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which the determination of the interior values of ( is decoupled from that of
the boundary values; hence, the vorticity boundary conditions can be imple-
mented without iterative techniques. Lastly, the ''infinite-order'' PS model
avoids the assumption of lateral periodicity by expanding § and ( in a doublq
series of Chebyshev polynomials. The resulting vorticity equation is solved
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All three models are of second order in time and have conservative
formulations of the nonlinear terms.
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solution) are performed to determine the accuracy, stability and efficiency of
each model as a function of problem class and the associated physical and
computational nondimensional parameters. The most important of these
parameters are ¢, the Rossby number, v, the number of spatial degrees of
freedom (grid points, expansion functions, etc.) per half wavelength of the
reference solution, and 1, the number of time steps per period of the
reference solution. The latter two parameters are nondimensional measureﬂ
of the spatial and temporal resolution of the numerical approximation.

These tests show that all three models are, in general, capable of
delivering stable and efficient solutions to linear and weakly nonlinear
problems in open domains (0 s €< 0.4, 4< v < 10, 64 <n< 128). Despite
their added complexity, however, the FE and PS models are on the average,
4 and 15 times more accurate respectively than the FD model even taking into
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of the models can be made similarly accurate for highly nonlinear
calculations (e >> 0.4).
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ABSTRACT

The inviscid barotropic vorticity equation is integrated under a
variety of assumed initial and boundary conditions corresponding to linear
and nonlinear box modes, forced nonlinear box modes, north wall forced
modes, and linear and nonlinear Rossby waves (with and without mean
advection). The former two classes of problems are defined within a
closed domain. The latter two are partially or totally open to a specified
external environment and therefore represent prototype limited-area
calculations for the ocean.

To determine the extent to which the accuracy and efficiency of
limited-area calculations depend on the numerical integration scheme,
each test problem is solved independently using the finite-difference (FD),
finite-element (FE) and pseudospectral (PS) techniques. The three
numerical models differ primarily in the formal accuracy of their spatial
approximations and their treatment of vorticity at outflow points along the
boundary. The FD model employs a centered second-order differencing
scheme and requires an extrapolatory (computational) boundary condition
to fix the values of vorticity at outflow boundary points. The FE model,
which represents § and ( as a summation of piecewise linear elements,
is of fourth order for the linearized one-dimensional advective equation.
Further, a technique is developed by which the determination of the
interior values of ( is decoupled from that of the boundary values; hence,
the vorticity boundary conditions can be implemented without iterative
techniques. Lastly, the ''infinite-order'' PS model avoids the assumption
of lateral periodicity by expanding § and ( in a double series of
Chebyshev polynomials. The resulting vorticity equation is solved in
the spectral domain using a modified alternating direction implicit method.
All three models are of second order in time and have conservative
formulations of the nonlinear terms.

Integrations of moderate length (5-10 periods of the known analytic
solution) are performed to determine the accuracy, stability and efficiency
of each model as a function of problem class and the associated physical
and computational nondimensional parameters. The most important of
these parameters are €, the Rossby number, v, the number of spatial
degrees of freedom (grid points, expansion functions, etc.) per half wave-
length of the reference solution, and 7, the number of time steps per
period of the reference solution. The latter two parameters are non-
dimensional measures of the spatial and temporal resolution of the
numerical approximation.

These tests show that all three models are, in general, capable of
delivering stable and efficient solutions to linear and weakly nonlinear
problems in open domains (0< €< 0.4, 4< v< 10, 64 < n<128). Despite
their added complexit,, however, the FE and PS models are on the average,

4 and 15 times more accurate respectively than the FD model even taking

into account its increased efficiency. The results also suggest that given

a judicious selection of a frictional (filtering) mechanism and/or computational
boundary condition (to suppress the accumulation of gridscale features),

each of the models can be made similarly accurate for highly nonlinear
calculations (¢ >> 0.4).




1. INTRODUCTION

Limited-area or regional modelling of the oceans is important for a
number of scientific and potentially practical problems. These include
real-time forecasting/hindcasting studies of the oceanic interior and
regions of intense near-surface currents (such as the Gulf Stream), and
idealized local dynamic studies of those subregions of the oceanic gyre
thought to contribute to the generation and maintenance of the mean and
transient fields of motion. The former studies relate to ongoing and
anticipated measurements from a variety of modern techniques including
satellite surveys of the ocean [1,2]. The latter are prompted by recent
advances in our modelling and understanding of the mesoscale features of

the ocean circulation [3].

Numerical eddy-resolving general circulation models in gyre-scale
systems (EGCM's) have shown that transient eddies similar to those
observed play an important role in determining the mean flow [4-6]. The
very high horizontal resolution needed to resolve adequately the dynamics
on the scale of the eddies, however, make EGCM's expensive to run even
when, in practice, basins of only a few eddy wavelengths in horizontal
extent are used. Furthermore, gyre-scale models are complicated by the

fact that they contain many subregions of distinct physics [7, 8].

For statistically homogeneous subregions of the gyre, local dynamical
studies can be made with periodic boundary condition models. Such models
assume that the physics is locally determined and essentially independent
of information such as scales and amplitudes which could be generated
elsewhere and continuously transported across the boundaries. Such
'""'process'' models have been used to investigate the dynamical properties
of the mesoscale eddy field under simulated mid-ocean conditions in
regions well removed from boundary layer effects (9, 10]. Many subregions
of the gyre obviously violate the above assumptions. For such regions, as
well as for many other regional hydrodynamic problems other more
complicated boundary conditions are necessary [11]. Such problems
include limited-area oceanic forecasting [12], coastal modelling [13], and

the study of intense current systems and their associated instabilities.
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The determination of valid and convenient forms of boundary
conditions, particularly at points of outflow, constitutes a major,
essentially unresolved, problem in the modelling of many hydrodynamic
systems over regional domains. The choice of boundary conditions
involves a number of physical, mathematical, and numerical (or computa-
tional) considerations. On large and regional scales, the conditions should
correctly represent or parameterize the interaction of the (arbitrary)
volume of fluid with its surroundings. Smaller scale physical phenomenon
generated internally within the region should not be trapped but allowed to
pass out of the domain; i.e., the model boundary should be transparent
for such small-scale processes. The mathematical problem consisting of
model equations and boundary conditions should be well posed. The
numerical scheme chosen for computational purposes should be of desired

accuracy and acceptable efficiency.

In its computational algorithms, a given numerical scheme may -
involve the use of boundary information which is not in principle required
in the well-posed analytical problem. Such auxiliary information is known
as a computational boundary condition and should be chosen for convenience
and efficiency, but should not in principle affect physical results. In
practice, specific problems appear to require special conditions and a
trial and error approach is usually indicated. Alternate choices of
boundary conditions do effect the accuracy and stability of regional
computations. For instance, in viscous limited-area calculations it is
known that incorrect specification of boundary conditions or data generally
leads to the evolution of boundary layers adjacent to outflow [14,15].
Several types of boundary conditions have been used to avoid the problems
associated with outflow, including extrapolatory formulas [16,17], and
radiation conditions [11]. In inviscid systems, Charney, Fjortoft and von
Neumann [18] originally argued heuristically that, given the stream-
function at all boundary points, only the values of vorticity at inflow points
were needed to determine consistently solutions to the barotropic vorticity
equation. This conjecture has since been proven more rigorously [19].

In practice, however, unless iterative or implicit numerical techniques or
one-sided differencing schemes are used, inviscid calculations require

some auxiliary relationship by which to prescribe vorticity at outflow




boundary points. Such a numerical scheme is often sensitive to the

specific choice of this computational boundary condition. An example of
this has been given by Shapiro and O'Brien [20] in the context of a limited-
area meteorological forecast. They showed that the method of character-
istics worked well as a computational boundary condition but that the
specification of vorticity at outflow boundary points on the basis of known

boundary data led to numerical instability.

In this report, we evaluate the feasibility of performing barotropic
open ocean calculations by investigating and comparing the accuracy,
efficiency and stability of three limited-area numerical models based
respectively on the finite-difference, finite-element and spectral
approximation methods. The physical boundary conditions used are the
Charney-Fjortoft-von Neumann conditions. The calculations are mostly
inviscid but in some cases a dissipative filter is included. The codes
differ primarily in the details and accuracy of their spatial discretization
schemes and in their treatments of the vorticity at outflow. The statement
of the nondimensional vorticity equation and a description of the numerical

techniques are given in Sections 2 and 3.

The three models have been tested and intercompared for a variety
of prototype physical problems in closed and open basins and over a range
of the nondimensional physical and computational parameters corresponding
to each problem class. First, the unforced (homogeneous) solutions to the
linear and nonlinear vorticity equation in a closed-basin are found and
compared to the known exact and perturbation solutions for linear and
nonlinear box modes respectively (Section 4). With the addition of a body
force, various exact nonlinear closed-basin solutions are constructed and
tested (Section 5). Next, oscillations driven by time-dependent distribution
of boundary values along the northern (open) boundary are examined
(North wall forced modes - Section 6). Lastly, in a fully open domain,
linear and nonlinear Rossby wave solutions with and without mean ad-
vection are obtained and intercompared (Section 7). Model-model inter-
comparisons of this type have been carried out for simple advective
problems in closed basins (e.g., Orszag and Israeli [21]). To our
knowledge, however, this is the first such study that encompasses

limited-area hydrodynamic modelling problems as well.




The development of a regional quasigeostrophic modelling capability

has two immediate intended applications. Firstly, forecasting/hind-
casting studies of the mid-ocean mesoscale eddy field will be undertaken.
For this work the MODE and POLYMODE synoptic data sets, can be
utilized in a variety of ways both as boundary information and forecast
verification data. Secondly, motivated by recent EGCM simulations of
eddy generation and eddy mean field interaction in regions of intense
mean flow, the finite-amplitude instabilities of idealized jets will be
investigated as a function of environmental parameters and inlet conditions.
Ultimately, if possible, real Gulf Stream meander region observational
data will be used. For these purposes, baroclinic models will be needed.
The extension of the following results to a multi-level configuration is,
however, straightforward. A two-level version of the code described in

Section 3. 3 is already operational.
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2. MODELLING EQUATIONS, METHODOLOGY AND
FORMAT OF RESULTS

We consider the barotropic vorticity equation on a B-plane which

can be written in dimensional form as

0<x< L
x

{% + 30, ): (C+9 = Fix,y) ()
0<sys< LY

where

and

In addition,
& = V.8 (2)

is the relationship between streamfunction (y) and vorticity ({), and
F(x,y) represents the effects of a body force, if any. Dissipation has been
neglected for three reasons. First, the inviscid system poses a simpler
physical and numerical problem, one for which many analytic and per-
turbation solutions are available. This is the basis of our testing of the
limited-area models described in Section 3. Second, quadratic conservation
laws are available for non-dissipative physical and numerical systems.
This property also contributes to the evaluation of model performance.
Lastly, by ignoring explicit higher-order friction, we sidestep for the
moment the question of the correct specification of vorticity boundary
conditions on outflow, which are not formally needed for integration of the
inviscid system. The assumption of inviscid dynamics does, however,
require that greater care be taken to construct a numerical scheme which
is stable in the absence of explicit dissipative (that is, smoothing)
mechanisms. As we shall see, such filtering is in fact necessary to main-

tain stability in some cases.
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If we now nondimensionalize x, y, t, and § by d, d, (ﬂd)'1 and

(Vod) respectively, then (1) becomes, in nondimensional form,

0<x< xB

G5y ¥g

{%%‘ e3(y, )} vy ty, = Flx,y) (3)

where the Rossby number

g = vo/pd2

and
Xp = Lx/d yg = Ly/d

The parameters d and V, are taken to be the characteristic length and
velocity scales of the anticipated field of motion. Note that the length
scale d does not correspond to the basin dimensions Lx or Ly; hence,

xp and yp are, in general, greater than one.

B
The modelling strategy developed herein involves the integration of
Eq. (3) for several sets of initial and boundary conditions corresponding
to succeedingly more complex physical phenomena in closed and open
domains. The problems we will consider include linear and nonlinear box
modes, forced nonlinear box modes, linear and nonlinear north wall forced
modes (meander-induced forcing), and linear and nonlinear Rossby waves.
The sequence of linear problems (box modes, north wall forced modes,
and Rossby waves) serve as pivotal calculations for which no boundary
values of vorticity are formally required. With the addition of nonlinearity,
both accuracy and stability of model calculations can be assessed as a
function of € for closed-domain problems in which strict conservation
laws apply (nonlinear and forced nonlinear box modes), and partially open
and totally open domain problems in which interaction with the surrounding
environment is possible and the question of computational boundary
conditions arises (nonlinear north wall forced modes and nonlinear Rossby
waves). The former experiments are the most easily understood. The
latter series of tests - particularly the nonlinear Rossby waves with mean
advection - are those most relevant to future open ocean modelling

applications.
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Each problem thus defined has been solved using three independent
(and quite different) numerical techniques. The finite-difference (FD)
scheme is second-order accurate in space and time and has the advantage
of being easily coded. It should, in addition, be the most efficient of the
three models for a fixed number of spatial degrees of freedom. The finite-
element (FE) method, though somewhat more complicated than the FD
scheme, is known to be of fourth order for certain advective problems [22].
In general, we expect smaller errors with the FE model, but at a slightly
higher computational cost. Lastly, pseudospectral (PS) approximation
techniques [21] offer greatly reduced spatial truncation errors in comparizon
to both of the other two methods. The PS model is, therefore, formally the
most accurate but thereby it may be subject to instabilities not seen in the
FD formulation - see, for instance, Section 7. Of the three models, it is
also the most difficult to code (although it can be made comparably efficient

if care is taken to optimize the spectral transforms).

Since analytic or perturbation solutions are available for many of the
prototype physical problems examined herein, direct measures of numerical
error are available for each model. Of particular interest are the RMS
errors in streamfunction and vorticity, and the normalized difference in
integrated kinetic energy as a function of time; these area integrated error

measures are defined as

RMS(}') = {ffwc - 1% aa/[fw,)? dA}l/z (4a)
RMS(C) = {ﬂ(gc - ¢ % aa/ [ )? dA%l/z (4D)

and
NDIF(NRG) = {HI o aa - [[loy, P dA*/ [liov, 1% aa (4c)

where subscripts ¢ and a refer to the computed and analytic solutions
respectively and a primed quantity represents a difference from the
reference solution. Using error measures of this sort, it is possible to

ascertain the accuracy of each model.

Table I summarizes the results of all the experiments as a function

of problem type and the associated nondimensional parameters. The first




seven columns of Table I refer to the experiment number and the (not

necessarily independent) quantities

(i) € Rossby number

(ii) Xp =Yg nondimensional basin size
(iii) N number of spatial degrees of freedom in each
' direction

(iv) h= xB/(N- 1) nondimensional mesh interval

(v) A number of half wavelengths or turning points of
the reference solution within the domain (non-
dimensional measure of the structure of the
solution)

(vi) v = (N-1)/a nondimensional spatial resolution (number of
degrees of freedom per turning point of the
reference solution)

(vii) At nondimensional time increment

and X
(viii) 1 nondimensional temporal resolution (number of
time steps per period of the reference solution).

The last four columns tabulate the duration of the experiment (in periods)

and the final values of the three error measures defined above. The

duration of simulations which suffered numerical instability are denoted by
brackets. No RMS error values are listed for these experiments. Inter-
mediate columns of Table I are reserved for special parameters representative

of each problem class. These will be introduced in Sections 4 through 7.

Accompanying Table I are a series of figures which show in more detail
the results of one experiment for each problem category. Figures (1-3) are
typical. The first two figures give contour plots of { and §, and (' and
§' respectively at the end of the simulations for each model. Figure 3 shows
the corresponding variation with time of RMS((') and RMS(y') for each
model. Contouring intervals and scaling information are given in the figure
captions. Note in particular that the RMS error curves are not necessarily

scaled similarly, even within a given figure.

The former (contour) plots give a visual estimate of the wavenumber con-
tent of the computed solution (and hence an estimate of its formal spatial accuracy)
and reveal any localized features (physical or numerical) that might occur.

This is particularly important in those nonlinear experiments for which only
approximate or linearized reference solutions are available and for which the
RMS errors are therefore difficult to interpret.
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3. MODEL FORMULATION

3.1 Finite-difference model

A traditional discrete formulation of Eq. (3) results by approximating
all derivatives by second-order centered finite differences. The advantages
of finite differences are the simplicity of the required coding and our
accumulated experience of using this classical technique. With centered

(leapfrog) time differencing, the vorticity and Poisson equations become:

k+1 k-1 2Ate * k k At k
€75 130l v mm e AD e 5 Ol (5a)
and
k+1 k+l _ 2 _k+l
bxxw + éww = he g (5b)

k k k, _
i+l,j-wi-l,j and 6xx“ ) =

The Arakawa [23] Jacobian J* is given by the

where finite-difference operators § (#k) =y
A e -
Yiun,5 = “Yy g T ¥aa 4

finite-diffelr’ejnce approximation to the equivalent form 1/3{ [¢xgy- ¢Ygx] +

+ [(w;y)x - (ng)y] + [-(yyg)x + (wxg)y]} . This expression conserves
vorticity, energy and enstrophy when integrated over a closed domain.

The Poisson equation (5b) with Dirichlet boundary conditions is approximated
by the standard five point Laplacian operator and solved with the NCAR
cyclic reduction subroutine package. Finite differences are of second-order

accuracy, so the total discretization error is O(h2 + Atz).

For linear problems (e = 0), vorticity on the boundary T does not
enter the problem in either the vorticity equation or the Poisson equation.
For nonlinear problems (¢ # 0), vorticity is specified at inflow points
according to the Charney-Fjortoft-von Neumann boundary condition [18].
Centered finite differences require boundary data everywhere, and in
contrast to the analytic problem, some auxiliary relationship (that is, a
computational boundary condition) must be assumed at outflow points in
order to determine the vorticity there (unless an iterative technique is used
to fix { on X).

Optimally, the computational boundaries of an open ocean model

should be transparent to signals impinging on them. Thus, the formation

P G Ori P g T e




of boundary layers on or wave reflections from the boundary are

undesirable. The most successful computational boundary condition

considered in this study is

k k _  k#l k-1
CB*¢m.z © ¢B-1*¢B1 (6)
which was introduced by Sundstrom [16]. Here B, B-1, B-2 represent
a boundary point and its 1st and 2nd normal interior neighbors. Davies
[17] demonstrated the stability properties of this closure for a variety of

nonlinear problems.

There are several possible physical interpretations of statement
(6): either (a) it is equivalent to equating the time and spatial averages
of ( at point B-1 (a kind of smoothness condition at outflow);
(b) Eq. (6) is equivalent to gtt = czgxx where ¢ = Ax/At (a ''local'’
wave equation); or (c) it is a low-order spatial extrapolation scheme.
ok In order to implement the Sundstrom/Davies formula, the quantity
+

¢B-1
the point B-1, t= kaAt. This yields an implicit set of equations for the

is eliminated by application of the vorticity equation evaluated at

boundary vorticity. Formally, this requires the inversion of a hepta-
diagonal matrix with cyclic ordering of the points. However, it can be
shown that by elimination of those boundary points which are corner
neighbors, a simple tridiagonal system results, provided there is at
least one inflow point (Appendix I). Note that the boundary vorticity is

calculated after the interior vorticity and the streamfunction.

Other computational boundary conditions investigated in this study

are the Kreiss extrapolation gk = ng - gk [11] and the condition
B B-1 B-2
o= €, -
3.2 Finite-element model

In the finite-element formulation, we assume a set of basic functions

consisting of piecewise polynomials, the simplest being piecewise linear

elements arranged in a rectangular lattice. In one dimension, each
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element is a chapeau or hill function, and in two dimensions, a pyramidal
function, each centered on the lattice point with base width 2h [22].

Then the basis functions have the property

P 1 e ae g 4
o (z) =
$°F 0 if pfgq

where % is the p-th lattice point. All fields can be expressed in terms

of a summation of the basis functions; for instance,

¥(x,t) = ; Vgt 8, () (8)
Clx,t) = ; Cqtt) 8qx) (9)

where x is a general point within the domain.

The weights wq and Qq are obtained by the Galerkin procedure.
Substitute (8) and (9) into the vorticity equation, multiply by a basis
function and integrate over the entire region. Since each element over-
laps those adjacent to it, in general each equation will contain terms

from its eight neighbors.

For closed-domain problems, we use centered time differences.

The resulting finite-element form of the vorticity equation is

M) = MR Y - 2atQk = pEH] (10a)

Ml TR e i

where

4 oF - " 7wk, ¢ - g wWs_v%)

In partially and completely open domains, however, a second-order
Adams-Bashforth time-differencing scheme is used to avoid computational

instability. In such cases,

MMy - Mmck) - at (10b)

W
O
1]
™) —
O

|
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-12.

The mass matrix M has the entries Mpq =ff¢p ¢q dA. M is factorable
into two parts, M = W(x) @ W(Y), where ® denotes tensor multiplication

and the matrices W(x) and W(y) are tridiagonal with the local form
1/6(1 4 1). The operator W(x) ® W(Y) can be interpreted to mean

successive multiplications--first rowwise, then columnwise--by the
matrix W = W(x) = W(y). Note that the superscripts (x) and (y) refer
to the order in which the tridiagonal multiplications are done. At each

time step, therefore, Eq. (10) can be written

M(_C,k+l) i W(x)aw(y)(glﬂl) X Pk+l

where gk“ is the N x N matrix of values of ( at time step (k+1l). In

this form, it is clear that Eq. (10a)is equivalent to two tridiagonal matrix

systems each of size N x N. The mass matrix can therefore be readily

inverted. Note that if W is set equal to the identity matrix, Eq. (10a) ]
reduces to the finite-difference form (5a). The Jacobian term is precisely

the Arakawa Jacobian employed with finite differences. In fact, the

Arakawa form is derivable from the finite-element formulation [24].

Fix [22] has shown that linear elements for the linearized advective

equation (, + ng = 0 produce fourth-order accurate phase errors. To
maintain this accuracy for the vorticity equation, the solution of the
Poisson equation for the streamfunction must also be of fourth order.

This is accomplished by the method of deferred corrections [25]. Note that

4
K(y) = h%%y + 5 h4(v4 - z——%——z) y +0m®)
3x dy

where K is the usual five-point Laplacian 1

0 1 0
K={1 -4 1
0 1 0

Therefore two successive Poisson solutions yield § to fourth order inthe

following manner. First, obtain a second-order solution, y,, from

K(tl) = hzg . Then, a fourth-order estimate of § is the solution to




4 4
K@) = h%C +2 (vzg o gxg—ay-z_ *1) : (11)

Finite elements require more computational work per time step
than do finite differences. First, two tridiagonal inversions must be
performed to determine the vorticity field, contrasted with a simple
direct substitution in finite differences. Second, two calls must be made
to the Poisson solver instead of one. The significant increase in accuracy
plus the virtue of using a technique based on a variational principle justify
this increased computational effort in many applications, as indeed they

will here (see, for instance, Section 7).

In the finite-element model, vorticity boundary conditions are
implemented in the following manner. For ease of presentation, we
introduce three types of points and their respective computational mole-

cules m, that is, their local contribution to mass matrix M:

1 4 1
(a) interior points m; = 1/36 | 4 16 4 (12a)
1 4 1
0 2
(b) regular boundary points mp = 1/36 { 0 4 8 | (Eastern wall)
I =2
(12b)
and 0 0 0
/ i (Southeast
(c) corner points mep = 1/36 { 0 1 2 CaraE)
0 2 4
(12¢)

The lattice point associated with the given element is denoted by the under-
line. Analogous computational molecules exist, for regular boundary
points on the northern, southern and western walls and for the southwest,

northwest and northeast corner points.

Assume first that vorticity is specified everywhere on the boundary

(corresponding to inflow everywhere) and solutions are needed only for

i
o
| 3
| 4
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i the interior points. It is then easy to show that this is equivalent to the

B system of equations:

M,(CT7) = Py (13)
ty where
« (
| P for interior points
1
B O Fa N /36 at (eastern) boundary (14)
4 A
o 0 1
P~ fag 0 4 gB/36 at (southeast) corner

[ S |

QB is the specified boundary vorticity, and M4 = W‘(IX) ® W‘(ly), where
W4 (= W‘(lx) = W‘(ly)) is the (N-2) x (N-2) tridiagonal matrix

4 -0
1 4 1

1

The subscript (4) refers to the corner terms in (15).

Next consider the case where vorticity is not specified anywhere on
the boundary, as in a basin totally enclosed by solid and/or outflow sides.
Here solutions are sought for the entire field (interior, boundary and g
corner points). It is then easy to show that the combined system including '

contributions of the form (12a-c) is equivalent to

k+l) s (16)

M,(€ 2

where M, = W(zx) ® Wgy), and

2 1
I .2
w, = 1/6 (17
2 \\‘}4\1
1 2

is now N x N.

“- e "“}wmﬁd@d& i
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These two cases represent extreme situations--either all inflow,
or all outflow (and/or solid boundaries). We seek a method which will
allow a general mix of inflow and outflow sections around the boundary.
We can do this by defining a new matrix, M, /22 which has the following

computational structure

[ ™y for points not at or adjacent to the
boundary (i; j ¥ l, 2’ N'ly N)

my - % mp for interior points adjacent to the
(eastern) boundary but not near a
corner (i = N-1, j # 2 or N-1)

]
A

7/2

1 1 1 for interior corner (southeast) points
{ Sy gingpmgtymee  Hi=IN-1, §i=12)

(18)

and so on for points adjacent to other boundaries and corners.
It can be shown that this new formulation decouples the determination of
the interior vorticity from that of the boundary vorticity and is equivalent

to
M7/2(gk+l) = Py (19)

where P7/2 has the same relationship to P as M7/2 to M given in

(18). In addition, M7/2 & Wg’;)z ® W.(;})Z where

22 1

e B o)

i %2

w

o =~

/2 -

and all of the unknowns are interior points. In short, we use the known
dynamic relations between boundary and interior points to disconnect the

solution of the one from the other.

Furthermore, given the interior values from the inversion of
M7/2’ each of the four boundaries decouples from the other boundaries

and all of the corners--for instance by defining a new matrix

] ]
-7 Mgg - 7 Myg (21)

Y .
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at the eastern boundary. The solution for the boundary values requires

4 inversions (one for each wall) of a tridiagonal system. The corner
point values then follow algebraically. In the finite-element approxi-
mation, the order of calculation is therefore the following: interior
vorticity, vorticity at regular boundary points, vorticity at corner points,
and lastly the streamfunction. The reader should note, however, that this
solution procedure does not strictly guarantee that values of vorticity on,

or adjacent to, points of inflow be in exact dynamic balance.

3.3 Pseudospectral Model

We seek a (discrete) spectral solution to Eq. (3) subject to some
appropriate set of boundary and initial conditions. For definiteness,
consider specifying boundary values of streamfunction and vorticity in
the manner first suggested by Charney, Fjortoft and von Neumann [18].
That is, we take as given quantities the values of §y everywhere along
£, and ( at those points along I characterized by mass influx.
Boundary values of vorticity at outflow points are therefore unconstrained;
they are computed as part of the calculation. Under these boundary
conditions, a completely enclosed domain is a special case, one for
which--owing to the absence of any inflow at all--vorticity need never
be specified at any time along Z. In analogy to the analytic problem, we
make a computational distinction between problems contained within

bounded regions and those characterized by partially or fully open domains.

3.3.1 Closed domain

In a closed system, the advective terms in Eq. (3) are treated
explicitly by a leapfrog time -differencing scheme. Under this second-
order approximation, the vorticity and Poisson equations become, in the

usual notation,

LI o P J, g ”1’:}
- ¥ g (21)
and
oByktl | k4l -




In space, we adopt a pseudospectral approximation technique for which

the dependent variables are expanded in a series of Chebyshev polynomials;
that is, let:

= N BE" - )
V%, ¥) = P mZ::o a T T () -1s% §s+l (23a)
K . (- S - &
cay = Y 2 b T @T (§ (23b)
n=0 m=0
and . N N . i 3
@&y = 2, X B T (H®T (Y (23c)
n=0 m=0
where
x = (2x - xB)/xB

and Tn(i‘:) = cos(n cos-l %) is the Chebyshev polynomial (of the first
kind) of degree n, a function of the linearly stretched coordinates X
and §. On the collocation grid (fcp, ?rq) = (cos(mp/N), cos(mq/N)),
0< p, qs<N, this implies for instance that

£ N N ok mpn
¥ (xp,yq) = Z Z a €08 VTN ( oS
n=0 m=0

’

Tgm
N

demonstrating the important fact that a Chebyshev transform is equi-
valent to a cosine transform on the (non-uniform) collocation grid
(x_, ?rq) and as such can be implemented very efficiently using special

forms of the fast Fourier transform algorithm [26].

Under these definitions, Eqs. (21) and (22) can be rewritten in

terms of the spectral coefficients a__, b _, and R__:
nm’ nm nm

k+1 k+l

bnm = an 0<n, ms<N (24)
i xx , _yy k+l k+1

e X = b 0<n, ms<N (25)




e —

XX Yy g
where C sl and am satisfy

52 92 XN N 1 X
E)xzw : axz n§) mz=0 anm Tn(X) Tm(Y)
N N
& XX a a
- nz(:) mzzjo a - T (&) T_(%)
and
92 gt N X " %
ayzt . ay° n§0 mgo *nm Ta®) T
N £8-\g 3
=% all T (%) T @)
n=0 m-=0

Unlike periodic models, the resulting spectral scheme can accommodate
quite arbitrary boundary conditions on I. In the present bounded

geometry, ¢(x,y) is given on the boundary by some set of values, let us
say ¥y In terms of the spectral ~oefficients a m this is equivalent to

requiring that

N N

N n N A
n§) (-1) ng,o aam TmiTg)| = ¥z(-Lyy) 0OsqsN (26b)
N N
mz=:o n;) 8 Tn(?:p) = 02(xp,+1) 0<ps N (26¢)

and

N m N -
m‘\:':o (-1) ;[,0 20m Tal¥p)| = ¥, -1). 0spsN (264)

These conditions are imposed on the Poisson equation (22) by using the
spectral analogue of the tau method [27], that is by neglecting the highest




order dynamic equations--those for n= N-1, N and m = N-1, N--in

(25). The remaining equations are then supplemented by boundary
conditions (26a-d), written in their equivalent Chebyshev series form,

to close the problem. The resulting matrix equations are not sparse;
however, they are quite easily diagonalized. The details of the solution
have been given by Haidvogel and Zang [28] who show that, for sufficiently
smooth fields and given accuracy, solutions to Poisson's equation can be
computed at least as efficiently by these spectral techniques as by certain

second and fourth-order finite-difference methods.

Once the spectral coefficients al;:;: have been determined, thus
yielding y(x,y) at the next time level, the velocity components u =-¢y
and v=+y  can be computed from well known Chebyshev derivative
relations. These in turn are combined to give the nonlinear term
J(¥,C) = v-(vC) by the simple pseudospectral procedure

Vool o= s e, T CE T )] e VR LT CE T )]

e T B s e e RS S e |
where the product v({ is determined locally by physical space multipli-
cations on the collocation grid (?:p,;rq) but the derivatives 9/0x and
9/dy are performed spectrally. The resulting scheme is of infinite-
order accuracy and can be constructed so as to conserve any of the
higher order invariants such as energy and enstrophy; however, it
retains the effects of high wavenumber aliasing at full strength [29].
The effects of aliasing can be identically removed, but at a large cost

in computational efficiency (approximately a factor of 2).

3.3.2 Open domain

In the spectral approximation, boundary conditions can only be
correctly applied if the highest-order terms are treated in some way
implicitly. For those problems in which the domain of integration is not
bounded by an impermeable surface and for which, therefore, values of
the vorticity are to be specified at points of inflow, this implies that the
advective term must be treated somewhat differently than in a closed

region. To do so, we adopt the following alternating direction implicit

(ADI) time -differencing scheme.




=

Y — T —T T YV

k+l/2 . eat _3~( og)1<+1/z b L1(§k+l/z) : gk_s.g_t-aa—(vocm

¢ + 5 y
C38t (oo [ig-ggd] + 4,05 + & fev- [lg-xg)c] + v, I 1/2
(27a)
gk+1+£§£§;(vog)k+1 / L2(§k+l) ; gk-l/z e_gg ;)x( og)k+1/z
S 38 feg [(g-yg)c] + ¥ /2 4 AL fev [g-ggle] + v 0
(27b)

where

@, 9 = ("—2—‘){ Ly - KL ) Ly

a5 = () e 1 - e 0k e -0

and

k k+1 1
1y g, &y, e+l and -1

are the known distributions of normal velocity at time step (k+1) along
the western, eastern, northern, and southern boundaries, respectively.
In effect, this semi-implicit procedure removes and treats implicitly
that portion of the advective term which arises from contributions due to
non-zero normal velocities at the domain edges. Besides assuring
stability of the computational scheme, the splitting of the advective term
relaxes the restrictive Courant condition which arises for explicitly
differenced inflow/outflow problems due to the crowding of Chebyshev

collocation points near the domain boundaries.

The solution of each half step--Eq. (27a) or (27b)--proceeds
similarly. Consider (27a). The implicit advective effects introduce a
coupling only the x direction. In fact, along any line ¥ = S‘rq = constant,

l(;+l(x, y ) is at most linear in X. Under these circumstances, operator

EL RPN PR geT—
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k+1/2) can be expressed spectrally as a sequence of tridiagonal

L, (¢
(0 < q< N). Similar remarks hold for

matrix equations, one for each ?q
operator Lz(gk+l) which is repeatedly solved along lines of constant
%= ip (0 < p< N). In either case, vorticity boundary conditions are
selectively introduced in place of higher order (dynamical) equations in
ki each tridiagonal system. Zero, one or two vorticity conditions are
imposed depending on the corresponding number of end points of the line
X=%_or y=Yy which are inflow points. The resulting numerical
scheme fixes the value of ( only at inflow points; however, all values
of boundary vorticity are in exact dynamic balance with the interior.
(This is not true of either the FFD or FE models--see the preceding
sections.) Note that problems involving inflow only in one coordinate
"  direction--such as the north wall forcing problem to be discussed
shortly--can be handled in a single step.
k+1/2 or §k+1, the associated

k+1/2 " *k+l At

S B it it S

s a3 ki

Once Eqs. (27a) or (27b) yield ¢
Poisson problem for the streamfunction fields ¥

solved as outlined above for a closed basin.




4. LINEAR AND NCNLINEAR BOX MODE TESTS

In this and the following sections, we briefly describe the
formulation and selected results of the prototype numerical tests
mentioned in Section 1. For a more complete summary of the results,
the reader is referred to Table I and Figures 1-27. (See also Section 2,

pages 5-8.)

4,1 Formulation

The class of exact solutions to the linear vorticity equation (e = 0)
satisfying homogeneous streamfunction boundary conditions on I are the

box modes or normal modes of the basin. These can be written

0<sxs Xp

O<sys< YB

¥(x,y,t) = sin(Ax) sin(py) cos(x+t/2) (28)

where x and t have been scaled with respect to d and (pd)-l,

respectively and d is taken to be the scale length of the travelling wave
(wavelength/2m). The parameters A and i, and the domain size Xg = ¥p

are related to the integer mode numbers, m and n, by the relations

x = m/(mz + nz)l/2
e n/(mz +nz)1/z
and /
3 _ 2 2.1/2
Xp = Yg = T(m~ + n")

Given this nondimensionalization, the linear box modes have a wave-
length, period and phase speed given by 27w, 47, and 1/2, respectively.

Corresponding to these physical measures are the computational measures

relative box size

1]
H

A xB/‘u’

spatial resolution parameter

1]
n

v

(N-1)/a = (N—l)ﬂ/xB
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and
n = 4m/At = temporal resolution parameter.

As mentioned previously, we use N to refer to the number of spatial
degrees of freedom (grid points, spectral functions, etc.) which

characterizes the x and y discretization of each model.

For €<<1, we can obtain an approximate solution to the non-

linear box mode problem using a small amplitude expansion in e. Let
A 2
Vi(x,y,t) = '&0 + evl tety, t...
where *o is the linear box mode solution (28). Then, to first order

Vot ¥y = -J(vo,v2¢0) (29)

which has the solution

2

2
tl(x, y,t) = sin(2py){ - % sinz Ax + . T cos(t + 2x)
4(142p7)

. 3x sinh R(x,-x)
sinh Rx X B B
B (sinh_ Rxp ) Boe (t b ) " Teinh Rxg cos{t + "/2)]
(30)

with
R = (4;12 - 1/4)1/2, > 1/4 .

Taking the expansion to second order, the right hand side of the
equation for ¥, has a component proportional to '0' This secularity
destroys the uniform convergence of the approximation for large t.
Following Pedlosky [30], it can be shown that by introducing the new time
scale 7 = t(l + 626), all forcing terms proportional to Vo can be
suppressed for a suitable choice of §. The perturbation solution
¥ = '0 + ey, can therefore be corrected by replacing t by t in (28)
and (30). The resulting expression is correct to first order; that is, its

leading-order error is O(ez). Since the computed solution can be closer




to (or further away from) the correct nonlinear solution than the
approximate analytic solution, the RMS error is an unknown mix of

errors in both the computed and approximate solutions.

4.2 Finite-difference model results
(Table I, cases 1-9; Figures 1-6)

An exact solution, *d’ to the discrete finite-difference Eqs. (5a)

and (5b) can be found by assuming

wd(x, y,t) = sin(Ax) sin(py) cos(ax + ot) (31)

where a and o are, in general, functions of the nondimensional space
and time increments h and At. (We therefore assume that the discrete
and analytic results differ only in the wavelength and phase speed of the
travelling component of the box mode.) Substituting in the trial solution
(31), we find that

sin(oc At) = 1/2 haAt

and

cos h(\h)

cos(ah) = 2= con(ih)

For h<< 7 and At<< T,
2
e = 1-4 2+ p®n? 4 om?)

and

o = 1/2 +1/48 at® - 1/24(4-2p2-u*)h? + o(at+n?)

That this is indeed the correct computational result has been verified by
direct numerical integration of the finite-difference equations (5a) and
(5b). The resulting computational solution differs from (31) only due to
machine truncation error--that is, RMS((') = RMS(C _-C,) = 0(10-11).

In comparison to the analytic solution (for which a=1 and ¢ = 1/2),

the wavelength and period are correct only to second order in space and

oo e b 6




time. For sufficiently small phase errors ¢ (= g r cd), it is easy to
show that

RMS(4") = [2(1 - cos #t)]/2
The initial error growth rate
RMS(y') ~ gt + 0(gt)> (32)

is therefore linear in time with a slope given by

= (1/48)at® - 1/24(4 - 2u° - uH)n®
®

2 4 -2
-Rp)v

~ (1%/312% - 1%/24(4 - 2 (33)

An example of this behavior is given in Figure (3a,b) for (v,n,m,n) =

(1642,128,1,1).

Note that for the discrete finite-difference solution, the spatial and
temporal contributions to the phase error ¢, being of opposite sign, tend
to offset each other. Because of this compensation effect, if an optimal
choice of At and h is made, the total error of the finite-difference
scheme can be made quite small although the contributions to ¢ from
spatial and temporal error are individually large. This property explains
the computed results as a function of v(=7/h) and n(= 47/At) in which
increasing mn (holding v fixed), and vice-versa, can increase, rather
than decrease the error of the computed finite-difference solution.

Compare, for instance, Table 1, cases 2 and 3.

For ¢ > 0, the values of { on the boundary enter the problem
through the nonlinear terms. Three ways of fixing CZ have been
examined in the context of the finite-difference model. They are the
specification of the analytic value of the vorticity (gz = ga), and the
Kreiss and Sundstrom/Davies conditions--see Section 3. For the non-

linear box mode problems studied, the following behavior was noted.

4,2.1 €=0.2

For low to moderate Rossby number the FD model is always well
behaved out to at least t = 5 periods independent of computational
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boundary condition. When gz = ga is the required condition, however,
there is a buildup of small-scale perturbation vorticity on the western
wall--Figure 6a. (Since similar effects are noted in all the models,

this buildup is presumably a manifestation of the physical response of

the system to the presence of small-scale numerical truncation error.)
This accumulation of (' is less rapid when the Kreiss boundary condition
is applied everywhere (Figure 6b) and is nearly eliminated when the
Sundstrom/Davies condition is invoked (Figure 6c). The RMS error
measures are, however, comparably large--several tens of percent

after five periods--for all three boundary conditions (Table 1, case 6).

4.2.2 ¢€=0.4

For higher Rossby number, the error accumulation to the west is
much more rapid and becomes noticeable in even the Sundstrom/Davies
experiments. In contrast to the finite-element and spectral models, how-
ever, the finite-difference scheme does not suffer catastrophic numerical
instability when grid-scale vorticity begins to accumulate. This lower
sensitivity to the presence of small-scale vorticity is perhaps due to a
small amount of (numerical) dissipation implicit in the finite-difference

formalism.

In general, the RMS error quantities have a linearly increasing
trend similar to, but somewhat greater than, that noted for ¢ = 0. Some

our approximate reference solution.

4.3 Finite-element model results
(Table I, cases 1-9, Figures 1-5)

-

The following functional dependence on the parameters v and 1

has been noted in the error analysis of the finite-element model results.
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4.3.1 n<<4y2v

For relatively coarse temporal resolution, the RMS error
quantities are well described, as in the finite-difference and spectral
models, by the relation ¢ = (10'2/3)7]'Z and consequently by an initial
linear increase with time proportional to n ©. This reflects the fact
that for sufficiently large v the error is attributable to temporal

truncation effects (identical in all three models).

4.3.2 n=4\Rv

As n increases, RMS((') for the finite-element is characterized

by a large initial value followed by a very slow linear increase there-
after (Figure 3c). (RMS(y')--whose values are perhaps dictated by a
different mechanism than those of RMS((')--maintains a linear trend.)
Apparently, the spatial contribution to the phase error ¢ is of a form
quite different than that implied by (33). For one thing, we know the
phase error to be proportional to h4 for the linearized advective
equation [22]. In parameter ranges where this diminished error growth

rate prevails, the finite-element model may offer some advantages for

long-term calculations; however, we have not verified this possibility.

For ¢ = 0, the maximum pointwise errors in vorticity tend to be
near the western boundary, but there is very little preferential
accumulation of small-scale vorticity there. With nonlinearity (¢ >0),
the situation is qualitatively different in the following way(s).

4.3.3 €=0.2

With ¢ = 0.2, an initial eastern boundary layer is generally
observed in the field of ('. This boundary layer eventually disappears,
to be replaced by an accumulation of perturbation vorticity on the
western wall, as in the FD and PS simulations (Figure 5c). In other




respects, the solutions bear some resemblance to those for ¢ = 0.

RMS(C') again shows evidence--for certain values of v and n--of
levelling off with time after an initially large increase, and §' some-

times resembles a box mode (out of phase with the reference solution).

4.3.4 ¢€=0.4

With stronger nonlinearity, perturbation vorticity on the grid-point
scale collects first on the western wall and then in the center of the
domain (perhaps as a numerical response to insufficient resolution of
the narrow wall layers of ('). Once this stage is reached, the solution
becomes numerically unstable, typically after about 5 periods (Table I,

case 7).

This catastrophic effect of small-scale vorticity accumulation is

reached in less than a period for ¢ = 0. 8.

4.4 Pseudospectral model results
(Table I, case 1-9; Figures 1-5,7)

For linear box modes, for which we have the analytic solution, the
spectral model shows three distinct types of behavior corresponding to
different regimes in the space of the nondimensional computational

parameters.

4.4.1 v»4/2, n <128 (n<<16:/2v)

Quite a large range of v exists for which spatial truncation errors
are totally insignificant in comparison to those arising from time-
differencing. For this range of parameters, the RMS quantities grow
linearly in time (Figures 3e,f) and can be quantitatively explained by the
simple phase error analysis of Section 4. 2 if, in addition, the assumption
is made that h= 0. There is no apparent buildup of perturbation
vorticity at scales other than those of the box modes themselves. Since
the computational errors are due to time-differencing alone, they are

proportional to n-z--see Table I, cases 1 and 2.
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4.4.2 -8—?5@5 vs 442, n <128 (n~1642v)

For v =4 and standard values of n(= 64 or 128), spatial error
becomés noticeable. The growth of the RMS quantities is no longer
strictly linear. In fact, the temporal variation of RMS((') begins to
assume characteristics noted (over a larger range of v and n) in the
finite-element model: a large initial error growth, followed by a
relatively slow increase with time. Indeed, it is interesting to note
that the spectral model can show the effects of compensating space and
time-differencing errors which is a general property of finite-difference
model. Something of this kind is clearly happening in the spectral model
when, for instance, RMS(y') decreases when the box mode numbers

m = n are increased from two to three at constant v and n (Table I,

cases 4 and 5). For these values of v, perturbation vorticity does appear
to collect on the western wall, perhaps in scales much smaller than those

of the original box modes.

4.4.3 v <242, ns 128 (n>>164/2v)

As expected, for extremely small values of the resolution para-
meter v, substantial spatial error results. The RMS error quantities
once again grow in a quasilinear fashion. The perturbation vorticity

field is now dominated by a narrow layer on the western wall. The

amplitude of this feature is sufficiently large (after 10 periods) as to
contribute recognizably to the total vorticity field.

For the nonlinear box modes, behavior of the computational system

depends sensitively on € in the following manner.

4.4.4 €=0.2

For ¢ €0.2, the spectral model is well behaved out to t=5
periods. By this time, however, integrated IVCIZ has begun to increase

rapidly. Significantly longer integrations could therefore be expected
to suffer eventual computational instability. Even at this level of
nonlinearity, increasing v and/or n (over the range tested: v < 8\/2_,
n < 128) does nothing to improve the error measures (Table I, cases 6,




8,9). The manifestation of error growth is a very definite preferential

accumulation of perturbation vorticity in narrow layers adjacent to the
western wall of the domain (Figure 5e). This accumulation of
perturbation vorticity may ultimately result from local numerical
truncation errors which are propagated to the west where, in the

absence of dissipation, they collect in a narrow boundary layer.

4.4.5 ¢=0.4

The results for ¢ = 0.4 are much more catastrophic, with per-
turbation vorticity collecting so quickly on the western wall that locally
intense gradients of vorticity grow to destroy the calculation after only
2.5 periods (Table I, case 7). This behavior is once again independent
of v and n. When the calculations go bad, they do so very quickly; pre-
sumably the computed fields are still quite accurate up to the instant of
catastrophic failure. (This essentially instantaneous instability is a
feature of the FE model also.) In a related calculation, it has been shown
that the useful integration of the spectral model can be prolonged to t=5
periods (and beyond) by periodically filtering the vorticity field by setting

bk (filtered) = ff b
nm nm nm

(see Section 3.3) where the spectral filter

£ = L0- exp[—.)t’(N2 - nz)]

and J¢ is adjusted so that Qk is smoothed only at the highest wave-
numbers. By comparing the filtered and unfiltered results, it is known
that such filtering does not affect the large-scale features of the 3
circulation and that the two streamfunction fields (up to the moment of
instability in the unfiltered calculation) are virtually identical (Figure 7).

Lastly, it is important to note that the RMS error quantities for
the nonlinear box mode problems are nearly independent of v and 7.
If there is nothing idiosyncratic about these problems, then we must
conclude that the largest contribution to the RMS error fields comes

from the uncertainty in the exact analytic solution to the nonlinear box

mode problem.
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4.5 Intercomparison

Results from the linear box mode tests (see Table I) demonstrate
that the finite-element (with N = 33) and pseudospectral (with N = 17)
models are comparably accurate over the range of v and n studied.
(The spectral model is, however, somewhat more efficient--Table II.)
And, even though the finite-difference is by far the least accurate model,
a phase error analysis of the FD model results shows that errors can be
minimized for optimal choices of v and 7n. Since these optimal para-
meters are functions of the time and space scales of the problem, however,
this property will be of questionable value in more general problems
characterized by multiple time and space scales. Even if a degree of
compensation could be guaranteed in a specific problem, errors get
smaller only if v and n are increased in the same ratio. A fourfold
decrease in the RMS errors would therefore require n and v to be
simultaneously increased by a factor of two, with a resulting increase in
computational work of a factor of eight. In contrast, the spectral model
(and to a lesser extent the FE model) generally require only n to be in-
creased--say by two, for a four-fold reduction in error--because of their

much greater spatial accuracy.

In the case of the nonlinear box modes, interpretation of the results
is complicated by the fact that we have only a perturbation solution with
which to compare the computational results. Consequently, our error
measures--such as RMS(y'), etc. --reflect three sources of error: spatial
and temporal truncation errors, and the error associated with not knowing
the exact analytic solution. The RMS quantities listed in Table I for the
nonlinear box mode tests cannot be used as direct measures of model

performance.

The essential qualitative distinction that can be made between the
results of the three models for ¢ >0 is that the finite-difference model,
though presumably less accurate, appears not to be susceptible to
catastrophic numerical instability when small-scale error fields are

present. Under these conditions, the FD spatial truncation error is, how-
ever, formally quite large. A nonlinear FD solution will therefore become

invalid after only a short period of time even though a stable calculation

can be maintained for a much longer time.




5. FORCED NONLINEAR BOX MODE TESTS

5.1 Formulation

One means of avoiding the complications associated with having
only a perturbation golution to the nonlinear box mode problem is to
consider the analogous forced problem, that is to seek solutions to the
inhomogeneous equation

8 .2 2

30 VVHIW VN v, = Flx,y,t) (34)
where F is some suitably chosen forcing function. As before, y is
required to vanish on . In particular, we wish to examine solutions
with spatial and temporal characteristics similar to those of the linear

box modes. Accordingly, set
y(x,y,t) = sinx siny cos(ax + by + ct) O<sx, ysm (35)

where a, b, and c are arbitrary constants which determine the wave-
length, period and phase speed of the forced mode (21r/(az+ b2)1/2’ 2n/c,
and c/(a2+b2)1/2, respectively). This will be a solution to (34) so longas

a _2 2 9
F(x,y,t) = ot vV +J(y,ev) +§; w(x’yyt) (36)
which will in general be nonvanishing, as will J(y, evzt). Given specific
values of parameters a, b, ¢ and e, the functional form of F can

therefore be directly calculated. For the following tests, the Rossby

e

number has been fixed at € = 0.2. An examination of higher ¢ behavior

is reserved for the open boundary calculations of Section 7. ¢

5.2 Finite-difference model results
(Table I, cases 10-12; Figures 8-10)

Table I shows the RMS error measures for the finite-difference
model after two periods for a variety of values of v and n. The results

indicate that the FD error norms are in general somewhat smaller than

those for the linear box mode problems with comparable nondimensional
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parameters. Compare Figures (3a,b) and (10a,b), for instance. In
addition, a partial compensation between spatial and temporal errors

once again exists so that the RMS errors (as in the linear box mode cases)
need not decrease with increasing n and v (Table I, cases 11 and 12).

As in the nonlinear box mode problems, perturbation vorticity tends to
collect on the western boundary (Figure 9a). This appears to be a quite
general property of all the simulations when € >0, no matter what the

orientation of the forced mode.

5.3 Finite-element model results
(Table I, cases 10-12; Figures 8-10)

The FE model behaves similarly, yielding very accurate and stable
solutions for a range of parameters (Table I, cases 10-12). For instance,
with (v,n,a,b) = (32,128,1/\2, 1/,2) the RMS errors are 0 (1-2%) after
two periods. As inthe FD, and as we shall see, the spectral computations,
the RMS errors given by the FE solution to the nonlinear forced box mode
problem are typically no less, and very often several times smaller, than
the errors noted for the linear unforced box mode tests with comparable
resolution. Figures (3c,d) and (10c,d) give an example of this behavior.
(Note, also that the character of the RMS error curves seems to be modi-
fied by the forcing such that RMS({') is a quasilinear function of time over
the range of parameters examined here.) The perturbation fields associated
with the forced problems, although small in amplitude, are still character-
ized by small-scale, westward-trapped (' and large-scale y§' patterns
(Figure 9).

5.4 Pseudospectral model results
(Table I, cases 10-12; Figures 8-10)

These calculations were all performed with very high spatial
resolution (v 2 16); consequently, insignificant spatial truncation error
is expected. With a diagonally propagating mode (a = b = 1/4/2) and
n = 128, the RMS errors are in fact very small, being no more than
0.5 percent after 5 periods of integration. Reference to Table I and

Figures 10e,f demonstrates, however, that not only are the RMS errors
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no longer strictly proportional to n-z--aa they were in the unforced
case with sufficient spatial resolution--but the error trends are not
linear in time. Although RMS((') increases monotonically, RMS(y')
seems to vary quasiperiodically with little superimposed trend
(Figures 10e, f).

As in the FD and FE simulations, the PS results for the forced
nonlinear box mode problems show a similar tendency for small-scale
¢' to accumulate at the western edge of the domain (Figure 9e). The
rate of this error accumulation might plausibly be thought to increase
dramatically with ¢, as in the nonlinear box mode problems; however,

this hypothesis was not tested.

None of these conclusions depend sensitively on the direction of ]

propagation of the forced mode.

e

5.5 Intercomparison

All three models are capable of delivering an accurate and stable
solution to the forced nonlinear box mode problem for the computational
parameters considered here. In all cases, the observed RMS errors
are less than or equal to those noted in the linear box mode cases (for

comparable v and n). It is quite likely that this reduction in numerical

B e e —

error, despite going to a problem with nontrivial nonlinearities, is in
some sense associated with a ''locking in'' of the numerical solution to
the applied forcing. The quasioscillatory nature of the resultant RMS(}')
error curves--see especially Figure 10f--argues for such g process.

We will return to this possibility in our discussion of future work.

- .




-35-

6. NORTH WALL FORCED MODE TESTS
6.1 Formulation

Consider solving Eq. (3) with € = 0 in a domain characterized by
three closed boundaries (on the east, south and west), but which is open

on its northern edge. If, in particular, we let the boundary conditions on

~ be

0 x=0, Xgj y=0
v = (37)
x) cos(x+t/2) Y=Yg

i . (mﬂ
sin y sin |—

then the solution is

yix,y,t) = sin (mﬂx) sin (—ﬂ) cos(x + t/2) (38)
*B YB
provided that Xg = Vg = (mz'i'r2 + YZ)I/Z‘ A special case of these north

wall forced modes are the linear box modes, Eq. (28), which result when
Y = nm, n an integer, so that the streamfunction vanishes on all four walls.

Under appropriate forcing conditions, trapped solutions also exist

to the north wall forced problem. One simple solution is

V(x,y,t) = sin (ri';x) sinh (-3—; ) cos(x + t/Z) (39)

where
2_2 2.1/2

xB=yB=(m‘n -y)/
The appropriate boundary conditions for this problem are clearly the
value of § evaluated along the boundary Z. Since these solutions decay
away from the north wall, (39) is referred to as a trapped case, and (38)
as a propagating case. Note that for propagation (trapping) xp > mm
(xB < mn). A more general description of the north wall forcing problem

and its relation to meander-induced forcing has been given by Harrison

[31].




Two particular north wall forcing problems have been considered,
one each of the propagating and trapped varieties. The former, which
we will refer to as case 1, corresponds to Eq. (38) with m =1 and
Yy = 9.36. The latter experiment, or case 2, is the trapped solution (39)

with m = 2 and y=4.0.

In addition to these linear solutions, the corresponding nonlinear
case 1 solution--that is, the solution to Eqs. (3) and (37) with m = 1,
Y=9.36 and € > 0--has been sought. With ¢= 0, problems 1 and 2
are similar in practice to the linear box mode problems, except that §
assumes some time-dependent distribution of values along the northern
boundary. With nonlinearity present, however, a set of vorticity
boundary conditions must also be specified along y = YB* In the FE and
PS models, vorticity is given its analytic value on boundary points
characterized by inflow. In addition to this, the FD model constrains
the values of vorticity on outflow by the Sundstrom/Davies condition--see
Section 3.1. For the purposes of this study, solid boundaries will be
treated as points of outflow. Since an exact solution to the resulting non-
linear problem is not available, we use (38) as our reference solution
even when ¢ > 0. This leads to a problem in interpreting the RMS error
quantities similar to that encountered in the nonlinear box mode tests

where only a perturbation solution was available.

6.2 Finite-difference model results
(Table I, cases 13-21; Figures 11-19)

Not only are the methods of solution nearly identical, as noted
above, but the results of the cases 1 and 2 linear north wall forced mode
problems are themselves quite similar to those of the linear box mode
tests (Section 4). The following v and 1 dependencies were noted in

the propagating and trapped cases, respectively.

6.2.1 Case 1 (propagating)

The case 1 north wall forced mode closely resembles the linear
box mode with m = n = 3. The results for these two FD test problems

are comparable with few exceptions. The error fields are once again
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attributable to a simple phase difference between the discrete and
analytic solutions (Figure 1la,b). RMS(y') and RMS((') grow linearly
in time over the five period integrations (Figure 13a,b). Because of the
highly structured nature of these solutions and the second-order spatial
accuracy of the model, the RMS FD errors tend to be quite large in both
although their variations with v and n (Table I) suggest that it is
possible to reduce the RMS error measures for suitable choices of the
computational parameters. One striking dissimilarity between the box
mode and north wall forced mode results is that, of the three error
measures tabulated, only the normalized error in integrated energy is
greatest for the north wall problem. This presumably reflects the
modified nature of the north wall forced problem in which energy is
exchanged between the interior solution and exterior environment at a
rate determined by the imposed values of Vs and CZ . The change in
energy level over the course of the 5 period simulation is, however,
always fractionally quite small, being no more than 0 (10%) even for the

poorest resolved experiment.

6.2.2 Case 2 (trapped)

Although the trapping scale y'l in equation (39) can be quite small,
it has been chosen in case 2 to give only moderate structure to the
solution. Consequently, the case 2 solution is actually somewhat less
structured than the propagating case and, as such, the trapped FD results
are more accurate by roughly a factor of four (Table I, cases 14 and 17,
for instance). The curves of RMS({') tend to rise to an initial moderate
value, but grow much more slowly thereafter (Figure 16a)--a rattern
noted over varying ranges of the parameters in the PS and FE linear box
mode experiments. (RMS(y') tends to remain quasilinear in time though
it also has large excursions about the linear trend.) For the case 2
simulations, the perturbation streamfunction and vorticity fields can no
longer be explained by a simple phase difference between computed and
analytic fields. Instead, perturbation vorticity tends to accumulate in

the northeast and northwest corners of the domain (Figure 15a).

For ¢ = 0.2, the character of the FD solution is changed dramatic-

|

ally. Early in the simulation, the fields of perturbation streamfunction :




and vorticity are characterized by a 6 x 2 celled structure. In fact,
this feature appears in the FE and PS simulations as well (Figure 18).

Since in this problem our reference solution is the linear forced mode

(38), this structured perturbation vorticity field must partially reflect
the nonlinear correction to (38) for € = 0.2. At later stages in the
simulation, the perturbation vorticity generated during the calculation
winds up on the western boundary where it forms six narrow cells of
vorticity adjacent to the walls (Figure 19). For the FD model, these
layers of vorticity dominate the field of total vorticity by the end of two

B periods of integration. Although this graininess in the FD results does

not typically lead to numerical instability, such ( fields are not accurately
resolvable on the F'D grid. For € = 0.4, this state of an unresolvable

i vorticity field is reached after one period.

As in the nonlinear box mode problem, the RMS errors are not

| calculated with respect to the exact analytic solution.

6.3 Finite-element model results
(Table I, cases 13-21; Figures 11-19)

As noted for the FD model, the qualitative characteristics of the

case 1 and case 2 FE computational results are very different,

particularly in the form of the ' and (' fields (Figures l2c,d and 15c,d)

and the associated RMS error curves (Figures 13c,d and l6c,d).

6.3.1 Case 1 (propagating)

As expected from their structural similarity, the 3 x 3 linear
box mode and case 1 north wall forced mode problems both give RMS
errors of 0 (5%) after five periods for (v,n) = (0(10), 64)--see Table I,
cases 5 and 14. (This is to be compared with errors of 304 and greater
for the comparable FD problems.) The perturbation fields are them-
selves box mode-like, indicating a simple phase error relationship
between computed and analytic solutions. Depending on y and 7, the
RMS((') error curves may have either of the two forms noted in the
linear box mode calculations. For the pivotal resolution (v,n)=32/3,64),
both RMS(y') and RMS(({') increase quasilinearly (Figure 13c,d).




While RMS((') decreases with increasing y and n, RMS(y') does not,
perhaps indicating some degree of compensation between the contributions

to } of spatial and temporal errors.

6.3.2 Case 2 (trapped)

For case 2, the fields of perturbation streamfunction and vorticity
are not simply related to the analytic form of the trapped modes. While
y' is dominated by lateral scales larger than those making up the trapped
modes, (' appears at highest wave numbers and is eventually trapped in
layers on both the eastern and western walls (Figure 15c,d). The RMS
errors increase only slowly with time (Figure l16c,d) and decrease
uniformly with increasing v and n around the point of pivotal resolution
(Table I). Typical error after five periods are 0 (2-3%4) for RMS(y')
and RMS(C') at (v,n) = (64/3, 64).

Stable, but noisy, solutions can be obtained out to five periods for
the case 1 problem with ¢ = 0.2. The final fields for the pivotal case--
(v,m) = (32/3,64)--are given in Figures 17c,d and 19¢c,d. Note the
preferential accumulation of grid-point scale vorticity in the western-
most basin whose contribution to the total field { is evident as early as
t = 2 periods. Although gridpoint variations in the west undoubtedly
contribute to sizeable numerical discretization errors in this region, it
must be added that the resulting total streamfunction field y appears to
be only locally affected, retaining over most of the basin the expected
mode-like form. At €= 0.4, the small-scale vorticity accumulates
much more catastrophically, leading to numerical instabilities for t< 5

periods (Table I, case 21).

6.4 Pseudospectral model results ;
(Table I, cases 13-21; Figures 11-20) 3

The results of the Chebyshev spectral model are both qualitatively
and quantitatively similar to those of the finite-element code. This is

perhaps due to their higher order spatial accuracy. L
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6.4.1 Case 1 (propagating)

For the values of v used in the case 1 tests, the spectral model
has negligible spatial differencing error. The perturbation fields are
therefore attributable to a phase error proportional to n-z and not at
all to v (Figures lle,f and 12e,f; Table I). For (v,n) = (32/3,64), the
resulting errors are 0 (5%)--comparable to (much less than) the FE (FD)
error norms. RMS(y') and RMS((') increase linearly in time
(Figure 13e, f).

6.4.2 Case 2 (trapped)

Although §' and (' are no longer characterized by a simple phase
relationship to v, and C_, but by basin-scale and grid-scale features,
respectively (Figures 15e,f), their RMS values at t = 5 periods are again
approximately proportional to 'r]'z (Table I, cases 17 and 18). For a
pivotal resolution of (v,n) = (64/3,64), RMS(¢')=~RMS((') = 0(14). After
an initial period of rapid error growth, the RMS norms are oscillatory in

time with a much slower linear trend.

When we set € = 0.2 and seek nonlinear solutions to the case 1 north
wall forced mode problem, the spectral model goes unstable as early as
t = 2 periods. This behavior coincides with that of the FE model, but at
slightly higher ¢. The origin of this instability is the ultrathin western
boundary layer of vorticity which develops in all the models by this time
as a result of accumulated computational error (Figure 19e). The
Chebyshev spectral model is especially sensitive to such a feature of the
solution because of its nonuniform distribution of resolution which favors
the domain edges over the interior. For reasonably narrow layers, the
Chebyshev model will give a much more accurate representation than
either the FD or FE models. However, the accuracy of the spectral
model works to its own disadvantage for layers which are much thinner
than the collocation grid spacing. This relationship between the accuracy
and stability of FD and PS approximation has also been noted in

integrations of one-dimensional viscous transport problems [15].

The most straightforward way to avoid eventual computational

instability is to suppress the generation of perturbation vorticity and its
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accumulation on the western boundary. This could be done by greatly
increasing the spatial and temporal resolution of the spectral model.

This, however, is inefficient. Quite good results have been attained by
periodic filtering of the vorticity field to preferentially remove numeric-
ally generated vorticity errors which, it is assumed, are of much

smaller scale than the solution we seek. Such an exponentially tapered
spectral filter--see Section 4.4--has been applied to the pivotal non-
linear north wall forced experiment--(v,n, €) = (32/3, 64,0. 2)--with the
results shown in Figure 20. After 1.5 periods, the streamfunction field
(which reflects the large-scale component of the flow) of both the unfiltered
and filtered simulations are virtually identical. On the small scales,
localized layers of (' exists; however, they are of much smaller
amplitude and not as thin in the filtered calculation. Subsequently, the
unfiltered run goes unstable at t=2 periods. With the filter, the
calculation proceeds to t = 5 periods with a resulting field which is at
least as smooth as the FD and FE simulations (Figure 17). One potentially
undesirable side-effect of the vorticity filter is that a much greater
fraction of the initial energy has been lost over the course of the in-
tegration (Table I, case 19). A more scale-selective filter might avoid

this problem.

6.5 Intercomparison

The intercomparative statements that can be made on the basis of
the linear north wall forcing problems do not differ substantially from
those made in connection with the linear box modes--Section 4.5. In
general, both the FE and PS models, by virtue of their superior spatial
accuracy, are notably more accurate than the FD model. The latter,
however, can have sinall overall discretization error when values of v
and n are chosen to insure partial compensation between spatial and
temporal errors. Errors in the PS simulations are strictly proportional
to Atz. This is also approximately true for the FE code in which, how-

ever, there is also a somewhat complicated parametric dependence on

the form of the RMS error growth curves. For case 1 (box mode-like
solution), y' and (' themselves resemble the analytic result for all

i
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three models. In case 2, §y' and (' collect at low and high wavenumbers

respectively, independent of numerical technique.

When ¢ > 0, the stability of the various models seems to be in-
versely related to the formal accuracy of the numerical technique
involved. While the FD formalism is stable for all the tests we have
conducted, the FE model develops instabilities for some values of the
parameter set (v,n,¢€). The spectral result becomes unbounded much
earlier than the FE calculation, but can be stabilized for integrations of
moderate length by spectrally filtering the vorticity field to delay the
accumulation of vorticity at unresolvable scales.
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7. LINEAR AND NONLINEAR ROSSBY WAVE TESTS

7.1 Formulation

The advected Rossby wave

¥(x,y,t) = - yy + sin(kx + 2y + ot) (40)
where

o = k(1 -c¢ey) (41)
and

k2 + 22 = 1

is a solution to both the linear and nonlinear vorticity equation (3). As

for the box modes, we have scaled with respect to d = (21!)-l times the
wavelength of the travelling wave; uy, 2 characteristic particle

velocity; and the time scale (ﬁd)-l. In the resulting nondimensional
system, the wavelength is 27, and the basin size xp = TA where A is
the number of half wavelengths per box width (a measure of the structure

of the solution). Theoretically it is known that Rossby waves are
individually unstable to small perturbations [32] with an e-folding time
proportional to (e)'l. This growth time scale is comparable in all cases to

the entire duration of the experiment. Due to the absence of large-amplitude

perturbations (or ''noise'') that can efficiently extract energy from the
primary wave, it is unlikely that purely physical instabilities--as opposed
to computational ones--play a role in the following results. The reader
should note that the nonlinearity of these model problems is trivial (that

is, self-cancelling) when y = 0,

7.2 Finite-difference model results
(Table I, cases 22-37; Figures 21-23, 25-27)

The results for one linear Rossby wave experiment in which
(v,n,€) = (32/3.5, 128, 0) are listed in Table I, case 22. Variations in
the RMS error measures as a function of v and n did not differ from the
comparable dependencies noted for the linear box mode and linear north
wall forced modes--see Sections 4.5 and 6. 5--and hence will not be
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reiterated here. The one substantive difference between these and the
other linear problems is that RMS(y') and RMS((') are not strictly
linear in time but appear to be levelling off at t = 5 periods.

With no mean flow and moderate nonlinearity (e,k,?,y) = (0.4,
3/./13, 2/4J/13,0), the RMS errors of the FD simulations are characterized
by very small temporal, relative to spatial, errors. At the pivotal
resolution (v,n) = (32/3.5,64), RMS(¢y') >~ RMS((') = NDIF(NRG) = 0 (14%)
after five pericds. The manifestation of error in these simulations are
perturbation fields closely resembling box modes which begin to destroy
the plane wave nature of the solution after a few periods (Figures 2la,b
1 and 22a,b). This form for the error fields appears to be independent of
' v and 1. Their amplitude, as stated previously, depends sensitively on
v but not on 1 for those values considered here. (In addition, other
simulations--cases 28, 29 and 31--show that RMS(y') and RMS((')
also depend on the orientation of the reference wave so that cancellation
of time and space errors can sometimes occur.) The RMS error
measures typically grow quasilinearly, though in some cases there is a
tendency for the rate of error growth to slow towards the end of the
simulation. Lastly, the change in the integrated kinetic energy of the
system is 0 (-104), somewhat larger than that observed in either the

nonlinear box mode or nonlinear north wall forced mode problems for

comparable v and 7.

For ¢ = 0.8, but still with (v,n,k,¢,y) = (32/3.5,64,3//13,2/y13,0),
the same qualitative remarks apply. The field of (' does, however,

begin to show some noticeable grid-scale variability in comparison to its
rather smooth mode-like appearance for €= 0.4. The associated values
of RMS(y') and RMS((') are comparable to those for €= 0.4.

With the addition of a mean flow (y # 0), the FD model actually
becomes more accurate perhaps reflecting the increased smoothness of
the ¢ field (Figure 25b). With y = 0.5, the FD model delivers a stable
solution with an accuracy of 0(20%) after 5 periods (Table I, case 26).

For a mean flow of the opposite sense (y = -0.5), the errors are
comparable or slightly larger. As with y = 0, the integrated errors grow
linearly in time, and the fields of y' and (' are dominated by large-scale
box mode-like features. Similar remarks hold for Rossby waves of
different orientation.
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7.3 Finite-element model results
(Table I, cases 22-37; Figures 21-23, 25-27)

The results of the FE linear Rossby wave calculations are as
expected from Sections 4.3 and 6.3. With (v,n,k,2,y) = (32/3.5,128,
3//13, 2/J13,0), RMS(y') < RMS((') £0{1%) at the end of five periods of
integration (Table I, case 22). In fact, RMS((') has nearly stopped
increasing altogether, though RMS(y') continues to rise quasilinearly.
Associated with these error levels are fields of §' and (' composed

of basin-scale and grid-scale features, respectively.

With € >0, the FE model accumulates box mode-like features in
the streamfunction field. Errors in the vorticity are resident at some-
what smaller scales. Consider, for instance, Figures 2lc,d and 22¢,d
which show the total and perturbation fields respectively at the end of a
five-period integration with (v,n,e€,k,2,vy) = (32/3.5,64,0.4,3//13,
2/\/T3, 0). For this case, the FE model has errors of 0(9¢), a significant
improvement over the second-order FD results which, as remarked,
have a large co:i.iponent of spatial truncation error. On the contrary, the
FE errors are most sensitive to changes in 7, at least in the parametric
neighborhood of our pivotal calculation (Table 1, cases 23-25).

Quantitatively similar statements can be made for simulations at
higher Rossby number--case 28, ¢ = 0.8--and in the presence of mean
advection--cases 26 and 27, y= + 0.5. (Note that the latter differ from
the nonadvected Rossby waves in that they have nontrivial nonlinearities. )
As with the FD model, neither the increase in € nor the inclusion of
mean advection seriously increases the RMS errors of the FE model.

As a result, for constant v and n (spatia) and temporal resolution),
RMS(y') = 0(1-4%) and RMS((') = 0(3-10%) after 5 periods (Table I, cases

s i ]

25-28). The error growth is quite consistently nearly linear (Figures 27c, d)

with the perturtation streamfunction appearing at the largest (basin)
scales although in a somewhat less organized pattern than the box mode-
like features noted with (€¢,y) = (0.4, 0)--Figures 22d and 26d.




7.4 Pseudospectral model results
(Table I, cases 22-37; Figures 21-27)

For 0.4<¢< 0.8, the spectral model suffers eventual numerical
instability at some t< 5 periods. Figure 24a shows a typical example
where (v,n,€,y) = (16/3.5,128,0.4,0). By t= 1.5 periods, the total
vorticity is dominated by small-scale noise; catastrophic failure of the
numerical experiment occurs shortly thereafter. The most intense grid-
scale vorticity features occur at one or more points on the boundary, but
the noise is also substantial in the interior along a line normal to that
point. This is undoubtedly due to the nature of the spectral expansion
which ties points together in just such a manner. The ultimate origin of
the PS instability is not known. The site of the instability, for instance,
is random and not simply related to the imposed patterns of inflow/outflow

along the domain margins.

It has been discovered empirically, however, that periodic spectral
filtering effectively controls the generation and accumulation of grid-
scale vorticity, and prevents numerical instability in these nonlinear
Rossby wave experiments. Figure 24 shows the effect on one such pivotal
calculation. By t= 1.5 periods, ( is entirely dominated by two regions
of high wavenumber noise in the unfiltered calculation. When the simulation
is redone, however, with filtering, the Rossby wave is easily advanced in

time to t = 5 periods. The final field is quite free of grid-scale noise.

Filtering of this kind stabilizes a wide range of nonlinear Rossby
wave calculations (Table I, cases 23-37). The resulting RMS errors are
also notably small, being no more than a few percent for the experiments
recorded in Table I. The errors associated with the filtered PS model
are typically many times smaller than those of the comparable FD test
and somewhat smaller than those given by the FE model. RMS(y') and
RMS(C') grow linearly in time (perhaps with some initially large value
of the errors due to the filtering (Figures 23 and 27) with very little
accumulation of unresolvable features in the vorticity field (Figures 2le, f
and 25e,f). The removal of these small-scale features by filtering does

not, however, seem to have a strong effect on the energy of the system.
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7.5 Intercomparison

The parametric results of the linear Rossby wave calculations
confirm the conclusions of Sections 4.5 and 6.5 in which it was noted
that the FE and PS models were in general more accurate than the FD
code, except for certain optimal choices of the computational parameters
v and n. In addition, the orientation of the Rossby wave has a strong
influence on the RMS errors of the FD model. All three models are

stable for € = 0.

When nonlinearity is admitted, however, the finite-difference and

finite-element models are alone capable of delivering stable and accurate
calculations of moderate duration (t< 5 periods) over a broad range of
parameters. The spectral model is typically unstable in these instances

unless it is supplemented by periodic spectral filtering of the vorticity field.

As a preliminary test of the response of the finite-difference and
finite-element models to the addition of a scale selective vorticity filtering
mechanism, we have redone the FD and FE experiments 25, 26 and 28 and
the FE experiments 7 and 21 with the application at each time step of a
16th-order Shapiro filter [33]. The results of these comparisons indicate
that the RMS errors of the FE calculations are generally lowered some-
what by the addition of filtering (particularly RMS((') whose smaller

scale components are being eliminated by the filtering) and its instabilities

delayed (but not removed). The opposite, namely an increase of error
with the application of filtering, is often true of the FD simulations. It is
not obvious why this should be the case unless the computational boundary
condition used in the FD formulation interacts in some systematic way
with the applied filtering. This possibility will be explored in our next

series of pseudoforecasting tests (see Section 8).

It is of interest to note, however, that all three models (perhaps
with some distribution of wavenumber selective filtering) can be made to
yield accurate solutions to these open domain problems. In fact, the
models have error accumulation characteristics not greatly different than 1
those noted in closed-basin problems. Specifically, the FE and PS models |

are many times more accurate for given v and n than the FD model,
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with the PS being overall the best. Even taking into account the
increased efficiency of the finite-difference scheme (Table II), the
difference between the second-order and higher-order methods is
significant. It is estimated that the FE (N = 33) and PS (N = 17) models
are, on the average, 15 and 3.5 times more accurate respectively than

a FD model with N =43 for which the running times of all three models
would be approximately equal.
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8. CONCLUSION

We have integrated the inviscid barotropic vorticity equation under
a variety of assumed initial and boundary conditions corresponding to
linear and nonlinear box modes, forced nonlinear box modes, north wall
forced modes (meander induced forcing), and linear and nonlinear Rossby
waves. The former two classes of problems are defined with closed
domains; the latter two are partially or totally open with respect to a
presupposed external environment and therefore represent prototype
limited-area calculations for the ocean. Each problem has been solved
using second-order finite-difference, fourth-order finite-element and
infinite-order spectral approximation techniques. For each of the three
models a series of calculations was performed to determine its accuracy,
stability and efficiency as a function of problem type and the associated
physical and computational nondimensional parameters. The most
important of these parameters are ¢, the Rossby number, and v and n,
nondimensional measures of the spatial and temporal resolution of the
numerical approximation. The accuracy of model results was determined,
wherever possible by comparing to known analytic or reference solutions.
RMS measures of the errors in the computed values of vorticity, RMS(C"),
and streamfunction, RMS({'), and a measure of the gain or loss of globally
integrated kinetic energy, NDIF (NRG), were tabulated. Integrations of
moderate length (5-10 periods of the reference solution) were performed as
an empirical measure of the functional dependence of model stability on
the parameters. As a result of these calculations, we are able to make
model-model intercomparative statements for a sequence of linear and
nonlinear problems in open, as well as closed, domains. To our
knowledge, such intercomparisons have not previously been made. A more
lengthy summary of the parameters and error norms can be found in
Section 2. A complete discussion of results has been given in Sections 4-7
and Table I.

These tests have shown that all three models are capable of delivering
efficient long-term solutions of acceptable accuracy to linear and weakly
nonlinear problems in both closed and open domains. The results also

suggest that given a judicious selection of frictional (filtering) mechanism
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and/or computational boundary condition, each of the models can be made

comparably accurate for highly nonlinear calculations. (This hypothesis

is being tested in a related series of experiments). We conclude, there-
' fore, that any of the physical/numerical models investigated here- -
modified perhaps by additional dissipative or boundary condition
assumptions--could be used for the intended scientific applications

mentioned in Section 1.

Under the assumption of inviscid dynamics, the operational per-
formance of the three models is most sensitively related to the Rossby
number, ¢. For 0< € <0.2, all the models are stable in the long-
term. Furthermore, unless an optional choice of v and n, the non-
dimensional space and time steps, is made, the spectral and finite-
element models are the most accurate, and the finite-difference the least.

1 That this ranking reflects the formal spatial accuracies of the models has

been demonstrated by a simple phase error analysis for the linear box
mode problems--Section 4.2. The net result of this increased accuracy
is that, for a given admissable error, both the FE and PS models are
many times more efficient than the FD model (Section 7.5). These

conclusions are valid independent of problem class,

Although the PS (and to a lesser degree the FE) models are

susceptible to eventual numerical instability characterized by the

catastrophic accumulation of grid-scale vorticity features, it has been
found that stability can often be maintained, and errors reduced, by a
periodic filtering (smoothing) procedure. Consider for instance the non-
linear Rossby wave experiments in the presence of mean advection. The
PS model develops numerical instabilities which appear as very high

wavenumber noise in the vorticity field. (This generation of noise may be

partially due to our choice of boundary conditions--see the following

remarks,) But, by selectively filtering out this grid-scale vorticity at
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each time step, the spectral model can be made stable in the long-term
sense while maintaining a very high accuracy (Table I, cases 23-37). The
RMS error norms of the FE (but not the FD) model are also reduced with

the application of a scale selective vorticity filter.

i
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If we had sufficient spatial resolution (that is, scale separation
between the energy-containing band and our cutoff wavenumber, KO) and
could devise the optimal filter, removing vorticity in this manner would

correspond to destroying enstrophy as it reached K, but to leaving energy

’
unaffected. Such intertial range filters have been c(:mstructed on the basis
of various turbulence theory closure schemes [34] and are typically non-
linear and highly dependent on the energy spectrum of the field being
filtered. Standard frictional mechanisms such as linear and second-order
vorticity dissipation, and the exponentially tapered vorticity filter adopted
here for the spectral calculations are almost certainly crude approximations
to these optimal filters. As we have seen, however, even relatively ad hoc
removal of small-scale vorticity prolongs the useful length of integration

and increases the accuracy of highly nonlinear simulations.

Were we to incorporate a higher order frictional mechanism into
our models in order to prevent the contamination of our results by small-
scale noise, however, the problem of specifying the outflow boundary
condition would take on added importance. We already know on the basis
of finite-difference calculations detailed in Section 4.2 that alternate
specifications of gz can lead to much smoother vorticity fields. Similar
findings for the nonlinear Rossby waves (not presented here) also indicate
that certain outflow boundary conditions are better able to control the
accumulation of small-scale vorticity near the boundaries, presumably by
allowing the grid-scale error field to propagate more freely through the
boundaries. Although the optimal form of the outflow boundary condition
is a matter of some debate, there are several strong candidates which have
proven useful in various applications. These include the<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>