a weight of k, the

second mc..t important k - 1, etc.) results in selection of the same

automobile as does use of the Auto Club's actual weights, for a utility

loss of zero.

Discussion

The key issue in this paper is not whether the equal weights argument

of Einhorn and Hogarth (1975), Green (1977), Wainer (1976) and othei's is

correct; the validity of their results is not questioned. What is

questioned is the advisability of routine use of equal weights in multi-

attribute decision problems. Such use has been suggested by Dawes and

Corrigan (1974) and Einhorn and McCoach (1977), but is questioned by

Newman (Note 1).

The arguments developed in this paper demonstrate that the case for

equal weights cannot be directly transferred from the multiple regression

,!
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context in which it was developed to the context of multiattribute decision

problems. The primary basis for this conclusion is an important distinction

between the goals of regression and multiattribute decision-making. Whereas

the goal of regression is accurate prediction of the outcome or evaluation

for all alternatives, the goal in a decision problem is selection of the

one best alternative. This distinction has been blurred by the use of

regression models ("bootstrapping," "policy capturing," etc.) as multi-

attribute decision aids (e.g., Dawes, 1971).

When the evaluation-selection distinction is made, consideration

must be restricted to those alternatives on the Pareto boundary--the

alternatives which have any chance of being selected. This restriction

induces large negative correlations among the alternatives and leads to

sharply lowered correlations between the evaluations produced by the

true and estimated weights. Further, the goal of selecting the best

alternative means that p A is not an appropriate measure of the adequacy
yy

of a set of estimated weights. A more suitable measure is u y, the
yy

ratio of the utility obtained using the estimated weights to the maximum

possible utility possible using the true weights.

The theoretical results based on the appropriate measure uyy yield

three important conclusions: (a) the routine use of equal weighting

in multiattribute decision problems is not justifiable because equal

weighting can cause important losses of utility, and (b) how much utility

is lost due to use of equal weights depends not only on the true weights

but also on the nature of the tradeoff relationship and on the number of

attributes, and (c) if the rank order of the estimated weights is correct,

inaccurate estimation leads to very small utility losses.
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The conclusions about u A listed above, derived from Theorem 2 and
yy

Figures 4-7, assume an infinite set of alternatives on a protypical

Pareto curve described by axý = 1. Although these assumptions are not

unreasonable, they do not hold for all decision problems, However, for

any particular problem u " can be computed directly for as many hypothesized
yy

sets of true and estimated weights as is desired. The results of such an

analysis can then be used to evaluate the adequacy of the equal weights--

or any other--model for that problem.

The procedure for calculating uyy is straight forward: (a) determine

the set of nondominated alternatives, (b) select sets of weights which

cover the range of plausible true weightings, (c) find the best alternative

and hence the maximum possible utility for each plausible weighting, (d) select

sets of weights which cover a wide range of potential estimated weightings

(these sets should include all those in [b]), (e) calculate u y for each
yy

pair of estimated and hypothesized true weightings (i.e., find the

alternative which the set of estimated weights would select as best),

(f) calculate its utility using the set of hypothesized true weights,

and divide that utility by the maximum possible utility--dexermined in

(c)--for that hypothesized weighting.

A practical example demonstrates the usefulness of calculating uyy

and also illustrates some of the differences between real decision problems

and the idealized (infinite number of alternatives, prototypical Pareto

boundaries) problems considered in the theoretical discussion. The

example is from Hammond and Adelman (1976) and involves the selection

of handgun ammunition for a metropolitan police department. The two

bullet attributes most relevant for the decision were stopping effective-

ness (the probability that a man shot in the torso would be incapable of
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returning fire) and severity of injury (the probability that a man shot

in the torso would die within two weeks of being shot). Hammond and

Adelman used a panel of experts to locate 80 bullets on these two

attributes (see their Figure 3). Only three of the 80

bullets are "efficient" alternatives (an alternative is efficient if it

is on the Pareto boundary and is not dominated by a convex linear combina-

tion of other alternatives; see Coombs & Avrunin, 1977, fGr a further

discussion of efficiency) with any chance of being selected by a linear

model.

Because there are only three eligible alternatives, only three ranges

of estimates for w, the true weight on stopping effectiveness, need be

considered, with each of the three ranges leading to selection of a

different alternative. In this case, a true weight between 0 and .33

leads to selection of the bullet with minimum stopping effectiveness and

minimum injury (represented by (0, 1) when the attributes are scaled from

0 to 1), between .33 and .54 to the alternative (.28, .86), and between

.54 and 1 to the alternative (1, 0).. With only three alternatives it is

easy to calculate u y. For example, (1, 0) would be the best alternative
yy

for a true weight on stopping effectiveness of .7, yielding a utility of

.7. Incorrect use of equal weights would lead to selection of the (.28,

.86 alternative, giving a utility of (.7 x .28) + (.3 x 86) = .45 and

=yy .45/.7 = .65.

All possible values for u A are plotted in Figure 11. This figure-
yy

shows that (a) use of equal weights causes large utility losses if

.6< W < 1 (.28•< uyA < .85), (b) equal weights are more or less

adequate if 0 < w < .6 (.85 < u < l), (c) use of rank weightsYye
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(.67, .33 or vice versa) ensures that u y > .88 if the rank order is
yy-

correct, and (d) reversing the rank of the weights can cause very large

losses (e.g., estimating a true weight of .4 by .6 yields only 64% of

the maximum possible utility). For this set of alternatives, then, use

of unverified equal weights is inadvisable.

Insert Figure 11 about here

The theoretical results and practical examples examined in this paper

suggest that rank weights (assign importance ranks to the attributes

allowing for ties, then normalize) may provide all the accuracy needed

for most multiattribute decision problems. While production of an

importance ordering of the attributes requires more work from the decision

maker than does a priori use of equal weights, obtaining such rankings

is much simpler than more traditional multiattribute procedures. A more

formal evaluation of the implications of the routine use of rank weights

will be the focus of a subsequent paper.
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Footnotes

1. Usually the xij are only attribute levels for each alternative and

on additional function or scaling is necessary to transform the

xi. onto a utility scale. It is assumed throughout this paper

that such scaling has already been accomplished. The xij may also

be unreliably measured in practice. Because error in the estimates

of weights is the primary topic of this paper, it is presumed for

convenience that the true values of the ×i are known.

2. A closed form analytical solution is possible for a = 2;

PX1X2= 97r/4 - 8 z -. 93, which confirms the simulation procedure.

For other values of a between I and 10 a reasonable approximation

is x2 -1.019a-" 15 8.

PxI
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Appendix: Notes on the Mathematical Proofs

Rather than giving each proof in complete detail, only the general

outline of each proof is indicated. In particular algebraic reduction

(which constitutes the bulk of the formal proofs) is omitted.

Theorem 1

This proof is a standard exercise in many mathematical statistics texts

(e.g., Hogg & Craig, 1965, problem 4.79, p. 149).
A A

Cov(yy) = E[(y - E(y))(y - E(y))]

= E{[w(xI - Ol) + (1 - w)V2 ]LwSxI - PO) + (1 - w)V2]}

where p, and P2 are the respective expectations for xI and x2. Using

basic properties of the expectation operator and the definitions of a and p,

this recdces to

CoV,(yy) = wwo 1 + (I - w)(l - w)2 2 + (w + w - 2ww)pl 2012

Var(y) = Cov(yy) = w2 y12 22 (1-+ 2w(l - w)P212 .

The theorem assumes that x1 and x2 are standardized so without loss of

generality, let aI = 02 = 1. Substituting the above results into the

definition of p yields the desired result.

.J4
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Corollary 1.1

Let w = .5 in Theorem 1.

Corollary 1.2

For w =1, py" is greater than p Y whenever

l + (w - l)(l - p) > V.5'(l +p)

The left side is the numerator in Theorem 1 when w = 1 and the right side

is the numerator in Corollary 1.1 (the denominators are equal and positive

so they are cancelled from the inequality). Solving this inequality for w

yields the desired result.

Footnote 2. (Pxlx2 on the unit circle in the positive quadrant)

Assume that (xlX 2 ) are uniformly distributed on the unit circle in

the positive quadrant. This is equivalent to assuming that xl2 is uniformly

distributed (with x2 = /Fi 2). Standard change of variable techniques

give f(x) = 2x, a<x<l, as the probability density function of x,. Therefore,

PI E(Xl) f l 2x2 dx : 2/3

Sx2 E~x - 1 )L]=f••f 2(x - 2/3) 2 x dx 1/18

=., nda 2 a,2(By symmetry or direct integration, P2 = p1 and 02 = 012)
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E(xlx 2 ) = fl 2x 2  Ai7 dx= [- (1 - x2 ) 3/2 + (x T---2 + sin-1 x)]= ir/8

so,

= E(xlx 2 ) - 1'12 9_1. 8 z -. 93
1x x2 al a2  4

Theorem 2 and Corollary 2.1

These results can be obtained from Theorem 3 and Corollary 3.1,

respectively, by letting k = 2 so their direct proofs are omitted here.

Corollary 2.2

Using w = 1 implies that y is maximized when xI = 1 and x2 = 0 so y w.

Then u A. using w = 1 is greater than u whenever w is greater than the
yy yye

numerator in Corollary 2.1. That is, w > 2-1/a

Theorem 3

Because weights w2 through wk are equal by assumption, the maximum

value of y will occur at the point (xl,X2,...Xk) where x2 = x3 =x

T f xia = I implies y = wx + (I - w)(1 a Setting the derI yeTherefore Eia.Stigtedr iv

of y with respect to x equal to zero yields

1-a

w - ( - w)(k - l/a(xa-l)(- a) a

1) x )( a
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Solving this equation for x yields

xI = f(w), as defined in the theorem, and

x2 .. = k g(w).

A

Identical calculations using w define the point which would be selected so as

to maximize y. Substitution of these results into the definition of uy

finishes the proof.

Corollary 3.1

Let w = in Theorem 3.

4i
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