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Block 20. (Continued) -

~. )½hen the Lipshitz condition fails. Failure of the Lipahitz
condition corresponds to the von Mises yield condition. During
yield , the equations automatically become those of Prandtl-
Reuss. During unloading , the stable solution dictates a reentry
to an elastic regime. Linear elastic-perfectly plastic behavior
can be approximated arbitrarily closely. Extension to strain
hardening can be included. The problem of generalized plane —

strain in hydraulic autofrettage is reduced to a system of
ordinary differential equations with initial conditions. A
computer program is written for the open end condition in the
incompressible case with an instruction which insures a slight
perturbation during yield.1~~he computer solution shows thatyield does occur during loading and that a return to elastic
behavior during unloading occurs.
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Statement of Problem Studied

The problem studied is the search for a common logical approach

j to elastic and plastic behavior. In particular the work involved

development of the formulation of a set of rate type constitutive

equations which exhibits both elastic response and plastic yield

as well as transition between the two types of behavior, both in

loading and unloading. The relation to classical linear elastic-

perfectly plastic behavior was studied and strain hardening was

considered. Formulation of the hydraulic autofrettage problem

In generalized plane strain was studied. Plane strain, as well as
open and closed end conditions were considered. Computation for

the open end condition was begun for the incompressible case.
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Report number 3: Bernstein, Barry, “Unified Constitutive
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Recent Advances in Engineering Science -
Proceedings of the Fourteenth Annual Meeting,
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Summary of Scientific Work

Introductory Note: We summarize here briefly the work in

References [1] and [2], (Reports 2 and 3). In addition,

we report in some detail the progress on the problem of

hydraulic autofrettage during the duration of the project.

1. Introduction. The purpose of the efforts on this project was

to formulate properly a unified set of constitutive equations

for elastic and plastic behavior and to study methods of applying

the formulation to advantage in solving problems of autofrettage.

During the duration of the project , a formulation was brought

to completion and published [1]. Methods were advanced for solving

the hydraulic autofrettage problem in generalized plane strain

as a step toward developing methods of applying the equations.

Computations were carried out to test the method.

Although the incompressible plane strain is considered too

simple to be of great interest in Itself, some study was made of

it initially in order to test some aspects of writing computer

programs for the equations. Next the cases of open end and closed

• end conditions were taken up for generalized plane strain.2



I
Using to advantage the unified nature of the equations , we were

able through mathematical analysis to reduce these problems to

initial value problems for a set of ordinary differential equations,

which then can be easily and cheaply solved by an automatic

digital computer. A computer program was written and computations

were carried out. The computations demonstrated clearly that

the method does give an automatic transition to yield during

loading and an automatic return to elastic behavior during Un-

loading. This is where the work stood at the time the project

ended. Although we report numerical results which show the

transition to and from yield, the program written needs further

refinement before the numbers obtained are presentable as repre-

senting the actual predicted stress distribution. These refine-

ments are straightforward, involving improved integration

techniques and better error bounds, and will be carried out in

the future. The short duration of the project did not allow time

for these refinements. The results are, however, successful in

what they were intended to test, as will be presented below.

2. Development of the Unified Equations. The results of the

investigations on the unified equations was published in the

International Journal of Engineering Science under the title of

“A Unified Theory of Elasticity and Plasticity” [1]. A pre-

• sentation was also made at the fourteenth annual meeting of the

Society of Engineering Science under the title of “Unified

Constitutive Equations for Elastic and Plastic Behavior” and

an extended abstract was published in the proceedings of that

meeting [2]. We shall present here a brief summary.

_ _ Li
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A rate-theory equation was obtained which relates stress-

deviator sj~ and strain deviator The equation has the form

sij = 

~/ ( p) ~ ij 
+ 

~~~~~~ [J~(~) - SijSk~ 
ek2, (1)

where

= ysijsij

and 71’ is an unspecified function. It was shown by construction

that it is possible to choose the function ~~~~
‘ so as to make

equation (1) give rise to both elastic and plastic response as

well as transition to plastic yield during loading and from

plastic yield during unloading with a von Mises yield condition.

Indeed, yield corresponds to failure of a Lipshitz condition
• with its possibility of multiple solutions and elastic behavior

results from uniqueness of solutions when the Lipshitz condition

holds. During loading, which is characterized by positive shear
work rate, yield is highly stable. During unloading (negative

shear work rate) yield is unstable. Thus the assumption that

the stable solution is followed implies a return to an elastic

regime upon the onset of unloading from yield. (This notion is

readily incorporated into computer solutions.) During yield,

the basic constitutive equations automatically become the Prandtl-

Reuss equations. Furthermore it was shown how 71~ could be chosen
so that the elastic response approximates to any desired degree

a linear elastic behavior. An extension to strain hardening

• was constructed.

4
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3. The Problem of Hydraulic Autofrettage. It must be understood

that the work at this stage is intended to develop new methods

of solving autofrettage problems. It is natural, then, first to
attack old problems by a new method before launching on new ones

in order to test the method. Such has been the intent of the work

done so far. We have during the duration of the project brought

the work to the point of establishing the feasibility and ease of

applying computer techniques to the unified equations. In

particular, there are three matters which have been tested:
1) advantages of the unified equations in analyzing a probl em

in preparation for computation, 2) the transition to yield during

loading in a computer solution and 3) the use of the stability

criterion to determine when there is persistence of yield and

when there is a return to elastic behavior. We feel that these

tests have been successfully met.

Work was done on the case of generalized plane strain with

different end conditions. Analysis for both the incompressible

and compressible cases were performed. However, to date time

has permitted only the incompressible case to be brought to the

stage of computation. We shall now discuss generalized plane

strain.

The (physical) components of displacement u1 in cylindrical

coordinates r, e, z are taken to be

U U r~ v = u e, W U
~
,

and for generalized plane strain we assume

u=u(r), v = 0 , w = A z + B. •

0 For the incompressible case, the equation of incompressi-

bility gives

A ___________
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~~~~~~~~ ~~~ +~~~ + A = O  (2)

whence
C Ar

where C is a constant of integration. The stress o~~ and the

stress deviator 
~~~~ 

are related by

= —p~~ij
+ ~~

where
°ickp = — — ~— , s

11
=O .

Solutions are then sought for which the off-diagonal components

of 5ij vanish, and we write more simply 5r for Srr~ 5e for see
and s~ for s

~~
• Equilibrium then gives

—~p 8s s — sr e 0 (4) -

•
0 • ~r ~r r

• or

~0r 
+ 
Sr

_ S
e 

= (5)

We took, as in reference [1], ~~~~
‘ to satisfy

— l

= 

~~~
(l -  (~2/~~ 2)2n) ~

where n is an integer , )i is a constant giving initial shear

modulus and k is a constant giving shear yield stress. The

quantities were normalized or non-dimensionalized in such a way

as to lead to the same result as taking 2)1=1 and
0 

(This can be done by replacing 5ij by sj~/k and Uj by put/k.)

• We shall then assume that the quantities actually represent their

non—dimenslonalized equivalents, whence we write

6
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1
= (~~~~2n) ~

and obtain ~I’ as in reference [1]. Then equations (1) and (3)

give for the incompressible plane strain

= + 

~~~ 

- + 
~r~z (~ 

_4) ]

~~~~~~~~~~~~~~~~ {v~
_ 
~ - ~

,] 
~~ 

~ +s~ (
~ 

A _ .2~)]. 
(6)

Let a be the inner radius and let b be the outer radius of

the cylinder which is to be stressed. For all cases we shall

have o~, = 0 at r = b. Let P be the hydraulic pressure of the

• fluid inside the cylinder. Then for all cases we require that

= -P at r = a. The conditions distinguishing the three cases

are respectively the following:

Case I: Plane strain: A = 0.

Case II: Open end condition :

b

~ ro~~d r = O  (7)

Case III : Closed end condition:

b 2
• ~~ro~~dr=~~~~ (8)

We now discuss the cases more specifically:

• Case I: Plane strain, A = 0. In this case we can take

= 0 and the problem reduces to solving the simple equation

~~~~~~~~~~~~~~~~~~~~~~~~~ 
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~~_ V’~~ / 1 ~2n~~

with Sr = -~/ v’~ for which we could take C as a parameter:

~~~~~~~~~ 2n 9

Equation (9) was solved numerically at a number of r locations

using a Hamming Predictor-Corrector Scheme [3]. The following

instruction was added: If ~ ~ 1, replace ~ by N, where N was

taken to be a number slightly less than unity, and n was given

several integer values, 1, 20, 32, 64. N was given values .99

and .9999. Achievement of yield occurred as expected during

loading, and a return to elastic behavior occurred during un-

loading. Indeed, the only difficulty which was experienced

occurred for the physically unimportant small n = 1, where it

was found that for the values of N chosen, extra accuracy would

have to be introduced into the integration scheme in order to get

a transition to the proper elastic regime. This phenomenon was

ascribed to the relatively slow change in slope near yield for

n = 1 and did not occur for the higher values of n. This

observation leads to some interesting mathematical questions ,

which were not pursued at this stage since they did not affect the

cases of interest for which the scheme worked well. Once ~ is

known as a function of r and C, we have Sr = ~~~~~~~ s~ = 0 , Se =

~/y
’
~, and P can be determined by solving (8) with o~(b) = 0 and

using P = -o~(a). The incompressible plane strain case, then,
is basically one dimensional and quite trivial. We go on to the

other two cases.

0 . 8

- ~~~~~~~~~~~~~~~
•••

~~~~~~~~~~~~~~~
•
~

•• -~~~~~~~~- • --~~~~~
-- .

~~
-• -

~~~~~~



—___

Cases II and III : Open and Closed End Conditions: Note that

whence we can write for the open end condition (7)

dr + 

~
:

5 5 r )dr = 0. (10)

For the closed end condition (8), we get similarly

dr + 

~:~~
sz - 5r

~~~ 
= ~~~~~~~~~~

. (11)

Int egration by parts and the conditions at the inner and the 0
0

outer radius give 

2 b 2 ~
~~~~~~~~~~~~~~~~~ ~~~~~-~~—~~dr. (12)

-
~ Substitution of ~o~/ar from (5) into (12), replacement of

5e by ~
Sr~~

S
~ 
and substitution of the result into (10) and into

- : 

- 
(ii) gives

- 

Lrsz dr = - (13)

- for the open end condition and

0 \ r s2 d r = O
• ~a

for the closed end condition respectively.

Integration of (5) and use of the inner and outer radius

conditions gives

- —-• --~—- - 0 • 0~~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~



0 b 25 +s
-

~~~~~~~= dr. (14)

For the open end condition, we obtain by differentiating (13)

and (14) and substituting (6)
- 

2
• 

-aP 
= TA + LC

— P= MA + QC (15)
where

T = 
cr [~ 

+ 
~~~~~~~~ (v~ - - 

~~)]

M =  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

= - + 
~~~~~~ 

- - 

~
)] [4 s~ +4 ~r~z + ~ dr. (16)

For the closed end condition we obtain similarly

o = TA+ LC
• 

- P = M A + Q C .

For the open end condition we can solve (15) for A and C in

terms of P, substitute the result into (6) and write , after

- 
dividing both sides by P

10
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dSr 1 1 ~ (a
3M

= TQ-ML - 

r2 J~ \~ 
- T

- 

r2~
2 (V~~~~

2n 
- 

~
,) (2s~~+srsz)(a3M_T)

3 1
‘
~~~

5r5z ~L — - - ~—

ds
~ 1 1~~i a2Q\

- 

r2~
2 (4 ~2n~~~~~ 2srsz+s~) (~~ 

- T)

3~2 ( 2
• + .-

~~

—

~~~~~ 
17

For the closed end condition, we obtain similarly

KQ-~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

= KQ~~L 
+ ~ [~ 

- 
~
] [~( 2SS + s~)+ ~ s~ L (18)

The problem of generalized plane strain for either case,

open or closed ends, can now be turned into an initial value
problem with ordinary differential equations: We discretize

the interval [a,b] by subdividing it into a number of equal

intervals. In practice we used 100 intervals. Let the points
-

• 
of subdivision be rj, i = 0,... , 100 with a = r0, b = r100. Let

- 
- 

the values of and at the mesh points ri be s~ and

11
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respectively, i = 0,...,lOO. We then express all integrals

appearing in (16) in terms of the mesh values s~ , s~ through
a numerical quadrature formula. (In practice, the trapezoidal
rule was used.) This allows, then, either the equations (17)

(open end) or the equations (18) (closed end) to be replaced by

a set of 202 ordinary differential equations for which we take
as initial conditions s~ = s~ = 0 at P = 0. The boundary and

end conditions have been absorbed and the problem is reduced to

an initial value problem. Such problems are easily and cheaply

solved by digital computers.

Recall now that in the discussion above on the plane strain

case (case I), which reduced to the one dimensional problem (9),

there was a discussion about how to treat ~ when it reached unity
in order to avoid an error signal when the numerical procedure
approximated ~ by a value greater than one and in order to assure

the slight perturbation required to insure a return to an elastic
regime at the onset of unloading. For the two cases now under

• discussion , namely the open and closed end conditions , this

instruction has to be generalized to one which will hold when

the problem no longer reduces to a non dimensional one. The

instruction devised , then , was the following: If ~ ~ 1, replace
by Nsij/P~ where N is a number slightly less than unity.

• During loading, this perturbation should be dying out.

Calculations were carried out on the open end case in order

0 to test the procedure. The results of these calculations left

• no doubt that the method works well and cheaply. (A typical run

on the computer cost between five and ten dollars.) Yield 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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occurred during loading and a return to elastic behavior occurred

at the onset of unloading. Results are shown in figures 1 and 2 ,

in which the ratio of the inner radius to the outer radius was

taken to be two. Figure 1 shows ~2 versus r during loading for

several values of hydraulic pressure P (non dimensionalized),

which was brought up to a maximum value of’ 0.74 in steps of

0.01. One can see the yield region (~ = 1) progressing from the

inner radius outward for the curves P = .70 and P = . 74. Figure

2 shows the behavior of ~2 during unloading: Note a return locally

to elastic regimes as P drops below its maximum. Comparison

of figures 1 and 2 shows that unloading behavior is quite different

from loading behavior. This is because material points which have

experienced yield return to a different elastic regime than they

were in before yield.

The program needs refinement before the actual numerical

values of stress , in particular residual stress can be reported.

A simple Euler method was used, N was taken to be .99 and the

function 3” was crudely calculated. There is no difficulty at

all in making the necessary refinements, and they will be done

in order to control error buildup. The project ended before they

could be accomplished and so we report the state of affairs at

that time.

We conclude now that the essential nature of the procedure

has been tested and shown to work. It is easy to handle and

economical computation-wise because of the analysis that the

unified equations allowed. We feel that it is extremely

promising.

13 
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We shall end with a brief’ discussion of the compressible

case , for which analysis has been done. The analysis is similar

to that for the incompressible case and we shall merely report

how it differs from that already presented.

For the compressible case we donnot have the equation of

incompressibility (4). Instead we have

p = _ K Ui,i, (19)

where K is a constant , namely the bulk modulus. Using (19 ) and
( 5) ,  we obtain from the equation of equilibrium (4)

Ar r I
r Sr(4)~ ~~~~u = - - ~- -~~~ 

~a 
d4

+

~~~~~~ 
~
sz(c~

)d
~ ~~~~~~~~~~~~~~~~~~~~ (20)

a

The expression (20) for u is then substituted into the

constitutive equations (1), where again the off diagonal components

• of sj~ are assumed to vanish. The result is a set of two volterra

integral equations of the second kind for 
~r 

and Such
equations are classical and portend no difficulty in solving for

and The resulting equations then replace (6) and thence-

forth the procedure is the same as in the incompressible case.

The general philosophy behind these procedures is that the

• larger the part of the task relegated to analysis and the smaller

the part to computation,the better , more accurate and cheaper will
be the computation. In other words, the extra thought that goes

• into analysis pays off. We are happy that we have been supported

in bringing our method to the stage at which it now stands. And

14
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from the evidence accumulated thus far, we are confident that

it will prove itself capable of giving excellent results as it is

tested on problems and applied to new problems. It should

become an excellent tool for problems of autofrettage as well

as plasticity in general.
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Figure Captions

Figure 1. Loading behavior of ~2 = sijsjj versus radial coordinate

(r-a)/(b-a) for inner radius for b/a = 2 at various

values of internal gas pressure P. This is the incom-

pressible case of generalized plane strain with open

end conditions normalized on yield stress so that

n=20.

Figure 2. Same as figure 1, except that it shows behavior of

0 
during unloading.
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