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ABSTRACT

The inviscid barotropic vorticity equation is integrated under a
variety of assumed initial and boundary conditions corresponding to linear
and nonlinear box modes , forced nonlinear box modes , nor th wall forced
modes, and linear and nonlinear Roasby waves (with and without mean
advection) . The former two classes of problems are defined within a
closed domain. The latter two are partially or totally open to a specified
external environment and therefore represent prototype limited-area
calculations for the ocean.

To determine the extent to which the accuracy and efficiency of
limited-area calculations depend on the numerical integration scheme ,
each tes t problem is solved independently using the finite-difference (FD) ,
finite-element (FE ) and pseudospectral (PS ) techniques. The three
numerical models diffe r prima ril y in the formal accuracy of their spatial
approximations and their treatment of vorticity at outflow points along the
boundary. The FD model employs a centered second-orde r differencing
scheme and requires an extrapolatory (computational) boundary condition
to fix the values of vorticity at outflow boundary points. The FE model ,
which re present s $ and ~ as a s ummation of piecewise linear elements ,
is of fourth orde r for the linearized one-dimensional advective equation.
Further , a technique is developed by which the determination of the
inter ior values of C is decoupled from that of the boundary values; hence ,
the vorticity boundary conditions can be implemented without iterative
techniques. Lastly, the “infinite -order ” PS model avoids the assumption
of lateral periodicity by expanding $ and C in a double series of
Chebyshev polynomials. The resulting vorticity equation is solved in
the spectral domain using a modified alternating direction implicit method.
All three models are of second order in time and have conservative
fo rmulations of the nonlinear terms.

Integrations of moderate length (5-10 periods of the known anal ytic
solution) are performed to dete rmine the accuracy, stability and efficiency
of each model as a function of problem class and the associated physical
and computational nondimensional parameters. The most important of
these parameters are € , the Rossby number , v , the number of spatial
deg rees of freedom (grid points , expansion fuzx tions , etc . )  per half wave-
length of the reference solution , and r~, the number of time steps per
period of the reference solution. The latter two parameters  are non-
dimensional measures of the spatial and temporal resolution of the
numerical approximation.

These tests show that all three models are , in general, ca pable of
delivering sta ble and efficient solutions to linear and weakly nonlinear
problems in open domains (0 � e’ 0. 4 , 4 ~ v � 10, 64 � r~� 128). Despite

• their added complexit • ,  howeve r , the FE and PS models are on the average ,
4 and 15 times more accurate respectively than the FD model even taking
into account its increased efficiency. The results also suggest that given
a judicious selection of a frictional (filtering) mechanism and/o r computationa l
boundary condition (to suppress the accumulation of grldscale features),
each of the models can be made similarly accurate for hi ghly nonlinea r
calculations (e >> 0.4).
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1. INTRODUCTION

Limited-area or reg ional modelling of the oceans is impo rtant for a
number of scientific and potentially practical problems . These include
real-time forecasting/hindcasting studies of the oceani c interior and
regions of intense near-surface currents (such as the Gulf Stream) , and
idea lized local dynamic studies of those subregions of the oceanic gyre
thought to contribute to the generation and maintenance of the mean and
transient fields of motion . The former studies relate to ongoing and
anticipated measurements from a variety of modern techniques includin g
satellite surveys of the ocean [1 , 2]. The latter are prompted by recent
advances in our modelling and understanding of the mesoscale features of
the ocean circulation [3].

Numerical eddy-resolving general circulation models in gyre-scale
systems (EGCM’s) have shown that transient eddies simila r to those
observed play an important role in determining the mean flow [4-6]. The
ver y high horizontal resolution needed to resolve adequately the dynamics
on the scale of the eddies , howeve r , make EGCM’s expensive to run even
when , in practice , basins of only a few eddy wavelengths in horizontal
extent are used. Furthermore, gyre-scale models are complicated by the
fact that they contain many subregion s of distinct physics [7, 8].

For statistically homogeneous subregions of the gyre , local dynamical
studies can be made with periodic boundary condition models . Such models
assume that the physics is loca lly determined and essentially independent
of information such as scales and amplitudes which could be generated
elsewhere and continuously transported across the boundaries. Such
“process ” models have been used to investigate the dynamical properties
of the mesoscale eddy field under simulated mid-ocean conditions in
regions well removed from boundary layer effects [9, 10]. Many subregions
of the gyre obviously violate the above assumptions. For such regions , as
well as for many othe r regional hydrodynamic problems other more
complicated boundary conditions are necessary [11]. Such problems
include limited-area oceanic forecasting [12], coastal modelling [13], and
the study of intense current systems and thei r associated instabilities. 
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The determination of valid and convenient forms of boundary

conditions , particularly at points of outflow, constitutes a major ,
essentially unresolved, problem in the modelling of many hydrodynamic

systems over regiona l doma ins . The choice of boundary conditions
involves a number of physical, mathematical, and numerical (or computa-
tional) considerations. On large and regional scales , the conditions should
correctly represent or parameterize the interaction of the (arbitrary)
volume of fluid with its surroundings. Smaller scale physical phenomenon
generated internally within the region should not be trapped but allowed to
pass out of the domain; i. e . ,  the model boundary should be transparent
for such small-scale processes. The mathematical problem consisting of

• model equations and boundary conditions should be well posed. The
numerical scheme chosen for computational pur poses should be of desired

accuracy and acceptable efficiency.

In its computational algorithms, a given numerical scheme may -

involve the use of boundary information which is not in principle required
• in the well-posed analytical problem. Such auxiliary info rmation is known

as a computational boundary condition and should be chosen for convenience
and ef ficiency, but should not in principle affect physical results . In
practice , specific problems appear to require special conditions and a
trial and error approach is usually indicated. Alternate choices of
boundary conditions do effect the accuracy and stability of regional
computations . For instance , in viscous limited-area calculations it is
known that incorrect specification of boundary conditions or data generally
leads to the evolution of boundary layers adjacent to outflow [14, 15].
Several types of boundary conditions have been used to avoid the problems
associa ted with outflow, including extrapolatory formulas [16 , 17], and
radia tion conditions [11]. In inviscid systems, Charney, Fjortoft and von
Neumann [181 originally argued heuristically that, given the stream-
function at all boundary points , only the values of vorticity at inflow points
were needed to determine consistently solutions to the barotropic vorticity
equation. This conjecture has since been proven more rigorously [19].
In practice , however , unless iterative or implicit numerical techniques or

~~~ one-sided differencing schemes are used , inviscid calculations require

- 

- some auxiliary relationship by which to prescribe vorticity at outflow
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boundary points. Such a numerical scheme is often sensitive to the
specific choice of this computational boundary condition. An example of
this has been given by Shapiro and O’Brien [20 ] in the context of a limited-
area meteorological forecast. They showed that the method of character-
istics worked well as a computational boundary condition but that the
specification of vorticity at outflow boundary points on the basis of known
boundary data led to numerical instability.

In this report , we evaluate the feasibility of performing barotropic
open ocean calculations by investigating and comparing the accuracy,
efficiency and stabi lity of three limited-area numerical models based
respectively on the finite-difference, finite-element and spectral
approximation methods. The physical boundary conditions used are the
Charney- Fjortoft-von Neumann conditions . The calculations are mostly
inviscid but in some cases a dissipative filter is included. The codes
diffe r primarily in the details arid accuracy of their spatial discretization
schemes and in their treatments of the vorticity at outflow. The statement
of the nondimensional vorticity equation and a description of the numerical
techniques are given in Sections 2 and 3.

The three models have been tested and intercompared for a variety
of prototype physical pr oblems in closed and open basins and over a range

of the nondirnensional physical and computational parameters corresponding
to each problem class. First , the unforced (homogeneous ) solutions to the
linear and nonlinear vorticity equation in a closed-basin are found and
compared to the known exact and perturbation solutions for linear and
nonlinear box modes respectively (Section 4). With the addition of a body
force , various exact nonlinear closed-basin solutions are constructed and
tested (Section 5). Next, oscillations driven by time-dependent distribution
of boundary values along the northern (open) boundary are examined
(North wall forced modes - Section 6). Lastly, in a fully open domain,

F linear and nonlinear R.ossby wave solutions with and without mean ad.-
vection are obtained and intercoinpared (Section 7). Model-model inter-
comparisons of this type have been carried out for simple advective

problems in closed basins (e .g. , Orszag and Is raeli [21]). To our
knowledge, however , this is the first such study that encompasses
limited-area hydrodynamic modelling problems as well .

- ~~ - - —  — - 
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The development of a regional ;uasigeostrophic modelling capability
has two immediate intended applications. Firstly, forecasting/hind-
casting studies of the mid-ocean mesoscale eddy field will be under taken.
For this work the MODE and POLYMODE synoptic data sets , can be
utilized in a variety of ways both as boundary information and forecast
ver ification data. Secondly, motivated by recent EGCM simulations of
eddy generation and eddy mean field interaction in regions of intense
mean flow, the finite-amplitude instabilities of idealized jets will be
investigated as a function of environmental parameters and inlet conditions.
Ultimately, if possible , real Gulf Stream meander region observational
data will be used. For these purposes , baroclinic models will be needed.
The extension of the following results to a multi - level configuration is ,
however , straightforward. A two-level version of the code described in
Section 3. 3 is already operational.
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2. MODELLING EQUATIONS, METHODOLOGY AND

FORMAT OF RESULTS

We consider the barotropic vorticity equation on a p -plane which
can be written in dimensional form as

0 � x � L
+ ~ *, ) (C ÷ f) = F(x ,y)  x (1)

O~~~y �L

where
f =

and

J(~ ) !ti !i ~~~~~~— Ox Oy Oy Ox

In addition ,

(2)

is the relationship between streamfunction ($) and vorticity (c), and
F(x, y) represents the effects of a body force , if any. Dissipation has been
neg lected for three reasons . First , the inviscid system poses a simpler
physical and numerical problem, one for which many analytic and per-
turbation solutions are available. This is the basis of our testing of the
limited-area models described in Section 3. Second , quadratic conservation
laws are available for non-dissipative physical and numerical systems .
This property also contributes to the evaluation of model performance.
Lastly, by ignoring explicit higher-orde r friction, we sidestep for the
moment the question of the correct specification of vorticity boundary
conditions on outflow , which are not formally needed for integration of the
inviscid system. The assumption of inviacid dynamics does , however ,
require that greater care be taken to construct a numerical scheme which
is stable in the absence of explicit dissipative (that is , smoothing)
mechanisms. As we shall see , such filtering is in fact necessary to main-
tam stability in some cases.
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If we now nondimensionalize x, y, t , and $ by d , d, (pdY ’ and

(V 0d) respectively, then ( 1) becomes , in nondimensional for m,

2 
0 � x � x

÷ £J($, ) V $ + $
~ 

= F(x,y) 
B (3)

where the Rossby number

£ = v0/pd2

and

X
B 

= L/d = L/ d

The parameters d and V0 are taken to be the characteristic length and

velocity scales of the anticipated field of motion. Note that the length

scale d does not correspond to the basin dimensions L~ or L~ ; hence ,

X
B 

and 
~B are , in general, greater than one .

The modelling strategy developed herein involves the integration of

Eq. (3) for several set8 of initial and boundary conditions corresponding

to succeedingly more complex physical phenomena in closed and open

domains. The problems we will consider include linear and nonlinear box

modes , for ced nonlinear box modes, linear and nonlinear north wall forced

modes (meander-induce d forcing) , and linear and nonlinear Rossby waves.

The sequence of linear problems (box modes, north wall forced modes ,
and Rossby waves) serve as pivotal calculations for which no boundary

values of vorticity are formally required. With the addition of nonlinearity,

both accuracy and stability of model calculations can be assessed as a

function of e for closed-domain problems in which strict conservation

laws apply (nonlinear and forced nonlinear box modes) , and partially open

and totally open domain problems in which interaction with the surrounding

environment is possible and the question of computational boundary

conditions arises (nonlinear north wall forced modes and nonlinear Rossby

waves). The former experiments are the most easily understood. The

latter series of tests - particularly the nonlinear Rossby waves with mean

advection - are those most relevant to future open ocean modelling

applications.
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Each problem thus defined has been solved using three independent
(and quite different ) numerical techniques. The finite-difference (FD)
scheme is second-order accurate in space and time and has the advantage

of being easily coded. It should, in addi tion, be the most efficient of the
three models for a fixed number of spatial degrees of freedom. The finite -

element (FE ) method, though somewhat more complicated than the FD
scheme, is known to be of fo urth order for certain advective problems [22].

In general , we expect smaller errors with the FE model, but at a slightly

higher computational cost. Lastly, pseudospectral (PS ) approximation
techniques [21] offe r greatly reduced spatial truncation errors in comparison
to both of the other two methods. The PS model is , therefore , formally the

most accurate but thereby it may be subject to instabilities not seen in the
FD formulation - see , for instance, Section 7. Of the three models , it is
also the most dif fic ult to code (although it can be made comparably efficient
if care is taken to optimize the spectral transforms).

Since analytic or perturbation solutions are available for many of the
prototype physical problems examined herein , direct measures of numerical

error are available for each model. Of particular interest are the RMS
errors in streaxnf unction and vorticity, and the normalized difference in
integrated kinetic ener gy as a function of time; these area integrated error
measures are defined as

RMS($’) = 
~
II($C 

- $a)
2 dA/JJ($ )2 

dAN2 (4a)

RMS (~ ’)  = {JJ~~c - Ca)
2 

~~~“JJ(Ca) 2 dA~~’~ (4b)

and 

NDIF(NRG) = {flIv$~I2 
~~ - JJIV$ a 12 

~~ }/JJI ft a I
2 dA (4 c)

where subscripts c and a refer to the computed and analytic solutions

respectively and a primed quantity represents a difference f rom the

reference solution. Using error measures of this sort, it is possible to

ascertain the accuracy of each model.

Table I summarizes the results of all the experiments as a function
of problem type and the associated nondimensional parameters. The first

_ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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seven columns of Table I refer to the experiment number and the (not

necessarily independent) quantities

(i) c Rossby number

(ii) X
B 

= nondimen sional basin size

(iii) N number of spatial degrees of freedom in eac h
direction

(iv) Ii = xB
/(N_1) nondimensional mesh interval

(v) A number of half wavelengths or turning points of
the reference solution within the domain (non-
dimensional measure of the structure of the
solution )

(vi) v = (N- 1)/A nondimensional spatial resolution (number of
degrees of freedom per turning point of the
reference solution)

(vi i)  At nondimensional time increment
and

(viii) ri nondimensional temporal resolution (number of
time steps per period of the refe rence solution).

The last four columns tabulate the duration of the experiment (in periods)

and the final values of the three error measures defined above. The

duration of simulations which suffered numerical insta bility are denoted by

brackets. No RMS error values are listed for these experiments. Inte r-

mediate columns of Table I are reserved for special parameters representative

of each problem class. These will be introduced in Sections 4 through 7.

Accompanying Table I are a series of figures which show in more detail

the results of one expe riment for each problem category. Figures (1-3) are

typical. The first two figures give contour plots of ~ and $, and 
~~~~

‘ and

$‘ res pec tively at the end of the simulations for each model. Figure 3 shows

the corresponding variation with time of RMS(C’) and RMS($’) for each

model. Contouring intervals and scaling information are given in the figure

captions . Note in particula r that the RMS error curves are not necessarily

scaled similarly, even within a given figure.

The forme r (contour ) plots give a visual estimate of the wavenumber con-

tent of the computed solution (and hence an estimate of its formal spatial accuracy)

and reveal any localized features (physical or numerical) that might occur.
Thi s is particularly important in those nonlinear experiments for which only
approximate or linearized reference solutions are available and for which the
RMS errors  are therefore difficult to interpret. 



3. MODEL FORMULATION

3. 1 Finite-difference model

A traditional discrete formulation of Eq. (3) results by approximating
all derivatives by second-orde r centered finite differences. The advantages
of finite differences are the simplicity of the required coding and our
accumulated experience of using this classical technique . With centered
(leapfro g) time differencing, the vorticity and Poisson equations become :

k+l k-i  2A tc * k k At kC = C - 2 ~ (
~ ,C ) - —

~~~ 8 $ (5a)
h X

and

o + ~ = h2
~~~~’ (5b)xx yy

k k k kwhere finite-difference operators 6 (4 , ) = 4, . . - 4 ,. 
~ 

. and 6 (4, ) =
k k k X iT L ~~~~J 1-

- 2$. . + ~ 1 The Arakawa [23] Jacobian J~ is given by the
iT , J  1,) 1

fini te-difference approximation to the equivalent form 1/3 ( [$
~C~ 

- $yCx] ÷F + - ($C x )y l + [- ($
~

C)
~ ÷ . This expression conserves

vor ticity, energy and enstrophy when integrated over a closed domain.
The Poisson equation (Sb) with Dirichiet boundary conditions is approximated
by the standard five point Laplacian operator and solved with the NCAR
cyclic reduction subroutine pa ckage. Finite differences are of second-order
accuracy, so the total discretization error is 0(h 2 + At 2 ).

For linear problems (c = 0) , vor ticity on the boundary E does not
enter the problem in eithe r the vorticity equation or the Poisson equation.
For nonlinear problems (c / 0), vorticity is specified at inflow points
according to the Charney-Fjortoft-von Neumann boundary condition [18].
Centered finite differences requ ire boundary data eve rywhere , and in
contrast to the analytic problem, some auxiliary relationship (that is , a
computational boundary condition) must be assumed at outflow point s in
order to determine the vorticity there (unless an iterative technique is used
to fix C on E).

Optimally, the computational boundar ies of an open ocean model
should be transparent to signals impinging on them. Thus, the formation 
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of boundary layers on or wave reflections from the boundary are

undesirable. The most successful computational boundary condition

considered in this study is

k k - 
k+l k-lC B + C B 2  - + C B_ l  (6)

which was introduced by Sundstrom [16]. Here B, B-i , B-2 represent
a boundary point and its lst and 2nd normal interior neighbors. Davies
[17] demonstrated the stability propertie s of this closure for a variety of
nonlinear problems .

There are several possible physical interpretations of statement
(6): eithe r (a) it is equivalent to equating the time and spatial averages

of C at point B-i (a kind of smoothness condition at outflow);
(b) Eq. (6) is equivalent to C~ = c2

C,~~ where c = Ax/At (a “local”
wave equation); or (c) it is a low-order spatial extrapolation scheme.

In order to implement the Sundstrom/Davies formula , the quantity
is eliminated by application of the vorticity equation evaluated at

the point B-i , t =  kAt. This yields an implicit set of equations for the
boundary vorticity. Formally, this requires the inversion of a hepta-
diagona l matrix with cyclic ordering of the points. However , it can be

shown that by elimination of those boundary points which are corne r
neighbors , a simple tridiagona l system results , provided there is at
least one inflow point (Appendix I). Note that the boundary vorticity is

calculated after the interior vorticity and the strearnfunction.

Other computational boundary conditions investigated in this study
are the Kreiss extrapolation = 2C~~~l - ~~~~ [11] and the condition

Ca

3. 2 Finite-element model

In the finite-element formulation, we assume a set of bas ic functions

consisting of piecewise polynomials, the simplest being piecewise linear

elements arranged in a rectangular lattice. In one dimension, each 
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element is a chapeau or hill function, and in two dimensions, a pyramidal
function , each centered on the lattice point with base width Zh [22].

• Then the basis functions have the property

1 if p = q
(7)q - p  0 if p / c l

where is the p-th lattice point . All fields can be expressed in terms
of a summation of the basis functions ; for instance ,

$(x , t) = 
E 

41q (t) 
~q (& (8)

q

~(x,t) = ~~ Cq (t ) ~ (~c) (9)
q q

where x is a general point within the domain.

The weights 4, and are obtained by the Galerkin procedure.
Substitute (8) and (9) into the vorticity equation, multiply by a basis
function and integrate ove r the entire region. Since each element over-
laps those adjacent to it , in general each equation will contain terms
from its eight neighbors.

For closed-domain problems , we use cente red time differences.
The resulting finite-element form of the vorticity equation is

= M(c ’~~’) - 2AtQ’~ = ~k÷l (i0a)

whe r e

Qk 
= 

~~ 
J*(4 ,k 

C
k) - ~~~~ W(~ ) o~ ($ l )

In partially and completely open domains , however , a second-order
Adams -Bashforth t ime-diffe rencing scheme is used to avoid computational

• instability. In such cases ,

M(Ck+l) = M(C
k) - At~~ Qk 

- .~.Q 1~~1} . (lO b )

- - -- -—• -•  —-~~~~~~ .— -~~~~ —• - - —--- --•~
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The mass matrix M has the entries M = ff0 0 dA. M is factorable
1 )  ( )  pq p q

into two pa rts , M = W’ ~ W , where ~ denotes tensor multiplication
and the mat rices w~~ and W~~ are tridiagonal with the local form

1/6(1 4 1). The operator W~~ ~ W~~ can be interp reted to mean

successive multiplications- -first rowwise, then columnwise- - by the
matrix w = w~~ ~~~~~ Note that the superscripts (x) and (y) re fer

to the order in which the tridiagonal multiplications are done. At each
time step, therefore, Eq. (10) can be written

M(~~ +l ) = w~~® w (y) (c k+l ) = ~ k+l

where ~
1c+l is the N x N matrix of values of ~ at time step (k+l) . In

thi s form, it is clear that Eq. ( l0a) i s  equivalent to two tridiagonal matrix
sys tems each of size N x N. The mass matrix can therefore be readily
inverted. Note that if W is set equa l to the identity matrix, Eq. (l0a)
red uces to the finite-difference form (Sa). The Jacobian term is precisely
the Arakawa Jacobian employed with finite differences. In fact , the
Arakawa form is derivable from the finite-element formulation [24 ].

Fix [22] has shown that linear elements for the linearized advective
equation 

~~ ÷ UC,~ 0 produce fourth-order accurate phase errors.  To
maintain this accuracy for the vorticity equation, the solution of the
Poisson equation for the streamfunction must also be of fourth order.
This is accomplished by the method of deferred corrections [25]. Note tha t

K( $) = h2v2
4, ÷ J.._ h4(~

4 
- 2 ~~ 

+ 0(h 6 )
ax ~~

where K is the usual five -point Laplacian

/ 0  i 0
K = (l  -4 1

1 0

Therefore two successive Poisson solutions yield 4, to fourth order inthe

following manner. First , obtain a second-order solution, $
~

, from

K($ 1) = h2C .  Then , a fourth-order estimate of $ is the solution to

~~~~ —•
~~~~

•
~~~~ 

- - - •
~~ 
-

~~~~~~
--

~~~~~~~~~~~~
-

~~~~~~~ 
- • —~~~~

•
~~~~~ ~~

—- • •• -
~~~~~~~
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K($) = h2
C ÷~~ (~

z
~ - 2  2 $ 1) .  (11)

a x a y

Fini te elements require more computationa l work per time step
than do finite differences. First , two tridiagonal inversions must be

performed to determine the vorticity field, contrasted with a simple

direct substitution in finite differences. Second , two calls m ust be made

to the Poisson solver instead of one. The significant increase in accuracy

plus the virtue of using a technique based on a variational principle j ustify

this increased computational effort in many applications , as indeed they

will here (see , for instance , Section 7).

In the finite-element model , vorticity boundary conditions are

implemented in the following manner. For ease of presentation, we

introduce three types of points and their respective computational mole-
cules m, that is , their local contribution to mass matrix M:

/ 1 4 1\
(a) interior point s m1 1/36 ( 4 16 4 ) (l2a)

• \l 4 1/

/ 0  1 2 \
(b) regular boundary point s mE = 1/36 ( 0 4 8 J (Eastern wall)

1
(lZb)

and / 0  0 0~~I I (Southeast(c) corner points mSE = i f36 
1 

o 1 2 , corner)
\ 0  2 4/ .

(l 2c)

The lattice point associated with the given element is denoted by the under-
line . Analogous computationa l molecules exist, for regula r boundary
points on the northern, southern and western walls and for the southwest ,
northwest and northeast corner points .

Assume first that vorticity is specified everywhere on the boundary

(corres ponding to inflow everywhere) and solutions are needed only for

~ 

~~~~~~~~~~~~~~~~~~
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the interior points. It is then easy to show that this is equivalent to the

system of equations:

M4 (C k+l ) = P4 
(13)

where

P for interior points

~~~~- (~)c~i~ at (eastern) boundary (14)

/0 0 l \
p - ( 0  0 4 J C B/36 at (southeast) corne r

\ i  4 1/

is the specified boundary vorticity, and M4 W~~ ® ~~~ where

W4 (= W~~ = ~~~ is the (N-2) x (N-2) tridiagonal matrix

4 1
/ 1 4 1

W4 = l/6 (~ 

~~~~~~~~~~~~~ 

(15)

1 4

The subscript (4) refers to the corner terms in (15).

Next consider the case where vorticity is not specified anywhere on

the boundary, as in a basin totally enclosed by solid and/or outflow sides.

Here solutions are sought for the entire field (interior , boundary and

corner points). It is then easy to show that the combined system including

contributions of the form (l2a-c) is equivalent to

M2(C k1
~~) = P2 

(16)

where M2 = ~~~~ ® ~~ y) and

W 2 = 1/6 (~&~~~~) (17)

is now N x N .

-~~~~~ -—~~~---— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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These two cases represent extreme situations - -either all inflow,
or all outflow (and/or solid bounda ries). We seek a method which will
allow a general mix of inflow and outflow sections around the boundary.
We can do this by defining a new matrix , M 712, which has the following
computational structure

rn1 for points not at or adjacent to the
boundary (i, ~ / 1, 2 , N-l , N)

- m~ for inte rior points adjacent to the
M - 

(eas tern) boundar y but not near a
7/2 - cor ner (i = N-i . j / 2 or N- i )

1 1 1 for interior corner (so utheast) point s

~~~~~~~~~~~~~~~~~~~ (i = N- i , j = 2) 
(18)

and so on fo r points adjacent to other boundaries and corners.
It can be shown that this new fo rmulation decouples the determination of
the interior vorticity from that of the boundary vorticity and is equivalent
to

k+lM 7/7 (C ) = P~~ 2 (19)

where P7/2 has the same relationship to P as M 7/2 to M given in
( 18). [n addition , M 7/2 = e where

7/2 1

W 7/2 = 

1

~~~~~~~~~~~~~~~~
l 

‘ 
(20)

1 7/2

and all of the unknowns are interior points. In short , we use the known
dynamic relations between boundary and interior points to disconnect the
solution of the one from the other.

Furthermore, given the interior values from the inversion of
M 7/2~ each of the four boundaries decouples from the othe r boundaries
and all of the corners - -fo r instance by defining a new matrix

M’ - M ~!M - ‘M (21)E E 2 SE 2 NE
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at the eastern boundary. The solution for the boundary values requires
4 inversions (one for each wall) of a tridiagonal system. The corner
point values then follow algebraically. In the finite-element approxi-
mation, the order of calcula tion is therefore the following: interior
vorticity, vorticity at reg ular bounda ry points , vorticity at corner points,
and lastly the stream.function. The reader should note , however , that this
solution procedure doe s not strictly guarantee that values of vorticity on,
or adjacent to , points of inflow be in exact dynamic balance.

3. 3 Pseudospectral Model

We seek a (discrete) spectral solution to Eq. (3) subject to some
appropriate set of boundary and initial conditions . For definiteness,
conside r specifying boundary values of streamfunction and vorticity in
the manner first suggested by Charney, Fjortoft and von Neumann [18].
That is , we take as given quantities the values of 4, everywhere along

~, and C at those points along E characterized by mass infl ux.
Boundary values of vorticity at outflow points are therefore unconstrained;
they are computed as part of the calculation. Unde r these boundary
conditions , a completely enclosed domain is a special case , one for
which- - owing to the absence of any inflow at all- - vorticity need never
be specified at any time along ~~~ . In analogy to the analytic problem, we
make a computational distinction between problems contained within
bounded regions and those characterized by partially or fully open domains .

3. 3. 1 Closed domain

In a closed system, the advecti ve terms in Eq. (3) are treated
explicitly by a leapfrog time -differencing scheme . Unde r this second-
order approximation, the vorticity and Poisson equations become, in the
us ual notation,

~
k+l 

= C
k

~~ - 2At ~cJ($ k 
C~ ) + $~

= Rk+
~ (x,y) (21)

and
~

2
t
k+l 

= ~
k+l (22)

I 

_ _~~~~~- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~-~~~~~~~~
-
~~~~~

-
~~~~~~ ~~~~
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~~~~~~
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~~~~~•



- 17-

In space , we adopt a pseudospectral approximation technique for which
the dependent variables are expanded in a series of Chebyshev polynomials;
that is, let:

$
k(~ ~r) = E E a~~~ T ( ~c) T (~r) - 1 � ~c, ~r � +1 (23a)

n=0 m=0

N N
C’~~ , ~‘) = ~~ b~~~ Tn(

~
) Tm(

~
t) ( 23b)

n=0 m=0

and N N
R’~~c,~r) = ~~ 

R~~~ Tn(
~c) Tm(

~
) (23c)

n= 0 m=0

where

= (2x - X
B)/X B

= (Z y - 

~B~’~ B

and Tn(i) = cos(n cos~~ ~c) is the Chebyshev polynomial (of the first
kind) of deg ree n, a function of the linearly stretched coordinates ~c
and ~r. On the collocation grid (~c~~ ~‘~q) = (cos(ir p/N), cosOr q/N)) ,
0 � p, q � N, this implies for instance that

$
k(~p~~

T
q) = E ~~ a~~~~cos ~!2~~} 

COB 11T~
m

~~ ,
n=0 m=0

demonstrating the important fact that a Chebyshev transform is equi-
valent to a cosine transform on the (non-uniform) collocation grid
(
~~, ~r )  and as s uch can be implemented very eff iciently using special

forms of the fast Fourier transform algorithm [26].

Under these definitions , Eqs. (21) and (22) can be rewritten in
terms of the spectral coefficients a , b , and B.nm nm nm

bk+l 
= 0 � n , m � N (24)nm nm

and 
[axx + ~~~~~~ = b~~~ 0 ~ n , m � N (25)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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where ~~~ and a~~~ satisfy

2 2 N N
-

~~
--

~~ $ = -
~~
--

~~ ~~ E a T ( ~c) T (~r)
8x ax n=0 m=0

N N
~~~

—‘ ‘—‘ ,cx
= .i 

_ 
a T (x) T (y)-- rim n mn= 0 m=O

and

2 2 N N
• 

-
~~
--

~~~ $ = -

~~
-

~~~ E ~~ a m T~ (~ ) T ( ~ )
ay 8y n=0 m=0

N N
= E ~~ a~~ T (ic) T (9w )

run n inn=0 m O

Unlike per iodic models, the resulting spectral scheme can accommodate
quite arbitrary boundary conditions on E .  In the present bounded
geometry, 4r (x, y) is given on the boundary by some set of values, let us
say 4,E In terms of the spectral ‘-oefficients 

~~~~ 
this is equivalent to 

•

requiring that

~~~ [ ‘
~ 

a
~~~

T
~~
(
~q)j 

= $E(+l~ Yq
) O � q � N  (26a)

a~~~ Tm(~r
q)~ = 

~~~~~~~~~ 
O~~ q� N (26b)

a Tn(
~~~)j  = $E (x , +l)  O~~ p� N (26c)

and

N N

~~ 
( 1 ) m [E  a T (

~~ )I = $E (x , - l ) .  0~~ p � N (26d)

These conditions are imposed on the Poisson equation (22) by using the
spectral analogue of the tau method [27], that is by neglecting the highest

_______________ 

_•

~

••

~ 

-
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orde r dynamic equations--those for n N-i, N and m N-i, N--in

(25). The remaining equations are then supplemented by boundary

conditions (26a-d), written in their equivalent Chebyshev series for m,
to close the problem. The resulting matrix equations are not sparse ;

however , they are quite easily dia gonalized. The details of the solution - -

have been given by Haidvogel and Zang [28] who show that , for suf ficiently

smooth fields and given accuracy, solutions to Poisson ’s equation can be

computed at least as efficiently by these spect ral techniques as by cer tain

second and fo ur th-order finite-difference methods.
k+ 1Once the spectral coefficients arim have been determined, thus

yielding $ (x , y) at the next time level, the velocity components u

and v = +$,~ can be computed f rom well known Chebyshev derivative

relations. These in turn are combined to give the nonlinear term

3(4 ,, C) = ~~~~
. (~r~~) by the simple pse udospectral procedure

a A A A a * a a Av (~~~ C)~~~~~~~~~~ 
= ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

where the product vC is determined locally by physical space multipli-

cations on the collocation grid (~c~~ ~iq ) but the derivatives a/ax and

a/ay are perf ormed spectrally. The resulting scheme is of infinite-

orde r accurac~r and can be constructed so as to conserve any of the

higher order invariants such as energy and enstrophy; however , it

retains the effects of high wavenumbe r aliasing at f ull strength [29].

The effects of aliasing can be identically removed, but at a large cost

in computational efficiency (approximately a factor of 2).

3. 3. 2 Open domain

In the spectral approximation, boundary conditions can only be

correctly applied if the highest-order terms are treated in some way

implicitly. For those problems in which the domain of integration is not

bounded by an impermeable surface and for which, therefore , values of

the vorticity are to be specified at points of inflow , this implies that the

advective term must be treated somewha t differently than in a closed

reg ion. To do so , we adopt the following alternating direction implicit

(ADI) time-differencing scheme.

- - ~~_ - ~—-- —-_ ——- -- - — - --— . - __S___ — S -- - ~~~~~~~~~~ 
-_-

~~ — -•-•_—
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k+l/ 2 + ~~ t a (u C)~~ V’2 
- L ( k+l/2 ) - 

k ~~~~~~~~~ -~~- (v )k
2 ax 0 - l C - C - 2 ay

- ~~~ (€v~ [(v -v )C ] ÷ 4 , 1
k + 1ev. [(v-v 0g] ÷ 4 , 1

k 1/z

(27a)

k+i eAt a ( ) k+l - L ( k+l ) - k-l/ 2 
~~~ -~- ( u )k+i/ 2

2 ax v0C - 2 - C - 2 8x

- ~~~ fey. [(v -vo ) C] + ~ 1k+i/2 + ~~ ~~~~~~~~~ 
[
~~~ o~~

1 + $xjk

(27b)

where

u~~~~~ , ~
) = 

(
~~+l) fu k4l (i , ~) - uk+l

(~ l , y)3 + uk+l (~ l , y)

k+i ,. ~. 
(~~+ l\  k i-1 k+l k+lv0 (x,y )  = 
k

__2_J IV (x , 1) - v (x , - 1)) ÷ v (x , -1)

and

k+ l k+l k+1 k+ 1
u (-l , y), u (+i,y), v (x ,+l) and v (x,-l)

are the known distributions of normal velocity at time step (k+i) along

the western, eastern, nor ther n , and southern boundaries , respectively.

In effect , this semi-implicit proced ure removes and treats implicitly

that portion of the advective term which arises from contributions due to

non- zero normal velocities at the domain edges. Besides assuring

stability of the computational scheme , the splitting of the advective term

relaxes the res trictive Courant condition which arises fo r explicitly

differenced inflow/outflow problems due to the crowding of Chebyshev

collocation points near the domain boundaries.

The solution of each half step- -Eq. (27a ) or (27b)- - proceeds

similarly. Consider (27a) . The implicit advective ef fects int roduc e a

coupling only the x direction. In fact , along any line ~~‘ = 

~‘q = constant ,

u~ +l (~C~
A
Yq ) is at most linear in ~~~. Under these circumstances , operator

- --—
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L1(C k+1,l’2 ) can be expressed s pec trally as a sequence of tridiagonal
matrix equations , one for each ~ (0 � q � N) . Similar remarks hold for

k+l q
operator L2 (C ) which is repeatedly solved along li nes of cons tant

= (0 � p � N). In either case , vor ticity boundary conditions are
selec t ively introduced in place of higher order (dynamical) equations in
each tridiagonal system. Zero , one or two vor ticity conditions a re
imposed depending on the corresponding number of end points of the line

= or which are inflow points. The resulting numerical
scheme fixes the value of C only at inflow point s ; however , all values

of boundary vorticity are in exact dynamic balance with the interior.
(This is not true of either the FD or FE models--see the preceding
sections.) Note that problems involving inflow only in one coordinate
direc tion- - such as the north wall forcing problem to be discussed
shor tly- - can be handled in a single step.

Once Eqs. (Via) or (27b) yield ck÷ 1/ 2 or Ck+l , the associated
k+i/ 2 k+lPoisson problem for the streamfunction fields $ or $ are

solved as outlined above for a closed basin.

I 

~~~~~--—S~~~~~~- - S ---- - •- - S • - S-
-
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4. LINEAR AND NONLINEAR BOX MODE TESTS

In this and the following sections , we briefly describe the

formulation and selected result s of the prototype numerical tests
mentioned in Section 1. For a more complete summary of the result s ,
the reader is referred to Table I and Figures 1-2 7. (See also Section 2 ,
pages 5-8. )

4. 1 Formulation

The class of exact solutions to the linear vorticity equation (c = 0)

satisfying homogeneous streamfunction boundary conditions on E are the
box modes or norma l modes of the ba sin. These can be written

O� x� x
4r (x ,y , t) = sin(Xx) sin(~iy) cos(x+t/2) B (28)

where x and t have been scaled with respect to ci and (pdY~~,
res pectively and d is taken to be the scale length of the tra velling wave
(wavele ngth/Zir). The parameters X and ~~. , and the domain size X

B 
=

are related to the integer mode numbers , in and ri, by the relations

2 2 1/2X = r n / ( m  + n )

2 z i/z
~~ = n/(m + n )

and
2 2 1/2

X
B

= 
~B = 7r(m + n )  .

Given this nondimensionalization, the linear box modes have a wave-
length, period and phase speed given by Zn , 4n , and 1/2 , respectively.
Corresponding to these physical measures are the computational measures

= xB/1T relative box size

v = (N- l )/ o = (N _ l) 1r /x B = spatial resolution parameter

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — —_ -~~~~~~~
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and
= 4n/i~t = temporal resolution parameter.

As mentioned previously, we use N to refer to the number of spatial

degrees of freedom (grid points, spectral functions, etc.) which

characterizes the x and y di scretization of each model.

For c << 1, we can obtain an approximate solution to the non-
linear box mode pr oblem using a small amplitude expansion in c. Let

$(x,y,t) = $~ + 
~~~ 

+ e~ $~ +

where $~ 
is the linear box mode solution (28). Then, to first order

• v 2 $~t + 4 lx = -J($ 0, v 2
$ 0) (29)

which has the solution

$ 1(x ,y , t) = sin(2~ y) - ~ sin2 
~x + [cos(t + Zx)

4( l+ Z~ )
~

~~~~~~~~~~~~~ \ I ~ ~~ 
sinh R(xB-x)

- 

~~ in1i R~cB )  
cos \t  + + - 

~~~~ ‘~~B 
cos( t + x/2 )

(30)

with
R = (4 2 

- 1/4 )~~’2 , ~~> 1/4

Taking the expansion to second order , the right hand side of the
equation for has a component proportional to $~

. This secularity
destroys the uniform convergence of the approximation for large t.
Following Pedlosky [30], it can be shown that by introducing the new time
sca le ~r = t(1 + £ 26), all forcing te rms proportional to $o can be

suppressed for a suitable choice of 6. The perturbation solution

$ = $~~~ 
+ can therefore be corrected by replacing t by T in (28)

and (30). The resulting expression is correct to first order; that is , its
leading-order error  is 0(€ 2 ). Since the computed solution can be closer

~~~~~~~~~~~~~~~
- -

~~
- 

~~~• - • -. ~~~~~•• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~ 
-
•
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to (or further away from) the correct nonlinear solution than the
approximate analytic solution, the RMS error is an unknown mix of
errors in both the computed and approximate solutions .

4. 2 Finite-difference model results 
- 

-

(Table I, cases 1-9; Figures 1-6)

An exact solution, $~~ to the discrete finite-difference Eqs. (5a)
and ( 5b) can be found by assuming

$d(
~C, y, t) = sin(Xx) s in(p.y) cos(ax + at) (31)

where a and a are , in general , functions of the nondimensional space
and time increments h and At. (We therefore assume that the discrete
and ana lytic results diffe r only in the wavelength and phase speed of the
travelling component of the box mode.) Substituting in the trial solution
( 31), we find that

sin(c,-~~t) = 1/2 h~~t

and

cos h(X h)cos(ah ) =
2-cos(~i.h)

For h << ‘ii and ~t <<

a = 1 - ~~~ (2 + ii2 )h2 + 0(h 4 )

and

a = 1/2 + 1/48 ~ t2 
- l/24(4-2~

2
-~
4)h2 + O(~ t4+b4)

• That this is indeed the correct computational result has been verified by
direct numerical integration of the finite -difference equations (5a) and

• (Sb) . The resulting computational solution differs from (31) only due to
machine truncation error--that is , RMS(ç ’) = RMS(C c _ C d ) = 0(10

_ l i
).

In comparison to the analytic solution (fo r which a = 1 and a = 1/2) ,
the wavelength and period are correct only to second order in space and

_ _ _  —- --- 5--- - —“  —— ---5- 5.4



-25-

time . For sufficiently small phase errors 0 (= a~ - ad), it is easy to
show that

RMS($’) = [2(1 - cos

The initial error growth rate

RMS($ ’) ~t + 0(Øt) 3 
, (32)

is therefore linear in time with a slope given by

(1/48)At2 - 1/24(4 - 2p 2 
-

(n 2/3)1~
2 

- ir2/24(4 - 2~ 2 
- F 14 ) v 2 

. (33)

An example of this behavior is given in Figure (3a , b) for (v , rj ,  m, n) =

( l 6V ~, 128, 1, 1).

Note that for the discrete finite-difference solution, the spatial and
temporal contributions to the pha se error ~~~ , being of opposite sign, tend

• to offset each other. Becaus e of this compensation effect , if an optimal
choice of ~t and h is made , the total error of the finite-difference
scheme can be made quite small although the contributions to 0 from
spatial and temporal error are individually large . This property explains
the computed results as a function of v( ~ n/h) and r~(= 4,7/At) in which
increasing rj (holding v fixed) , and vice- versa , can inc rease , rather
than decrease the error  of the computed finite -difference solution.
Compare , for instance , Table 1, cases 2 and 3.

For e>  0, the values of C on the boundary enter the problem
through the nonlinear terms. Three ways of fixing C

~ 
have been

examined in the context of the finite-difference model. They are the
specification of the analytic value of the vorticity (C E = C a )

~ 
and the

Kreiss and Sundstrorri/Da vies conditi ons--see Section 3. For the non-
linea r box mode problems studied , the following behavior was noted.

4. 2.1 £ = O . 2

For low to moderate Rossby number the FD model is always well
behaved out to at least t 5 periods independent of computational

_ _
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boundary condition. When CE = Ca is the required condition, however ,

there is a buildup of small-scale perturbation vorticity on the western

wall- -Figure 6a. (Since similar effects are noted in all the rxDdels ,
this buildup is presumably a manifestation of the physical response of

the system to the presence of small-scale numerical truncation e r ro r . )

This accumulation of C’ is less rapid when the Kreiss boundary condition

is applied ever ywhe re (Figure 6b) and is near ly eliminated when the

Sundstrom/Davies condition is invoked (Fig ure 6c). The RMS error
measures are, however, comparably large-- several tens of percent

after five periods--for all three boundary conditions (Table 1, case 6).

4. 2. 2 e = 0 . 4

For higher Rosaby number , the error accum ulati on to the west is

much more rapid and becomes noticeable in even the Sundstrom/Davies
experiments . In contrast to the finite-element and spectral models , how-

eve r , the finite-difference scheme does not suffe r catastrophic numerical

instability when grid-scale vorticity begins to accumulate. This lower

sensitivity to the presence of small-scale vorticity is perhaps due to a

small amount of (numerical) dissipation implicit in the finite-difference

formalism.

In general, the RMS error quantities have a linearly increasing

trend similar to , but somewhat greater than, that noted for e = 0. Some

our approximate referenc e solution.

4. 3 Finite-element model results
(Table I, cases 1-9; Figures 1-5)

The following functional dependence on the parameters v and ii
has been noted in the error analys is of the finite-element model results.

~~- •S- -5.—- 
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4. 3. 1 i~~z < 4 ~~~v

For relatively coarse tempora l resolution, the RMS error
• quantities are well described, as in the finite-difference and spectral

2 -2models , by the relation 0 (it /3)i~ and consequently by an initial

linear increase with time proportiona l to ~~ 2
• This reflects the fact

that for sufficiently large v the error is attributable to temporal

truncation effects (identical in all three models).

• 4 .3 .2  i~~~~4~~~v

As rj increa ses , RMS(C ’) for the finite-element is characterized

by a large initial value followed by a very slow linear increase there-

after (Figure 3c) . (RMS($’)--whose values are perhaps dictated by a
different mechanism than those of RMS(C’)--maintains a linear trend. )

Apparent ly, the spatial contribution to the phase error 0 is of a form

quite different than that implied by (33). For one thing, we know the

phase er ror to be proport ional to h4 for the linearized advective

equation [221. In parameter ranges where this diminished error growth

rate prevails, the finite-element model may offe r some advantages for

long-term calculations ; however , we have not verified this possibility.

For c 0 , the maximum pointwise errors in vorticity tend to be

near the western boundary, but there is very little preferential

accumulation of small-scale vorticity there. With nonlinearity (e >0) ,
the situation is qualitatively different in the following way(s).

4 .3 .3  c = 0 . 2

With e = 0. 2 , an initial eastern boundary layer is generally
observed in the field of C’ . This boundary layer eventually disappears ,
to be replaced by an accumulation of perturbation vorticity on the
western wall, as in the FD and PS simulations (Figure 5c). In other
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respec ts , the soluti ons bear some resemblance to those for £ = 0.

RMS(C’) again shows evidence--for certain values of ~~i and r i--of

levelling off with tine after an initially lar ge increase , and 4 ,’ some-

time s resembles a box mode (out of phase with the reference solution) .

4. 3.4 e = 0 . 4

With stronger nonlinearity, perturbation vorticity on the grid-point

scale collects first on the western wall and then in the center of the

domain (perhaps as a numerical response to insuffi cient resolution of

the narrow wall layers of C’). Once this stage iB reached, the solution

becomes numerically un stable , typica lly after about 5 periods (Table I,

case 7).

This catastrophic effect of sma ll-scale vorticity accum uiation is

reached in less than a period for c = 0. 8.

4.4 Pseudospectra l model results
(Table I, case 1- 9; Figures 1-5 , 7)

For linear box modes , for which we have the analytic solution, the

spectral model shows three distinct types of behavior corresponding to

different regimes in the space of the nondimensional computational

parameters.

4.4. 1 ‘,,, ~~ 4J~~, ~ ~ 128 (ii << l6•/~ v )

Quite a large range of v exists for which spatial truncation errors

are totally insignificant in comparison to those arising from time-

clifferencing. For this range of parameters , the RMS quantities grow

linea rly in time (Figures 3e, 1) and can be quantitatively explained by the

simple phase error analysis of Section 4. 2 if , in addition, the assumption

is made that h 0. There is no apparent buildup of perturbation

vorticity at scales other than those of the box modes themselves. Since

the computational errors are due to time -differencing alone , they are

proportional to i~~
2 - -see Table I, cases 1 and 2.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —-—-5 
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4. 4 .2  ~ v ~ 4~~ , r~ ~ 128 (11 l6~1~~~)

For v 4 and standard value s of r~(= 64 or 128), spatial error

• becomes noticeable. The growth of the R.MS quantities is no longer
strictly linear. In fact , the temporal variation of RMS(C’) begins to
assume characteristics noted (over a larger range of v and r ) )  in the
finite-element model: a large initial error growth , followed by a

relatively slow increase with time. Indeed , it is interesting to note
that the spectral model can show the effects of compensating space and
time-differencing errors which is a general property of finite-difference
model. Something of this kind is clearly happening in the spectral model

• when, for instance , RMS($’) decreases when the box mode numbers
m n are increased from two to three at constant v and ri (Table I,
cases 4 and 5). For these values of v , perturbation vorticity does appear
to collect on the western wall, perhaps in scales much smaller than those
of the orig inal box modes.

4.4. 3 v ~~~~~ r~� 128 (rp.). l6~/~ v)

As expected, for extremely small values of the resolution para-
meter v , substantial spatial error results. The RMS error quantities
once again grow in a quasilinea r fashion. The perturbation vorticity
field is now dominated by a nar row layer on the western wall. The
amplitude of thi s feature is sufficiently large (after 10 periods) as to
contribute recognizably to the total vorticity field.

For the nonlinear box modes , behavior of the computational system
depends sensitively on c in the following manner.

4.4.4 e = 0 . 2

For c ~ 0. a, the spectral model is well behaved out to t 5
periods. By this time , however , integrated I vC I

2 has begun to increase

• rapidly. Significantly longer integrations could therefore be expected
to suffer eventual computational instability. Even at this level of
nonlinearity, increasing v and/or ‘1 (over the range tested: v~~ 8~j 5~,

� 128) does nothing to improve the error measures (Table I, cases 6,

p - --~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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8, 9). The manifestation of error growth is a very definite preferential

accumulation of perturbation vorticity in nar row layers adjacent to the

western wall of the domain (Figure 5e). Thiø accumulation of

perturbation vorticity may ultimately result from local numerical

truncation errors  which are propa gated to the west where , in the

abs ence of dissipation , they collect in a narrow boundary layer.

4.4. 5 e = 0 . 4

The results for c = 0. 4 are much more catastrophic , with per-

turbation vorticity collecting so quickl y on the western wall that locally

intense gradients of vorticity grow to destroy the calculation after only

2. 5 periods (Table I, case 7). This behavior is once again independent

of v and q. When the calculations go bad , they do so very quickly; pre-

sumably the computed fields are still quite accurate up to the instant of
• catastrophic failure. (This essentially instantaneous instability is a

fea ture of the FE model also. ) In a related calculation , it has been shown

that the useful integration of the spectral model can be prolonged to t 5

periods (and beyond) by periodicall y filtering the vor ticity fie ld by setting

bk ( fi ltered) = f f bk
nm n in nm

(see Section 3. 3) where the spectral filter

= 1. 0 - exp[-.*’(N2 
- n2 )}

k .and it’ is adj usted so that C is smoothed only at the highest wave-

numbers. By comparing the filtered and unfiltered results, it is known

that such filtering does not affect the large-scale features of the

circulation and that the two streamfunction fields (up to the moment of

insta bility in the unfiltered calculation) are virtually identical (Figure 7).

Lastly, it is important to note that the RMS error quantities for

the nonlinear box mode problems are nearly inde pendent of v and r~.

If there is nothing idiosyncratic about these problems , then we must

conclude that the largest contribution to the P.MS error fields comes

f rom the uncertainty in the exact ana lytic solution to the nonlinear box

mode problem.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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4. 5 Intercomparison

Res ults from the linea r box mode tes ts (see Table I) demons t rate

that the finite-element (with N = 33) and pseudospectral (with N = 17)
models are comparably accurate ove r the range of v and ri studied.
(The spectral model is , however , somewhat more efficient--Table U . )
And , even though the finite-difference is by far the least accurate model,
a phase error analysis of the FD model results shows that errors can be
minimized for optimal choices of v and ‘i• Since these optimal para-
meters are functions of the time and space scales of the problem, however ,
this property will be of questionable value in more general problems

characterized by multiple time and space scales. Even if a degree of
compensation could be guaranteed in a specific problem , errors get
smaller only if v and n are increased in the same ratio. A fourfold
decrease in the RMS errors would therefore require ri and v to be
simultaneously increas ed by a factor of two, with a resulting increase in
computational wo rk of a fac tor of eight. In contrast , the spectral model
(and to a lesser extent the FE model) generally require only ri to be in-
creased--say by two, for a four -fold reduction in error--because of their
much greater spatial accuracy.

In the case of the nonlinear box modes , interpretation of the results
is complicated by the fact that we have only a perturbation solution with
which to compare the computational results. Consequently, our error
measures--such as RMS($ ’) , etc. --reflect three sources of error: spatial
and temporal truncation errors , and the error associated with not knowing
the exact analytic solution. The R.MS quantities listed in Table I for the
nonlinear box mode tests cannot be used as direct measures of model
performance.

The essential qualitative distinction that can be made between the
results of the three models for £ > 0  is that the finite -difference model,
though presumably less accurate , appears not to be susceptible to
catastrophic numerical instability when small-scale error fields are
present . Under these conditions , the FD spatial truncation error is , how-
ever , formally quite large. A nonlinear FD solution will therefore become
invalid after only a short period of time even though a stable calculation
can be maintained for a much longer time. 
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5. FORCED NONLINEAR BOX MODE TESTS

5. 1 Formulation

One means of avoiding the complications associated with having
only a perturbation solution to the nonlinear box mode problem is to
consider the analogous forced problem , that is to seek solutions to the
inhomogeneous equa tion

.~~~~ V
2

4 , +  J($, V 24 , )  + = F(x ,y , t) (34)

where F is some suitably chosen forcing fun ction. As before , $ is
required to vanish on E .  In particular , we wish to examine solutions
with spatial and temporal characteristics similar to those of the linear
box modes. Accordingly, set

$(x ,y , t) = sinx sin y cos(ax + by +  ct) 0� x , y �ir  ( 35)

where a , b, and c are arbi t rary  constants which determine the wave-
length , period and phase speed of the forced mode (27l~/(a

2 +b 2) 1/2 2,7/c,
2 2 1/2 . .and c/(a +b  ) 

, res pectively). Thi s will be a solution to (34) so long as

F(x ,y , t) = V 2 + J($, cv 2) + .~L } 4 ,(x,y , t) (36)

which will in general be nonvanishing, as will J($ , ev 2$). Given specific
values of parameters a , b, c and c , the functional form of F can
therefore be directly calculated. For the following tests , the Rossby
number has been fixed at € = 0. 2. An examination of higher € behavior
is reserved for the open boundary calculations of Sec tion 7.

5. 2 Finite-difference model results
(Table I , cases 10-12 ; Figures 8-10)

Table I shows the RMS error measures for the finite-difference
model after two periods for a variety of values of v and ij .  The results
indicate that the FD error norms are in general somewhat smaller than
those for the linear box mode problems with comparable nondimensional

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -5• - 5 - 5- • - • • - • • ---• -5~~~~~~~~
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parameters. Compare Figures (3a , b) and (lOa, b) , for instance. In
addition, a partial compensation between spatial and temporal errors
once again exists so that the RIvIS errors (as in the linear box mode cases)
need not decrease with increasing r~ and v (Table I, cases 11 and 12).
As in the nonlinear box mode problems , perturbation vorticity tends to
collect on the western boundary (Figure 9a). This appears to be a quite
general property of all the simulations when € > 0 , no matter what the
orientation of the forced mode.

5. 3 Finite-element model results
(Table I, cases 10-12; Figures 8-10)

The FE model behaves similarly, yielding very acc urate and stable
solutions for a range of parameters (Table I, cases 10-12) . For instance,
with (v ,~~,a,b) (32 , 128, l/~i~, l/~i) the RMS errors  are 0 (1-2%) afte r
two periods. As in the FD, and as we shall see , the spectral computations ,
the RMS errors given by the FE solution to the nonlinear forced box mode
problem are typically no less , and very often several times smaller , than
the errors noted for the linear unforced box mode tests with comparable
resolution. Figures (3c , d) and (lOc , d) give an example of this behavior.
(Note , also that the character of the RMS error curve s seems to be modi-
f ied by the forcing such that RMS(C’) is a quasilinear function of time over
the range of parameters examined here. ) The perturbation fields associated
with the forced problems , although small in amplitude , are still character-
ized by small-scale, westward-trapped C ’ and large-scale 4 , ’ patterns
(Figure 9) .

5.4 Pseudospectral model results
(Table I, cases 10-12; Figures 8-10)

These calculations were all performed with very high spatial
resolution (v � 16); consequently, insignificant spatial truncation error
is expected. With a diagonally propa gating mode (a = b = l/ .~f~ ) and

128 , the RMS errors are in fact very small, being no more than
0. 5 percent after 5 periods of integration. Reference to Table I and
Figures lOe , f demonstrates , however , that not only are the RMS errors  

~~~~~~-~~~~~~~—-~~~~~~~~~~~ •--55 -5- - •5_ - -= -~~~ - • - • 5 -5• -5 - - • •-
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no longer strictly proportional to ,-( 2
~ -as they were in the unforced

case with sufficient spatial resolution- -but the error trends are not
linear in time . Although RMS(C’) increaees monotonically, RMS($ ’)

seems to vary quasiperiodically with little superimposed trend

(Figures lOe , f).

As in the FD and FE simulations, the PS results for the forced

nonli near box mode problems show a similar tendency for small-scale

~~~~
‘ to accumulate at the western edge of the domain (Figure 9e). The

ra te of this error accumulation might plausibly be thought to increase

drama tically with c, as in the nonlinear box mode problems; however ,
thi s hypothesis was not tested.

None of these conclusions depend sensitively on the direction of

propagation of the forced mode.

5.5 Intercomparison

All three models are capable of delivering an accurate and stable

solution to the forced nonlinear box mode problem for the computational
parameters considered here. In all cases , the observed RMS errors

are less than or equal to those noted in the linear box mode cases (for

comparable v and r~). It is quite likely that this reduction in numerical
erro r , despite going to a problem with nontrivia l nonlinearities, is in
some sense associated with a “locking in” of the numerical solution to
the applied forcing . The quasioscillatory nature of ,~he resultant R.MS($’)
error curves--see especially Figure lOf--argue s f o r  s uch a process.
We will return to this possibility in our discussion of future work.
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6. NORTH WALL FORCED MODE TESTS

6. 1 Formulation

Conside r solving Eq. (3) with £ = 0 in a domain characterized by
three closed boundaries (on the eas t , south and west), but which is open
on its northern edge. If , in par ticular , we let the boundary conditions on

E be

• 0 x = O , xB; y = 0
• 

- $ = (37)

sin~ j sin( ’~~ ’~ ) 
cos(x + t / 2 )

then the solution is

$(x ,y,t) = sin
(
~
x
~

T
x) sin 

(
~~i) cos(x+ t/2) (38)

2 2  2 1/2provided that X
B 

= 
~B = (m iT + ~ ) . A special case of these north

wall forced modes are the linear box modes, Eq. (28), which result when
= nir , n an integer , so that the streamfunction vanishes on all four walls.

Under appropriate forcing conditions , trapped solutions also exist
to the north wall forced problem. One simple solution is

$(x ,y , t) = sin sinh 
(~~-!~~ cos(x + t / 2 )  (39)

where
2 2  2 1/2x~~ = y ~~ = ( m 1r - y )

The appropriate boundary conditions for this problem are clearly the
value of $ evaluated along the boundary E. Since these solutions decay
away from the north wall, (39) is referred to as a trapped case , and (38)

as a propagating case. Note that for propagation (trapping) xB > miT

(X
B 

< mu ). A more general description of the north wall forcing problem

and its relation to meander-induced forcing has been given by Harrison

[31J. 
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Two par ticular nor th wall forcing problems have been considered,
one each of the propagating and trapped varieties. The former , which
we will refe r to as case 1, corres ponds to Eq. (38) with m = 1 and

= 9. 36. The latter experiment, or case 2 , is the trapped solution (39) •

w i t h m -~ 2 a n d y = 4 . 0.

In addition to these linear solutions , the corresponding nonlinear
case 1 solution- -that is , the solution to Eqs. (3) and (37) with m = 1,

= 9. 36 and € >  0--ha s been sought. With e = 0, problems 1 and 2
are similar in practice to the linear box mode problems , except that 4,
ass umes some time-dependent distribution of values along the northern
boundary. With nonlinearity present , however , a set of vorticity
boundary conditions must also be specified along y = In the FE and
PS models , vorticity is given its analytic value on boundary points

characterized by inflow. In addition to this , the FD model constrains
the values of vorticity on outflow by the Sundstrom/Davies condition- - see
Section 3. 1. For the purposes of this study , solid boundaries will be

treated as points of outflow. Since an exact solution to the resulting non-
linear problem is not available , we use (38) as our reference solution
even when £ >  0. This leads to a problem in interpreting the RMS error
quantities similar to that encountered in the nonlinear box mode tests
where only a pertur bation solution was available.

6. 2 Finite-difference model results
(Table I, cases 13-21 ; Figures 11-19)

Not only are the methods of solution nearly identical , as noted

above , but the results of the cases 1 and 2 linear north wall forced mode

problems are themselves quite simila r to those of the linear box mode
tests (Section 4). The following v az~ i dependencies were noted in
the propagating and trapped cases , respectively.

6. 2. 1 Case I (propagating )

The case 1 north wall forced mode closely resembles the linear

box mode with m = n = 3. The results for these two FD test problems
are comparable with few exceptions . The error fields are once again

- ~~~~~~~ -~~~~~~~~~~~ •—•~~~~~~~-~~~~~— --5 -
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F 

attributable to a simple phase difference between the discrete and
analytic solutions (Figure i la , b). BMS(4,’) and RMS(C ) grow linearly
in time over the five period integrations (Figure 13a , b) . Because of the

highly structured nature of these solutions and the second-order spatial
accuracy of the model, the RMS FD errors tend to be quite large in both
although their variations with v and i~ (Table I) suggest that it is
possible to reduce the RMS error meas ures for suitable choices of the

computational parameters. One striking dissimilarity between the box
mode and nor th wall forced mode results is that , of the three error
measures tabulated, only the normali zed error in integrated ener gy is
greatest for the north wall problem. This presumably reflects the
modified nature of the north wall forced problem in which energy is
exchanged between the interior solution and exterior environment at a
ra te determined by the imposed values of and C~~. The change in

energy level over the course of the 5 period simulation is , however ,
always fractionall y quite small , being no more than 0 (10% ) even for the
poores t resolved experiment .

6. 2. 2 Case 2 (trapped)

Although the trapping scale in equation (39) can be quite small,
it has been chosen in case 2 to give only moderate structure to the
solution. Consequently, the case 2 solution is actually somewhat less
structured than the propagating case and , as such, the trapped FD results
are mor e acc urate by roughly a factor of fo ur (Table I, cases 14 and 17,
for instance). The curves of RMS(C’) tend to rise to an initial moderate
value , but grow much more slowly thereafter (Figur e 16a)--a “attern
noted over varying ranges of the parameters in the PS and FE linear box
mode experiments. (RMS($’) tends to remain quasilinear in time though
it also has large excursions about the linear trend. ) For the case 2
simulations, the perturbaticin streamfunction and vorticity f ields can no

longer be explained by a simple phase difference between computed and
analytic fields . Instead , perturbation vorticity tends to accumulate in
the northeast and northwest corners of the domain (Figure l5a).

For £ = 0. 2 , the character of the FD solution is changed dramatic-
ally. Early in the simulation, the fields of perturbation streamf unction

— - —--- —- — -- - ~~—
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and vorticity are charac terized by a 6 x 2 celled structure. In fact ,
this feature appears in the FE and PS simulations as well (Figure 18).
Since in this problem our reference solution is the linear forced mode
(38) , this structured per tu rbation vorticity field must par tially reflec t
the nonlinear correction to (38) for £ = 0. 2. At later stages in the
simulation, the perturbation vorticity generated during the calculation
winds up on the western boundary where it forms six narrow cells of
vorticity adjacent to the walls (Fi gure 19). For the FD model, these
layers of vorticity dominate the field of tota l vorticity by the end of two
periods of integration. Although thi s graininess in the FD results does
not typically lead to numerical instability, such C fields are not accurately
resolva ble on the FD grid. For € = 0. 4, this state of an unresolvable
vorticity field is reached af ter one period.

As in the nonlinear box mode problem, the RMS errors are not
H calc ulated with respect to the exact ana lytic solution.

6. 3 Finite-element model results
(Table I, cases 13-21 ; Figures 11-19)

As noted for the FD model, the qualitative characteristics of the
case 1 and case 2 FE computational results are very different ,
particularly in the form of the 4 , ’  and ~~~~

‘ fields (Figures 12c , d and l5c , d)

and the associated R.MS error curves (Figures l3c , d and 16c , d).

6. 3. 1 Case 1 (propagating)

As expected from their structural similarity, the 3 x 3 linear
box mode and case 1 north wall forced mode p roblems both give RMS
erro rs of 0 (5% ) after five periods for (v , r j )  = (0( lO) , 64)--see Table I,
cases 5 and 14. (This is to be compared with errors of 30% and greater
for the comparable FD problems.) The perturbation fields are them-
selves box mode-like, indicating a simple phase error relationship
between computed and analytic solutions. Depending on v and r~, the
RMS(C’) error curves may have either of the two forms noted in the
linea r box mode calculations . For the pivotal resolution (v,r~) = 32/3, 64),
both RMS($’) and RMS(C’) increase quasilinearly (Fi gure 13c , d).
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While RMS(C’) decreases with increasing ~ and i~ RMS($ ’) does not ,
perhaps indicating some degree of compensation between the contributions
to $ of spatial and temporal errors.

6. 3. 2 Case 2 (trapped)

For case 2, the fields of perturbation streamf unction and vorticity
are not simply related to the analytic form of the trapped modes. While

4 ,’ is dominated by lateral scales larger than those making up the trapped
modes , C’ appears at highest wave numbers and is eventually trapped in

layers on both the eastern and western walls (Figure 15c , d). The RMS
errors increase only slowly with time (Figure l6c , d) and dec rease

uniformly with increasing v and ~ around the point of pivotal resolution
(Table I). Typical error after five periods are 0 (2-3%) for RMS($’)
and RMS(C’) at (v ,rj )  = (64/3, 64).

Stable , but noisy, solutions can be obtained out to five periods for
the case 1 problem with c = 0. 2. The final fields for the pivotal case- -

(v ,fl ) = (32/3, 64)__ are  given in Figures 17c , d and 19c , d. Note the
preferential accumulation of grid-point scale vorticity in the western-
most basin whose contribution to the total field C is evident as early as

t = 2 periods . Although gridpoint variations in the west undoubtedly
contribute to sizeable numerical discretization errors in this region , it
must be added that the resulting total streamfunction field $ appears to
be only locally affec ted, r etaining over most of the basin the expected
mode-like form. At € = 0.4 , the small-scale vorticity accumulates
much more catastrophically, leading to numerical instabilities for t � 5
periods (Table I, ca se 21).

6. 4 Pseudospectral model results
(Table I, cases 13-21; Figures 11-20)

The results of the Chebyshev spectral model are both qualitatively
and quantitatively similar to those of the finite-element code. This is
perhaps due to their higher order spatial accuracy.
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6.4. 1 Case 1 (propagating )

For the values of v used in the case 1 tests , the spectral model
has negligible spatial differencing error .  The perturbation fields are
therefore attributable to a phase error proportional to ‘q 2 and not at
all to v (Figures lle , f and l2e , f; Table I). For (v ,r~) = (32/3 , 64), the
resulting errors are 0 (5%)- -comparable to (much less than) the FE (FD)
error norms. RMS($’) and RMS(C’) increase linearly in time
(Figure 13e, f).

6.4. 2 Case 2 (trapped)

Although 4 , ’  and 
~~~~

‘ are no longer characterized by a simple phase
relationship to 4’a and Ca~ 

but by basin-scale and grid-scale features ,
respec tively (Figures l5e , f) ,  their RMS values at t = 5 periods are again
app roximately proportional to (Table I, cases 17 and 18). For a
pivotal resolution of (v , 11) = (64/3 , 64), kMS($’)~~ RMS(C’) = 0(1 %).  After
an initial period of rapid error growth, the R.MS norms are oscillatory in

• time with a much slower linear trend.

When we set £ = 0. 2 and seek nonlinear solutions to the case 1 north
wall forced mode problem, the spectral model goes unstable as early as
t = 2 periods . This beha vior coincides with that of the FE model, but at
slightly higher c. The origin of this instability is the ultrathin weste rn
boundary layer of vorticity which develops in all the models by this time
as a result of accumulated computational error (Figur e l9e). The
Chebyshev spectral model is especially sensitive to such a feature of the
solution because of its nonuniform distribution of resolution which favors
the domain edges over the interior . For reasonably narrow layers, the
Chebyshev model will give a much more accurate representation than
either the FD or FE models . However , the accuracy of the spectral
model works to its own disadvantage for layers which are much thinner
than the collocation grid spacing. This relationship between the accuracy
and stability of FD and PS approximation has also been noted in
integrations of one-dimensional viscous transport problems [15].

The most straightforward way to avoid eventual computational
instability is to suppress the generation of perturbation vorticity and its
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accumulation on the western boundary. This could be done by greatly
increasing the spatial and temporal resolution of the spectral model.
Thi s, however , is inefficient. Quite good results have been attained by
periodic filtering of the vortic ity field to preferentially remove numeric-
ally generated vorticity errors which, it is assumed , are of much
smaller scale than the solution we seek. Such an exponentially tapered
spectral filter--see Section 4.4--has been applied to the pivotal non-
linear north wall forced experiment--(v , r~, c) = (32/3, 64 , 0. 2)--with the
results shown in Figure 20. After 1. 5 periods , the stream.function field
(which reflects the large-scale component of the flow) of both the unfiltered
and filtered simulations are virtually identical. On the small scales,
localized layers of C’ exists; however , they are of much smaller
amplitude and not as thin in the filtered calculation. Subsequently, the
unfiltered run goes unstable at t 2 periods . With the filter , the
calculation proceeds to t = 5 periods with a resulting field which is at
least as smooth as the FD and FE simulations (Figure 17). One potentially
undesirable side-effect of the vorticity filter is that a much greater
fraction of the initial energy ha.s been lost over the course of the in-
tegration (Table I, case 19). A more scale-selective filter might avoid
this problem.

6. 5 Intercomparison

The intercomparative statements that can be made on the basis of
the linear north wall forcing problems do not diffe r substantially from
those made in connection with the linear box modes- -Section 4. 5. In
general, both the FE and PS models , by virtue of their superior spatial
accuracy, are notably more accurate than the FD model. The latter ,
however , can have si~.iall overall discre t ization error when values of v
and r~ are chosen to insure partial compensation between spatial and
temporal errors. Errors in the PS simulations are strictly proportiona l
to A t 2 . This is also approximately true for the FE code in which, how-
ever , there is also a somewhat complicated parametric dependence on
the form of the RMS error growth curves. For case 1 (box mode-like
solutIon), 4 , ’ and C ’ themselves resemble the analytic result for all

-5



three models. In case 2, 4 , ’ and C’ collect at low and high wavenumbers
respectively, independent of numerical tecbnique.

When e >  0, the stability of the various models seems to be in-
versely related to the forma l accuracy of the numer ical technique
involved. While the FD formalism is stable for all the tests we have
conducted , the FE model develops instabilities for some values of the
parameter set (v ,i~, e). The spectral result becomes unbounded much
earlier than the FE calculation, but can be stabilized for integrations of
moderate length by spectrally filtering the vorticity field to delay the
accumulation of vorticity at unresolvable scales.

_ _ _ _ _ _
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7. LINEAR AND NONLINEAR ROSSBY WAVE TESTS

7. 1 Formulation

The advected Rossby wave

4 ,(x,y , t) = - yy + sin(kx -f- Ly + wt) (40)

where

w = k( 1 - € ‘y) (4 1)

and
k2 + 12 

= 1

is a solution to both the linear and nonlinear vorticity equation (3). As
• for the box modes, we have scaled with respect to d = (2ir Y 1 times the

wavelength of the travelling wave; u0, a characteristic particle
velocity; and the time scale (~ d)* In the resulting nondimensional
sys tem, the wavelength is Zir , and the basin Size xB = irA where ~ is
the number of half wavelengths per box width (a measure of the structure
of the solution). Theoretically it is known that R.ossby waves are
individually unstable to small perturbations [32] with an c-folding time
proportional to (e) 1. This growth time scale is comparable in all cases to
the entire duration of the experiment. Due to the absence of large-amplitude
perturbations (or “noise ”) that can efficiently extract energy from the
primary wave, it is unlikely that purely physical instabilities- -as opposed
to computational ones- -play a role in the following results . The reader
should note that the nonlinearity of these model problems is trivial (that
is , self-cancelling) when y = 0.

7. 2 Finite -difference model results
( Table I, cases 22-37; Figures 2 1-23, 25-27)

The results for one linear Rossby wave experiment in which
(v , ri, e) = (32/3. 5, 128 , 0) are listed in Table I, case 22. Variations in
the RMS error measures as a function of v and r~ did not differ from the
comparable dependencies noted for the linear box mode and linear north
wall forced modes--see Sections 4 .5  and 6 .5--and hence will not be

-~~~ - -- --—----—--~~~~~ - - 
- -~~~~~~~~ ‘- - -s ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~— ‘-- ---  -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



-44-

reiterated here. The one substantive difference between these and the

other linear problems is that RMS($’) and RMS(C’) are not strictly

linea r in time but appear to be levelling off at t = 5 periods .

With no mean flow and moderate nonlinearity (€ , k,1 , y) = (0.4 ,
3/a/U, 2/lU, 0), the RMS errors of the FD simulations are characterized
by very small temporal, relative to spatial, errors. At the pivotal

resolution (v , f l )  = (32/3. 5, 64), RMS($’)~~~RMS(C’)~~~NDIF(NRG) = 0 (14% )

after five periods . The manifestation of error in these simulations are
pertur bation fields closely resembling box modes which begin to destroy

the plane wave nature of the solution afte r a few periods (Figures 21a , b

and 22a , b). This form for the error fields appears to be independent of

~ and ii. Their amplitude , as stated previously, depends sensitively on

v but not on ~ for those values considered here. (In addition, other
simulations--cases 28 , 29 and 31--show that RMS(4 ,’) and RMS(~~’)
also depend on the orientation of the reference wave so that cancellation
of time and space errors can sometimes occur. ) The RMS error
measures typicall y grow quasilinearly, though in some cases there is a
tendency for the rate of error growth to slow towards the end of the
simulation. Lastly, the cha nge in the integrated kinetic energy of the
system is 0 (- 10%) , somewhat larger than that observed in either the
nonlinear box mode or nonlinear north wall forced mode problems for
comparable v and r~.

For € = 0. 8, but still with (v , 1’)~ k, I, ‘j) = (32/3. 5, 64, 3/.~/f~, ~~~~ 0) ,
the same qualitative rema rks apply. The field of C’ does , however ,
begin to show some noticeable grid-scale variability in comparison to its
rather smooth mode -like appearance for c = 0.4. The associated values
of RMS($’) and RMS(C’) are comparable to those for e =  0.4.

With the addition of a mean flow (y / 0), the FD model actually
becomes more accurate perhaps reflecting the increased smoothness of
the $ field (Figur e 25b). With ~y = 0. 5, the FD model delivers a stable
solution with an accuracy of 0 (20% ) after 5 periods (Table I, case 26) .
For a mean flow of the opposite sense (y = -0. 5), the errors are
compa rable or slightly larger. As with y = 0 , the integrated errors grow
linearly in time, and the fields of 4 , ’  and c’ are dominated by large-scale

box mode-like features . Similar remarks hold for Rossby waves of
different orientation.

- -—- -~
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7. 3 Finite-element model results
(Table I, cases 22-37; Figures 21-23, 25-27)

The results of the FE linea r Ross by wave calc ulations are as
expected from Sections 4.3 and 6. 3. With (v, ’r~, k , 1,y )  = (32/3. 5, 128,
3//Ti, 2/’Jl3, 0), RMS( $ ’)<RMS( C’)  ~ 0(l% ) at the end of five periods of
integration (Table I, case 22). In fact , RMS(C’) has nearly stopped
increasing altogether, though RMS($’) continues to rise quasilinearly.
Associated with these error levels are fields of $‘ and C ’ composed
of basin-scale and grid-scale features, respectively.

With e > 0 , the FE model accumulates box mode -like features in
the streamfunction field. Errors in the vorticity are resident at some-
what smaller scales. Consider , for instance, Figures Zlc , d and 22c , d
which show the total and perturbation fields respectively at the end of a
five -period integration with (v ,~~, € ,k, t , ’y) = (32/3. 5 , 64 , 0.4 , 3/.JU,
2/jfl , 0). For this case , the FE model has errors of 0(9%), a significant
improvement over the second-orde r FD results which, as remarked,
have a large co~iponent of spatial truncation error. On the contrary, the
FE errors are most sensitive to changes in r~, at least in the pa rametric
neighborhood of our pivotal calculation (Table I, cases 23-25).

Quantitatively simila r statements can be made for simulations at
higher Rossby number- -case 28, € = 0. 8--and in the presence of mean
advection- -cases 26 and 27, y + 0. 5. (Note that the latter differ from
the nonadvec ted Rossby waves in that they have nontrivial nonlinearities.)
As with the FD model, neither the increase in e nor the inclusion of
mean advection seriously increases the R.MS errors of the FE model.
As a result , for constant v and r~ (spat~aJ and temporal resolution) ,

= 0(1-4%) and RMS(C’) = 0(3- 10% ) after 5 periods (Table I, cases
25-28) . The error growth is quite consistently nearly linear (Figures 27c , d)
with the pe rturlation streamfunction appearing at the largest (basin)
scales although in a somewhat less organized pattern than the box mode-
like features noted with (c , y) = (0.4 , 0)--Figures 22d and 26d.
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7. 4 Pseudospectral model results
(Table I, cases 22-37; Figures 2 1-27)

For 0.4 � e� 0.8 , the spectral model suffers eventual numerical
instability at some t ~ 5 periods . Figure 24a shows a typical example
where (v ,71,e,’y) = (16/3. 5,128,0.4,0). By t = 1.5 periods, the total

vorticity is dominated by small-scale noise; catastrophic failure of the
numerical experiment occurs shortly thereafter. The most intense grid-
scale vorticity features occur at one or more points on the boundary, but
the noise is also substantial in the interior along a line normal to that
point. This is undoubtedly due to the nature of the spectral expansion
which ties points together in just such a manner. The ultimate ori gin of
the PS instability is not known. The site of the instability, for instance,
is random and not simply related to the imposed patterns of inflow/outflow
along the domain margins .

It has been discovered empir icall y, however , that periodic spectral
filtering effectively controls the generation and accumulation of grid-
scale vorticity, and prevents numerical instability in these nonlinear
Rossby wave experiments. Fig ure 24 shows the effect on one such pivotal
calculation. By t = 1. 5 periods , C is entirely dominated by two regions
of high wavenumber noise in the unfiltered calculation. When the simulation
is redone , however , with filter ing, the Rossby wave is easily advanced in
time to t = 5 periods . The final field is quite free of grid-scale noise.

Filtering of this kind stabilizes a wide range of nonlinear Rossby
wave calculations (Table I, cases 23-37). The resulting RMS errors are
also notably small, being no more than a few percent for the experiment s
recorded in Table I. The errors associated with the fi ltered ’ PS model
are typically many times smaller than those of the comparable FD test
and somewhat smaller than those given by the FE model. RMS($’) and
RMS(C’) grow linearly in time (pe rhaps with some initially large value
of the errors due to the fi ltering (Figures 23 and 27) with very little
accumulation of unresolvable features in the vorticity field (Figures Zle , f
and 25e , f). The removal of these small-scale features by fi ltering does
not , however , seem to have a strong effect on the energy of the system.

- - -  -- - - -- p - - ,--~~~~~~~- -— —- a — - —-----
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7. 5 Intercomparison

The parametric results of the linear Rossby wave calculations
confirm the conclusions of Sections 4. 5 and 6. 5 in which it was noted
that the FE and PS models were in general more accurate than the FD
code , except for certain optimal choices of the computational parameters
v and ri . In addition, the orientation of the Rossby wave has a strong
influence on the RMS errors of the FD model . All three models are
stable for £ = 0.

When nonlinearity is admitted, however , the finite-difference and
finite-element models are alone capable of delivering stable and accurate -

calculations of moderate duration (t � 5 periods) over a broad range of —

parameters. The spectral model is typically unstable in these instances
unless it is supplemented by periodic spectral filtering of the vorticity field.

As a preliminary test of the response of the finite-difference and
finite -element models to the addition of a scale selective vorticity filtering
mechanism, we have redone the FD and FE experiments 25 , 26 and 28 and
the FE experiments 7 and 21 with the application at each time step of a
16th-order Shapiro filter [33]. The results of these comparisons indicate
that the RMS errors of the FE calculations are generally lowered some-
what by the addition of filtering (particularly RMS(C ’) whose smaller
scale components are being eliminated by the fi ltering ) and its instabilities
dela yed (but not removed). The opposite , namely an increase of error
with the application of filtering, is often true of the FD simulations. It is
not obvious why this should be the case unless the computational boundary
condition used in the FD formulation interacts in som e systematic way
with the applied filtering. Thi s possibility will be explored in our next
se r ies of pseudoforecasting tests (see Section 8).

It is of interest to note , howeve r , that all three models (perhaps
with some distribution of wavenumber selective filtering) can be made to
yield accurate solutions to these open domain problems . In fact , the
models have error accumulation characteristics not greatly different than
those noted in closed-basin problems. Specifically, the FE and PS models
are many times more accurate for given v and 11 than the FD model,

___ ___;______ ~~~~~~~~~~~~~~~~~~~ ~~
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with the PS being overall the best. Even taking into account the - 
-

increased efficiency of the finite-difference scheme (Ta ble II), the
difference between the second-order and higher-order methods is
significant. It is estimated that the FE (N = 33) and PS (N = 17) models - 

-

are , on the average, 15 and 3. 5 times more accurate respectively than
a FD model with N 43 for which the r unning times of all three models
would be approximatel y equal. 

- 
-

-
I 
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-- -~~~~~~~~~~
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8. CONCLUSION

We have integrated the inviscid barotropic vor ticity equation unde r

a variety of assumed initial and boundary conditions corresponding to

linear and nonli near box modes , f orced nonlinear box modes , north wall

forced modes (meander induced forcing), and linear and nonlinear Rossby

waves. The former two classes of problems are defined with closed

domains; the latter two are partially or totally open with respect to a

presupposed external environment and therefore represent prototype

limited-area calculations for the ocean. Each problem has been solved

usin g second-order finite-difference, fo urth-orde r finite-element and

infinite-order spectral approximation techniques. For each of the three

models a series of calculations was performed to determine its accuracy,

• stability and efficiency as a function of problem type and the associated

physical and computational nondimensional parameters. The most

important of these parameters are c , the Rossby number , and v and r i ,

nondimensional measures of the spatial and temporal resolution of the

numerical approxi mation. The accuracy of model results was determined,

wherever possible by comparing to known analytic or reference solutions.

RMS measures of the errors  in the computed values of vorticity, R.MS(C’),

and strearnf unction , RMS(4r ’), and a measur e of the gain or loss of globally

integrated kinetic ener gy, NDIF (NR.G), were tabulated. Integrations of

moderate length (5-10 periods of the reference solution) were performed as

an empirical measure of the functional dependence of model stability on

the parameters. As a result of these calculations, we are able to make

model-model intercomparative statements for a sequence of linear and

nonlinear problems in open , as well as closed , domains. To our

knowledge, such intercomparisons have not previously been made. A more

lengthy summary of the parameters and error norms can be found in

Section 2. A complete discussion of results has been given in Sections 4-7

and Table I.

These tests have shown that all three models are capable of delivering

efficient long-term solutions of acceptable accuracy to linear and weakly

nonlinear problems in both clos ed and open domains . The results also

suggest that given a judicious selection of frictional (filtering) mechanism 
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and/or computational bounda ry condition , each of the models can be made
comparably accurate for highly nonlinear calculations. (This hypothesi s
is being tested in a related series of experiments). We conclude , there- - •

fore , that any of the physical/numerical models investigated here- -

modified perhaps by addit ional dissipative or boundary condition

assumptions--could be used for the intended scientific applications

mentioned in Section 1.

Under the assumption of inviscid dynamics, the operational per-
formance of the three models is most sensitively related to the Rossby
number, c. For 0 � € ~ 0. 2, all the models are stable in the long- - •

term. Furthermore, unless an optional choice of v and r I ,  the non-
dimensional space and time steps , is made , the spectral and finite -
element models are the most accurate , and the finite-difference the least.
That this ranking reflects the formal spatia l accuracies of the models has
been demons t rated by a simple phase error analysis for the linear box
mode problems- -Section 4. 2. The net result of this increased accuracy
is that , for a given admissable er ror , both the FE and PS models are
many times more efficient than the FD model (Section 7. 5). These
conclusions are valid independent of problem class.

Although the PS (and to a lesser degree the FE) models are
susceptible to eventual numerical instability characterized by the
cata strophic accumula tion of grid-scale vorticity features , it has been
fo und that stability can often be maintained, and errors reduced , by a
periodi c filtering (smoothing) procedure. Consider for instance the non-
linear Rossby wave experiments in the presence of mean advection. The
PS model develops numerical instabilities which appear as very high
wavenumber noise in the vorticity field . (This generation of noise may be

partially due to our choice of boun dary conditions- -see the following
rema rks . )  But, by selectively filtering out this grid-scale vorticity at
each time step, the spectral model can be made stable in the long-term
sens e while maintaining a very high accuracy (Table I, cases 23-3 7). The
RMS error norms of the FE (but not the FD) model are also reduced with
the application of a scale selective vorticity filter.

5-— S
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If we had sufficient spatial resolution (that is , scale separation
between the energy-containing band and our cutoff wavenumber , K0 ) and

could devise the optimal filter, removing vorticity in this manner would

correspond to destroying enstrophy as it reached K0, but to leaving energy
unaffected. Such intertial. range fi lters have been constructed on the basis
of various turbulence theory closure schemes [34 ] and are typically non-
linear and highly dependent on the ene rg y spec trum of the field being
filtered. Standard frictional mechanisms such as linear and second-order
vorticity dissipation, and the exponentially tapered vorticity filter adopted
here for the spectral calculations are almost certainly crude approximations

to these optimal fi lters. As we have seen , however , even relatively ad hoc

remova l of small-scale vorticity prolongs the useful length of integration
and increases the accuracy of highly nonlinear simulations.

We r e we to incor porate a higher order frictional mechanism into
our models in order to prevent the contam ination of our results by small-
scale noise , however , the problem of specify ing the outflow boundary
condition would take on adde d importance. We already know on the basis
of finite-difference calculations detailed in Section 4. 2 that alternate
specifications of can lead to much smoothe r vorticity fields . Simila r
findings for the nonli near Rossby waves (not presented here) also indicate
that certain outflow boundary conditions are better able to control the
acc umulation of small-scale vorticity near the boundarie s, presumably by
allowing the grid-scale error field to propa gate more freely through the
boundaries. Although the optimal form of the outflow boundary condition
is a matter of some debate, there are several strong candidates which have
proven useful in various applications . These include the Sundstrorr)’Davies
condition considered here [16, 1 7], the Orlanski radiation condition [1 1],
and various extrapolatory techniques and multi-dimensional generalizations

of the method of characteristics. Lastly, it is possible to locally modify
the physics of the problem so tha t small-scale errors  are trapped near the
boundaries and selectively dissipated before they can contaminate the
interior so lution [35 , 36].

A second series of tests is now being readied to investigate further
the effec t s of dissipation (including filtering ) and alternate specifications

of the outflow boundary condition on the accuracy and stability of related

-5— ~~~-
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limited-area calculations . Following the methodology of thi s report , we
plan a systematic parametric examination of these effects. Since it is
expected that this testing phase serve as a lead-in to the intended
scientific applications outlined in Section 1, the reference solution
selec ted for these next tes ts will have a multiplicity of space and time
scales. Two approaches are possible. First , a desired analytic solution
can be constructed (perhaps assuming some known distribution of body
forces). Second, the open ocean problem can be embedded into a
previously existing closed-basin numerical calculation of known accuracy
(which serves as the source of boundary information). Of these two
approaches , the fo rmer is the easier to implement but , in general, would
require the assumption of some complicated time -dependent forcing
function. As has been speculated in Section 5, this may significantly
reduce the computational error because the computed solution tends to be
“locked in ” to the forc ing. Using a forced analytic reference solution as
a test problem is , therefore , neither physically nor numerically analogous
to the unforced forecastin g/hindcasting studies proposed in Section 1. An
embedding experiment , on the other hand , can be made physically as well
as numerically identical to a forecasting study although it requires that
boundary and verification data be generated numerically and stored for
later access. For this reason , we will pursue the embedding st rategy as
a basis fo r our next series of tests.

The large-scale unforced numerical simulation into which the open
ocea n calculations will be embedded can be conducted in eithe r a closed
or periodic domain. Solutions will be sought whose local character
resembles that of the proposed scientific applications; that is , either the
evolution of a mesoscale eddy field such as might be observed in the mid-
ocean or the local dynamics of intense current regions might be examined
as natural precursors to the MODE/POLYMODE forecasting and EGCM
jet instability studies, respectively. Since it is necessary to consider
various frictional and filtering mechanisms (including the inviscid limit),
reference numerical solutions are needed for each of these mechanisms

- 

- 

although the environmental parameters could otherwise be held fixed.
(Beside s providing initial and boundary condition data for the open ocean

• models , this could provide an interesting study of the effects of
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subgrid-scale parameterization on geophysical turbulence.) In addition ,
in order to avoid biasing the results towards a pa rticula r numerical
technique , the large-scale reference solution must be generated either
1) with a numerical model diffe rent than those being compared, or
2) independently for each numerical model being tested.

The pivotal calculation for each of these tests will be inviscid and
use the Charney- Fj ortoft - von Neumann closure. Subsequent calculations
will involve the assumption of linear bottom drag, high-orde r lateral
friction and spectral fi lters (or their equivalent in physical space) in
various combinations. Simultaneously, we will seek to minimize wave
ref lection from, and boundary layering near , open boundaries by invoking
the Sundstrom/Davies , K reiss , Orlanski (or other) condition on outflow.
It will also be of interest in some cases to examine the effects on the
accuracy and stability of the models of adding er rors  of certain amplitude
and scale to the imposed boundary data . This will be important in judging
the suitability of the models for forecasting studies driven by obse rvational

data in wh ich measurement and objec tive analysis er rors may be large.
On this basis , it will be possible to confidently select that physical problem!
numerical technique/boundary condition set which is most reliable for
limited-area calculations with e>> 0.

At some point during this sequence of tests , it will become
necessary to choose one of the open ocean models as that best suited for

the intended scientific problems. This selection will be done expeditiously
and will be based on such factors as the efficiency of the models for a
given accuracy and the generalizability of the models (to account for
baroclinic processes or alternate boundary conditions , for instance).
Once the choice of numerical technique has been n-iade, a baroc linic
(two-level) ver sion of ba r otropic model will be constructed and readied for
use. Some limited testing, along the lines of this report , will be
necessary to demonstrate that our conclusions based on these barotropic
calculations do indeed carry over to the baroclinic problem. 

—----.----
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APPENDIX I

Implementation of the Sundstrom/Davies Boundary Condition

Conside r a region near the boundary with the following local

ordering.

— ________ 
7 6 5 

—

= 
8 

_ _  _ _

The vorticity equation applied at the point 0 will involve vorticity
values on the other eight numbered points.

= ~~~~~~~~~~~~~~~ 
~~~ ~~~~ 

(Al )

Where Q = c At/h 2 and J is the Arakawa Jacobian term for the r- th
point evaluated at point 0.

The Sundstrom/Da vies closure for the boundary point 2 is

+ = + . (AZ )

can be eliminated from (Al) and (AZ) and the result can be written:

+ (1 + QJ 2 )C~ + ~~~~~~ = R2 (A3 )

where

B.2 = ~~~~ - - 
~~~~~~ (+ ‘~ 

- $~) - ~ 
i~~4 

J rC~ 
(A4 )

In this numerical procedure , the interior vorticity and etreanifunction
are computed before the boundary vorticity. Equation (A3 ) is arranged so

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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that 1(2 contains only known quantities. For each point along a boundary
(but not at corners), (A3) applies.

Were it not for corne r points , the system of equation (A3) would be
of tridiagona l form and easily invertable . Consider a region near the
(southea8t) corner.

~~~~~~ 8 O 4

For the boundary condition at the corner , we take the spatial
average along the diagonal.

+ k 1  
= + . (A5)

It would seem that near corners a pentadiagonal system is required since
• the Jacobian evaluated at 0 involves the five unknown boundary values at

points one through five . However , the Sundstrom/Da vies conditions at
points two and four are

+ = + (A6)

and

~
k+l + ~k-l 

= + . (A7)

Thus , -

= +~~~~~~~
_

~~~~~ (A8)

and
= + - 

. (A9)

This means that boundary points which are corner neighbors can be
expressed in terms of the corne r vorticity and known values. (A8) and

- — —--
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(A9 ) are applied in conjunction with the equations requiring vorticity
values of the corner neighbor , i. e.,  the corner and the two boundary
points Zh from the corner.

The unknowns in the tridiagonal system are given a cyclic ordering
excluding the corner neighbor points .

3K+1 
— 

3 K . . .. .__. . •  2K+3 2K+2 2K+1

3K+2 — — — — — — — — — 2K

• 3K+3 — — — — — — — —

— — — — — — — — — K =M-3

• — —  K+3

4K

1~~ 2 3 
— — K-1 K K+1

In the diagram the ordering is started in the southwest corner , and
(A3) is a tridiagonal system with cyclic boundary conditions since point 1
and 4K are connected. By a reordering of the points, the tridiagonal
cyclic system can be transformed into a pentadiagonal system which
requires twice the computation time of a tridiagona l system.

At inflow points , the vorticity is known and (A3) is replaced by

k k
- ‘B (A 0)

k .  . .  . .where C B is the specified value. If the origin of the ordering (the south-
west corner in the diagram) were inflow, the off-tridiagonal terms
expressing the cyclic nature vanish and we are left with a simple

I

_ _ _  - -- -—-~~~—-~~~~~~~~~~
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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tridiagonal system. If the southwest corner is not inflow, renumber the
boundary point

i’ (i + L - 1) mod(4K) + 1

where L is an inflow point. Finally, the values at the eight corner
neighbor points are obtained from (A8 ) and (A9) , or specified if inflow.

- -5-— — - - 5-— —-5- ~~~±~~~~~~~— — - —--— ---- - -
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TABLE CAPTIONS

Table I: Maximum RMS error measures--RMS($’), B.MS(C’), and
NDIF (NRG)- -for the finite-difference (FD) , finite-element
(FE) and pseudospectral (PS) models as a function of problem
class , duration of experiment , and the associated nondimen-
sional parameters. The first seven columns refe r to the
experiment number and the quantities c , A , x B’ N, v and ~
which are , respectively, the R.ossby numbe r , the number of
half wavelengths of the reference solution within the domain,
the nondimensional basin size , the number of spatial degrees
of freedom in each direction and nondimensional measures of
the spatial and temporal resolution. Intermediate columns
are reserved for problem-dependent parameters which have
been introduced in Sections 4-7.

Table II: Approximate model running times as a function of N (CPU
time in seconds on the NCAR. CDC 7600 per 100 time steps).
The ratios of the running times (also listed) indicate that the
computational time increases as approximately N2 for the
FD and FE models and as N In N for the PS model.
R unning time s for the other linear and nonlinear model
problems are comparable to those quoted here for the Rossby
wave ca lculations.
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TABLE II

Linear Rossby Waves Nonlinear Rossby Waves
N FD FE PS FD FE PS

17 1,5 3.1 3.7 2.0 3.4 12.1
33 6.3 13.1 10.6 8.3 14.0 31.1

33/17 4.2 4.2 2 .9 4.2 4.1 2.6

I
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• FIGURE CAPTIONS

Note that contour plots and RMS error curves are not necessarily scaled

similarly, even within a single figure.

Figure 1: Linear box mode solution at t=l0 periods with (~ ,ni,n) = (128 ,1,1) .

(a,b) (~~ip): FD model, ‘sj = l6V’~, CI = (0.3, 0.1)
(c,d) (~ ,sJ~,): FE model, v = 16V~, CI = (0.3, 0.1)

• (e,f) (C,s~,): ~s model, v = BVL CI = (0.3 , 0.1)

Figure 2: as Figure 1 -

(a ,b) (~~~
‘ ,i~j ’) :  FD model, v = 16V2, CI = (0.08 , 0.02)

(c,d) (r ’4 ’ ) :  FE model, 
~ ~~~~ CI = (4.0, 1.0) x 10

3(e,f) (~ ‘,~p’): PS model, v = 8~(7, CI = (8.0, 3.0) x 10

Figure 3: as Figure 1

(a,b) RMS(~ ’,t4~’): FD model, ‘~~ = l6V~, 0 < t < 10 periods
(c,d) RMS ( t ’ ,tj ,’ ) :  FE model , ‘t.~ = l6v’~, 0 < t < 5 periods
(e,f) ~~S(~~’,i1~,’): 

PS model, ~ = 8~~ , 0 < t < 10 periods

Figure 4: Nonlinear box mode solution at t=5 periods with (v,fl,m ,n,c) =

(l6t/Z, 64, 1, 1, 0.2).

(a,b) (~~p): FD model, CI = (0.3 , 0.1)
(c,d) (~~,ip) : FE model , CI = (0.3, 0.1)
(e,f) (~~~ p): PS model, CI = (0.4, 0.1)

Figure 5: as Figure 4

(a,b) (r ’,iJ,’): FD model, CI = (0.1, 0.03) -

(c,d) (~‘ ,4 , ’): FE model, CI = (0.1, 8.0 x 10 )
(e,f) (~~‘ ,s~’): PS model, CI = (0.4, 0.03)

Figure 6: as Figure 4, CI = 0.1

(a) ~~‘ : FD model, =

(b) ~~‘ : FD model, specified by Kreiss condition

Cc) ~~~: FD model, specified by Sundstroni/Davies cor,dition
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Figure 7: as Figure 4

(a b) (C,*) : PS model , t 2  periods, CI = (0.4, 0.1)
(c ,d) ( C,~ ) :  PS model , t 2  periods, filtered , CI = (0 .4 , 0.1)
(e f)  (c ,1p) : PS model , t=5 periods, filtered, CI = (1.0, 0.1)

Figure 8: Forced nonlinear box modes with (v,~ ,a,b,c) (32 ,l28 ,l/~/2’,l/~/~,0.2)

(a ,b) (
~ ,*) : FD model , t=2 periods, CI = (0.4 , 0.1)

(c ,d) (~~J~) :  FE model , t=5 periods, CI = (0.7 , 0.1)
(e ,f) (~ ,s~,) : ~S model , t=5 periods, CI = (0.4 , 0.1)

Figure 9: as Figure 8

(a ,b) (? ‘ ,~4i’): FD model , t=2 periods, CI = (0.04 , l . Ox l O ~~ )
(c d) (t ’ ,ij, ’) :  FE model, t=5 periods , CI (0.1 , 4 .Ox  10.,,4 )
(e ,f) (~ ‘ ,4j ’) : PS model , t=5 periods, CI = (0.06, 2 .OxlO

Figure 10: as Figure 8

(a ,b) RNS(~ ’,sjs ’): FD model , 0 < t < 2 periods
(c ,d) RMS (~~’ ,s~j ’) :  FE model , 0 < t < 5 periods
(e , f )  RMS (~~’ ,j , ’) :  PS model , 0 < t ( 5 periods

Figure 11: Case 1 linear north wall forced modes at t 5  periods with
(v, ri) = (32/3 , 64)

(a ,b) (
~,*): FD model, CI = (0.3 , 0.1)

(c,d) ( l , s~) :  FE model , CI = (0.3 , 0.1)
(e,f) (~,4)) : PS model, CI = (0.3 , 0.1)

Figure 12: as Figure 11.

(a,b) (~ ‘,sj’): FD model, CI = (0.1, 0.05)
(c d) (C ’ ,*’) : FE model, CI = (0.01, 8.OxlO

3
)

(e ,f)  (r ’ ,4,’): PS model, CI = (0.01, 8.oxlo

Figure 13: as Figure 11, 0 < t < 5 periods

(a ,b) RNS (~~’ ,sp ’) :  FD model
(c,d) RMS(~~ ,tp’): FE model
(e ,f)  RMS (~~’ ,~j,’): PS model

__________________________________—-S - —5-- -
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Figure 14: Case 2 linear north wall forced modes at t=5 periods with
(v ,~~) = (64/3 , 64)

(a ,b) (C, i)~) :  FD model , CI = (10.0 , 3.0)
(c,d) (~ ,s~): FE model , CI = (10.0, 3.0)
(e,f) (C,sj): PS model, CI = (10.0, 2.0)

Figure 15: as Figure 14

(a ,b) (~~ ,ij~’) :  PD model , CI (2.0, 0.06)
(c ,d) (t~’ ,4i ’) :  FE model , CI = (0.5 , 0.01)
(e ,f) ( t ’ ,4i ’) :  PS model , CI = (0.1 , 0.01)

Figure 16: as Figure 14 , 0 < t < 5 periods

(a ,b) RNS (~ ’ ,*’) : PD model
(c ,d) RMS (~~’ ,sp ’) :  FE model
(e ,f )  RMS(C ’ ,~j ’) :  PS model

Figure 17: Case 1 nonlinear north wall forced modes at t 5  periods with
= (32/3 ,64 ,0.2)

(a ,b) (T ,*): FD model, CI — (2.0 , 0.1)
• (c d) (~ ,sj,): FE model, CI — (2 .0 , 0.1)

(e,f) (~~~ ,i~~) :  PS model, CI = (2.0 , 0.1)

Figure 18: as Figure 17, t=0.5 periods

(a ,b) (
~~‘ ,*‘): PD model , CI = (0.06 , 0.01)

(c ,d) (~ ‘ ,j, ’) :  FE model , CI = (0.04 , 0.01)
(e ,f)  (~~, 4 ’ ) :  PS model , CI = (0•04 , 0.01)

Figure 19: as Figure 17 , t 5.0 periods

(a ,b) (
~~‘ ,*‘): FD model , CI = (2.0 , 0.1)

(c ,d) ( C ’ ,*’) : FE model , CI = (2 .0 , 0.1)
(e ,f )  (~~‘ ,q, ’) : PS model, CI = (2 .0 , 0.07)

Figure 20: as Figure 17

(a ,b) ( C,~ ) :  PS model , t=l.5 periods , CI = (3.0 , 0.1)
• (c d) (t ,~~) :  PS model , t=l .5 periods, filtered, CI = (0.9 , 0.1)

(e ,f)  ( C, s~,) :  PS model , t=5.0 periods , filtered, CI = (2.0 , 0.1)

— ~~~~~~~~~~~~~~~~~~ ~~~~~~~_



S 

- I

-72-

Figure 21: Nonlinear Rossby waves at t=5 periods with (v,~ ,k,L,e,y) =
(32/3.5, 64, 3/~/l3, 2/Vii, 0.4 , 0.0)

(a,b) (
~ ,*) : PD model, CX = (0.2 , 0.2)

(c d) (~ ,sj,) : FE model , CI = (0.2 , 0.2)
(e,f) (r ,~) :  PS model, CI = (0.2 , 0.2) , filtered

Figure 22: as Figure 21

Ca b) (r’ ,ij i ’) :  PD model, CI = (0.04, 0.04)
(c d) (C ’ ,*’) : FE model, CI = (0.05, 0.02)
(e s- f) (

~~‘,*‘): 
PS model , CI = (8.0x10 3, 6.0x10 3), filtered.

Figure 23: as Figure 21, 0 < t < 5 periods

(a ,b) RM S(t ’ ,~~’) :  FD model
(c ,d) RMS(~~ ,sj’): FE model
(e ,f )  RM S( C ’ ,~~’) :  PS model , filtered

Figure 24: as Figure 21

(a ,b) (~ ,~ ) :  PS model , t=2 .5 periods, CI = (0 .6 , 0 .2 )
(c ,d) (

~ ,*) : PS model , t=2 .5 periods , filtered , CI = (0.2 , 0.2)
(e s- f)  ( C, i) ) : PS model , t=5.0 periods , filtc-red, CI = (0.2 , 0.2)

Figure 25: Nonlinear Rossby waves with (v,~~,k ,t ,€ ,’~’) = (32/3.5 ,64 ,3/~1I~ ,2/\lI~ ,
0.4 ,0 .5)

(a ,b) (~ ,s~) :  FD model, t=5 peric~~s, CI = (0.2 , 0.7)
(c ,d) (? ,s~,) :  FE model, t=5 periods, CI = (0.2 , 0.7)
(e s- f )  (

~ , *) : PS model , t=5 periods, CI = (0.2 , 0.7) , filtered

Figure 26: as Figure 25

(a s- b) ( C’ ,~~’) :  PD model , t=5 periods , CI = (0.07 , 0.03)
(c d) ( C’ ,4 ’) :  FE model , t=5 periods, CI = (0.04 , 0.01)
(e , f)  ( C’ ,~,’) :  PS model , t=5 period s, CI = (0.01, 5.OX1O ),

filtered

Figure 27: as Figure 25 , 0 < t < 5 periods

Ca b) RMS(1 ’ ,4,’) :  FD model
(c d) RMS (~~’ ,4)’): FE model
(e ,f) RMS(C ’ ,*’): PS model , filtered
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